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(ABSTRACT) 

I present two differential-algebraic (DA) methods for approximately solving the Hamilton- 

Jacobi (HJ) equation. I use the “automatic differentiation” property of DA to convert 

the nonlinear partial-differential HJ equation into a initial-value problem for a DA-valued 

first-order ordinary differential equation (ODE), the “HJ/DA equation”. The solution of 

either form of the HJ/DA equation is equivalent to a perturbative expansion of Hamilton’s 

principle function about some reference trajectory (RT) through the system. The HJ/DA 

method also extracts the equations of motion for the RT itself. Hamilton’s principle function 

generates the canonical tranformation, or mapping, between the initial and final state of 

every trajectory through the system. Since the map is represented by a generating function, 

it must automatically be symplectic, even in the presence of round-off error. 

The DA-valued ODE produced by either form of HJ/DA is equivalent tc a heirarchically- 

ordered system of real-valued ODEs without “feedback” terms; therefore the heirarchy may 

be truncated at any (arbitrarily high) order without loss of self consistency. The HJ/DA 

equation may be numerically integrated using standard algorithms, if all mathematical 

operations are done in DA. I show that the norm of the DA-valued part of the solution is 

bounded by linear growth. The generating function may be used to track either particles 

or the moments of a particle distribution through the system. 

In the first method, all information about the perturbative dynamics is contained in the 

DA-valued generating function. I numerically integrate the HJ/DA equation, with the



identity as the intial generating function. A difficulty with this approach is that not all 

canonical transformations can be represented by the class of generating functions connected 

to the identity; one finds that with the required initial conditions, the generating function 

becomes singular near caustics or foci. One may continue integrating through a caustic 

by using a Legendre transformation to obtain a new (but equivalent) generating function 

which is singular near the identity, but nonsingular near the caustic. However the Legendre 

transformation is a numerically costly procedure, so one would not want to do this often. 

This approach is therfore not practical for systems producing periodic motions, because one 

must perform a Legendre transformation four times per pericd. 

The second method avoids the caustic problem by representing only the nonlinear part of 

the dynamics by a generating function. The linearized dynamics is treated separately via 

matrix techniques. Since the nonlinear part of the dynamics may always be represented by 

a near-identity transformation, no problem occurs when passing through caustics. 

I sucessfully verify the HJ/DA method by applying it to three problems which can be solved 

in closed form. Finally, I demonstrate the method’s utility by using it to optimize the length 

of a lithium lens for minimum beam divergence via the moment-tracking technique.
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Chapter 0 

Introduction 

Scientists and engineers are often interested in the response of a dynamical system to pertur- 

bations from some idealized state. Unfortunately, an analytical solution to such a problem 

usually can only be obtained if the system in question is linear, or may be so approximated; 

for a nonlinear system, one must frequently resort to numerical methods. 

For example, this dissertation is particularly concerned with the response of a beam of 

charged particles to applied electric and magnetic fields; the dynamics of such systems 

become nonlinear when the field has sextupole or higher components, or when coulomb 

interactions between the charged particles are included. If one is only interested in a small 

number of specific trajectories through a system, then the “brute-force” method of direct 

numerical integration may suffice. However, if one is interested in tracking hundreds of 

particles through the system, or one particle for hundreds of orbits, the computational 

expense of direct numerical integration may become prohibative. Furthermore, the analyst 

may be far more interested in properties characterizing the system, rather than some small 

set of trajectories passing through it. 

Now the propagation of a state through a system may be thought of as being represented 

by an “operation”, or mapping, which takes initial states into final states. Since the appli-



cation of the map to a state may be orders of magnitude “cheaper” than direct numerical 

integration (because one is spared the expense of computing the intermediate states), it 

often makes sense to invest one’s effort “up front” by looking for some means of numerically 

representing and computing the map produced by a system. When the perturbation is 

“small”, for example, one could respresent the map by a Taylor-series expansion of the final 

coordinates in terms of the initial coordinates. In the region where this series is sufficiently 

accurate, tracking becomes a matter of evaluating a set of polynomials having a few hundred 

coefficients, as opposed to the several thousand complicated evaluations of the equations of 

motion which might be required by direct numerical integration. 

The subclass of Hamiltontan systems pose particular problems, because the evolution-map 

produced by a Hamiltonian system has a special property known as symplecticity. One 

would like the numerical representation of such a map to respect symplecticity exactly, if 

possible; otherwise, unphysical behavior will occur. One such exactly symplectic representa- 

tion is provided by the so-called “mixed generating functions”. A Mixed generating function 

satisfies the Hamilton-Jacobi (HJ) equation associated with each Hamiltonian system. 

HJ equations may be formulated for any system governed by a variational principle depend- 

ing on no higher than first derivatives of the dynamical or “state” variables with respect 

to some continous parameter; this category contains almost all systems in physics, and a 

significant fraction of the systems in engineering. Examples from physics include certain 

problems in celestial mechanics, paraztial light optics, and paraztal charged-particle optics. 

In engineering and applied mathematics, examples of such variational principles arise in 

optimal control theory. In fact, essentially any first-order differential system may be imbed- 

ded in a larger Hamiltonian system, either by appending one or more “trivial” auxiliary 

equations [LN88]., or by using the theory of optimal controls [Kir70, Sag67]. The result- 

ing extended system may sometimes exhibit pathological behavior not seen in the original 

system, however, so caution must be used [LN88]. 

This dissertation presents a new method for obtaining approximate numerical solutions to



the HJ-equation using the recently developed method of “differential algebra”. The result- 

ing generating function provides a perturbative expansion for deviations from a specified 

“reference trajectory”. Since much of my recent experience has been in charged-particle 

optics, I shall draw most of my examples and terminology from this field. However, the 

methods I shall describe may be applied to any of the problems mentioned above. 

The organization of this dissertation is as follows: 

In Chapter 1, I introduce those elements and notations of modern dynamical systems theory 

needed for this dissertation, with particular emphasis on Hamiltonian systems. I then 

discuss the importance of the symplectic condition in Hamiltonian dynamics, and why it 

should be respected by numerical simulations. I then briefly sketch the relationship between 

Hamiltonian dynamics and optics. 

In Chapter 2, I review current numerical methods for Hamiltonian systems, and discuss their 

respective advantages and liabilities. I then briefly sketch my HJ/DA method, describing 

where it fits in with the aforementioned schemes. 

In Chapter 3, I give a tutorial on dtfferenttal algebra, a new method which allows one to 

compute the numerical values of the analytical derivatives of functions, to arbitrarily high 

order and machine precision, without resorting to an explicit analytical formula. 

In Chapter 4, I introduce those elements of Hamilton-Jacobi and perturbation theory needed 

for this dissertation. I also briefly discuss the theory of perturbative etkonals. 

In Chapter 5, I develop and present three forms of my HJ/DA method. HJ/DA is a tech- 

nique for obtaining approximate numerical solutions to the Hamilton-Jacobi equation via 

differential algebra. 

In Chapter 6, I describe an implementation of the HJ/DA method, and verify its accuracy 

for three test problems solvable in closed form: a particle in a uniform relativistic drift, a 

two-dimensional harmonic oscillator in polar coordinates, and a relativistic charged particle



in a uniform magnetic field. I then apply it to a new problem, for which no closed form 

solution exists: optimization of a “lithium lens”. 

In Chapter 7, I summarize my results and conclusions. 

Finally, I present my numerical results and the FORTRAN code used in appendices A-G.



Chapter 1 

Modern Dynamics, Perturbative 

Methods, and Optics 

“... Among all mathematical disciplines the theory of differential equations 

is the most important ... It furnishes the explanation of all those elementary 

manifestations of nature which involve time ...” — Sophus Lie (1895) 

This chapter summarizes relevant concepts from modern dynamics and optics, and their 

connection to perturbative methods, in order to establish terminology, notation, and provide 

a framework. 

1.1 Systems, Flows, and Mappings 

A dynamical system may be defined in the abstract as a tangent vector field U € TM ona 

manifold of states M; One may intuitively think of U as a “velocity” (see [AMR88, chap. 4], 

also [Omo86, chap. 2]). TM is the tangent bundle over M which, loosely speaking, is the 

product of M with its tangent manifolds (where tangent vectors live) at every point p € M. 

o
r



Locally, the equations of motion (EOMs) governing the evolution of the system may always 

be expressed as a set of first-order ordinary differential equations (ODEs): 

é4 = UM(E,t). (1.1) 

Here the €¥ denote a local set of coordinates on the manifold M, (t.e. a chart), ¢ is the 

evolution parameter, and, as usual, é” denotes the total derivative of the €4# with respect 

to ft. 

In principle, I can find the evolution of such a system with respect to ¢ from any admissable 

initial condition €;(t1) to its coresponding final state &s(t2); geometrically, this is a mapping 

of M onto itself for each 1, to: 

U: M—+M; €,(t1) > €;(t2) =U(ta, tr) €,(t1). (1.2) 

Do not be deceived by the simple appearance of (1.2); in general the evolution-map operator 

U will not be linear! 

If U satisfies certain smoothness and uniqueness conditions, then U will be a diffeomorphism 

(i.e., a smooth, one-to-one, onto map having a smooth inverse) [AMR88, p.116]. 

The two-parameter family of diffeomorphisms U;, 1, produced by the map U(t2,t,), and 

labeled by the continous parameters ¢, and ?2, is called the flow of the dynamical vector 

field U on M (see [AMR88, p.239]). The flow has the “group” properties: 

Us t, = Uts,t2° Utz 15 Utyte = Un ti >» Use=e, Vt, 

where € is the identity map. 

A system is called autonomous if its evolution map depends only on the difference tz — ty, 

so that Ut,2, = UGe,-2,),0. Vl2,t1; this is true if, and only if, U is independent of t. The 

map and its associated flow therefore effectively reduce to one-parameter families, which I 

write as U(t) and li;, respectively.



By abuse of notation, in the text of this dissertation I will often use the undecorated symbol 

U to denote both the flow of U and the mapping operator which generates it, when the 

difference is clear from context (they are, after all, more or less the same thing). 

1.2 Hamiltonian Systems and Poisson Brackets 

A very special class of dynamical systems are the Hamiltonian systems. A member of this 

class lives on an even-dimensional manifold P, generally known as a “phase-space” |AMR88, 

pp. 560-583]. By Darboux’s theorem [AMR88, p. 562], [Arn88, p. 230], for any Hamiltonian 

system a local chart ¢: P — R"™ xR" ~ R?2" may always be found in which the evolution 

equations take the canontcal form: 

; 0 0 
f— i - —-— ;=1,...,n. 1. q Bp f(a P), Bi agit (dP): t=1,...,n (1.3)   

The generalized coordinates q', and their corresponding generalized (or conjugate) momenta 

pi provide a particular local parameterization of the manifold P known as “canonical co- 

ordinates”, while the Hamiltonian function H(q,p) = H(q',...,9",P1,---,Pn) specifies the 

dynamics. 

I shall use the same symbol # to denote both the flow and the evolution mapping operator 

defined by H. Again, context should be sufficient to resolve this ambiguity. To refer to the 

system itself, I shall use either #1 or H, depending on which is more appropriate. 

Strictly speaking, it is not generally possible to cover P by a single chart without en- 

countering some sort of coordinate singularity. However, as a matter of convenience such 

“defective charts” are often used anyway (e.g. spherical polar coordinates), since they pro- 

vide perfectly servicable representations as long as one remembers that some points are not 

properly represented. (The equations of motion may become numerically ill-conditioned 

near the singularities, however, requiring some type of regularization. )



The Poisson Bracket (PB) between functions on P plays a fundamental role in the theory 

of Hamiltonian systems. The PB is a skew-symmetric bilinear map: 

{y}:  C™(P) x C™(P) > C?(P) 

where C"(P) is the set of all continuous, n-times differentiable functions over P. 

The PB has a number of important algebraic properties [SM74, p. 39] which I will state 

here without proof: 

I. Bilinearity: {(af; + Bfe),g9} = af{fi,g} + BL fo, 9} 

{fi(ag + Bg2)} = a{f,g1} + PIF, 92} 

IT. Anti-Symmetry: {f,9} = -{9, fF} 

III.  Jacobi’s Identity: Ufo} h} + (ohh FY + Uh, fog} = 0 

IV. Derivation Property: {f.gh} ={f,g}h + olf, A}. 

In terms of canonical coordinates, the PB is given by [Gol80]: 

Of 0g Of dg 
9 1.4 fg b= Dae Fe ana (1.4) 

While the above definition appears to be tied to a particular coordinate system, it is actually 

invariant under the class of coordinate transformations (called canonical transformations) 

which leave the canonical equations (1.3) form-invariant. 

Using the Poisson Bracket, I can write the canonical equations (1.3) in a more symmetrical 

form: 

¢ = {¢', F}, bi = {pi, H}, (1.5) 

and indeed for any f(q,p;t) € cl(P), one can show that the total derivative is given by: 

Sf ={hayt es (1.6) 
along every trajectory (q‘(t), p;(t)) satisfying the canonical equations (1.3).



1.3 Poisson Brackets and Poisson Manifolds 

From the above properties of PBs, one sees that for functions in C(P), the PB satisfies the 

defining properties of an (infinite-dimesional) Lie-algebra. These properties hold indepen- 

dently of the canonical coordinate representation (1.4), and indeed, a completely coordinate- 

free treatment is possible using Lie derivatives and differential forms [AMR88, Arn88]. 

Modern workers in Mechanics hold that it is the above “Lie properties” which are crucial; 

as in General Relativity, the coordinatization of the system is physically irrelevent, and a 

coordinate-free treatment should be employed whenever possible. 

