Ll
34
Differential Algebraic Methods

for Obtaining Approximate Numerical Solutions
to the Hamilton-Jacobi Equation
by
Gordon D. Pusch

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in
Physics
APPROVED:
|0t T Arei
T 1
Paul F. Zweifel, Chairman ' Marvin® Blecher
. T 4
- i/
a1 Rt Q%gﬁ\@/ta/
A. L. Ritter R. F. Streater
Ut 3 Sl O s Ml
Clayton D. Williams C. Thofnas Mottershead
(Los Alamoé National Laboratory)
March, 1990

Blacksburg, Virginia

(D
5655
VBS(
1990
Psrs
Cik

Differential Algebraic Methods
for Obtaining Approximate Numerical Solutions
to the Hamilton-Jacobi Equation
by
Gordon D. Pusch
Committee Chairman: Paul F. Zweifel
Physics
(ABSTRACT)

I present two differential-algebraic (DA) methods for approximately solving the Hamilton-
Jacobi (HJ) equation. I use the “automatic differentiation” property of DA to convert
the nonlinear partial-differential HJ equation into a initial-value problem for a DA-valued
first-order ordinary differential equation (ODE), the “HJ/DA equation”. The solution of
either form of the HJ/DA equation is equivalent to a perturbative expansion of Hamilton’s
principle function about some reference trajectory (RT) through the system. The HJ/DA
method also extracts the equations of motion for the RT itself. Hamilton’s principle function
generates the canonical tranformation, or mapping, between the initial and final state of
every trajectory through the system. Since the map is represented by a generating function,

it must automatically be symplectic, even in the presence of round-off error.

The DA-valued ODE produced by either form of HJ/DA is equivalent tc a heirarchically-
ordered system of real-valued ODEs without “feedback” terms; therefore the heirarchy may
be truncated at any (arbitrarily high) order without loss of self consistency. The HJ/DA
equation may be numerically integrated using standard algorithms, if all mathematical
operations are done in DA. I show that the norm of the DA-valued part of the solution is
bounded by linear growth. The generating function may be used to track either particles

or the moments of a particle distribution through the system.

In the first method, all information about the perturbative dynamics is contained in the

DA-valued generating function. I numerically integrate the HJ/DA equation, with the

identity as the intial generating function. A difficulty with this approach is that not all
canonical transformations can be represented by the class of generating functions connected
to the identity; one finds that with the required initial conditions, the generating function
becomes singular near caustics or foci. One may continue integrating through a caustic
by using a Legendre transformation to obtain a new (but equivalent) generating function
which is singular near the identity, but nonsingular near the caustic. However the Legendre
transformation is a numerically costly procedure, so one would not want to do this often.
This approach is therfore not practical for systems producing periodic motions, because one

must perform a Legendre transformation four times per periced.

The second method avoids the caustic problem by representing only the nonlinear part of
the dynamics by a generating function. The linearized dynamics is treated separately via
matrix techniques. Since the nonlinear part of the dynamics may always be represented by

a near-identity transformation, no problem occurs when passing through caustics.

I sucessfully verify the HJ/DA method by applying it to three problems which can be solved
in closed form. Finally, I demonstrate the method’s utility by using it to optimize the length

of a lithium lens for minimum beam divergence via the moment-tracking technique.

Acknowledgements

It is my pleasure to acknowledge a few of the many people who have contributed their

friendship and support to me during the research and writing of this dissertation.

First, I would like to thank my parents, Glenn and Jeanne Pusch, for their love, support,
and patience, during the many years I have been in school. Their active encouragement of
my childhood curiousity about absolutely everything in Heaven and on Earth resulted in a

lifelong interest in the physical sciences. I dedicate this dissertation to them.

Next, I would like to thank my advisor, Dr. Paul Zweifel, and the rest of my advisory
committee for their support and encouragement on a difficult and ambitious dissertation.
I also thank them for their longsuffering patience with the many, many setbacks which
occurred during the time my research and dissertation was “two weeks from completion” —
for the better part of a year. I thank Christa Thomas for her support and encouragement,

as well.

I thank the crew of AT Division, Los Alamos National Laboratory, for their support, hos-
pitality, and friendship during the year I spent working for the optics code developement
group of AT-3. The time I spent at LANL represented one of the most stimulating and ed-
ucational years of my life. The topic of this dissertation was conceived there; indeed, most
of what I know about accelerator physics was learned during that year. Special thanks

to Ed Heighway for granting me the opportunity to work for AT-3. Thanks also to Tom

iv

Mottershead, Walter Lysenko, and Andy Jason for their supervision and mentorship while I
was “coming up to speed”. Finally, to all of the above, and to Paul Chanell, Barbara Blind,
Dave Wolf, and Mary Jo Mottershead, thanks for many long conversations about virtually

everything, and for keeping mealtimes interesting.

I thank my colleague Martin Berz for taking the time to carefully explain differential algebra
to me, and working through several examples. His detailed demonstration (despite my
obvious skepticism) of how DA turns a “particle pusher” into a transfer matrix extracter
is directly responsible for this dissertation; the “aha!” experience in which the HJ/DA
method was born occurred less than twenty-four hours after I finally understood what he
was talking about. The time I spent working with Martin while he was visiting AT-3 proved
to be immensely fruitful and valuable, and I found our conversations to be a constant source

of information and inspiration. He is also a good friend.

I thank Alex Dragt of the University of Maryland for putting me in touch with Ed Heighway.
I also thank him for alerting me to the caustic problem HJ/DA had, and how to cure it. I
thank Etienne Forest, for further clarification on this issue. Finally, I thank Fillipo Neri for
many interesting discussions, for teaching me the basics of reducing a map to normal form,

and explaining how his symplectic tracking method works.

I thank the Instrumentation and Controls group at CEBAF for their hospitality during my
summer internship there, particularly Robert Rossmanith for inviting me. Thanks to David
Douglas and Jorg Kewisch, for teaching me all the linear machine theory I'd never needed
while I was at Los Alamos, and therefore never learned. I might never have aquired a true
feel for beta and dispersion functions without their tutelage. Thanks also to Geoff Krafft,
for discussions on space-sharge effects and beam disruption. And again, thanks to all three

of the preceding for many long conversations about virtually everything.

I thank the people of Los Alamos Christian Fellowship for their friendship, love and prayer
support. Special thanks to Ralph and Diane Dahlstrom, and the Dahlstrom family, and to

vi

Jim and Jane Patterson, for serving as my “surrogate families” while I was a stranger in
an (initially) strange land. All are shining examples of Christian hospitality in action. The
Dahlstroms accepted me as their house-sitter even though they’d only just met me, knowing
only that I shared their Faith, and needed a place to live. They then provided me with a
“home away from home” for the first half of my stay in Los Alamos, after AT-3 offered to
extend my summer internship to a full year. The Pattersons invited me (and many others)
to dinner virtually every Sunday there wasn’t a Pot-Luck, and housed me during the period
between the end of my lease and my return to Blacksburg. I will remember you all for the

rest of my days, with fondness.

I also thank the people of Blacksburg Christian Fellowship for their friendship, love and
prayer support, especially those from my House Group. The members of House Group have
been a constant source of comfort and support during very trying times. Special thanks to
Mark Wyer, Hope Phetteplace, Mark Smith, Grace and Wayne Stinchcomb, and Doug and
Kim Walsh for their support and encouragement. Thanks to Marie Hetherington for taking
time from her Christmas break to carefully edit the incomplete first draft of this dissertation,
and for attempting the hopeless task of teaching me an entire course of technical writing in
a single evening, so she could explain to me what I'd done wrong. Her help in getting me

started writing was invaluable.

In addition to the Dahlstroms and Pattersons, I would like to thank Dan Solie, Grace
and Wayne Stinchcomb, Frank and Shirleigh Marvin, Doug and Kim Walsh, Detlef Ulfers,
and Mark Smith for providing housing during the perpetually indeterminant time I was
completing my research and dissertation. Also to Sam and Patty Metcalf, for providing
housing while I was at CEBAF. I will always remember your hospitality and graciousness
toward what amounted to “the guest who wouldn’t leave”. May Christ’s Love and the Holy

Spirit continue to fill you always!

I thank Lee Radigan for her friendship and encouragement, for many “pleasantly distract-

ing” conversations, and for always keeping her fingers crossed (which sometimes made it

vii

hard for her to type...;-).

Finally, I would like to thank Jeff Brandenburg, Geoff Knobl, and all the rest of the “Friday
Night” and “Singalong” crowds for friendship, folk-songs, and frequent flights of fancy. I'm

going to miss the n-part harmony, people ...

I know I've left a lot of people out, but this is already too long as it is. To all those unsung

heroes: though I haven’t named you, it doesn’t mean I didn’t appreciate you!
Take care, and best wishes, always.

Partial support for this research was received under a Los Alamos National Laboratory In-
stitutional Supporting Research and Developement grant, under the auspices of the United
States Department of Energy, and under grants NSF DMS-8701050 and DOE DE-FGO05-
87ER25033 from the Center for Transport Theory and Mathematical Physics. I also thank

the Virginia Tech Physics Department and CEBAF for use of their computing facilities.

Contents

0 Introduction

1 Modern Dynamics, Perturbative Methods, and Optics
1.1 Systems, Flows, and Mappings
1.2 Hamiltonian Systems and Poisson Brackets
1.3 Poisson Brackets and Poisson Manifolds
1.4 Phase-Space Tensors i i e e e
1.5 The Importance of Being Symplectic
1.6 Optics and Hamiltonian Dynamics
1.7 Hamiltonian Dynamics and Perturbation Methods

1.8 Perturbation Methods and Paraxial Optics

2 Current Numerical Methods for Nonlinear Dynamics

2.1 Non-Symplectic Methods

viii

10

13

14

16

19

21.1 Ray-Tracing 20
2.1.2 Extended Transfer Matrices 24

2.2 Need for Symplectic Methods 27
2.3 Symplectic Methods Lo 27
2.3.1 Lie-Algrebraic Transfer Maps 27
2.3.2 Symplectic Integratorso Lo 32
2.3.3 Generating-Function Methods 37
2.3.4 The Hamilton-Jacobi/Differential-Algebra Method 39

3 Basic Concepts of Differential Algebra (DA) 41
3.1 Brief History of Differential Algebra and its Precursors 42
3.2 DA as a Subset of Nonstandard Analysis 43
3.3 DA, Functions, and Derivatives 49
34 DAtoHigher Orders 50
3.5 DA in Several Variables 52
3.6 Gradings, Filters, Ideals, and Projections 54
3.7 Norms on Differential Algebras 55
3.8 The pDAFoR Extension of FORTRAN 56

4 Perturbative Dynamics and Optics 58
4.1 Hamiltonian Optics and the Hamilton-Jacobi Equation 58
4.2 The Hamilton-Jacobi Equation; Hamilton’s Principle and Characteristic Func-

4.3

4.4

175 (o« - 60
Hamilton’s Characteristic Function and the “Eikonal Method” 62
Perturbation Theory, Jets,and DA 64

5 DA Methods for Approximate Solution of the Hamilton-Jacobi Equation 67

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Equivalence of the DA-Valued HJ Equation and a System of ODEs 68
Closure Conditions 69
Need for More Than One Type of Solution 71
5.3.1 Caustics, Foci, and Singular Generating Functions 72

5.3.2 Classifying Generating Functions by the Images They Can’tRepresent 73

Procedure for F3 Solutions 75
Procedure for Fy Solutions o 76
Procedure for “Hybrid” Solutions 77
Now that I've got it, what doIdowithit ... 2 81
Bounds on Solution Norm 86

Estimate of the K ; 89

xi

6 Verification of the HI/DA Equation 92
6.1 Implementation of the Hybrid HJ/DA Equation 92
6.2 Testing the HJ/DA Equation 98

6.2.1 Case 1: The Uniform Relativistic Drift 99
6.2.2 Case 2: The 2-D Harmonic Oscillator in Polar Coordinates 102
6.2.3 Case 3: Uniform Magnetic Field 104
6.2.4 Convergence Study L 106
6.3 Example Application: Optimization of a Lithium Lens 108
6.3.1 The “Emittance” and “Beam Ellipse” Concepts 108
6.3.2 The Lithium Lens 111

7 Conclusion 118

Bibliography 119

A Numerical Results — Drift to 12t* Order 128

B Numerical Results — 2DSHO 133

C Numerical Results — Uniform B-Field 145
Cl 6=3r/4,Nstep =30 e 145

C2 0=2mNstep=80 e 148

xii

Numerical Results — Convergence Study

Numerical Results — Lithium Lens

Figures

FORTRAN Code

G.1 Master Modules
G.1.1 HIDAdrift
G.1.2 HJDApolrsho
G.1.3 HJDAubfield
G.14 LiLens e

G.2 The Hamiltonian Modules
G.2.1 Drift
G.2.2 PolrsSHO L
G.2.3 UBfield e

G.3 The Integration Module

G.3.1 HIDAbsint

151

157

159

177

G.5

G.6

G.7

G.8

Vita

xiii

G.4.1 HIDAderiv 208
G.42 HIDXident 209
G.4.3 HIDX1 e 210
G.44 HIDX2 e 211
G.45 HamSplit e 212
The Matrix Module 215
G5l RImul 215
G.5.2 MVmul 215
G.53 MMmul 216
G.5.4 SympInv 216
The Tracking Module 217
G.6.A1 DFeval o 217
G.6.2 DFeval e 218
Gaussload L e 220
RayGen e 222

227

List of Figures

F-1 Geometry for uniform B-field problem. 160
F-2 Symplecticity Error vs Nstep« . 161
F-3 Symplecticity Error ws Istep 161
F-4 1-Norm of Error Measure vs Nstep (All Orders). 162
F-5 Max-Norm of Error Measure vs Nstep (All Orders). 162
F-6 1-Norm of Error Measure vs Nstep (Zeroth Order). 163
F-7 Max-Norm of Error Measure vs Nstep (Zeroth Order). 163
F-8 1-Norm of Error Measure vs Nstep (First Order). 164
F-9 Max-Norm of Error Measure vs Nstep (First Order). 164
F-10 1-Norm of Error Measure vs Nstep (Second Order).. 165
F-11 Max-Norm of Error Measure vs Nstep (Second Order). 165
F-12 1-Norm of Error Measure vs Nstep (Third Order). 166
F-13 Max-Norm of Error Measure vs Nstep (Third Order). 166

Xv

F-14 1-Norm of Error Measure vs Nstep (Fourth Order). 167
F-15 Max-Norm of Error Measure vs Nstep (Fourth Order). 167
F-16 1-Norm of Error Measure vs Nstep (Fifth Order). 168
F-17 Max-Norm of Error Measure vs Nstep (Fifth Order). 168
F-18 1-Norm of Error Measure vs Istep (All Orders). 169
F-19 Max-Norm of Error Measure vs Istep (All Orders). 169
F-20 1-Norm of Error Measure vs Istep (ALL Orders). 170
F-21 Max-Norm of Error Measure vs Istep (Al Orders). 170
F-22 1-Norm of Error Measure vs Istep (First Order). 171
F-23 Max-Norm of Error Measure vs Istep (First Order). 171
F-24 1-Norm of Error Measure vs Istep (Second Order).. 172
F-25 Max-Norm of Error Measure vs Istep (Second Order). 172
F-26 1-Norm of Error Measure vs Istep (Third Order). 173
F-27 Max-Norm of Error Measure vs Istep (Third Order). 173
F-28 1-Norm of Error Measure vs Istep (Fourth Order). 174
F-29 Max-Norm of Error Measure vs Istep (Fourth Order). 174
F-30 1-Norm of Error Measure vs Istep (Fifth Order). 175
F-31 Max-Norm of Error Measure vs Istep (Fifth Order). 175

F-32 Scatter-plot of ¢ vs p, for optimized lithium lens. 176

List of Tables

A-1

A-2

A-3

A-4

B-2

B-2

B-3

B-3

B-4

B-4

Difference between Ry numer and Ratheo - - - - - oL 129
Numerically determined Ry 129
Theoretically Determined Ry 129
Numerical vs Theoretical DS12 e 130
Numerical vs Theoretical Dty 131
Numerical vs Theoretical Dzy 132
Reference Trajectory, Matrix, and Symplecticity Errorat ¢, 134
DS, for 2D-SHO (continue next page) 135
(cont.) DSys for 2D-SHOo 136
Numerical vs Theoretical ¢, (continue next page) 137
(cont.) Numerical vs Theoretical z3 138
Numerical vs Theoretical y, (continue next page) 139
(cont.) Numerical vs Theoretical y5 140

xvi

B-5

B-5

C-6

C-7

C-8

D-1

D-2

D-3

D-4

D-5

D-7

xvii

Numerical vs Theoretical p;; (continue next page) 141
(cont.) Numerical vs Theoretical pz3 142
Numerical vs Theoretical p,; (continue next page) 143
(cont.) Numerical vs Theoretical pyz 144
Reference Trajectory and Matrix at 6, 146
Generating Function DSi; for Nonlinear Part 146
Comparison of Orbit Center Coordinates z.; and z.o 147
Comparison of Orbit Center Coordinates y,; and 4.2 147
Reference Trajectory and Matrixat 8, 148
Generating Function DSy for Nonlinear Part 149
Comparison of Orbit Center Coordinates z.q and .o 149
Comparison of Orbit Center Coordinates y.q and y.2 150
Matrix Max-Norm of Symplecticity Error 152
One-Norm of Error Measure — AllOrders 153
Max-Norm of Error Measure — All Orders 153
One-Norm of Error Measure — Zeroth Order 153
Max-Norm of Error Measure — Zeroth Order 153
One-Norm of Error Measure — First Order 154

Max-Norm of Error Measure — First Order 154

xviii

D-8 One-Norm of Error Measure — Second Order 154
D-9 Max-Norm of Error Measure — Second Order 154
D-10 One-Norm of Error Measure — Third Order 155
D-11 Max-Norm of Error Measure — Third Order 155
D-12 One-Norm of Error Measure — Fourth Order 155
D-13 Max-Norm of Error Measure — Fourth Order 155
D-14 One-Norm of Error Measure — Fifth Order 156
D-15 Max-Norm of Error Measure — Fifth Order 156

E-1 (P%,) v8 Lien,: contributions by order.., 158

Chapter 0

Introduction

Scientists and engineers are often interested in the response of a dynamical system to pertur-
bations from some idealized state. Unfortunately, an analytical solution to such a problem
usually can only be obtained if the system in question is linear, or may be so approximated;

for a nonlinear system, one must frequently resort to numerical methods.

For example, this dissertation is particularly concerned with the response of a beam of
charged particles to applied electric and magnetic fields; the dynamics of such systems
become nonlinear when the field has sextupole or higher components, or when coulomb
interactions between the charged particles are included. If one is only interested in a small
number of specific trajectories through a system, then the “brute-force” method of direct
numerical integration may suffice. However, if one is interested in tracking hundreds of
particles through the system, or one particle for hundreds of orbits, the computational
expense of direct numerical integration may become prohibative. Furthermore, the analyst
may be far more interested in properties characterizing the system, rather than some small

set of trajectories passing through it.

Now the propagation of a state through a system may be thought of as being represented

by an “operation”, or mapping, which takes initial states into final states. Since the appli-

cation of the map to a state may be orders of magnitude “cheaper” than direct numerical
integration (because one is spared the expense of computing the intermediate states), it
often makes sense to invest one’s effort “up front” by looking for some means of numerically
representing and computing the map produced by a system. When the perturbation is
“small”, for example, one could respresent the map by a Taylor-series expansion of the final
coordinates in terms of the initial coordinates. In the region where this series is sufficiently
accurate, tracking becomes a matter of evaluating a set of polynomials having a few hundred
coefficients, as opposed to the several thousand complicated evaluations of the equations of

motion which might be required by direct numerical integration.

The subclass of Hamziltonian systems pose particular problems, because the evolution-map
produced by a Hamiltonian system has a special property known as symplecticity. One
would like the numerical representation of such a map to respect symplecticity exactly, if
possible; otherwise, unphysical behavior will occur. One such exactly symplectic representa-
tion is provided by the so-called “mixed generating functions”. A Mixed generating function

satisfies the Hamilton-Jacobi (HJ) equation associated with each Hamiltonian system.

HJ equations may be formulated for any system governed by a variational principle depend-
ing on no higher than first derivatives of the dynamical or “state” variables with respect
to some continous parameter; this category contains almost all systems in physics, and a
significant fraction of the systems in engineering. Examples from physics include certain
problems in celestial mechanics, parazial light optics, and parazial charged-particle optics.
In engineering and applied mathematics, examples of such variational principles arise in
optimal control theory. In fact, essentially any first-order differential system may be imbed-
ded in a larger Hamiltonian system, either by appending one or more “trivial” auxiliary
equations [LN88]., or by using the theory of optimal controls [Kir70, Sag67]. The result-
ing extended system may sometimes exhibit pathological behavior not seen in the original

system, however, so caution must be used [LN88].

This dissertation presents a new method for obtaining approximate numerical solutions to

the HJ-equation using the recently developed method of “differential algebra”. The result-
ing generating function provides a perturbative expansion for deviations from a specified
“reference trajectory”. Since much of my recent experience has been in charged-particle
optics, I shall draw most of my examples and terminology from this field. However, the

methods I shall describe may be applied to any of the problems mentioned above.
The organization of this dissertation is as follows:

In Chapter 1, I introduce those elements and notations of modern dynamical systems theory
needed for this dissertation, with particular emphasis on Hamiltonian systems. I then
discuss the importance of the symplectic condition in Hamiltonian dynamics, and why it
should be respected by numerical simulations. I then briefly sketch the relationship between

Hamiltonian dynamics and optics.

In Chapter 2, I review current numerical methods for Hamiltonian systems, and discuss their
respective advantages and liabilities. I then briefly sketch my HJ/DA method, describing

where it fits in with the aforementioned schemes.

In Chapter 3, I give a tutorial on differential algebra, a new method which allows one to
compute the numerical values of the analytical derivatives of functions, to arbitrarily high

order and machine precision, without resorting to an explicit analytical formula.

In Chapter 4, I introduce those elements of Hamilton-Jacobi and perturbation theory needed

for this dissertation. I also briefly discuss the theory of perturbative eikonals.

In Chapter 5, I develop and present three forms of my HJ/DA method. HJ /DA is a tech-
nique for obtaining approximate numerical solutions to the Hamilton-Jacobi equation via

differential algebra.

In Chapter 6, I describe an implementation of the HJ /DA method, and verify its accuracy
for three test problems solvable in closed form: a particle in a uniform relativistic drift, a

two-dimensional harmonic oscillator in polar coordinates, and a relativistic charged particle

in a uniform magnetic field. T then apply it to a new problem, for which no closed form

solution exists: optimization of a “lithium lens”.
In Chapter 7, I summarize my results and conclusions.

Finally, I present my numerical results and the FORTRAN code used in appendices A-G.

Chapter 1

Modern Dynamics, Perturbative

Methods, and Optics

“... Among all mathematical disciplines the theory of differential equations
is the most important ... It furnishes the explanation of all those elementary

manifestations of nature which involve time ...” — Sophus Lie (1895)

This chapter summarizes relevant concepts from modern dynamics and optics, and their
connection to perturbative methods, in order to establish terminology, notation, and provide

a framework.

1.1 Systems, Flows, and Mappings

A dynamical system may be defined in the abstract as a tangent vector field U € TM on a
manifold of states M; One may intuitively think of U as a “velocity” (see [AMRS8S, chap. 4],
also [Omo86, chap. 2]). TM is the tangent bundle over M which, loosely speaking, is the

product of M with its tangent manifolds (where tangent vectors live) at every point p € M.

(2}

Locally, the equations of motion (EOMs) governing the evolution of the system may always

be expressed as a set of first-order ordinary differential equations (ODEs):

€ = UM(E,¢t). (1.1)

Here the £* denote a local set of coordinates on the manifold M, (i.e. a chart), t is the
evolution parameter, and, as usual, £# denotes the total derivative of the £€# with respect

to t.

In principle, I can find the evolution of such a system with respect to ¢ from any admissable
initial condition £;(t,) to its coresponding final state £¢(t;); geometrically, this is a mapping

of M onto itself for each tq, t3:

U: M- M &(t) o €4(t2) = Ulta, 1) €i(t1). (1.2)

Do not be deceived by the simple appearance of (1.2); in general the evolution-map operator

U will not be linear!

If U satisfies certain smoothness and uniqueness conditions, then U will be a diffeomorphism

(i.e., a smooth, one-to-one, onto map having a smooth inverse) [AMRS8, p.116].

The two-parameter family of diffeomorphisms U, s, produced by the map U(ts,t,), and
labeled by the continous parameters ¢; and i, is called the flow of the dynamical vector

field U on M (see [AMRS8S, p.239]). The flow has the “group” properties:
utg £ = ut:;,tz o uh,tl ’ utl &2 — ut;,ltl) ut,t = ga v t)
where £ is the identity map.

A system is called autonomous if its evolution map depends only on the difference t; — ¢,
so that Uy, ¢, = Uy,)0, Vt2,81; this is true if, and only if, U is independent of ¢. The
map and its associated flow therefore effectively reduce to one-parameter families, which I

write as U(t) and Uy, respectively.

By abuse of notation, in the text of this dissertation I will often use the undecorated symbol
U to denote both the flow of U and the mapping operator which generates it, when the

difference is clear from context (they are, after all, more or less the same thing).

1.2 Hamiltonian Systems and Poisson Brackets

A very special class of dynamical systems are the Hamiltonian systems. A member of this
class lives on an even-dimensional manifold P, generally known as a “phase-space” [AMRSS,
pp. 560-583]. By Darboux’s theorem [AMRS8S, p. 562], [Arn88, p. 230], for any Hamiltonian
system a local chart ¢ : P » R™XxR™ ~ R?™ may always be found in which the evolution

equations take the canonical form:

s 0 .0 .
q = ap‘H(qyp): b: = _8qu(q)p)7 l—-—l,...,ﬂ.. (13)

The generalized coordinates ¢', and their corresponding generalized (or conjugate) momenta
p; provide a particular local parameterization of the manifold P known as “canonical co-
ordinates”, while the Hamiltonian function H(q,p) = H(q',...,9™,p1,--.,Pn) specifies the

dynamics.

I shall use the same symbol H to denote both the flow and the evolution mapping operator
defined by H. Again, context should be sufficient to resolve this ambiguity. To refer to the

system itself, I shall use either X or H, depending on which is more appropriate.

Strictly speaking, it is not generally possible to cover P by a single chart without en-
countering some sort of coordinate singularity. However, as a matter of convenience such
“defective charts” are often used anyway (e.g. spherical polar coordinates), since they pro-
vide perfectly servicable representations as long as one remembers that some points are not
properly represented. (The equations of motion may become numerically ill-conditioned

near the singularities, however, requiring some type of regularization.)

The Poisson Bracket (PB) between functions on P plays a fundamental role in the theory

of Hamiltonian systems. The PB is a skew-symmetric bilinear map:
{»}: CU(P)x C™(P) — C™1(P)
where C"(P) is the set of all continuous, n-times differentiable functions over P.

The PB has a number of important algebraic properties [SM74, p. 39] which I will state

here without proof:

I. Bilinearity: {(afi + Bf2),9} = a{f1,9} + B{f2, 9}
{f>(agl + ﬁQZ)} = a{fygl} + B{fs g2}
I1. Anti-Symmetry: {f,9}=—-{9,f}
III. Jacobi’s Identity: {{f,9},h} + {{g,h}, f} + {{h,f},9} =0
IV. Derivation Property: {fygh}y ={f,9}th + g{f,h}.

In terms of canonical coordinates, the PB is given by [Gol80]:

of 99 Bf 8g
(roy= Y (5hae - 2150 (1.4

While the above definition appears to be tied to a particular coordinate system, it is actually

invariant under the class of coordinate transformations (called canonical transformations)

which leave the canonical equations (1.3) form-invariant.

Using the Poisson Bracket, I can write the canonical equations (1.3) in a more symmetrical
form:

¢ = {¢', H}, pi ={p:,H}, (1.5)
and indeed for any f(q,p;t) € CI(P), one can show that the total derivative is given by:

d 0

along every trajectory (¢'(t), pi(t)) satisfying the canonical equations (1.3).

1.3 Poisson Brackets and Poisson Manifolds

From the above properties of PBs, one sees that for functions in C*®(P), the PB satisfies the
defining properties of an (infinite-dimesional) Lie-algebra. These properties hold indepen-
dently of the canonical coordinate representation (1.4), and indeed, a completely coordinate-
free treatment is possible using Lie derivatives and differential forms [AMRS88, Arn88].
Modern workers in Mechanics hold that it is the above “Lie properties” which are crucial;
as in General Relativity, the coordinatization of the system is physically irrelevent, and a

coordinate-free treatment should be employed whenever possible.

The arena of Hamiltonian dynamics is a Potsson manifold: a manifold of states with a
Poisson Bracket defined on it [AMRS8, pp.110]. The bracket structure plays a defining role
in the geometry of this manifold analogous to the role of the metric tensor in a Riemannian
manifold. In General Relativity, we distill the physical essence of coordinates into the
metric tensor; in Hamiltonian dynamics, the physics of the canonical equations resides in
the Poisson bracket structure. In General Relativity, we attach special importance to those
transformations which preserve the metric; in Hamiltonian dynamics, we attach similar

importance to the canonical tranformations which leave the bracket structure invariant.

For the purposes of this dissertation, the full machinery of coordinate-independent me-
chanics will not be necessary. However some of the concepts of tensor analysis on phase-

space [SMT74| will be useful.

1.4 Phase-Space Tensors

Consider a set of 2n functions é#(q,p), ¢ = 1, ..., 2n. If they are smooth and invertable,
I may just as easily parameterize the phase-space P by the £* as by the (q‘,p,-). In particular,

the Poisson bracket (1.4) of two functions so parameterized will become:

{f,9} = Z agu{f") agu = 8,f J*™ B,9. (1.7)

10

Here I have introduced the Einstein summation convention, and the common notation
0, := 0/0&*; T have also introduced the object J* := {£{#,£¥}. One can easily show that

under a coordinate transformation J*¥ must transform like a rank-2 contravariant tensor.

The EOMs of the system in terms of the new paramertization are obtained by computing

the total derivative of the £#; From (1.6) and (1.7), one finds:

- H 3 65“ IA 5. H 7'\ 5 H e e o
un " i v H v uy .
6 {6) } atE 9£A v - 6A v - v (1 8)

(assuming, of course, that the £* have no explicit time-dependence). In canonical coordi-
nates, with the particular labeling ¢* = (¢*,p;), J#V takes on the following special “block

anti-symmetric unit” form:
01
T = . (1.9)
-1 0
This form sugests that canonical coordinates on a Poisson manifold play a role analogous
to orthogonal cartesian coordinates in euclidian geometry, with J#” being somewhat anal-
ogous to the metric. The analogy may be somewhat strained though, since the metric is a

symmetric bilinear form which maps a pair of vectors to a scalar, while the PB maps a pair

of functions to another function. But any analogy falls over if you push it hard enough.

1.5 The Importance of Being Symplectic

Canonical transformations are those transformations £ — € which preserve the form of the

canonical equations (1.3). This is equivalent to requiring that J*¥ be invariant:

- _ for g8
JoP = (£, 8%} = g—g;J‘“’g—g; =

JeB, (1.10)
This apparently innocent identity actually has very far-reaching implications for the would-
be numerical analyst intent on tackling a Hamiltonian system. It is called the symplectic
condition, because it implies that when J*” is in the “standard form’ (1.9), then the Ja-

cobian matrix of a canonical transformation, [M]} := 0&>/0¢*, must be an element of

11

the symplectic group Sp(2n), where 2n = dim{P}. The symplectic group Sp(2n) is the
set of all 2n x 2n real matrices which satisfy the condition, MIMT = J. It is easy to
show [Gol80, p.403| that det{M} = 1, so M is volume-preserving; an immediate conse-
quence of this is Liouville’s theorem: the volume of any closed region of phase-space is

preserved as it is convected along by the Hamiltonian flow [Gol80, §9.8].

If the tensor J#¥ is nondegenerate, its inverse defines a closed, nondegenerate two-form

= %J;,f d€H A dEY called a symplectic structure, and restricts our Poisson manifold M to
a Symplectic Manifold (see [Arn88, p.201]). The term “symplectic” appears to have been
coined by Herman Weyl. The symplectic groups are closely related to complez projective
geometry [Arn88, App. 3|, and w provides an “almost complex structure” on M. To eliminate
possible confusion, Weyl transmogrified the Latin roots “com” and “plez” to their Greek
equivalents “sym” and “plectic’.! The symplectic condition (1.10), is an extrordinarily
restrictive condition on the geometry and dynamics of a Hamiltonian system. It represents
a set of global nonlinear partial differential constraints on every possible transformation
one might apply to H, including those which represent its own evolution. In fact, the
constraints (1.10) are so restrictive that they will probably not be satisfied if one attempts
to approximate the flow H of the canonical equations (1.3) with some simpler system, unless

the flow of that simpler system is also symplectic.

The symplectic condition (1.10) is a fundamental consequence of the Poisson bracket struc-
ture on the phase-space of the Hamiltonian system . It resembles in many ways the
condition of analyticity in complex function theory, although the symplectic condition is
understood far less clearly. If anything the symplectic condition may be more restrictive
than complex-analyticity, since in Hamiltonian mechanics one is usually working in a space
of more than two dimensions. Just as a function cannot be only “a little bit analytic” over
some domain, a tranformation on P cannot be only “a little bit symplectic”: it either is

or it isn't. Moreover, the symplectic condition is a global constraint; if the Hamiltonian

!The only prior use of the word “symplectic” in English is as the name of a small bone in the head of a
fish; amusingly, “poisson” happens to be French for “fish”.

12

character of H is to be preseved, then the symplectic condition (1.10) must be satisfied at

every point in P, and not just over a limited region.

Symplecticity will also impose an infinite hierarchy of constraints on certain approximation
schemes (such as finite-difference schemes, or so-called perturbation “theory”), because even
if the symplectic condition is ezplicitly satisfied through a given order, there is no guarantee
that it will not be implicitly violated by higher-order-terms (abbreviated as “{HOTs}”). If
the approximation scheme does not satisfy the symplectic condition, it may cause violations
of important conservation laws, such as Liouville’s theorem or the Poincaré invariants (both
of which are consequences of the symplectic structure on P).2 In particular, replacement of
(1.3) by a finite difference scheme on a computer will almost certainly violate the symplectic
condition, because the global structure of the finite difference equations may be very different
from the orginal differential equations, even in the limit of vanishing stepsize (a fact often

overlooked in numerical simulations).

Cases have been found [How74] where the structure and character of global features, such as
fixed-points and separatrices, change markedly when the system is approximated by a finite-
difference scheme, such as the Runge-Kutta or Adams families of integrators [HNW87]: sta-
ble orbits may become unstable, fixed points may become attractors or repellors, and closed
regions bounded by separatrices may become open. Also, Channell and Scoval [ChSc88|
found that with Runge-Kutta and Adams numerical integrators, the constants of motion of
the original system typically drift away from their initial values, with the deviation growing
like some power of time. In contrast, Channell and Scoval found that, when using their
special integrators which preserve symplecticity ezactly even though they are only of finite
accuracy in the time-step, the constants of motion typically show only small, apparently
bounded fluctuations about some mean value; in some cases, the constants were even pre-
served to machine accuracy! The accuracy with which the constants were preserved becomes

even more remarkable when one realizes that no ezplicit effort had been made by Chan-

?An example of such unphysical behavior may be seen in [Ser85], where gross violations of Liouville’s
theorem were observed in a long-term tracking study.

13

nell and Scoval to incorporate conservation of the constants into the difference scheme; the

remarkable stability properties of these algorithms apparently came “for free”.

As a physicist, I am biased toward approximation schemes which respect the structure of a
system and its conserved quantities “as much as possible”. The work of Channell and Scoval
appears to vindicate this prejudice; it also shows that explicitly respecting symplecticity

may perhaps be even more important than respecting, say, energy-conservation.

1.6 Optics and Hamiltonian Dynamics

One important application of Hamiltonian Dynamics is opites, both geometrical and corpus-
cular. Geometrical optics deals with the manipulation of light-beams using configurations of
curved refractive surfaces. Corpuscular, or charged-particle, optics deals with the manipu-
lation of charged particle beams using configurations of electric and magnetic fields. While
superficially similar, the character and geometry of these two problems is fundamentally
very different. In the former, the geometry is essentially Riemannian, and the underlying
variational principle is Fermat’s principle of “least time”; the “metric” is the Euclidian
metric, conformally rescaled by the reciprocal of the refractive index. In the latter, it is
intrinsicly Finslerian, and the variational principle is Hamilton’s principle of “least action”.
The significant difference between Reimannian and the more general Finslerian geometries
is that in Finslerian, or “Hamiltonian” geometry as Synge [Syn60] prefers to call it, the
analog of the “metric” (Hessian of the Lagrangian) in general depends nontrivially on the
velocity. However Hamiltonian Dynamics provides a common and natural framework for

both types of optics.

14

1.7 Hamiltonian Dynamics and Perturbation Methods

The fundamental problem faced by the numerical analyst in working with nonlinear systems
is one of finding a convenient, yet accurate, method of representing the dynamics. One is
then faced with a problem: while the analyst may understand the concept of functions and
mappings, the computer certainly does not. All the computer “understands” are finite-

precision numbers. So how does one numerically characterize a map?

First, practical considerations force one to restrict the scope of the problem. The computer
can hold only a finite number of parameters, while the map U may very well depend on an
infinite number. Hence, one needs some sort of approximation scheme. Furthermore, given
that one is often most concerned about the action of the map on a small neighborhood about
some initial reference point £y;, one is often content to ask, “Can I approzimately describe
where the points in this neighborhood will be mapped to by U, using only a finite number
of parameters?” While many more than “four and twenty ways” to formulate this question
exist, Stephen Omohundro has shown that “perturbation theory” provides a particularly

convenient and useful framework [Omo86|.

Consider a smooth, one parameter map U(t) of some manifold M onto itself, and reducing
to the identity at ¢ = 0. U(t) represents a flow U; on M; this flow is the integral of some
smooth vector field U defining the dynamical equations of the map, which may be obtained

by differentiating U if they are not already known.

Choose some initial reference point £o; in M. I shall call the curve €o(t) = U(t) €oi traced
out by the image of the reference point &y under U(t) the reference trajectory, or RT. I
shal call the image of {o; at t = tf, oy . Assume the RT remains in a “regular” region of
the flow, i.e., it does not pass too close to a separatix, etc., so that near the RT, the flow
is well-behaved, not chaotic. Then U(t;) will map a small neighborhood Z; about o; onto
a corresponding small neighborhood Z; about £py. The “smallness” of the neighborhood

may be represented by the following ansatz: we formally introduce an artificial “ordering

15

parameter” ¢, and assume that the form for a general trajectory may be written as an

asymptotic series (though in rare cases it may actually prove to be convergent):

£4(¢) = 6‘(‘)+€€{‘(t)+2 (t)+)+ (1.11)

Here ££/(t) is again the RT, and the “corrections” ¢, ¢ = 1,2,3,... are assumed independent
of €, although they may depend on other parameters (such as the boundary conditions)
which I have suppressed. Hence, in the limit of vanishing ¢, all deviations from the RT

must vanish; i.e. the trajectories all collapse onto the RT.

Now substitute (1.11) into the dynamical vector field U; if desired, U may also be allowed
to have an explicit e-dependence to represent any other dynamical effects which are thought
of as “small” (or “large”, if there are some “fast” variables we want to “average out”). By
formally expanding the result in powers of ¢ and equating like terms, one now has an infinite

hierarchy of equations having the same form as a typical problem in “perturbation theory”:

€ U“(0 £o)

: 8
Ii‘ = £1 afo H(O, £0) + _B_E-Uu(e,&a) =0 (112)
. 62 62
2 = U“ o U 1So T aaal" 1 S0
02
— U¥(e,&0)
6 oe? e=0

The first-order terms are just the linearized system; the higher-order terms describe the

effects of nonlinearities (see Omohundro’s dissertation [Omo86, pp.84-89] for the details).

There are several important thing one should note about the perturbation expansion (1.12).
First, the n'* term in the series does not appear until the nt*-order equation, so while ¢*
feeds “up”, it does not feed “down”; therefore the series may be truncated at any point
without changing any lower-order results. Second, the n® term in the series appears linearly

in the n*P-order equation, so an explicit solution is always possible, merely by quadratures.

16

Third, the right hand side of each equation in the series is “homogenous in order”, i.e. in
the second-order term, U always appears differentiated twice, and the sum of the subscripts
of the £, is always equal to the order minus the number of e-differentiations. Finally, the
initial conditions (ICs) of all the £, (except for the reference trajectory £,) are at the
analyst’s disposal, because they are “nonphysical” degrees of freedom, introduced solely
for constructing the perturbative solution, and have no effect on the unperturbed problem
(again, all solutions of (1.12) collapse onto the RT in the limit of vanishing €). In a sense,
the IC’s one chooses for the £, represent a “gauge-like” degree of freedom and are all in
some sense “equivalent”, because the £, are not characteristics of the system! Instead,
the £,, describe the deformation of a system and its initial conditions resulting from the

perturbation.

Omohundro advocates a radical reinterpretation of perturbation expansions. An asymptotic
series, such as (1.11) is assumed to be, has a zero radius of convergence. Therefore he
argues that one should view the coeflicients £ as describing things that are characteristic
of the unperturbed dynamical system in an infinitesimal neighborhood about the RT, rather
than of the perturbed system at finite ¢, as is usually assumed. He may therefore place
perturbation “theory” on a rigorous geometrical footing, the natural geometric framework
being the theory of jet bundles and prolongations. (I will briefly discuss jets in §4.4 of this
dissertation.) Omohundro’s geometric interpretation allows one to understand the physical

meaning of the series (1.11) even though in general it does not converge.

1.8 Perturbation Methods and Paraxial Optics

When thinking of “optics”, most physicists generally think of its simplest (and most limited)
form: Gaussian (or pararial) geometrical optics. One considers only rays inclined at small
angles to the optical axis, and deviating but a small distance (relative to any other length

scale) transversely to it. The surfaces of all optical elements are idealized, having the

17

simplest possible geometry: spheres, or perhaps at worst a quadric. All indices of refraction
are homogenous, so that rays travel in straight lines between optical surfaces, and optical
elements are frequently regarded as “infinitesimally thin” (again, relative to any other length
scale). Then one may expand to first order in deviations and angles; i.e. one linearizes the
problem to make analytical solution possible. One has a simple problem in plane right

triangles.

However, the “real world” is not quite so accommodating. Desirable characteristics of the
instrument, such as small physical size and large usable aperture, seldom allow the luxury of
“thin” elements. At the same time, practical aspects of manufacturing impose the conflicting
demand that the majority of the optical surfaces be spherical. But thick spherical lenses of
short focal-length and large aperture fail to satisfy the paraxial condition; nonlinear effects

appear, and must somehow be treated.

The successes of linearized optics encourages one to attempt a perturbative approach. One
rescales all the transverse deviations and angles, which are considered to be “small”, by
an artificial “ordering parameter”. One then formally expands the dynamics in terms of
this parameter, hoping that the coefficients of the perturbation expansion will provide some
information about nonlinear effects, even though at most they will provide an asymptotic
description of the optical system. This approach proves amazingly successful; one may
use the perturbation coefficients both to classify and correct the various distortions, or
“aberrations” (coma, astigmatism, distortion, etc.), resulting from the “third-order” terms
in the expansion [BrnWIf70]. Prior to the developement of these techniques (largely by
German opticians), light optics was largely a matter of “cut and try”; now it is a science (but

largely a German and Japanese science, to the regret of American camera manufacturers).

Charged-particle optics almost forces one into these techniques from the start. The “lenses”
of charged-particle optics consist of carefully shaped electromagnetic fields in free space
(free, because a beam of charged particles usually must propagate through an ultrahigh

vacuum if it is to be useful), and Maxwell’s equations in free space strongly constrain the

18

types of fields one may produce. For example, “fringe fields” will always exist, extending
beyond the lens for a distance comparable to its aperture; in essence, the “thickness” of an
electric or magnetic lens must be at least as great as its aperture. Furthermore, Schertzer’s
theorem [Sch36] and its extension by Moses [Mos66) show that it is physically impossible for
a system containing only quadrupole or solenoid lenses to be free of third-order aberrations.
Hence, prior to the development of perturbative charged-particle optics, the only option
available to, for example, electron microscope designers was to use very small apertures and

very large focal lengths, and accept the design penalties this imposed.

Chapter 2

Current Numerical Methods for

Nonlinear Dynamics

“... Before beginning any numerical calculation, it is vitally important that

”»

you first know the correct answer . .. — Wheeler’s First Moral Principle

I now review the currently used methods in charged-particle optics, starting first with
non-symplectic methods, followed by their symplectic generalizations. Again, while this
dissertation focuses on optical systems, the techniques are applicable to any dynamical

system.

2.1 Non-Symplectic Methods

Until recently, the two most commonly used methods in charged-particle optics have been
ray-tracing and extended transfer matrices. 1 will briefly describe the two methods, and

enumerate their respective advantages and drawbacks.

19

20

2.1.1 Ray-Tracing

Ray-tracing is a fancy name for brute-force numerical integration. The principal advantages
of ray-tracing are simplicity and generality. It makes few particular assumptions about the
nature of the dynamical system other than that ODEs can describe it. One merely writes
down the equations of motion (EOMs) in a convenient form, then discretizes them according
to one’s favorite method (usually high-order Runge-Kutta or Adams). After selecting the
desired initial conditions (ICs), one numerically integrates the EOMs in order to determine
the corresponding final conditions, and, if desired, the trajectory connecting them. One
then repeats this procedure using various “sufficiently nearby” ICs until the “pencil of rays”

generated “adequately” explores the neighborhood surrounding the reference trajectory.

Unfortunately, one generally does not know beforehand just what constitutes “sufficiently
nearby”, nor be able to quantitatively define what one means by “adequately”. One must,
with significant computational expense, explore many trajectories deviating by varying
amounts from the RT, frequently with little information regarding the importance of accu-

mulated errors.

Under the best of circumstances, ray-tracing leaves one quite literally with reams of num-
bers: each initial condition and its corresponding final condition. Taken collectively, they
should in principle provide some sort of characterization of the system; however individually

each ray has little significance.

Various techniques have been developed to aid in extracting useful information from a

ray-tracing run:

e Scatter-Plots. In this popular method, one generates a set of intial conditions
(sometimes regularly, but usually according to some probability distribution via a
Monte-Carlo method), propagates this set through the system, and plots various two-

dimensional projections of the resulting final states While certain characteristics, such

21

as effective beam spot-size or momentum spread can fairly easily be read off from
such plots, the more complicated effects resulting from nonlinearities are much more
difficult to quantify. One often merely relies on the unparalleled pattern-recognition
ability of the human eye to gain some sort of “feel” for the system. Such an approach
is necessarily a rather subjective proceedure, and one’s perspective may be severely
limited by the low dimensionality of the projection, unless the motions in the various
planes are not coupled; however, in the hands of an expert scatter-plots may be quite

illuminating.

Poincaré Sections. In this method, one chooses a surface in phase-space (generally a
two-dimensional plane), and some set of initial conditions. One then allows the system
to evolve; each time the resulting trajectory intersects the surface, one plots a “hit” at
the intersection point [Arn88]. (If the surface is two-dimensional and orientable, one
may choose to plot only those “hits” which intersect the surface from a given side.)
This technique is extensively used in the study of nonlinear oscillators; in optics, it
applies only to “multi-pass” systems, such as storage-rings. Poincaré sections are
again a visually oriented method, also limited to a low-dimensional surface of section,

and may miss important dynamics [ChSc88].

Moments. For a more objective characterization of the system, one may again gen-
erate and transport a distribution of particles. One then studies not the scatter-plot,
but the effect the system has on the moments of the particle distribution with respect
to some set of “basis functions”, usually polynomials in the coordinate deviations
from the RT. (The term “basis” is somewhat of a misnomer here, as the finite set of

functions will not be complete.) Three main factors have limited the use of moments:

> Interpretation. With the exception of a “gaussian-ellipsoidal beam”, which
is completely parameterized by its “zeroth”, first, and second moments (nor-
malization, centroid, and “sigma-matrix”, respectively), we have no adaquate

interpretive framework for assessing the physical significance of moments. Quite

22

simply, taking moments is a “many-to-one” mapping— one can’t uniquely re-

cover a distribution given only a finite number of its moments.

> Statistics. Due to statistical fluctuations, to get an accurate estimate of the
moments may require the use of hundreds, perhaps thousands, of particles. Fur-
thermore, the number of particles needed increases rapidly with both the order

of the moment and the dimensionality of the system.

> Truncation. One can derive a set of evolution equations for the moments di-
rectly from the EOMs, which the ray-tracing moments ought to satisfy as the
number of particles tends to infinity. These equations exhibit a “feed-down” phe-
nomenon analogous to that which occurs in the BBGKY-hierarchy [LLb] of trans-
port theory: the truncated moment-equations are not closed; rather, the lower
order equations depend on higher-order moments. While this “feed-down”effect
is not directly relevant when using ray-tracing on some particle set to compute
the evolution of the moments rather than the moment-equations themselves, its
existence does cast some doubt on the very validity of moments as a method
of beam description: can one really trust a parameterization whose evolution in
principle depends, however insensitively, on unknown, and perhaps unknowable,

parameters?

Finally, moments do not characterize the system directly, because the final moments
depend on both the system and the initial beam. Despite these problems, moments
remain a promising tool, under developement at Los Alamos [LO88], the University

of Maryland [DNR88a], and elsewhere.

Aberration Expansions. Alternatively, one might attempt to use a small but care-
fully-chosen set of rays to numerically extract the “aberration coefficients” via a finite-
difference scheme. (Aberration coefficients are basically a Taylor-series representation
of the map; see §2.1.2 below.) While this is in principle possible, in practice this

method results in intolerable round-off errors, even when using multiple precision

23

arithmetic. Numerical differencing is inherently a “noise-amplifier”; one seeks small

differences between large numbers, making loss of precision inevitable.

For Scatter-plots, Poincaré Sections, and any other method based on human visual capabil-
ities, the limitation to 2-D or at most 3-D graphics may really be rather serious. Channell
and Scoval [ChSc88] found that even for as simple a system as the Hénon-Hieles oscilla-
tor [HH66] (which has merely four degrees of freedom), important geometrical and dynam-
ical features clearly emerge upon taking 3-D sections; these features appear to have been
entirely unsuspected by workers using only 2-D Poincaré sections, despite many previous

studies.

Finally, most numerical integration algorithms violate the important symplectic condition
(1.10) even at first order in the time-step. This is not immediately fatal; since the map
the integrator produces must reduce to the identity map in the limit of vanishing step size,
the leading-order term in the map is not the first, but the zeroth order (identity) term, and
symplecticity returns in the limit of infinitesimal step size. Hence, for a sufficiently small
time step exact symplecticity may be approached as closely as one pleases. In particular,
when using finite-precision arithmetic there must be some step-size which is sufficiently
small that the violation of (1.10) will be indistinguishable from round-off error. However
such a policy clearly conflicts with the minimization of both accumulated round-off error
and expenditures. Furthermore, numerical integration may also not respect certain global

features of the dynamics, as discussed earlier.

Overall, while ray-tracing may be sufficient to study the behavior of an individual ray, it is
intrinsically ill-suited to the study of more global features, even so limited a feature as how a

small neighborhood about some initial state transforms under the system’s evolution-map.

24

2.1.2 Extended Transfer Matrices

The term “extended transfer matrix” (or “transfer matrix”, in more common usage) is
somewhat of a misnomer. A transfer matrix is actually nothing more nor less than a trun-
cated Taylor-series representation of the perturbative initial-to-final-state evolution map;
it transforms or “transfers” incoming rays into outgoing ones. The term originated in the
early days of both light and corpuscular optics, when only the linearized paraxial approx-
imation was in common use. Since the map for any linear system is itself linear, it could
be represented by a matrix; calculating the map of a multi-element optical system could

therefore be done by matrix multiplication.

More precisely, an extended transfer matrix represents the deviation of the final state of a
particle from the final state of the reference trajectory in terms of a set of Taylor ezpansions
in the deviation of the initial state of that particle from the initial state of the reference
trajectory, truncated to finite order. In other words, it is a polynomial approcimation to
the perturbative evolution map. It is therefore more “global” than a ray-trace, because
in some sense it characterizes every trajectory which is “sufficiently nearby” the reference

trajectory.

At one time the term “aberration” meant “deviation from the reference trajectory”, so the
Taylor expansion was known as an “aberration expansion”. Nowadays, “aberration” has
come to refer to any of the image defects resulting from nonlinearities, and the terms “trans-
fer matrix coefficient”, “aberration-expansion coeflicient”, and “aberration coefficient” are

now virtually synonomous.

Transfer matrices are simple to use, and the effects of each term are easy to interpret;
moreover, they allow the useful classification of optical effects by the order of the terms
producing them. The cascading of two optical-elements into a composite system results in
a composition or “concatenation” of their respective maps; in terms of transfer matrices,

this is substitution of one set of polynomials into another, truncated to the order of the

25

approximation. This process may be efficiently carried out via a generalization of “Horner’s
rule” for evaluating polynomials, and reduces to “ordinary” matrix multiplication in first

order, so that the “old” linearized theory is obtained

The transfer matrix is an expansion of the final deviation from the RT in terms of the initial
deviation from the RT, so this representation is origin-preserving; i.e. the origin is a fized
point in this representation. (Without loss of generality, we are free to choose coordinates on
phase-space such that the reference particle occupies the origin at all times.) Unfortunately,
such a map cannot represent “misaligned” elements (elements whose “optical axis” is either
not coincident and/or not tangent to the reference trajectory at both entrance and exit
planes). As a result, the Taylor coefficients exhibit “feed-down” as well as feed-up; however
this problem is common to all perturbative optical methods, including the author’s, and, as
usual, we adopt the pious hope of perturbation “theory” that the higher-order coefficients

are negligibly small.

Unfortunately, obtaining the transfer matrix of a given optical element is difficult. Though
heroically laborious hand-calculation, several workers [Bro77] were able to obtain analytical
expressions for the transfer matrix coefficients of the more common optical elements through
third-order, but it was not until the invention of the digital computer and FORTRAN that
the use of these expressions was really practical. The most familiar of the charged-particle
optics codes such as the ubiquitous TRANSPORT, and the more user-friendly G10s are based

on these calculations.

Extension to fifth order using hand calculations was considered impractical; hence, un-
til Martin Berz developed his special-purpose symbolic manipulation program HAMIL-
TON [BrzWIn87]|, no fifth-order code existed. As of this writing, Berz’s cosy-5.0 [BHW87]
is still the only such code which is fully operational. However the University of Maryland
group is hard at work on the Lie-algebraic codes MARYLIE-5.0 and MARYLIE-5.1 (see §2.3.1

below), and “beta-test” versions have recently been released to selected sites for evaluation.!

! Alex J. Dragt, (private communication).

26

Analytic extension of transfer matrices beyond fifth order is considered impractical by any
method; however, Berz’s “Differential Algebra”, the numerical method on which this dis-
sertation is based, in principle allows one to numerically obtain the transfer matrix directly
from the equations of motion, to as high an order as one desires; Berz uses this approach

in his recently released cosy INFINITY.?

A further problem with transfer matrices is that the coefficients are not all independent; they
are related by the symplectic identities which proceed from the symplectic condition (1.10).
This interdependency leads to order-of-magnitude increases in storage and computational
overhead (see §2.3.1 below), and one must check to see if the symplectic identities are
satisfied through the order of the calculation. This curse is not unmixed; using the accuracy
to which the symplectic identities are satisfied serves as as an independent check of the
accumulated errors in the calculation. Alternatively, one may choose an independent set of
coefficients and use the identities to eliminate the remainder, but then the check is lost. Gios
uses the second option, while cosy allows both. TRANSPORT provides neither. (Because the
non-matrix-based Lie-algebraic maps of the MARYLIE family of codes satisfy symplecticity

identically, the identities provide no independent check of accuracy.)

Even if all of the coefficients of the transfer matrix satisfy the symplectic identities, it
does not necessarily follow that the symplectic condition (1.10) will be satisfied. The ma-
trix only provides a polynomial approzimation to the map. While I know of no published
investigation,® and have not attempted the proof myself, I think it likely that if one de-
mands that the symplectic identity be satisfied exactly, then the transfer matrix coefficients
are badly overdetermined by (1.10). In fact, I suspect that except perhaps for restricted
classes of maps (such as the Cremona maps mentioned in § 2.3.1, footnote 4), the symplec-
tic condition (1.10) might only be satisfied to one order less than the order of the transfer

matrix, due to the derivative in the Jacobian matrix. Numerical experiments in long-term

?Martin Berz, (private communication)

3Studies of the symplectic identities have of course been done (e.g. [BHWBT]), but only through the
order of the transfer matrix. The question I am posing here is whether additional constraints are imposed
on the coefficients of a polynomial map by the neglected HOTs.

27

tracking using matrix codes do indeed appear to verify that some sort of violation of the
symplectic condition is occuring [Ser85]; whether or not the mechanism behind this is the

one I propose above would require further study.

2.2 Need for Symplectic Methods

Given the critical importance of the symplectic condition (1.10), one is strongly impelled to
seek methods which will satisfy it identically, or at least to the accuracy of the calculation.
Yet because of the nature of the condition (a nonlinear partial-differential constraint), one
might despair of ever accomplishing this. Remarkably, several exactly symplectic methods

do exist; I summarize them in the following section.

2.3 Symplectic Methods

The methods which satisfy the symplectic condition (1.10) exactly may be again divided
into broad classes similar to the non-symplectic methods: transfer maps (analogous to
transfer matrices), and canonical integrators (analogous to ray-tracing). Each of these may
be further broken into sub-classes based on the use of Lie-transformations and “mized”

generating functions.

2.3.1 Lie-Algrebraic Transfer Maps

For every f € C!(P), one may naturally associate a derivation operator by means of the

Poisson bracket. In the notation of Dragt and Finn [DF76],

g = {f,9}. (2.1)

28

(Dragt calls :f: a Lie operator, and refers to it as “a Poisson-bracket waiting to happen”.)

Powers of a Lie operator are defined by:

f%9 = g,
:f:2g = :.f:(:f:g):{fa{fag}}a (22)
fPg = f:(:fPg) = {f. {, {f,9}}},

An analytic function of :f: may be defined by its power series expansion; an important

special case is the Lie transformation generated by a function f:

F = exp(:f:) = Zm:f:" (2.3)

Dragt and Finn have shown that every Lie transformation is a symplectic map, and that
a broad class of symplectic maps can be written as Lie transformations. In particular, all
analytic symplectic maps can be written as Lie transformations, and such analytic maps

are exactly what “perturbation theory” produces.

The relation of Lie transformations to Hamiltonian systems is this: for a Hamiltonian which

is tndependent of time, the evolution map is given by
H(t) = exp(—t:H:) (2.4)

(For time dependent Hamiltonians a similar expression holds, involving instead the anti-chro-
nologically ordered exponential of the integral of : H: with respect to t, strongly reminiscent
of quantum mechanics; the ordering is required because, in general, for any two times ¢,

and t9, :H(t1): and :H(t;): will not commute.)

Since the composition (or, in particle-optics circles, “concatenation”) of two symplectic
maps is itself a symplectic map, we might hope to build up arbitrarily complicated sym-

plectic maps using simple Lie transformations. This is indeed possible, and Dragt and

29

Finn have shown that any analytic origin-preserving symplectic map can be written in the

following factored form:

F = exp(:f5:) exp(:f5:) exp(: fa:) exp(:fa:) exp(:fs:) exp(:fe:) - -- (2.5)

Here the f,, are homogenous polynomials of order n in the canonical variables; the “c” and
“a” superscripts on the quadratic pieces denote parts which “commute” and “anticommute”
with J#”. Dragt and Finn call the coefficients appearing in the above polynomials “Lie

coefficients”.

To sketch how the Lie transformation corresponding to an analytic symplectic map may
be constructed, note that from (1.4), the result of a homogenous polynomial Lie operator

acting on a homogenous polynomial is another homogenous polynomial:

faifm = {fn;fm} = fatm-2. (26)

Since the canonical coordinates £# are themselves trivially homogenous polynomials of order
one, one sees that the Taylor series expansion of exp(:fi:) é# contains only terms of order
n(k—2)+1,n=0,1,2,... in the {#, with the leading term after £ being of order (k — 1).
Since Lie transformations satisfy the symplectic constraint (1.10) identically, it appears
we may have found a way to describe a symplectic map with no redundant parameters;
for if one could find at each order (n — 1) an f, which annihilates the leading term in
the remainder (i.e., an f, such that (M — F(,))¢* = O(n + 1), where F(,,) is a map of
Dragt-Finn factored form, (2.5), terminated at the factor exp(:fn:)), then one has in fact
constructed constructed a Lie-transform representation of M. The condition for such an
fn to exist is just the symplectic condition, as shown by Dragt and Finn [DF76], and also
by Forest [For84]. Therefore one may freely interconvert between the transfer map and
transfer matrix representations of a symplectic map, using whichever is most convenient for

the calculation at hand.

Dragt and Forest [For84, DF83] have also shown how to obtain a set of ODEs for the

Lie coeflicients, given the series expansion of the Hamiltonian about the RT. This requires

30

that the analyst first perform a canonical transformation to coordinates centered on the
RT, then expand about it; this procedure has been automated in Healy’s sMP program
ANALIE [Hea86]. Ryne’s FORTRAN program GENMAP [Ryn87] may then be used to obtain

the Lie coefficients by integrating the ODEs.

Let us compare the number of coefficients required for a transfer matrix versus a transfer
map. The number of monomials of order less than or equal to n in v variables is:

(n+v)!

alN, = %]
n. v.

(2.7)
it obeys the useful recursion relation:

2Ny = alNy_1 + a1 Ny (2.8)
as may be shown by induction, and easily verified by direct substitution of (2.7) into (2.8).

The transfer matrix representation consists of v sets of ,, N, monomials; the transfer map,
on the other hand, needs only one set, but of one order higher: ,,;N,. Taking the quotient
of these, we find that a transfer matrix will involve v(n 4+ 1)/(n + v 4+ 1) times as many
coefficients as the equivalent Lie-algebraic transfer map. One sees that for maps of order n

greater than about v, the Lie algebraic approach can lead to substantial savings.

Lie transformations are analytically useful; for example, perturbation theory becomes com-
pact and elegant in Dragt-Finn form, minimizing the number of coefficients one must calcu-
late [Car81, § 5]; the treatment of symmetries and invariants also becomes straightforward
and elegant [Car81, § 3]. While the physical meaning of a Lie-algebraic transfer map is
not as transparent as that of a transfer matrix, the analyst now has access to powerful Lie-
algebraic classification and analysis tools developed by Dragt and his collaborators (such

as Dragt’s resonance-basis [Dra87], and Forest’s normal-form algorithms [FDL87, For89]).

However, one should not think there is anything “magic” about a Lie-algebraic transfer

map. Order by order, a transfer map contains no more information than the equivalent

31

transfer matrix; it simply provides a systematic way of calculating a set of HOTs satisfying
the symplectic condition to all orders; indeed, one may freely convert between the two
representations using the Dragt-Finn-Forest algorithm [DF76, For84|. However, given a
set of Taylor-series coefficients through order n, the knowledge that (1.10) is satisfied is
insufficient to uniquely determine the HOTs. There is no unique set of HOTs which satisfy
the symplectic identities; many different truncation schemes are possible.* Furthermore,
the concatenation of transfer maps requires repeated use of the Baker-Campbell-Hausdorff
(BCH) [SW86] theorem to return it to the Dragt-Finn factored form. This process rapidly
becomes more complex and unwieldy as one goes to higher orders, especially since no
ezplicit formula for the concatenation process has yet been found, (although an algorithm
to construct it does exist). By contrast, concatenation of high-order transfer matrices is

perfectly straightforward, as the algorithm is entirely order-independent.

Finally, since Lie algebraic transfer maps are intrinsically an operator method, they provide
no real advantage if one actually wishes to track particles though the map, because closed-
form expressions for the series (2.3) have only been obtained in certain special cases.? One
must either convert the map to a matrix, losing symplecticity, or invoke some sort of implicit
solution method [Ner86]. For many applications, the explicit symplecticity of Lie transfor-
mations is largely an illusory advantage; the real gain is in the functional independence of

the Lie coefficients.

*One area of active investigation by Dragt’s group is whether the homogenous-polynomial basis of (2.5)
may be replaced by a nilpotent basis, as the series (2.3) would then terminate. This is essentially the same
question as the one I alluded to in §2.1.2: do polynomial (or, more generally, algebraic) symplectic maps
exist? It turns out that the answerisin the affirmative: a class of algebraic symplectic maps called “Cremona
maps” exist, and provide an interesting alternative basis for factoring Lie transformations [Ran].

32

2.3.2 Symplectic Integrators
Generating Function Based

Symplectic integrators are numerical integration algorithms which respect the condi-
tion (1.10) ezactly; most of the “standard” integrators do not have this property, as stated
in §1.5. The first such algorithms were developed in 1955 by R. De Vogelaére in a series of
unpublished papers [DeV56]|. No further work appears to have been done until 1983, when
R. Ruth [Rut83] showed that for certain choices of the Runge-Kutta weights, the discretized

canonical EOMs for Hamiltonians of the form:

1
H(Z,p) = —p* +V(Z 2.9
(#0) = 55" +V(3) (29)
would preserve (1.10) exactly. Independently in the same year, P. Channell [Cha83| devel-

oped a systematic implicit method for general Hamitonian systems which reduced to Ruth’s

algorithm for Hamiltonians of the form (2.9).

Channell’s “Runge-Kutta type” method uses the fact that a “mixed” canonical generating-
function produces an exactly symplectic map [Gol80, LLa]. He chooses (using Goldstein’s

terminology) an F3-type generating-function (subscripts refer to times):

a 0
py=—2—K(qy,p 9 = —5—K(qy,p (2.10)
1 6q1 (1 2) 2 apz (1 2)
and assumes an expansion of K in powers of At := (3 — t1):
oo 1 m
K= 3 Al Kn(ay,p2) (211)
Then he substitutes (2.10) and the canonical equations (1.3) into the following identity:
. 3?1 81’1 .
_op1 0Py . 2.12
Pr= 3, Tag, O (2.12)
Defining the auxiliary quantity:
= At
Ap:=(p, —py) = Z Tpn(‘hapz): (2.13)

n=1

33

Channell obtains:

= At > A" 0%K, = 1 O*"YO0H X1 (0)"3H
—P, . = _— — [Ap-— —-— - —(Ap—) —
nz_% n! +1 z_: n! Oqdq (2_: m! (p 6p)) Op 2_: nl \°P op/ Oq
= n=1 m=0 n=0
(2.14)
Assuming the K,, may also be expanded in powers of ¢q; and p,, he truncates (2.14) to
finite order, and equates like powers to determine K: the result is not very illuminating,

and I shall not have need of it, anyway.

Once the series representation of K is obtained, one may use (2.10) to push the particle
forward by the time-step At. Note that this is an implicit formula; some sort of iterative
method (e.g. Newton-Raphson) must be used to solve it. Fortunately, an excellent initial
guess is provided by any non-symplectic method of the same accuracy, so the result will
converge rapidly. One might therefore use the Channell-Scoval Runge-Kutta algorithm to

provide a symplectifying “corrector step” to one’s favorite non-symplectic integrator.

Note the presence of high-order partial derivatives in (2.14). Unlike a standard Runge-
Kutta algorithm, it will not be sufficient to approximate the partials by finite differences;
the analytical formulas must be used. To grind these out by hand would be quite tedious
and error-prone; fortunately, the advent of symbolic manipulators such as SMP, MACSYMA,
and Mathematica capable of both evaluating (2.14) and automatically translating the results
into FORTRAN code make use of (2.14) feasible. Nevertheless, this is a high price to pay, for
unlike standard Runge-Kutta algorithms, which are “general purpose”, the integrator must,
in effect, be rederived each time. As deriving the integrator from even simple Hamiltonians
may require tens of minutes (or perhaps even hours), and may result in several thousand
lines of code, one can only afford to use this symplectic integrator when one absolutely has

to.

To combat this, Channel and Scoval attempted to develope an “Adams-type” integrator,
which uses the information obtained in previous evaluations of the right-hand-side of the
EOMs to cut down the amount of analytical work required. Their strategy was to fit a local

polynomial model to the true Hamiltonian; the symplectic integrator for their assumed

34

polynomial form could then be derived ‘once and for all”. Unfortunately, they found that
this strategy required storing on the order of v™~! previous evaluations of the EOMs, and
also on the order of v” Hamiltonian coefficients, which must be determined by solving a
similar number of linear equations. Hence, while the Adams-type integrator is faster for
systems with only a few degrees of freedom, as the number of degrees of freedom becomes

large, the Adams-type integrator becomes impractical.

An alternative symplectic integrator may be derived from the Hamilton-Jacobi equation:

5] 1o}
'&S-F.H(qz,'(%;S)—O (2.15)

Here, S(g;,q5;t) is an Fj-type rather than an F3-type generating function:

a 0
=-—35, =—38 2.16
Dy D3 aqz ()

Channell and Scoval set H = Hg + ¢V, where Hg is chosen to be the free Hamiltonian, V
is the remainder (assumed to depend only on g, in their example), and € is an ordering

parameter which they set to unity at the end of the calculation.

They assume the ansatz:

S=580+ Y €Sn (2.17)

n=1

where Sp is the free generating function; for a nonrelativistic particle, it is:

(q2 QI)Z
SO 2 At ()

They then insert (2.17) into (2.15) and collect like terms in €. The result is the following

recursion relation:

85y 0S¢ 0895
+ . = —V 2.19
ot dq, dq, ()
84S, 0S¢ 0S5, 1N 85 0Sp—m
+ . - = —_— , n>2 2.20
at dq, O0q, 2,";1 q, 0q, (:

Expanding V(q,) about some arbitrary point g, inserting this into (2.19) and (2.20), and

collecting like terms, they again obtain some rather complicated expressions, which are then

35

integrated with respect to t by using the fact that the left-hand-sides of equations (2.19)
and (2.20) both have the very simple characteristics: g, = q; + voAt, where vy is the initial
velocity. The result is, again, not very illuminating, although one notices the following
interesting symmetry:

Si(q1,92:t) = —Si(q1,92; —t)

which is a consequence of the time-reversibility of Hamiltonian systems.

The parameter q is a sort of “gauge freedom”, which may be chosen at will by the analyst.
By choosing it to be either q,, or a non-symplectic estimate of q,, the terms in the final
expressions involving (g, — @) or (g, — §) may be made small; another interesting choice
would be the estimated value of g at t = t; + %At . Each choice seems to yield substantially
similar results.

Lie-Algebra Based

There are also symplectic integrators based on Lie-algebraic techniques; the simplest of these
is Neri’s “leapfrog method” [Ner87], for time-independent Hamiltonians of the “A+B” type.
By “A+B”, I mean that H = A + B, where A and B are Hamiltonians whose maps can
be solved exactly, but which do not “commute”,® i.e. {4, B} # 0. The exact map for H
acting over a time t is H(t) = exp(—t:H:); let A(t) = exp(—t:A:) and B(t) = exp(—t:B:) be
the maps of A and B acting alone. Using the BCH theorem, it can be shown that:

A(t)B(t) = H(t)+ O(t?), (2.21)
B(t)A(t) = M(t)+ O(t?); (2.22)

but
A(3t) B(t) A(Lt) = H(t) + O(t?). (2.23)

5 Actually, it is the Lie operators :4: and :B: which do not commute; however because of the operator-
identity [:A:,:B:] := [:4::B: — :B:: A:] = :{A, B}:, one sometimes abuses language by saying that A and B
do not commute. Technically, I should probably say “A and B are not in involution”.

36

Formula (2.23) constitutes one time-step of Neri's “leapfrog” method. He has also obtained

an order-O(t®) “leapfrog” map:

[A(3at)B(at)A(3at)] [A(3B)B(8) A(38t)| [A(at)B(at)A(Sat)| = H(t) + O(F),
(2.24)
where
1 V2

a::(——-3), Bi=—|—=

22 2~ 2
I have pointed out to Neri that (2.24) is a “leapfrog map made out of leapfrog maps”, i.e.
a map of “ABA” form having factors “A” and “B” that are themselves of “ABA” form. It
is tempting to speculate that this pattern continues to arbitrarily high order: perhaps one
could go on eliminating two more powers of ¢ in the error-term at each step, by constructing
an O(t?**+3) “ABA” map out of factors having the same form as the O(t?"*1) “ABA” map

obtained in the previous step.

Note that in both (2.23) and (2.24) (since 2a + 8 = 1), the sum of the arguments of the
A maps, and also the B maps, each add up to the total length of the system, {. Marsden
(private communication) has commented on the similarity of (2.23) to the “Trotter product”

formula [AMRS88, p.287]; also [CHMM?78].
The “leapfrog” method also has a generalization of (2.23) to H = A+ B + C:
A(3t) B(3t) C(t) B(3t) A(3t) = H(t) + O(t%). (2.25)

Clearly, one could continue splitting exactly solvable pieces off of H until it has been

completely decomposed into maps one can evaluate exactly, resulting in a map of

“ABC ...Z ...CBA” form.

Neri claims ([Ner87]; see also [For87, footnote 16]) that all of Ruth’s symplectic integrators
may be factored into a composition of “drifts, rotations, and kicks”,® each of which may be

evaluated exactly in closed form.

8«rotations” also include rotations between p’s and g’s. Both “drifts” and “kicks” are types of shears
and may be nonlinear. Artin [Art57, p.137] has shown that all linear symplectic transformations may be
factored into a product of shears, so a nonlinear generalization should perhaps be not too surprising; this
nonlinear generalization is closely related to the Cremona maps mentioned in footnote 2, this chapter.

37

Neri also claims that similar formulas may be derived for time-dependent Hamiltonians, if

the “A” and “B” maps are evaluated at the proper times; i.e., the map satisfies:

A;By Az = Texp {— /tt’ H(t): dt} +O(t) (2.26)
where
Ay = exp(—3A8LH(t1):), By :=exp(—At:H(ty):), Asz:=exp(—3At:H(t3):); At:= (ty—t;)

where the intermediate values of the independent variable, ¢; < t; <t <t3 <ts, have been
chosen to cancel offending terms e la Gaussian quadrature. T is the “anti-chronological

ordering operator” mentioned in §2.3.1.

2.3.3 Generating-Function Methods
Neri’s Symplectic Tracking Algorithm

As discussed in §2.3.1, Lie-algebraic maps are not immediately useful for tracking purposes.
One method for “symplectic tracking”, developed by Neri for the MARYLIE code, is to con-
vert the nonlinear part of the factored transfer map (2.5) into an “equivalent” canonical
generating function which is a polynomial of order n in its (mixed) variables. These gener-
ating functions are “equivalent” to the map in the sense that the Taylor expansion of the
map generated by the canonical transformation and that of the transfer map agree through
order (n—1). The implicit equations for the canonical transformation are solved numerically

via a Newton-Raphson iteration method.

Neri does this by “un-factoring” the nonlinear part of the map, to obtain a polynomial
of order 3 through n, the “pseudo-Hamiltonian”, h. He uses this pseudo-Hamiltonian to
compute a generating function vte an HJ-equation, in a manner very similar to the canonical

integrators of Channel and Scoval:

0-5(a,p;7) = —h(q,0q5(q,p; 7)) (2.27)

38

The coefficients of the generating function are then determined by “Picard iteration”,
with the “artificial time” variable T serving as the “ordering parameter”. Neri assumes
Sk(q,p;T), for all k > 2, is a power-series in 7 through order k, and S, is initially taken to
be the “identity” generating function:

S2a,p) =3 pig (2.28)

t
He substitutes S into (2.27), and integrates with respect to 7, keeping only those terms

through order (k + 1) in 7:

Se+1(q,P;7) = S2(q, P) —/0 h(q,0qSk(q,p;'))dr". (2.29)

The constant of integration has been set to the identity, S,, because Sg,; must also reduce

to the identity for 7 = 0.

Essentially, the artificial time T merely acts as a “bookkeeping” device, similar to Channell
and Scoval’s parameter ¢, and in the end, both are set to unity. In Neri’s case, the result
is a generating function which produces a canonical transformation agreeing with the Lie-
algrebraic transfer map exp(:h:) through order (n—1); however the HOTs will differ more
and more as the order increases. Neri has found [Ner86] some evidence that the HOTs
resulting from the finite-order polynomial generating function resulting from (2.29) may
be uncomfortably large; therefore, other algorithms based on the “Cremona maps” (see

footnote 2, this chapter) are currently being investigated.

Warnock and Ruth’s Fourier/Hamilton-Jacobi Method

Warnock and Ruth [RRW85, WR87] have also developed a method based on the HJ-
equation. They assume the Hamiltonian has been expressed in terms of the “action-angle”
variables of the linearized system, and is a periodic function (mod 2~) in all variables. Using
a combination of Green-function and Fourier techniques, they eliminate the “secular terms”

introduced by nonlinear resonances, and solve for the Fourier coefficients to yield a system

39

of simultaneous nonlinear algebraic equations, although still involving integrals over all the
angle variables. They develop an efficient method of solving these equations using “fast

Fourier transforms” and Newton-Raphson iteration.

While in principle applicable to any multiply-periodic system, the need to first transform
to action-angle variables is somewhat limiting; it requires that the users already know the
behaviour of their linearized system, and expend the labor of placing their Hamiltonian
in action-angle form. Although in principle this process can be automated, it will still be
somewhat of a nuisance (except to accelerator theorists, who often think in terms of these

variables under the aliases of “Courant-Snyder invariants” and “phase advances”.)

2.3.4 The Hamilton-Jacobi/Differential-Algebra Method

The Hamilton-Jacobi/Differential-Algebra (HJ/DA) method described in this dissertation
bears certain resemblences to several of the above methods. As its name implies, the HJ /DA
method uses the HJ-equation to obtain a canonical generating-function representation of the
map of a system. I assume that the map about the reference trajectory may be represented
as a truncated Taylor series in “mixed” variables, initialized to the identity, the coefficients
of which are assumed to be functions of time. By substituing this ansatz into the H-J
equation, expanding the Hamiltonian, and equating like terms, the HJ-equation is converted
into a system of nonlinear ODEs, which may be solved numerically using standard methods.
Since it uses a generating function, the resulting map will be identically symplectic. The
generating function may be used to obtain other representations of the map, or to track

particles directly using methods similar to Neri’s.

The signal advantage of my method over those above is its simplicity; the analyst need not
perform any laborious analytical calculations before using it, because the transformation
to the RT-centered coordinates and the series-expansions are entirely automated via Berz’s

remarkable method of differential algebra (see [Ber87, Ber88, Ber89a, Ber89bj; I will give

40

a short introduction to DA in the next chapter). With a minimum of knowledge as to
how DA works and is implemented, one need only write a FORTRAN subroutine to calculate
the Hamiltonian, in whatever coordinates one happens to find convienient, and flag certain
statements for processing by the DAFOR precompiler, described in §3.8; many hours of

human labor may therefore be saved.

Chapter 3

Basic Concepts of Differential

Algebra (DA)

Differential algebra is a remarkable and powerful numerical method recently developed by
Martin Berz [Ber87, Ber88, Ber89a, Ber89b]. By systematically exploiting certain prop-
erties of the “product” and “chain” rules, DA in effect “teaches” a computer just enough
differential calculus to allow it to compute the numerical values of the analytical derivatives
of functions, to as high an order as one is willing to pay for. These derivatives are not finite

differences, but true analytical derivatives.

DA allows the numerical analyst to obtain easily, almost effortlessly, derivatives of the
results of any complicated algorithm with respect to any continuous parameter appearing
in it, by making only a few minor alterations to the existing program. Typically, these
derivatives may be obtained at a cost of only a few times more than it would have cost to
evaluate the function alone. DA allows the numerical analyst to consider for the first time
using algorithms which require knowledge of both functions and their analytical derivatives;
such algorithms have often been considered impractical, because for complicated functions

the derivatives may be too hard to obtain.

41

42

Finally, DA opens up the possibilty of completely new algorithms having no counterpart in

“traditional” numerical methods.

3.1 Brief History of Differential Algebra and its Precursors

The term “differential algebra” was introduced by Ritt [Rit50] in 1950, in a treatise on alge-
braic aspects of systems of differential equations. A formal differential algebra in v variables
over a field F is a graded commutative ring defined by the set D,(F) := {F, +, -, 6,1 =
1,...,v}. Here F is an algebraic field of characteristic zero, which is itself embedded in
D,(F) as a subalgebra. The addition and multiplication operations + and - are commuta-
tive and associative, with multiplication distributive over addition; they reduce to ordinary
addition and multiplication on the subalgebra isomorphic to . The 0; are a set of v
unary operators taking F into itself, satisfying the Liebniz rule: &;(ab) = 8;ab + ad;b, for
all a,b € D, and i = 1,...,v. Of necessity, every nontrivial representation of D,(R) must
be infinite dimensional, so Ritt’s differential algebras are not suitable for numerical imple-
mentation. The important concept here, though, is that in D,, differentiation is a purely

algebraic operation.

“Differentiation as algebra” has been considered before; for example, there are data-
structures and operations which implement the “sum”, “product”, and “chain” rules [Ral84,
Jer89], usually to at most first or second order in a fixed number of variables; in the litera-
ture, this approach is usually refered to under the name “automatic differentiation”. Also,
algorithms for recursively computing Taylor series coefficients for algebraic functions of a
single variable to high order have been repeatedly rediscovered [Ste56, Gib60, Moo66], and
even implemented into a FORTRAN prepocessor [KW69]. However, Berz appears to be the
first to recognize that the quotient differential algebras formed by “moding out” elements
of order higher than n generalizes these methods to arbitrary n and v, allowing one to
extract the numerical values of derivatives for arbitrarily complicated functions to machine

precision.

43

3.2 DA as a Subset of Nonstandard Analysis

DA may be viewed as a subset of “nonstandard analysis” (NSA). NSA is a consistent
generalization of the field of real numbers, R, to include infinitely small quantities, or “in-
finitesimals”, and also infinitely large quantities [Rob61]; the resulting field of “nonstandard
reals” is denoted by "R. A differential algebra of order n is equivalent to the subset of "R
containing only the reals and infinitesimals through some fixed order n. Berz denotes a
differential algebra of order n in v variables by ,D,. I will find it convienient to refer also
to the subsets of , D, which contain only those elements which are of order j and higher; I

shall denote them by I D, .

To intoduce the concepts behind DA, I will start with the simplest example: the differential

algebra of a single variable to first order, or 1 D;.

Consider the real vector space of ordered pairs, (f, f2} € R?. Vector addition and scalar

multiplication are defined in the usual way:

(fo, f1) +(g0,91) = (fo+go, fr+g1) (3.1)
a(fo, f1) = (afo,af1) (3.2)

for all fo, f1, go, 91, and a in R. Now define a “vector multiplication” as follows:

(fo, f1) - (g0, 1) := (fogo, figo+ fog1) (3.3)

With the definition of a product, the vector space becomes an algebrae, the differential alge-
bra ; D;. One can easily show this product to be commutative, associative, and distributive

with respect to addition.

An ordering! may be defined on ; D, in the following way: Given any two vectors (a,b) and

(¢, d), define:

(a,b) < (c,d) if {(ea<c)or(a=candb<d)}

!This ordering is just the lexicographic or “dictionary” ordering.

44

(a,b) > (c,d) if {(a>c)or(a=candb>d)} (3.4)

(a,b) = (c,d) iff {(a=c)and (b=4d)}

Clearly, for every pair of vectors (a,b) and (¢, d) € 1 D1, exactly one of the above cases must
be true to the exclusion of the others; furthermore, for (a,b) < (¢, d) and an arbitrary (e, f),

(a,b) + (e, f) < (¢,d) + (e, f), and for all e > 0, (a,b)-(e, f) < (¢,d)-(e, f).

One can show that the subset 1Ry := {r € 1D1: r = (p,0), p € R} has exactly the same
properties as the real numbers. So R may be imbedded in ; D in much the same way it is
imbedded in C. Another interesting subset is the set of elements with vanishing real part,
but non-vanishing first order part, !D; := {d € 1D;:d = (0,8), 8 € R}. Let R, denote
the positive reals, Ry := {r € R:r > 0}. One can show that the positive elements of }D,

(i.e. elements such that d > (0,0)) have the following interesting property:
(0,0) > (0,8) > (0,0), (3.5)

for all §,p € R, ; therefore (0,8) lies “in between” zero and every positive real number, no

matler how small: it is an “infinitesimal”.

We shall call a := R(a,b) the “real part” of (a,b), and b := D(a,b) the “differential part”.
We shall call d := (0,1) the “unit differential”; it has the interesting property that d2 :=

d-d = 0, and might therefore be thought of as a “square root of zero”.

It is easy to verify that 1 := (1,0) forms the multiplicative “neutral”, or “unit” element of
1D11
(1,0) - (a,b) = (a,b) - (1,0) = (a,b), (3.6)

whereas the powers of d form a complete basis for ; D;:
& = (1,0 (3.7)
& = (0,1) (3.8)

& o= (0,0, (n>2) (3.9)

45

where (3.7) is needed for consistency, while the “nilpotent property” (3.9) follows from the

multiplication rule (3.3).

Note that (3.3) shows that ; D; is not a field, because
(0,a)-(0,b) = (0,0), Va,beR

so divisors of zero exist in ; D,. Technically, ; D; is a commutative ring with identity; one
can easily show that (a,b) has a multiplicative inverse if and only if @ # 0. When the inverse
exists, it is given by:

(a,b)" ! := (1,——6—), (3.10)

a a?

and one can easily verify that (a,b) - (a,5)”" = (1,0).

Turning now to powers of DA quantities, one notes the following interesting set of examples:

if z is any real number, one finds that

(2,1)> = (z+d)? =22+ 2zd+ d? = 2? + 2zd = (22, 22) (3.11)
(z,1)° = (z+d)®=2+322d+ 3ed® + d® = 2° + 32%d = (?,32?) (3.12)
(z,1)" = (z+d)"=z"+nz" d+ an—zdz + ... (3.13)

2!

= z"+nz""ld = (2", nz™)

One immediately recognizes, in the above, the “power rule” of elementary differential cal-

culus.

Similarly, for inverse powers:

(z,1)7" = (%,—5) (3.14)
(z,1)7% = [(:c + d):"]_1 = (2?,2z) 7' = (%,—%) = (z7% -2279) (3.15)
(2,1)° = [(z+dp] =(%3) " = (%-%ﬁ) = (z7%,-327%) (3.16)

46

zn—l
(21" = [(z+d)]" = (@ nenl) 7" = (L o)

= (z_"’—nz"n"l) (317)

which one again recognizes as the “power rule”. One begins to suspect that DA has some-
thing to do with derivatives, and that the derivative of any function may be calculated
algebraically, without the use of limits, by simply evaluating it at (z + d). This is the origin

of the name, “differential algebra”, for DA is the algebra of derivatives.

The connection between DA and derivatives continues to hold for more complicated func-
tions. If one agrees to define analytic functions of DA-valued quantities by their Taylor
expansions, one obtain the following results for the exponential, sine, cosine, and natural

logarithmic functions.

For the exponential function, begin by splitting = + d into its real and differential parts.

Using the algebraic properties of the exponential yields:

1
exp(z +d) = e%ed = & 1+d+§d2+...

= €e°[1 + d] = (e, €7). (3.18)
So the differential part of exp(z + d) is indeed its derivative.

We may check two other definitions of the exponential to see if they are consistent

with (3.18). Using the power-series definition of exp(-),

1 1
exp(z +d) = Z m(z +d)* =) ;(:1:" + nz""1d)
n=0 n=)
1 > 1
D L LTS g Wy
o™ am (n =1

= €%+ e"d = (€%,€), (3.19)

47

while using the elementary calculus definition of exp(-) in terms of limits,

exp(z +d) = Ji_{lgo[l+%(:c+d)} = lim [(1+%)+§]

— o0

m (10 3) (e)7
= lim {{14+~]) +n(l+— —
n—o0 n n n

n n -1
— 1m1(1+5) +1m1(r+f) mn(1+3> d
n— o0 n n—oo n n—oo n

= €+ e°d = (e%,€%) (3.20)

So all three definitions are consistent.

For the trigonomentric functions sin(-) and cos(-), we may perform a similar splitting of the

argument into “real” and “differential” parts to yield:

sin(z + d) = sin(z)cos(d) + cos(z)sin(d)
= sin(z)[l — {d® + ...] + cos(z)[d — Jd® + ...]

= sin(z) + cos(z)d = (sin(z), cos(z)) (3.21)
and

cos(z +d) = cos(z)cos(d) — sin(z)sin(d)
= cos(z)[l— 5d> + ...] — sin(z)[d — Hd®+]

= cos(z) — sin(z)d = (cos(z), — sin(z)) (3.22)
Again, one finds that the differential part is just the derivative.

For the natural logarithm, a slightly more subtle approach is necessary. Algebraically

manipulating In(z + d) into a form suitable for Taylor expansion, we obtain:

In(z +d) =In [a: (1 + g)]

In(z) + In [1 + g]

In(z) + [g—é(g)2+%(g)3—] (3.23)
1mn+§:@q@é) (3.24)

48

This example also illustrates a standard trick which Berz uses to obtain the DA-valued
extensions of each of the “elementary” functions: by using their algebraic properties, and the
rules of DA, each elementary function may be manipulated into a form which is polynomial
in the differential part with coefficients given by simple recurrence relations; this form is
ideally suited for rapid evaluations on a digital computer, using a generalization of Horner’s

rule.

The existence of simple and compact algebraic expressions for the elementary functions
is, more than any other single feature, what gives DA its tremendous power in numerical
applications; there would be little advantage in using DA if the computer still had to
evaluate the usual analytic formula for each coefficient in the Taylor expansion to obtain
the DA representation of a function. Furthermore, these algebraic representions for the DA-
extended elementary functions allow DA to compute derivatives to arbitrarily high order
(so long as they exist), whereas an algorithm which required the analytic formula of each

coefficient would clearly be limited by the maximum order it possessed a formula for.

The second most important feature of DA is that its algebraic operations automatically
incorporate the “chain rule” of elementary differential calculus into the evaluation of func-
tions. The values of the derivatives of a composite function fog may be obtained by simply
evaluating f at g(z + d); this requires essentially the same amount of computational effort
as would the evaluation of f(z + d) itself. In this way, one can easily obtain the values of
the derivatives of even very complicated functions, by algebraically building them up from

the DA representations of the elementary functions.

To motivate this, one should note that while d must be an “infinitesimal”, nothing requires it
to be the unit infinitesimal. It is simply that when the differential part of the argument is a
unit differential, the differential part of the DA-extended function has a simple interpretation
in terms of that function’s derivative. However as long as the Taylor coefficients of the
function exist through the order of the DA in question (and these coefficients only depend

on the real part of the function’s argument), the differential algebraic extension of that

49

function is well-defined. If the argument instead happens to be the result of evaluating
another DA-valued function, a straightforward but tedious calculation shows that the result

will be the same as the derivative of the composite function.

To see how this works, I provide the following concrete example. Consider the function

exp(—az?); replacing z with z + d, we find:

exp [—a(z + d)z] = exp [—azz - 2amd]
= exp(—az?)exp(—2azd) = e’ [1 — 2azd]

= (e““z, ——2aa:e”““’2) (3.25)

which is exactly the result one obtains by applying the “chain rule” of differential calculus.

3.3 DA, Functions, and Derivatives

To further understand the relationship between DA and differentiation, I again examine the

relationship between DA and nonstandard analysis (NSA).

In NSA, differentiation becomes a purely algebraic procedure; a function f is differentiable
if and only if for any arbitrary infinitesimal § € *R, the real, or “standard”, part of the

quotient

exists and is independent of §; hence we may compute the derivative of any differentiable
function f by simply evaluating (3.26) at some particular value § = §o and taking the

“standard part”:

(=) =R{f(z+6§3_ f(z)}. (3.27)

The advantage of this procedure is that one need not worry about taking limits.

50

The quotient (3.26) is undefined when operating within { D;, because the elements 1D; of
1Dy corresponding to the infinitesimals of *R are not invertible. We can get around this by

working with the differential instead of the derivative.

Let f: U — V;z — f(z), beaC! function from an open interval U € R to an open interval
V € R. We wish to extend f to map ; D; onto itself, for all z € U. Since (z + d),d = (0,1)
is only infinitesimally different from z, by continuity we expect the extension f(z + d) also

to differ only infinitesimally from f(z):
flz+d) - f(z) = f'(0,1) = f'd (3.28)

for some f' € R. But (3.28) is just the usual definition of a “differential”; so the “differential
part” of the function f(z 4 d) is just its derivative. This is confirmed by taking a Taylor

expansion of f about the real part of z + d (which is just z):
flz +d) = f(z) + f'(z)d (3.29)

where the series terminates at first order in d, because the square and all higher powers of
d vanish. We shall see that in a differential algebra of order n, every function taking , D,
onto itself is a polynomial of order n in the the differentials; following Ritt [Rit50], I shall

call such an object a “differential polynomial of order n”.

3.4 DA to Higher Orders

The next simplest DA is the second-order algebra in one variable, ;. D;. This will be a
vector space R3 of ordered triples, (fo, fi, f2), where fo, fi,f2 € R. Vector addition and
scalar multiplication are again defined in the usual way; the “vector multiplication” is now

defined to be:

(fo, f1, f2) - (90,91, 92) := (fogo, f190+ fog1, f290+ f191+ fog2) (3.30)

51

The ordering relation is again the “lexicographic ordering” for triples. We will now have
not only “infinitesimals” but “superinfinitesimals” as well, because for any p, 6, € R, we
find:

(p,0,0) > (0,6,0) > (0,0,¢) > (0,0,0) (3.31)

The multiplicative neutral of ,D; is now (1,0,0), while powers of the unit infinitesimal

d := (0,1,0) again form a basis for 5 D;:

@ = (1,0,0) (3.32)
& = (0,1,0) (3.33)
& = (0,0,1) (3.34)
" = (0,0,0), (n>3) (3.35)

Note that in 2.0, d is now a “cube root” of zero, rather than a “square root”.

The multiplicative inverse is given by:

2
aboto= (L b e v 3.36)
a2

a a3

In addition to the “real” and “differential” parts, I now have a third component to worry

about. I introduce the following “order projectors” Pp{-}:

Po(a,b,c) = (a,0,0)= a, (3.37)
Pl(a)b’c) - (0’b70) = bd: (338)
'Pz(a,b,c) = (O;O,C) = Cd2 (339)

I shall also define projections over ranges of orders, with (hopefully self-explanatory) nota-
tions such as Pp{-}, Pcn{'}, and Psm <n{-}. I shall continue to write R{-} for Po{-}; but
D{-} shall mean P-o{-}, as this projection is particularly important to DA-valued function

theory. These definitions of R{-} and D{-} are consistent with my previous use.

52

Functions on the reals are again extended to , D, by Taylor expansion about the real part:
1
flz+d) = f(z) + f'(2)d + 5 f"(2)d’ (3.40)

where the series again terminates because of the nilpotency of d. From (3.40), and the

properties of d, we make the following identifications:

fo= f(2), fi = fi(z), fo 551-! "(z). (3.41)

To verify this, consider powers of (z + d) again; we find:

-1 -1 -3
(z + d)n = " + nz“—1d+ n(n2!)zn—2d2 + n(n‘ 3)‘(7")zn—3d3 +...
1
= (:c", ng™" 1 gn(n - 1)9:"‘1). (3.42)

Again, the series terminates because of the nilpotency of d, yield the first and second
derivatives (up to the purely numerical factor 1/2!). I shall not bother to work through any
more examples for ,D;, as it would be a straightforward excercise in which nothing new
would be learned. The extension to include derivatives through order n, or ,D;, is also

straightforward.

3.5 DA in Several Variables

We may also also consider algbras with v independent variables, or ,D,,. In doing so I will
also introduce the last of the new notation required in this dissertation. My example will

be ng.

Vectors of the differential algebra , Dy are elements of R® (a vector in a general DA is an
element of RY, where N is given by the number of monomials ,, N, given in equation (2.7)).
Vector addition and scalar multiplication are again defined as usual; the vector product is

now:

(fo; f:m fy; .f::zafmyafyy) : (90; 9z, 9y gzmagzy’gyy) (343)

53

= (fogo; fz90+ fog=z, fygo+ fogy;

fzm90+ fzga:+f09x::, fxy90+fzgy+fygm+fogzy) fyygo+fygy+fogyy)

Here, subscripts label the components, with semicolons separating groups having common

order.

We now have two “unit differentials”: dz := (0;1,0;0,0,0), and dy := (0;0,1;0,0,0) in
the z and y “directions”, respectively. Using (3.43), one can easily show that the set of
DA-valued monomials da:idyj, where 0 < i+ j < 2, form a basis for)5, and vanish for
all 4+ 7 > 2. It will also be convenient to define Dz := z-1 + dz, and Dy := y-1 + dy;
in subsequent expressions I shall usually omit the factor 1 := (1;0,0; 0,0,0) from such
expressions, as its presence will be clear from context. The prefix “d” and “D” notations
should not be thought of as operators, but as analogous to the “vector” symbol &: they

denote that the compound symbols dz and Dz are elements of a differential algebra.