The arena of Hamiltonian dynamics is a Poisson manifold: a manifold of states with a 

Poisson Bracket defined on it [AMR88, pp.110]. The bracket structure plays a defining role 

in the geometry of this manifold analogous to the role of the metric tensor in a Riemannian 

manifold. In General Relativity, we distill the physical essence of coordinates into the 

metric tensor; in Hamiltonian dynamics, the physics of the canonical equations resides in 

the Poisson bracket structure. In General Relativity, we attach special importance to those 

transformations which preserve the metric; in Hamiltonian dynamics, we attach similar 

importance to the canonical tranformations which leave the bracket structure invariant. 

For the purposes of this dissertation, the full machinery of coordinate-independent me- 

chanics will not be necessary. However some of the concepts of tensor analysts on phase- 

space [SM74] will be useful. 

1.4 Phase-Space Tensors 

Consider a set of 2n functions €“(q,p), » = 1,..., 2n. If they are smooth and invertable, 

I may just as easily parameterize the phase-space P by the €“ as by the (q', p;). In particular, 

the Poisson bracket (1.4) of two functions so Penemeinaes will become: 

{f,g} = d sele"se"} ,€"} ES = Of J*” ag. (1.7)
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Here I have introduced the Einstein summation convention, and the common notation 

0, := 0/0€"; I have also introduced the object J¥” := {€4,£”}. One can easily show that 

under a coordinate transformation J/¥” must transform like a rank-2 contravariant tensor. 

The EOMs of the system in terms of the new paramertization are obtained by computing 

the total derivative of the €#; From (1.6) and (1.7), one finds: 

: u 

gh = {6", A} t+ = _— sand OH = OH = JOH (1.8) 

(assuming, of course, that the €* have no explicit time-dependence). In canonical coordi- 

nates, with the particular labeling €“ = (q',p;), J#” takes on the following special “block 

antt-symmetric unit” form: 

0 1 
JM = ; (1.9) 

-1 O 

This form sugests that canonical coordinates on a Poisson manifold play a role analogous 

to orthogonal cartesian coordinates in euclidian geometry, with J+” being somewhat anal- 

ogous to the metric. The analogy may be somewhat strained though, since the metric is a 

symmetric bilinear form which maps a pair of vectors to a scalar, while the PB maps a pair 

of functions to another function. But any analogy falls over if you push it hard enough. 

1.5 The Importance of Being Symplectic 

Canonical transformations are those transformations £ > & which preserve the form of the 

canonical equations (1.3). This is equivalent to requiring that J“” be invariant: 

- - pox eA Jo8 = {6,8} = Foe Je, (1.10) 

This apparently innocent identity actually has very far-reaching implications for the would- 

be numerical analyst intent on tackling a Hamiltonian system. It is called the symplectic 

condition, because it implies that when J” is in the “standard form’ (1.9), then the Ja- 

cobian matrix of a canonical transformation, [M]* := 0&*/dé#", must be an element of p
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the symplectic group Sp(2n), where 2n = dim{P}. The symplectic group Sp(2n) is the 

set of all 2n x 2n real matrices which satisfy the condition, MJM! = J. It is easy to 

show [Gol80, p.403] that det{M} = 1, so M is volume-preserving; an immediate conse- 

quence of this is Liouville’s theorem: the volume of any closed region of phase-space is 

preserved as it is convected along by the Hamiltonian flow [Gol80, §9.8]. 

If the tensor J” is nondegenerate, its inverse defines a closed, nondegenerate two-form 

Wis 5 Jy d&" A dé” called a symplectic structure, and restricts our Poisson manifold M to 

a Symplectic Manifold (see [Arn88, p.201]). The term “symplectic” appears to have been 

coined by Herman Weyl. The symplectic groups are closely related to complez projective 

geometry |Arn88, App. 3], and w provides an “almost complex structure” on M. To eliminate 

possible confusion, Weyl transmogrified the Latin roots “com” and “plex” to their Greek 

equivalents “sym” and “plectic’.1 The symplectic condition (1.10), is an extrordinarily 

restrictive condition on the geometry and dynamics of a Hamiltonian system. It represents 

a set of global nonlinear partial differential constraints on every possible transformation 

one might apply to H, including those which represent its own evolution. In fact, the 

constraints (1.10) are so restrictive that they will probably not be satisfied if one attempts 

to approximate the flow H of the canonical equations (1.3) with some simpler system, unless 

the flow of that simpler system is also symplectic. 

The symplectic condition (1.10) is a fundamental consequence of the Poisson bracket struc- 

ture on the phase-space of the Hamiltonian system H. It resembles in many ways the 

condition of analyticity in complex function theory, although the symplectic condition is 

understood far less clearly. If anything the symplectic condition may be more restrictive 

than complex-analyticity, since in Hamiltonian mechanics one is usually working in a space 

of more than two dimensions. Just as a function cannot be only “a little bit analytic” over 

some domain, a tranformation on P cannot be only “a little bit symplectic”: it either is 

or it isn’t. Moreover, the symplectic condition is a global constraint; if the Hamiltonian 
  

‘The only prior use of the word “symplectic” in English is as the name of a small bone in the head of a 

fish; amusingly, “poisson” happens to be French for “fish”.
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character of 1 is to be preseved, then the symplectic condition (1.10) must be satisfied at 

every point in P, and not just over a limited region. 

Symplecticity will also impose an infinite hierarchy of constraints on certain approximation 

schemes (such as finite-difference schemes, or so-called perturbation “theory” ), because even 

if the symplectic condition is explicitly satisfied through a given order, there is no guarantee 

that it will not be implicitly violated by higher-order-terms (abbreviated as “{HOTs}”). If 

the approximation scheme does not satisfy the symplectic condition, it may cause violations 

of important conservation laws, such as Liouville’s theorem or the Poincaré invariants (both 

of which are consequences of the symplectic structure on P).? In particular, replacement of 

(1.3) by a finite difference scheme on a computer will almost certainly violate the symplectic 

condition, because the global structure of the finite difference equations may be very different 

from the orginal differential equations, even in the limit of vanishing stepsize (a fact often 

overlooked in numerical simulations). 

Cases have been found [How74] where the structure and character of global features, such as 

fixed-points and separatrices, change markedly when the system is approximated by a finite- 

difference scheme, such as the Runge-Kutta or Adams families of integrators [HNW687]: sta- 

ble orbits may become unstable, fixed points may become attractors or repellors, and closed 

regions bounded by separatrices may become open. Also, Channell and Scoval [ChSc88] 

found that with Runge-Kutta and Adams numerical integrators, the constants of motion of 

the original system typically drift away from their initial values, with the deviation growing 

like some power of time. In contrast, Channell and Scoval found that, when using their 

special integrators which preserve symplecticity exactly even though they are only of finite 

accuracy in the time-step, the constants of motion typically show only small, apparently 

bounded fluctuations about some mean value; in some cases, the constants were even pre- 

served to machine accuracy! The accuracy with which the constants were preserved becomes 

even more remarkable when one realizes that no explicit effort had been made by Chan- 
  

7An example of such unphysical behavior may be seen in (Ser85], where gross violations of Liouville’s 
theorem were observed in a long-term tracking study.
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nell and Scoval to incorporate conservation of the constants into the difference scheme; the 

remarkable stability properties of these algorithms apparently came “for free”. 

As a physicist, | am biased toward approximation schemes which respect the structure of a 

system and its conserved quantities “as much as possible”. The work of Channell and Scoval 

appears to vindicate this prejudice; it also shows that explicitly respecting symplecticity 

may perhaps be even more important than respecting, say, energy-conservation. 

1.6 Optics and Hamiltonian Dynamics 

One important application of Hamiltonian Dynamics is optics, both geometrical and corpus- 

cular. Geometrical optics deals with the manipulation of light-beams using configurations of 

curved refractive surfaces. Corpuscular, or charged-particle, optics deals with the manipu- 

lation of charged particle beams using configurations of electric and magnetic fields. While 

superficially similar, the character and geometry of these two problems is fundamentally 

very different. In the former, the geometry is essentially Riemannian, and the underlying 

variational principle is Fermat’s princtple of “least time”; the “metric” is the Euclidian 

metric, conformally rescaled by the reciprocal of the refractive index. In the latter, it is 

intrinsicly Finslertan, and the variational principle is Hamilton’s principle of “least action”. 

The significant difference between Reimannian and the more general Finslerian geometries 

is that in Finslerian, or “Hamiltonian” geometry as Synge [Syn60| prefers to call it, the 

analog of the “metric” (Hessian of the Lagrangian) in general depends nontrivially on the 

velocity. However Hamiltonian Dynamics provides a common and natural framework for 

both types of optics.
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1.7 Hamiltonian Dynamics and Perturbation Methods 

The fundamental problem faced by the numerical analyst in working with nonlinear systems 

is one of finding a convenient, yet accurate, method of representing the dynamics. One is 

then faced with a problem: while the analyst may understand the concept of functions and 

mappings, the computer certainly does not. All the computer “understands” are finite- 

precision numbers. So how does one numerically characterize a map? 

First, practical considerations force one to restrict the scope of the problem. The computer 

can hold only a finite number of parameters, while the map U may very well depend on an 

infinite number. Hence, one needs some sort of approximation scheme. Furthermore, given 

that one is often most concerned about the action of the map on a small netghborhood about 

some initial reference point £;, one is often content to ask, “Can I approztmately describe 

where the points in this neighborhood will be mapped to by U, using only a finite number 

of parameters?” While many more than “four and twenty ways” to formulate this question 

exist, Stephen Omohundro has shown that “perturbation theory” provides a particularly 

convenient and useful framework [Omo86]. 

Consider a smooth, one parameter map U(t) of some manifold M onto itself, and reducing 

to the identity at t = 0. U(t) represents a flow L; on M; this flow is the integral of some 

smooth vector field U defining the dynamical equations of the map, which may be obtained 

by differentiating U/ if they are not already known. 

Choose some initial reference point &; in M. I shall call the curve 9(t) = U(t) foi traced 

out by the image of the reference point &; under U(t) the reference trajectory, or RT. I 

shal call the image of £9; at t = ty, o% . Assume the RT remains in a “regular” region of 

the flow, i.e., it does not pass too close to a separatix, etc., so that near the RT, the flow 

is well-behaved, not chaotic. Then U(t;) will map a small neighborhood =; about &; onto 

a corresponding small neighborhood =; about os. The “smallness” of the neighborhood 

may be represented by the following ansatz: we formally introduce an artificial “ordering
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parameter” ¢«, and assume that the form for a general trajectory may be written as an 

asymptotic series (though in rare cases it may actually prove to be convergent): 

o(t) = E(t) + €€r(t) + 5 E(t) + 8 (2) +. (1.11) 

Here £5 (t) is again the RT, and the “corrections” £?, i = 1,2,3,... are assumed independent 

of €, although they may depend on other parameters (such as the boundary conditions) 

which I have suppressed. Hence, in the limit of vanishing ¢€, all deviations from the RT 

must vanish; t.e. the trajectories all collapse onto the RT. 

Now substitute (1.11) into the dynamical vector field U; if desired, U may also be allowed 

to have an explicit «-dependence to represent any other dynamical effects which are thought 

of as “small” (or “large”, if there are some “fast” variables we want to “average out”). By 

formally expanding the result in powers of € and equating like terms, one now has an infinite 

hierarchy of equations having the same form as a typical problem in “perturbation theory”: 

  

& = U*(0,é.) 
; a 0 
ef eT ee + ae U" (eso) _ (1.12) 

- _ a eB ? u 6? 
eo & i are U" (0, £0) + ere; aesaee (0 »€o) + 2g7 de aeaeee 0) 0 

, 

+ 5 aa" (e, £5) - 

  

The first-order terms are just the linearized system; the higher-order terms describe the 

effects of nonlinearities (see Omohundro’s dissertation [Omo86, pp.84-89] for the details). 

There are several important thing one should note about the perturbation expansion (1.12). 

First, the n** term in the series does not appear until the n‘*-order equation, so while é# 

feeds “up”, it does not feed “down”; therefore the series may be truncated at any point 

without changing any lower-order results. Second, the n“* term in the series appears linearly 

in the n‘*-order equation, so an explicit solution is always possible, merely by quadratures.
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Third, the right hand side of each equation in the series is “homogenous in order”, i.e. in 

the second-order term, U always appears differentiated twice, and the sum of the subscripts 

of the €,, is always equal to the order minus the number of e-differentiations. Finally, the 

initial conditions (ICs) of all the €, (except for the reference trajectory &)) are at the 

analyst’s disposal, because they are “nonphysical” degrees of freedom, introduced solely 

for constructing the perturbative solution, and have no effect on the unperturbed problem 

(again, all solutions of (1.12) collapse onto the RT in the limit of vanishing ¢). In a sense, 

the IC’s one chooses for the €,, represent a “gauge-like” degree of freedom and are all in 

some sense “equivalent”, because the €, are not characteristics of the system! Instead, 
n 

the &, describe the deformation of a system and its initial conditions resulting from the 

perturbation. 

Omohundro advocates a radical reinterpretation of perturbation expansions. An asymptotic 

series, such as (1.11) is assumed to be, has a zero radius of convergence. Therefore he 

argues that one should view the coefficients £4 as describing things that are characteristic 

of the unperturbed dynamical system in an infinitesimal neighborhood about the RT, rather 

than of the perturbed system at finite €, as is usually assumed. He may therefore place 

perturbation “theory” on a rigorous geometrical footing, the natural geometric framework 

being the theory of jet bundles and prolongations. (I will briefly discuss jets in §4.4 of this 

dissertation.) Omohundro’s geometric interpretation allows one to understand the physical 

meaning of the series (1.11) even though in general it does not converge. 