I also use the following “multi-index” notation; define:

<1,) = (il,ig,...,iu), OSikSn,
l(zN = z1 + 22 + ...+ zv) |(”)| S n,
(1) = dgledl gyl
L :z:li‘ '2!2i2 - -:cui',
gl

O = Fagmg o

Oz 0z'2 - - Ozy,te
(1) = (0,...0, 1 ,0,...0)

N Nt N et
(1) K (o)

Then the Taylor expansion of a general function of v variables can be written compactly as:

(2 + Az) Z —Il— f(z) Azt (3.44)

By definition, the ,D,-valued extension of f(#) is therefore:

Df := f(Dz) = f(z +dz) = ‘:: —}— z)de'l); (3.45)

54

Comparing like components, we find:

fuay = ﬁa(r)f(rl (3.46)

Invoking the “summation convention” over repeated multi-indices, (3.45) takes on the ex-
tremely compact form Df — f(I)dz:U). Note that at no point did I need to assume that
Dz = (z,1,0,0, ...); it could have been any element of any DA. Note also the importance

of the projection dz = D{Dz}.

The rest of the developement of ,, D, very closely follows that of ,D;.

3.6 Gradings, Filters, Ideals, and Projections

I shall now show that the order projectors introduced in §3.4 induce natural gradings, filters,

and ideals [ON79, ON82] on ,D;.

An algebra A is said to be graded if, for some set of integers I, it is a direct sum of subsets:

A= P A, (3.47)
iel
AiA; C Ay, Yi5,(i+37)€el. (3.48)

Since the order projectors obey the completeness relation, Df = 31 Pi{Df},V Df € Dy,
and by the definition of the multiplication law, Py{Df Dg} = S.% , Pi{Df}-Pr_i{Dg} , it

follows that every DA is graded over the nonnegative integers by the order projectors, P;{-}.

An algebra A is said to be ascending filtered if for every non-negative integer i, there is a
subset A(;y such that:
A(,‘) - A(j), Vi<j; (3.49)
A= U A(i); (350)

A A) € Agivs) (3.51)

55

If A is graded, then A(;) = ;. ; A defines a natural filtering of A. Since ,D; is graded by
Pi{-}, it is therefore filtered by P;{-} = Y32, Pi{'}.

A subalgebra A’ is said to be a right ideal if A'a C A’, ¥V a€ A, and a left ideal if aA' C A’,
YV a€e A. A subalgebra which is both a right and left ideal is said to be a bilateral ideal,
or simply, “an ideal”. If an algebra is graded, then ‘4 := 69]‘2,' Aj; defines a natural set of
ideals of A. Since ,D, is graded by P;{}, it therefore follows that the subset

wD1 = Psi{nD1} = iP,-{nDl} (3.52)

j=i
of . D, is an ideal. Since the DA product is commutative, there is no distinction between

left and right ideals. Two important properties of i D, which I shall need later are:

Pei{iDy} =0, (3.53)

iD,iD, DD, (3.54)

I shall have need of the above grading, filtering, and ideal properties of differential algebras
when I treat the bounds on solutions of the HJ/DA equation.

3.7 Norms on Differential Algebras

Since the elements of each DA form a Euclidian vector space, every definition of a norm on
that space induces a corresponding norm on the DA. An example would be the family of

“p-norms” defined by:

1
P

(3.55)

I Dfllp := {Zlf(z)!p
{I)

The two norms I shall be most concerned with will be “one-norm” norm given in [Ber89b]:

IDflly =D 1finl, (3.56)
(I)

56

and the “infinity”, or “max” norm:

|1Dflloo = sup | fipyl- (3.57)
(I
It is a straightforward excercise to show that both of these are indeed norms, for they
satisfy:

\DFI = o iff Df =0, (3.58)
laDf| = lalIDfl, Va€R, (3.59)

and the triangle inequality:
IDf + Dgl| < ||Df|| + || Dgl|; (3.60)

An analogous inequality holds for products:

| Df - DQHP <nlyp ”Dpr : ||D9||pa (3'61)

where , L, is a constant depending on the order and number of variables of the DA, n,
v, and also on p.? For p = 1 (the “one-norm”), ,L,1 = 1. The optimum value of ,L,,
has not yet been determined for p # 1; however an upper bound of L, o < ((n/v) + 1)?
has been found for p = oo (the “max-norm”).® I will make use of both of these norms in
the verification and convergence studies of Chapter 6. Since I will also be interested in how

errors depend on the order, I shall also make use of the seminorms defined by:

1 Dfllp s := 1P DfHIps (3.62)

(3.62) is a seminorm, rather than a norm, because of the presence of the projector P: when

| Df|l,, » vanishes, it does not necessarily follow that Df does.

3.8 The DAFOR Extension of FORTRAN

Berz has obtained the DA representations of all the elementary functions (plus a few more,

such as the error-function and some other special functions useful in charged-particle optics),

%I thank R. F. Streater for pointing out the need to include the constant ,L,, for p # 1.
*Paul F. Zweifel (private communication).

57

and implemented them in a library of FORTRAN subroutines. This Library also contains
routines for the basic arithmetic operations, various utility routines, and several powerful
analysis routines that allow one to extract derivatives, perform changes of variables (e.g.
perform composition of maps), and invert or partially invert changes of variables (e.g.
invert a map, perform a Legendre transformation) by an application of the implicit function
theorem. He has also written the DAFOR precompiler, which parses FORTRAN expressions
flagged as containing DA variables, and automatically inserts the appropriate subroutine

calls into a FORTRAN program.

With these two tools, it is now possible to compute the value of the analytical derivatives
to as high an order as one is willing to pay for, for any function which can be represented
as a FORTRAN algorithm, which is to say, almost any function at all. In most cases, this
may be done using “blind” conversion: one simply declares the variables one wants to
evaluate in DA to be of type “DA”, and flags all expressions containing DA variables for
precompilation using special “comment” cards; the precompiler does the rest. The result
is a FORTRAN subroutine capable of evaluating the desired derivatives for any value of the
subroutine’s parameters. This process is almost completely user-transparent, with only
a minimal amount of knowledge about the actual details of DA being required for most

applications.

Chapter 4

Perturbative Dynamics and Optics

Having armed the reader with the mathematical tools I will be using, I now turn to the
physical framework in which the research for this dissertation was first conceived: Hamilton-

Jacobi theory of dynamic systems, as applied to perturbative optics.

4.1 Hamiltonian Optics and the Hamilton-Jacobi Equation

Hamilton [ConSyn31] was the first to show that the trajectory of every extremal ray of
light passing through a given optical system may be obtained from a single function, which
he called a “characteristic function”. In so doing, Hamilton for the first time provided a

physical justification for Fermat’s principle of “least time”.

Hamilton did this by showing that the stationarity of the “optical length” under small
variations implied that the variation of the optical length must be an ezact differential.

Therefore a function giving the optical length of the extremal ray in terms of its endpoints

58

must exist.! Furthermore, the gradient of this function with respect to the initial and final
positions gives the initial and final directions of the extremal ray, respectively. He also
showed that the roles of either or both positions in the “point” characteristic function could
be interchanged with their corresponding directions via Legendre transformation, to yield

“mixed” and “angle” characteristic functions.

Hamilton later went on to show that the trajectories of a time-independent mechanical
system were also derivable from a single function, which he this time called a “principal
function”. He did this by showing the variation in the action integral along the extremal
trajectory beteween two points in configuration space was also an exact diffential, thereby
legitimizing Maupertius’ principle of “least action” as well. he found that the gradient of
the principal function corresponded to what we now call the “generalized” or “canonical”

momentum of Langrangian mechanics.

Ten years latter, Jacobi [Jac63|, building on Hamilton’s work, showed that associated with
every variational principle was a scalar field satisfiying a first-order partial differential equa-

tion of the form:

F(q, 8qS; 8:5) =0 (4.1)

and vice-versa; the study of such first-order equations now bears the name “Hamilton-Jacobi
theory”. Hamilton-Jacobi theory has long been regarded as an elegent tool for proving
theorems about variational problems? but of limited practical value, since in general (4.1)
is a nonlinear partial differential equation, and is therefore rather difficult to solve except

in special cases.

While Hamilton’s work on mechanics became the centerpiece of perturbative celestial me-

chanics, his work in optics has largely lain fallow until this century. Indeed, Hamilto-

! Assuming, of course, that there is only a single ray connecting them. Hamilton’s “characteristic func-

tions” become multiple-valued if there is more than one ray connecting two points; this is closely connected
to the existence of caustic surfaces, which are discussed in §5.3.1.

’Indeed, Rund [Run66], for example, considers HJ-theory the only rigorous approach to variational
calculus.

60

nian optics was in effect reinvented in denatured form as the “eikonal approximation” to
Maxwell’s [Brn WIf70] or Schrodinger’s [Gol80, pp. 487-492] equations, and is usually still so
treated, although the works of J. L. Synge on the geometrical optics of light [Syn37, Syn51]
and “De Broglie waves” [Syn53] have shown that Hamilton’s methods are quite capable of

standing on their own.

4.2 The Hamilton-Jacobi Equation; Hamilton’s Principle

and Characteristic Functions

In physics, the Hamilton-Jacobi equation (HJ equation) is usually introduced within the
framework of canonical transformation theory. A change of variables (q,p) — (Q,P) is

called “canonical” if the new Lagrangian differs from the old by at most an ezact differential:

g . d
P,Q' - K(Q,P;t) = pi¢' — H(q,p;t) - EA(q,p;t) (4.2)

because then the EOM:s for the (Q, P) also have the canonical form (1.3), but with H(q, p;t)
replaced by the new Hamiltonian K(Q, P;t). A case of particular interest is whether K
can be made to vanish identically; for then (1.3) would imply that the new coordinates are
all constant of the motion, and integrating them becomes a trivial task.> One simple way of
ensuring this (although by no means the most general) is to assume that p; may be written
as the gradient with respect to ¢* of some function S(q,;t), where the a denote a set of
n constants parameterizing the p;. Since the left hand side of (4.2) vanishes by hypothesis,
if I also set A equal to S, I am left with

0= 2t n(a, 250) - [+ 24

or

a5 as

3This is actually a more restrictive definition than necessary; Arnol'd [Arn88, p.260], for example, requires
only that K be a function of the Q alone, in which case the Q are constants, while the P are linear functions
of time. But this is a trivial generalization, as it is always possible to eliminate K entirely.

61

Equation (4.3) is just a special form of (4.1); however I shall refer to (4.3) as “the” Hamilton-
Jacobi equation. A function S of the assumed type that satisfies (4.3) is called a “Hamilton’s
principal function”; Carathéodory [Car65] has shown that solutions to (4.3) of the assumed

type always exist and are unique, at least in some neighborhood about any given point

(go»Po) in phase-space.

Since the a’s are as-yet-unspecified parameters, one possibility would be to take them to
be just the n new (constant) momenta; one can then show from canonical transformation

theory that the derivatives of S with respect to the P’s are just the new (constant) Q’s:

85 . 0s
p‘l—"é;{) Q _aPi'

In fact, I can even take (Q,P) to be the initial positions and momenta, (q,,p,), (which
do determine the trajectory, and certainly are constants!). In finding S I have therefore in
principle found a solution to the initial value problem. The rub, however, is that the above
equations are mized: they define the ¢, and p, in terms of the q, and p, and therefore

provide only an tmplicit solution to the initial value problem.

One can show that S(q,a;t) is the change in action along each eztremal trajectory; that

is, formally one can show that, for example:

t2 d9
Stgaits) = [St
1
t2 | 9S dg® &S
/; [a—qﬁﬁa] a
12} t2
- / ped* — H| dt= [Lt (4.4)

t ty

(up to a constant of integration) where the integral is taken along the extremal trajectory
connecting q, with g,. However (4.4) is not especially useful for calculating S, since it
is precisely this extremal we desire to find. An exception to this is when we desire a
perturbative expression for S about an RT, in which case one may develop an expansion
of § in §q, and 6q, by integrating along the RT. The “eikonal method” described in §4.3

below is one approach to this; the method of this dissertation is another.

62

If the Hamiltonian is independent of time, one can remove the time dependence by “separa-
tion of variables”; writing S(q,a;t) = W(q,a; E) — Et, where E is an arbitrary constant,

one reduces (4.3) to the “time-independent HJ (TI-HJ) equation”:
H(q,0¢W) - E =0. (4.5)

The above equation is still of the form (4.1); a function W which satisfies it is called a

“Hamilton’s characteristic function”.

Note that while the terms “Hamilton’s principal function” and “Hamilton’s characteristic
function” are still in use, they are no longer what Hamilton meant when he used them. In
his works on both optics and dynamics, Hamilton worked with pairs of sets of equations

having the forms:

W, _ & W (q1,95)

H - = - = P1i 4.6a,b
(ql’ 6q1)) aq; Y41 (a)
and
ow W (q1,9>)
H y A) = E, —_— = i 4.7a,b
(q, aqz) oq P2 ()

These equations are overdetermined, since they provide 2n + 2 relations between only 2n
unknowns; if one selects n — 1 equations each from (4.6) and (4.7), the remaining pair of
equations are satisfied identically. Jacobi showed that equations (4.6) and (4.7) are redun-
dant: if, for example, one solves (4.6a), taking (4.7b) to define n constants of integration,
then (4.6b) and (4.7a) are satisfied identically. What Hamilton referred to as a character-
tstic function is now referred to as an “eikonal”, while the “Hamilton’s principal function”

S(q,a;t), is actually Jacobi’s “complete integral” to the Hamiltonian problem.

4.3 Hamilton’s Characteristic Function and the “Eikonal

Method”

The “eikonal method” was developed in papers by Glaser, also Sturrock, ctrca 1930~

1950 [Gla33, Stu52]. It appears to have been primarily developed for “hand calculations”,

63

perhaps aided by some sort of analog computer. These papers are in turn based on tradi-
tional optics methods using Hamilton’s characteristic functions developed in Bruns’s paper

of 1892 [Bru95] (for a recent review, see Rose [Ros87], and references therein).

The eikonal method is applicable to time-independent systems only; it is essentially equiv-
alent to a perturbative treatment of the TI-HJ equation. A reference trajectory is chosen,
and the n coordinates q are reparameterized in terms of a longitudinal variable, 2 (which is
usually taken to be the arc-length along the RT), and a set of (n — 1) variables w parame-
terizing a set of nonintersecting surfaces transverse to the RT (when n = 3, the two w’s are
often represented by a single complex number). When parameterized in terms of z and w,
Bruns [Ros87, Bru95] called the characteristic function W an “eikonal”.* In more recent
treatments, rather than starting from the TI-HJ equation most authors follow a laborious
and roundabout derivation beginning with the variational form of Hamilton’s principle,
which they justify by appealing to quantum mechanics. The perturbation expansion of
the variation is developed by introducing an artificial “ordering parameter”, and expressing
deviations from the RT in terms of “Lagrange invariants” and “paraxial rays”. The rays
may be chosen as the “principal rays” of the linearized system, closely analogous to the
method of “variation of parameters” in the theory of ODEs, which is useful in enforcing the
desired boundary conditions on the action. Applying a method of “successive approxima-
tions” directly to the variational principle, these authors obtain integral expressions for the
perturbative action of the system, from which one could in principle extract the aberration

coefficients or other quantities of interest.

The advantage of the “eikonal method” is that it provides an iterative approach for obtain-
ing integral expressions for the perturbative characteristic function, using solutions to the
linearized system. For many numerical purposes, integral expressions have better stability
properties, especially for iterative solutions and “two-point” boundary-value problems (of

which the eikonal method is an example).

*From the Greek word eixwv meaning “image”; this is also the root for the English word “icon”, which
refers to, among other things, a type of bas-relief religious symbol used by the Eastern Orthodox Faith.

64

The disadvantage is that, besides being limited to time-independent systems, the eikonal
method leads to implicit relations between the initial and final variables in terms of cumber-
some integrals with obscure physical meaning. Such implicit relations will result whenever
generating functions are used, as mentioned in the previous section; It is difficult to get
a “feel” for the system from such implicit relations.> This may account for the fact that,
despite a claim by Rose that the eikonal method leads to equations well suited for numerical

methods [Ros87], this method appears to have largely fallen into disuse.

4.4 Perturbation Theory, Jets, and DA

I stated in §1.7 that the natural geometric framework for perturbation methods was the
theory of jet bundles and prolongations. Here, I shall briefly describe the concept of a “jet”,

and show how it relates to perturbation methods, and also DA.

In the modern coordinate-free approach to differential geometry, a tangent vector at point
P is thought of as an equivalence class of parameterized curves all of which have the same
derivative at P; in other words, every curve in the equivalence class is tangent to a given
line through P, and varying at the same rate with respect to its parameter. This mod-
ern definition provides a precise statement of the concept of a vector as “a direction and

magnitude”.

The theory of jets generalizes the concept of tangent vectors to higher orders of contact
([Bur85, p.107]; [SW86, chap. 6]; see also [Olv86] and is important in studying the symme-
tries of systems of differential equations. A “1-jet” is just the usual “line-element contact
bundle”, while a “2-jet” represents an equivalence class of curves whose first and second

derivatives all agree at a given point; one can go on to consider higher and higher “de-

In principle, this objection applies to my method as well. However, generating functions are only one
method of representing maps, and the “partial inversion” routine in the DA package allows one to convert
to alternative, more physically useful or transparent representations.

65

grees of tangency”, pinning down more and more coefficients in the Taylor expansion of the

parameterized curves.

The connection between perturbation methods and jets comes in when one treats the per-
turbation parameter ¢ as an “additional coordinate” having trivial dynamics. Consider a

system of the form:
£=f(&te), €=0, (4.8)

with £, f € M, € € I, where I is an interval of R containing 0. Now consider at t = tg a
set of e-dependent initial conditions &, : I — M; € — £o(¢€). i.e. we let € parameterize a
“deformation” of the initial conditions, as well as the dynamics; a “perturbation” results

when ¢ is considered to be infinitesimal.

While one would usually view £(¢) as a parameterized curve on M, one can also view it as a
parameterized curve (¢, §,) in the extended manifold IxM. Omohundro [Omo86, pp.96-107)
calls a such curve a path, and the set of all paths, path space; the flow F; ., of (4.8) will take
the path (¢, £,(¢)) into the parameterized set of paths F, 4, : IXM — IxM; (€,€4(€)) —
(e,€(e,t)), the perturbed path of the system. Omohundro considers all points on a given
path to be members of an equivalence class; a natural projection is defined by associating
each point on the path with the unperturbed state at ¢ = 0. The arbitrariness of the
initial path (¢,£o(€)) corresponds to the “gauge freedom” discussed in §1.7. One should not
interpret this, however, to mean that “all paths are physically equivalent”, any more than
one would interpret the general coordinate covariance of general relativity to mean that “all
metrics are physically equivalent”. Each path represents a distinct “point” in path space,
even though many paths project to the same point of M. The choice of the path determines,
in part, the nature of the perturbation, by specifying how the initial conditions are to be

deformed.

Omohundro now looks at the derivatives 0"£(t,€)/0€™| and finds that these derivatives

e=0"

provide a particular representation for a jet. Furthermore, these derivatives are just the co-

efficients in the perturbation expansion (1.11). Therefore, the natural geometric framework

66

for describing perturbation “theory” is the theory of jets. The fact that e is set to zero after
taking the derivative supports Omohundro’s contention that perturbation “theory” is re-
ally telling us something about the response of the unperturbed system to the perturbation;

alternatively, the perturbation should always be thought of as infinitesimally small.

At this point, on recalling that derivatives are just the sort of thing that DA calculates,
one should immediatly realize that by letting ¢ — de, and evaluating (4.8) in DA, one
automatically obtains a set of ODEs for the numerical values of the perturbation coefficients.
Furthermore, even if (4.8) cannot be integrated analytically, I can still find approximate
values of the perturbation coeflicients by simply performing a numerical integration in DA.
So using DA, I can obtain the numerical values of the perturbation coefficients with only a
little more (human) labor than would be required to numerically integrate the equations of

motion themselves.

Chapter 5

DA Methods for Approximate
Solution of the Hamilton-Jacobi

Equation

In this chapter, I show how DA my be used to convert the Hamilton-Jacobi equation, which
is a nonlinear, partial differential equation, into a system of ODE’s for the perturbative

expansion of Hamilton’s principle function about some reference trajectory.

In this chapter, the following index conventions are invoked: lower-case latin indices run
from 1 to d, where d is the number of pairs of canonically conjugate variables; lower-case
greek indices run from 1 to 2d; “multi-indices” run over the set of all monomials of order
less than or equal to n, over the natural index range associated with the kernel letter. All
DA-valued quantities shall be assumed to be elements of ,D,, v > 2d (I am allowing for
the possibility that there might be more variables than just the “p’s and ¢’s”, since one
might possibly wish to extract the dependence of the map on some set of non-dynamical

parameters §). The natural basis for expanding DA-valued quantities shall be taken to be

67

68

the d¢ (plus the dé, if present). All partial derivatives shall be taken with respect to the

{’s, unless otherwise specified.

5.1 Equivalence of the DA-Valued HJ Equation and a Sys-
tem of ODEs

The proof is almost trivial. Let £* := (¢',p;), pi := 8S(q,a;t)/8¢', and {* := (¢}, a:).
I promote q and @ to DA-valued variables; the HJ equation then becomes the “HJ/DA
equation”:

25(DG;0) = ~H(E(DC)) (5.1

Since the powers of d(* form a basis for the DA, by definition I have:

n

S(DG;t) = S(C+de;t) = Z<—1.1>—,6<,->S(c;t)dc<‘>
|I|=0 '
= Si(t)d¢t (5-2)
and
H(EDO)t) = H(E(C+dC)t) = z":(—j)—,a<.->ff(5(<;);t)dc<*>
l[[:O .
= H<i)(t)dc<i) (5.3)

where the summation convention has been invoked on the last line of (5.2) and (5.3). I
have written the coefficients Sy and H;y as functions of ¢ alone, because they depend by
definition on at most the real parts of the D, which for the moment I shall just consider to be
prescribed functions of time. In the next section I will show that the €,(t) := R{DE(t)} are
determined by requiring that certain closure conditions be satisfied; the closure conditions
are just that the £,(t) must solve Hamilton’s equations. Since the £,(t) define the RT for

the HJ /DA equation, this should come as no great surprise.

69

Since the ¢ and t are independent variables, the 3d¢/8t vanish. Therefore, S(DE€;t) depends
on time only via the S;, and I may equate like coefficients in (5.1) to reduce it to the

following system of ODE’s:
S (t) = —Hp(t). (5.4)

The above system may be solved by a number of standard methods, once the boundary
conditions (BC’s) have been specified; since I shall need several types of solutions, I shall

defer the discussion of BC’s for each type until the section in which it is developed.

5.2 Closure Conditions

Before I can solve the HJ /DA equation, I must first address a subtle problem: the existence
of closure conditions. In order to evaluate the right hand side of the HI/DA equation,
I must first evaluate DS/0¢*. In DA this is essentially just a “shift” or “bookkeeping

operation”: by the “power rule”,

0 . . N
Ws(j)dq(z) — ,ks(j)dq<1> (1)
where jj is the exponent of dz, i.e., one multiplies each monomial coefficient by its “kth”

“kth” exponent by one, then reinserts it in the appropriate “slot”

exponent, decrements the
of the DA vector coresponding to its new exponent, discarding any coefficients for which the
new iy is less than zero. Since the DA-library implements DA-vectors as “packed” arrays
containing only the non-zero coefficients of DA-vectors in sorted order, plus a pair of arrays

of integers encoding the “index vectors” (j) of the corresponding coefficients, this can be

done “in place” and very rapidly.

However, in an nt*-order DA, the value of the (n+ l)th order coefficients are unknown. Faced
with this absence of information, Berz elected simply to define all the ntt-order coefficients
of the “derivative” of a DA vector to be zero (“zero-padding”). One sees that the set of

operators 8/8¢" act much like “lowering operators” on DA vectors, and that at most (n+1)

applications of members of this set to a vector will “annihilate” every vector of an n*t-order

DA.

Strictly speaking, one should probably view d/8¢' as being a linear map from ,D, to
n-1Dy. Since we have not defined operations between elements of different DAs, this raises
concern as to whether the HJ/DA equation is well defined. Even with the “zero-padding”
trick, which formally extends elements of ,_{D, to ,D,, there is still a problem: I have
potentially lost the “closure” propety of DA under truncation, because the “lowering” action
of the 8/8¢* now allows errors in the higher-order elements of DS to feed “back” as well as
feed “forward”— errors in P,{DS} will influence P,_1{DS}, as well as P5,{DS}, which in

turn will effect P,,_5{DS}, and so on.

Fortunately, there is a way around this problem. An explicit formula for the monomials of
the product of two DA-vectors f, g can be written in the “multi-index” notation as:
(F9)iy = D fuwgp)y Y(p):0<|(p)| <n (5.5)

WO RY)
(1) +(v)=(p)

— 1i.e., one sums over all pairs of multi-indices such that (u)+(v) = (p). Now, let me
assume that P,{g} vanishes. For the “index norm”, |(p)| = |(u)|+ |(v)| holds. In any
DA, 0 < [{p)| < n for all valid (u). Therefore, the only element of f,, appearing with
Pn{g} in the product is its real part, fo. But all functions of DA-valued quantities are
polynomial in the differential part of their argument. Therefore, the only terms in (5.3) in
which P,{85/0¢'} will appear are the first order terms of H(Dq, Dp; t) involving the p.
But the first order terms of H can always be eliminated by the following trivial canonical

transformation:

¢ =) +d, pi=poilt)+ P,
g = 3 -H(qo,Poit), Poi = —%H(qo,po;t), (5.6)
K(q,p) = H(ao(t)+@,po(t)+ 53 t) — do(t)Pi + poi(t)T,

<

which is just a simple time-dependent translation causing the new origin of phase-space to

travel along the RT. In other words, the origin of the new coordinates (g, p) is a fized point

71

of the time-evolution map. One can easily verify that this transformation is canonical, and
that the new Hamiltonian K has no linear terms.! Since K has no linear terms, the HJ /DA

equation obtained from it will be closed.

5.3 Need for More Than One Type of Solution

The Hamilton-Jacobi function S is an example of a so-called “mixed” generating function,
because of its dependence on 2d variables, half of which are obtained by selecting one
variable from each of the d pairs of “old” positions and momenta, and the other half by
selecting one variable from each of the d pairs of “new” positions and momenta. There are

thus 224 = 4¢ possible combinations altogether.

The “mixed” functions map 2d-dimensional submanifolds of the product of the “old” and
“new” phase-spaces onto the reals: P,jgX P,y onto R. One can show that such a function
generates an identically canonical map Pyq — Ppew by equating (up to a sign) the partial
derivative of the generating function with respect to each argument with its canonical
conjugate. The most general proof, found in Carathéodory [Car65, Vol. 1,§ 97, pp. 87-90],
is somewhat awkward and messy, and makes extensive use of the implicit function theorem:;
I will not reproduce it here. A simplified version may be found in Goldstein [Gol80, § 9.4,
pp. 403-405).

While in principle one can consider any such partition of the “old” and “new” variables,
most texts (e.g. Goldstein [Gol80, chap. 9]) emphasize (perhaps overly much) the following

four classes:
FI(QZ’QI)’ FZ(Qz,P1)
Fi(p3,q1), Fa(ps,py)

! Actually, (5.6) is more restrictive than necessary; it would have been sufficient to eliminate only those
linear terms involving the p. However it almost as simple, and far more convienient, to eliminate all the
linear terms from K, in order to obtain an origin-preserving map.

72

(Confusingly, I must take g, and p, to be “old” variables, and q, and p, to be “new”

variables, if I am to maintain my identification of a with p,.)

While each class of mixed generating functions produce identically canonical transforma-
tions, it does not follow that a given canonical transformation can be generated by functions
from each of the four classes, as Goldstein states, but does not explain [Gol80, § 9.1, p. 385].
A given class of generating function may not be suitable to generate a given canonical trans-

formation beacause of the existence of caustics and foci.

5.3.1 Caustics, Foci, and Singular Generating Functions

Caustics [Arn88, p.448] occur when a continuous family of extremals? possesses an envelope;
when this happens p, and g, no longer uniquely specify a trajectory, and the Hesstan of

the generating function either vanishes or becomes infinite on some set of points, e.g.:

°F, 'K
092092 09:0P1 | _ {0 or 0 }
0°F, 8K

dp,0q, 0Op,0p,
Caustics can be classified algebraically [Arn88, pp.448-452|, and are closely related to
catastrophe theory [DeW76, DV79].

Focal points [Arn88, p.442] occur, when all members of a family of extremals pass through
the same point g in configuration-space but with different momenta, p. If a family of rays
from a focus form a caustic, the point on a ray which touches the caustic is said to be
conjugate to the focus along that ray. A caustic is therefore a set of conjugate points.
Formal definitions of caustics and conjugate point are best given in terms of Jacobi fields.
Jacobi fields are solutions to the Jacobi equations. The Jacobi equations are essentially just
the linearization of the Euler-Lagrange equations about the extremals; however they are

usually derived by considering the second variation of the action [DeW76|. Jacobi fields are

%i.e., a set of extremals labeled by one or more continuous parameters.

73

therefore closely related to the second-order part of the solution to the HJ/DA equation,
the principle difference being that a Jacobi field is a global object, while DS(t) is only an
expansion about a particular ray. When a caustic exists, it will only be possible to find
2d — k linearly independent Jacobi fields, with 1 < k < d. The integer k is the multiplicity

of the conjugate points forming the caustic.

Caustics and foci are only apparent singularities, being artifacts of “badly” chosen coordi-
nates. It is always possible, for example, to find at least one set of v variables out of the
set (gq, P3), so that, when taken with with the “old” coordinates q,, the Hessian does not
vanish [Arn88, pp. 267-269]; however the existence of such singularities is ubiquitous, and

therefore a nuisance.

5.3.2 Classifying Generating Functions by the Images They Can’t Rep-

resent

In order to get a feel for how and when caustics and foci appear, I provide the following
example of a two degree-of-freedom (2-DOF) linear system; it is sufficient to consider lin-
ear systems because the Hessian and Jacobian matrices on the RT are determined by the

linearized dynamics. The generalization to fully nonlinear systems should be obvious.

The transfer map of a 2-DOF linear system, in matrix form, is:

| _|ab o 5.7)
P2 c d 51
For a 2-DOF system, the symplectic condition is equivalent to the unimodular condition,
det{M} = ad — be = 1. It follows from (5.7) and the symplectic condition that either ad or
bc may vanish, but not both at the same time, and that the vanishing of a given element

leads to the following type of imaging:

a = 0 : parallel-to-point, b = 0 : point-to-point (5.8)
¢ = 0 : parallel-to-parallel, d = 0 : point-to-parallel .

74

The generating functions are:

1d 1 la 6F1 6F1
F — g2 _ = 242 — 2 — o
1(q2,91) 553 ~ p%n + 550 D1 P P2 e
lc 1 1b aF. O F.
Fy(q2,m) = 5—«1% + =qap1 — =i, = =, pr=
a a 2a op; 0q2 (5.9)
1b 1 lc 8F3 3F3
F. = ———p? _ 2 ——q? = —— = ——
3(P2)Q’1) 2 dp2 dpth + 9 dqla y4l 8Q1 1 q2 8[)2,
la 1 1d 8F4 0F4
F, = _——p2 - — ——p? = _ = ——,
alp2,p1) = —5-p PP - 5P @ o 952
Calculating the Hessians, I find:
¢ d
A(Fy) = 3 A(Fy) = -,
a (5.10)
a b
A(Fs) = -5, A(F)=—-.

Consulting (5.8), one can easily see from (5.10) which types of generating functions are
unsuitable for which types of imaging; one can also see that all four types of imaging are

covered by either an F, or F,, as claimed.

In fact, it is even possible to restrict oneself only to the class of F,-type generating functions,
composed with the trivially canonical “exchange map” [For84, pp. 5-10]. (¢,p) — (p, —9q).
One can easily repeat the above argument for 2v-DOF systems, with a, b, ¢, and d replaced
by vx v block matrices; the regularity condition will then be that the determinant of the

appropriate block not vanish or diverge.

Can one convert from one representation to another? Yes, one can, as long as both repre-
sentations satisfy the regularity condition. Converting between representations may then
be done by a Legendre transformation; one must then perform a partial inversion (to obtain
the former independent variables in terms of the new independent variables), followed by
a composition (to reexpress the Legendre-transformed generating function in terms of the
new independent variables). However, since inversion is the most expensive operation in

the DA-package, one would rather not do this very often.

75

Can one prove that either an F; or F, cover all possibilities? Unfortunately one cannot; it
is easy to imagine an astigmatic optical system which produces point-to-parallel imaging in
one plane, and point-to-point imaging in the perpendicular plane. A practical example is a
particle storage ring, one characterizes it by its radial and vertical “tunes”, v, and v,, the
number of radial and vertical betatron oscillations a particle undergoes in making one turn
around the ring. In order to avoid resonant instabilities, ¥, and v, should not be rationally
related, it i.e., there should not be a triple of integers n, m, p, all of the same sign (one may
be zero) such that nv, + mv, = p (in practice, only the lower order resonances are really
dangerous). But if v, and v, are not rationally related, the particle must pass arbitrarily
close to every accessible state, including the one where its radial and vertical betatron phases
are zero and 7 /2, respectively. A generating function representing this state would have to
be Fy-like in the radial plane, and F;-like in the vertical plane. If one insists on representing
the linear part of the motion by a generating function, it will therefore be necessary to be
able to represent each of the 2¢ possible cases of “mixed-mixed” generating functions, and be
able to interconvert between them. The bookkeeping of one’s choice of independent variables
can be handled by a 2d-bit binary number; converting between representations may be done
much as before, except that one only performs a partial Legendre transformation. However
the additional complexity is somewhat daunting, and one would rather avoid it, if one
could. Therefore, after discussing how one obtains F; and F, type solutions to the HJ /DA
equation, I shall discuss how one may avoid the problem of caustic and foci altogether, by

separately treating the linear and nonlinear dynamics.

5.4 Procedure for F; Solutions

Obtaining F,-type solutions to the HJ /DA equation is quite straightforward; since F; (and
also F3) generators are connected to the identity, I simply choose the DA representation of

the identity map for my initial generating function:

S(D@z, Dp1; t=0) = dpy; dds (5.11)

76

I can compute S using the HJ /DA equation, with H replaced by the transformed Hamilto-
nian K defined by (5.6).

I can obtain the derivatives I need to compute K from H by simple projection, since

dq = dq, dp = dp. The complete system of equations is:

8
dgii = Dgy:= a—ﬁiDS(t), (5.12)
1
8
dp2i = Dpyi:= 5(7‘—.D.S'(t), (5.13)
2
Dgy = gp+ dg, (5.14)
Dpai := poi + dpai, (5.15)
DH(t) = H(Dq,,Dp,;t) (5.16)
y 8
qo(t) = R{ap.z_DH(t)}, (5.17)
0
Poi(t) = —R{B—Q;DHU)}, (5.18)
2
DK(t) := DH(t) - do(t)dpz: + poi(t)dds, (5.19)
DS(t) =-DK(t). (5.20)

5.5 Procedure for F; Solutions

Obtaining Fj-type solutions is unfortunately a bit trickier. While the HJ/DA equation
results in a system of ODEs of exactly the same form as in the F, case,® the initial value
problem for an Fy solution is ill-defined, because an Fj-type function representing the
identity does not, strictly speaking, exist. A “weak”, or generalized F;-type solution may
be defined, which for short times approaches the free action. In Cartesian coordinates, for

non-relativistic (i.e. “T+V”) systems and short times, such “weak” solutions are of the

3The difference between Fy and F; generating functions, as we are using them, implicitly appears in the
identification of the initial independent variables as the g, rather than the p,, but does not ezplicitly appear
in the HJ equation itself.

7

form:
m

5(51,52; At) >~ E(fz - 51)2 + O(At),

I showed an action of this type in §2.3.2, eqn. (2.18), while discussing Channel and Scoval’s
Hamilton-Jacobi-based symplectic integrator. Since (&3 — £1) ~ ¥At, for finite initial ve-
locities such “weak” solutions are actually non-singular; nevertheless, I expect difficulties

when seeking F-solutions to the HJ /DA equation, when treated as an initial value problem.

Where F; solutions can be expected to come into their own is for integrating through
caustics and foci. Since an Fj solution is well behaved in regions where an F, solution
breaks down, one could continue integrating if one could find an F; which represents the
same map as the Fy. The implicit function theorem guarantees that it is indeed possible
to convert between F, and F; generating functions, so long as their respective Hessians
are nonsingular; but this is true by hypothesis. Since the DA package was created with
this possibility in mind, Berz provided the recursive partial-inversion subroutine DAPIN for
interchanging the roles of a subset of the dependent and independent variables. Therefore
one can continue integrating through caustics and foci by carrying out a partial inversion

when the value of the Hessian becomes too large or too small.

5.6 Procedure for “Hybrid” Solutions

While Fy/F, conversion provides a mechanism for integrating through caustics or foci,
the partial-inversion process is the most computationally expensive operation in the DA
package. Since one “hits” a caustic or a focus roughly four times per oscillation in a

periodic system, this is an unpleasant prospect, to say the least.

The problem of caustics and foci arises because the chosen anstaz for S (i.e., the generating
function is either of type Fy or F) imposes artificial restrictions on the accessible domain of

P, x P, which the dynamics does not respect; in geometric terms, the chart induced by each

78

particular type of generating function does not cover the entire solution manifold. However,
it is important to note that these artificial constraints may be expressed entirely in terms of
the Hesstan, which in turn is determined by the linear part of the map. Generating functions
are simply the wrong representation for a linear map; the appropriate representation is a
matriz. By extracting out the linear part of the dynamics and explicitly representing it as a
matrix, one might hope to eliminate the problem of caustics and foci. Another viewpoint is
to observe that, by hypothesis, the nonlinear part of perturbative dynamics, by definition
being of at least one order higher than the linear part, is “small” compared to the linear
dynamics. Therefore the nonlinear part of the map is always “near” the identity in some

suitable sense, so I can always represent it by an F».

I begin with Hamilton’s equations in the tensor form (1.8):
£ = J* 8, H (& t)
Let me perform a time-dependent affine transformation of the phase-space variables:
& =€) + ME(H &, €% = M) (¢ - €5(1)) (5.21)

(since the local chart maps P — R%xR? ~ R?¢, this is always possible). I will go somewhat
against current mathematical practice by introducing a new symbol H to denote the “old”

Hamiltonian expressed in terms of the “new” variables:
H(&;t) := H(&(t)+M(2)-&; t). (5.22)
Explicitly expand H through second order:
H(E; 1) = ho(t) + ha(t) 8 + Shas(t) 6267 + K(&; 1) (5.23)

I shall show below that f,(t) determines the EOM of the RT, and is solved by &,(t); Aqa(t)
determines the linearization of the EOMs about th RT, ans is solved by the “matrix part”
of the evolution map, which is M(t); finally, the “remainder” term K (é ;) contains all the
nonlinearities of the dynamics. From this point onward I shall usually suppress explicit

reference to the time dependence of £,(t), M(t), ha(t), and hqg(t).

79

Using the “chain rule”, I re-express the factor 8, H(§;t) in Hamilton’s equations in terms
of the “tilde-ed” variables:

9¢= 9
0¢” oée
= M8 {ha + has € + 8o K (& 1)}, (5.24)

a. H(E; t)

H(E+M-§it) = M0, H(E; t)

where 8, is a shorthand notation for 8/9£<.
Differentiating (5.21a), substituting (5.24) into (1.8), and equating the two, I find:
€ + MAE* + MEE= = T M3 {ha + hapf® +8aK (&)} (5.25)

Identifying like terms, I get:

& = JM T Sh, (5.26)
MY = J*M™Chag (5.27)
and
MPEs = JW M-125, K (E; 1) (5.28)
Rewriting (5.28) as:
= M2 g M-8 Gk (& ¢) (5.29)

I now demand that (5.29) still have the canonical form; then M must satisfy:
Mg M8 = gl = M JoP MY = T, (5.30)

The above is just the tensor form of the symplectic condition, (1.10); furthermore, it follows

that:
M- = J¥ Mg I3, (5.31)
Putting it all together, I find:
£ = MPJ*Phg (5.32)

MY = MEJ*Phg, (5.33)

80

and, finally,

£ = J*PHsK(&; t) (5.34)

The above equations have the following interpretation:

e Equation (5.32) is just the EOM of the RT in “tilde-ed” variables:
hg = 8gH ;o = M§B, Hleog, , => € = MEJ*P MY, Hleg, = T O, H =g,

¢ Equation (5.33) is the EOM for the linear transfer matriz, describing deviations
from the RT due to the linearized EOMs: hg, := 5%71‘}'!5:0 = AlgM_;‘BgAH|5___5,, ,
= MY = MEJPMEO,\Hlemgy My = T 0L Hlemgy M3

¢ Equation (5.34) is the canonical EOM for the deviations from the linearized EOMs

produced by the “nonlinear effective Hamiltonian”, K.

Since K has no linear (or quadratic) part by construction, the HJ /DA equation arising from

K will be closed; our system of ODEs will be (5.32), (5.33), and:

DS = —DK(t) (5.35)
where:
DK (t) := H(&(t)+M(t)-d;t) — ha(t)dE" - éhae(t) dé*aé’, (5.36)
and
dé* = (dgs, dpa;), dpgi = E%DS. (5.37)
2

The boundary conditions for DS are again taken as the identity:
DS(t1) = DS¢ := dpy; dgs, (5.38)

Since DK consists of only third- and higher-order terms by construction, by (5.35) one sees
that P<a{DS(¢)} = dpy; dd is a constant of the motion; therefore the map DS(t) produces

is indeed a near-identity map, since it differs from DS only by higher order infinitesimals.

81

Once a solution of the hybrid HJ/DA equation has been obtained, the tranfer matrix is

implicitly given by:

_ . L .
DEY = 55‘1 + L dET, dﬁ? = (dg},dp1i), dg = a_ﬁTDS”’ (5.39)
and
- . . _ a
DEy = & + MEdES, dé; = (ddy, dp), dpai = 52 DS, (5.40)
2

with DSy, := DS(t2). Equations (5.32), (5.33), (5.35), and (5.36), are the central results of

this Dissertation; (5.39) and (5.40) provide the means whereby these results may be used.

Suppose now that instead of the identity, one wished to determine the result of composing
some previously obtained map with the map produced by the current system. Some thought
should convince one that this is equivalent to breaking up the domain of integration into
two pieces, T12 := {t; < t < t3} and Th3 := {t; < t < f3}, and using a Hamiltonian
corresponding to system “A” during the first part, and “B” during the second part; the
initial conditions for the second part are then M(t2) = Mj, DS(t;) = DS12, where M, and
DS, 5 are the results of the previous integration. Then the map for the composite system will
again be of the form (5.39) and (5.40), save that 3 replaces 2 everywhere! Therefore, there
is no need to start both maps from the identity, and then actually perform a composition;

this is a great advantage, since composition is a very computationally expensive operation.

5.7 Now that I’ve got it, what do I do with it ... 7

I have presented a method for extracting a mixed canonical generating-function represen-
tation of the evolution map from an arbitrary Hamiltonian system. I expect it to be fast,
efficient, and easy to operate. Since it is a canonical generating function, the map it rep-
resents is guaranteed to be symplectic, even in the presence of round-off and truncation

errors. There is only one question: what is a generating function good for?

82

The answer is: in and of itself, not much.

The generating function is an unlovely object. It has no nice symmetries or group properties.
It contains its information encoded in an implicit, and not especially transparent, way. Its
importance lies in the results which may be derived from it. by use of differentiation and

elimination.

If one’s purpose is symplectic tracking, the expressions (5.39) and (5.40) are already suffi-
cient; all that remains is to use them in a Newton-Raphson type algorithm to determine
the final conditions of a specified trajectory, given its initial conditions. Neither I, nor any-
one else to my knowledge, has yet written such an algorithm; however it should be quite

straightforward, given the existing routines in the DA-library.

If ones desires instead the explicit Taylor-series representation (i.e. a “transfer matrix”),
one need only call the DA partial inversion routine DAPIN to find (d§},dp;) in terms of
dé;, then back-substitute into (5.40) using the DA composition routine DACCT, to obtain
déz in terms of dél. However in doing so one must be willing to pay the price of losing
an identically symplectic representation of the map. This is not a severe handicap, if
one is not interested in performing long-term tracking studies; for these, the symplectic
tracking method is clearly superior. (Recall that the Taylor-series and generating-function
representations of a given symplectic map contain exactly the same amount of information;,
it is only that the Taylor-series contains it in a redundant fashion, because many of its
coefficients are related by the symplectic identities. It is only the process of evaluating the
(truncated) Taylor-series to obtain the final state that introduces non-symplecticity into

the result.)

To convert to the Lie-algebraic representation, the best path seems to be to descend to
the Taylor-series representation, as discussed above, then ascend back to the Lie-algebraic
representation using the Dragt-Finn-Forest algorithm. The properties of generating function

and Lie transforms seem to be sufficiently different that no simple direct path from the

83

former to the latter exists (the converse does exist, however; it is the Neri algorithm discussed

in §2.3.3).

Rather than tracking single particles, it is also possible to track the moments of a particle

distribution function directly [DNR88b].

Let M be the system evolution map from ¢; to t,. Let f(£;;t;) be the initial phase-space
distribution function. Let P“4(¢) be a complete set of functions on phase-space. Define the

moments with respect to P4 by
(PAY(E) = [PAE) (&t e, (5.41)
(PA)(t) = [PAE)H(Erita) s, (5.42)

By Liouville’s theorem, f(£€,;t2) = f(£€;;t1). Since &€, = ME,, with M a symplectic map,
the Jacobian 8¢,/8¢, is unimodular, and d?3¢; = d??¢;. Therefore,

(PA)(ta) == [PACMENF(&ritr) 1. (5.43)
Since the set P4 is complete by hypothesis, there must be some set of coefficients £4 (M)
such that
PA(ME) = LE(M)PE(E). (5.44)
it immediately follows that
(PA)(tz) = LE(M)(P)(t1) (5.45)

i.e., the moments transform like vectors under the infinite-dimensional group of symplectic

diffeomorphisms.

Things become especially simple if I choose the monomials £*) as my set of basis functions.

Let m := |(p)|, be the order of the monomial I wish to calculate the moment of. From (5.43),

(€)1 / ﬁ Me#)F(€:t) d2e. (5.46)

84

Expanding M£# in a Taylor series, M¢#* = M 5‘)£(’\), distributing the products over the the
implied sums on the (A), and collecting like terms, one finds that that the result is a linear

combination of moments:

€N = [[H M&g“w} f(&:tr) d*
k=1

[l =

(A) OdedAm)
(A1 Yreees (Am)=(A)

C((;)x):---,(r\k) H M(ﬁt\kk)s(z\) F(&; tl)dzdf
k=1

m
-y) C((:),),,..,(,\k) IT Mz, /E(’\)f(f;h)dzdf
(A} (A1 heees{Am) k=1
L (‘\l)v"'v(xﬂl)zb\) J
> D SE USRS N R (5.47)
(A) (A1)reeeeAan) k=1
L (Ag)en(Am)=(A) i
where the quantity C((;)‘)""’('\'“) is a combinatoric factor, the exact form of which I will

not need to know. The important thing to note is that (5.47) just a contraction, or “dot

product”, over a multi-index (A) labeling the initial moments.

Note that from (5.47), (£*))(t;) is determined by a sum over all initial moments of order
> |(u)|. This shows why one must face a “feedback” problem in attempting to truncate and
solve the moment evolution equations directly. But equation (5.46) provides the complete
solution to the moment evolution equations, as a functional of the map! Since the map’s
evolution equations are closed, one does not in principle face any additional closure problems

in truncating and evaluating (5.47) beyond those already faced in truncating the map.*

The sums and product in (5.47) certainly look terrifying; however in practice they are quite
easy to handle, since they simply means “collect all the like terms on the right-hand-side”.
Because DA multiplication is isomorphic to polynomial multiplication through order n, one

can simply proceed as follows:

“Other than the usual convergence questions involved in truncating an infinite summation, of couse. This
statement also asaumes that the map does not depend explicitly on the beam, i.e., only ezternalforces act on
the particles. If one includes space charge effects, for example, then the map and beam must be determined
self-consistenly, and the “feedback” problem will reappear.

85

e as before, use DAPIN and DACCT to obtain D, := £,(DE€,), which is equivalent to the

Taylor series representation of the map.

e evaluate the product:

Dey = T pe.
k=1

The DA product will keep track of the exponents and collect the like terms, automat-

ically.

e Form a DA-vector Df whose components are equal to the moments of the initial

distribution:

£ = [€99 1(g,00) %
¢ Evaluate the “dot product”:

(&) = 3 [De] A (5.48)

)
where [ng“)} o refers to the component (A) of the product DA-vector ng“) . T have
used the symbol “=", because (5.48) is the result of truncating the infinite summation

in (5.47) to the order of the DA.

One sees that transporting moments is almost as easy as transporting particles.

Finally, note that the HJ /DA method is not limited to the computation of evolution maps
alone; any function on phase-space may be used to generate a one-parameter Hamiltonian
flow via the Poisson bracket; in particlar, one may used any conserved quantity to generate a
symmetry transformation. One aspect of this will be apparent in the next chapter; in three
of the test-problems examined, the independent variable is z or 8, rather than ¢, and the

“Hamiltonian” becomes the (negative of) the corresponding canonically conjugate variable.

86

5.8 Bounds on Solution Norm

I now show that for any norm || - ||, the seminorms ||P<;{DS(t)}|| are bounded from above
on every interval T := {t : t; <t < t,} over which ||P;{K(d€;t)}|| is bounded from above,
for all d¢ in some bounded domain in ! D,, and grows no more rapidly than (¢;—t;). For
the remainder of this section, the following compressed notation shall hold: I shall simply
write dq and dp instead of d§, and djp,, do := DS — dp-dq, £*(de) := (d¢*, dp;+dde/dq'),
and K(do; t] := K(&(do); t).

In integral form, the HJI/DA equation is:

do(ts) = — [Kldo(t);] dt, (5.49)

t

where I have made use of the fact that P,{DS} is a constant of the motion, if K has no

terms lower than third order, and have chosen DS(t;) = dp-dq as my initial condition.

By construction, K(£;t), the “nonlinear part” of the Hamiltonian defined by (5.23), contains

only third order terms and higher:
K(d&;t) = K, 2dE*dE¥dE> + K ,,5,dEPdEVdENEP + ..., (5.50)

where the K, ,, elc., are totally symmetric phase-space tensors, and the expansion termi-
nates after at most the n*® term. Therefore, K maps 1D, — 3D,. However, I can make a

stronger statement: let d¢; and d¢, be two vectors in 1D, which agree up to order j; i.e.,

let Adg := (d€,— d€,) € D, so that P;{Ad¢} = 0. By examining the following identity,

K(d€,;t) = K(d&, + Adg;t)
= K, 2dedevde} + 3K ndeh dey Ade?
+ 3K,,adE¥ AdEY AdE + K, a AdEH AdEY AdeED (5.51)

+ K, d€8deyder ded + AK o, dE deydeT AdEP + . ..

87

one concludes that, since that the Ad{ always appear multiplied by at least two of the

dé, €lD;, K(déy;t) = K(d€,;t) + 3K,,2dé"dEY Ade> + {HOT s} . Therefore,
(K (déy;t) — K(d€y;t)] € 472Dy, ¥ dEy,dEy: (€, — d€;) € iD,. (5.52)

So K acts something like a “raising operator” on the difference between two DA-vectors: if
d€, and d€, differ by terms of order j and higher, their images under K will differ by terms
of order (j+2) and higher.

Suppose now that [do; — doy] € {;Dv Because of the presence of the d; operator in the

definition of d¢, [d€(o2) — d€(a1)] € 471D, by (5.52), then it also it follows that:

[K[dog; t)— K[doy; t]] € Y1 D,,. (5.53)

Now let Dr := {(do,t): tcT, doc L} where I is some bounded compact domain in 3D,
. Since K(d§; t) is a differential polynomial in d§, it follows that the norm of K(d§; t) is
bounded over Dr, and therefore the seminorms ||P;{ K(d§; t)}|| are also bounded. Let the

bounds on the norms be called

Bmas = sup||dol], (5.54)
T
and
LORES sup IP;{ K (d€(de);)} - (5.55)
(Note that “supp, || - ||” denotes the supremum of the value of the norm over the domain

Dr; it is the “maximum value of the norm”, not the “max-norm”). I shall show that X,az

is bounded by 3°7_5 K; (t2—t1), for all ¢ such that do(t) remains inside Dr-.

In the spirit of Picard iteration, define the following sequence of approximate solutions
to (5.49):
t
doj(t) = — / Pe{ Kldo;_y(¢); ¢)} dt', (5.56)
ty -

with the initial approximation doy(t) = 0 Vt€ T, so that:

Poildos}(t) = 0, Vk>j. (5.57)

88

will hold identically. From (5.50), one sees that doa € 3 D,,, Carrying out the next step in

the iteration and subtracting,

d0'4 — ddg = — [tz [7354{K[d03(t’); tl]} - psg{K[dO‘g(t’); tl]}] dt'

- _ /t2['P4{K[d¢73(t’); t')} + Pss{K[dﬂs(t’); t'|— K[doy(t'); t']}] dt'.

ty

By (5.53), the second projector in (5.58) vanishes, since P<3{1D,} = 0. Therefore,

t2
d0'4 - da';; = —/ P4{K[d03(tl); tl]} € iDv
t

1

A consequence of (5.59) is that doz = P.4{dos}, since Pys{dos} = 0.

Continuing on in this fashion, I find the general term:

t)
doj —doj_, = —/ 'P_.,'{K[da'j(t’); t’]}dt’ € 1D,,
31
:>P<j{d0j} = dO'J'__l,

Pi{do;} = doj - doj_s
for all j > 2. By (5.61) and (5.62), (5.60) becomes:
Pildos(O = - [Py{Kldas ()t} dt,
,
showing that (5.56) is equivalent to:

dosia(t) = doy(t) = [Pyva{Kldos(¢); ¢} dt.

(5.58)

(5.59)

(5.60)
(5.61)

(5.62)

(5.63)

(5.64)

Since no differential polynomial of order greater than n exists in ,D,, the Picard iteration

process is guaranteed to converge in exactly (n—2) steps to the value of do(t); it follows

that P<;{da}(t) = do;(t).

I now use the triangle inequality to bound each member of the sequence ||do;(t)||:

doa(t) = 0, VteT;
ldos(®)ll < “/t:ps{f([d@(t');t']}dt’”

(5.65)

89

A
>
W x
R
&

= K3 (t-t); (5.66)

ty

ldoa(t)] < ||dos(t) +/tt’P3{K[da2(t');tt]}dt;

< dos(0)] + || / t %{K[daz(t');t'ndt'ﬂ
ldos(ll < 30K (t-t). (5.68)

A slight variation on the preceding proof bounds each of the the seminorms P;{dc}(t) by

K;(t-ty).

Since there are no “feedback” terms, oscillatory and “stiff” behavior are impossible; and
since the magnitudes of the coefficients of do(t) are bounded by linear growth, given that
nearly all numerical integrators assume the solution may be well approximated by a poly-
nomial over each time step, I expect the method to be quite stable, even with relatively

large time steps.

5.9 Estimate of the K;-‘

Finally, I place crude bounds on the K ; themselves.

From repeated use of the triangle inequality, for any norm, and any DA-vector DK,

DK, < > IIP;{ DK}, (5.69)

=0

(for the special case of the “1-norm”, equality holds).

90

For the particular case of DK = K(£(deo(t));t), I may futher decompose each of the above

order projections into “p’s and ¢’s”:

1P{DK}| = | > Kou) da} dp{| (5.70)
K+ 1=k

< X Kou) ldgs’ dp||» (5.71)
I+ 1=k

<Y aLep K (@) lidad s l1dpd . (5.72)

(£).(5)
I+ 1) =k

qu Hp = 1, since it is a basis element of the algebra; whereas, by the product inequality,

I

ldp{ = | [T (@ DS (0 N (5.73)
k=1

IA

ALl fl ankDS(t) & (5.74)

k=1

(Since at most |(j)| of the ji will be non-zero, there will be at most |(j)| — 1 factors of

nLyp.) Since DS(t) = dgb dpy; + do(t),

lap) < L“’“*Hlldpma (5.75)
13- : i
< WL H[udplkluuaqkda(t)u] (5.76)

ldpyill = 1, since it is a basis element of the algebra. ||Jxdo(t)|| < n||do(t)]|,. since Gy
simply throws some of the coefficients away, shifts the rest of them downward, and multiplies
them by at most the order of the algebra, n. Therefore:
d
ldp?ll < w2t TT 11+ nlldo(@lIF* = (1 + n ldo(e)]), (5.77)

k=1

yielding the final result:

[Pe{K(do(t);]I < S0 ALY Ky ()] [1 + nllda(e)]]1N. (5.78)

{9):(5)
[+ i) =k

91

All that now remains is to choose the domain Dy, and determine the suprema of the
Pr{K[do(t);t]} over it. A particularly simple choice would be to simply set the bound on

do(t) to some positive constant X,,,., in which case:

Ki< Y LW sup Kyt [1+nZmee] . (5.79)
().(4) t1<t<tz
O+ =k

This will in turn set an upper bound on the size of (t—t;) I may reach, since I must have
Z?:s K; (t2—t1) < T pmaz if do is to remain inside Dr. I may always push up the bound
on (t2—t;) by increasing ¥,,4z, so long as K and its derivatives do not becomes singular
somewhere on the RT. However, this does not rule out the possibility that the sequence of
t3’s thus generated might not accumulate to some upper limit, regardless of how large one
makes X,,qz. It will therefore be necessary to determine ¢, — ¢, and the appropriate X, in
a self-consistent fashion in order to find the K}; however such problems often occur when

determining bounds on the solution to an ODE.

Chapter 6

Verification of the HJ /DA

Equation

I now describe the implementation of the “hybrid” HJ/DA method as an algorithm; the
problems it was tested on; and the results of those tests. I close with an “practical example”:

minimizing the transverse momentum-spread emerging from a Lithium lenses.

6.1 Implementation of the Hybrid HJ/DA Equation

I chose to implement and test only the “hybrid method”of section §5.6, because I expect
it to be most useful in practice. While I have not actually tested the F and F; methods
described in sections §5.4 and §5.5 on a fully nonlinear problem, it is a simple exercise to
show that the linear part of the HJ/DA equation is satisfied by the generating functions

given in (5.9) for the case of the time independent harmonic oscillator!. Since the nonlinear

!Any stable time-independent 2n-degree of freedom linear Hamiltonian system can be reduced to a
collection of independent harmonic oscillators. The solution of a general 2n-DOF time-dependent system is
in principle solvable using matrix techniques, but generally not in closed form; I have not bothered to pursue
it.

92

93

parts of both the “pure” and “hybrid” methods are essentially identical, I do not expect any
surprises; nevertheless, the verification of the F; and F; methods represent “loose ends” of

this investigation in need of tying off.

Because I am primarily interested in a “proof of principle” demonstration, I have endevored
to keep things simple; the code presented here is not really at the stage of being a practical
calculation tool, ready to be integrated into a “general purpose” dynamics package, such as
COSY or MARYLIE; it operates in a “stand-alone”, and must be “hardwired” for the problem
at hand. In particular, it will need at a minimum a more sophisticated numerical integra-
tion routine, incorporating automatic error estimation, and adaptive stepsize control. The
modification of Bulirsch and Stoer’s “Richardson extrapolation” method [BS66] discussed
by Deuflhard [Deu83], would seem ideal for this purpose; this method automatically selects
both the effective order? and stepsize of the integrator so as to minimize the computational

effort needed to acheive a desired accuracy,

Nevertheless, I have attempted to maintain a “general purpose” design philosophy; to write
the code as if it were to be used in a G.P. package. I have therefore attempted to follow
the principles of “structured programing” (insomuch as FORTRAN allows). I avoid the use
of COMMON blocks, passing all variables as arguments to the integrator, including the name
of the Hamiltonian routine. I have broken program functions up into “modules”, for ease
of understanding and maintainance. Application-dependent features appear in only two
modules: the “master” module, and the Hamiltonian itself; this is only one step from
the irreducible minimum, which is to imbed the routines into a general-purpose dynamics

package, obviating the driver, and relegating the Hamiltonian to a mere “input file”.

I describe the functions of the various major blocks of code below; the actual FORTRAN

listings of the various subroutines involved may be found in appendix A.

The program consists of the following parts:

*The order of the error in the time-step for the integrator must not be confused with the order of the
DA; the two are independent parameters.

94

e The Master Module: A specialized “master” module controls each problem. The

master is composed of two routines: Main, and HIJDAdrive.

> Main: The “main program” is essentially a dummy; its only function is to call
the routine which initializes the DA package?, followed by the “driver” routine

which actually controls the integration process.

> HIDAdrive: The “driver” subroutine HJDAdrive initializes the parameters and
variables used, calls the HJ /DA integrator routine, performs those calculations
required to check the results in the analytically solvable cases, and writes out
the final results. The driver routine, and the Hamiltonian routine below, are the

only two routines which are application-dependent.

¢ The Integration Module:

The name of the current integration module is HJDAbsint. It requires the following

arguements:

> t1: The initial value of the independent variable.

> x1,R1,Ds0: The initial values of the reference state-variables, linear transfer
matrix (M, in 5), and DA-valued generating function, respectively. Normally,
R1 and Ds1 are both set to the identity by HIDXident (see below). However by
using instead the hybrid representation of a map (for example, the result of a
previous integration) the final result will automatically be the composition of the
current map with the input map. this is an important feature, as composition is

the most expensive operation in the DA-library.
> t2: The final value of the independent variable.

> x2,1r2,Ds12: The resultant values of the reference state-variables, linear transfer

matrix, and DA-valued generating function after integration, respectively. When

3A quirk of the current implementation of DA is that the routine DAINI must be called before any other
DA routine, including the routines that allocate DA variables. Since the subroutine calls to the DA library
(including the allocating routine DAALL) are normally inserted into a program by the DAFOR preprocessor
(which currently cannot distinguish between a subroutine and the main program), no DA variables may
appear in the main program, unless they are allocated “by hand”.

95

R1 and DsO are initiallized to the identity, R2 is the linear part, and Ds12 the

generating function for the nonlinear part, of the map from t1 to t2.

> Dz,Dx: A pair of DA-valued arrays of “scratch-variables”, declared to be of
dimension 2 X nd, order no, and number of variables nv (i.e., Dx(i) € noDny).
Here nd is the number of pairs of canonically conjugate variables; I allow for the
possiblity that nv > 2 X nd so that one may include derivatives with respect to

non-dynamical system parameters in the calculation.
> no,nv,nd: (See previous item.)

> nstep,istep: the number of sub-steps the integration interval is to be broken
up into, and the number of “extrapolation stages” the integrator should use,

respectively. (The effective order of the integrator is 2x istep.)

v

hmltn: The name of the Hamiltonian, passed in as an EXTERNAL routine.

Initjally, I chose a fixed stepsize fourth-order Runge-Kutta (“RK4”) method for my
integration algorithm. My motivations were simplicity, a desire for a self-starting
method, and a desire for ease in checking the dependence of errors on stepsize. I based
my integration module on the routines RKDUMB and RK4 of Press, et. al.’s “Numerical
Recipes” [PFTV86, pp. 553-554], modifying it to integrate equations (5.32), (5.33),
and (5.34), simultaneously. Because of the low order of RK4, excessive computation
effort was required, and high-accuracy calculations could not be made. This was inti-
mately connected with the “feedforward” phenomenon; because high-order coeflicients
depend on lower ones, and because of the rapid increase in the number of coefficients
as the order is increased, round-off error soon began to dominate the result at large
order. Therefore, I replaced the RK4 integration module With a fixed-stepsize ver-
sion of the “Numerical Recipes” Bulirsch-Stoer integrator [PFTV86, pp. 563-568].
Since the Bulirsch-Stoer method is effectively a variable-order method (effective order
equal to twice the number of extrapolation stages), this provided the added bonus of

allowing the error as a function of integrator order to be studied. I have found that

96

for every problem investigated, four to six extrapolation stages (8'4- to 12¢t-order
integrator) was quite sufficient.
e The Derivative Module:
This is the heart of the HJ/DA program. It consists of five subroutines: HJDX1, HIDX2,
HamSplit, and HIDAderiv.
> HIDXident: Sets £, = 0, M = I, and DS to the identity.

> HIDX1: Computes DE,, at time t1, from £,, < x1, M; & R1, and DS ¢ Dsi12,
using (5.21).

> HIDX2: Computes DE,, at time t2, from €,, < x2, My & R2, and DS < Ds12,
using (5.21).

> HamSplit: Separates DH into hy, heg, and DK, using (5.23).

> HIDAderiv: Evaluates the right hand side of (5.32), (5.33), and (5.34).
All five of these routines are perfectly general, and could be used in a production code
without modification.

e The Matrix Module:

For clarity, the vector and matrix multiplications involved in evaluating the EOMs for
£ and M, ((5.32), (5.33), and (5.34)), have been split off into the following subroutines;
also included is a special-purpose inverter for symplectic matrices:

> MMmul: multiplication of two matrices,

> MVmul: multiplication of a vector by a matrix,

> RJmul: multiplication of a matrix by J from the right, and

> SympInv: Inversion of a symplectic matrix, using the identity M~! = MTy-1,

These routines have been written for simplicity and generality, rather than efficiency;

while modest improvements in speed could probably be made by “hardwiring” these

97

routines into HJDAderiv, the fraction of computational overhead thus eliminated

would probably not be worth the effort.

¢ The Hamiltonian Module:

Finally, there is the module computing the Hamiltonian itself. It is the only other user-
supplied module in the program. Its name is passed to the program as an argument
using FORTRAN’s “EXTERNAL” mechanism, so there are no restrictions on the routine’s
name. Only a minimal knowledge of DA is required by the user; essentially, one just
writes a FORTRAN routine to compute the Hamiltonian, and keep in mind a few simple

rules:

1. The argument list is of the form: “(t,Dx, no,nv,nd Dh)”. Here t is the
independent variable, Dx is one-dimensional array of length 2xnd containing the
DA-valued phase-space variables, no, nv, and nd are defined as before, and Dh is

the value of the DA-valued Hamiltonian returned.

2. Dx and Dh must be declared as DA by the statement:
“4DAEXT(no,nv) Dx(nd«2), Dh”;

the * must occupy the first column. (All statements flagged for preprocessing by
DAFOR start with a “«DA” in the first column; therefore the FORTRAN compiler

considers them to be “comments”.)

3. Any local DA-valued variables must be declared using a “xDAINT (no,nv)” state-

ment analogous to the “«DAEXT(no,nv)” statement above.

4. Any statements containing a DA-valued variable must be flagged by placing a

“xDA” in the first column.

And that is all one really needs to know; for examples, please see the routines drift,

UBfield, and polrsho in appendix 77.

e The Tracking Module: This module contains two functions used for tracking pur-

poses: DFeval and DFdot.

98

> DFeval: Double precision function DFeval(x0,Df, no,nv, Xn,Xnn); evalu-
ates to the value of the DA variable Df interpreted as a Taylor series, at argument
x0(nv). returns auxilliary 1-D arrays Xn containing the partial sum through each

order up to no, and Xnn containing the contribution each order makes to DFeval.

> DFdot: Double precision function DFdot(Df,Dg, DotProd,DotBy0rd); evalu-
ates to the value of the “dot product” of Df and Dg; returns auxilliary 1-D arrays
DotProd containing the partial sum through each order up to no, and DotByOrd

containing the contribution each order makes to DFdot.
¢ Miscellaneous Subroutines:

> norms: Calculates the sum of the 1-norms and the max of the max-norms for a
1-D array of DA-valued quantities. Also returns the contribution made by each

order to the above measures.

> mypri: Special routine printing a sorted comparison of two DA-valued quantities,
including the absolute and fractional difference of each component when both are

non-zero.

> The RayGen Module: Special truncated Gaussian random beam generator. The
particle sets it generates are guaranteed to have zero mean, specified standard
deviations along each axis, and to be “upright beam ellipses”, i.e., zero correla-
tion coefficients in the z—p, and y—p, phase-planes. See the listing in app. ?? for
details. Includes a subroutine for computing the first and second moments of a

particle set.

6.2 Testing the HJ/DA Equation

Finding a good set of test problems for the HJ/DA equation was somewhat difficult. On

the one hand, I would like test problems which can be solved in closed formb, so I may

99

be confident of my results. On the other hand, I demand test problems which are fully
nonlinear, in order to provide a true test of the method; however nonlinear systems solvable
in closed form are hard to find. Fortunately, I can meet both preceding criteria if the test
problem can be solved using geometry alone. Three such systems are the uniform relativistic
drift, two-dimensional simple harmonic oscillator (2D-SHO) in polar coordinates, and a

particle in a uniform magnetic field.

6.2.1 Case 1: The Uniform Relativistic Drift

It is customary in both kinds of “optics” to take the arc-length along the RT, s, as the
evolution parameter, and time as a coordinate. This is because, in perturbative optics, it
is usually easier to determine when a particle arrives at a given optical element, than it
is to determine which element a particle has arrived at at a given time. It is simple to
show that with this parameterization, ¢t and p; := — E are conjugate variables, while the

“Hamiltonian” becomes —p, [Dra82]. For example, if I choose s = z,

1
1 2 2 3
H=-|5(p+ 79)* - (P> — %Am) —(py — %Ay) -m?c?| — %A, (6.1)

which is exactly what I would get by solving algebraically for —p,. The other p’s do not

change under this transformation; however Hamilton’s equations now take the form of:

dz _9H dp, _ 0H

dz ~ Ops’ dz 8z

and similarly for y and ¢.

The other property I shall need is the change of form of Hamilton’s equations under rescaling.
For numerical purposes, it is best to scale the physical variables by putting them into
“dimensionless” form, choosing the scales so that all quantities are of order unity. Suppose
that ¢ is a cyclic variable (this will be the only case I shall need); then p; can be treated as

a fixed parameter. Under the scaling transformation:

z=1LX, y =LY, P= = pL Px, py =p1 Py, z=1L2Z,

100

the canonical equations become:

dX _ 8H dPy _ _9H
dZ — O8Px’ dZ — x> (62)
dY _ 8H dPy _ _9H
dZ ~— O8Py? dZ a8y
with:
_ L
H(X,Y,Px,Py;Z):= l—H(lX,lY,p_LPX,ple;LZ) (6.3)
DL

Rescaling is not a symplectic transformation, because the determinant is not unity; never-
theless, the structure of Hamilton’s equations is preserved, so it is conventional to admit

rescalings to the family of “generalized” canonical transformations [Gol80, chap. 9,p. 381].

For a free relativistic drift (i.e., a field-free region of space), s is again simply z. For
simplicity, I limit myself to (2+1) dimensions, (¢,z,z). From the “mass-shell constraint”,

E? — p2¢c? — p2c? = myc?, the Hamiltonian is:

2
H:=-p, = —\/i—tz — p2? — m2c2.

The sign of H has been chosen to make ¢ increase with increasing z. Choosing units such

that m = ¢ =1,

H:= —\/p? - ps?2 - 1. (6.4)

Using a prime to denote d/dz, Hamilton’s equations for a drift are:

8H 0H p (—E/c) 1
! /!
:—————-:O’ = —_ = = = = —, 6.5
pe at ope H (-p.) PBa (6:5)
O0H oH Pz D ,Bz
p 52 =g = p = B (6.6)
the solution of which can be found in closed form:
D z
ty =t + 2=, Dt2 = P11, Ty =T — Zp—, P2 = Pei1 (6.7)

H H

Since the Hamiltonian depends only on the p;, the HJ/DA equation can also be solved in

closed form. For simplicity I treat the energy as a “fixed parameter”, since p, = —7¢ is a

101

constant of motion.? Initial conditions are: zg9; = 0, pzo1 = O (on-axis beam), M, = I,

DSo = dp,,dz,. Using

0 0 0
ho =) hag = 1) (68)
0 0
YoBo

the solution may easily be verified to be:

1 z
MY(z) = YoPo (6.9)
0 1
11 dp?
DK = —[y2B% — dp2]? - - —= 6.10
[ve B4 j74 27000 ()
DS12(Z) = dﬁzl df!z - ZK(f)zl) (611)

(Note: equation (6.11) is actual valid for any “purely nonlinear” Hamiltonian K which

depends only on the p’s.)

I ran this test problem in 12D for z = 1 (a unit length drift), in twenty steps (Az = .02),
with six extrapolation stages (effective order 12), and the “zero-tolerance cutoff” parameter
of the DA-library (minimum size below which a coefficient is set to zero) set to 1.0x 10739,
Since the results of the run are several rather large tables of numbers, I have relegated them

to appendix A.

Table A-3 shows the theoretical matrix M;pe,; Table A-2 shows the corresponding numerical
result M,.,,,. Table A-1 shows the difference between Mgy, and M,,,,.; there are only two
non-zero elements, having absolute errors of 4x107!7 and 8x10~'7 or a few parts in

10~ '® fractional error.

I have not reported a comparison between the theoretical and numerical solutions to the
RT equations, because this difference is identically zero, by virtue of the ICs chosen (initial

momentum parallel to z-axis).

*So is pz, for that matter, but I need at least one dynamical variable, or the problem becomes trivial!

102

I also do not report a check made of the symplectic identity for the matrix part. The
measure of symplecticity error used was: MyuumM ™! um — I, ML .= IMT_ . J-1; this

num

difference is also identically zero, by virtue of the structure of the EOMs for the matrix.

Table A-4 shows the theoretical and numerical HJ functions, DSeo and DSnum. Note
that the difference is again small, about 1071'® — 10718 . The fractional difference is also
shown; note that even this is very small, about 1077 — 107!® | Had the zero-tolerance
parameter been set to something more reasonable, like 1.0x107!% these differences would

have “vanished”.

Note that the average magnitude of the coefficients in DS are roughly constant, or at
best weakly decreasing with order. This should not be cause for alarm, however, since
as coefficients of a “perturbation expansion”, one expects them to behave at best like an
asymptotic expansion. Since, even when veiwed at a Taylor-series, the coefficients appear
multiplied by “small” quantities, DS actually appears to be converging, and converging

approximately like a geometric series.

A additional test is provided by rewriting (6.7) as:

t1 =ty — ZE, (6.12)
and
Ty =23+ 22 (6.13)
HI

Tables A-5 and A-6, app. A, compare the right- and left-hand sides of A-5 and A-6. Note

that all terms are again small.

6.2.2 Case 2: The 2-D Harmonic Oscillator in Polar Coordinates

In Cartesian coordinates, the 2D-SHO Hamiltonian is a quadratic form, and its equations

of motion are linear. However by making a “bad” choice of coordinates (polar coordinates),

103

the Hamiltonian for this system becomes nonlinear:

1 1p2 1
H = 2pl+ 528 + swr (6.14)

(I have set m = 1 in H, since it is a “scale” parameter, not a dynamical variable.)

In this case, I have not been able to find a closed-form solution to the hybrid HJ/DA
equation, because of the complicated time-dependence induced is K by the RT.> However,
I don’t really need an explicit solution, since the HJ /DA equation yields implicit relations,
anyway. If I can find any set of four equations between (71,81, pr1,ps1) and (r2,82,pr2,P62)
which are identically satisfied by every solution to the EOMs of our harmonic oscillator, they
must also be satisfied identically by the canonical transformation generated by a solution
to the HJ equation, since the two are equivalent. The DA equivalent of this statement is
that an n'*-order solution DS3 to the HJ/DA equation must identically satisfy these same

four relations to (n — 1)**-order (since I must differentiate once to obtain the p, and q;).

Now, I know that the general solution to a 2D-SHO in Cartestan coordinates is given by:

z; = =zjcos(wt)+ %p,,l sin(wt) (6.15)
y2 = yicos(wt)+ %p,n sin(wt) (6.16)
Pz2 = —wzjsin(wt) + pgy cos(wt) (6.17)
Py2 = —wyysin(wt) + py; cos(wt), (6.18)

and these, together with the polar-rectangular conversion formulas:

Pe = prcos(6) — ~pssin(9) (6.19)

Py = pesin(d) + —pocos(d) (6.20)
and

pr = Pz cos(6) + py sin(6) (6.21)

pe = r[-pgsin(f) + pysin(9)] (6.22)

5For the special RT leading to “uniform circular motion”, r, p,, and pe are all constant, and a solution
can in principle be found by separation of variables; however it in addition to being rather complicated, it
satisfies the wrong BC'’s.

104

provide four relations of exactly the type I need. So I can still test the HJ /DA method on

this problem, even though I do not have an ezplicit closed-form solution for DS.

I ran this test problem for wt = 37 /4 (passing through the F, method’s caustic at wt = 7 /2,
just to show it is not a problem for the hybrid method), with a stepsize of wAt = 2x/120
(30 steps), number of extrapolation stages istep = 6, and zero-tolerance parameter set
to 1.0x1073% . The initial conditions on the RT were: ro; = ro = 1.0, pro1 = (0.1)row,
8o = 0.0, pgo = (1.1)r3w. Tables B-3-B-6, appendix B, show the differences and fractional
differences between the right- and left-hand-sides of (6.15-6.18); as in the previous case the
differences are all small, about 107! — 107'* . The fractional differences are also small,
for the most part; occasional larger values occur, but only between coeflicients which are
themselves very small, and probably would have vanished if the zero-tolerance parameter

been set to something more reasonable.

6.2.3 Case 3: Uniform Magnetic Field

“normal-faced uniform horizontal

A commonly used charged-particle optics element is the
bend”; this is simply a magnet with a uniform vertical field, designed so a particle moving
on the reference trajectory with the design energy enters and exits perpendicular to the
faces of the magnet. Neglecting edge-effects, and restricting motion to the z-y plane, one
knows that inside the magnet, every charged particle must follow an arc of a circle.® If I

know the energy and entry angle of a particle, it is a matter of simple geometry to work

out the relations between the phase-space variables at entry and exit:

sin(a;) = %, sin(a) = Pr2. (6.23)

pc=gBR = \/jElz —m2ct = \/Ez2 — m2ct (6.24)

®If I include the z-component as well, the particle move along a helix, instead; however since the Hamil-
tonian is independent of z, p. is conserved, and has no effect other than to alter the gyration radius.

105

z. = Rsin(ay) (6.25)
2.2 = Rsin(ag)cos(8) + [rz — R cos(az)]sin(8) (6.26)
y1 = 11— Rcos(ar) (6.27)
y.» = - Rsin(az)sin(6) + [r2 — R cos(az)] cos(6) (6.28)

where the meanings of the various quantities above are illustrated in figure F-1, appendix F.

In terms of time, the Lagrangian of a charged particle in a uniform magnetic field By is:

L = —meye? —72 — 262 — q—2B—01-29 (6.29)

(o

Following custom, I shall use # as my independent variable; the Lagrangian becomes:

Ldt =Adf = {—mc\/czt’2 . ‘15?7,2} dé (6.30)

Introducing dimensionless coordinates p := r/ Rp, 7 := ct/Ro, A becomes:

BoRo
A = —meR 12 _ 2 p2y 37070 2} 6.31
mCo{T Pr=pt P (6.31)

Choose Ro = poc/qBo, the radius of gyration of a particle having the reference momentum

Po = mcyofo. Then A becomes:

1 "
A= -mcRg {\/T'z —p?r - pr 4 §7oﬁop2} =: mcRoA (6.32)

Choosing units such that m = ¢ = Ro = 1, the Hamiltonian associated with A; is:

< 1
H:=p7m +ppp'—A=p3=7000p — /P2 - -1 (6.33)
2

Despite its odd-looking form, this is actually just equal to —pg (in non-dimensional form,

of course!). This is the Hamiltonian I shall use in the HJ /DA equation

I ran this test problem for § = 37 /4, with thirty steps; I chose the IC’s for the reference
trajectory as: po1 = 1.0, pyo1 = 0.0, so that it is a circle of radius Ry, centered on the

origin. Since p, = —7v is again a constant of motion, I again treat it as a parameter, and

106

p and p, as my only variables. The results are presented in tables UB-mat through UB-
tst2, appendix C; again, note that the differences between (6.25) and (6.26), (Table C-3,
appendix ??), and also (6.27) and (6.28) (Table C-4, appendix ?7), are quite small.

As a final amusing example, I integrate with the same initial conditions around a full 27
radians; The results are presented in tables C-5 through C-8, Appendix C. Note that the RT
returns very nearly to its initial conditions, and the matrix and generating-function parts to
the identity; in particular, the coefficients of the generating function differ from the identity
by only about 107'® - 107* . Occasional large fractional differences do occur, however this
should not be too surprising: since ideally all the generating function coefficients should
have vanished, one expects that the small (but non-zero) values observed are entirely due to

truncation and round-off error in the numerical integrator, and therefore quite uncertain.

6.2.4 Convergence Study

The errors shown in appendices A-C are small, but they are not zero. How are these errors
affected by step size and extrapolation order? To determine the answer, I ran UBfield with
the same IC’s as before, but with nstep varying from 8 to 128, and istep varying from 2 to
6. I shall use the matrix max-norm on the symplecticity error matrix, 7 and the sum of the
1-norms (3.56) or max-norms (3.57) of the error-vectors (differences of (6.25) and (6.26),
and (6.27) and (6.28)) as a measure of the “overall error”. Since I am also interested in
the error depends on order, I shall also look at the “l-seminorms” and “max-seminorms”
defined by (3.62) Because of the closure property of DA, I am guaranteed that the results
at k** order are not influenced by (k + 1)** and higher orders, so it is sufficient to do this
once and for all®; I do not need to run the problem for varying values of k. In order to be
able to compare more readily errors at different orders, I shall look at the “average error

per coefficient” by rescaling the norm and seminorms by , N, and ,N,_1 = s Ny — no1 Ny,

"For 2x 2 matrices, the matrix 1-norm and max-norm only differ by a factor of 2, because one can show
that MIM L J = det{M}bf1.
®Note that I could not have made this claim, if the HI/DA method were not free of “feedback” problems.

107

respectively. I also look at the “max-norm” (3.57. Tables D-1, through D-14, app. D,
show how these error-measures vary with nstep and istep. One sees that, like the DA-
coefficients themselves, they vary only slowly with order; again, this should not be cause
for alarm, unless the fractional error increases with order. Since DS is equivalent to a
“perturbation expansion”, one expects that it is at best an asymptotic expansion anyway,

and therefore one should expect its coefficients to begin to diverge for sufficiently high order.

Figures F-4-F-17, app. F, show log-log plots of the sum of the 1-norms and max-norms
vs nstep; these curves are qualitatively very similar, since inspection of tabels A-5, A-6,
B-3-B-6, C-3, C-4, and C-7, C-8 show that there are usually one or two coeffieciemts at
each order which dominate the error. The slope of the early portions of these curves are
consistent with the @(h?1®t®P) behavior one expects from the integrator. The tendency of
these curves to “bottom out” at about nstep ~ 24 and begin to slowly rise again is also
quite typical behavior for a numerical integrator (How74, HNW87]: for large step size (small
nstep), the “local truncation error” (discretization error; “order” of method) dominates,
and the error goes like O((h/nstep)?***®P); while for small step size (small nstep), the

“global round-off error” dominates, so the error goes like O((h/nstep)™!).

For comparison, I also hold the stepsize fixed and vary the number of extrapolation stages
istep. Figures F-18-F-31 show log-linear plots of the errors vs istep; since the error due
to finite step-size is proportional to h?13*°P these should be straight lines (the coefficient of
the error term actually also varies somewhat with istep, as well as the effective order, so
one does not expect them to be ezactly straight). Ones sees that the lines on figs. F-18-F-31
are indeed remarkably straight; however they also tend to “bottom out” for sufficiently high

nstep and istep.

The “bottoming out” tendency shows that there is little point in increasing nstep and istep
beyond a certain point. This points out the need for effective methods of order and step size
control in a “practical” implementation of the HJ/DA method. Fortunately, the Bulirsh-

Stoer method also provides an internal estimate of the solution error, and algorithms exist

108

which automatically optimizing the order and step size to achieve a perscribed estimated
error with minimum computational effort [BS66], [HNW87]. As stated earlier, I chose not
to implement order and step size control in HIDAbsint, because it would have made the
integrator much more complex, and greatly complicate the convgerence behavior analysis;

however I consider it a “must” for a production version of this code.

6.3 Example Application: Optimization of a Lithium Lens

To show an application of the HJ/DA method to a “practical” calculation, I give the
following example: optimization of a combined target/lithium-lens system for minimum
final transverse momentum spread. Before I discuss what a lithium lens is, and why a
minimum final transverse momentum spread is desirable, I must first give a brief discussion

of the “emittance” and “beam ellipse” concepts.

6.3.1 The “Emittance” and “Beam Ellipse” Concepts

The “emittance”, ¢, is a common figure of merit for beam quality. Emittance is a measure
of the “phase-space volume” a distribution of particles occupies. One often desires the
emittance of a beam to be as small as possible; for example, the event rate in a colliding-

beam experiment naively scales like 1/¢z¢,.

Now by Liouville’s theorem, the phase-volume of a distribution is conserved by Hamilto-
nian flows; ideally, emittance should share this property. Finding a good measure of the
phase-volume is difficult, however, since in practice some form of “course graining” must
be performed. The problem is exacerbated by the fact that, for many-particle systems,
Liouville’s theorem is valid only for the 2d N-dimensional N-particle distribution function,

whereas the experimenter usually only has access to averages over the 1-particle distribu-

109

tion function at best.® “Emittance” is therefore a somewhat ambiguously defined quantity.
There are many definitions of “emittance” in common use; unfortunately, the principle

thing that they all have in common is that they are unsatisfactory in some way [LLG73].

One popular version is the “rms-emittance”, defined in terms of second moments of the

distribution function. For linear systems, with no cross-plane coupling, the quantity °

e = (4{(2)(2) ~ (ap2)"}" (6.34)

is a constant of the motion, as is the analogously defined ¢,. (The factor of four in square

brackets is frequently dropped.)

For nonlinear systems, (6.34) is no longer conserved, and is usually observed to increase.
This is usually attributed to “phase-space filamentation and mixing”, discussed further

below.

To get a physical interpretation of (6.34), assume the beam has a Gaussian distribution in
the transverse coordinates and momenta, !! and again, that there is no coupling between
planes; then ¢, enjoys simple physical interpretation: it is equal to the area of the elliptical
“one-sigma” contour in the z—p, plane, divided by w. This picture is so common and useful
that “phase space ellipses” are used almost exclusively to describe the shape of a beam.
The mathematical description of beams is either in terms of the “Twiss parameters” a, g,

and v, 2 which are related to the one-sigma contour by:

vz’ +2azp, + Pfpz ==, Py-o’=1.

|

®Even more likely, one only has access to averages of projections of the distribution onto the spatial
coordinates. Relatively non-invasive methods of measuring the spatial distribution of the beam exist, however
momentum measurements are much harder. Usually one must insert a slit or pinhole into the beam, then
measure the spatial distribution of the emerging beam after a short drift.

1Tt is actually far more common to use the “slopes” z’ and y’, ¢’ := dz /dz to describe particle trajectories,
rather than p;, py. However 2’ ~ p./p., p. ~ {const} to second order in transverse coordinates and
momenta, so my description differs from the conventional one only by a scale factor.

""This is actually fairly close to what is usually seen, so long as space charge effect are negligable.

20ne of the more confusing aspects of accelerator physics is the extrordinary number of unrelated things
the letters a, 3, and v are used for.

110

Alternatively, one uses the “sigma matrix” which is related to the Gaussian beam distribu-
tion by:
F(€:t) x exp[-3€ o' €],

in which case the one-sigma contour is given by £ -o~'- £ = 1.

While the “one-sigma” emittance provides an intuitive picture for Gaussian beams, closely
related to the only physical scales one has in this case, it is somewhat unsatisfactory in
that one can show that even in only two dimensions, only 14.7% of a Gaussian beam is
contained within the one-sigma contour; it therefore represents only the innermost core of
the beam, and the fraction get rapidly smaller as the dimensionality increases. It is also not
clear how one should apply the “one sigma” criterion to non-Gaussian beams; for example,
a space-charge dominated beam tends to evolve until its spatial distribution function is
approximately uniform (a “flat” beam); what does one mean by the “one sigma contour”
then? One sometimes defines the emittance to be the area of the smallest ellipse containing

some large specified fraction of the beam — 90% and 95% are popular choices.

The definition (6.34) reduces to the one-sigma ellipse for Gaussian beams, and has the
advantage of being well-defined even for “point” distributions, such as one obtains from a
Monte-Carlo simulation. Unfortunately, it is not “robust”— the second moment tends to
weight “outliers” too highly, and so may overestimate the size of the beam, rather than
underestimate it. Furthermore, there are fairly well-behaved distributions for which the
second moment diverges — a Lorentzian, for example. Again, one may compromise by
choosing the ellipse having the same aspect ratio and orientation as the ellipse determined
via second moments (assuming they exist; for a finite size particle set this is always the

case), but rescaled so that 90% or 95% of the beam is included.

Lawson, Lapostolle, and Gluckstern have shown that the entropy of the distribution is
proportional to the log of the rms emittance [LLG73]. One might therfore suggest that
“emittance ” be defined in terms of beam entropy for non-Gaussian beams. Unfortunately,

the entropy of the beam is impossible to measure, in practice, so this definition is of only

111

conceptual utility, as they themselves recognize. However it might be a useful definition of

emittance for numerical simulations using non-Gaussian beams.

Despite its potential pitfalls, for the remainder of this section one may assume that I
mean (6.34) when I say “emittance”, as it is simple to calculate in a Monte-Carlo sim-

ulation, and I shall be using Gaussian beams in my example.

A “dual” concept to emittance is the acceptance. This is the area of the largest phase-area
in each phase-plane that a beam transport line can accept without losses. It, too, is usually
parameterized by assuming it is an ellipse. A characteristic of the most common beam
transport lines is that if the beam ellipse and acceptance ellipse are geometrically similar
on injection, they will remain similar as the beam is transported down the beamline. A
beam satisfying this condition is said to be “matched”. If a beam is not matched, then it
“rotates” relative to the acceptance ellipse. When nonlinear effects are present, the resulting
dependence of frequency on amplitude cause the beam to deform as it rotates, making it
“wrap up” until the initially elliptical beam looks more like a spiral nebula. The beam
therefore tends to “fill up” the machine ellipse which initially contained it, causing most
measures of its emittance to grow. This process is called “filamentation and mixing”, and

the result is refered to as “emittance dilution”.

6.3.2 The Lithium Lens

A “lithium lens” is an axisymmetric focusing device used for highly relativistic particles. It
is essentially a solid cylinder of lithium (chosen for its low particle scattering and absorp-
tion cross-sections) through which one drives a high-density axial current (~ MA/cm?).

Assuming a uniform current density J,, ! by Ampere’s law the resulting circumferential

'3*Uniform current density is physically reasonable for time-independent currents. However a lithium lens
is almost always pulsed, in order to cope with the heating caused by the immense current-density used.
Therefore the current-density will be non-uniform, because the magnetic field must diffuse into (out of) the
body of the metal cylinder during the leading (trailing) edge of the pulse. The pulse is usually timed so that
the particles to be focused pass through the lens at the moment of maximum current uniformity.

112

magnetic induction is given by:

2
BgzﬂJ

One sees that By rises linearly with distance from the axis. The field is essentially confined
to within the body of the cylinder, because one usually arranges for the return current to
flow back along a coaxial shell surrounding the lens; this helps to minimize the inductance

of the system.

The vector potential producing a linearly rising By is:

U Io T 2
A, = ——J,rt = — ()
J.r e

where Ip is the total current through the lens, and Ro its radius. Since —A, plays the
role of the “potential” when the evolution parameter is z, one therefore expects harmonic

oscillator-like behavior for sufficiently small transverse momenta.

The Lagrangian is given by:

22
' Ldt = {—mC\/c2~:i:2-y2_z‘2_gé(+y) }dt
cc

- 2412 — de? —
{ THC\/Cd dz dy dz? 2 () }

= { - mc\/czt’2 —z?—y?t_1 - qcI: (z I;y)} dz (6.35)

(6.36)
The corresponding Hamiltonian is:
1 qlo (22 +y?
H = - —pz—pg—pz—m2c2+——((6.37)
et y c? R?
_ qlo (2% +y°
= - Pﬁ‘Pi“?fﬂr?(—}ig— (6.38)
1p2+p2 gl (22 + 42
~ _ 39
Po + 9 Po C2 R% H (6 3)

where I have eliminated p; in favor of the total momentum,

1
— 2
Po = czpt ”"262)

113

since p, = —F is a constant of the motion. For small transverse momenta, py ~ p,.

For |p.| and |p,| small compared to |pg| one sees that the particle indeed executes simple
harmonic motion in £ and y as a function of z, with wave-number

qlo

kr=2———
poc’R3’

The phase-plane orbits are therefore concentric ellipses in this approximation; particles

progress “clockwise” about the ellipse as z increases.

Now consider a beam striking a production target. The distribution of particles produced
will have the same transverse dimensions as the primary beam, but the transverse momen-
tum spread will increase. Therefore, at a production target, one desires that the momentum
spread therefore as large as possible, (and therefore, by (6.34), that the beam be as small as
possible), so the increase in emittance will be minimized. This occurs at what is evocatively
known as a “waist”. At a waist, the beam also satisfies the condition (zp;) = 0, in which
case the ellipse is said to be “upright”. When the ellipse is upright, its major and minor axes
are aligned with the coordinate axes. One also has (zp,) = 0 when the momentum spread
is minimized (and the beam size therfore maximized) this might be called a “momentum

waist”, or an “antiwaist”.

On the other hand, the maximum transverse momentum a beam transport line can accept
is limited — generally, it is smaller than the transverse momentum spread emerging from
the target. It is therefore necessary to transform, or “match”, the emittance of the beam

to the acceptance of the beamline. This is the function of the lithium lens.

First of all, one ideally desires the lens to be as close to the production target as possible
(“minimum drift space”), so the spray of particles produced in the target will not have
time to spread out. From (6.7), one sees that the effect of a drift is to “shear” the ellipse;
for each particle, p, is constant in a drift, while = translates at a rate proportional to p,.

Therefore, while a somewhat weaker and/or shorter lens can be used, it must have a larger

114

diameter or particles will be lost. Furthermore, since the orbits within the lens are ellipses,
and the area of a phase-plane ellipse is related to the emittance, a “stand off” distance puts
the most extreme particles on orbits of larger “effective emittance” (emittance of a matched
ellipse). Nonlinear effects will lead to filamentation and mixing, causing the beam to more

nearly fill its effective beam ellipse; this is to be avoided.

Finally, for a target of non-zero length, the differences in distance to the lens for particles
produced at various points along the target results in their respective ellipses being sheared
by varying amounts. The result is a characteristic “bow tie” or “butterfly” pattern for the
phase-plane distribution. The longer the particles drift, the larger the phase ellipse required

to enclose this odd shape.

The ultimate limit, of course, would be to actually have the lens surround the target like a

blanket. Alternatively, one can run current through the target itself [Aut83].

If the current is adjusted so the lens is approximately a half-wavelength long, the particles
produced in the target will then more or less uniformly fill a phase-space ellipse in both the
z-pr and y-p, planes. The ellipse so produced still has the same large maximum transverse
momentum, however the maximum displacement is now on the order of a centimeter, rather
than a millimeter or less. The aspect ratio of the ellipse is therefore much closer to that of

the acceptance ellipse of a typical beam transport line, and hence easier to match.

Unfortunately, practical limitations on the current-density exist, due to heating, thermome-
chanical, or magnetomechanical effects. Practical current-densities may make such an ideal
“half-wave transformer” impractical, because the target will have to be too long, resulting
in too much antiproton absorbtion (targets are typically made of high-Z metals, such as
copper, tungsten, or tungsten-rhenium alloy). This is particularly true if one is using the

target itself as the conducting medium.

For short targets, the ideal length is therfore approximately a quarter wavelength, since the

momentum spread will then be a minimum; if the lens is close to linear (i.e., p, < p,), and

115

surrounds the target along its full length, the ideal length works out to be:

Ltarget

A
Llena = Z + 9

Nonlinear effects will modify this, since the orbits will now be neither precisely elliptical,

nor the wavenumber amplitude independent.
To obtain the nondimensional form of the Hamiltonian, I choose the rescaling:
:E:lX, y:£Yv pm:pJ.PXa py:p_LPY7 Z:LZ,

where £ is a transverse scale length, L is a longitudinal scale length, and p, is a transverse

scale momentum. The Hamiltonian then becomes:

1
H=- (f::z)[1—%(P§—+P§)}2+%%§—ZB—;}%J§%(}(2+Y) (6.40)
An alternative parameterization is
L po Py 2 : Lpyogmecly 2/ , 2
H=- (lpl) [- EL(pg +Py)} s LT (x?+7v?). (6.41)

Here I have introduced the quantities Bg := Bg(Ry), the magnetic induction at r = Ry, the

“magnetic rigidity”,

Bp = p;': (3335.6) —22— [kGauss-cm).