1.8 Perturbation Methods and Paraxial Optics 

When thinking of “optics”, most physicists generally think of its simplest (and most limited) 

form: Gaussian (or parazial) geometrical optics. One considers only rays inclined at small 

angles to the optical axis, and deviating but a small distance (relative to any other length 

scale) transversely to it. The surfaces of all optical elements are idealized, having the
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simplest possible geometry: spheres, or perhaps at worst a quadric. All indices of refraction 

are homogenous, so that rays travel in straight lines between optical surfaces, and optical 

elements are frequently regarded as “infinitesimally thin” (again, relative to any other length 

scale). Then one may expand to first order in deviations and angles; i.e. one linearizes the 

problem to make analytical solution possible. One has a simple problem in plane right 

triangles. 

However, the “real world” is not quite so accommodating. Desirable characteristics of the 

instrument, such as small physical size and large usable aperture, seldom allow the luxury of 

“thin” elements. At the same time, practical aspects of manufacturing impose the conflicting 

demand that the majority of the optical surfaces be spherical. But thick spherical lenses of 

short focal-length and large aperture fail to satisfy the paraxial condition; nonlinear effects 

appear, and must somehow be treated. 

The successes of linearized optics encourages one to attempt a perturbative approach. One 

rescales all the transverse deviations and angles, which are considered to be “small”, by 

an artificial “ordering parameter”. One then formally expands the dynamics in terms of 

this parameter, hoping that the coefficients of the perturbation expansion will provide some 

information about nonlinear effects, even though at most they will provide an asymptotic 

description of the optical system. This approach proves amazingly successful; one may 

use the perturbation coefficients both to classify and correct the various distortions, or 

“aberrations” (coma, astigmatism, distortion, etc.), resulting from the “third-order” terms 

in the expansion [Brn WI1f70]. Prior to the developement of these techniques (largely by 

German opticians), light optics was largely a matter of “cut and try”; now it is a sctence (but 

largely a German and Japanese science, to the regret of American camera manufacturers). 

Charged-particle optics almost forces one into these techniques from the start. The “lenses” 

of charged-particle optics consist of carefully shaped electromagnetic fields in free space 

(free, because a beam of charged particles usually must propagate through an ultrahigh 

vacuum if it is to be useful), and Maxwell’s equations in free space strongly constrain the
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types of fields one may produce. For example, “fringe fields” will always exist, extending 

beyond the lens for a distance comparable to its aperture; in essence, the “thickness” of an 

electric or magnetic lens must be at least as great as its aperture. Furthermore, Schertzer’s 

theorem [Sch36] and its extension by Moses [Mos66] show that it is physically impossible for 

a system containing only quadrupole or solenoid lenses to be free of third-order aberrations. 

Hence, prior to the development of perturbative charged-particle optics, the only option 

available to, for example, electron microscope designers was to use very small apertures and 

very large focal lengths, and accept the design penalties this imposed.



Chapter 2 

Current Numerical Methods for 

Nonlinear Dynamics 

“... Before beginning any numerical calculation, it is vitally important that 

you first know the correct answer... ” — Wheeler’s First Moral Principle 

I now review the currently used methods in charged-particle optics, starting first with 

non-symplectic methods, followed by their symplectic generalizations. Again, while this 

dissertation focuses on optical systems, the techniques are applicable to any dynamical 

system. 

2.1 Non-Symplectic Methods 

Until recently, the two most commonly used methods in charged-particle optics have been 

ray-tracing and extended transfer matrices. I will briefly describe the two methods, and 

enumerate their respective advantages and drawbacks. 

19
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2.1.1 Ray-Tracing 

Ray-tracing is a fancy name for brute-force numerical integration. The principal advantages 

of ray-tracing are simplicity and generality. It makes few particular assumptions about the 

nature of the dynamical system other than that ODEs can describe it. One merely writes 

down the equations of motion (EOMs) in a convenient form, then discretizes them according 

to one’s favorite method (usually high-order Runge-Kutta or Adams). After selecting the 

desired initial conditions (ICs), one numerically integrates the EOMs in order to determine 

the corresponding final conditions, and, if desired, the trajectory connecting them. One 

then repeats this procedure using various “sufficiently nearby” ICs until the “pencil of rays” 

generated “adequately” explores the neighborhood surrounding the reference trajectory. 

Unfortunately, one generally does not know beforehand just what constitutes “sufficiently 

nearby”, nor be able to quantitatively define what one means by “adequately”. One must, 

with significant computational expense, explore many trajectories deviating by varying 

amounts from the RT, frequently with little information regarding the importance of accu- 

mulated errors. 

Under the best of circumstances, ray-tracing leaves one quite literally with reams of num- 

bers: each initial condition and its corresponding final condition. Taken collectively, they 

should in principle provide some sort of characterization of the system; however individually 

each ray has little significance. 

Various techniques have been developed to aid in extracting useful information from a 

ray-tracing run: 

e Scatter-Plots. In this popular method, one generates a set of intial conditions 

(sometimes regularly, but usually according to some probability distribution via a 

Monte-Carlo method), propagates this set through the system, and plots various two- 

dimensional projections of the resulting final states While certain characteristics, such
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as effective beam spot-size or momentum spread can fairly easily be read off from 

such plots, the more complicated effects resulting from nonlinearities are much more 

difficult to quantify. One often merely relies on the unparalleled pattern-recognition 

ability of the human eye to gain some sort of “feel” for the system. Such an approach 

is necessarily a rather subjective proceedure, and one’s perspective may be severely 

limited by the low dimensionality of the projection, unless the motions in the various 

planes are not coupled; however, in the hands of an expert scatter-plots may be quite 

illuminating. 

Poincaré Sections. In this method, one chooses a surface in phase-space (generally a 

two-dimensional plane), and some set of initial conditions. One then allows the system 

to evolve; each time the resulting trajectory intersects the surface, one plots a “hit” at 

the intersection point [Arn88]. (If the surface is two-dimensional and orientable, one 

may choose to plot only those “hits” which intersect the surface from a given side.) 

This technique is extensively used in the study of nonlinear oscillators; in optics, it 

applies only to “multi-pass” systems, such as storage-rings. Poincare sections are 

again a visually oriented method, also limited to a low-dimensional surface of section, 

and may miss important dynamics [ChSc88]. 

Moments. For a more objective characterization of the system, one may again gen- 

erate and transport a distribution of particles. One then studies not the scatter-plot, 

but the effect the system has on the moments of the particle distribution with respect 

to some set of “basis functions”, usually polynomials in the coordinate deviations 

from the RT. (The term “basis” is somewhat of a misnomer here, as the finite set of 

functions will not be complete.) Three main factors have limited the use of moments: 

> Interpretation. With the exception of a “gaussian-ellipsoidal beam”, which 

is completely parameterized by its “zeroth”, first, and second moments (nor- 

malization, centroid, and “sigma-matrix”, respectively), we have no adaquate 

interpretive framework for assessing the physical significance of moments. Quite
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simply, taking moments is a “many-to-one” mapping— one can’t uniquely re- 

cover a distribution given only a finite number of its moments. 

> Statistics. Due to statistical fluctuations, to get an accurate estimate of the 

moments may require the use of hundreds, perhaps thousands, of particles. Fur- 

thermore, the number of particles needed increases rapidly with both the order 

of the moment and the dimensionality of the system. 

> Truncation. One can derive a set of evolution equations for the moments di- 

rectly from the EOMs, which the ray-tracing moments ought to satisfy as the 

number of particles tends to infinity. These equations exhibit a “feed-down” phe- 

nomenon analogous to that which occurs in the BBGKY-hierarchy [LLb] of trans- 

port theory: the truncated moment-equations are not closed; rather, the lower 

order equations depend on higher-order moments. While this “feed-down” effect 

is not directly relevant when using ray-tracing on some particle set to compute 

the evolution of the moments rather than the moment-equations themselves, its 

existence does cast some doubt on the very validity of moments as a method 

of beam description: can one really trust a parameterization whose evolution in 

principle depends, however insensitively, on unknown, and perhaps unknowable, 

parameters? 

Finally, moments do not characterize the system directly, because the final moments 

depend on both the system and the initial beam. Despite these problems, moments 

remain a promising tool, under developement at Los Alamos [LO88], the University 

of Maryland [DNR 88a], and elsewhere. 

Aberration Expansions. Alternatively, one might attempt to use a small but care- 

fully-chosen set of rays to numerically extract the “aberration coefficients” via a finite- 

difference scheme. (Aberration coefficients are basically a Taylor-series representation 

of the map; see §2.1.2 below.) While this is in principle possible, in practice this 

method results in intolerable round-off errors, even when using multiple precision
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arithmetic. Numerical differencing is inherently a “noise-amplifier”; one seeks small 

differences between large numbers, making loss of precision inevitable. 

For Scatter-plots, Poincaré Sections, and any other method based on human visual capabil- 

ities, the limitation to 2-D or at most 3-D graphics may really be rather serious. Channell 

and Scoval [ChSc88] found that even for as simple a system as the Hénon-Hieles oscilla- 

tor (HH66] (which has merely four degrees of freedom), important geometrical and dynam- 

ical features clearly emerge upon taking 3-D sections; these features appear to have been 

entirely unsuspected by workers using only 2-D Poincaré sections, despite many previous 

studies. 

Finally, most numerical integration algorithms violate the important symplectic condition 

(1.10) even at first order in the time-step. This is not immediately fatal; since the map 

the integrator produces must reduce to the identity map in the limit of vanishing step size, 

the leading-order term in the map is not the first, but the zeroth order (identity) term, and 

symplecticity returns in the limit of tnfinttestmal step size. Hence, for a sufficiently small 

time step exact symplecticity may be approached as closely as one pleases. In particular, 

when using finite-precision arithmetic there must be some step-size which is sufficiently 

small that the violation of (1.10) will be indistinguishable from round-off error. However 

such a policy clearly conflicts with the minimization of both accumulated round-off error 

and expenditures. Furthermore, numerical integration may also not respect certain global 

features of the dynamics, as discussed earlier. 

Overall, while ray-tracing may be sufficient to study the behavior of an individual ray, it is 

intrinsically ill-suited to the study of more global features, even so limited a feature as how a 

small neighborhood about some initial state transforms under the system’s evolution-map.
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2.1.2. Extended Transfer Matrices 

‘ The term “extended transfer matrix” (or “transfer matrix”, in more common usage) is 

somewhat of a misnomer. A transfer matrix is actually nothing more nor less than a trun- 

cated Taylor-series representation of the perturbative initial-to-final-state evolution map; 

it transforms or “transfers” incoming rays into outgoing ones. The term originated in the 

early days of both light and corpuscular optics, when only the lineartzed paraxial approx- 

imation was in common use. Since the map for any linear system is itself linear, it could 

be represented by a matrix; calculating the map of a multi-element optical system could 

therefore be done by matrix multiplication. 

More precisely, an extended transfer matrix represents the devtation of the final state of a 

particle from the final state of the reference trajectory in terms of a set of Taylor erpansitons 

in the deviation of the initial state of that particle from the initial state of the reference 

trajectory, truncated to finite order. In other words, it is a polynomtal approximation to 

the perturbative evolution map. It is therefore more “global” than a ray-trace, because 

in some sense it characterizes every trajectory which is “sufficiently nearby” the reference 

trajectory. 

At one time the term “aberration” meant “deviation from the reference trajectory”, so the 

Taylor expansion was known as an “aberration expansion”. Nowadays, “aberration” has 

come to refer to any of the image defects resulting from nonlinearities, and the terms “trans- 

fer matrix coefficient”, “aberration-expansion coefficient”, and “aberration coefficient” are 

now virtually synonomous. 

Transfer matrices are simple to use, and the effects of each term are easy to interpret; 

moreover, they allow the useful classification of optical effects by the order of the terms 

producing them. The cascading of two optical-elements into a composite system results in 

a composition or “concatenation” of their respective maps; in terms of transfer matrices, 

this is substitution of one set of polynomials into another, truncated to the order of the
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approximation. This process may be efficiently carried out via a generalization of “Horner’s 

tule” for evaluating polynomials, and reduces to “ordinary” matrix multiplication in first 

order, so that the “old” linearized theory is obtained 

The transfer matrix is an expansion of the final deviation from the RT in terms of the initial 

deviation from the RT, so this representation is origtn-preserving; t.e. the origin is a fized 

potnt in this representation. (Without loss of generality, we are free to choose coordinates on 

phase-space such that the reference particle occupies the origin at all times.) Unfortunately, 

such a map cannot represent “misaligned” elements (elements whose “optical axis” is either 

not coincident and/or not tangent to the reference trajectory at both entrance and exit 

planes). As a result, the Taylor coefficients exhibit “feed-down” as well as feed-up; however 

this problem is common to all perturbative optical methods, including the author’s, and, as 

usual, we adopt the pious hope of perturbation “theory” that the higher-order coefficients 

are negligibly smail. 

Unfortunately, obtaining the transfer matrix of a given optical element is difficult. Though 

heroically laborious hand-calculation, several workers [Bro77| were able to obtain analytical 

expressions for the transfer matrix coefficients of the more common optical elements through 

third-order, but it was not until the invention of the digital computer and FORTRAN that 

the use of these expressions was really practical. The most familiar of the charged-particle 

optics codes such as the ubiquitous TRANSPORT, and the more user-friendly Gios are based 

on these calculations. 