1GV

and the “Alfvén current”,
ec m.c®

Iq4:= — = —"=-~17.05kA

Tel €

(m, is the electron mass, and e the electron charge). Please note that Bp is a compound
symbol, and should be read as a single unit; note also that it is not an independent scale, but
is simply proportional to the momentum. The advantage of the parameterizations (6.40)
and (6.41) is that they are manifestly dimensionless, and allow one to easily study the cases

By = {const} and Iy = {const}.

116

In my case-study I chose to use the following parameters, inspired by the FermiLab antipro-

ton source [Peo89]:

{=L = lcm
pr = 1.0GeV
po = 8.89GeV
Ry = 1.0cm
By = 100kGauss = [y = 500kA

Ltarget = bcm
With the above parameters, A/4 ~ 27.05 cm.

This problem is complicated by a distributed source of particles. I initially attempted to
optimize the lens by dividing the target up into “slices”, integrating from each slice through
the lens, and then tracking a swarm of particles through the lens for each slice. Since the
Hamiltonian is independent of z in this case, I do not need to do the integrals separately,
but can acculmulate them by “automatic composition”, t.e., restart the integral with the
x, R, and DS obtained from the previous slice. This method proved to have much too large

statistical fluctuations even for large numbers of particles.

Therefore, I used “moment transport” instead. In the case of a distributed source, the

solution to the moment transport equation becomes

t2 .
(PA)(e) = [[PAMEOE (&t e ar (6.42)
where f is the source term in the transport equation.

I solved for the map as before, transporting moments through tenth order from each of ten
“slices” to the end of the lens. I did the integral over the source via Simpson’s rule. Since the
current HJ/DA code was intended for “proof of principle” only, I did not make provision for

including an optimizing package. I therefore employed a “brute force” approach of simply

117

stepping the length of the lens through a near A/4, observing which subinterval had the
minimum beam divergence (i.e., minimum (p?)), then stepping through that subinterval

around the minimum, etc., until the minimum was located to four significant figures.

The minimum beam divergence was found to be at Lj,, =~ (1.0826)x A/4; for comparison,

the theoretical value for the minimum is

A
Llcna = Z + %Ltarget ~ (10924)XA/4 = 29.549 cm.

Therefore the effect of including nonlinearities is to make the lens about 1% shorter; the
magnitude of this effect is consistent with the fact that the assumed transverse momentum
is about 10% of the longitudinal momentum, and that only even powers of p, /p| enter into
the Taylor expansion of the Hamiltonian. The effects of nonlinearity are therefore fairly
small, perhaps obviating the entire calculation. Numerical results are contained in app. E.
Fig. F-32 gives a scatter-plot of the final z-p, phase-space distribution, together with the
50% and 90% contours (the 14.7% contour is too small to be shown). Note that the ellipse
has no visible “tilt” (the fitting routine gave the angle between the major axis and the X axis
as 0.03°). Therefore the desired “upright” beam distribution has been very nearly achieved.
The “uprightness” of the beam is confirmed by the value of (X Py) which, according to
table E-1, appears to cross through zero somewhere quite close to the minimum value found
for (P%); hence the beam does seem to be passing through an “antiwaist”. Despite this,
there would appear to be a small but significant asymmetry to the scatter plot — the upper
left and lower right “wingtips” of the butterfly seem to be slightly longer and more pointed
than the other two. Perhaps this asymmetry represents the begining of the filamentation

process.

Finally, it is perhaps interesting to note that a near cancellation occurs between the con-
tributions made by the fourth- and sixth-order moments to (P%) over the whole range
investigated; the difference between them is comparable to the eighth order contributions.

The tenth order effects are an order of magnitude smaller than the eighth order effects.

Chapter 7

Conclusion

I have presented a new method, the HJ/DA equation, for calculating the perturbative
transfer map of an arbitrary Hamiltonian system, using the new method of Differential
Algebra. The results of Chapter 6 demonstrate that it indeed functions as advertised:
one needs only write a FORTRAN routine for calculating the Hamiltonian, run it through
the DAFOR preprocessor, integrate it, and one has an implicit representation of the map
though arbitrarily high order, which will be accurate, and ezactly symplectic, except for
the linear part (which is still quite accurate). I also presented methods based on F; and
F, generating functions which will be exactly symplectic for the linear part as well. Using
the tools of the DA-library, one can then convert them into whatever representation one
desires, for use in analysis or tracking programs. I have not yet compared computational
efficiency to competitive methods, however my experience in working with the DA-package
vs other packages suggests that it will be comparable, and quite possibly superior. With
the inclusion of automatic step-size and order control into the integrator, and the use of
a symplectic integration algorithm to obtain the reference trajectory and linear transfer
matrix, the potential for a fast, general, fully symplectic analysis program for arbitrary

nonlinear systems, to arbitrarily high order, now appears to exist.

118

Bibliography

[AMRSS]

[Arn88]

[Art57]

[Aut83]

[Ber87]

[Ber88]

[Ber89a]

R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and

Applications. Springer-Verlag, New York, second edition, 1988.

V. 1. Arnol’d. Mathematical Methods of Classical Mechanics. Springer- Verlag,
New York, 1988.

E. Artin. Geometric Algebra. Interscience, New York, 1957.

B. Autin. Technical developments for an antiproton collector at cern. In Fran-
cis T. Cole and Rene Donaldson, editors, Proc. 12%* International Conf. on
High-Energy Particle Accelerators, pages 393-396. Fermi National Accelerator
Laboratory, 1983. Held at Fermilab, Aug 11-16.

M. Berz. The method of power series tracking for the mathematical description
of beam dynamics. Nucl. Inst. and Methods, A258:431-436, 1987. Presented

at the 2"? International Conference on Charged Particle Optics.

M. Berz. Differential algebraic treatment of beam dynamics to very high orders,
including applications to spacecharge. In Charles R. Eminhizer, editor, Linear
Accelerator and Beam Optics Codes: Proccedings of the 1988 La Jolla Institute,
pages 275-300. American Institute of Physics, 1988. AIP Conf. Proc. no. 177.

M. Berz. Description of particle accelerators using high-order perturbation

theory on maps. In Melvin Month and Margaret Dienes, editors, Physics of

119

[Ber89b]

[BHW87)

[BrzWIn87|

[BrnWI1f70]

(Bru95]

[BS66]

(Bur85)

[Bro77]

[Car65]

120

Particle Accelerators: Fermilab Summer School 1987, Cornell Summer School
1988, pages 961-994. American Institute of Physics, 1989. AIP Conference
Proceedings no. 184.

M. Berz. Differential algebraic description of beam dynamics to very high

orders. Particle Accelerators, 24:108-125, 1989.

M. Berz, H. C. Hofmann, and H. Wollnik. cosy 5.0, the fifth order code for cor-
puscular optical systems. Nucl. Inst. and Methods, A258:402, 1987. Presented

at the 2" International Conference on Charged Particle Optics.

M. Berz and H. Wollnik. The program HAMILTON for the analytic solution of
the equations of motion in particle optical systems through fifth order. Nuclear
Instruments and Methods, A258:364, 1987. Presented at the 2% International

Conference on Charged Particle Optics.

M. Born and E. Wolf. Principles of Optics. Pergamon Press, Ltd., Oxford,
fourth edition, 1970.

H. Bruns. . Lepz. Sitzungsber., 21:321, 1895.

R. Bulirsch and J. Stoer. Numerical treatment of ordinary differential equations

by extrapolation methods. Num. Math., 8:1-13, 1966.

William L. Burke. Applied Differential Geometry. Cambridge University Press,
Cambridge, New York, Melborne, 1985.

K. Brown et al. Transport, a computer program for designing charged particle
beam transport systems. Technical Report SLAC-91, Stanford Linear Acceler-
ator Center, 1977.

C. Carathéodory. Calculus of Variations and Partial Differential Fquations of
the First Order, volume 1-2. Holden-Day, San Francisco, London, Amsterdam,

1965.

[Car81]

[Cha83]

[CHMMTS]

[ChSc88|

[ConSyn31]

[Deu83|

[DeV56]

[DeW?76)

[DV79)

[DF76]

[DF83]

121

John R. Cary. Lie transform perturbation theory for hamiltonian systems.

Physics Reports, 79:129-159, 1981.

Paul J. Channell. Symplectic integration algorithms. AT-Division Technote
AT6:ATN-83-9, Los Alamos National Laboratory, April 1983.

A. Chorin, T. J. R. Hughes, M. F. McCracken, and J. Marsden. Product
formulas and numerical algorithms. Commun. Pure Appl. Math., 31:205-256,
1978.

Paul J. Channell and J. C. Scoval. Symplectic integration of hamiltonian sys-
tems. Technical Report LA-UR-88-1828, Los Alamos National Laboratory,
1988.

A. W. Conway and J. L. Synge, editors. The Mathematical Papers of Sir W.
R. Hamilton. Cambridge University Press, Cambridge, 1931.

P. Deuflhard. Order and stepsize control in extrapolation methods. Num.

Math., 41:399-422, 1983.

R. De Vogelaére. Methods of integration which preserve the contact trans-
formation property of the hamiltonian equations. Technical Report Report 4,

Dept. of Mathematics, University of Notre Dame, 1956.

Cecile DeWitt-Morette. The semiclassical expansion. Ann. Phys., 97:367-399,
1976.

G. Dangelmayr and W. Veit. Semiclassical approxiations of path integrals on
and near caustics in terms of catastrophes. Ann. Phys., 118:108-138, 1979.

Alex J. Dragt and John M. Finn. Lie series and invariant functions for analytic

symplectic maps. J. Math. Phys., 17:2215-2227, 1976.

Alex J. Dragt and Etienne Forest. Computation of nonlinear behavior of hamil-

tonian systems using lie algebraic methods. J. Math. Phys., 24:2734-2744, 1983.

[DNR88a)

[DNR8Sb]

[Dra82]

[Dra8?|

[FDL87]

[For84]

[For87]

[For89]

122

Alex J. Dragt, F. Neri, and G. Rangarajan. Lie algebraic treatment of moments
and moment invariants. Technical report, Dept. of Physics and Astronomy,

University of Maryland, 1988.

Alex J. Dragt, Filippo Neri, and Govindan Rangarajan. Lie algebraic treatment
of linear and nonlinear beam dynamics. Ann. Rev. Nucl. Part. Sci., 38:455-96,

1988.

Alex J. Dragt. Lectures on nonlinear orbit dynamics. In et al R. A. Carrigan,
editor, 1981 Fermilab Summer School on High Energy Particle Accelerators,
pages 147-227. American Institute of Physics, 1982. AIP Conference Proceed-

ings no. 87.

Alex J. Dragt. Elementary and advanced lie algebraic methods with applica-
tions to accelerator design, electron microscopes, and light optics. Nucl. Inst.
and Methods, A258:339-354, 1987. Presented at the 2™* International Confer-

ence on Charged Particle Optics.

Etienne Forest, David Douglas, and Beat Leemann. Study of the aberra-
tions of a periodic arc using lie algebraic techniques. Nucl. Inst. and Methods,
A258:355-363, 1987. Presented at the 2" International Conference on Charged

Particle Optics.

Etienne Forest. Lie Algebraic Methods for Charged Particle Beams and Light
Optics. PhD thesis, Dept. of Physics and Astronomy, University of Maryland,
1984.

Etienne Forest. Lie algebraic maps and invariants produced by tracking codes.

Particle Accelerators, 22:15-34, 1987.

Etienne Forest. Normal form methods for complicated periodic systems: A
complete solution using differential algebra and lie operators. Particle Acceler-

ators, 24:91-108, 1989.

[Gib60]

[Gla33]

[Gol80]

[Hea86]

[HH66]

[HNW87]

[How74]

[Jac63)]

[Jer89)

[Kir70]

123

A. Gibbons. A program for the automatic integration of differential equations

using the method of ttaylor series. Computer J., 3:108-111, 1960.

W. Glaser. Z. Phys., 80:451, 1933.

Herbert Goldstein. Classical Mechanics. Addison-Wesley, Reading, Mas-
sachusetts, second edition, 1950, 1980.

Liam Michael Healy. Lie Algebraic Methods for Treating Lattice Parameter
Errors in Particle Accelerators. PhD thesis, Dept. of Physics and Astronomy,
University of Maryland, 1986.

M. Hénon and C. Heiles. The applicability of the third integral of motion:

Some numerical experiments. Astron. J., T1:670, 1966.

E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equa-
tions I: Nonstiff problems. Springer-Verlag, Berlin, Hiedelberg, New York, 1987.

Bernard E. Howard. Phase space analysis in numerical integration of ordinary
differential equations. In Dale G. Bettis, editor, Proc. of the Conf. on the
Numerical Solution of Ordinary Differential Equations, volume 362 of Lecture
Notes tn Mathematics, pages 109-127. Springer-Verlag, 1974. Conf. held at
U.T. Austin, Oct. 1972.

C. G. J. Jacobi. Jur theorie der variations-rechnung und der differential-

gleichungen. Akad d. Wiss. zu Berlin, 5:41-55, Nov 1863.

Max E. Jerrel. Differentiation in PAscAL-sc: Type gradient. ACM Transac-
tions on Mathematical Software, 24:2-7, 1989.

Donald E. Kirk. Optimal Control Theory: an Introduction. Prentice-Hall,
Englewood Cliffs, New Jersey, 1970.

[KW60)

[LLa]

[LLb)

[LLG73]

[LN88]

[LO8S)

[Moo66]

[Mos66]

[Ner86]

[Ner87]

[O1v86)

124

H. Knapp and G. Wanner. LIESE II, aprogram for ordinary differential equa-
tions using lie series. MRC Report 1008, Math. Research Center, Univ. Wis-
consin, Madison, Wisc 53706, 1969.

L. D. Landau and E. M. Lifshitz. Classical Mechanics, volume 1 of Course of

Theoretical Physics. Pergamon Press, Ltd., New York.

L. D. Landau and E. M. Lifshitz. Physical Kinetics, volume 10 of Course of
Theoretical Physics. Pergamon Press, Ltd., New York.

J. D. Lawson, P. M. Lapostolle, and R. L. Gluckstern. Emittance entropy and

information. Particle Accelerators, 5:61-65, 1973.

C.A. Lucey and E.T. Newman. On the construction of hamiltonians. J. Math.

Phys., 29:2430-2433, 1988.

W. P. Lysenko and M. S. Overley. Moment invariants for particle beams. In
Charles R. Eminhizer, editor, Linear Accelerator and Beam Optics Codes: Proc-
cedings of the 1988 La Jolla Institute, pages 323-335. American Institute of
Physics, 1988. AIP Conf. Proc. no. 177).

R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey,
1966.

Ronald W. Moses. Extension of schertzer’s theorem. Rev. Sci. Instr., 37:1370-
1372, 1966.

F. Neri. Notes on symplectification through fifth order. Technical report, Dept.

of Physics and Astronomy, University of Maryland, 1986.

F. Neri. Lie algebras and canonical integration. Technical report, Dept. of

Physics and Astronomy, University of Maryland, 1987.

Peter J. Olver. Applications of Lie Groups to Differential Equations. Springer-
Verlag, New York, 1986.

[Omo86]

[ONT79]

[ON82]

[Peo89]

[PFTV86]

[Ral84]

[Ran]

[Rit50]

[Rob61]

[Ros87]

125

Stephen M. Omohundro. Geometrical Perturbation Theory in Physics. World
Scientific Publishing, Singapore, 1986.

Van F. Oystaeyen and C. Nastasescu. Graded and Filtered Rings and Modules.

Number 758 in Lecture Notes in Mathematics. Springer- Verlag, Berlin, 1979.

Van F. Oystaeyen and C. Nastasescu. Graded Ring Theory. Library of Mathe-
matics. North-Holland, Amsterdam, 1982.

J. Peoples. The tevatron: Antiproton source. In Melvin Month and Margaret
Dienes, editors, Physics of Parlicle Accelerators: Fermilab Summer School
1987, Cornell Summer School 1988, pages 1845-1877. American Institute of
Physics, 1989. AIP Conference Proceedings no. 184.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes: The Art of Scientific Computing. Cambridge Uni-
versity Press, Cambridge, New York, Melborne, 1986.

L. B. Rall. Automatic differentiation using almost any language. Signum
Newsletter, 10:161-184, 1984.

G. Rangarajan. Dissertation research (in progress).

Joseph Fels Ritt. Differential Algebra, volume 33 of AMS Colloquium Publica-
tions. American Mathematical Society, New York, 1950.

A. Robinson. Non-standard analysis. Proc. Royal Acad. Amsterdam, A:432,
1961.

H. Rose. Hamiltonian magnetic optics. Nucl. Inst. and Methods, A258:374-
401, 1987. Presented at the 2"? International Conference on Charged Particle

Optics.

[RRWS5)

[Runé66)

(Rut83]

[Ryn87]

[Sag67)

[Sch36]

[Ser85]

[SM74]

[Ste56]

[Stub2]

[SW86]

[Syn37]

126

R. D. Ruth, T. Raubenheimer, and R. L. Warnock. Superconvergent tracking
and invariant surfaces in phase space. IEEE Trans. Nucl. Sci., NS-32:2206-
2208, Oct 1985.

Hano Rund. Hamilton-Jacobi Theory and the Calulus of Variations. Van Nos-
trand, New York, 1966.

Ronald D. Ruth. A canonical integration technique. IFEE Trans. Nucl. Sct.,
NS-30:2669-2671, Aug 1983.

Robert Douglas Ryne. Lie Algebraic Treatment of Space Charge. PhD thesis,
Dept. of Physics and Astronomy, University of Maryland, 1987.

Andrew P. Sage. Optimum Systems Control. Prentice-Hall, Englewood Cliffs,
New Jersey, 1967.

O. Schertzer. Z. Phys., 101:593, 1936.

Roger V. Servranckx. Improved tracking codes: Present and future. IFFE
Trans. Nucl. Sci., NS-32:2186-2190, Oct 1985.

E. C. G. Sudarshan and N. Mukunda. Classical Dynamics: A Modern Perspec-
tive. Wiley-Interscience, New York, 1974.

J. F. Steffenson. On the restricted problem of three bodies. K. danske Vidensk.
Selsk., Mat-fys. Medd. 30 Nr. 18, 1956.

P. A. Sturrock. Perturbation characteristic functions and their applications to

electron optics. Proc. Roy Soc., A210:269-289, 1952.

D H. Sattinger and O. L. Weaver. Lie Groups and Algebras with Applications
to Physics, Geometry, and Mechanics. Springer-Verlag, New York, 1986.

John L. Synge. Geometrical Optics, volume 37 of Cambridge Tracts in Math-
ematics and Mathematical Physics. Cambridge University Press, Cambrige,

1937.

[Synb1]

[Syn53]

[Syn60]

[WR87

127

John L. Synge. Hamilton’s Method in Geometrical Optics, volume 9 of Univer-
sity of Maryland Lecture Sertes. University of Maryland, 1951.

John L. Synge. Geometrical Mechanics of De Broglie Waves. Cambridge Uni-
versity Press, Cambridge, 1953.

John L. Synge. Relativity: The General Theory. Cambridge University Press,
Cambridge, 1960.

R. L. Warnock and R. D. Ruth. Invariant tori through direct solution of the
hamilton-jacobi equation. Physica, 26D:1-36, 1987.

Appendix A

Numerical Results — Drift to 12t~
Order

The Hamiltonian used for this run was the “relativistic drift”. Initial conditions were as

follows:

% : . .
:;. HIDAdrift: Particle in a Uniform Relativistic Drift.
'/: no = 6

A nstep = 20

) istep = 5

h eps = 1.000000E-30

%

h t_i = 0.000000E+00

% x_i = 0.000000E+00

% Pt_i = -2.000000E+00 (= - GammaO)

:;. Px_i = 0.000000E-01

/i Z_i = 0.000000E+00

; z_i = 1.000000E+00

128

129

Table A-1: Difference between Ry nymer and Ry theo

r2,numer
1.000000E+00, 0.000000E+00,
0.000000E+00, 1.000000E+00,
0.000000E+00, 0.000000E+00,
0.000000E+00, 0.000000E+00,
Table A-2:
E ,theo
1.000000E+00, 0.000000E+00,
0.000000E+00, 1.000000E+00,
0.000000E+00, 0.000000E+00,
0.000000E+00, 0.000000E+00,
Table A-3:

r2,numer - r2,theo

0.000000E+00,

0.000000E+00,
0.000000E+00,
0.000000E+00,

0.000000E+00,
0.000000E+00,

0.000000E+00,
0.000000E+00,

1.924501E-01,
0.000000E+00,
1.000000E+00,
0.000000E+00,

0.000000E+00
5.773503E-01
0.000000E+00
1.000000E+00

Numerically determined Ry

1.924501E-01,

0.000000E+00,
1.000000E+00,
0.000000E+00,

e R R R P SRR R PR E

0.000000E+00
5.773503E-01
0.000000E+00
1.000000E+00

Theoretically Determined R,

3.816392E-17,

0.000000E+00,
0.000000E+00,
0.000000E+00,

0.000000E+00
8.326673E-17
0.000000E+00
0.000000E+00

= e e o g o o =
2ttt 2t i 2 i i it -ttt ittt T 2 2 3 1 11

Order Exponents

Diff.

Frac.

=71
ke ke e b e ke ke sk e e s ok ke e ke e e e o ek 2k e e e e e ke ok ke ke ke ke ke e ofe ok ok sk e s o o e ok Sk ke e e dfe e e e e o ke e sk ok Sk e e e e o e e ok ok o ok ok ok K

0.000000E+00

0.000000E+00

130
4, ina = 36

4, inb

12, NV =

PONENTS ZERO
.000000E+00
.000000E+00

Table A-4: Numerical vs Theoretical DS,
12, NV =

1

0 COMPONENTS ZEROQ
1 COM
1

NO =
NO =

R
R

E
E
.000000E+00

.000000E+00

1

DSTHEO
1

= DS12
I A Coefficient B Coefficient Difference
ALL ORD
ALL ORD

1
2

A
B
*

oo
IHNO

[elele]

OO
OFHNO
[elelele]
[elelols]

OWWW

OO
MM
(elelole]
COO00O

[.

15
16
17
18

ONHO W
ROINO
[=lolelolal
[elelelel=]

E2)fx)f2]fx] (2]

736778
189523
856385
784289
352868

.....

-1
-8
-9
-2
-8

19
20

21
22
23

O N0
AWM
[=]olele o]
COOOO

......

......

RO -NMH
aNMmMMmMMm

......

OOIHOOON
v

[elelolelelelw]

AN
Aalalbalal bl

WWPYOMNOO
ot e

.......

.......

0000

Order Exponents
0

Diff.

Frac.

131
4, ina = 54
4, inb = 62
0.000000E+00 0.000000E+00

1.665335E-16

12, NV =

Table A-5: Numerical vs Theoretical Dt;
12, NV

NO
e ok Sk fe ok e sk e sk ke e ke e e sk e ke o ke e ok o ke ok ok ke e sk ok Sk ke ok 3k sk ke e ke Sk ks ok e e ok ok K ok 3k s e ok e e ok e o ke ke ok Sk ok o ok s ke Sk e o ke ke e ok ok ek sk

NO
A Coefficient B Coefficient Difference

1.000000E+00

I

A = DTC1
2

B = TTC1

ONH
[Tolopl o)
[elele]
[=lele)

oA
OHNO
[olelele]
OOCO

ONNYO
MM
COOCO
[elelele]

ONHO®
WOHNO
[elolele Lol
[el=lolelo]

ONHWOW®
DM
[=lelelele]
[elololels)

02468m
m864.20
[el=lelolele]
[elololelelo]

......

I I I I I |

......

D NHO
[I I I |

AN DO
[selsparsplor lop]

......

132

Table A-6: Numerical vs Theoretical Dz,

Order Exponents

Diff.

Frac.

@
nHME O
nO* 5
Q@
inn H
@
© O * 44
o~ L]
RaRak 2
a
F <t
i}
=
@
0ot %--
9]
et)
==]
44
" =~ e
NN¥* O
%O
m
([}
P
[3]
Z=Z%x 0
o
1)
-
4
Y-
]
Q
%O
[S1 &
e %
(=% 2
N %

3k %6 35 e e e e e e e sk ok ske ok 3k ok ke e ke e ok ok e e s sk e ok ok dk ke ke e sk e e sk sk ok sk ok e ke e e s o ok sk ok sl ok sk e 3k ek e S 3k e e sk ok e ek ok e e e e ek ok ok ok

A
B
*

0 COMPONENTS ZERO

ALL ORDER

0.000000E+00 0.000000E+00

1.000000E+00

1
2
3

0011

2

-1.873501E-16 -2.433750E-16

-3.849002E-01 -3.849002E-01

wnMm—
[=lele]
[elele

— MM
WHNO
[eleolole)
[elolele]

~inw~
DL v
[elelele]
[e]olele)

—MONMD
WOFNO
[elelololo)
(=lelolole]

.....

260203

.....

MOS0~
onxDAélm
MAXUODXU
[elololele]

ANMIFUO N
;mMMMoMm

Appendix B

Numerical Results — 2DSHO

The Hamiltonian used for this run was the “2-D simple harmonic oscillator, in polar coor-

dinates”. Initial conditions were as follows:

% HJIDApolrsho: Harmonic Oscillator in Polar Coordinates

h no = 6

A nstep = 30

YA istep = 6

% eps = 1.000000E-30
h

A R_i = 1.000000E+00
% Theta_i = 0.000000E+00
% Pr_i = 1.000000E-01
% Ptheta_i = 1.100000E+00
% ti = 0.000000E+00
/A t2 = 7.500000E-01

133

134

Table B-1: Reference Trajectory, Matrix, and Symplecticity Error at ¢,

x2 r2

1.104536E+00; -1.095483E+00, O0.000000E+00, 1.440921E-02, 1.585013E-01

4.621729E+00; -9.016393E-02, 1.000000E+00, -1.435004E-01, 1.304549E-02
-5.688529E-01; -1.133043E+00, 0.000000E+00, -8.979365E-01, 8.163059E-02

6.911504E+00; 0.000000E+00, 0.000000E+00, 0.000000E+00, 1.000000E+00

r2 * (J r2°T J°-1) - 1

1.000000E+00, 0.000000E+00, 0.000000E+00, -5.690934E-14
-3.781697E-16, 1.000000E+00, 5.690934E-14, 0.000000E+00
0.000000E+00, 0.000000E+00, 1.000000E+00, -3.799044E-16
0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00

30

K 3 o e o o o o ok S ke o o o R o ke R o sk ok ook R o sk B oo i ok e ke s ok o o ok o
EXPONENTS

135

2

4, INA
2

ORDER

Table B-2: DSy, for 2D-SHO (continue next page)
6, NV

NO
.00000000000000E+00

I COEFFICIENT
1
1.00000000000000E+00

1
2

DS12

OCO—HO-NOHNM
O-HONHOMNAHO

[elelelelololelofols]
NANNH=HHAOO OO

MmOMOOMMMNMMM
=M =HONOWNLNWO

$EDEROTETS
£ e 0e] £x]02] fe] 2] fx] (2] Ex]

..........

A

MINOMNODO N
v

COHOHNOHNMNO-HNMH
OrHONHOMNHOHTIMNMNHO

[elelelolelolalslalalelololelal
HONNONNNHHHAAOO OO0

HHHHHHPHHHHPHHH

= HON NN NI M OO
EEEEEEEEEEEEEEE

...............

NHDOMONO
v = OO

22
23

COHOANOHNMONNHOANM I
OrHONHOMNHOFHNNHOLFNNHO

[elelolololelolelelololelololslololelele o)
W HHEOMONOANNNNHH=—A A A—H1O OO0 OO

[Tol¥alielNolValVallolValtollallsllallsllelVolVal¥altalVsl¥alNs)

e e N ONONNN O FH OO) HLOLD O O
AR
§x3x]02]f2] 0= 22 (2] L0 fx] fad 2 fxIEa frg FxTbx] f2] 2 (2]
O NONMNO M = HLH MM NN O M
O NOO v M N 0O OMOHONNMIO MO

.....................

136

Table B-2: (cont.) DSy, for 2D-SHO

EXPONENTS

ORDER

COEFFICIENT

2k 3 o ke 3k 3k ok e sk ke e ofe 3 ok o ok e sk e s ok ok e ok ol ke ok ok ok sk ok s S sfe ok 3 ok 3k e ok ok ok sk ok X 3k
I

OCOHOANOHANMOHNMNFOANM PO HNNIHNDO
Or-HONHOMNMNHOHMNHOWNITMAN O OWHMNHO

(slelelelalololslolelololelolololololalolololololelolol o]
OOWHHHOMNMNONANNANNEHAA A A AHO OO OO0 0O

OO OO O O OO O OO O 1O OO PO LD O DO DO DO OO

A H A =S NN NN NH O H LD OO LD O
A AR A AR A A

............................

1 I 1 I 1 ! 1

137

Table B-3: Numerical vs Theoretical ; (continue next page)

Order Exponents

Diff.

Frac.
1.164589E-13 5.822946E-13

ke 3¢ sk 3k e o o e e e ke ke s ke e e e e de s Sk s e e e ok sk e s sk i ok e sk ke s e s sk ok ok ke e e e 3 e e o ok sk o e ok e e sk ok e e ok ok ok sk ok ok ke s s ok sk 3k sl ke Kok Xk

o
noO* v
OWH* g
o
"on* M
o
o O * 44
5O %Y
rd e e
a
<
+
=
o
"o A
v
Bt e
=
4
LN e
WOx O
3]
m
uon
oo ._m
=]
-
1§
-
“
L al
)
o
NNED
(13
bl > <
(1<)
0o %

A
B
*

0000

0

-1.000000E-01 -1.000000E-01

1

OO0
QOO
OO0
OO0

i

COOOOHHON
COOHHOONHO
OriNO—HOHO OO
NHOHOHOOOO
CNONCIONONONONONONON
NOOMM (NNO
v et
UNUN USR]
Exdfadi=dfz] Fafedfadfx]iz]
OV NAOOIN
NN - O<HH
MMM NN
MDA WDvHO
HAHN® MM M<HN
NMOO OO HH
o_o2..nul 11:%14
[
NOOHH HHHDWD
v et
U NUNUSUN
Exfadfadfa] Fxdfadfxdfadfx]
WM WOH—N
WOHN NOMNON
NN LOONOIOM
MM Q0o
MOYN HONOHD
NOOMm OO
4.5:.03 11.?...51
HONHMN NI
OOOOHOOOOO
[R N R
Ex] fxd2d 02 L] 2] (] ExDfx]
HOO MMM
—HOOMM=HOAITN
HOOOMHOMW
MO ONO Hethe i
LOOLNMMNMNOH®
HHO WD OWNY WY
LD = v (N v = vt

.....

OM~ONO NI
e e

OO0 OOOOH OO ANNO~NM
COOOHHHOOONN™HOOMNNHO
OritNMNO-HNO-NOHOHOHOO OO
NONHONHONHOAOHOHOOO OO

MMM M MMMMMNMMMOMMM

NrHAHONOHN™ HNMNONHNO vivi
O rtriviviv v vttt et v -
LSS TR P LN JUO U AU U O JU RO RO O O P)
ExIEa) Ee) 02 0ad (=) ExThe) ExJfadfad fadExdfxTfadbad fxTka]
ONNNHINNO OO PO NN
MONHNONNH O FOOMO N
WNOHONONDD WOMNFIOWD OO HN
OFONNOHDBN OO OWONN L
NOOM—HOON MMOWDONON
NOOONONOM OO —HHFN MO
1&9%%%422 dlSiﬂQ4241
NONHOHHNL MUDHDDUOOO
ittt v v e v e e et e
(R TS RO O U TR UL N U OO U N R
Bxfafeyfxlbafadpxfadba] Fxdfxdfelbxdfada]fedbe] fx]fa]
OWOHOONND FNHOOM O
OWOHHIDNDOD DO DO v+
HHONDNOOROD AN HO O
BHONNONNMNM OO VO H LD OID
OONHO-HNOF —HNOWLDMDNN
—HNOMON—HO A —HOWOOWWMNMLH

24;14_...._14_‘1...16 4_..4.25n_64.971_..1

NN H=HHANNOIH OO NN MO DO

SRR AR AR A AR A
P fxlfad £ CxT62] o] o] f2 ExdLa b o] 2 o bad fx]E2] ExdEx]

O H v I N HO NN A D DM
1 L I A | i | 1] i

AN rHFONANM . AN MWUMWDWNO
STTPBICOT SPTSLE000S
Exfedfa) 2 L] e e fed 2] fadEadfed Ex1fxdbx]fxdfe] (2302)
MIFONMANNMNY MOOM-HONMM®
PO NHNLD NOOHDOIN-ON
WAMMMSNNO OMMNON-MDMO
MM MOONND DR OMONO
ON=NNNDN ANV OWPRONMO
OHAOHANDON Or-HOMOMHW O
QO < vt vt (N

(S hals Ralalerlal o lVolap]
| LI I | 1 ! ! i I

WM~ ONO NN NN NO—NNM PN
et SOOI MMM oM

OCOOOOOOOOHAHHHOOO H—H-NNNOOHAHNNMMNO—NMH
COOOO™HHHOOOONNNHHHOOOMMANNHHOOHNMNHO
O-NOHO-NMO-HNMO—ANO—NO-NOHOHOHO-HOOOOO
HONHONNHOMNHONHONHONHOHOHO HO-HOOOO OO

A A A AL AN A s b A ALS AR A A bt A S RS ALS AR5 A S AlS S AN A s Al S A A RS Al sl s

HHONOMNNDN AN NN O N = v = NN N N O - A D v
4—11111111 nimlial ol ol ol ol ol alol el ol alelolal ol ol sbal ol ol ool el

LI SR O L R T U O OO R T U OO O UL RO OO U U N U U U N N e |
Exdfad bxd0adfadbalbadfa) fadfadfadfedfadfadfed f2)Fadfadfadbad £ bad b fxad 2l Exdfadfa] F3TFal fx]fxTEx]
QOONRWOMLN LD v MNOWONNO N NN OO
WO =HOIOID ONOMONMNNNTORHNNIWOMNNNI O D
OHNONMONN O NN HOOLONOMNONOHHHMD OO
WWMWWNO®D ON - DOIHONWOOOOCO =MD O
AP =HANNTHO DM MO HONHODOWNNON NI M
WONMOMOO OWNO-MHOOOINOTOLOIHINOHOO —OMOM
Yreienduin el ah gl i ioa el

|

NOOFDONMH (N HLD O HLD () <HLD 0 <H O LD O HD HNLH WD OO OO0
Hrirdrtriri el A e e e e e e e e e e e e e e
LI O A O O U N R RO L O O U T U A O O R U A U U T L U U A
B0 EaEadbadbad fxdfx] Fudfad G fad £ fed e fad Fad had K2 £xd £l fxd £ b EeTEed]] £ Y Ea Y a2
—HOMOWNWO MMMWOINMLD - ONNNNOHONNOMMNO—ON
D =DM O M PTONNT I DO OHMO—HOONNOFHONO
NOOMHN™IO —OWMNOHONLOOWHOWON=NHOIHN—H=HO
OMOMANNNO HHANNMOHIINNO 0 r-HANN0OMFOLD0 O
WMQOBAN OMOHHTNO VNN MMM ONOWN +—-HLOO M H et H

A

..........................

AN N=HM = NONH N NN O NI FH O MDD MM N
AN AR AR NN

...................................

I

NOONHNEHNN NOOANNNNONMLDM G OMLOM M MO HD LD HOON
AR A AR AR AR AR AR A A
B =00 fx]fxda] fxdfed £a]0xTbe] fed fad fxdnd f2d xd] £x] Lol fxd fxd fad fxT fxd ExT f2] (2 2] 2] ExD02]
Q=MW ~MNNNHOOTDHO NMHONHHANND-DANO
Mt P WY OO R0 T+ NO v+l LM OO DM O ILON

HHOMOANO™ MO HDNWD LSO O HN DD WO M MO NN
—HOMMWOINOY OO OONONMN-HOONMWOFOION O
EONNMMOEOW MWHDNDMWNOO MM OWMMHHNNOOWH
ONOOHOMN HOIHOMMOHUONNOM HNOHOWOHM NSO~

T

MHNOMONO=NNHOONOOO
[Fo]¥e]¥s 18 Ve TalVollellellallelle [felisliellell(e] o

138

Table B-3: (cont.) Numerical vs Theoretical z3

Order Exponents

Diff.

Frac.

sk e ke s K o ok ke ok e ot K o ke o o S ke o 3k o K o ok ke ok o R o e Rk e R e Kk ke i e e sk K e ok o ok e sk sk e ke ok o ok e sk e s sk e sl e K o ek e e ke e ok
I A Coefficient B Coefficient Difference

OO0 O0O0O0COOOCOOHHMHHHOOOOHrINANNNO O O—ritNNNMM MO O NNMMNHHO—HNM LD
OCOOQCOO—THHr—-HOOOOCONANNNHHH—OOOOMMMANINN—HHHO O OHHTMMANNHHO OWNIHMNNHO
O =N O-NMNHOANMIFHOANMNOANMO—ANMNOANOHNOH-HNOANOHOHOHO O HOOO OO0
WHONHOHFMNNHOHNMNHOMNMNHAOMNANHOMNHONHONHONHONHOHOHOHOHOHO OO O OO0

[Tol¥alVsiTslTolTolVallallalVolTolVolValtoltalVsllaltellalVolNollollalValVallolNolVolVolVo ValValVelVallolValloliallolValNolValValls]VolVolValVallalVe Ts]Vealla]VolVolVs]

DON T H—A—MOHOON
QO et O v v v i v

[T L L L L L
] (3] fxYhe] (2] L2 xbedfe] L PxTExTbx]a]
WHNOLDO N =HDM DM MWD~

...............

10.4_:_59360617%3&2
[1

CONMHHO = NHLN O AN
ot vt bt vl vt v e el v et v

...............

HONHOD 1N OO ONT-M M —=NO —H O MM —=HN—HO O NN OHO
1111111111111111111111111111111111111 111

1 1
EE

R I A M R
1

AN HONMHONMIN DO HO N HD D H O ML HOOLD HO PO ONON OO0
vt v v e vt v v el b vl vt e e e e e e et el el v e v e v e e e e e v e e e e

LN L T N T T O T N
ExT0ad fad £a] fxl00] Cadha £27 Fo o L] 2 £x] K2 0a 2] fx] F2 0] fa T 0ed fx] K o LxY B 2 f2)fx fa Ex) ExYhdfad fx] £x)) 2]

..

NN HO NN MANO N NN NNNON HHLN O HH N MO (M HLD HLD O HH HLD HHHILO OO LOLN O ON

AN AR AR AR AR
1 i]

Fx] 2027 0e] 02T £2Ee]f2]] £ £2] Ca b2 2] 2] P2 £ £ f2) F2] 2 fxTfd xd f] frI0oT e] o fx] fx]] 2 02T Fr el ol fed fed fxd fxdfx] ExThxdfx]Ex] £x] [a] fx] L= TEx] FxIExIfs]

THOMNHON +-1OWM O NNOWOH NN ——HO N NN O —HNA M HNHLD O O MO NP HLD M OO vH OO M- CN 00D

MO =AMNDOHNMNOUNNINOOH N -OAHBLINDN=OOMO N OOV OH=INNOHOONOONOOO

O OO WMON=HMHOONM T CNOOLD 000+ HOOFHOOMNNHOOOX =DM HIMOMN =N =M= HRWWOWNHOLD

...............

...

! I 1 I i 1 1 1 1

NONNFHONOANNND NN
QOO0OHHOOOOOOOOOO

1 1

1234567890123456789012345
PPN M 000000000 0 M0V NIMO 0

NN NANNO M HHO D HH) O M FHLO LD O FHHLD HHH - LD O ODLD OO
00

EE
He N -1 O NLD NN O+ OIS FOI LD 0 O MO NN HLO M OO 10O M (N +=HOOLD

..

[[] 1

ONONO NN HLOOMON O NN HUNOMNON O —HINMHNY
OONOOOOCOOOOCOO Hrivivird v~ ONONCNONANNNN
v = vt v e e v v e e e e e e v e et e e e e e

139

Table B-4: Numerical vs Theoretical y, (continue next page)

Order Exponents

Diff.

Frac.
-8.043566E-14 -3.656166E-14

o 5k 3ie e ok e ok o sk ok e o ok Sk e ok i sk e 3k ok S ok e ok ke ke e ke e sk Sk ok 3 ke e 3 e ok e o oKk s 3 3 e ok sk s e ke ok e e e ke e ok e o e e s ok ok e ok e e s ok ok sk ke ok ok

[
W% O
CO* g
[
([T Y]
@
O * 44
[~E-E Az
e % -H
a
< <H
Fu]
=
)
N x-A
3]
= %
== 2]
Lol
LY e
©CWOwxQ
&
o0
non
+
co* o
=22% 0
-
3}
al
ol
Y4
[
Q
NONXO
(&1 5}
b b ¥
[l=
nonx-

A
B
*

0000

0

-1.100000E+00

1

-1.100000E+00

oCOO
OOHO
OO0
\nlelelel

0
0
-1.591549E-01

2
3
4
5

OOOOO O
COOHHOONHO
O-HNOHOHHOOO
ANHOAHOHOOOO
CNONANONAN NN NN
HeEHOHA MO
HO A
RSN U
[fqfadfelfadf=] ExVE2]Ex)
MUOOHINO N
ONOWOMN= WNHO
WW—=NOLD ML
FHNWO—HM OO
MAN—HON DOX®
OOMNM M
AN -
1 1 (]

NP HEH DLW
D s b b e s s ham
LI [N
Fadfxdfefahe (2] [2)f=]0x]
WHMOMN (NOM
DOOMMLD L
PO MO
ANHHNN - O
OFN-=HOI FHOLD
NOOWM~ OWw
4:.44472.0 n_.:_.wd._
NN HH =MW
AN
!

£x3 fxd 2] bxd fx]] Ex £2] 2 2]
FOONNWOOMNO
HNONHOHO IO
AL OAILNOLDM O v
HHOOHMO O
MFHOMNOONWOW
HOWNHLDNO M
HOWD At vt
1] [

MM H=M LW
ANAR AN
E=Idf10e el] ExQiadfa)
FOHONNMW OO
HoMPL OFHw
ANNMNONLND MO
HHOO-MN —H-HO
MO NOW
FHOWHWDN ~NM
HOD i -]
] ! 11
OM~ONO AONHLD
vt

OOOOOCOOHAHAHOOHHNNOHNM
COOOT—HHOOONNHHHOOMNAHO
O ANMO—NO+NO—HO OO O OO
MONHONHONHOAHOHO-HOOO OO

MO MMM MMMNMMMMMMIM MM

......

AN O =N O

1111111111111
!

EEEEEEEEEEEEE

.............

O HPHHLOHOOWNO
vt v v v v e v v e

! I

M= NN HHN NN) PPN M O
00000010 000000000000

EEEEEEEEEEEEEEEEEEEE

B O =0 M
DO H+=OOM N

.............

OMNOMHO =N HLDOMNONO N TN
e OO NN AN N Mo

OCOO0OO0O0OOOOTHH-H=HOOO+==NONNOO—H—NNMMO—ANM<H
QCOOOOHHH=HOOOONNNHH=OOOMMANN—HHOOHMNMNHO
OrilNMHOANMOHANMO-NO-NO—ANOHOHOHO OO OO0
HONHOMNMNAHO NN HONAHONHONHOHO O HO O OO OO0

Roabs ab b abs abs Ahs AR5 Al s AL ahS ARS als ot A S Ahs S oS RS Al AN AR5 a5 AN AR5 ARS AN AESAS S Ats (S 40 A

ONHHPHMNOTON™ N —1MOONHHNINO it M—NO
e O v vy A v e S e e e e e e e - e
L JR L O O U N OO JNU U T U N TN RO R U RN U OO TR U U U i |
E3f=)Ee b Ce] e oY 0xdfxbxdfe] fadCxOad fxdfad (2] o ba] Fod o f2Yx]fx] L2 02T Ladfx] L] fa P2 x]fx)
HOOONNAINMNM LHDON OWOHO v OO WM MM ON MONMOND
MMONHINOANN™ QM ALHOTOOMLOW ONHUIN-HND
DAV HMONOCODL FLON M HLOLO OO H = HON O N M
OMFTAMNNNOHOOM MO OMNWNOWM NN —FHANNOOWOOM
MNMIDOAM=-OMON OMOMONLDOMNOONWONNNOWIWONLD
FNORWWVWAWNOM MOINOCOMNMNHHNOHTIANM—-NOOANONOO
i

NN NHLOANMS NMLO ML MDD HO HL HNLN WO OO0
vyt i vt e v e e e e e e 1111111111111111111111
LA TR U T U N R O | L I

Ex] 6] 2] 02 e £2 T fed 2] 0x]] fx] EEEEEEEEEEEEEEEEEEEEEE
HOMNOMWOOLANY HHONHOFHOOWHIMIHOHOONDOW
FOMNMWOMSOPLOLHON MOILDMMM NN NNNOOLN 0O O v HUI0 WD v
MHOFMOOMHOVOD MNOANINANMNTOAOCONOCOWHOHNHO
MDARNOMOONSMO NOTHONHIO MO -M) HOHW MO D
HOLOWMOLOMNNMNOM r-INONOMWALNSMWOMONONOOO
MeENHOMONONOOO O-HOMOMHOMMNNMNMMN MADNLOLOLOLD
ANOMOANN =HD NN HH NN NANOFMLD FH O OO HDHI-O
QOOHHOOOCOOOOOHOOOCOOOOOOOOOOO0O0OCOOCO0

...................................

¥ [} 1

ANMONN=HLONNANT NOOANNOTNWD IO IO PLOHN©O
0001000n_v0000 0000000000000000000000
Exfz] fxY 023 fx] =] Ex] 2] f2] f2] b fx] EEEEEEEEEEEEEEEEEEEEEE
QONTNOMNNANND ~ONHOMNHOONNSMOIMNOO NN
QMNOMMOWONMM FHMNOIOWMLDM A MM N LON 0O N
HQOANMNHA=DONON WO HAN-NONONM-OLD OB ONMNMNNH
MOWAMWO-NANGD AMOMDOMOOMDND —=ONNONLDH
NOMMONRNOLNMY ML OO OO HMNW v-Ih-0000
MONMUNHOOMDT DO OOLDHIO W ——HD DO NN+ 00
OO OHNMIHDONONOHANNHNOMNONOHNMHDONONO
MO PHIHIHH HHHDD DD LD LD D LONLHR O L O DWW O OO OO M

140

Table B-4: (cont.) Numerical vs Theoretical y;

Order Exponents

Diff.

Frac.

A Coefficient B Coefficient Difference

ok ok 3k 34 e 3 3k e o sk 3 ok e e ke ok ke ok e e s 2 e e sk e e 3k ol sk sk sk ke e ok sk e e ke dle ol ke 3k e 3k s ok e sk ok ke e ok ke e 3k ok ok ke kel 3 e ke e e S ke sk ok ol kR KO KR K
I

COO0OOCOCOOOCOOTririr—COOO rirrirINNANNCO O Hr+ICNANNMMMNO O = ANNMMNHHO AN M TN
COOOCOCOTHrrr-HOOOOONNNNHHHHOOOOMNMMANNN=HHHOOOHHNMNN-HHOOWHMN O
O NI OANMHOANNHO NN O-NNO—ANMO—NO-NO-NO-HNOHO O HO O HOO O O00O
WHONHOFMANHOFTMNHOMANAHOMNAN-HOMAN—HONHONHONHON—HOHO O —HOHOHOOOO OO0

(Tel¥s[TelVolNolNolTalVolVolValNolVolVolVallolValVlalVol¥alVo NolNo Vo lVe NolValNollolVoltalVseiNalVolVolVoltolValtolVollalVe allolValVsollslValVallaltolValVollsl¥s]Tolty]

OHHANMNMHEANNMN O —=NNANINMNO =N AHO =N NN AN O N - (N —H N M i A - O = ONONO N

Anhnimiablal ool olel] 111111111111111111111111110111111111111111101
L T N I U

B a2 b el fad £ Exd L) EEE

...

e Ak R i e i & e

HANMMFOANML NONHHLD OO N HO M MO MLD O HHD 0D D PHLO O LD O HO DO HOLN OM OO MO
Tt vt v v v v vt v v v v v e v e e e v e e e e e v v v e vt v v v bt v v e ey e e

LI U L O I |
B =10 e Ea30e] £ ExT0]bn] [x]fedfalbed Kxdhadfed o fa] Exlxdfed bad Cad b Y edhxY ke fnd 2] 62 T bad fxdEad Lxd fx] £ KxYfaxdfxd f2] L2} FY 6T fs] Ea] fa] L] P Ex]x] 2 Fx] (]
OHAWDMSDONOD WMMIWNWOMMHONDNHM OO MWL ONONO OO NHMNOOMNHHNOMN

A Ml i bt e et il & it S

NANONNF == NNN NN O N NO NN M N HO MDD MWD
E

LMD HMWO OO OO LD ON

QWAL H—=HOMANHANNOOMOOANNHOMOMONNHOF-OLNOHHFT OO NN OO MO MWD

..

ANNONNH==HNN NNFOM=ANNO NN M MO ML NT T MO FHO MWD (DO HLD O MO O LOON
(elolelelelelolo] 000000000 00000 0000000000000000000000000000000

EEE

8E-0
E
E
E
E
E
E
E
E

...

HONMOHDOMONO =MD O ON O —HANMHNOMNONO =NNHBOMN O N O NMHLOONON O =M HLOWO
MARMNNMANN S0 000000000 MNNMMANOAGNOOCO0O0COCOO i rirrd i NNONNNNN
vt e e e e e v e et e e e e e e e

0000

Order Exponents
0

Frac. Diff.

64
60

ke e e ofe b e e 2 2 ke ok e e ok o ke e 3k ok ok ok ok sk s s ke ke ke sk e ok i e e i e ok e ke K ok ok R 3k s ok ok e e ke R e e ok ke e ok ok S ok kK ke o ek e ke e e ke ke ke e e ke ok ok ok

141
ina

4, inb
-5.256906E-13 -4.183313E-14

Difference

4,

6, NV
6, NV

NO

Table B-5: Numerical vs Theoretical p.; (continue next page)
NO

I A Coefficient B Coefficient
6.283185E+00 6.283185E+00

= DPX2
1

A = TPX2

B

OO0
QOO
OoHOO
~OOO

vt vl

OCOO0OO—HON
COO=H-HOONHHO
OriNO—=HO-HOOO
NHOAOHOO OO
[a 19 1a (e 1a [a[g [o (o {q]
MeHN M=HO—HN
HO v v Ovivivri
UL | U U
BIE20a0] fadfadfalfedfa)
YOMLD NOLWY<H
QO—H OO
MAUOMM DH-ND
NOMD ~OHOOO
OHOW DO
ANHMN ~ANAHO©
AN=MM MOOHPLD
Hrviet A e
LI L
REedfn]] fadixdfx]
M~OMv OIN-ON
w-NWem FOHONY
NP OWOLD
WM ONHngt
EOMN©O OHOLO
M~NO OMINH0
O-HONM=HMANHY
O-HOOHOHOOO
+ 14+t
$2Jfe (=Pl b fxY2T02] (2] 0]
MNMHLHONOM
RQOMNWO NM-MNO
FODNOMOMNO
LOLD O O HAOLH 00 0O
LD HN W WO - ONLD
SN =-HMN OO
O+~ 0OMO LD
LI I I | []
CWON NI
O—HOO O—HOOO
+ 1 + 1 LR I I |
EQEaf=0e] [x]fx)fedfe]fz]
M LOHNOM
WML AN
OO MO
WNO-Y NAHHOD
WO OO
OO OLON
ONMM OMY LD
[] [} []
OMNOMO —ANMTLD
At et e

OOOOOCOHAHHOOHHNNO-HNM
QOO OH™HHHOOONNHH—HOOMN™O
O-NMO-INO-INO—HO-HO-HOO OO
AONHONHONHOHOHOHOOO OO

MM OMMMOMMMNMMMNMMOMMOMM

MO HNMHON MONHHMO MM NN
Hrd OO v v et v v v
R LT T L I
02 ExEa6202d02d 0] FaYfxdiad fadkad b2 fa fxT (2]
AHN~ NN HDHWWOOOMM
WO NOHNOW WM OOWNLD
NHIANONON =MDV MO
M=NNOGNWO OHMOHO0OS
DHONMSONMN-M OOM—NOOM N
HO—ADOMLNOW NONOMMHNOH
6629d1954 4%4Q6Q9169
]
NONNOMNMMOIN HOOHEO TN
it et vttt e et e v e
U U DU N
(ISR ealcalcaleaiCalc o] S a1 3l alcal R al Ea Al G 2a]
MUOWHONN= NMW—HOMOND
WO ONOWD™O OANMODONONHO
WVOOOMNOMOM OINNONNION
MONMMONTA N HHOMHNOMON
OO =ENONANN OO OHMNOMO
HrHONHORNMU OO HINO O -
PTTTOTAT FHAPTIP TSN
QOOMH-MO HM NN~ HN HH
COOHHOOHOOHOOOOOOOOOO
+4+4+ bbb+ bbb
F23Ex0e] 2 £ 02 £2 b £2] Fafx fxTEed oY Ex) (2] P2 Exd fx] fx]
OHMNEMNMUIHMNIMOMNOWMOOVOOO
FHONONNHHANHUOMNSDDODLND

....................

COONTHHNOH —HNNM PN
OCOOHOOHHOO OOOO0OCOO0O
+4++ L+ L
230 Ex] fxfedradfadfadfx] Exdfxdfxd ExIx 2 (2 fx £x]f2]
OHMUOMUINNG MNOWMNOODVOO
HFODNNNNN D HNOMNDLOO OO
P MHINNNN NN
WOHNNANHD MO —HOHHANH
DAL ANOHO ™ OLOUNHHOND
O A H-HONNO DONONOONHOH

LN H MO vt
I]

AN AN v
[} [I |

OM~ODONM FLNOMNONO =N I
e = NN NN MMM MO

OCOOOOOCOOOT™™HHHOOO +=-H=—NANNOO~HANNMMO—HNMH
COOOCOHHrrIOOOOANNNHHHOOOMMANNHHOOHMNN-HO
O=NOHO-HANMNO-HNNOHNOHNOHNOHOHO O HOOOOO
HONHOMNNHOMNHONHONHONHOAHAOHO =HO O OO OO O

ol A Al A A AR A Al AS AR A S A S AR A S S AN A A MRS AN AL RS AR AL S5 AL s A S ARl S

ANOOIMHHENMNN NN AN ANM =N MO ANONMN NN N
Tt Ordrd v v v v O v b v vl v v v v v v v e v e v e e
NN O L TR T O U T U O T T o
Exba] faTfedbadfad fa]=] fxdfxd F20ed) x] bx R ExExd CxTfad frd) fx] £x]] L2 fx]02T6s] Exd x] (2 2] fx]
+ONOOLONOLD Nt NO O TN OO M HOHNO LD NN M <HH O N
WHODON®OY OROOIOHNDNNMNMOMMOOMNNMITONON
+HOMWMDOM VN HOMAOMMHEr-IDNHONN MONM MM =+
DAONDAMVINLD OANMNDONRONNOAHOHOIM —=HNOONONM v
—HOWNOFHWOW NLONNNWON~INONMNNLD O MM NHOHO
OANNHONMN W—AHOFOHNDOOOORNHMNMMNHODN HOIHMO
2%29%7%1 112ﬂ4436351ﬂﬂﬂ2927lql44737
| I 1] 1 [
~AONONNHAHNM CNONMMONMH NN MM O HD O HMD H O OO
v vt v v v v e v v v v e b v v e e e vty v v e e
LU U L T N TR T T O T O T I U I e |
£ B 0xdfebed (xbe) fxdFad Pxdhxd fnd B Rad Fed £ Y e] 6 e £ B P2 £2] 2] 2] 2] 02] F2] Ex] fxd B Fx] fx]
HHO=NNNE ONMNOOMH A HMOMUDHOHMNOMNONWN
MOOWOWMY FIHANNOOOMOHTNNONN NN HOAD T
WONOHOWNWNN OO OOOVMUNOMWDOHMWDL OWO NN
DAHANNONRO MANONNONONMS-MNFOMN =<HM DO NHMANAHHO
HreErNHFONNR HOFN=NHUNOMNDONNMNNOHNOMNHUMNMHION
MM HOO HIMUNOOANUNMDHHO 0O MNOHOD NN~
N OO vt v v

T AN A it S

COONTHONHO =M=t NN =L = N FH NN H I HONND N H MDD
OOOHOOOOHOOOHOOOOOOOOOOOOOOOOO0OOO0OC
B A LI I T N U N N e e e e e e e e e e
§x3 027 £2] (x] 2] R] £x] fx] 2 Fad £a o] b £ £ 202 Cx] x103] K2 b a] f2] 2] fx] Fx] £ 2] fx] £2] 2] 2] fx]
FHONDIIONNNOVOOHONONNOLNONM-HNO HHO O NNOM
O HONANNMNON NN H WO MOLH 0000 MM DML NI O H—HO
QOMBOO-=HNOHVOORVWONNMMNHHOMMS MMM ONONLD

...................................

QCOOMHHON O—r-O=ANN =L —=NHOMNNF MNHAND NHNLOWD
OOOHOOOO OOOHOOOOOCOOOOOQOOOOOOOO0O00
4+ b+ F e
Ex P bedbxdfad o] (x30e] Fxdfad ExIExdCxdfed e £ 2] Fxd e fnd Lxdfad fx] fx] £2] B Fefxd o EaIx Ex] f2] 0]
FHONHONN WORXFHONOANNOWNONM MO PO +IONNON
QWHNOANNM ONONHO MO MM LMD OB O
WOMNMNOO OHONOWONNMMHHOMMNMNMNMONONLD
QOMMNNMNSOO® AN HHWDON DN N-O NN M O MMM OOWHNKD
U= DO AFHOIODMNOHIHONNHNONOLWWNDHHO D
NMOHOOWDO MHMHNMONNIOHMNONMOOOHOWON
52%42@23 Qﬁ463%%1@933246%%%4%3144%%
OMONOANMHLOMNONO—HNMHNOMNONO=NMHHONONO
MNP PHIHPHPHHLOLN ODLDDID DL LD O OO D WO O WO OM

142

Table B-5: (cont.) Numerical vs Theoretical pz3

Order Exponents

Diff.

Frac.

s e o o oo o ol o o R KRR S o ok e o o sk o R s s o ke s oo o R S o R o R SR ok o o ok R Rl Rk Ok
I A Coefficient B Coefficient Difference

COOOCOCOOOCOOHrrririrOOCOO Hrr+-INANNNOO O HHH=ONNNMNMNMOO = NNMMNHHONNMHD
COO0OCOOHHHHHOOOOONANNH=—A-OOCOMMMAINNHHHO O OHHMMANN——HO OWHMNHO
O NMNHNO-NMNHOHNMNFHOANMO-NMO =NMO=NO—NO—NO-HNO—HO-HO-HOHO-HO OO OO0
WHONHOHFNINHOHIMNAHOMNHONMNHOMANHONHONHONHONHO O HO HOHOHO OO O OO0

DWW WODWDLO DWW LD DD NHLD DD OO D DD LD WD O LD D WD DD LD LD DD WD DN DD WD LD LO OO LO LOLDDLOLOLOLD

HONMANMNHANMOONMANNMON NNNONMNHANNMO MMM =N = =1 O N = NN N O
At A O AT A O v v v v v v v v v v v v o v e v v v v v et v et v e v v e e e e e e

O L T T Tt T U O O O O N O O L I
2] Fdixd =3] £x Exd E] (Y R D e eqfe] fad Bed fxdfrd K] fad fed £ad Bed fad o e Exd o] €2 £2d o]] Y o Bed e 0] Fad £ Ea xd Fad Ex] LT ad e fxd Exd £ e

...

OrNNNWCNMHEHANMM NOHHANNMOWDANNHNDONH O N OMN M P HLO MWD PO PO HO M OWDLONO
v e A A et e e e v e v e v v v vy v v v v e e e e e e e e e e e e e e

L LU N TN L L O O O T O T L L I Y
B bad =30 (0] £x0ed (el o] fadadfadhed (e Exdladiadnd fad fad fand Frd £a] o Ead fxd o] £ fx] £) ExT P2 fad e Fxd Do] £ Fod Bxd FrT a e £ £ fx] fx] £ e]

OMN=HNMOWNOWMHNWMM WONNLNMONO =N Y 00 LN (D 00 O QLN LD CY 00 COM H M) HHI- LD NOO M LD v

...

O HOO =N —H=AN =-HONTF = =N AN =M AN N M HN OO N MHMO
[olalol slolelolel slolelololslolololololololelalololelslololololololololelololololelolelelol o]
—..Mu_._++________+_____...___.________________

..

227924E+0
85582E+0

OO NHRWDPHWDOOLNG VOMNOVOOSNP=HO=AHONNNODAONHNONOMN H—HONHM OO
! 1 I (] [I i 1 I

HONMNHNOMSONO HANMHPDONONO —HNMFEW OM~ODN O =NMNH OO O —NMNHN OO0 O =M HLOO
DD D00 00000000 OO0 NN OO OCO0OCOCOOO Hrir v = NOANONONONONN
b et v e et et e e et et e et el el e e e e e e e e e

143

Table B-6: Numerical vs Theoretical p,; (continue next page)

Order Exponents

Diff.

Frac.
-7.283188E-13 -9.992727E-01

66

4 inb = 62

4, ina

6, NV
6, NV =

NO
NO
ke sk 3k 3 o ok 3 3 e o ok o s ke sk e sk ok o o o o s 2 3k e ke ke sk e sk ok ok e o e o ok e e ok ke ke ke S s o o o o 3k 3 sk e e o ke sk sk 3 o ol e ke ke 3 ke ok ok ofe e ke ke ok ok ke o

I A Coefficient B Coefficient Difference

= TPY2
= DPY2

A
B =
*

0000

0

2.650395E-16 7.285839E-13
-2.650395E~-1

1

OO0
OOwO
O-OO
—OOO

<

8E-0
3E-1

9.99958
.18331

-4

E-
E-

1.285476

11
-5.256906E-13
-9.347694E-13 -9.999180E-01

0o

6.283185E+0
3.834759E-17

2
3
4
5

QOO0OOHHO AN
COO—=HAHOONO
OrNOHOAHOOO
NHO-HOHOOOO

NN

......

......

NOOHOH —H D

..........

I 1

OO0 —=HNMHLN
v v e

COOCOOOOHHHOOHHANNOHNM
COOOTHHTOOONNHHOOMNNHHO
OrHANMO—ANONOHOAO—HOOOO
ONHONHHONHOHOHAO —HO OO OO

MOMMMMMMMMMMMOMMMMNM

OOHINN N HAHOMHONNMOONN
THEHO v A O vt v v e
L T T T T L T
Edfadfelladfadle] fa0adCxdfadfadfalixdfadfxdFxdEx]fedn]

! 1 t

NN NOIMIHOTMIWDID O
e v v vy e e e e e

...................

S i aa
1

CONOONHHAMANNAT NN
EEEEEEEEEEEEEEEEEEEE

....................

N G i P

OOVWOON —riMANNHIHANTMHHN

sy Sl gl

O ONOHNMHNOMOND O —HNMHLD
HreE S NN NN MM MMM M

COOOCOOOOOHHAHHOOO —H-HNNNOO~+NNMMO —ANM<H
COOOOH™MH™HOOOONNNHHHHOOOMMAIN—HAOOHMNO
O-HNNHOHNMNO-NMOANOHNONOHOHOHOAHO OO0 O
HONHOMNMNHOMNMNHONHONHONHOHOHO HO -HO O OO0 O

HHHHHIHHPHHPH PP P PP A AP HPHHHH P HHH P

ANNNM=HONMEHONMN NNOMONHNMOMMOMN NN AN
T O vy O vyl vt bty vl v v e e e e e e e e e
LT T T Tt O T O T T O N A A I
B0 e (Y (e MY fadhn] Fedfadfad fad ExYbadfad fx] ExDEa fad Fad fx] fa] DxTExYfed fx] ExYbada]fa]

..................................

|

HHONOOFHONNMMANNM OHFNOHONO HHD PO OIHFNDLD NN
i v et v e v e v e e e v e e e v v e e e e e

..................................

i i dtt el & i e T e

COHOHOH=HMOONH AW ONH=H=HDNHONNTHOIH MW O
A A A AR AR AR AR AR
Ex63d e 6o Fxd £e] fad Cad £ by fad K2 £) 2] el Ead 2 Fx] £od £ £2] o] fnd £] R 2 £] £adEr] nd
NONWWONM QO =HMNMLONMLNDIONMOLNOWONOOOO—NNN~H
QOHANNODANOOM =N M P HON GO W D N O NN NLD O = NHONN

...................................

COOOHOOOHOOO OO0OQCOO0OO0OOO0OOOOOOOOOOOCOO0
e T e DL T T T T s - T T T S T T I |
ExYr=Exbedfal o fed fa e fefadba] (32l fx] 2 fehxd Cafa] I fed] x] o] £xdfx] b E2df] £xT 02 (2 f2]
NONOHNMOPIHMM ANMLUHIDOMMOWNOONROOHONOIN I
QOFHANDMOANDWA=O HHANHTHOOADNNONDND O =IO
OO HON-DY OMPOONVOMOONMLONNHIONOLWN
WO~ NIHHO O MAOOOOMOOHHONNMTNLNN O
O HFOHNMBNROM —HONIDBUMNNNHOOANOR—=HNHHO
MNOWOAIMHIMOSO OMHOONNONOTONOAMONHNNN NN

..................................

1 ! [

O OMNO-NM<H
MMM HHH PP

ANOOFHDOMNODNO=HNMHNOMNONO
LWL NLOLO OO OO O OO O OO

45
51

144

Table B-6: (cont.) Numerical vs Theoretical py,

Order Exponents

Diff.

Frac.

sk 3k ek ok sk 3 o e o o 3k K sk 8 sk e s o ke ok ok e e ok e e o ek ok sk ok ok 3 ok e 3k o e o ke 3k 3k ke o 6 o ke e ok oe ok ok ok e ok ke ok o o o e ok e e ok o ke ke e o ke sk ek
I A Coefficient B Coefficient Difference

OCOO0O0O0O0OOOOOTHHTMHIOOOO HHH-H~ANNNNOO O —HrH=NANMMNMOO~—=ONANMMNHHO NN WD
COO0OOCOOHHHHHOOOOONNANN=HHHAHOOOOMMMNANNN OO OHIMMNANHHOOWHMNHO
O-HANMIHFN O —=NMNFHOAANMHO—NMO-HNMO-NMO—-NO—ANO—NO-HNOHO-HO-OHOHO OO OOO
WHON—HOFNNAHOFHNNHOMNMNHOMNMNHOMNHONHONAON—ONHHO OO +-O—-HO~OOOOOO0O0

LD D INDWDLOWD D DD D LD N WD O D DD DO DD O DD O WD DD IN DO WD DD DD LD DD D O LD DD DWDD LD DD LOLOLD

—SANOMEHFANNMNN NN =A== AN == NN N OO NN M N - MO N =N NN M ——HO
= e = O v v 1111011
L L O I I 1 LI} i

£ EsT020 Ea Kl 2] G L2 fx] EEE
O =HONNONAMOO NN ONWVLNOMHONN O NANLHNC O MO OO MO NOMNOMONOLWD
DO +=MOMNOY HOONOMNHOFHNN —HO-=NNOOW FHHON =M AN MONHH LD OODOMUOLDNNO
NHOFWLHOOF OO —=OMMNNONOHH=HRNHIHANNNONNONMN DN ANINMN—HONNO O ON
M OYONNMHOWLW OWANNONONOONNON™=HONMN =OMHM N HW O O NN FHO) ON HAOI N vt HO) <HLH O
HHOONOMNIOO ~OUNOATONNHOWOWONMNP~—NOONM MO O D MMUDMMPLOOMN T OO H I DN
OWANDHNMSONN AHHOAOHOIHINNOOMOOVONIHANMMMMSHAMN DNV MNHOM MO -NMLHNM

I

O MMM =H—HNH ONMNHFHNNML = NHD = HOHHDNNOHNM O N H I HOHD MU HDH OO OO
Amiminl ol al ol el ol 111
LU S O N T i 11 J

£ e fa Ced fa o] B2 e] EEE
COHNOHHHMHM NN OO MBS LD = CIHA R HOLD O LIN LI O 0O O M O WM MO OO N O O ML HH
OQONNOHEHOON WFHAMONOCONMMLDNONNOLYHONHNONONMNSOORHO VD =H-BOMMNO NN
WD HHOQOLOMY QOLWHOMNNA —=OOMOMNM=NWO MDD HHOANMDONINDOOONOMNMNNOMNMO
ORNONO=HAND WMMOFONDHDOHOMNMNONNMNOWHMOW N OMON - =HOHO OO NN
OFOFHNOONIM PO DN =M DD HO W LD D OMN O NO NN O N M O vl MM —HONMHO N MDD =N O
MNOOWMNMOIEHY NFHMOHOMNOMNHHNDDNONO HO DWW H MMM O NMO NN M- MO MO AN N
COOOMNO—HONNO O HHHHHMNO D v —=HNLD —HM NN = HANN MO MWD MW T OO
S AN A AR S A AARAA RS AR AAARAAAANARARA SRR AR AN
Ex] e £ £2] fx] £2] £2] o] L] 2] L2 02 o] (2 fx fx] £ £2] Bxd o) fxd £x] 2] e] fr) Fod fx] 2] T e] F2]) Fo e oo Kr] Le] fxY £ g2 fx G f2 ot fe]] f2]Ex] 2]
HHOHONO W HHNHWONNH OO OO ON O NLDM AL (M v M v+ HLO M O LD 00O v 0N FH= 000 O M = HO M N
O ON=NOHNF—HONOMNFNHNODLDMNMLO = ONNMNM-MO MMM HN W = 10O O = MHH 00
HONNANNNOIMNOMNONONONO N0 MMMNNHMHNINHOOANNONOHNNO NN NN v~ = ONN
OO IR ONNOULOND OM MM HOND =M N OWND OO HO ML NN QORI M~ NM
WO HODM NN NO MO MHNHM OO —HOMOHNONOLNOHN-HDONMH-O O HO

..........

..

COOOMNOHON OOHHODTHHMNNO HH) AN~ MO =N HANNDMONHM MM HDOWO
i
fx] £ fe a3 2] 2] fx]L2] 2] fx] EEE
A HOHHONOO HOLN WO ON=HONLD NN vl N v = HLOMN OO0 O =N H M- 00O O M —HHO MM
OON=HMOHINTH WOMN+-ONO O MM O NN M MO MILO NN N 00D O v H v 00 O O =M H P vivi0
FHOMOMOORYIN OOMNONONRQNOAOMMMSNTMHMONTIMONNSOMNOTNNONN NN —H—=ONN
N OWWNHNWOIIN DONNOMNDUNDN OM-MWNMALHAND MO NOWNNO=HOHOMLONNDD OORHNNNM
WHANOMHONM OSSO OMINE=NOMON-OMOIFINONONNOTHNHWOMNOIHHO O HEOW®
OANMOHANNONM <HMHHIMM+HOWONNO HOMNNDP MO OO 0RO NN HHIDFO +-OLOMN 00+

(oYt A m bakallsl ool o)
I 11 [|

1234_5678901234.5678901234568
| o o s et i ot g e odc o]e ode oo ofe efe ofvolesfe oforTopTopTepTwlo Yo p o pTo)

1 ! i I !

DO =HNNOIHNWH-OD O r-NMHIN OMN OO —HNM HLWY
NOOOOOCOOOOO rvririvrrtrd v ONONNONANANN
rirdri i et e e e e e e e e e e e e

Appendix C

Numerical Results — Uniform

B-Field

C.1 0 = 371'/4, Nstep = 30

The Hamiltonian used for this pair of runs was the “particle in a uniform magnetic field”.
Initial conditions for this run were as follows:

h

HIDAubfield: Particle in Uniform Magnetic Field
h

A no = 6

% nstep = 30

h istep = 5

h eps = 1.000000E-30
h

h R_i = 1.100000E+00
; Pr_i = 1.000000E-01
/ btgmaO = 2.000000E+00
A btgma = 2.000000E+00
h

% Theta/Pi = 7.500000E-01

145

146

Table C-1: Reference Trajectory and Matrix at

I 12 s cmmoas
9.580246E-01; -7.831684E-~ 01 2.959188E-01
-2.139009E-01; -1.414214E+00, —7.425064E-01

Symplecticity check: r2 * (J r2°T J°-1) - I

EES IS SR T P T P4 4 PR T e

3.330669E-16, 0.000000E+00
0.000000E+00, 3.330669E-16

Table C-2: Generating Function DSy, for Nonlinear Part

DS12 NO = 6, NV 2, INA =
**************************#*******************
I COEFFICIENT ORDER EXPONENTS
ALL ORDER = O COMPONENTS ZERO
ALL ORDER = 1 COMPONENTS ZERO
1 1.00000000000000E+00 2 11
2 -1.19902474675693E-01 3 30
3 -1.88887659591831E-01 3 21
4 -9.91561841765567E-02 3 12
£ I2:3178793408850LE03 3 03
6 2.70873076393160E-02 4 40
7 5.68867383178616E-02 4 31
8 4.48009780014250E-02 4 22
9 1.56812774078993E-02 4 13
10 1.27213614476274E-03 4 04
11 -1.72558379916914E-02 5 50
12 -4.52992760188530E-02 & 2]
13 -4.75670763441395E-02 & 32
12 -2.49742043447617E-02 & 23
15 -6.55611959563663E-03 b5 14
16 -2.28044523482362E-03 5 05
17 9.71743155865738E-03 6 6 0
18 3.06117348516066E-02 6 51
19 4.01802980280223E-02 6 32
20 2.81278859443301E-02 6 33
21 1.10760155765804E-02 6 23
22 2.32610198141271E-03 6 15
23 1.04454375976331E-04 6 06

0

Order Exponents
0

Diff.

-9.341486E-16 -9.341486E-15
1.526557E-16

Frac.

47
49

1.526557E-16

147

2, ina
2, inb

6, NV
6, NV
a8 ke o 8 B ok o o b e K 6 6 3 o K ok ok o e o ke o s o sk R o e s ok ok ke o s o s ok ke o e o e 6 o oo e sk e o ok ek e o o kol ok o o sk b ke ok e o sk ok ke ok ok
-1.068590E-15
5.000000E-01
5.585810E-16
-2.155394E-16

NO

Table C-3: Comparison of Orbit Center Coordinates z.; and z.,
NO

5.000000E-02 5.000000E-02

5.000000E-01

XCc2
I A Coefficient B Coefficient Difference

= XC1

1
3

A
B
*

20
30
40
50
0
1
0
2
1
0
3
2
1
0
4
3
2
1
0
5
4
3
2
1
0

N M ¢ W

Order Exponents
0
1
1
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
5
5

Frac. Diff.
7.147061E-16 3.529385E-15
2
8
1
2
4
6
2
6
2
5
7
2
2
5
4
2
1
3
6
5

48

2. inb = 50

...........

2, ina

6, NV =
6, NV

...........

1.012508E-01

3.920475E-16
-1.1563157E-15

NO
NO
ok e 3 o5 e o 23 e ok sk e ok dk ok ok ok s ok K e ok 3 ke ok e sk ok e ke e ok e e ok o sk ok 3 ok ke 3k ok ke e s ok ke e ok ok ok ok ok de a8 ok ok ak g s ok ke ke ok o ke e ok sk ok e o ok kK ok sk ok

Table C-4: Comparison of Orbit Center Coordinates y.; and .,

...........

= YC2
I A Coefficient B Coefficient Difference
1.012508E-01
0
3
7
2
1
. 7
9
8
6
2
1
6
4
6
7
6
6
0
5
7

A = YC1
1
2
3
4
5
6
7
8
9
0
!
2
3
4
5
6
7
8
9
0
1

B

148

C.2 6 =2m, Nstep =80

Initial conditions for this second run were as follows:

'/: HIDAubfield: Particle in Uniform Magnetic Field

% no = 6

A nstep = 80

h istep = 5

A eps = 1.000000E-30

h

h R_i = 1.100000E+00

% Pr_i = 1.000000E-01

'/: btgma0 = 2.000000E+00

% btgma = 2.000000E+00

h

; Theta/Pi = 2.000000E+00

Table C-5: Reference Trajectory and Matrix at 0,

. 12 ceccscssszsssssssmsssas
1.100000E+00; 1.000000E+00, 1.037240E-15
1.000000E-01; -4.460940E-15, 1.000000E+00

Symplecticity check: r2 % (J r2°T J"-1) - I

6.106227E-16, 0.000000E+00
0.000000E+00, 6.106227E-16

149

Table C-6: Generating Function DS for Nonlinear Part

DS12 NO = 6, NV= 2, INA = 30
e e 3 e 2 ¢ Sk e e e e e B ok ok sk Sl ke e e ok e ok ok e ke ke ke ke ke 3 ke ke ke ke e ke ek XK ok ok ok K
I COEFFICIENT ORDER EXPONENTS
ALL ORDER = O COMPONENTS ZERO
ALL ORDER = 1 COMPONENTS ZERO
1 1.00000000000000E+00 2 11
2 -9.73649630983299E-17 3 30
3 -2.93156275898013E-16 3 21
4 -6.84970263060207E-16 3 12
5 -2.32089625640220E-16 3 03
6 1.03538494485060E-16 4 40
7 2.31273081086090E-17 4 31
8 4.79044082980069E-17 4 2 2
9 -5.76525073441647E-17 4 13
10 -2.84399772180143E-17 4 02
11 5.40183941875706E-17 5 50
12 -6.39739683078226E-17 5 41
13 4.81378310947689E-18 5 32
14 -2.28971268059336E-17 5 2 3
15 -2.08236528802238E-17 5 14
16 -1.59992295904328E-17 5 05
17 -7.40507241315178E-16 6 6 0
18 -3.00826260165498E-16 6 5 1
19 -3.84638519297185E-16 6 4 32
20 -1.59277776986345E-16 6 33
21 -1.48979394264212E-18 6 2 2
22 -2.33887665519119E-17 6 15
23 6.15458737494442E-18 6 06

Table C-7: Comparison of Orbit Center Coordinates z.; and z.;

A = XC1 NO= 6, NV= 2, ina = 47
B = XC2 NO= 6, NV= 2, inb = 49
e 3 o 3k ke 2 3k e ke ke e e sk ok ok ke e sk ok e ok o e s o e e ok e e ok ke s ok ok e o ko 3¢k e ok e o o ke ok ok 3 ok e aje e e i e ke e e e e ok ke sl e ofe e sk ok afe e e ok ke ok ke ok
I A Coefficient B Coefficient Difference Frac. Diff. Order Exponents
1 5.000000E-02 5.000000E-02 -7.832276E-16 -7.832276E-15 0O 00O
2 -2.253355E-15 10
3 5.000000E-01 5.000000E-01 3.816392E-16 3.816392E-16 1 01
4 -1.460474E-16 2 20
5 2.070770E-16 3 30
6 1.350460E-16 4 40
7 -2.221522E-15 5 50

150

Table C-8: Comparison of Orbit Center Coordinates y.; and y.2

Order Exponents

Diff.

Frac.
1.344411E-15 6.639014E-15

2, ina = 48
2, inb = 60
Difference

= 6, NV =
6, NV =

NO
NO
ok 2 ok e e e e e e e e 3 s e e o o ok ke ke sk ol sk Sl ok A ok ke ke s e e de o ok ok ok sk ke ek e s o ok ke i ok Sk ke e sk sk e sk ok s s ok o ok ok ke 3k sk a e e sk Ok sk ok Ok

I A Coefficient B Coefficient

= YC1
= YC2

A
B =
*

00

0

1.012508E-01
1.000000E+Q0
2.503131E-02

1.012508E-01

1

O
NHO

.....

.....

.....

O=-ONMHD
WNFMN-HO

OO

......

......

Appendix D

Numerical Results —

Convergence Study

The Hamiltonian used for this series of runs was the “particle in a uniform magnetic field”.
Initial conditions were as follows:

% no = 6

% nstep = 8--128

h istep = 2--6

A eps = 1.000000E-30
%

h R_i = 1.100000E+00
% Pr_i = 1.000000E-01
U btgmad = 2.000000E+00
A btgma = 2.000000E+00
%

% Theta/Pi = 7.500000E-01

151

152

Table D-1: Matrix Max-Norm of Symplecticity Error

| Istep
Nstep | 2 3 4 5 6
8 4.3255E-05 1.4004E-07 3.8900E-09 2.5965E-11 1.0636E-13
16 1.7103E-06 5.6948E-11 6.3016E-12 1.2795E-14 5.8287E-16

1.7545E-09 2.2787E-14 6.1062E-16 8.0491E-16 5.8287E-16

|
|

32 } 5.5742E-08 2.4746E-12 1.2185E-14 1.1102E-16 5.4123E-16
| 5.4844E-11 1.1380E-15 1.6098E-15 5.5511E-16 4.5797E-16

153

Table D-2: One-Norm of Error Measure — All Orders

I Istep
Nstep | 2 3 4 5 6
8 | 8.7363E-05 1.1586E-06 8.2371E-09 3.6458E-11 1.8395E-13
16 | 4.7546E-06 1.6343E-08 3.0054E-11 3.2756E-14 1.5609E-16
32 | 2.7570E-07 2.3849E-10 1.1050E-13 1.0717E-16 2.2938E-16
64 | 1.6593E-08 3.5820E-12 4.1035E-16 1.3580E-16 1.6327E-16
128 | 1.0212E-09 5.4930E-14 1.9134E-16 1.0803E-16 3.4782E-16
Table D-3: Max-Norm of Error Measure — All Orders
[T
Nstep | 2 3 4 5 6
8 | 9.6068E-04 8.1473E-06 6.2660E-08 3.5457E-10 1.5664E-12
16 | 5.7081E-05 1.2726E-07 3.1962E-10 4.4822E-13 1.4303E-15
32 | 3.4779E-06 1.9798E-09 1.3288E-12 9.2981E-16 2.8987E-15
64 | 2.1476E-07 3.0897E-11 5.2358E-15 8.5348E-16 1.2598E-15
128 | 1.3345E-08 4.8369E-13 1.6445E-15 1.1657E-15 3.8008E-15
Table D-4: One-Norm of Error Measure — Zeroth Order
Ty T T T T T T T T T TN step T
Nstep | 2 3 4 5 6
8 | 1.4585E-04 1.2221E-06 5.6287E-09 1.4608E-11 1.2657E-14
16 | 8.6334E-06 1.9119E-08 2.3363E-11 1.7544E-14 2.0010E-15
32 | 5.2445E-07 2.9721E-10 9.3363E-14 1.0339E-15 3.2196E-15
64 | 3.2331E-08 4.6308E-12 7.5981E-16 4.7184E-16 3.1572E-16
128 | 2.0073E-09 7.2026E-14 8.4394E-16 1.3548E-15 4.5198E-15
Table D-5: Max-Norm of Error Measure — Zeroth Order
[S
Nstep | 2 3 4 5 6
8 | 9.5403E-05 8.1925E-07 3.8990E-09 1.0734E-11 1.1559E-14
16 | 5.6817E-06 1.2722E-08 1.5789E-11 1.2055E-14 1.4303E-15
32 3.4703E-07 1.9768E-10 6.2488E-14 9.2981E-16 2.8987E-156
64 2.1460E-08 3.0803E-12 6.5573E~16 3.7990E-16 2.0817E-16
128 | 1.3345E-09 4.7467E-14 6.2884E-16 1.1657E-15 3.8008E-15

154

Table D-6: One-Norm of Error Measure — First Order

| Istep
Nstep | 2 3 4 5 6
8 | 3.7734E-04 3.1842E-06 1.5105E-08 4.3018E-11 5.2152E-14
16 | 2.2348E-05 4.9804E-08 6.1246E-11 4.3498E-14 6.0878E-16
32 | 1.3581E-06 7.7435E-10 2.4480E-13 2.6617E-16 5.6997E-16
64 | 8.3744E-08 1.2067E-11 9.2797E-16 4.4506E-16 6.0119E-16
128 | 5.2001E-09 1.8899E-13 9.8109E-16 4.2425E-16 1.4972E-15

Table D-7: Max-Norm of Error Measure — First Order

! Istep
Nstep | 2 3 4 5 6
8 | 9.6068E-04 8.1473E-06 3.8140E-08 1.0202E-10 9.0504E-14
16 | 5.7081E-05 1.2726E-07 1.5692E-10 1.0947E-13 1.0270E-15
32 | 3.4779E-06 1.9798E-09 6.2583E-13 4.1937E-16 7.3552E-16
64 | 2.1476E-07 3.0865E-11 2.1649E-15 8.5348E-16 1.2598E-15
128 | 1.3345E-08 4.8304E-13 1.6445E-15 7.2858E-16 1.7907E-15

Table D-8: One-Norm of Error Measure — Second Order

7.6389E-05 6.5523E-07 3.1885E-09 1.0963E-11 3.8708E-14
4 .5539E-06 1.0307E-08 1.2915E-11 9.2793E-15 2.5349E-16
32 2.7806E-07 1.6094E-10 5.1824E-14 1.6032E-16 2.3383E-16
1.7191E-08 2.5138E-12 1.4369E-16 1.8887E-16 3.6133E-16
1.0690E-09 3.9403E-14 2.9714E-16 2.6202E-16 6.5992E-16

(o]
Ty

Table D-9: Max-Norm of Error Measure — Second Order

o —— " — - ———— T — =~ — — — = - o - -

| 1.7013E-04 1.5262E-06 7.9260E-09 2.5574E-11 8.0630E-14
| 9.9042E-06 2.2670E-08 2.9305E-11 2.2067E-14 8.5522E-16
32 | 5.9660E-07 3.4293E-10 1.1024E-13 5.1695E-16 7.6848E-16
| 3.6610E-08 5.2672E-12 3.3307E-16 6.9389E-16 9.5757E-16
| 2.2675E-09 8.2092E-14 4.7184E-16 5.2042E-16 1.7087E-15

155

Table D-10: One-Norm of Error Measure — Third Order

| Istep
Nstep | 2 3 4 5 6
8 | 8.2636E-05 9.6916E-07 6.0277E-09 2.3632E-11 6.0571E~-14
16 | 5.2976E-06 1.6329E-08 2.6309E-11 2.6570E-14 6.4239E-17
32 | 3.3389E-07 2.6025E-10 1.0578E-13 8.4093E-17 2.2602E-16
64 | 2.0941E-08 4.0932E-12 4.1068E-16 1.3799E-16 1.2640E-16
128 | 1.3110E-09 6.4109E-14 1.2097E-16 7.2398E-17 2.1489E-16

Table D-11;: Max-Norm of Error Measure — Third Order

| Istep

Nstep | 2 3 4 5 6
8 | 2.7359E-04 3.2444E-06 1.9296E-08 7.0275E-11 1.6394E-13
16 l 1.7174E-05 5.2564E-08 7.9429E-11 7.2648E-14 3.0791E-16
32 1.0755E-06 8.2593E-10 3.1176E-13 2.9837E-16 9.4933E-16
64 | 6.7299E-08 1.2907E-11 1.1800E-15 5.4904E-16 2.7409E-16
128 4,2091E-09 2.0139E-13 2.4199E-16 1.6567E-16 5.5077E-16
Table D-12: One-Norm of Error Measure — Fourth Order
JE T

Nstep | 2 3 4 5 6
8 | 7.2452E-05 9.7214E-07 6.2704E-09 2.6137E-11 1.7642E-13
16 | 3.4235E-06 1.1909E-08 1.9725E-11 1.9272E-14 7.5881E-17
32 | 1.8891E-07 1.6773E-10 7.1463E-14 5.9848E-17 1.9396E-16
64 | 1.1062E-08 2.4733E-12 2.7637E-16 1.3751E-16 1.4704E-16
128 | 6.9157E-10 3.7498E-14 1.5688E-16 3.5592E-17 1.5850E-16

Table D-13: Max-Norm of Error Measure — Fourth Order

| 1.7701E-04 2.7549E-06 2.0074E-08 8.9340E-11 4.7668E-13
| 1.1032E-05 4.0305E-08 7.1566E-11 8.9522E-14 3.6299E-16
32 | 7.1724E-07 6.5739E-10 2.9129E-13 2.7886E-16 7.4116E-16
| 4.5839E-08 1.0501E-11 1.1848E-15 4.9570E-16 5.8200E-16
| 2.8984E-09 1.6574E-13 3.4261E~16 8.1532E-17 4.6491E-16

156

Table D-14: One-Norm of Error Measure — Fifth Order

| Istep
Nstep | 2 3 4 5 6
8 1.1610E-04 2.4595E-06 2.2098E-08 1.1163E-10 6.3326E-13
16 5.3578E-06 3.2108E-08 7.7456E-11 9.8486E-14 1.2593E-16

I
|

32 ‘ 2.7116E-07 4.3630E-10 2.7031E-13 1.3913E-16 1.8295E-16
[

64 1.5052E~-08 6.2609E-12 9.6639E-16 1.4506E-16 1.4773E-16
128 8.8032E-10 9.3651E-14 1.3560E~16 4.0867E-17 1.4217E-16
Table D-15: Max-Norm of Error Measure — Fifth Order
Ty T T T T T 1step T
Nstep | 2 3 4 5 6

8 | 4.2670E-04 7.4183E-06 6.2660E~08 3.5457E-10 1.5664E-12
16 1.6992E-05 1.1878E-07 3.1962E-10 4.4822E-13 4.2848E-16
32 | 9.5011E-07 1.9561E-09 1.3288E-12 5.9436E-16 7.8475E-16
64 | 5.9088E-08 3.0897E-11 5.2358E-15 5.1174E-16 5.0307E-16

128 | 3.6685E-09 4.8369E-13 4.0853E-16 1.0755E-16 5.1088E-16

Appendix E

Numerical Results — Lithium

Lens

1567

158

Table E-1: Contributions to ¢3(3,3) := (P} ,) made by each order. Columns labeled by 0rd

give order of contribution. Rows labeled by Tot give total contribution to ¢(3,3) summed

through order 0rd. Rows labeled by Inc give incremental contribution to ¢(3,3) made by

order Ord.

For comparison, the value of ¢5(1,3) := (X2 Px ;) is also given; note that o(1,3) changes

sign, as it should, as o(3,3) passes through the minimum near Li.,, ~ (1.0826) Ly, where

Lo = /\/4

LLens = 29,2794 (LLens/LO) = 1.08244

Sigma_2(3,3) = 1.068445E-02 Sigma_2(1,3) = 5.140557E-04

ord | 2 4 & 8 10

Tot | 1.068086E-02 1.034107E-02 1.065238E-02 1.068151E-02 1.068445E-02
Inc | 1.068086E-02 -3.397882E-04 3.113170E-04 2.912617E-05 2.942961E-06
LLens = 29.2815 (LLens/LO) = 1.08252

Sigma_2(3,3) = 1.068440E-02 Sigma_2(1,3) = 2.7247T7TE-04

Ord | 2 4 6 8 10

= F+ 4+ttt 3ttt 3t 1t 1t 1 i1t i1ttt ittt 1ttt it 3ttt i1ttt 2332t ++r+ 12113+t 3t 3+t 3433
Tot | 1.067701E-02 1.034085E-02 1.065232E-02 1.068146E-02 1.068440E-02
Inc | 1.067701E-02 -3.361656E-04 3.114788E-04 2.9135456E-05 2.943701E-06
LLens = 29.2837 (LLens/L0O) = 1.08260

Sigma_2(3,3) = 1.068438E-02 Sigma_2(1,3) = 3.089970E-05

Ord | 2 4 __________ & ________...8 _________l -
Tot | 1.067320E-02 1.034065E-02 1.065229E-02 1.068144E-02 1.068438E-02
Inc | 1.067320E-02 -3.325426E-04 3.116407E-04 2.914474E-05 2.944438E-06
LLens = 29.2859 (LLens/L0) = 1.08268

Sigma_2(3,3) = 1.068439E-02 Sigma_2(1,3) = -2.106783E-04

Ord | 2 4 6 8 10

(++ + + + + + : + 3+ 1+ ¢+ 1ttt ¢+ttt ++tt+ i+t i1+t t+ i+ t31it3 1+ 33+ 3+ 3t 1t 32 3t 1+ 3t 31+t 1233t
Tot | 1.066941E-02 1.034049E-02 1.065230E-02 1.068145E-02 1.068439E-02
Inc | 1.066941E-02 -3.289191E-04 3.118026E-04 2.915402E-05 2.945178E-06
LLens = 29.2880 (LLens/L0) = 1.08276

Sigma_2(3,3) = 1.068444E-02 Sigma_2(1,3) = -4.522563E-04

Ord | 2 48 _________1o -
ToT | 1.066566E-02 1.034036E-02 1.065233E-02 1.068149E-02 1.068444E-02
Inc | 1.066566E-02 -3.252952E-04 3.119644E-04 2.916330E-05 2.945918E-06

Appendix F

Figures

159

160

Figure F-1: Geometry for uniform magnetic field test problem. Note: § is measured clock-

wise, a; and a; are measured counterclockwise.

Error

Error

161

Symplecticity Lrror vs Nste
ymp Mul.ri):{ Max—Norm p

107" | 1 1 1 |
107 G\\ -
10-7 7 \S\ i
— ~
107° - \ L
10 -11] |
. -
107" \
107° - -
-17
10 T T T T T
4 8 18 32 84 128 256
Nstep
Figure F-2: Symplecticity Error vs Nstep
Symplecticity Frror vs Iste
ymp Matrixy Max—~Norm P
107° 1 | 1 1 1
107 -
1077 - [
107 -
_ L
107 H |
—‘ —
107" -
10*15 _ F
i
o I | T u -
1 2 3 4 5 8 7
Istep

Figure F-3: Symplecticity Error vs Istep

: lstep

. lstep

: Istep

: Istep

: Istep

: Nstep

: Nstep

: Nstep

: Nstep

: Nstep

il

il

i}

128

162

Error Measure vs Nstep

1—Norm, All Orders

10" 1 1 |

L

10

Error
- [
o| °| 1 5
- & = &
[N N N S N N B |
T T T 1T 1T T 11

1
16 32
Nstep

Figure F-4: 1-Norm of Error Measure vs Nstep (ALl Orders).

Error Measure vs Nstep

-
64

Max-—-Norm, All Orders

T
128 256

10'8 A | 1 | 1
107 ﬁ -
1077 =
107 -
[5
[+ — —
5
=3 10'“ - b
. l-
107" -
e b—
107" 4 l
-17
10 T T T T T
4 8 16 a2 64 128 256
Nstep

: Istep

: Istep

: Istep

: Istep

: Istep

: Istep

: Istep

: Istep

: Istep

: Istep

Figure F-5: Max-Norm of Error Measure vs Nstep (All Orders).

i

Error

Error

163

FError Measure vs Nstep
{-Norm, Zeroth Order

107 L | ! 4

i — O: Istep

- G\ - o: Istep

107 - -
-1 \S\B A Istcp
-0

107 ~ =
- — O Istep
107" " L
— *: [step
10" .
-
lo—l'l
4

Figure F-6: 1-Norm of Error Measure vs Nstep (Zeroth Order).

Error Measure vs Nstep
Max—Norm, Zeroth Order

10°° 1 L 1 1 i
- — O: Istep
107" L
b L- ¢: Istep
107" }
- 4A: Istep
-9
10~ -
-1 - O Istep
-t
10 —-1 |
- — #: Istep
-13
10 7~ -
-8
10 ~ F
-17
10 T T N T T
4 8 16 32 64 128 258
Nstep

Figure F-7: Max-Norm of Error Measure vs Nstep (Zeroth Order).

it

1]

I

Error

Error

164

Frror Measure vs Nstep
{-Norm, First Order

I

L 1

10°
- O: Istep

\s\ _ o: IsLep
— \\ - & Istep
-8
10 -
. — O: lstep
107" o
. \ w: Istep
-13

R |
18 32 84 128 256

Nstep

10

r

5 =)

!

%V
T T

-~
o]

Figure F-8: 1-Norm of Error Measure vs Nstep (First Order).

Error Measure vs Istep
Max—~Norm, First Order

10" & 1 I 1 1
- — ©O: Nstep
10 ° L
— ~ ©o: Nstep
107 - -
- '\ - &: Nstep
-8
10 -
; - DO Nstep
107" |
-1 - *: Nstep
-1a
107
_ i
107" - -
1
10 T T T T T
1 3 4 5 8 7
Istep

Figure F-9: Max-Norm of Error Measure vs Nstep (First Order).

I

1]

it

32

84

128

Error

{/

Error

— — —
°._ o'l_ e 5
o a =
S N Y N R S
1 T 1 T 1 1
%

165

Error Measure vs Nste
Max—Norm, Second Order

10 3 4 _ { _t |

I O\ — ©O: Istep
107° - -

- - o: Istep

-7

10 - -

— — & istep
107 - -

- — O: Istep
107

~
: Istep

5
101—1

-17

10 T I I o T T T
4 8 18 32 84 128 258
Nstep

Figure F-10: 1-Norm of Error Measure vs Nstep (Second Order).