Extension to fifth order using hand calculations was considered impractical; hence, un- 

til Martin Berz developed his special-purpose symbolic manipulation program HAMIL- 

TON [BrzW1n87], no fifth-order code existed. As of this writing, Berz’s cosy-5.0 [BHW87] 

is still the only such code which is fully operational. However the University of Maryland 

group is hard at work on the Lie-algebraic codes MARYLIE-5.0 and MARYLIE-5.1 (see §2.3.1 

below), and “beta-test” versions have recently been released to selected sites for evaluation. ! 
  

‘Alex J. Dragt, (private communication).
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Analytic extension of transfer matrices beyond fifth order is considered impractical by any 

method; however, Berz’s “Differential Algebra”, the numerical method on which this dis- 

sertation is based, in principle allows one to numerically obtain the transfer matrix directly 

from the equations of motion, to as high an order as one desires; Berz uses this approach 

in his recently released COSY INFINITY.” 

A further problem with transfer matrices is that the coefficients are not all independent; they 

are related by the symplectic identities which proceed from the symplectic condition (1.10). 

This interdependency leads to order-of-magnitude increases in storage and computational 

overhead (see §2.3.1 below), and one must check to see if the symplectic identities are 

satisfied through the order of the calculation. This curse is not unmixed; using the accuracy 

to which the symplectic identities are satisfied serves as as an independent check of the 

accumulated errors in the calculation. Alternatively, one may choose an independent set of 

coefficients and use the identities to eliminate the remainder, but then the check is lost. G1os 

uses the second option, while cosy allows both. TRANSPORT provides neither. (Because the 

non-matrix-based Lie-algebraic maps of the MARYLIE family of codes satisfy symplecticity 

tdentically, the identities provide no independent check of accuracy.) 

Even if all of the coefficients of the transfer matrix satisfy the symplectic tdenttties, it 

does not necessarily follow that the symplectic condttion (1.10) will be satisfied. The ma- 

trix only provides a polynomial approximation to the map. While I know of no published 

investigation,’ and have not attempted the proof myself, I think it likely that if one de- 

mands that the symplectic identity be satisfied exactly, then the transfer matrix coefficients 

are badly overdetermined by (1.10). In fact, I suspect that except perhaps for restricted 

classes of maps (such as the Cremona maps mentioned in § 2.3.1, footnote 4), the symplec- 

tic condition (1.10) might only be satisfied to one order less than the order of the transfer 

matrix, due to the derivative in the Jacobian matrix. Numerical experiments in long-term 
  

?Martin Berz, (private communication) 
*Studies of the symplectic identities have of course been done (e.g. [BHW87]), but only through the 

order of the transfer matrix. The question I am posing here is whether additional constraints are imposed 

on the coefficients of a polynomial map by the neglected HOTs.
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tracking using matrix codes do indeed appear to verify that some sort of violation of the 

symplectic condition is occuring [Ser85]; whether or not the mechanism behind this is the 

one I propose above would require further study. 

2.2 Need for Symplectic Methods 

Given the critical importance of the symplectic condition (1.10), one is strongly impelled to 

seek methods which will satisfy it identically, or at least to the accuracy of the calculation. 

Yet because of the nature of the condition (a nonlinear partial-differential constraint), one 

might despair of ever accomplishing this. Remarkably, several exactly symplectic methods 

do exist; I summarize them in the following section. 

2.3 Symplectic Methods 

The methods which satisfy the symplectic condition (1.10) exactly may be again divided 

into broad classes similar to the non-symplectic methods: transfer maps (analogous to 

transfer matrices), and canonical integrators (analogous to ray-tracing). Each of these may 

be further broken into sub-classes based on the use of Lie-transformations and “mized” 

generating functions. 

2.3.1 Lie-Algrebraic Transfer Maps 

For every f € C!(P), one may naturally associate a derivation operator by means of the 

Poisson bracket. In the notation of Dragt and Finn [DF76], 

‘fig = {fig}. (2.1)
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(Dragt calls :f: a Lie operator, and refers to it as “a Poisson-bracket waiting to happen”.) 

Powers of a Lie operator are defined by: 

fg = g, 

oe F:Cf:9) = {ff 9h}, (2.2) 

f2g = :f:F29) = {fh EF, (f.9}}}, 

An analytic function of :f: may be defined by its power series expansion; an important 

special case is the Lie transformation generated by a function f: 

1 
F := exp(:f:) = Daf (2.3) 

n=0 

Dragt and Finn have shown that every Lie transformation is a symplectic map, and that 

a broad class of symplectic maps can be written as Lie transformations. In particular, all 

analytic symplectic maps can be written as Lie transformations, and such analytic maps 

are exactly what “perturbation theory” produces. 

The relation of Lie transformations to Hamiltonian systems is this: for a Hamiltonian which 

is independent of time, the evolution map is given by 

H(t) = exp(-t:H:) (2.4) 

(For time dependent Hamiltonians a similar expression holds, involving instead the antt-chro- 

nologically ordered exponential of the integral of :H: with respect to t, strongly reminiscent 

of quantum mechanics; the ordering is required because, in general, for any two times ft; 

and tg, :H(t,): and :H(t2): will not commute.) 

Since the composition (or, in particle-optics circles, “concatenation”) of two symplectic 

maps is itself a symplectic map, we might hope to build up arbitrarily complicated sym- 

plectic maps using simple Lie transformations. This is indeed possible, and Dragt and
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Finn have shown that any analytic origin-preserving symplectic map can be written in the 

following factored form: 

F = exp(:f§:) exp(:f?:) exp(:fs:) exp(:fa:) exp(:fs:) exp(:fe:)--- (2.5) 

{99 Here the f, are homogenous polynomials of order n in the canonical variables; the “c” and 

“a” superscripts on the quadratic pieces denote parts which “commute” and “anticommute” 

with J¥”. Dragt and Finn call the coefficients appearing in the above polynomials “Lie 

coefficients”. 

To sketch how the Lie transformation corresponding to an analytic symplectic map may 

be constructed, note that from (1.4), the result of a homogenous polynomial Lie operator 

acting on a homogenous polynomial is another homogenous polynomial: 

tnifm = {fns fm} = fntm-2- (2.6) 

Since the canonical coordinates £4 are themselves trivially homogenous polynomials of order 

one, one sees that the Taylor series expansion of exp(:f,:) 4 contains only terms of order 

n(k—2)+1,n=0,1,2,...in the 4, with the leading term after £" being of order (k — 1). 

Since Lie transformations satisfy the symplectic constraint (1.10) tdenttcally, it appears 

we may have found a way to describe a symplectic map with no redundant parameters; 

for if one could find at each order (n — 1) an f, which annihilates the leading term in 

the remainder (1.e., an f, such that (M — F(,))é* = O(n +1), where F(,,) is a map of 

Dragt-Finn factored form, (2.5), terminated at the factor exp(:f,:)), then one has in fact 

constructed constructed a Lie-transform representation of M. The condition for such an 

fn to exist is just the symplectic condition, as shown by Dragt and Finn (DF76], and also 

by Forest {For84]. Therefore one may freely interconvert between the transfer map and 

transfer matrix representations of a symplectic map, using whichever is most convenient for 

the calculation at hand. 

Dragt and Forest [For84, DF83] have also shown how to obtain a set of ODEs for the 

Lie coefficients, given the series expansion of the Hamiltonian about the RT. This requires



30 

that the analyst first perform a canonical transformation to coordinates centered on the 

RT, then expand about it; this procedure has been automated in Healy’s sMP program 

ANALIE (Hea86]. Ryne’s FORTRAN program GENMAP {Ryn87| may then be used to obtain 

the Lie coefficients by integrating the ODEs. 

Let us compare the number of coefficients required for a transfer matrix versus a transfer 

map. The number of monomials of order less than or equal to n in v variables is: 

  

_ (ntv)t aN, = SEE, (2.7) 

it obeys the useful recursion relation: 

nNy = nNy-1 + ni Ny. (2.8) 

as may be shown by induction, and easily verified by direct substitution of (2.7) into (2.8). 

The transfer matrix representation consists of v sets of ,N, monomials; the transfer map, 

on the other hand, needs only one set, but of one order higher: ,4;N,. Taking the quotient 

of these, we find that a transfer matrix will involve u(n +1)/(n+u +1) times as many 

coefficients as the equivalent Lie-algebraic transfer map. One sees that for maps of order n 

greater than about v, the Lie algebraic approach can lead to substantial savings. 

Lie transformations are analytically useful; for example, perturbation theory becomes com- 

pact and elegant in Dragt-Finn form, minimizing the number of coefficients one must calcu- 

late [Car81, § 5]; the treatment of symmetries and invariants also becomes straightforward 

and elegant (Car81, § 3]. While the physical meaning of a Lie-algebraic transfer map is 

not as transparent as that of a transfer matrix, the analyst now has access to powerful Lie- 

algebraic classification and analysis tools developed by Dragt and his collaborators (such 

as Dragt’s resonance-basis [Dra87|, and Forest’s normal-form algorithms [FDL87, For89]). 

However, one should not think there is anything “magic” about a Lie-algebraic transfer 

map. Order by order, a transfer map contains no more information than the equivalent
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transfer matrix; it simply provides a systematic way of calculating a set of HOTs satisfying 

the symplectic condition to all orders; indeed, one may freely convert between the two 

representations using the Dragt-Finn-Forest algorithm [DF76, For84]. However, given a 

set of Taylor-series coefficients through order n, the knowledge that (1.10) is satisfied is 

insufficient to uniquely determine the HOTs. There is no unique set of HOTs which satisfy 

the symplectic identities; many different truncation schemes are possible.* Furthermore, 

the concatenation of transfer maps requires repeated use of the Baker-Campbell-Hausdorff 

(BCH) [SW86] theorem to return it to the Dragt-Finn factored form. This process rapidly 

becomes more complex and unwieldy as one goes to higher orders, especially since no 

ezplictt formula for the concatenation process has yet been found, (although an algorithm 

to construct it does exist). By contrast, concatenation of high-order transfer matrices is 

perfectly straightforward, as the algorithm is entirely order-independent. 

Finally, since Lie algebraic transfer maps are intrinsically an operator method, they provide 

no real advantage if one actually wishes to track particles though the map, because closed- 

form expressions for the series (2.3) have only been obtained in certain special cases.? One 

must either convert the map to a matrix, losing symplecticity, or invoke some sort of implicit 

solution method [Ner86]. For many applications, the explicit symplecticity of Lie transfor- 

mations is largely an illusory advantage; the real gain is in the functional independence of 

the Lie coefficients. 

  

*One area of active investigation by Dragt’s group is whether the homogenous-polynomial basis of (2.5) 

may be replaced by a nilpotent basis, as the series (2.3) would then terminate. This is essentially the same 

question as the one I alluded to in §2.1.2: do polynomial (or, more generally, algebraic) symplectic maps 

exist? It turns out that the answer is in the affirmative: a class of algebraic symplectic maps called “Cremona 

maps” exist, and provide an interesting alternative basis for factoring Lie transformations [Ran].
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2.3.2 Symplectic Integrators 

Generating Function Based 

Symplectic integrators are numerical integration algorithms which respect the condi- 

tion (1.10) ezactly; most of the “standard” integrators do not have this property, as stated 

in §1.5. The first such algorithms were developed in 1955 by R. De Vogelaére in a series of 

unpublished papers (DeV56]. No further work appears to have been done until 1983, when 

R. Ruth [Rut83] showed that for certain choices of the Runge-Kutta weights, the discretized 

canonical EOMs for Hamiltonians of the form: 

1 
H(z,p) = —p° + V(z 2.9 (8,8) = 57? + (2) (2.9) 

would preserve (1.10) exactly. Independently in the same year, P. Channell [Cha83] devel- 

oped a systematic implicit method for general Hamitonian systems which reduced to Ruth’s 

algorithm for Hamiltonians of the form (2.9). 

Channell’s “Runge-Kutta type” method uses the fact that a “mixed” canonical generating- 

function produces an exactly symplectic map {Gol80, LLa]. He chooses (using Goldstein’s 

terminology) an F'3-type generating-function (subscripts refer to times): 

a a 
=-~—K(q, ~ ——K(q,, 2.10 Pi 54, (dq1,P2) Op, (41, P2) (2.10) 

and assumes an expansion of K in powers of At := (¢2 — t1): 

Co 1 m 

K= Do ini Km(1,P2) (2.11) 

Then he substitutes (2.10) and the canonical equations (1.3) into the following identity: 

Op, Op, . —~ £1, fl ig. 2.12 P, Ato Oq; qi ( ) 

Defining the auxiliary quantity: 

=. At” 
Ap := (p. ~ pi) = > Ty Pala Pa); (2.13) 

n=l
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Channell obtains: 

<. At” 2. At" 07 Ky, Si O\"\@H Sl 0 \" 00 
—Priyi= — ——.. — {| Ap-— — - —(Ap-—} = a ni 4 x n! Oqdq (s 5( P ap) ap x aa ( P ) aq 

Assuming the K,, may also be expanded in powers of q, and po, he truncates (2.14) to 

finite order, and equates like powers to determine K: the result is not very illuminating, 

and I shall not have need of it, anyway. 

Once the series representation of K is obtained, one may use (2.10) to push the particle 

forward by the time-step At. Note that this is an implicit formula; some sort of iterative 

method (e.g. Newton-Raphson) must be used to solve it. Fortunately, an excellent initial 

guess is provided by any non-symplectic method of the same accuracy, so the result will 

converge rapidly. One might therefore use the Channell-Scoval Runge-Kutta algorithm to 

provide a symplectifying “corrector step” to one’s favorite non-symplectic integrator. 

Note the presence of high-order partial derivatives in (2.14). Unlike a standard Runge- 

Kutta algorithm, it will not be sufficient to approximate the partials by finite differences; 

the analytical formulas must be used. To grind these out by hand would be quite tedious 

and error-prone; fortunately, the advent of symbolic manipulators such as SMP, MACSYMA, 

and Mathematica capable of both evaluating (2.14) and automatically translating the results 

into FORTRAN code make use of (2.14) feasible. Nevertheless, this is a high price to pay, for 

unlike standard Runge-Kutta algorithms, which are “general purpose”, the integrator must, 

in effect, be rederived each time. As deriving the integrator from even simple Hamiltonians 

may require tens of minutes (or perhaps even hours), and may result in several thousand 

lines of code, one can only afford to use this symplectic integrator when one absolutely has 

to. 

To combat this, Channel and Scoval attempted to develope an “Adams-type” integrator, 

which uses the information obtained in previous evaluations of the right-hand-side of the 

EOMs to cut down the amount of analytical work required. Their strategy was to fit a local 

polynomial model to the true Hamiltonian; the symplectic integrator for their assumed
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polynomial form could then be derived ‘once and for all”. Unfortunately, they found that 

this strategy required storing on the order of v™—! previous evaluations of the EOMs, and 

also on the order of v” Hamiltonian coefficients, which must be determined by solving a 

similar number of linear equations. Hence, while the Adams-type integrator is faster for 

systems with only a few degrees of freedom, as the number of degrees of freedom becomes 

large, the Adams-type integrator becomes impractical. 

An alternative symplectic integrator may be derived from the Hamilton-Jacobi equation: 

0 
=5 + H(q>, 

0 
Ay S)=0 (2.15) 

Oq2 

Here, S(q;,q2;t) is an F\-type rather than an F3-type generating function: 

0 0 
= —~— S, = — S$ 2.16 Pi Aq, P2 Aq, ( ) 

Channell and Scoval set H = Hp + eV, where Hp is chosen to be the free Hamiltonian, V 

is the remainder (assumed to depend only on gq, in their example), and ¢ is an ordering 

parameter which they set to unity at the end of the calculation. 

They assume the ansatz: 

S=Sot+ > eS, (2.17) 
n=1 

where So is the free generating function; for a nonrelativistic particle, it is: 

Sq = 2H)” (2.18) 

They then insert (2.17) into (2.15) and collect like terms in €. The result is the following 

recursion relation: 

    

OS; OSo @S, ai, -*9 st _~ _y 2.1 
Ot + Oq, O42 (2.19) 

——+=——--— = -=5 . ; n>2 2.20 
Ot @Aq2 Aq, 242, 992 992 (2-20) 

Expanding V(q2) about some arbitrary point q, inserting this into (2.19) and (2.20), and 

collecting like terms, they again obtain some rather complicated expressions, which are then
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integrated with respect to ¢ by using the fact that the left-hand-sides of equations (2.19) 

and (2.20) both have the very simple characteristics: go = q, + voAt, where vo is the initial 

velocity. The result is, again, not very illuminating, although one notices the following 

interesting symmetry: 

Si(q1,2; #) = —53(q1,Q2; —t) 

which is a consequence of the time-reversibility of Hamiltonian systems. 

The parameter g is a sort of “gauge freedom”, which may be chosen at will by the analyst. 

By choosing it to be either q,, or a non-symplectic estimate of q,, the terms in the final 

expressions involving (q, — q) or (qz — q) may be made small; another interesting choice 

would be the estimated value of g at t = t; + sAt . Each choice seems to yield substantially 

similar results. 

Lie-Algebra Based 

There are also symplectic integrators based on Lie-algebraic techniques; the simplest of these 

is Neri’s “leapfrog method” |Ner87], for time-independent Hamiltonians of the “A+B” type. 

By “A+B”, I mean that H = A+ B, where A and B are Hamiltonians whose maps can 

be solved exactly, but which do not “commute”,® i.e. {A,B} 4 0. The exact map for H 

acting over a time t is H(t) = exp(—t:H:); let A(t) = exp(—t:A:) and B(t) = exp(—t:B:) be 

the maps of A and B acting alone. Using the BCH theorem, it can be shown that: 

A(t) B(t) = H(t) + O(t?), (2.21) 

B(t) A(t) = H(t) + O(t?); (2.22) 

but 

A($t) B(t) A($t) = H(t) + O(¢). (2.23) 
  

® Actually, it is the Lie operators :A: and :B: which do not commute; however because of the operator- 

identity [:A:,:B:] := (:4:.B: —:B::A:] = :-{A, B}:, one sometimes abuses language by saying that A and B 
do not commute. Technically, I should probably say “A and B are not in involution”.
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Formula (2.23) constitutes one time-step of Neri’s “leapfrog” method. He has also obtained 

an order-O(t®) “leapfrog” map: 

|A(Fat)B(at)A($at)] |A(4t)B(8t)A(4Bt)] |A(dat)B(at)A(tat)] = H(t) + O(8°), 

(2.24) 

where 

1 v2 
a:= |—>=}], B:=-|— 

2- ¥2 2- 72 
I have pointed out to Neri that (2.24) is a “leapfrog map made out of leapfrog maps”, 1.e. 

a map of “ABA” form having factors “A” and “B” that are themselves of “ABA” form. It 

is tempting to speculate that this pattern continues to arbitrarily high order: perhaps one 

could go on eliminating two more powers of t in the error-term at each step, by constructing 

an O(t?"+3) “ABA” map out of factors having the same form as the O(t?"+!) “ABA” map 

obtained in the previous step. 

Note that in both (2.23) and (2.24) (since 2a + 8 = 1 ), the sum of the arguments of the 

A maps, and also the B maps, each add up to the total length of the system, t. Marsden 

(private communication) has commented on the similarity of (2.23) to the “Trotter product” 

formula [AMR88, p.287]; also [CHMM78]. 

The “leapfrog” method also has a generalization of (2.23) to H = A+B+C: 

A(3t) B(3t) C(t) B(3t) A(3t) = H(t) + O(¢°). (2.28) 
Clearly, one could continue splitting exactly solvable pieces off of H until it has been 

completely decomposed into maps one can evaluate exactly, resulting in a map of 

“ABC ...Z...CBA” form. 

Neri claims ([Ner87]; see also [For87, footnote 16]) that all of Ruth’s symplectic integrators 

may be factored into a composition of “drifts, rotations, and kicks” ,®° each of which may be 

evaluated exactly in closed form. 
  

°“rotations” also include rotations between p’s and q’s. Both “drifts” and “kicks” are types of shears 

and may be nonlinear. Artin [Art57, p.137] has shown that all linear symplectic transformations may be 

factored into a product of shears, so a nonlinear generalization should perhaps be not too surprising; this 

nonlinear generalization is closely related to the Cremona maps mentioned in footnote 2, this chapter.
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Neri also claims that similar formulas may be derived for time-dependent Hamiltonians, if 

the “A” and “B” maps are evaluated at the proper times; t.e., the map satisfies: 

A1BoA3 = T exp {- p H(t): at} + O(t?) (2.26) 

where 

A; := exp(—jAt:A(t;):), By := exp(—At:H(t2):), Ag := exp(—FAt:H(ts):); At := (t7-ti) 

where the intermediate values of the independent variable, t; < t; <t2<t3<t;, have been 

chosen to cancel offending terms a la Gaussian quadrature. T is the “anti-chronological 

ordering operator” mentioned in §2.3.1. 

2.3.3 Generating-Function Methods 

Neri’s Symplectic Tracking Algorithm 

As discussed in §2.3.1, Lie-algebraic maps are not immediately useful for tracking purposes. 

One method for “symplectic tracking”, developed by Neri for the MARYLIE code, is to con- 

vert the nonlinear part of the factored transfer map (2.5) into an “equivalent” canonical 

generating function which is a polynomial of order n in its (mixed) variables. These gener- 

ating functions are “equivalent” to the map in the sense that the Taylor expansion of the 

map generated by the canonical transformation and that of the transfer map agree through 

order (n—~1). The implicit equations for the canonical transformation are solved numerically 

via a Newton-Raphson iteration method. 

Neri does this by “un-factoring” the nonlinear part of the map, to obtain a polynomial 

of order 3 through n, the “pseudo-Hamiltonian”, h. He uses this pseudo-Hamiltonian to 

compute a generating function via an HJ-equation, in a manner very similar to the canonical 

integrators of Channel and Scoval: 

0,5(q,p;7) = —h(q, 0q5(4,B;T)) (2.27)
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The coefficients of the generating function are then determined by “Picard iteration”, 

with the “artificial time” variable 7 serving as the “ordering parameter”. Neri assumes 

Si(q,p;T), for all k > 2, is a power-series in 7 through order k, and S9 is initially taken to 

be the “identity” generating function: 

52(q,p) ‘= \_ pid’. (2.28) 

He substitutes S into (2.27), and integrates with respect to r, keeping only those terms 

through order (k + 1) in r: 

Shi1(qQ,PiT) = S2(q,P) - | h(q, 0g Sk(q,p;7'))dr’. (2.29) 

The constant of integration has been set to the identity, S2, because 5,4, must also reduce 

to the identity for r = 0. 

Essentially, the artificial time r merely acts as a “bookkeeping” device, similar to Channell 

and Scoval’s parameter ¢, and in the end, both are set to unity. In Neri’s case, the result 

is a generating function which produces a canonical transformation agreeing with the Lie- 

algrebraic transfer map exp(:h:) through order (n—1); however the HOTs will differ more 

and more as the order increases. Neri has found [Ner86| some evidence that the HOTs 

resulting from the finite-order polynomial generating function resulting from (2.29) may 

be uncomfortably large; therefore, other algorithms based on the “Cremona maps” (see 

footnote 2, this chapter) are currently being investigated. 

Warnock and Ruth’s Fourier/Hamilton-Jacobi Method 

Warnock and Ruth [RRW85, WR87} have also developed a method based on the HJ- 

equation. They assume the Hamiltonian has been expressed in terms of the “action-angle” 

variables of the linearized system, and is a periodic function (mod 27) in all variables. Using 

a combination of Green-function and Fourier techniques, they eliminate the “secular terms” 

introduced by nonlinear resonances, and solve for the Fourier coefficients to yield a system
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of simultaneous nonlinear algebraic equations, although still involving integrals over all the 

angle variables. They develop an efficient method of solving these equations using “fast 

Fourier transforms” and Newton-Raphson iteration. 

While in principle applicable to any multiply-periodic system, the need to first transform 

to action-angle variables is somewhat limiting; it requires that the users already know the 

behaviour of their linearized system, and expend the labor of placing their Hamiltonian 

in action-angle form. Although in principle this process can be automated, it will still be 

somewhat of a nuisance (except to accelerator theorists, who often think in terms of these 

variables under the aliases of “Courant-Snyder invariants” and “phase advances” .) 

2.3.4 The Hamilton-Jacobi/Differential-Algebra Method 

The Hamilton-Jacobi/Differential- Algebra (HJ/DA) method described in this dissertation 

bears certain resemblences to several of the above methods. As its name implies, the HJ /DA 

method uses the HJ-equation to obtain a canonical generating-function representation of the 

map of a system. I assume that the map about the reference trajectory may be represented 

as a truncated Taylor series in “mixed” variables, initialized to the identity, the coefficients 

of which are assumed to be functions of time. By substituing this ansatz into the H-J 

equation, expanding the Hamiltonian, and equating like terms, the HJ-equation is converted 

into a system of nonlinear ODEs, which may be solved numerically using standard methods. 

Since it uses a generating function, the resulting map will be identically symplectic. The 

generating function may be used to obtain other representations of the map, or to track 

particles directly using methods similar to Neri’s. 

The signal advantage of my method over those above is its simplicity; the analyst need not 

perform any laborious analytical calculations before using it, because the transformation 

to the RT-centered coordinates and the series-expansions are entirely automated via Berz’s 

remarkable method of differential algebra (see [Ber87, Ber88, Ber89a, Ber89b}; I will give
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a short introduction to DA in the next chapter). With a minimum of knowledge as to 

how DA works and is implemented, one need only write a FORTRAN subroutine to calculate 

the Hamiltonian, in whatever coordinates one happens to find convienient, and flag certain 

statements for processing by the DAFOR precompiler, described in §3.8; many hours of 

human labor may therefore be saved.



Chapter 3 

Basic Concepts of Differential 

Algebra (DA) 

Differential algebra is a remarkable and powerful numerical method recently developed by 

Martin Berz [Ber87, Ber88, Ber89a, Ber89b]. By systematically exploiting certain prop- 

erties of the “product” and “chain” rules, DA in effect “teaches” a computer just enough 

differential calculus to allow it to compute the numerical values of the analytical derivatives 

of functions, to as high an order as one is willing to pay for. These derivatives are not finite 

differences, but true analytical derivatives. 

DA allows the numerical analyst to obtain easily, almost effortlessly, derivatives of the 

results of any complicated algorithm with respect to any continuous parameter appearing 

in it, by making only a few minor alterations to the existing program. Typically, these 

derivatives may be obtained at a cost of only a few times more than it would have cost to 

evaluate the function alone. DA allows the numerical analyst to consider for the first time 

using algorithms which require knowledge of both functions and their analytical derivatives; 

such algorithms have often been considered impractical, because for complicated functions 

the derivatives may be too hard to obtain. 

4]
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Finally, DA opens up the possibilty of completely new algorithms having no counterpart in 

“traditional” numerical methods. 