Error Measure vs Nstep
Max—Norm, Second Order

107 i ! | ! |
. ~ O Istep
107 L
N - o: Istep
107" -
- - 4 Istep
-9
0O: Istep
: Istep

T
32 84 128 256
Nstep

S~
fo
-
[s-]

Figure F-11: Max-Norm of Error Measure vs Nstep (Second Order).

]

i

I}

it

Error

Error

. o S)
e .'_] I
[} - o -~
o
I B A

166

Frror Measure vs Nstep
1-Norm, Third Order

| i |

—_
o
@

4
T

: Istep

: Islep

. Istep

: Istep

: Istep

Figure F-12: 1-Norm of Error Measure vs Nstep (Third Order).

Error Measure vs Nstep
Max—Norm, Third Order

J
0] i
-

10—]6 T
1 I~

-17
10 T T T T T
4 8 18 32 64 128 258
Nstep

: Istep

: Istep

: Istep

: Istep

: Istep

Figure F-13: Max-Norm of Error Measure vs Nstep (Third Order).

[}

]

]

1

I

]

It

I

Error

Error

167

Frror Measure vs Nstep
1-Norm, Fourth Order

10° ! | 1 B 1

- ~ ©O: Istep
107 - G\ -

n - o: Istep
10”7 -

- ~ & lstep
107 - \ , -

- ~ 0O lstep
107" o -

— ~ #: Istep
107 L
10 "° &

o, L
107 ey 1 J T 7

4 8 18 32 84 128 256

Nstep
Figure F-14: 1-Norm of Error Measure vs Nstep (Fourth Order).
Error Measure vs Nstep
Max~Norm, Fourth Order

1072 | ! 1 L 1

hy — O: Istep =
107 -

] I~ o: Istep
107" L

- - 4 Istep
107 -

’ - O Istep
107" 4 -

n - % Istep
107" N L—

. -
10-[5 |

] B
107" T T T T T

4 8 16 32 64 128 256

Nslep

Figure F-15: Max-Norm of Error Measure vs Nstep (Fourth Order).

I
[

I}
w

]
>

I
]

il
[~}

1]
w

[
>

I
[¢]]

it
=]

Error

Error

168

Error Measure vs Nstep
1-Norm, Fifth Order

10’5 1 _ 1 | | |
- - O
107° - G\\ -
Q\\\\\\\\ -0
107
— K \ = A
10'9] -
_ - o
107" — -
- L ox
10-13 _l r_
10 16 | [
| |
107 = T T T T T T
4 8 18 32 84 128 258

Figure F-16: 1-Norm of Error Measure vs Nstep (Fifth Order).

Nstep

Error Measure vs Nstep
Max—Norm, Fifth Order

L I !

10
i L o
107" -
- - o
1077 - L
- a
107" -
a
10~ll _] L
-1 - %
107 ' -
i =
107" - -
— —
17
10 T T T T T
4 8 16 32 64 128 258

Nstep

: Istep

: lstep

: Istep

. Istep

: Istep

: Istep

: Istep

. Istep

: Istep

: Istep

Figure F-17: Max-Norm of Error Measure vs Nstep (Fifth Order).

I

1]

]

Error

Error

169

Error Measure vs Istep
1-Norm, All Orders

10 3 | 1 B ! 1
— _ O
107 -
- \ - <
107 -
N
107 * -
_.1 — 0O
107" -
— - %
107" 4 -
-18
10 =
— -
-17
L) B T T T
1 2 3 4 5 8 7
Istep

Figure F-18: 1-Norm of Error Measure vs Istep (All Orders).

Error Measure vs Istep
Max—Norm, All Orders

1 1 |

al
-
|

ol ol o. BI 5' 5
& & =3 @ 4 &
| S S J S N N |
1T T 1 1 17 + . T 7T T
4 jn D o

—

T
4

Istep

-
N —
w
[S1I
<

: Nstep

: Nsiep

. Nstep

: Nstep

: Nstep

: Nstep

: Nstep

: Nstep

: Nstep

: Nstep

Figure F-19: Max-Norm of Error Measure vs Istep (All Orders).

i

18

32

84

128

128

Error

Error

170

Error Measure vs Istep
1-Norm, All Orders

10° | 1 1 i |
- G\ ~ ©O: Nstep
-8
107° -
Al N
\S\ ~ 0: Nstep
107 ~ ,
- \ ~ &: Nstep
107 -
-1 \ I~ O: Nstep
107" 4 AN n
— - +#: Nstep
10 13 _ -
_ -
10 18 _ |
J n
-17
10 D T T T L
1 2 3 4 5 8 7
[step

Figure F-20: 1-Norm of Error Measure vs Istep (ALL Orders).

Error Measure vs Istep
Max—Norm, All Orders

10_3 _& | 1 1 |
ﬂ ~ ©O: Nstep
10°° - —
- - ©: Nstep
1077 -
- \ r- A: Nstep
-9
10~ -
- - O: Nstep
10‘“—1 -
T ~ *: Nstep
-13
10 |
1 | :
10—15] |
-17
10 T T T T T
1 2 3 4 5 7
Islep

Figure F-21: Max-Norm of Error Measure vs Istep (All Orders).

I

[}

128

18

32

64

128

Error

Error

171

Frror Measure vs Istep
1-Norm, First Order

1 1 |

L
/)
}

10 \& -
- o
107 \\
. -
— r—— A
-8
107 \ -
- — g
10—&1 _ [
-] —
10 S =
— b—
107 -
-17
0 5 s e T —t
1 2 3 4 5 8 7
Istep

Figure F-22: 1-Norm of Error Measure vs Istep (First Order).

Error Measure vs Istep
Max—Norm, First Order

10'3 4 1 | A 1

_ -
10 ° -

— — ©
107 -1 =

- A

107° -

- - o
107 -] -

_{ — *
107" _{ |

- L
10—16 1 [

-17

10 T T T T T

1 2 3 4 5 8 7

Istep

: Nstep

Nstep

: Nstep

: Nstep

. Nstep

: Nstep

: Nstep

: Nslep

: Nstep

: Nstep

Figure F-23: Max-Norm of Error Measure vs Istep (First Order).

it

i

]

64

128

18

32

84

128

Error

Error

172

Error Measure vs Istep
1-Norm, Second Order

- - ©O: Nstep = 8
107° - -
- - 9: Nstep = 18
107 - =
= - &: Nstep = 32
107" L
- - O: Nstep = 64
-11
107" -
] — % Nstep = 128
107 L
— . -
107" S -
-17
10 T I T N r
1 2 3 4 5 8 7
Istep

Figure F-24: 1-Norm of Error Measure vs Istep (Second Order).

Error Measure vs Istep
Max—Norm, Second Order

107" _1 ! 1 ! |
= - O: Nstep = 8
10°° - »
- - o: Nstep = 18
107 -
-] N A: Nstep = 32
1™ -
- - O: Nstep = 64
1071 4 B
- % Nstep = 128
10'“'] -
— -
10-15_ t

T T T
4 5 8 7

Istep

-
v
w

Figure F-25: Max-Norm of Error Measure vs Istep (Second Order).

Error

Error

173

Error Measure vs Istep
1-Norm, Third Order

10’3 L] 1 1
= ~ ©O: Nstep = 8
10°" -
- \ - ©: Nstep = 18
. a P
10 - I
- ~ &: Nstep = 32
107" S -
- [~ O: Nstep = 84
107" S =
- r *: Nstep = 128
107" —
107" -
_(—
-17 L
10 4 B D -
1 2 3 4 5 8 7
Istep

Figure F-26: 1-Norm of Error Measure vs Istep (Third Order).

Error Measure vs Istep
Max—Norm, Third Order

10’3 | ! | | |

r— O: Nstep = 8
i

10°

-4 o: Nstep = 18
1077 =

| - &: Nstep = 32
107 - -

- - 0O: Nstep = 64
1078 - N

- - *: Nstep 128
107" 4 -
107" J L

.

Istep

il

,_.
DN -
S
=
@
q

Figure F-27: Max-Norm of Error Measure vs Istep (Third Order).

Error

Error

174

Error Measure vs Istep
1-Norm, Fourth Order

i
— - O: Nst
-5 G\ P

10 - :
. \\\ - ©: Nstep = 18
7 \

A: Nstep = 32

i

i
e}

: Nstep = 64

~ o.'_ ‘51
| I I
T T T 1 1T T 1
* a

: Nstep = 128

H
O —
[
P
|
[
o
[
|
y

Figure F-28: 1-Norm of Error Measure vs Istep (Fourth Order).

Error Measure vs Istep
Max—Norm, Fourth Order

10‘3 1 | |] |

- - ©: Nstep = 8
10 ® - =

- - ©: Nstep = 18
1077 o -

- ~ &: Nstep = 32
107 -

- - O: Nstep = 64
10-11 _ |

- r *: Nstep = 128
107 =

- L
107" -
10"“T

T T T T T
1 2 3 4 5 6 7
Istep

Figure F-29: Max-Norm of Error Measure vs Istep (Fourth Order).

Error

Error

175

Error Measure vs Istep
1-Norm, Fifth Order

! 1]

1
— G\ ~ ©O: Nstep

107 - .
- ©: Nstep
107 ' -
- — &: Nstep
107" -
O: Nstep
1™
#: Nstep
104: \\
1078 | L

B E— T T —I-
3 4 5 8 7

Istep

-

1

| N
T T T 1

T

I

—
N

Figure F-30: 1-Norm of Error Measure vs Istep (Fifth Order).

Error Measure vs Istep
Max—Norm, Fifth Order

lo's ! 1 1 1 |
— — ©O: Nstep
107" -
— r— ¢o: Nstep
107 =
-1 P A: Nstep
-2
10~ - -
- — O: Nstep
-1
10 -
I - #: Nstep
107 -
— b
107" -
-17
10 T T T T T
1 2 3 4 5 8 7
Istep

Figure F-31: Max-Norm of Error Measure vs Istep (Fifth Order).

I

]

I

]

16

32

84

128

32

84

128

176

vSs

B I S

L

_
<
o

0.4 —
0.3 —
0.2
0.1 —

0.5
-0.1 +

]
X
T

-0.3

(9/h99) *d

—0.4 —

-0.5

10

-8 -6 -4 -2

—-10

X (cm)

Contours show 50% and

Figure F-32: Scatter-plot of z vs p, for optimized lithium lens.

90% beam ellipses.

Appendix G

FORTRAN Code

G.1 Master Modules

G.1.1 HJIDAdJrift

PROGRAM HIDAdrift
PARAMETER (no=12, nd=2)
EXTERNAL drift

CALL daini(no, (nd*2), (-10))
CALL HJIDAdrive(drift)

STOP
END

177

178

(C 2k 3de ke she ke sk e ke sk 3 3 2k S 80 3 e ke sl 3 3 3k ok e Sk 3 o e s 3¢ 3k o 3 ke a8 sk sk e e e ok e ke e sk e sl e i e skl 3 o e o ek sl e e i o s ke Sk ke o ke o

*
SUBROUTINE HJDAdrive(hmltn)
IMPLICIT NONE
INTEGER no, nd, nv, nstep, istep
PARAMETER (no=12, nd=2, nv=nd*2, nstep=20, istep=4)
DOUBLE PRECISION zero, one, two, four
PARAMETER (zero=0.0d0, one=1.0d0, two=2.0d0, four=4.0d0)
INTEGER i, j
DOUBLE PRECISION =z, gammaO, betaO, bgmal
DOUBLE PRECISION z1, xi(nv), ri(av,nv)
DOUBLE PRECISION z2, x2(nv), r2(av,nv)
DOUBLE PRECISION x0, ri(nv,nv), temp(nv,nv)
DOUBLE PRECISION f(nv), a(nv,nv)
EXTERNAL hmltn
INTEGER 1xt, 1x2, 1x3, 1x4, 1lxb, 1x6, 1x7, 1x8
INTEGER isala, isa2a, isa3a
*DAINT (no,nv) DSO, DSi12
*DAINT (no,nv) Dx(nv), Dy, Dz(nv)
*DAINT (no,nv) Dx1(nv), Dx2(nv)
*DAINT (no,nv) Dtcl, Dxci, Dpt1, Dpxi
*DAINT (no,nv) Dtc2, Dxc2, Dpt2, Dpx2
*DAINT (no,nv) Ttc2, Txc2, Tpt2, Tpx2
*DAINT (no,nv) Dh, Dpz, Tst(mv), GS, DStheo, Diff
*
C===================================== ———————— 4+ttt + -t + + + 1t &£ 1 &+
CALL daeps(1.0d4-30)
zl = ZERD
z2 = ONE
z = z2 - z1
gammaQ = TWOD
beta0 = sqrt(ONE - ONE/gamma0/gammaO)
bgma0 = sqrt(gammaO*gammaO - ONE)
*===
CALL HJDXident(no,nv,nd,nv, Dz, x1,r1,Ds0)
x1(1) = ZERO
x1(2) = ZERO
x1(3) = - gamma0
x1(4) = ZERO
CALL HJIDAbsint(=i, x1i,r1,DS0, =z2, x2,r2,DSi2, Dz,Dx,
& no,nv,nd,nv, nstep,istep, hmltn)
PR PP AR P P P T R R R A P R R T A R PR AR S PR R R PR R R 4

CALL HJDAderiv(z2, x2,r2,DSi2, f,a,Gs, no,nv,nd,nv, Dz,Dx2, hmltn)

*DA DStheo = DSO + zx*Gs
*DA Diff = DS12 - DStheo

179

CALL danot(no-1)

CALL HJDX1(x1,r1,DS12, no,nv,nd,nv, Dz, Dx1)
CALL HJDX2(x2,r2,DS12, no,nv,nd,nv, Dz, Dx2)

*DA Dtcl = Dx1(1)
*DA Dxcl = Dx1(2)
*DA Dpt1l = Dx1(3)
*DA Dpxl = Dx1(4)
*DA Dtc2 = Dx2(1)
*DA Dxc2 = Dx2(2)
*DA Dpt2 = Dx2(3)
*DA Dpx2 = Dx2(4)
CALL drift(z2, Dx2, no,nv,nd, Dh)
*DA Dpz = zero - Dh

CALL dapri(Dpz, 10)

*DA Ttc2 = Dtcl - Dpt1/Dpz
*DA Txc2 = Dxcl + Dpx1/Dpz
*DA Tpt2 = Dptil
*DA Tpx2 = Dpx1
*
Lt Pttt Pttt A Pt -t s s P P 2 PP L R A S P L T+ 1]
*

WRITE(10, ’(ih1)’)

WRITE(10, ’(a)’)’ x1; ri’

DO i=1i,nv

WRITE(10, 2001) x1(i), (ri1(i,j), j=1,nv)
END DO
WRITE(10, *)

WRITE(10, ’(a)’)’ x2; r2’
DO i=1,nv

WRITE(10, 2001) x2(i), (r2(i,j), j=1,nv)
END DO

WRITE(10, *)

CALL sympinv(r2,nv, ri,nv, nd)
CALL mmmul(r2,nv, ri,nv, temp,nv, nv)

DO i=1,nv
temp(i,i) = temp(i,i) - ONE
END DO
WRITE(10, ’(a)’)
& ’ Symplecticity check: r2 *x (J r2°T J°-1) - I°
DO i=1,nv

WRITE(10, 2002) (temp(i,j), j=1,nv)
END DO

*

*
2001

2002
*

*

Coteoseode sk ook kootoioiokok skokokokokokokokokokokokok End O File seokokokokookok ok s sk ok sk ok ke sk ok ok ook ok o o ok ook ook ok ok o

180

DO j=1,nv
DO i=1,nv
temp(i,j) = ZERD
END DO
temp(j,j) = ONE
END DO
temp(1,3) = z/bgma0/bgma0/bgmal
temp(2,4) = z/betal/gammal
WRITE(10, ’(1x)’)
DO i=1,nv

WRITE(10, 2002) (temp(i,j), j=1,nv)
END DO

WRITE(10, ’(1x)’)
DO i=1,nv

WRITE(10, 2002) ((R2(i,j)-temp(i,j)), j=1,nv)
END DO

WRITE(10, ’(1h1)?)
CALL mypri(DS12, DStheo, 10)

WRITE(10, ’(1h1)’)
CALL mypri(Dtc2, Ttc2, 10)

WRITE(10, ’(1h1)’)
CALL mypri(Dxc2, Txc2, 10)

WRITE(10, ’(1hi1)’)
CALL mypri(Dpt2, Tpt2, 10)

WRITE(10, ’(1h1)’)
CALL mypri(Dpx2, Tpx2, 10)

FORMAT(1x, 1pe15.8, ’; ’, 1pe15.8, 4(’, ’, 1pei5.8))
FORMAT(1x, 15x, 3x, 1pe16.8, 4(’, ’, 1pe15.8))
RETURN

END

181

G.1.2 HJIDApolrsho

PROGRAM HJDApolrsho
PARAMETER (nd=2
EXTERNAL polrsho
*
S===
WRITE(x, '(x, 11ih no =, $))
READ (x,’(i10)’) no

CALL daini(no, (nd*2), (-10))
CALL HJDAdrive(no, polrsho)

STOP
END

(3% 2k ke 3k e 3 ok e e ok o e 3 ok 3k 3k 3k e 3 ke sk o e 3 ok s 3K ok o 6 sk sk e ok sk 3k sk ok o 3k ok ke ke 3 e ke 3k ok s e ke i ok s 3 ol e sk s e ok s 3k sk e ok ok e ke sk

*
SUBROUTINE HJDAdrive(no, hmltn)
IMPLICIT NONE
INTEGER no, nd, nv, nstep, istep
PARAMETER (nd=2, nv=ndx*2)
DOUBLE PRECISION zero, one, two, four
PARAMETER (zero=0.0d0, one=1.0d40, two=2.0d0, four=4.0d0)
DOUBLE PRECISION eps
INTEGER i, j
DOUBLE PRECISION t1, x1(nv), ri(nv, nv)
DOUBLE PRECISION t2, x2(nv), r2(nv, nv)
DOUBLE PRECISION x0, ri(nv, nv), temp(nv, nv)
DOUBLE PRECISION R_i, Theta_i, Pr_i, Ptheta_i
DOUBLE PRECISION ct, st
DOUBLE PRECISION pi, pi2, w
COMMON pi, pi2, w
EXTERNAL hmltn
INTEGER 1x1, 1x2, 1x3, 1x4, 1xb5, 1x6, 1x7, 1x8, 1x9
INTEGER isala, isa2a, isa3a
*DAINT (no,nv) Ds0O, Dsi2
*DAINT (no,nv) Dz(nv), Dx(nv)
*DAINT (no,nv) Dx1(nv), Dx2(nv)
*DAINT (no,nv) Dri, Dthi, Dpri, Dpti
*DAINT (no,nv) Dr2, Dth2, Dpr2, Dpt2
*DAINT (no,nv) Dxc1, Dpxi, Dycil, Dpyl
*DAINT (no,nv) Dxc2, Dpx2, Dyc2, Dpy2
*DAINT (no,nv) Txc2, Tpx2, Tyc2, Tpy2
*DAINT (no,nv) Tst(nv)
%

182

pi = FOUR * atan(ONE)

pi2 TWO * pi
w = pi2
tl = zero
t2 = 2.04d0 / 3.040
WRITE(10, ’(/a/)’)
& > HIDApolrsho: Harmonic Oscillator in Polar Coordinates ’
write(10, '(x, 1ih no = , i4)’) no
write(*, '(x, 11h nstep = , $)’)
read (=*,’(i10)’) nstep
write(10, ’(x, 11h nstep = , i4)’) nstep
write(x, "(x, 11h istep = , $)7)
read (*,’(i10)’) istep
write(10, ’(x, 11h istep = , i4)’) istep
write(x, "(x, 11h eps = , $)’)
read (*,’(1pe20.10)’) eps
write(10, '(x, 11h eps = , 1pel3.6)’) eps
CALL daeps(eps)
write(*, '(x, 11h R_i=, $)?%)
read (*,’(1pe20.10)’) R_i
write(10, '(x, 11ih R_i =, 1lpel3.6)’) R_i
write(*, ’(x, 1ih Pr_i =, $)?)
read (* ’(1pe20 10) %) Pr_i
write(10, '(x, 11ih Pr_i = , 1pel3.6)’) Pr_i
write('(x, 11hPtheta_i = , $)°’)
read (= ’(1p620 10)’) Ptheta_i
write(10, '(x, 11ihPtheta_i = , 1pel3.6)’) Ptheta_i
write(10, ’(x, 11ih tl =, 1pei3.6)’) ti
write(10, '(x, 11h t2 = , 1pel3.6)’) t2
*
Theta_i = ZERO
Pr_i = Pr_i % wook R_1 .
Ptheta_i = Ptheta_i * w * R_i * R_i
CALL HJDXident(no,nv,nd,nv, Dz, x1,r1,Ds0)
x1(1) = R_i
x1(2) = Theta_i
x1(3) = Pr_i
x1(4) = Ptheta_i
*
*===
*
CALL HJIDAbsint(t1, x1,r1,Ds0, t2, x2,r2,Dsl2,
& Dz,Dx, no,nv,nd,nd,nd*2, nstep,istep, hmltn)
*

KT TS TS TS T S S S S S S S S S S S TS S S S S S S S S T S T S S S S S N S T S s T ST S =S s

183

Kmm==

*

CALL danot(no-1)

CALL HJDX1(x1,r1,DS12, no,nv,nd,nv, Dz, Dx1)
CALL HJDX2(x2,r2,DS12, no,nv,nd,nv, Dz, Dx2)

st = sin(w*(t2-t1))

ct = cos(wx(t2-t1))

Dri = Dx1(1)

Dthl = Dx1(2)

Dpri = Dx1(3)

Dptl = Dx1(4)

Dxcl = Dri = cos(Dthil)

Dyci = Dri »* sin(Dthi)

Dpxl = Dprl * cos(Dthil) - Dpti * sin(Dthl) / Dri
Dpyl = Dprl * sin(Dthi) + Dptl * cos(Dthi) / Dri
Dr2 = Dx2(1)

Dth2 = Dx2(2)

Dpr2 = Dx2(3)

Dpt2 = Dx2(4)

Dxc2 = Dr2 x* cos{ Dth2)

Dyc2 = Dr2 =* sin(Dth2)

Dpx2 = Dpr2 * cos(Dth2) - Dpt2 * sin(Dth2) / Dr2
Dpy2 = Dpr2 * sin(Dth2) + Dpt2 * cos(Dth2) / Dr2
Txc2 = Dxcl*ct + Dpxl*st/w

Tyc2 = Dycl*ct + Dpyl*st/w

Tpx2 = Dpxl*ct - Dxcl*st*w

Tpy2 = Dpyl*ct - Dyclxst*w

tst(1) = Txc2 - Dxc2

tst(2) = Tyc2 - Dyc2

tst(3) = (Tpx2 - Dpx2) / w

tst(4) = (Tpy2 - Dpy2) / w

WRITE(10, ’(1h1)’)

WRITE(10, ’(a)’) ’ x1; rl’

DO i=1,nv
WRITE(10, 2001) x1(i), (ri(i,j), j=1,nv)

END D?
WRITE(10, x*)
WRITE(10, ’(a)’) ’ x2; r2’
DO i=1i,nv
WRITE(10, 2001) x2(i), (r2(i,j), j=1,nv)

END D?
WRITE(10, *)

184

CALL sympinv(r2,nv, ri,nv, nd)
CALL mmmul(r2,nv, ri,nv, temp,nv, nv)

WRITE(10, ’(a)’) ’ Symplecticity check: 12 * (J r2°T J~-1) °’
DO i=1,nv

WRITE(10, 2002) (temp(i,j), j=1,nv)
END DO

WRITE(10, ’(1h1)’)
CALL dapri(DsO, 10)
WRITE(10, *)

DO i=1,nv
CALL dapri(Dx1(i), 10)

WRITE(10, *)
END DO

WRITE(10, ’'(1h1)’)
CALL dapri(Ds12, 10)
WRITE(10, *)

DO i=1,nv
CALL dapri(Dx2(i), 10)

WRITE(10, *)
END DO

WRITE(10, ’(1h1)’)
DO i=1,nd*2

CALL dapri(tst(i), 10)
END DO

WRITE(10, ’(1hi1)?’)
CALL dapri(Txc2, 10)
CALL dapri(Dxc2, 10)

WRITE(10, ’(1h1)’)
CALL dapri(Tyc2, 10)
CALL dapri(Dyc2, 10)

WRITE(10, ’'(1h1)’)
CALL dapri(Tpx2, 10)
CALL dapri(Dpx2, 10)
WRITE(10, ’(1h1)?)

CALL dapri(Tpy2, 10)
CALL dapri(Dpy2, 10)

185

WRITE(10, ’(1h1)?)

CALL mypri(Txc2, Dxc2, 10)
CALL mypri(Tyc2, Dyc2, 10)
CALL mypri(Tpx2, Dpx2, 10)
CALL mypri(Tpy2, Dpy2, 10)

*
2001 FORMAT(1x, 1pel3.6, ’; ', 1pel13.6, 3(’, ’, 1pel3.6))
2002 FORMAT(ix, 13x, ’ ', 1pel3.6, 3(’, ’, 1pel3.6))

*

RETURN
END

*
€ e e e e ke ok ok kokolokkolokok skeokeokokokokok ok ok End OF Fal@ skeoskoskoskoskeokoteok ok ok sie sk ok e e ke ek ok ok ok ok ook ok ok sk ok ok

186

G.1.3 HJDAubfield

PROGRAM HJDAubfield
PARAMETER (nd=1 g
N EXTERNAL ubfield
E===
WRITE(=, ’(x, 11h no =, $)°)
READ (=,’(i10)°) no

CALL daini(no, (nd*2), (-10))
CALL HJDAdrive(no, ubfield)

STOP
END

C 3% e e sk sk 3 ok ok i e o 3 ok 3k 3k 3 s 3 3 3k oK ok 3 3 o o ke 3 sk 3k ok oK ke ok 3 3k ok e 3k okl ¢ o 3 3k o ok ke e ok ke e ke s ok ok e ok o ok 3k o ok 3k ke 3k ok ke ke oK oK

*
SUBROUTINE HJDAdrive(no, hmltn)
IMPLICIT NONE

INTEGER no, nd, nv, nstep, istep

PARAMETER (nd=1, nv=nd*2)

DOUBLE PRECISION =zero, one, two, four

PARAMETER (zero=0.0d0, one=1.0d0, two=2.0d0, four=4.0d40)
DOUBLE PRECISION eps

INTEGER i, j

DOUBLE PRECISION t1, x1(nv), ri(nv, nv)
DOUBLE PRECISION t2, x2(nv), r2(nv, nv)

DOUBLE PRECISION x0, ri(nv, nv), temp(nv, nv)

DOUBLE PRECISION R_i, Pr_i, Theta, Pratio
DOUBLE PRECISION Cth, Sth

DOUBLE PRECISION Enorm, Emax
DOUBLE PRECISION (Qnorm((-1):10), Qmax((-1):10)
DOUBLE PRECISION Tnorm((-1):10), Tmax((-1):10)

DOUBLE PRECISION pi, pi2

COMMON pi, pi2

DOUBLE PRECISION beta0O, gammaO, btgmaO, const,
& beta, gamma, btgma, bgbg

COMMON /ubfield/ betalO, gammaO, btgma0O, counst,
& beta, gamma, btgma, bgbg

SAVE /ubfield/

EXTERNAL hmltn

INTEGER 1x1, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8, 1x9

INTEGER isala, isa2a, isa3a

187

*DAINT (no,nv) Ds0O, Dsi12
*DAINT (no,nv) Dz(nv), Dx(nav)
*DAINT (no,nv) Dxi(nv), Dx2(nv)
*DAINT (no,nv) Dri, Dpri, Dr2, Dpr2
*DAINT (no,nv) Cal, Sai, Ca2, Sa2
*DAINT (no,nv) Xc1l, Yci, Xc2, Yc2 Xc2p, Yc2p
*DAINT (no,nv) Tst (nv)
*
*===================================”-—-====—-_--———————==—--—==========
*
pi = FOUR * atan(ONE)
pi2 = TWO * pi
write(10, ’(/a/)’)

& ' HIJDAubfield: Particle in Uniform Magnetic Field °’
write(10, ’(x, 11h no = , i4)’) no
write(*, ’(x, 11h nstep = , $)’)
read (=*,’(i10)’) nstep
write(10, ’(x, 11h nstep = , i4)’) nstep
write(*, ’(x, 11h istep = , $)’)
read (*,’(i10)’) istep
write(10, "(x, 11h istep = , i4)’) istep
write(x, ’(x, 11h eps = , $)7)
read (*,’(1pe20.10)’) eps
write(10, *(x, 11ih eps = , 1pel3.6)’) eps
write(10,

CALL daeps(eps)

write(*, *(x, 1th Rii=, $))

read (*,’(1pe20.10)’) R_i

write(10, '(x, 11h R_.i =, 1pel13.6)’) R_i
write(*, '(x, 1ih Pr_i =, $)?)

read (*,’(1pe20.10)7’) Pr_i

write(10, ’(x, 11ih Pr_i = , 1pel3.6)’) Pr_i
write(10,

write(x, '(x, 11h btgmald = , $)°’)

read (*,’(1pe20.10)’) btgmaoO

write(10, '(x, 11h btgma0 = , 1pel3.6)’) btgmal
write(*, '(x, 11h btgma = , $)}’)

read (*,’(1pe20.10)’) btgma

write(10, "(x, 11h btgma = , 1pel3.6)’) btgma
write(10,

write(*, ’(x, 11hTheta/Pi = , $)’)

read (*,’'(1pe20.10)°’) Theta

write(10, ’(x, 11hTheta/Pi = , 1pel3.6)’) Theta

188

Theta = Theta * pi
const = btgmal0 / TWO
bgbg = btgma * btgma
gamma0 = sqrt(ONE + btgma0O * btgmal)
gamma = sqrt(ONE + btgma * btgma)
beta0 = sqrt(ONE - ONE / (gammaO * gammaO))
beta = sqrt(ONE - ONE / (gamma * gamma))
Pratio = btgma / btgma0
*
CALL HJDXident(no,nv,nd,nv, Dz, x1,ri,Ds0)
t1 = ZERO
t2 = Theta
x1(1) = R_i * Pratio
x1(2) = Pr_i * Pratio
*
ittt ittt Pt T+ - - P+ P Pttt P R P PPt R R it 3 2 1 1 &
*
CALL HJDAbsint(ti, x1,r1,DsO, t2, x2,r2,Dsl12,
Dz,Dx, no,nv,nd,nd*2, nstep,istep, hmltn)
*
-t Pt Pt P Tt P L Rt F 2 A A
*
CALL danot(no-1)
CALL HIDX1(x1,r1,DS12, no,nv,nd,nv, Dz, Dx1)
. CALL HJDX2(x2,r2,DS12, no,nv,nd,nv, Dz, Dx2)
i1+t 1>t 3t PPt -t + P+ P+ + it TP Pt Pt P Pttt t 3+t 3+ + t * £+ + 1t 3 3§ 1 1] ===
*
Sth = sin(Theta)
Cth = cos(Theta)
*DA Dri = Dx1(1)
*DA Dprl = Dx1(2)
*DA Sal = Dprl / btgma
*DA Cal = sqrt(ONE - Sail*Sal)
*DA Dr2 = Dx2(1)
*DA Dpr2 = Dx2(2)
*DA Sa2 = Dpr2 / btgma
*DA Ca2 = sqrt(ONE - Sa2+Sa2)
DA Xcl = Pratio_ Sal
*DA Yel = Drl - Pratio * Cal
*DA Xc2p = Pratio * Sa2
*DA Yc2p = Dr2 - Pratio * Ca2
*DA Xc2 = Yc2p * Sth + Xc2p * Cth
*DA Yc2 = Yc2p * Cth - Xc2p * Sth
*DA tst(1) = Xc2 Xc1
*DA tst(2) = Yc2 - Yeci
*

189

P+t + - -+ P P+ + X P P P P E P Pttt + P L LT S T T 2 T Y
*

WRITE(10, ’(1ih1)’)

WRITE(10, ’(a)’) ’ x1; rl’
DO i=1,nv
WRITE(10, 2001) x1(i), (rl(i,j), j=1,nv)
END D?
WRITE(10, *)

WRITE(10, ’(a)’) x2; r2’
DO i=i,nv
WRITE(10, 2001) x2(i), (r2(i,j), j=1,nv)

END D?
WRITE(10, *)

CALL sympinv(r2,nv, ri,nv, nd)
CALL mmmul(r2,nv, ri,nv, temp,nv, nv)

WRITE(10, ’(a)’)

& ’ Symplecticity check: r2 * (J r2°T J°-1) - I’
DO i=1i,nv
temp(i,i) = temp(i,i) - ONE
END DO
DO i=1,nv
WRITE(10, 2002) (temp(i,j), j=1,nv)
END DO
*
Enorm = ZERQD
Emax = ZERO
DO j=1,nd=2
DO i=1,nd*2
Enorm = Enorm + abs(temp(i,j))
Emax = max(Emax , abs(temp(i,j)))
END DO
END DO

CALL norms(tst, no,nv,nd*2,nd*2, Tnorm, Tmax)

WRITE(10, °’(1x)’)
WRITE(10, ’(1x)’)
WRITE(10, ’(1x)?’)
WRITE(10, 2003) Enorm, Emax

WRITE(10, °’(1x)’)
WRITE(10, 2003) Tnorm(-1), Tmax(-1)

WRITE(10, ’(ix)?)

D0 j=0,no

WRITE(10, 2003) Tnorm(j), Tmax(j)
END DO

190

WRITE(10, ’(1ihi)?’)
CALL dapri(DsO, 10)
WRITE(10, *)

DO i=1,nv
CALL dapri(Dx1(i), 10)
WRITE(10, *)

END DO

WRITE(10, ’(1h1)’)
CALL dapri(Dsi2, 10)
WRITE(10, *)
DO i=1,nv
CALL dapri(Dx2(i), 10)
WRITE(10, *)
END DO

WRITE(10, ’(1h1)?)
DO i=1,nd=2

CALL dapri(tst(i), 10)
END DO

WRITE(10, ’(1ih1)’)
CALL dapri(Xci, 10)
CALL dapri(Xc2, 10)

WRITE(10, ’(1h1)’)
CALL dapri(Yci, 10)
CALL dapri(Yc2, 10)

WRITE(10, ’(1h1)’)
CALL mypri(Xci1, Xc2, 10)
CALL mypri(Yci1, Yec2, 10)

*
2001 FORMAT(1x, 1pel3.6, ’; ’, 1pel3.6, ’, ’, 1pel3.6)

2002 FORMAT(1x, 13x, ’ », 1pe13.6, ’, ’, 1pel3.6)
2003 FORMAT(1x, ipe13.6, ’, ’, 1pei3.6)
»*

RETURN

END

*
Cosokok skakdoldokokokkokkskkdokokokkkokkk End OFf File skskokokokokokokoskokoiokokok sk sk sk ok ok o ok ok o o ook

191

G.1.4 LiLens

PROGRAM Lilens2
IMPLICIT NONE

INTEGER NO, NV
PARAMETER (N0=10, NV=4)

DOUBLE PRECISION ONE, TWO, FOUR, HALF
PARAMETER (ONE=1.0d0, TW0=2.0d0, FOUR=4.0d0, HALF=0.5d0)

DOUBLE PRECISION Pi, Pi2, HalfPi
COMMON /PiBlok/ Pi, Pi2, HalfPi

DOUBLE PRECISION RatScl, RatPO,RatP02, RatPX,RatPX2, RatBR,RatRO
COMMON /Lens/ RatScl, RatPO,RatP02, RatPX,RatPX2, RatBR,RatRO

EXTERNAL LiLens

C===
pi = FOUR * atan(ONE)
pi2 = TWO * pi

oo BElfPicEMEePs

CALL DAini(NO,NV, (-10))
CALL HJDAdrive(LilLens)

STOP
END

(C ke ke ke ok ok e 3k ok o ok s ke 2 o 3¢ o 3K o 3 ok e 3 ok s 3 e ok e o e 3k 3k 3K ok 3 3k o ke ok ok 3K oK 6 3 3 3 K sk 3K ok ek ok e ke s ke 3 o e o ke 3k ok ok e ok o koK

*x
SUBROUTINE HJDAdrive(LilLens)
IMPLICIT NONE

INTEGER NO, NV, ND

INTEGER Nstepl, Nstep2, Istep, Nslice, ItMax
PARAMETER (NO=10, NV=4, ND=2)

PARAMETER (Nstep1=25, Nstep2=1, Istep=6,
& Nslice=10, ItMax=10)

INTEGER Nprim, Nrays,NraysT, Nbuf ,NbufT
PARAMETER (Nprim=25, Nrays=4*Nprim, Nbuf=Nrays)
PARAMETER (NraysT=Nrays*Nslice, NbufT=NraysT)
DOUBLE PRECISION ZERO, ONE, TWO, FOUR

PARAMETER (ZER0=0.04d0, ONE=1.0d0, TW0=2.0d0, FOUR=4.0d0)
DOUBLE PRECISION PO, Bmax, Brho, RO

PARAMETER (PO = 8.89d0) ! GeV/c
PARAMETER (Bmax = 100.0d0) ! kGauss
PARAMETER (Brho = 3335.6d0%P0) ! kGauss-cm
PARAMETER (RO =1.0d0) ' cm
INTEGER i, j, k, n

INTEGER j1,32,33,j4, jjj, non, Jpin(NV)
INTEGER iter, islice

INTEGER*4 Iseed

DOUBLE
DOUBLE
DOUBLE

DOUBLE
DOUBLE

DOUBLE
DOUBLE
DOUBLE

DOUBLE
DOUBLE
DOUBLE
DOUBLE

DOUBLE

* * ¥

DOUBLE
COMMON

DOUBLE
COMMON

DOUBLE
DOUBLE
COMMON

DOUBLE
COMMON

EXTERNA
INTEGER

*DAINT(NO,NV)
*DAINT(NO,NV)
*DAINT(NO,NV)

*

*

PRECISION
PRECISION
PRECISION

PRECISION
PRECISION

PRECISION
PRECISION
PRECISION

PRECISION
PRECISION
PRECISION
PRECISION

PRECISION

PRECISION
/PiBlok/

PRECISION
/Beam/

PRECISION
PRECISION
/Lens/

PRECISION
/Scales/

L

192

x1(NV), R1(NV,NV)
x2(NV), R2(NV,NV)
RI(NV,NV), Temp(NV,NV)

parm,
z1, z2, DFdot, w(0:Nslice), a,b
x01(NV), x02(NV)

Xbufi(Nbuf,NV), Xbuf2(Nbuf,NV)
XbufT (NbufT,NV)

Scales(NV), StDevs(NV)

Xavg(NV), Sigmal(NV,NV), Sigma2(NV,NV)
DotProd(NO+1), DotByOrd(NO+1)
TotProd(NO+1), TotByOrd(NO+1)

Tnorm(-1:no), Tmax(-1:no)

Pi, Pi2, HalfPi
Pi, Pi2, HalfPi

StDevX, StDevP, PZ
StDevX, StDevP, PZ

Lo, L1, L2, Ltarg, LLens
RatScl, RatPO,RatP02, RatPX,RatPX2, RatBR,RatRO
RatScl, RatPO,RatP02, RatPX,RatPX2, RatBR,RatRO

LXscale, PXscale, LZscale, PZscale
LXscale, PXscale, LZscale, PZscale

LiLens
1x1, 1x2, 1x3

DS0,DS12
Dx1(NV),Dx2(NV), Dy, Dz(NV),Dx(NV)
DxTild(NV), DxTay(NV), DxMoml, DxMom2

LXscale
PXscale
LZscale
PZscale

StDevX
StDevP

StDevs (1)
StDevs (2)
StDevs(3)
StDevs(4)

Scales (1)
Scales(2)
Scales(3)
Scales(4)

Pz

Wuu

StDevP

LXscale
LXscale
PXscale
PXscale

PO

/ LXscale
/ Liscale
/ PXscale
/ PXscale

cm
I GeV/c

193

RatScl = (LZscale/LXscale) * (PZscale/PXscale)
RatP0 = PO PZscale
RatP02 = RatP0 =% 7atP0
RatPX = PXscale PZscale
RatPX2 = RatPX * RatPX
RatBR = Bmax*R0O /Brho
RatRO = RO / LXscale
™
LO = HalfPi * RO / sqrt(RatBR)
LLens = (1.0826d0) * LO
Ltarg = (5.00d0) ! cm

*

Lo o S O Lk = T o B T e T T S S

. Fifth-order Simpson’s rule coefficients.

17.0d0 / 48.0d40
59.04d0 / 48.040
w(Nslice-1) 59.040 / 48.0d0
w(Nslice) 17.040 / 48.0d0
DO i=2,(Nstep-2),2
§(1) = 43.040 / 48.040

END D

DO i=3,(Nstep-3),2

w(ig = 49.0d0 / 48.0d0
END D

CALL GaussLoad(StDevs, no,2+*nd, DxMomi)

CALL DApri(DxMomi, 13)

CALL norms(DxMoml, no,nd*2,(1), Tnorm, Tmax)
WRITE(11, ’(1x,a)’) ’Norms of DxMomi’

WRITE(11, 2001) (Tnorm(n), n=2,N0,2), Tnorm(-1)
WRITE(11, 2001) (Tmax(n), n=2,N0,2), Tmax(-1)

zl = ZERD
z2 = LLens - Ltarg

CALL DAnot(NO)
CALL HJDXident(NO,NV,ND,NV, Dz, x1,R1,DSO)
CALL HJDAbsint(z1, x1,R1,DSO, z2, x2,R2,DS12,

& NO,NV,ND,NV, Nstepl,Istep, LiLens)

CALL DApri(DS12, 13)
CALL norms(DS12, no,nd*2,(1), Tnorm, Tmax)

WRITE(10, ’(i1x,a)’) ’'Norms of DS12’
WRITE(10, 2001) (Tnorm(n), n=2,N0,2), Tnorm(-1)
WRITE(10, 2001) (Tmax(n), n=2,N0,2), Tmax(-1)

C===

DO n=1, (NO+1)
TotProd(n)
TotByOrd(n)

END DO

DO j=1,NV
DO i=1,NV
Sigma2(i,j) = ZERO
END DO
END DO

"
N
=y
=
(=]

194

C=:===
*
CALL DAnot(NO-1)
DO j=1,ND
CALL DAder((j+ND), DS12, Dz(j))
CALL DAder((j), DS12, Dz(j+ND))
Jpin(j) =1
Jpin(j+ND) = O
END DO
CALL DApin(Dz,NV, DxTild,NV, Jpin)
DO j=1,NV
CALL DAcon(Dy, ZERO)
DO k=1,NV
a = R2(j,k)
CALL DAcma(Dy, DxTild(k),a, Dy)
END DO , '
CALL DAcad(Dy, x2(j), DxTay(j))
END DO
CALL DAnot(NO)
e+t - F P P P T P PP A PR3 T Pt P E P PR R E R A R R T E A 1 ¢ F]
DO j=1,NV
DD i=1,(j-1)
CALL DAmul(DxTay(i),DxTay(j), Dy)
Sigma2(i,j) = w(0) * DFdot(Dy,DxMomi, DotProd,DotByOrd)
Sigma2(j,i) = Sigma2(i,j)
ND DO _ ,
CALL DAmul(DxTay(j),DxTay(j), Dy)
Sigma2(j,j) = w(0) * DFdot(Dy,DxMomi, DotProd,DotByOrd)
END DO
CHt+tttttdttdttttttttttttrttttttsttttittbttttttbibtdttttttittttttttt
C ... Sigma2(4,4) = Sigma2(3,3) is my figure of merit;
C copy contents of DotProd and DotByOrd (last one is (4,4)
C resultant) into TotProd and TotByOrd.
C __
DO n=1,(NO+1)
TotProd(n) w(0) * DotProd(n)

TotByOrd(n) = w(0) * DotByOrd(n)
END DO

WRITE(11, *(ix)?)