3.1 Brief History of Differential Algebra and its Precursors 

The term “differential algebra” was introduced by Ritt (Rit50| in 1950, in a treatise on alge- 

braic aspects of systems of differential equations. A formal differential algebra in v variables 

over a field ¥ is a graded commutative ring defined by the set D,(F) := {F,+,-,01,1= 

1,...,v}. Here F is an algebraic field of characteristic zero, which is itself embedded in 

D.(F) as a subalgebra. The addition and multiplication operations + and - are commuta- 

tive and associative, with multiplication distributive over addition; they reduce to ordinary 

addition and multiplication on the subalgebra isomorphic to ¥. The 0; are a set of vu 

unary operators taking ¥ into itself, satisfying the Liebniz rule: 0;(ab) = 0;ab + a0,6, for 

all a,b<€ D, andi=1,...,v. Of necessity, every nontrivial representation of D,(R) must 

be infinite dimensional, so Ritt’s differential algebras are not suitable for numerical imple- 

mentation. The important concept here, though, is that in D,, differentiation is a purely 

algebraic operation. 

“Differentiation as algebra” has been considered before; for example, there are data- 

structures and operations which implement the “sum”, “product”, and “chain” rules [Ral84, 

Jer89], usually to at most first or second order in a fixed number of variables; in the litera- 

ture, this approach is usually refered to under the name “automatic differentiation”. Also, 

algorithms for recursively computing Taylor series coefficients for algebraic functions of a 

single variable to high order have been repeatedly rediscovered [Ste56, Gib60, Moo66], and 

even implemented into a FORTRAN prepocessor [KW69]. However, Berz appears to be the 

first to recognize that the quotient differential algebras formed by “moding out” elements 

of order higher than n generalizes these methods to arbitrary n and v, allowing one to 

extract the numerical values of derivatives for arbitrarily complicated functions to machine 

precision.
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3.2 DA as a Subset of Nonstandard Analysis 

DA may be viewed as a subset of “nonstandard analysis” (NSA). NSA is a consistent 

generalization of the field of real numbers, R, to include infinitely small quantities, or “in- 

finitesimals”, and also infinitely large quantities [Rob61]; the resulting field of “nonstandard 

reals” is denoted by “R. A differential algebra of order n is equivalent to the subset of “R 

containing only the reals and infinitesimals through some fixed order n. Berz denotes a 

differential algebra of order n in v variables by ,D,. I will find it convienient to refer also 

to the subsets of ,,D, which contain only those elements which are of order j and higher; I 

shall denote them by 2D, . 

To intoduce the concepts behind DA, I will start with the simplest example: the differential 

algebra of a single variable to first order, or ; Dy. 

Consider the real vector space of ordered pairs, (f;, fo) € R*. Vector addition and scalar 

multiplication are defined in the usual way: 

(fo, fi) +(g0,91) := (fotgo, fi+91) (3.1) 

a( fo, fi) (afo, aft) (3.2) II 

for all fo, fi, go, g1, and a in R. Now define a “vector multiplication” as follows: 

(fo, fr) -(go, 91) := ( fogo, figo+ fog) (3.3) 

With the definition of a product, the vector space becomes an algebra, the differential alge- 

bra ,;D,. One can easily show this product to be commutative, associative, and distributive 

with respect to addition. 

An ordering’ may be defined on ;D, in the following way: Given any two vectors (a,b) and 

(c,d), define: 

(a,b) < (c,d) if {(a<c) or (a=c and 6 < d) } 
  

‘This ordering is just the lexicographic or “dictionary” ordering.
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(a, 5) > (c,d) if {(a>c) or(a=c and b> d)} (3.4) 

(a,b)=(c,d) iff {(a=c) and (b=d)} 

Clearly, for every pair of vectors (a,6) and (c,d) € 1.D,, exactly one of the above cases must 

be true to the exclusion of the others; furthermore, for (a, 6) < (c,d) and an arbitrary (e, f), 

(a,b) + (e, f) < (c,d) + (e, f), and for all e > 0, (a,5)-(e, f) < (ce, d)-(e, f). 

One can show that the subset ;R; := {r € 1D; : r = (p,0), p € R} has exactly the same 

properties as the real numbers. So R may be imbedded in , D; in much the same way it is 

imbedded in C’. Another interesting subset is the set of elements with vanishing real part, 

but non-vanishing first order part, }D, := {d € 1D,: d= (0,6),6 € R}. Let R, denote 

the posttive reals, Ry := {r € R:r > 0}. One can show that the positive elements of !D, 

(i.e. elements such that d > (0,0)) have the following interesting property: 

(p,0) > (0,6) > (0,0), (3.5) 

for all 6,p € Ry; therefore (0,5) lies “in between” zero and every positive real number, no 

matter how small: it is an “infinitesimal”. 

We shall call a := R(a,6) the “real part” of (a,b), and 6 := D(a,b) the “differential part”. 

We shall call d := (0,1) the “unit differential”; it has the interesting property that d? := 

d-d=0, and might therefore be thought of as a “square root of zero”. 

It is easy to verify that 1 := (1,0) forms the multiplicative “neutral”, or “unit” element of 

1D: 

(1,0) -(a,6) = (a,b) - (1,0) = (a, 8), (3.6) 

whereas the powers of d form a complete basis for ; Dj: 

d° := (1,0) (3.7) 

d’ = (0,1) (3.8) 

d” = (0,0), (n>2) (3.9)
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where (3.7) is needed for consistency, while the “nilpotent property” (3.9) follows from the 

multiplication rule (3.3). 

Note that (3.3) shows that ,D, is not a field, because 

(0,a)-(0,6)=(0,0), Va,bEeR 

so divisors of zero exist in ;D,. Technically, ;D, is a commutative ring with identity; one 

can easily show that (a, 5) has a multiplicative inverse if and only if a 4 0. When the inverse 

exists, it is given by: 

(a,6)"1:= (=.-=): (3.10) 
a a? 

and one can easily verify that (a,6)-(a,b)~* = (1,0). 

Turning now to powers of DA quantities, one notes the following interesting set of examples: 

if z is any real number, one finds that 

(e,1)? = (# +d)? =27422d4d? = 2? + Qed = (2?, 22) (3.11) 

(z,1)? = (2+d)*® = 2? + 327d + 32d? + d? = 2? + 327d = (x3, 3x) (3.12) 

n-1) 
(z,1)” = (2+d)"=2"%4n2"™'d+ n( rT ade, (3.13) 

= 2 ™4n2""-'d=(2",nz™') 

One immediately recognizes, in the above, the “power rule” of elementary differential cal- 

culus. 

Similarly, for inverse powers: 

Co (<.-=) (3.14) 

(2,1)? = |(e+a)| = (2,22)? = (=.-3) = (2-?,-2n-3) (3.15) 

(z,1)° = (2 + d)?] = (x3, 3x2)" = (5-5 = (2-3,-327*) (3.16)
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= (27-", —nz7~"~}) (3.17) 

which one again recognizes as the “power rule”. One begins to suspect that DA has some- 

thing to do with derivatives, and that the derivative of any function may be calculated 

algebraically, without the use of limits, by simply evaluating it at (x +d). This is the origin 

of the name, “differential algebra”, for DA is the algebra of derivatives. 

The connection between DA and derivatives continues to hold for more complicated func- 

tions. If one agrees to define analytic functions of DA-valued quantities by their Taylor 

expansions, one obtain the following results for the exponential, sine, cosine, and natural 

logarithmic functions. 

For the exponential function, begin by splitting z + d into its real and differential parts. 

Using the algebraic properties of the exponential yields: 

1 
exp(r +d) = ete’ =e? i +d+ Sa + Lee 

= e*(1 + d] = (e7,e”). (3.18) 

So the differential part of exp(z + d) is indeed its derivative. 

We may check two other definitions of the exponential to see if they are consistent 

with (3.18). Using the power-series definition of exp(-), 

a | “1 
exp(z +d) = S —(z +d)" = S> —(2" + nz”! d) 

n=0 n: n=0 n- 

~— y — 7" 4 s 1 gl 

n=1 (n - 1)! n=O 

= e* + e"d = (e”,e”), (3.19)
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while using the elementary calculus definition of exp(-) in terms of limits, 

exp(z + d) lim i+-(2+0)| = lim (1+ =) +4 
n n—00 n n nc 

(Cnet) eae) lim j/{1+—] +n{14+-— = 
n-+00 n n n 

n n —1 

lim (1+=) + lim (1+) lim (1+=) d 
n-+0o n n—+0o Tt n—+0oO Tm 

e* + e*d = (e”,e7) (3.20) 

So all three definitions are consistent. 

For the trigonomentric functions sin(-) and cos(-), we may perform a similar splitting of the 

argument into “real” and “differential” parts to yield: 

sin(z + d) 

and 

cos(z + d) 

sin(z) cos(d) + cos(z) sin(d) 

sin(z)[1 — $d? + ...] + cos(z)[d—- Fd? + ...] 

sin(z) + cos(z)d = (sin(z), cos(z)) (3.21) 

cos(z) cos(d) — sin(z) sin(d) 

cos(z)[1 — $d’ + ...] —sin(z)[d—- Fd? + ...] 

cos(z) — sin(z)d = (cos(z), — sin(z)) (3.22) 

Again, one finds that the differential part is just the derivative. 

For the natural logarithm, a slightly more subtle approach is necessary. Algebraically 

manipulating In(z + d) into a form suitable for Taylor expansion, we obtain: 

In(z +d) =In : (1 + “)| In(z) + In f + ‘| 

wer [£-2(2) (9 -] 29 
In(z) +2 = (in(z),=) (3.24) 

zr
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This example also illustrates a standard trick which Berz uses to obtain the DA-valued 

extensions of each of the “elementary” functions: by using their algebraic properties, and the 

rules of DA, each elementary function may be manipulated into a form which is polynomial 

in the differential part with coefficients given by simple recurrence relations; this form is 

ideally suited for rapid evaluations on a digital computer, using a generalization of Horner’s 

rule. 

The existence of simple and compact algebraic expressions for the elementary functions 

is, more than any other single feature, what gives DA its tremendous power in numerical 

applications; there would be little advantage in using DA if the computer still had to 

evaluate the usual analytic formula for each coefficient in the Taylor expansion to obtain 

the DA representation of a function. Furthermore, these algebraic representions for the DA- 

extended elementary functions allow DA to compute derivatives to arbitrarily high order 

(so long as they exist), whereas an algorithm which required the analytic formula of each 

coefficient would clearly be limited by the maximum order it possessed a formula for. 

The second most important feature of DA is that its algebraic operations automattcally 

incorporate the “chain rule” of elementary differential calculus into the evaluation of func- 

tions. The values of the derivatives of a composite function fog may be obtained by simply 

evaluating f at g(x + d); this requires essentially the same amount of computational effort 

as would the evaluation of f(z + d) itself. In this way, one can easily obtain the values of 

the derivatives of even very complicated functions, by algebraically building them up from 

the DA representations of the elementary functions. 

To motivate this, one should note that while d must be an “infinitesimal”, nothing requires it 

to be the unit infinitesimal. It is simply that when the differential part of the argument isa 

unit differential, the differential part of the DA-extended function has a simple interpretation 

in terms of that function’s derivative. However as long as the Taylor coefficients of the 

function exist through the order of the DA in question (and these coefficients only depend 

on the real part of the function’s argument), the differential algebraic extension of that
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function is well-defined. If the argument instead happens to be the result of evaluating 

another DA-valued function, a straightforward but tedious calculation shows that the result 

will be the same as the derivative of the composite function. 

To see how this works, I provide the following concrete example. Consider the function 

exp(—az”); replacing z with z + d, we find: 

exp |-a(z + d)’| = exp az’ _ 2azd| 

= exp(—az”)exp(—2azd) = ear [1 — 2azd] 

= (e-0*", —2aze2*") (3.25) 

which is exactly the result one obtains by applying the “chain rule” of differential calculus. 

3.3 DA, Functions, and Derivatives 

To further understand the relationship between DA and differentiation, I again examine the 

relationship between DA and nonstandard analysis (NSA). 

In NSA, differentiation becomes a purely algebraic procedure; a function f is differentiable 

if and only if for any arbitrary infinitesimal 6 € *R, the real, or “standard”, part of the 

quotient 

f(z+ s — f(z) (3.26) 

exists and is independent of 6; hence we may compute the derivative of any differentiable 

function f by simply evaluating (3.26) at some particular value 6 = 59 and taking the 

“standard part”: 

f(z + 49) - Ae) (3.27) f(z) = Ree 

The advantage of this procedure is that one need not worry about taking limits.
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The quotient (3.26) is undefined when operating within ;D, because the elements |D, of 

,D, corresponding to the infinitesimals of *R are not invertible. We can get around this by 

working with the differential instead of the derivative. 

Let f: U + V;2+ f(z), bea C! function from an open interval U € R to an open interval 

V € R. We wish to extend f to map ;D, onto itself, for all z € U. Since (x + d),d = (0,1) 

is only infinitesimally different from z, by continuity we expect the extension f(z + d) also 

to differ only infinitesimally from f(z): 

f(x +d) — f(z) = f'(0,1) = f'd (3.28) 

for some f' € R. But (3.28) is just the usual definition of a “differential”; so the “differential 

part” of the function f(z + d) is just its derivative. This is confirmed by taking a Taylor 

expansion of f about the real part of zc + d (which is just z): 

f(z +d) = f(z) + f(2)d (3.29) 

where the series terminates at first order in d, because the square and all higher powers of 

d vanish. We shall see that in a differential algebra of order n, every function taking ,D, 

onto itself is a polynomial of order n in the the differentials; following Ritt [Rit50], I shall 

call such an object a “differential polynomial of order n”. 