WRITE(11, ’(ix,a)’) ’Sigma(4,4) by orders’
WRITE(11, 2003) (DotProd(m), n=3,(N0+1),2)
WRITE(11, 2003) (DOtByOId(n), n=3, (N0O+1),2)

C==

DO islice=1,Nslice

z1 z2 i
z2 = z2 + Ltarg/dfloat(Nslice-1)

DO j=1,NV
x1(j) = x2(j)
DO i=1,NV
R1(i,j) = R2(4,j)

END_ DO
CALL DAcop(DS12,DS0)

CALL HJDAbsint(=z1, x1,R1,DSO, z2, x2,R2,DS12, Dz,Dx,
% NO,NV,ND,NV, Nstep2,Istep, LiLens)

CALL DApIi(DS12, 13)
CALL norms(DS12, no,nd*2,(1), Tnorm, Tmax)

WRITE(10, ’(1x)?’)
WRITE(10, 2001) (Tnorm(n), n=2,N0,2), Tnorm(-1)
WRITE(10, 2001) (Tmax(n), n=2,N0,2), Tmax(-1)

K e S S S T S T e e e S S S S T T R S T T e T N T T S e s s s N m e
*
CALL DAnot(NO-1)

DO j=1,ND
CALL DAder((j+ND), DS12, Dz(j))
CALL DAder((j), DS12, Dz(j+ND))
Jpin(j)
Jpin(j+ND)

END DO

CALL DApin(Dz,NV, DxTild,NV, Jpin)

DO j=1,NV
CALL DAcon(Dy, ZERO)
DO k=1,NV
a = R2(j,k)
CALL DAcma(Dy, DxTild(k),a, Dy)

END DO
CALL DAcad(Dy, x2(j), DxTay(j))
END DO

CALL DAnot(NO)

1
0

DO j=1,NV
DO i=1,(j-1)
CALL DAmul(DxTay(i),DxTay(j), Dy)
Sigma2(i,j) = Sigma2(i,j)

& + w(islice) * DFdot(Dy,DxMoml, DotProd,DotByOrd)
Sigma2(j,i) = Sigma2(i,j)
END DO

CALL DAmul(DxTay(j),DxTay(j), Dy)
Sigma2(j,j) = Sigma2(j,j)
& + w(islice) * DFdot(Dy,DxMomi, DotProd,DotBy0rd)
END DO

196

WRITE(11, °’{(1x)’)
WRITE(11, 2003) (DotProd(mn), n=3,(N0+1),2)
WRITE(11, 2003) (DotByOrd(n), n=3,(NO+1),2)

DO n=1,(NO+1)

TotProd(n) = TotProd(n) + w(islice)*DotProd(n)
TotByOrd(n) = TotByOrd(n) + w(islice)*DotByOrd(n)
END DO
END DO

WRITE(11, ’(1ix)’)

WRITE(11, ’(1x)’)

WRITE(11, ’(ix,a)’) ’Total Sigma(4,4) by orders’
WRITE(11, 2003) (TotProd(n), n=3,(N0+1),2)
WRITE(11, 2003) (TotByOrd(m), n=3,(N0+1),2)

*
2001 FORMAT(ix, 1pel3.6, 7(1x, 1pel3.6,:))
2002 FORMAT(ix, 'iter = ’,i3, ’, LLens = ’, 1pgl3.6,

& ', (LLemns/LO) = ’, 1ipgl3.6,
& ’, 833 = ’, 1pg13.6, ’, S13 = ’, 1pgl3.6)
2003 FORMAT(1x, 9(1pgl3.6,:,1x))
2012 FORMAT(1x, 1pel3.6, ’; ', 1pel3.6,:, 3 (°, ’, 1pel3.6,:))
*
RETURN

END

197

e sk ke 3 s ke 3k e sk o ek s e sk sk 3k ok o sk s 3k 3k e ke o e K ok 3k 3k ek o 3 e o ok fe sk e o i o ke o 3 R o Rk fe k3 e ke ks sk o ke ok sk ok ke o ok ok

*
SUBROUTINE Lilens(z, Dx, no,nd, Dh)
IMPLICIT NONE

DOUBLE PRECISION ZERO, ONE, TWO, FOUR
PARAMETER (ZER0=0.0d0, ONE=1.0d0, TW0=2.0d0, FOUR=4.0d0)

INTEGER no, nd
DOUBLE PRECISION z, s, w, R

DOUBLE PRECISION RatScl, RatPO,RatP02, RatPX,RatPX2, RatBR,RatRO

COMMON /Lens/ RatScl, RatPO,RatP02, RatPX,RatPX2, RatBR,RatRO
x*

INTEGER 1x2
*DAEXT (no,nd*2) Dx(nd*2), Dh
*DAINT (no,nd*2) Dx2, Dy2, Dpx2, Dpy2

w = RatPO * RatBR /RatRO/RatRO /TWO

CALL DAsqr(Dx(1), Dx2)
CALL DAsqr(Dx(2), Dy2)
CALL DAsqr(Dx(3), Dpx2)
CALL DAsqr(Dx(4), Dpy2)
*DA Dh = RatScl * (wx(Dx2+Dy2) - sqrt(RatP02 - RatPX2*(Dpx2+Dpy2)))
RETURN
. END
Cokoksk ook Rk ok okokokkokokk END OF FILE skokokokookokokosk kol ook sk ook ko ol ook ok ok

198

G.2 The Hamiltonian Modules

G.2.1 Drift

SUBROUTINE drift(z, Dx, no,nv,nd, Dh)
DOUBLE PRECISION zero, one

PARAMETER (zero=0.0d0, one=1.0d0)
DOUBLE PRECISION =z

* DOUBLE PRECISION beta, gamma, btgma

* COMMON /relfac/ Dbeta, gamma, btgma

*DAEXT (NO,NV) DX(ND*2), DH

*DAINT (NO,NV) PT2, PX2

C:==

*DA pt2 = Dx(3) * Dx(3)

*DA px2 = Dx(4) » Dx(4)

*DA Dh = zero - sqrt(pt2 - px2 - one)
RETURN

. END

Cteakstotoksdokokokokokokolokkokokkokokorokokk END OF FILE steokok sk skoiosieoskok ok sk ok o s ook ok sl ke ok ook ke sk sk ok ok

199

G.2.2 PolrSHO

(2 ke ade ke ok ke she s ok s 3k sk e 3k ke e ok e ok ok o R i ok sk s ok 5k e 3 ok 3 ok 2k sk ok s Sk o 3 o ok e ke sk ke e o e ok e S e 3k Sk s ok e e ok s e ok ok ok ke ke ok ke ok

*
SUBROUTINE polrsho(t, Dx, no,nv,nd, Dh)

INCLUDE ’daparm.inc/LIST’
DOUBLE PRECISION onehaf
PARAMETER (onehaf=0.5d0)

DOUBLE PRECISION t
DOUBLE PRECISION pi, pi2, w, w2

COMMON pi, pi2, w
DOUBLE PRECISION r, rsqr
INTEGER jj(LNV), kount
DATA (jj(i), i=1,LNV) /LNV%0/, kount /0/
*DAEXT(NO,NV) DX(ND*2), DH
*DAINT(NO,NV) R2, PR2, PTH2
C==== ————— t+ 2 -+ + + + t + ¥ 3 3 3ttt ¢+ 4 2 3 3ttt it - 1 - - 2 3 1 11 21
w2 = Wk
*DA 12 = Dx(1)*Dx(1)
*DA pr2 = Dx(3)*Dx(3)
*DA pth2 = Dx(4)/Dx(1)

*DA pth2 = pth2*pth2
*DA Dh = onehaf * (pr2 + pth2 + w2*r2)

Cotestesteof okok stk koo dokoolotokkokokokok ok END OF FILE ookt ke sk skl ok i ok ool i ok e ok ook ok o ok e ok

200

G.2.3 UBfield

(0 3k ke sk e sk ke ok sk sk 3k e o e e S e sl e e e ok ok ke sl ok ke sk s ke sk e s 33 3k of o i sl e ok sk Sk e i 3 ol s ok ok 3k Sk o ok 3k ok ok K ke ok ik ke ok ok 3K ok

E 3
SUBROUTINE ubfield(t, Dx, no,nv,nd, Dh)
DOUBLE PRECISION t
DOUBLE PRECISION pi, pi2
COMMON pi, pi2
DOUBLE PRECISION beta0, gamma0, btgmaO, const,
& beta, gamma, btgma, bgbg
COMMON /ubfield/ betald, gammaO, btgmal, const,
& beta, gamma, btgma, bgbg
*DAEXT (no,nv) Dx(nd*2), Dh
*DAINT (no,nv) rho, prho
*
C=======——_-=====————===
*DA rho = Dx(1)
*DA prho = Dx(2)
*DA Dh = tho * (const * rho - sqrt (bgbg - prhoxprho))
RETURN
N END

Cotokok ook k sk dokokokkokokkokkkk END OF FILE skookolokokomsiokok ook skok ok ook ok skok ok ok skl sk sk ok o ok

201

G.3 The Integration Module

G.3.1 HIDADbsint

(G ke sk ke sk ke sk e Sk 3k ol e e s 3k e S 3 sl ok sk e ok e 3k 3k o ke 3 ok ke e 3 s e e o 3 S 3¢ ik o ke 3k 3k e o 3k sk 3K o e 3 o 3 ok 3K Sk 3 o ke ok 3¢ ok ok e sk e 3k oK ok

SUBROUTINE HJDAbsint(t1, xi,r1,Dsi, t2, x2,r2,Ds2, Dz,Dx,

& no,nv,nd,nj, nstep,istep, hmltn)
IMPLICIT NONE
INTEGER NMAX
PARAMETER (NMAX=10)
DOUBLE PRECISION ZERO, ONE
PARAMETER (ZER0=0.0d0, ONE=1.0d0)
INTEGER no, nd, nj, nstep, istep

DOUBLE PRECISION t1, x1(nj), ri(nj,nj)
DOUBLE PRECISION t2, x2(nj), r2(nj,nj)

DOUBLE PRECISION HO, Hk

DOUBLE PRECISION t, s
DOUBLE PRECISION x(NMAX), r(NMAX,NMAX)
DOUBLE PRECISION f(NMAX), a(NMAX,NMAX)

DOUBLE PRECISION Xnext(NMAX), Rnext(NMAX,NMAX)
DOUBLE PRECISION Xextr(NMAX), Rextr(NMAX,NMAX)
DOUBLE PRECISION Xdiff(NMAX), Rdiff(NMAX,NMAX)

INTEGER i,j,k,n, icall, knext
EXTERNAL hmltn
INTEGER 1x3
*DAEXT (no,nv) DS1, Dz(nd*2), Dx(ndx2)
*DAEXT (no,nv) DS2
*DAINT (no,nv) DS, GS, DSnext, DSextr, DSd4diff
*
C=====..._._—===__.__——======================= ——————— 3 3 + 3+ - + & + 3+t 3 1+ 1 1333+
DO j=1,nd*2
x(j) = x1(j)
CALL davar(Dz(j), ZERO, j)
DO i=1,nd*2
r(i,j) = r1(i,j)
END DO

END DO
CALL dacop(DS1i,DS)

HO = (t2-t1)/dfloat(nstep)
t = t1

DO n=1,nstep

s = dfloat(n-1) / dfloat(nstep)

t = (ONE-s)*tl + (s)*t2

CALL HJDAderiv(t, x,r,DS, f,a,Gs, no,nv,nd,NMAX, Dz,Dx, hmltn)
DO icall=1,istep

knext = ?*icall

Hk = HO dfloat(knext)

202

IF ((t+Hk) .EQ. (t)) THEN
PAUSE ’Stepsize not significant in HJDABSINT.’
END IF

CALL HJDAmmid(t1,HO,knext, x,r,DS, f,a,GS,
3 Inext,Rnext,DSnext, no,nv,nd,NMAX, Dz,Dx, hmltn)

CALL HJIDAextr(icall,knext, Xnext,Xextr,Xdiff,
& Rnext,Rextr,Rdiff, DSnext,DSextr,DSdiff, no,nv,nd,NMAX, istep)

END DO

DO j=1,nd2
x(j) = Xextr(j)
DO i=1,ndx*2
r(i,j) = Rextr(i,j)
END DO

END DO
CALL dacop(DSextr,DS)

END DO

DO j=1,nd2
x2(j) = Xextr(j)
DO i=1,nd*2
r2(i,j) = Rextr(i,j)
END DO

END DO
CALL dacop(DSextr,DS2)

RETURN
END

203

G.3.2 HIJDAmmid

(ke sk ke sk e ok ok 3k s e o 3k o e 3k Sl 3¢ o e sk 3 e 3k sk Sk o e e Sk sk Sk e 3K 3 s ke 3k ok ok 3 ok 3 e 3 3 2k 3 ke 3k ke 3 K K 3K ok 3 ok 3 Kk 3k ke o ke K e ke ok ke

SUBROUTINE HIJDAmmid(t1,H0,nstep, Xin,Rin,DSin, Fin,Ain,GSin,
& Xout,Rout,DSout, no,nv,nd,nj, Dz,Dx, hmltn)

IMPLICIT NONE
EXTERNAL hmltn

INTEGER NMAX

PARAMETER (NMAX=10)

DOUBLE PRECISION OneHaf, Two

PARAMETER (OneHaf=0.5d0, Two=2.0d0)
INTEGER no,nv,nd,nj, nstep

DOUBLE PRECISION t1, HO

DOUBLE PRECISION t, Hk, TwoH, temp

DOUBLE PRECISION Xin (NMAX), Rin (NMAX,NMAX)
DOUBLE PRECISION Xout(NMAX), Rout(NMAX,NMAX)
DOUBLE PRECISION Fin (NMAX), Ain (NMAX,NMAX)

INTEGER i, j, n

DOUBLE PRECISION Xm(NMAX), Rm (NMAX,NMAX)
DOUBLE PRECISION Xn(NMAX), Rn (NMAX , NMAX)
DOUBLE PRECISION Fn(NMAX), An (NMAX ,NMAX)

INTEGER 1x2, isala
*DAEXT (no,nv) DSin, GSin, DSout, Dz(nd*2), Dx(nd*2)
*DAINT (no,nv) DSm, DSn, GSn, Dtemp

3ttt ittt P P T+ E F Pt 2 P P 2 P+ P E 2+t 2ttt 3 2 2 - 2 1 4+ 2 2 A 2 F £ T 1+ F P 5 1 ¥
Hk = HO/float(nstep)

DO j=1, (nd*2)
Xm(j) = Xin(j)
Xn(j) = Xin(j) + Hk*Fin(j)
DO i=1,(nd*2)
Rm(i,j) = Rin(i,j)
Rn(i,j) = Rin(i,j) + Hk*Ain(i,j)
END DO

END DO
CALL dacop(DSin, DSm)

CALL dacma(DSin, GSin,Hk, DSn)

t = t1 + Hk
CALL HJDAderiv(t, Xn,Rn,DSn, Fn,An,GSn, no,nv,nd,NMAX, Dz,Dx, hmltn)
TwoH = Two * Hk

D0 n=2,nstep
DO j=1, (nd*2)
temp = Xm(j) + TwoH*Fn(j)
m(j) = Xn(j)
In(j) = temp
DO i=1,(nd*2)
temp = Rm(i,j) + TwoH*An(i,j)
Rm(i,j) = Rn(i,j)
Rn(i,j) = temp

END DO

204

END DO

CALL dacma(DSm, GSn,TwoH, Dtemp)
CALL dacop(DSn, DSm)

CALL dacop(Dtemp, DSn)

t =t + Hk
gﬁ%LDgJDAderiv(t, Xn,Rn,DSn, Fn,An,GSn, no,nv,nd,NMAX, Dz,Dx, hmltn)

DO j=1, (nd*2)
Xout(j) = OneHaf * (Xm(j) + Xn(j) + Hk*Fn(j))
DO i=1,(nd*2)
Rout(i,j) = OneHaf * (Rm(i,j) + Rn(i,j) + Hk*An(i,j))
END DO

END DO
CALL dacma(DSn, GSn,Hk, Dtemp)
CALL daadd(DSm, Dtemp, Dtemp)

CALL dacmu(Dtemp, OneHaf, DSout)
RETURN
END

205

G.3.3 HIDAextr

(C ke sk ke ok b sk 3 o sk o 3K sk 5 sk S 3 sfe e ok e sfe e sl 3 o ke ok ok 3k s e ke e sk ke sl e s s o o sk e ok s ok e sk e ke e o 3 ok 3k ok e o el ok e s e ok ke ok ok

»
SUBROUTINE HJDAextr(icall,knext, Xnext,ifextr,Xdiff,
& Rnext,Rextr,Rdiff, Snext,Sextr,5diff, no,nv,nd,nj, nuse)
IMPLICIT NONE

DOUBLE PRECISION ZERO, ONE

PARAMETER (ZER0=0.0d0, ONE=1.0d40)
INTEGER NMAX, IMAX, NCOL
PARAMETER (NMAX=10, IMAX=11, NCOL=7)
INTEGER icall, knext, no, nd, nj, nuse
DOUBLE PRECISION Xnext (NMAX), Xextr(NMAX), Xdiff(NMAX),
& Rnext (NMAX,NMAX), Rextr(NMAX,NMAX), RdAiff(NMAX,NMAX)
INTEGER kstack(IMAX), i,j,k, n, nil
DOUBLE PRECISION al, a2, f1, £f2, den, delta, temp
DOUBLE PRECISION Xd (NMAX), Xq(NMAX,NCDL)
DOUBLE PRECISION Rd (NMAX ,NMAX) , Rq(NHAI,NMAX,NCUL)
SAVE Xq, Rq
INTEGER 1x2, 1x3, isala
*DAEXT (no,nv) Snext, Sextr, Sdiff
*DAINT (no,nv) Sq(NCOL), Sd
*DAINT (no,nv) Ddelta, Dtemp

Pt 2 PR A P P+ P P P R P P E R A R R P A R 4 4 4 4t Yt

kstack(icall) = knext

D0 j=1, (nd*2)

Xdiff(j) = Xnext(j)

Xextr(j) = Xnext(j)
DO i=1,(nd*2)

Rdiff(i,j) = Rnext(i,j)

Rextr(i,j) = Rnext(i,j)
END DO

END DO
CALL dacop(Snext,Sdiff)
CALL dacop(Snext,Sextr)

IF (icall .EQ. (1)) THEN
DO j=1,(nd*2)

xd(j) = ZERD

Xq(j,1) = Xnext(j)
DO k=2,NCOL

Xq(j,k) = ZERO
END DO

DO i=1,(nd*2)
Rq(i,j,1) = Rnext(i,j)
END DO
DO k=2,NCOL
Rq(i,j,k) = ZERO
END DO

206

END DO
CALL dacop(Snext,Sq(1))

DO k=2,NCOL
CALL DAcon(Sq(k),ZERO)
END DO

ELSE

nl = min(icall,nuse)
DO j=1,(nd*2)
Xd(j) = Xnext(j)
DO i=1,(nd*2)
Rd(i,j) = Rnext(i,j)

END DO
CALL dacop(Snext,Sd)

DO n=1,(n1-1)

al float(kstack(icall-n))
a2 float (knext)

den (a2-a1) * (a2+al)
f1 (al*al) / den

2 (a2%a2) / den

delta

DO j=1,(nd#2)

temp
Xq(j,n)
delta
Xdiff(j)
xd(j)
Xextr(j)
DO i=1, (nd*2)

temp
Rq(i,j,n)
delta
Rdiff (i, j)
Rd (i, j)
Rextr(i,j)

END DO

END DO

CALL dacop(Sq(n), Dtemp)
CALL dacop(Sdiff, Sq(n))

CALL dasub(Sd, Dtemp,
CALL dacmu(Ddelta, f1,
CALL dacmu(Ddelta, f2,
CALL daadd(Sextr, Sdiff,

END DO

DO j=1,(nd*2)
Xq(j,n1) = Xdiff(j)
DO i=1,(nd*2)

W anuwun

Xq(j,n)
Xdiff(j)

Xd(j) - temp
f1 * delta
£f2 * delta

oW uwn

Rq(i,j,n)
RAiff (i, j)

f1 * delta
2 * delta

W ou nu

(al*al * a2*a2) / den

Rd(i,j) - temp

Xextr(j) + Xdiff(j)

Rextr(i,j) + Rdiff(i,j)

Ddelta)
Sdiff)
sd)
Sextr)

207

Rq(i,j,n1) = Rdiff(i,j)
END DO
END DO ,
CALL dacop(Sdiff, Sq(n1))

END IF
RETURN
END
*
stk s o e e sk s e sl ok s ok e e e ok ook o ke ok sk ok END OF FILE

e e o e sl ke e ok e e e ok ek dk ok ok ok ke ke sk e e ok ok ok ok

208

G.4 The Derivative Module

G.4.1 HJDAderiv

(C ke sk sk e ok e sk s ke s e sk e st 3 ok 3k sl k¢ S e e sk ke sl ke s e ok ke o e ok 3k k¢ ok ol sk e ok e 33k i fe ok e ok e ok ok e sk Sl ke Sl ke ok R ke e sk sk ke ke e ok e

*
SUBROUTINE HJDAderiv(t, x,r,DS, f,a,Gs, no,nv,nd,nj, Dz,Dx, hmltn)
IMPLICIT NONE

INTEGER NMAX
PARAMETER (NMAX=10)
DOUBLE PRECISION ZERO
PARAMETER (ZERD0=0.0dO0)
INTEGER no, nd, nj
DOUBLE PRECISION t o
DOUBLE PRECISION x(nj), r(nj,nj)
DOUBLE PRECISION f(nj), a(nj,nj)
DOUBLE PRECISION Tj (NMAX,NMAX)
DOUBLE PRECISION h1(NMAX), h2(NMAX,NMAX)
. EXTERNAL hmltn
*
INTEGER 1x3
*DAEXT (no,nv) DS, Dz(nd*2), Dx(nd*2)
*DAEXT (no,nv) GS
*DAINT (no,nv) Dh, Dk
*===
CALL HJIDX2(x,r,DS, no,nv,nd,nj, Dz, Dx)
CALL hmltn(t, Dx, mno,nv,nd, Dh)
CALL hamsplit(Dh, Dz, no,nv,nd,NMAX, h1,h2, Dk)
CALL rjmul(r,nj, rj,NMAX, nd)

CALL mvmul(rj,NMAX, hi,NMAX, £,nj, nd*2)
CALL mmmul(rj,NMAX, h2,NMAX, a,nj, nd*2)

CALL dasuc{ Dk, ZERO, GS)
RETURN
END

209

G.4.2 HIDXident

(G % ok ok e e 3k ke e ke ok e 3k o ok o o 3 3 ke o 3k e ke 3k ok sk 3 ke e 3 Sk 3 sk ke sk ok 3k Sk K ok 3k e 3k 2K ko 3 3 3 ke 3 ek Sk e ok sk e e o e Sk e ok ok e Sk e Sk e ok

*
SUBROUTINE HJDXident(no,nv,nd,nj, Dz, x,r,DS)
IMPLICIT NONE

DOUBLE PRECISION ZERO, ONE

PARAMETER { ZERO = 0.040, ONE = 1.040)

INTEGER i, j, no,nv,nd,nj

DOUBLE PRECISION x(nj), r(nj,nj)

INTEGER isa2a, isa3a
*DAEXT (no,nv) DS, Dz(nd*2), Dtemp
C============s==sz====z===s============sz=z===z=======S=======s===z=c=z====

DO j=1,(nd*2)
DO i=1,(nd*2)
r(i, j) = ZERO
END DO
r(3, 1) ONE
x(j) ZERO
END DO

CALL dacon(DS, ZERD)

DO i=1,nd
CALL davar(Dz(i), ZERO, (i))
CALL davar(Dz(i+nd), ZERO, (i+nd))
CALL damul(Dz (i), Dz(i+nd), Dtemp)
CALL daadd(DS, Dtemp, DS)

END DO

RETURN
END

210

G.4.3 HIJDX1

2% e ke o ok k ok b ok ke o ke 3 ok o ok 3 3k ke ok 3K S ke 3 o 3 5K K R e ke B e e s e o oK ek o ek ok o ke e ok ok o ok 3k ok ok ke sk ok ok ok ok ok ke Sk ok ok

*
SUBROUTINE HJIDX1(x,r,DS, no,nv,nd,nj, Dz, Dx)
IMPLICIT NONE
DOUBLE PRECISION ZERO
PARAMETER (ZER0=0.0d0)
INTEGER no, nd, nj
DOUBLE PRECISION x(nj), r(nj,nj)
INTEGER i, j
DOUBLE PRECISION x0, a
INTEGER 1x2, isala
*DAEXT (no,nv) DS, Dz(ndx2), Dx(ndx2)
*DAINT (no,nv) Dy
*===
DO i=1,nd

CALL dader((nd+i), DS, Dz(i))
CALL davar(Dz(nd+i), ZERO, (nd+i))
END DO

DD i=1,ndx*2
CALL dacon(Dy, ZERO)
DO j=1,ndx2
a = r(i,j)
CALL dacma(Dy, Dz(j),a, Dy)
END DO
x0 = x(i)
CALL dacad(Dy ,x0, Dx(i))
END DO

RETURN
END

211

G.4.4 HIDX2

(G 3% s 3 sk ofe s ke e ok 3k s Sl 3 e ke o ke e ok ok 3k s ok ok S ks sk e i 3k s ok 3 ok i e ke ol 3k e sk e ke e e sk ol ke sk Sk ke o e o e o ok ok ke K ke

E 3
SUBROUTINE HJDX2(x,r,DS, no,nv,nd,nj, Dz, Dx)
IMPLICIT NONE

DOUBLE PRECISION ZERD

PARAMETER (ZERD=0.0d0)
INTEGER no, nd, nj
DOUBLE PRECISION x(nj), r{ nj, nj)
INTEGER i, J
DOUBLE PRECISION x0, a
INTEGER 1x2, isala
*DAEXT (no,nv) DS, Dz(nd*2), Dx(nd*2)
*DAINT (no,nv) Dy
*===
DO i=1,nd
CALL davar(Dz(i), ZERO, (i))
CALL dader((1), DS, Dz(nd+i))
END DO
DO i=1,nd*2
CALL dacon(Dy, ZEROD)
DO j=1,nd*2
a = r(i,j)
CALL dacma(Dy, Dz(j),a, Dy)
END DO
x0 = x(i)
CALL dacad(Dy, x0, Dx(i))
END DO

RETURN
END

212

G.4.5 HamSplit

(C e 34k 3k b o e e e ok s sk ok ke o ok o Sk e ok e 3k i ok ik o sk ke s e o ok i ke e Sk i ke o sk ke ol o ok e 3 e ok 3 e e e ke 3 ok e sk ek sk s 3 s ok 3 o e e ke ok

*
SUBROUTINE HamSplit(Dh, Dz, no,nv,nd,nj, hi,h2, Dk)
. IMPLICIT NONE
INCLUDE ’DA:daparm.inc/LIST’
INCLUDE ’DA:dapool.inc/LIST’
*
DOUBLE PRECISION ZERO, OneHaf, TWO
" PARAMETER (ZER0=0.0d0, OneHaf=0.5d0, TWO0 =2.0d40)
INTEGER no, nd, nj
INTEGER i, j, nn(20)
INTEGER iordk, isav
INTEGER*4 ik, ik1, ik2, jk
INTEGER*4 inoh,invh,ipoh,ilmh,illh
INTEGER*4 inok,invk,ipok,ilmk,illk
DOUBLE PRECISION a, hi(nj), h2(nj,nj)
INTEGER 1x2
INTEGER isala, isa2a, isada
*DAEXT (no,nv) Dh, Dz(nd*2), Dk, Dtemp
*=================-—--—-—-"'-—"-‘===
*

CALL dainf(Dh,inoh,invh,ipoh,ilmh,il1lh)
CALL dainf (Dk,inok,invk,ipok,ilmk,illk)

IF ((invh .EQ. 0) .OR. (invk .EQ. O)) THEN
PRINT *, ’ERROR: HAMSPLIT called with CA VECTOR’

CALL dadeb(111, ’ERR hmsplt’, 1)
END IF

CALL dachk(Dh,inoh,invh, °’ ', -1,-1,Dk,inok,invk)

CHttt+tdttttttttttttttttttttttttttttttrtttttrtttdtttbtttitdttdttttb+4++
C Find and subtract off the linear part of Dh

CALL dacop(Dh,Dk) .
CALL dainf(Dk,inok,invk,ipok,ilmk,illk)

DO 100 ik=ipok,ipok+illk-1

ik1 = i1(ik)
ik2 = 12(ik)
iordk = ieo(ia1(ik1) + ia2(ik2))

CALL dancd(ik1l, ik2, nn)

IF (iordk .EQ. (1)) THEN
DO i=1,20

hi(i) = cc(ik)
0

100 CONTINUE

213

DO i=1,nd*2

a = -hi1(i)

CALL dacma(Dk, Dz(i),a, Dk)
END DO

CH+++tttttdttttdtittdittttttttttttttbttttbtttditdtttbtttstttittttttttts
C Find and subtract off the quadratic part of Dh.

C __
CALL dainf(Dk,inok,invk,ipok,ilmk,illk)
DO 200 ik=ipok,ipok+illk-1

ikl = i1(ik)
ik2 = i2(ik)
iordk = ieof(ial(ik1l) + ia2(ik2))
CALL dancd(ik1, ik2, nn)
IF (iordk .EQ. (2)) THEN
isav = 0
DO i=1,20
IF (on(i) .EQ. (2)) THEN
h2(i,i) = cc(ik)
GOTQ 200
ELSE IF (nn(i) .EQ. (1)) THEN
IF (isav .EQ. (0)) THEN
isav = i
ELSE _
h2(i, isav) = cc(ik)
h2(isav, i) = cc(ik)
GOTO 200
END IF
END IF
END DO
END IF
200 CONTINUE
DO i=1,nd*2
DO j=i,nd*2
a = -h2(l,j)

CALL damul(Dz(i), Dz(j), Dtemp)
CALL dacma(Dk, Dtemp,a, Dk)

END DO
END DO

DO i=1,ndx*2
h2(i,i) = TWO*h2(i,i)
END DO

CH+tttdtttdtdttttdtdtttttdttttttttttttitdtttdtdttdttdttdtttttdt+t++++4+4
C Null out any {order} < (3) parts left by roundoff

CALL dainf(Dk,inok,invk,ipok,ilmk,illk)
jk = ipok - 1
DO 300 ik=ipok,ipok+illk-1

ik1 i1(ik)
ik2 i2(ik)

214

iordk = ieo(ial(ik1l) + ia2(ik2))
IF (iordk .GE. (3)) THEN

J = jk + 1

cc(jk) = cc(ik)

i1(jk) = i1(ik)

i2(jk) = i2(ik)
END IF

300 CONTINUE
idall(Dk) = jk - ipok + 1

IF_(_idall{(Dk) .GT. idalm(Dk)) THEN
PRINT*, ’ERROR in HAMSPLIT: max size of Dk exceeded’
CALL dadeb(11i1,’ERR HmSpl’,1)

END IF

RETURN
. END

Cotekestotokskok solokokoskokdokoskokoiolokokokokokk — END OF FILE skeoskakokoskotolokooe sk ok ko ok ok e s ki e e 3k ko ok ok ok ok ok

215

G.5 The Matrix Module

G.5.1

RJmul

(C ke ok o ke e 3 3k o o e e ok 3 3k o s 3k sk o e ke 3k o ok e ok ok ok 6 3K 3 3 e 3 ok 3K o i 3k o e ok sk 3k ke o o e 3 ok K sk 3 ok ok ok ok e ke o e ke ok ok ok oK

SUBROUTINE RJmul(fa,na, £j,nj, nd)
DOUBLE PRECISION fa(na,na), fj(nj,nj)

DO 20 j=1,nd
DO 10 i=1,nd*2

£j(1, j) = - fa(i, j+nd)
fj(i, j+nd) = fa(i, D)
CONTINUE
CONTINUE
RETURN
END

G.5.2 MVmul

(C ok 2 ok 3 s e o4 o ke ok 3 o ok ok 3 ok s 3k ok sk 3 ok 3k ok 3k 3 ok 3k 28 o 3k ok 3 3K ok 3k 3k 3k ok sk ake 2 3k ok sk ok 2k e sk ok e ok s e ok o e ak ok 3 ok s e ok ok e ok ok

*

10

20

SUBROUTINE MVmul(fa,na, vb,nb, vc,nc, nj)

DOUBLE PRECISION ZERO
PARAMETER (ZER0=0.0d0)

DOUBLE PRECISION a, fa(na,na), vb(nb), vc(nc)

DO 20 i=1,nj
a = ZERO
DO 10 j=1,nj
a=a+ fa(i, j) * vb(j)

CONTINU
vc{ i§ = a
CONTINUE
RETURN
END

216

G.5.3 MMmul

(G 3k ke ke sk ke ok 3 ok sk ke ok 3 ok ok i ok 3K e 3 Sk Sk e ok ok ek Sk 3k 3k 3 3k 3¢ o 5 o e s s sk ke e e Sk e sk ke sl ke s e ke e ke s ke o e e ok ok ke ke sk ke Sk ok

*
SUBROUTINE MMmul(fa,na, fb,nb, fc,nc, nj)
DOUBLE PRECISION ZERO
PARAMETER (ZERD=0.040)
DOUBLE PRECISION a, fa(na,na), fb(nb,nb), fc(nc,nc)
*==
DO 30 i=1,nj
DO 20 k=1,nj
a = ZERO
DO 10 j=1,nj
a=a+ fa(i, j) * fb(j, k)
10 CONTINUE

fc(i, k) = a

20 CONTINUE
30 CONTINUE

RETURN
END

G.5.4 Symplnv

(C ke 3k ke s ke 2 ke 3k ke o 3 ok ok ke 3 ok 3k sk o 3k ok e ok 3k ok 3 sk e o 3k s e e ok e ke s e e s sk ke sk ke 3 S sk Sl sk S ke e ok e Sk e e ke e ok ke sk ok sk ke ok

*
SUBROUTINE SympInv(fa,na, f£fi,ni, nd)
DOUBLE PRECISION fa(na,na), fi(ni,ni)
DO 20 j=1,nd
DO 10 i=1,nd
£i(j, i) = fa(i+nd, j+nd)
£i(j, i+nd) = - fa(i, j+nd)
fi(j+nd, i) = - fa(i+nd, 3)
fi(j+nd, i+nd) = fa(i, j)
10 CONTINUE
20 CONTINUE
RETURN
. END

Cokstesie sk ek kekokok ok kokokokokolokokkokook END OF FILE eskokoskokokokok skookook i ook ool i ok o oo s ok ok ok ool e o

217

G.6 The Tracking Module

G.6.1

DFeval

(C 2 ke ok e ke ke ke ok ok sk o ok ke ok 3k ok ok sk e 3k 3k 3k ok 3 ok e e 3 ok 3k ok 2K ke 3k ok 3k e ok ok 3 ke e Ak ok 3 ok e e ok ok ok ok e 3k ok o 3k ok 3k 3k 3k o 3k o 3k 3 ok ok oK

DOUBLE PRECISION FUNCTION DFeval(x0,Df, no,nv)

CHt+tdttdtttttittttttttrttttitittttdttdtdtititttrtttttttttitbtittttbtsst
C This function evaluates the result of the DA-vector Df acting
on the real vector x0 as a ‘‘trunctated power-series’’.

C

*

IMPLICIT NONE
DOUBLE PRECISION ZERO, ONE

PARAMETER (ZER0=0.0d0, ONE=1.0d0)

INCLUDE 'daparm.inc/LIST’

INCLUDE ’dapool.inc/LIST’

INTEGER no,nv

DOUBLE PRECISION x0(nv)

INTEGER i,j, jj(LNV)

INTEGER if, Df,inof,invf,ipof,ilmf,illf

DOUBLE PRECISION gq

(C ke st ok e e s ke ok ok ok ke ok sk ok e ok 2 sk 3K ol 3 e ke sk 3k sk 3k ke ok ke sk e sk s e sk ke ok s sl ok 3k ke 3 8 o ok sk ok e ol e sk 3k R ok a3k e s e sk e Sk ok 3K o

*

*

100

CALL dainf(Df,inof,invf,ipof,ilmf,illf)

IF (invf .EQ. (0)) THEN
PRINT *, ’ERROR, DFeval called with CA vector’
END%#LL dadeb(111, ’ERR DADER ’, (1))

DFeval = ZERO
DO 100 if=ipof, (ipof+illf-1)

IF (ieo(ial(il(if)) + ia2(i2(if))) .GT. no) GOTO 100
CALL dancd(i1(if),i2(if), jj)
q = ONE
DO i=1,nv

DO j=1,jj(i)

q = q*x0(1)
END DO

END DO .
DFeval = DFeval + g*cc(if)

CONTINUE

RETURN
END

218

G.6.2 DPFeval

(24 ok ok e e sk 3 3 sk o ok 3k ok 3 ok o 3 Sk s ke ok 3 ke s e 3k ok 3k ok e 3 ok ol o ke ok sk ok ok o ok sk s e sk o 3 ok s e ke s ol S s ke ok e ke ok ae e ke o ke ok ok ok ok o ok

€
DOUBLE PRECISION FUNCTION DFdot(ina,inb, DotProd, DotByOrd)
R L S L ARG n s s SR
This subroutine calculates the Euclidian 'dot" product

C
C
C
C of two DA vectors A and B; the resulting real scalar
c quantity is returned as the value of "DFdot".

C

C ___
INCLUDE 'DA2:daimplct.inc/LIST’
INCLUDE ’DA2:daparm.inc/LIST’
INCLUDE ’DA2:dapool.inc/LIST’
INCLUDE ’DA2:daname.inc/LIST’
INTEGER iord, ii, jj(20)
DOUBLE PRECISION Prod, DotProd(*), DotByOrd(*)
*
S:== ——————— ==EsS==ss=s=
CALL dainf(ina,inoa,inva,ipoa,ilma,illa)
CALL dainf(inb,inob,invb,ipob,ilmb,illb)
. CALL dachk(ina,inoa,inva, °’ ’,-1,-1,inb,inob,invb)
DFdot = 0.0d0
DO i=1,inoa
DotProd(i) = 0.0d40
DotByOrd(i) = 0.0d0
. END DO
. IF ((illa .EQ. 0) .OR. (illb .EQ. 0)) RETURN
ia = ipoa
ib = ipob
iamax = ipoa + illa - 1
ibmax = ipob + illb - 1
ja = jai(i1(ia)) + ia2(i2(ia))
jb = ia1(i1(ib)) + ia2(i2(ib))

C+++
Compare DA ordering-indices ja and jb
DO 100 WHILE ((ia .LE. iamax) .AND. (ib .LE. ibmax))
IF (ja - jb) 30, 20, 40

CHttt+ttt+t+t+t+++t++++++t++++4t+++tt+dt+++++id+4tt++44+++4dt+ 4444444+
C Both terms non-zero; accumulate product
20 CONTINUE
iord = ieo(iail(il(ia))+ia2(i2(ia)))
IF (iord .LE. nocut) THEN
Prod = cc(ia) =* cc(1b)
DFdot = DFdot + Prod
DotByOrd(iord+1) = DotByOrd(lord+1) + Prod

END IF
ia = ja + 1
ib = ib + 1

219

ia .GT. iamax) GOTO 101
ib .GT. ibmax) GOTO 101

ja = ial(i1(ia)) + ia2(i2(ia))
jb = iai1(i1(ib)) + ia2(i2(ib))

GOTO 100

IF
IF

7~~~

CH++tdtttttdttttttitttttttttttttstttbttbbittbtdtittttttditttttttttbttttts
C (ja < jb) ==> next nonzero B farther than next nonzero 4;
C increment "ia" to catch up.
C ———
30 CONTINUE
ia = ia 4.1 C mfio(d
ja = ial(ii(ia)) + ia2(i2(ia))

GOTO 100
o B e e 2 A L A S e
c (ja > jb) ==> next nonzero A farther than next nonzero B;

increment "ib'" to catch up.

c
40 CONTINUE
ib = ib + 1 (i
jb = ia1(i1(ib)) + ia2(i2(ib))
GOTO 100

CH++++++++tttttttttttt+d+tttttttttttttttttitdbttbttttbtttttttt+4t++44444
End comparison block

100 CONTINUE
101 CONTINUE
DotProd(1) = DotByOrd(1)
DO n=2, (nocut+1)
DotProd(n) = DotByOrd(n) + DotProd(n-1)
END DO
RETURN
END
*
(C ok e ok ok ke s ok ok ok ke sk Rk ok okok kokokokskokokkokkk END OF FILE skeokokolok ok ook ok ok ol s ok ok e e s sie 3k ok ok ok e sk ok ke 3k ok

220

G.7 Gaussload

(G ke ke ke o ke ok e e e 3k ok 3k S ke e ke e Sk ok ok e ke ok ok ok ke sk e ok s ok e ok ok ke 3 o e o e e e ke ke o ol e ok e ok ks Sk sk ke sk ke ke ok Sk i o F ook ok ke ok

*
SUBROUTINE GausslLoad(StDev, no,nv, DxMom)
IMPLICIT NONE

INTEGER no, nv
. DOUBLE PRECISION StDev(*)
INTEGER j1,32,33,34, jj4), j
INTEGER ni,n2,n3,n4
DOUBLE PRECISION Xjj, GaussMom
*
INTEGER DxMom
. CALL DAall(DxMom,1, ’DxMom ’, no,nv)
S===
IF é nv_ .GT. (20)) THEN
RINT *, 'ERROR IN GaussLoad, NV = ’,NV
RETURN
END IF
*
n4 = no
DO 100 j4=0,n4,2
n3 = nd4 - j4
jj) = j4
b0 100 j3=0,n3,2
n2 = n3 - j3
jja) = j3
DO 100 j2=0,n2,2
ni = n2 - j2
jj(2) = j2
D0 100 j1=0,n1,2
jja) = j1

Xjj = GaussMom(StDev, no,nv, jj)
CALL DApok(DxMom, jj, Xjj)

WRITE(13, 2001) Xjj, (jj(3),j=1,4)
2001 FORMAT(1x, 1pe13.6, 3x, 4i3)

100 CONTINUE

RETURN
END

(0 ke ok s 3k e o e ok ok ok e ke 3K ok o ke e o ke e ok s o ok 3k ok o ok ok 3k ok sk ke 3k ke o o ok ok ke e o ok ok sk ok ok 3k 3k ok oK o o ok 3Kk o ke 3k ok ke e 3k ok ke o ok 3k ok ok

*
DOUBLE PRECISION FUNCTION GaussMom(StDev, no,nv, jj)
IMPLICIT NONE

*

INTEGER no, nv, jj(*)

DOUBLE PRECISION StDev (*)

INTEGER i, j
. DOUBLE PRECISION x
C===

221

GaussMom = 1.0d40
DO j=1,nv

IF (mod(jj(j),(2)) .WE. (0)) THEN
GaussMom = 0.0d0
RETURN

= StDev(j) * StDev(j)
DO i=1,(jj(j)~-1),2
GaussMom = dfloat(i) * x * GaussMom

END DO
END DO

RETURN
END

222

G.8 RayGen

(% % ok e ok s ke o ke sk 3k ok 3K o4 e ok ke sk ke ok 3¢ 3 ok 3k ke ke e 3l ke 3 ok 3k 3k 3k oK ok s 3k 3 s ke e ke s ok 3 ok 3 Rk e e e ke e ke 3 o e ok e sk e ok o ke e ok

*
SUBROUTINE SigCalc(Xbuf,Nbuf, Nv,Nrays, Xavg,Sigma)
IMPLICIT NONE

DOUBLE _PRECISION ZERO
TER

PARAME (ZER0=0.0d0)
INTEGER i,j,n, Nbuf, Nv, Nrays
DOUBLE PRECISION Xbuf (Nbuf ,Nv), Xavg(Nv), Sigma(Nv,Nv)
*
C==
*
DO j=1,Nv
Xavg(j) = ZERO
DO i=1,Nv
Sigma(i,j) ZERD
END DO
END DO
D0 j=1,Nv

Xavg(j) = Xavg(j) + Xbuf(n,j)/dfloat(Nrays)

Sigma(i,j) = Sigma(i,j) +
& (Xbuf(n,i)-Xavg(i)) * (Xbuf(n,j)-Xavg(j)) / dfloat(Nrays)
END DO

(C sk ke e s b ke e afe ke e s ke o sk ke ok o ok 3k ok ke ke s 8 o o o 3 o o e Bk sk ke o 2 ok ke o o ok e 3k o ok a8 o o o8 3 6 3K ok 36 K 8k 3K ok o e ok ok e ke o ok ok oK

*
SUBROUTINE RayGen(Xbuf,Nbuf, Nprim, Iseed)
IMPLICIT NONE

INTEGER NV, Nmax

PARAMETER { NV=4, Nmax=4000)

DOUBLE PRECISION ONE, TWO

PARAMETER (ONE=1.040, TW0=2.0d40)
INTEGER Nbuf, Nprim

INTEGER*4 Isee?

DOUBLE PRECISION Xbuf (Nbuf ,NV), Ybuf(Nmax,NV)
INTEGER n,nn,nnn, nsav

DOUBLE PRECISION s

DOUBLE PRECISION Sx, Spx, Pz
COMMON /Beam/ Sx, Spx, Pz

DOUBLE PRECISION
COMMON /Scales/

CALL SphereGen(

nnn = 0
DO nn=1,Nprim

nnn = nnn+}
Xbuf (nnn,1
Xbuf (nnn,2)
Xbuf (nnn,3)
Xbuf (nnn,4)

nsav = nnn

nnn = nnn+
Xbuf(nnn,i}
Xbuf (nnn,2)
Xbuf (nnn, 3)
Xbuf (nnn,4)

nnn = nnn+
Xbuf(nnn,l}
Xbuf (nnn,2)
Xbuf (nnn,3)
Xbuf (nnn,4)

nnn = nnn+
Xbuf (nnn,1
Xbuf (nnn,2)
Xbuf (nnn,3)
Xbuf (nnn,4)

END DO
RETURN
END

nunuun [LI | B 1]

wuw uwa

223

Xscale,PXscale, Zscale,PZscale
Xscale,PXscale, Zscale,PZscale

Ybuf ,Nmax, Nprim, Iseed)

(Sx/Xscale) * Ybuf(nn,1)

(Sx/Xscale) * Ybuf(nn,2)

(Spx/PXscale) * Ybuf(nn,3)

(Spx/PXscale) * Ybuf(nn,4)
- Xbuf(nsav,1)

- Xbuf(nsav,2)
Xbuf (nsav,3)
Xbuf (nsav,4)

Xbuf (nsav,1)
Xbuf (nsav,2)
- Xbuf(nsav,3)
- Xbuf(nsav,4)

- Xbuf(nsav,1)
- Xbuf (nsav,2)
- Xbuf(nsav,3)
- Xbuf (nsav,4)

(C ke 3k ke sk e sk ke ok Skl ke 3 ok ke sk sk 3 e 3K sk ok ok 3 e Sk e 3k e sk e sk ke ok S 3K ok s ok e sk e ok 2 ok e sk 3 o e e R e o e ok 2k ke K ok ke 3k o ok ke ke ok K e kK

*

SUBROUTINE SphereGen(Ybuf,Nbuf, Nrays, Iseed)
IMPLICIT NONE

INTEGER
PARAMETER

DOUBLE PRECISION
PARAMETER
PARAMETER

INTEGER
DOUBLE PRECISION

INTEGER*4
DATA

SAVE
INTEGER

DOUBLE PRECISION
DOUBLE PRECISION

NV, Nmax
NV=4, Nmax=4000)

ZERO, ONE, TWO, HALF, RO

(ZERD=0.0d40, ONE=1.0d0, TW0=2.040, HALF=0.5d0)

R0=3.0d0)

Nbuf, Nrays

Zbuf (Nmax,NV), Ybuf (Nbuf,NV)

Iseed . L.
Iseed/-123454321/ ! used when routine autoinit’d
Iseed ! used when routine autoinit’d

i,j,k, n, nout, Itrial

a, z(NV), rho, Rmax
T(NV,NV), D(NV), E(NV)

224

DOUBLE PRECISION Xavg(NV), Sigma(NV,NV)
DOUBLE PRECISION S(NV,NV)

e o e e e i e e e e e e o e e e S e S e I S T S R S S n S e T S S e e o e e e o
B33 S P e i e i T 1 £

Itrial =
out = 999
DO_WHILE ((Itrial .LT. (20)) .AND. (nout .GT. (0)))
Itrial = Itrial + 1
DO j=1,NV
Xavg(j) = ZERO
END DO
DO n=1,Nrays
CALL MakeRay(Iseed,RO, z)
a = ZERD
DO j=1,NV
a = a + z(j)*Xavg(j)
END DO
DO j=1,NV
IF (a .LT. (ZERO)) THEN
zbuf(n,j) = z(j)
Xavg(j) = Xavg(j) + z(j)
ELSE
zbuf(n,j) = - z(j)
Xavg(j) = Xavg(j) - z(j)
END IF
END DO
END DO
k =

nout = 999

DO WHILE((k .LT. (Nrays/4)) .AND. (nout .GT. (0)))
k =k +1
CALL SigCalc(Zbuf,Nmax, NV,Nrays, Xavg,Sigma)

DO j=1,NV
DO n=1,Nrays
Zbuf(n,j) = Zbuf(n,j) - Xavg(j)
END DO
DO i=1,NV
T(i,j) = Sigma(i,j)
END DO
END DO
CALL tred2(T, NV,NV, D,E)
CALL tqli(D,E, NV,NV, T)

DO j=1,NV
IF ((D(j).GT.TWO) .OR. (D(j).LT.HALF)) THEN
PRINT *, ’Failure; restart at Itrial = ’,Itrial

nout=999
GOTO 100 ! Restart
ND I

END DO
Rmax = 5ERO

nout
DO n=1,Nrays

225

a= a + Zbuf(n,i)*T(i,j)
END
Ybuf(n j) = a / sqrt(D(j))
tho = rho + Ybuf(n,j)*Ybuf(n,j)
END DO
Rmax = max(rho, Rmax)

IF (rho GT RO*RO) THEN

out = nou 1

CALL MakeRay(Iseed,RO, z)

DO j=1,NV
Zbuf(n,j) = z(j)

END DO

END IF
END DO ! n=1,Nrays
END DO L WHILE((k LT.(10)) .AND. (nout.GT.(0)))

IF ((k.EQ.(Nrays/4)).AND.(nout.NE.(0))) THEN
PRINT *, ’bad rays after (Nrays/4) sweeps; restarting’

END
100 CONTINUE
END DO

PRINT *, ’ERROR in SphereGen: failure after Imax Restarts’
B8

(C e 3k ok ok e ke o0 3 ok ok 2k s ok ok 3k ok ok 36 kK a8 ke 3 ok 3 3K ok 3k ok sk 3k ok e ke ok K ke ok 3k e ok ke ok ke ok e ke sl sk Sk e ok s a3 ok o ke o 3 ok ok 3K ok ok kK e

*
SUBROUTINE MakeRay(Iseed,RO, z)
IMPLICIT NONE

DOUBLE PRECISION ONE, TWO
PARAMETER (ONE=1.0d40, TW0=2.0d0)

INTEGER*4 Iseed

DOUBLE PRECISION RO, z(*)

INTEGER k

DOUBLE PRECISION a, u,v, r,p, Unin, Ran0, rho

DOUBLE PRECISION Pi, Pi2, HalfPi
COMMON /PiBlok/ Pi, Pi2, HalfPi

= Pi2 * Ran0(Iseed)
= Pi2 * RanO(Iseed)

= sqrt(- TWO * log(Umin + (ONE-Umin)*RanO(Iseed
= sqrt(- TWO0 * log(Umin + (ONE-Umin)*RanO(Iseed

Nt Nt
N Nt
A

cos{ u
sin(u
v
v

N

~

W

A

o
‘oo HH

cos(
sin(

* ¥ ¥ ¥

N N N N

226

Vita

Name: Gordon D. Pusch W f

Date of Birth: 14 August, 1958

Education

> Ph.D. Physics Mar 1990, Viginia Polytechnic Institute and State University,
Blacksburg, VA.

> B.S. Physics Dec 1980, Bradley University, Peoria, IL.

Areas of Specialization

> Accelerator Physics, particularly applications of differential and Lie algebraic
techniques.

> Computational Physics.

> Numerical Analysis.
¢ Related Experience

> 1989 Summer Internship with Instrumentation and Controls group, CEBAF.

> 1987-1988 Summer Internship/Research Assistantship with AT-3 Accelerator

Technology group, Los Alamos National Laboratory.

227

228

¢ Publications

> Differential Algebraic Method for Obtaining Approzimate Solutions to the
Hamilton-Jacobi Equation, 1990 (to be submitted for publication).

> A New Test of the Weak Equivalence Principle,
(Third Prize essay, 1986 Gravity Research Foundation essay competition)
General Relativity and Gravitation 19, 225 (1987).

> Neutron-Antineutron Oscillations in a Periodically Varying Magnetic Field
Il Nuovo Cimento T4 A, 149 (1983).

¢ Honors and Awards
> Author of third prize essay, 1986 Gravity Research Foundation essay competition.
> Member XIIY (American Physical Society Honor Society).