3.4 DA to Higher Orders 

The next simplest DA is the second-order algebra in one variable, 2D,. This will be a 

vector space R? of ordered triples, (fo, fi, fo), where fo, fi, fo € R. Vector addition and 

scalar multiplication are again defined in the usual way; the “vector multiplication” is now 

defined to be: 

(fo, fr, f2) -(g0,91,92) := (fogo, f190+ fo91, fagot+ figi + fog2) (3.30)
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The ordering relation is again the “lexicographic ordering” for triples. We will now have 

not only “infinitesimals” but “superinfinitesimals” as well, because for any p,6,e € R4, we 

find: 

(p,0,0) > (0, 6,0) > (0,0, €) > (0,0,0) (3.31) 

The multiplicative neutral of »D, is now (1,0,0), while powers of the unit infinitesimal 

d := (0,1,0) again form a basis for » Dj: 

  

d° := (1,0,0) (3.32) 

d' = (0,1,0) (3.33) 

d* = (0,0,1) (3.34) 

d" = (0,0,0), (n>3) (3.35) 

Note that in 2D , d is now a “cube root” of zero, rather than a “square root”. 

The multiplicative inverse is given by: 

1 b b?~-ac -—1 _ ~~ 

(a,b,c) t= (;. oa ) Va #0 (3.36) 

In addition to the “real” and “differential” parts, I now have a third component to worry 

about. I introduce the following “order projectors” P,{-}: 

Po(a, 6, c) = (a, 0,0) = 4a, (3.37) 

Pi(a,b,c) = (0,6,0) = bd, (3.38) 

P2(a,6,c) = (0,0,c)= ed? (3.39) 

I shall also define projections over ranges of orders, with (hopefully self-explanatory) nota- 

tions such as P,{-}, Pen{-}, and Psmcn{-:}. I shall continue to write R{-} for Po{-}; but 

D{-} shall mean Pyo{-}, as this projection is particularly important to DA-valued function 

theory. These definitions of R{-} and D{-} are consistent with my previous use.
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Functions on the reals are again extended to 2D, by Taylor expansion about the real part: 

1 
f(z +d) = f(z) + fi(e)d t+ 5 f"(e)d? (3.40) 

where the series again terminates because of the nilpotency of d. From (3.40), and the 

properties of d, we make the following identifications: 

frst), h=fla), h=yf"e). (3.41) 

To verify this, consider powers of (z + d) again; we find: 

(e+ d)> = a ™+nz™ "d+ matte + mn = tn — Bh nos +... 

= (2", nz"), snr — jar"), (3.42) 

Again, the series terminates because of the nilpotency of d, yield the first and second 

derivatives (up to the purely numerical factor 1/2!). I shall not bother to work through any 

more examples for 2D, as it would be a straightforward excercise in which nothing new 

would be learned. The extension to include derivatives through order n, or ,Dj, is also 

straightforward. 

3.5 DA in Several Variables 

We may also also consider algbras with v independent variables, or , D,. In doing so I will 

also introduce the last of the new notation required in this dissertation. My example will 

be Do. 

Vectors of the differential algebra »D2 are elements of R® (a vector in a general DA is an 

element of R* , where N is given by the number of monomials ,, N, given in equation (2.7) ). 

Vector addition and scalar multiplication are again defined as usual; the vector product is 

now: 

( fo; fr, fy; fez, Fey, fuy) . (90; J25IJy; Jue, JeysIyy) (3.43)
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= (fogo; fegot+fogz, fygot+ fody: 

fexgot feJu+ fogzz; frygo+ fedytfyget fogey, fuygo+ fygy + fogyy) 

Were, subscripts label the components, with semicolons separating groups having common 

order. 

We now have two “unit differentials”: dz := (0;1,0;0,0,0), and dy := (0;0,1;0,0,0) in 

the z and y “directions”, respectively. Using (3.43), one can easily show that the set of 

DA-valued monomials dz'dy’, where 0 < i+ j < 2, form a basis for 2D2, and vanish for 

alli+j7 > 2. It will also be convenient to define Dz := 2-1 + dz, and Dy := y-1 + dy; 

in subsequent expressions I shall usually omit the factor 1 := (1; 0,0; 0,0,0) from such 

expressions, as its presence will be clear from context. The prefix “d” and “D” notations 

should not be thought of as operators, but as analogous to the “vector” symbol z: they 

denote that the compound symbols dz and Dz are elements of a differential algebra. 

I also use the following “multi-index” notation; define: 

  

(i) i= (t,%2,...,ty), OS <n, 

Ka)} = tr tiat oo. + ty, [li] <n, 

(t)! r= ayleagl- ol. ay!, 

af) +— gy . he toa 2y', 

dq = al@)l 

O24" Oxy? cae Oz, > 

(1z) := (0,...0, 1 ,0,... 0) 
Neen perme No yee ee eee 

(k-1)  & — (v-k) 

Then the Taylor expansion of a general function of v variables can be written compactly as: 

f(et+Az)= > Tien f(x) Ae), (3.44) 
|F¥|=0 , 

By definition, the , D,-valued extension of f(a) is therefore: 

Df := f(De) = f(x + dz) = x aided f(x) da) (3.45)
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Comparing like components, we find: 

fury = Tian fl) (3.46) 

Invoking the “summation convention” over repeated multi-indices, (3.45) takes on the ex- 

tremely compact form Df = fuyde™. Note that at no point did I need to assume that 

Dz = (z,1,0,0, ...); it could have been any element of any DA. Note also the importance 

of the projection dz = D{ Dz}. 

The rest of the developement of ,D, very closely follows that of , Dy}. 

3.6 Gradings, Filters, Ideals, and Projections 

I shall now show that the order projectors introduced in §3.4 induce natural gradings, filters, 

and ideals [ON79, ON82] on , Dj. 

An algebra A is said to be graded if, for some set of integers J, it is a direct sum of subsets: 

A= QA, (3.47) 
tel 

Aj A; C Ai+;, Ving, (4 + J) el. (3.48) 

Since the order projectors obey the completeness relation, Df = 3°", Pi{ Df}, V Df € nDw, 

and by the definition of the multiplication law, P,{Df-Dg} = Y7t.9 Pi{ Df}-Pe_i{ Dg} , it 

follows that every DA is graded over the nonnegative integers by the order projectors, P;{-}. 

An algebra A is said to be ascending filtered if for every non-negative integer 7, there is a 

subset A;;) such that: 

Avi) Cc Aq), Vt<g; (3.49) 

AAG) © AG+s) (3.51)
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If A is graded, then A,;) = @;.,; Ai defines a natural filtering of A. Since , D, is graded by 

P;{-}, it is therefore filtered by P.;{-} = Lixo P5{-}. 

A subalgebra A’ is said to be a right tdeal if A’a C A’, ¥V ae A, and a left ideal if aA’ C A’, 

VaeéA. A subalgebra which is both a right and left ideal is said to be a bilateral ideal, 

or simply, “an ideal”. If an algebra is graded, then ‘A := >, 4; defines a natural set of 

ideals of A. Since ,,D, is graded by P;{-}, it therefore follows that the subset 

‘D; ‘= Pri{nDi} = 5 Pi{nDi} (3.52) 

ji 

of , D, is an ideal. Since the DA product is commutative, there is no distinction between 

left and right ideals. Two important properties of ‘.D, which I shall need later are: 

Pci{, Dy} = 0, (3.53) 

?Dyi Dy DitID,. (3.54) 

I shall have need of the above grading, filtering, and ideal properties of differential algebras 

when I treat the bounds on solutions of the HJ/DA equation. 

3.7 Norms on Differential Algebras 

Since the elements of each DA form a Euclidian vector space, every definition of a norm on 

that space induces a corresponding norm on the DA. An example would be the family of 

“p-norms” defined by: 
1 
Pp 

(3.55) 

  

[Df llp = Sim P 
(I) 

The two norms I shall be most concerned with will be “one-norm” norm given in [Ber89b]: 

Df = So lfuyls (3.56) 
(I)
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and the “infinity”, or “max” norm: 

IPF leo = sup |fir|. (3.57) 
(f) 

It is a straightforward excercise to show that both of these are indeed norms, for they 

satisfy: 

|Dfl| = 0 if Df =0, (3.58) 

aDfl| = (al l\DF, VaeR, (3.59) 
and the triangle inequality: 

DF + Dgll < \|DF\ + ||Dall; (3.60) 

An analogous inequality holds for products: 

DF - Dgllp < nLup ||Dfllp - || Dalle, (3.61) 

where ,Ly,p is a constant depending on the order and number of variables of the DA, n, 

v, and also on p.” For p = 1 (the “one-norm”), ,Ly, = 1. The optimum value of ,Lyp 

has not yet been determined for p # 1; however an upper bound of yLyoo < ((n/v) +1)” 

has been found for p = oo (the “max-norm”).? I will make use of both of these norms in 

the verification and convergence studies of Chapter 6. Since I will also be interested in how 

errors depend on the order, I shall also make use of the seminorms defined by: 

IPF lle = WPet DF: (3.62) 

(3.62) is a seminorm, rather than a norm, because of the presence of the projector P;,: when 

|Pflln- Vanishes, it does not necessarily follow that Df does. 

3.8 The DAFOR Extension of FORTRAN 

Berz has obtained the DA representations of all the elementary functions (plus a few more, 

such as the error-function and some other special functions useful in charged-particle optics), 
  

*I thank R. F. Streater for pointing out the need to include the constant »Lz.p for p #1. 

*Paul F. Zweifel (private communication).
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and implemented them in a library of FORTRAN subroutines. This Library also contains 

routines for the basic arithmetic operations, various utility routines, and several powerful 

analysis routines that allow one to extract derivatives, perform changes of variables (e.g. 

perform composition of maps), and invert or partially invert changes of variables (e.g. 

invert a map, perform a Legendre transformation) by an application of the implicit function 

theorem. He has also written the DAFOR precompiler, which parses FORTRAN expressions 

flagged as containing DA variables, and automatically inserts the appropriate subroutine 

calls into a FORTRAN program. 

With these two tools, it is now possible to compute the value of the analytical derivatives 

to as high an order as one is willing to pay for, for any function which can be represented 

as a FORTRAN algorithm, which is to say, almost any function at all. In most cases, this 

may be done using “blind” conversion: one simply declares the variables one wants to 

evaluate in DA to be of type “DA”, and flags all expressions containing DA variables for 

precompilation using special “comment” cards; the precompiler does the rest. The result 

is @ FORTRAN subroutine capable of evaluating the desired derivatives for any value of the 

subroutine’s parameters. This process is almost completely user-transparent, with only 

a minimal amount of knowledge about the actual details of DA being required for most 

applications.



Chapter 4 

Perturbative Dynamics and Optics 

Having armed the reader with the mathematical tools J will be using, I now turn to the 

physical framework in which the research for this dissertation was first conceived: Hamilton- 

Jacobi theory of dynamic systems, as applied to perturbative optics. 

4.1 Hamiltonian Optics and the Hamilton-Jacobi Equation 

Hamilton [ConSyn31j was the first to show that the trajectory of every extremal ray of 

light passing through a given optical system may be obtained from a single function, which 

he called a “characteristic function”. In so doing, Hamilton for the first time provided a 

physical justification for Fermat’s principle of “least time”. 

Hamilton did this by showing that the stationarity of the “optical length” under small 

variations implied that the variation of the optical length must be an ezact differentzal. 

Therefore a function giving the optical length of the extremal ray in terms of its endpoints 
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must exist.! Furthermore, the gradient of this function with respect to the initial and final 

positions gives the initial and final directions of the extremal ray, respectively. He also 

showed that the roles of either or both positions in the “point” characteristic function could 

be interchanged with their corresponding directions via Legendre transformation, to yield 

“mixed” and “angle” characteristic functions. 

Hamilton later went on to show that the trajectories of a time-independent mechanical 

system were also derivable from a single function, which he this time called a “principal 

function”. He did this by showing the variation in the actton integral along the extremal 

trajectory beteween two points in configuration space was also an exact diffential, thereby 

legitimizing Maupertius’ principle of “least action” as well. he found that the gradient of 

the principal function corresponded to what we now call the “generalized” or “canonical” 

momentum of Langrangian mechanics. 

Ten years latter, Jacobi [Jac63}, building on Hamilton’s work, showed that associated with 

every variational principle was a scalar field satisfiying a first-order partial differential equa- 

tion of the form: 

F(q, 045; OS) = 0 (4.1) 

and vice-versa; the study of such first-order equations now bears the name “Hamilton-Jacobi 

theory”. Hamilton-Jacobi theory has long been regarded as an elegent tool for proving 

theorems about variational problems’ but of limited practical value, since in general (4.1) 

is a nonlinear partial differential equation, and is therefore rather difficult to solve except 

in special cases. 

While Hamilton’s work on mechanics became the centerpiece of perturbative celestial me- 

chanics, his work in optics has largely lain fallow until this century. Indeed, Hamilto- 
  

* Assuming, of course, that there is only a single ray connecting them. Hamilton’s “characteristic func- 

tions” become multiple-valued if there is more than one ray connecting two points; this is closely connected 

to the existence of caustic surfaces, which are discussed in §5.3.1. 

"Indeed, Rund [Run66], for example, considers HJ-theory the only rigorous approach to variational 

calculus.
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nian optics was in effect reinvented in denatured form as the “eikonal approximation” to 

Maxwell’s [Brn WIf70] or Schrodinger’s |Gol80, pp. 487-492] equations, and is usually still so 

treated, although the works of J. L. Synge on the geometrical optics of light [Syn37, Syn51| 

and “De Broglie waves” [Syn53] have shown that Hamilton’s methods are quite capable of 

standing on their own. 

4.2 The Hamilton-Jacobi Equation; Hamilton’s Principle 

and Characteristic Functions 

In physics, the Hamilton-Jacobi equation (HJ equation) is usually introduced within the 

framework of canonical transformation theory. A change of variables (q,p) — (Q,P) is 

called “canonical” if the new Lagrangian differs from the old by at most an ezact differential: 

. i d 
P,Q’ — K(Q,P;t) = pig’ — H(q,p3t) - qe ha Ps #) (4.2) 

because then the EOMs for the (Q, P) also have the canonical form (1.3), but with H(q,p;t) 

replaced by the new Hamiltonian K(Q,P;t). A case of particular interest is whether K 

can be made to vanish identically; for then (1.3) would imply that the new coordinates are 

all constant of the motion, and integrating them becomes a trivial task.? One simple way of 

ensuring this (although by no means the most general) is to assume that p; may be written 

as the gradient with respect to q’ of some function S(q,a;t), where the a denote a set of 

n constants parameterizing the p;. Since the left hand side of (4.2) vanishes by hypothesis, 

if I also set A equal to S, I am left with 

  
». 28 i H( St) - [+ a4 

or 

Os 0s 
H(a, dq’ t) + Ot = 0. (4.3) 

  

>This is actually a more restrictive definition than necessary; Arnol’d [Arn88, p.260], for example, requires 

only that K bea function of the Q alone, in which case the Q are constants, while the P are linear functions 

of time. But this is a trivial generalization, as it is always possible to eliminate K entirely.
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Equation (4.3) is just a special form of (4.1); however I shall refer to (4.3) as “the” Hamilton- 

Jacobi equation. A function S of the assumed type that satisfies (4.3) is called a “Hamilton’s 

principal function”; Caratheodory [Car65] has shown that solutions to (4.3) of the assumed 

type always exist and are unique, at least in some neighborhood about any given point 

(do:Po) in phase-space. 

Since the a@’s are as-yet-unspecified parameters, one possibility would be to take them to 

be just the n new (constant) momenta; one can then show from canonical transformation 

theory that the derivatives of S with respect to the P’s are just the new (constant) Q’s: 

88 gi _ 85 
Pi ag? ~ OP, 

  

In fact, I can even take (Q, P) to be the inittal positions and momenta, (q,,p,), (which 

do determine the trajectory, and certainly are constants!). In finding S I have therefore in 

principle found a solution to the initial value problem. The rub, however, is that the above 

equations are mized: they define the q, and p, in terms of the q, and p, and therefore 

provide only an tmplictt solution to the initial value problem. 

One can show that S(q,a;t) is the change in action along each extremal trajectory; that 

is, formally one can show that, for example: 

t dS 
— dt UG 

2 | AS dg* aS 

Uo See + Fl 
ta ck tz 

= | lpeg*—H) dt= | Lde (4.4) 
ty ty 

S(q,a;t2) 

i 

(up to a constant of integration) where the integral is taken along the extremal trajectory 

connecting q, with q,. However (4.4) is not especially useful for calculating S, since it 

is precisely this extremal we desire to find. An exception to this is when we desire a 

perturbative expression for S about an RT, in which case one may develop an expansion 

of S in 6g, and 6q, by integrating along the RT. The “eikonal method” described in §4.3 

below is one approach to this; the method of this dissertation is another.
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If the Hamiltonian is independent of time, one can remove the time dependence by “separa- 

tion of variables”; writing S(q,a;t) = W(q,a; E) - Et, where E is an arbitrary constant, 

one reduces (4.3) to the “time-independent HJ (TI-HJ) equation”: 

H(q,0qW) - E =0. (4.5) 

The above equation is still of the form (4.1); a function W which satisfies it is called a 

“Hamiulton’s characteristic function”. 

Note that while the terms “Hamilton’s principal function” and “Hamilton’s characteristic 

function” are still in use, they are no longer what Hamilton meant when he used them. In 

his works on both optics and dynamics, Hamilton worked with pairs of sets of equations 

having the forms: 

ow OW (41,92) H __—)\)=F tb te’ _ p,; 4.6a, b 
(q1, aq,’ ’ Agi P1 ( a ) 

and 

ow aw (q1,4) H(q,,——) = E, ——-==*2! = po; 4.7a,b 
(q2 Ban? aq P2 ( a ) 

These equations are overdetermined, since they provide 2n + 2 relations between only 2n 

unknowns; if one selects n — 1 equations each from (4.6) and (4.7), the remaining pair of 

equations are satisfied identically. Jacobi showed that equations (4.6) and (4.7) are redun- 

dant: if, for example, one solves (4.6a), taking (4.7b) to define n constants of integration, 

then (4.6b) and (4.7a) are satisfied identically. What Hamilton referred to as a character- 

istic function is now referred to as an “eikonal”, while the “Hamilton’s principal function” 

S(q,a;t), is actually Jacobi’s “complete integral” to the Hamiltonian problem. 

4.3 Hamilton’s Characteristic Function and the “Eikonal 

Method” 

The “eikonal method” was developed in papers by Glaser, also Sturrock, ctrca 1930- 

1950 [Gla33, Stu52]. It appears to have been primarily developed for “hand calculations” ,
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perhaps aided by some sort of analog computer. These papers are in turn based on tradi- 

tional optics methods using Hamilton’s characteristic functions developed in Bruns’s paper 

of 1892 [Bru95] (for a recent review, see Rose [Ros87], and references therein). 

The eikonal method is applicable to time-independent systems only; it is essentially equiv- 

alent to a perturbative treatment of the TI-HJ equation. A reference trajectory is chosen, 

and the n coordinates q are reparameterized in terms of a longitudinal variable, z (which is 

usually taken to be the arc-length along the RT), and a set of (n — 1) variables w parame- 

terizing a set of nonintersecting surfaces transverse to the RT (when n = 3, the two w’s are 

often represented by a single complex number). When parameterized in terms of z and w, 

Bruns [Ros87, Bru95] called the characteristic function W an “eikonal”.* In more recent 

treatments, rather than starting from the TI-HJ equation most authors follow a laborious 

and roundabout derivation beginning with the variational form of Hamilton’s principle, 

which they justify by appealing to quantum mechanics. The perturbation expansion of 

the variation is developed by introducing an artificial “ordering parameter”, and expressing 

deviations from the RT in terms of “Lagrange invariants” and “paraxial rays”. The rays 

may be chosen as the “principal rays” of the lineartzed system, closely analogous to the 

method of “variation of parameters” in the theory of ODEs, which is useful in enforcing the 

desired boundary conditions on the action. Applying a method of “successive approxima- 

tions” directly to the variational principle, these authors obtain integral expressions for the 

perturbative action of the system, from which one could in principle extract the aberration 

coefficients or other quantities of interest. 

The advantage of the “eikonal method” is that it provides an iterative approach for obtain- 

ing integral expressions for the perturbative characteristic function, using solutions to the 

linearized system. For many numerical purposes, integral expressions have better stability 

properties, especially for iterative solutions and “two-point” boundary-value problems (of 

which the eikonal method is an example). 
  

*From the Greek word ecnwy meaning “image”; this is also the root for the English word “icon”, which 
refers to, among other things, a type of bas-relief religious symbol used by the Eastern Orthodox Faith.
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The disadvantage is that, besides being limited to time-independent systems, the eikonal 

method leads to implicit relations between the initial and final variables in terms of cumber- 

some integrals with obscure physical meaning. Such implicit relations will result whenever 

generating functions are used, as mentioned in the previous section; It is difficult to get 

a “feel” for the system from such implicit relations.® This may account for the fact that, 

despite a claim by Rose that the eikonal method leads to equations well suited for numerical 

methods [Ros87], this method appears to have largely fallen into disuse. 

4.4 Perturbation Theory, Jets, and DA 

I stated in §1.7 that the natural geometric framework for perturbation methods was the 

theory of jet bundles and prolongations. Here, I shall briefly describe the concept of a “jet”, 

and show how it relates to perturbation methods, and also DA. 

In the modern coordinate-free approach to differential geometry, a tangent vector at point 

P is thought of as an equtvalence class of parameterized curves all of which have the same 

derivative at P; in other words, every curve in the equivalence class is tangent to a given 

line through P, and varying at the same rate with respect to its parameter. This mod- 

ern definition provides a precise statement of the concept of a vector as “a direction and 

magnitude”. 

The theory of jets generalizes the concept of tangent vectors to higher orders of contact 

([Bur85, p.107]; [SW86, chap. 6]; see also [Olv86] and is important in studying the symme- 

tries of systems of differential equations. A “1-jet” is just the usual “line-element contact 

bundle”, while a “2-jet” represents an equivalence class of curves whose first and second 

derivatives all agree at a given point; one can go on to consider higher and higher “de- 
  

"In principle, this objection applies to my method as well. However, generating functions are only one 

method of representing maps, and the “partial inversion” routine in the DA package allows one to convert 

to alternative, more physically useful or transparent representations.
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grees of tangency”, pinning down more and more coefficients in the Taylor expansion of the 

parameterized curves. 

The connection between perturbation methods and jets comes in when one treats the per- 

turbation parameter ¢ as an “additional coordinate” having trivial dynamics. Consider a 

system of the form: 

E=f(E,t6), €=0, (4.8) 

with £,f € M, « € I, where I is an interval of R containing 0. Now consider at t = tp a 

set of e-dependent initial conditions &) : I — M; € + £o(e). te. we let € parameterize a 

“deformation” of the initial conditions, as well as the dynamics; a “perturbation” results 

when € is considered to be infinitesimal. 

While one would usually view €)(¢) as a parameterized curve on M, one can also view it as a 

parameterized curve (€, €)) in the extended manifold IxM. Omohundro [Omo86, pp.96-107] 

calls a such curve a path, and the set of all paths, path space; the flow F;, of (4.8) will take 

the path (€, &)(€)) into the parameterized set of paths Fz,,: IxM —>IxM; (€,&(€)) 

(e,€(e,£)), the perturbed path of the system. Omohundro considers all points on a given 

path to be members of an equivalence class; a natural projection is defined by associating 

each point on the path with the unperturbed state at « = 0. The arbitrariness of the 

initial path (¢, é9(€)) corresponds to the “gauge freedom” discussed in §1.7. One should not 

interpret this, however, to mean that “all paths are physically equivalent”, any more than 

one would interpret the general coordinate covariance of general relativity to mean that “all 

metrics are physically equivalent”. Each path represents a distinct “point” in path space, 

even though many paths project to the same point of M. The choice of the path determines, 

in part, the nature of the perturbation, by specifying how the initial conditions are to be 

deformed. 

Omohundro now looks at the derivatives 0"€(t, €)/@e"| and finds that these derivatives 
e=0? 

provide a particular representation for a jet. Furthermore, these derivatives are just the co- 

efficients in the perturbation expansion (1.11). Therefore, the natural geometric framework
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for describing perturbation “theory” 1s the theory of jets. The fact that € is set to zero after 

taking the derivative supports Omohundro’s contention that perturbation “theory” is re- 

ally telling us something about the response of the unperturbed system to the perturbation; 

alternatively, the perturbation should always be thought of as infinttestmally small. 

At this point, on recalling that derivatives are just the sort of thing that DA calculates, 

one should immediatly realize that by letting « — de, and evaluating (4.8) in DA, one 

automatically obtains a set of ODEs for the numerical values of the perturbation coeffictents. 

Furthermore, even if (4.8) cannot be integrated analytically, I can still find approximate 

values of the perturbation coefficients by stmply performing a numertcal integration in DA. 

So using DA, I can obtain the numerical values of the perturbation coefficients with only a 

little more (human) labor than would be required to numerically integrate the equations of 

motion themselves.



Chapter 5 

DA Methods for Approximate 

Solution of the Hamilton-Jacobi 

Equation 

In this chapter, I show how DA my be used to convert the Hamilton-Jacobi equation, which 

is a nonlinear, partial differential equation, into a system of ODE’s for the perturbative 

expansion of Hamilton’s principle function about some reference trajectory. 

In this chapter, the following index conventions are invoked: lower-case latin indices run 

from 1 to d, where d is the number of pairs of canonically conjugate variables; lower-case 

greek indices run from 1 to 2d; “multi-indices” run over the set of all monomials of order 

less than or equal to n, over the natural index range associated with the kernel letter. All 

DA-valued quantities shall be assumed to be elements of ,D,, v > 2d (I am allowing for 

the possibility that there might be more variables than just the “p’s and q’s”, since one 

might possibly wish to extract the dependence of the map on some set of non-dynamical 

parameters 6). The natural basis for expanding DA-valued quantities shall be taken to be 
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the d¢ (plus the dé, if present). All partial derivatives shall be taken with respect to the 

G’s, unless otherwise specified. 

5.1 Equivalence of the DA-Valued HJ Equation and a Sys- 

tem of ODEs 

The proof is almost trivial. Let €# := (q',p:), pi := OS(q,a;t)/Oq', and C# := (q',a;). 

I promote q and @ to DA-valued variables; the HJ equation then becomes the “HJ/DA 

equation”: 

0 575 (Dbit) = ~ H(E(DE)i2) (5.1) 
Since the powers of d¢" form a basis for the DA, by definition I have: 

S(DE;t) = S(¢+d¢;t) = YS GpIasleitr ac 
|Z|=0 , 

= Syy(t)de@ (5.2) 

and 

H(€(D¢);t) = H(&(¢+d¢);t) = YFP CE(e):8) ac 
|Z{=0 , 

= Hy(t)d¢ (5.3) 

where the summation convention has been invoked on the last line of (5.2) and (5.3). I 

have written the coefficients Si and H;;) as functions of ¢ alone, because they depend by 

definition on at most the real parts of the DE, which for the moment I shall just consider to be 

prescribed functions of time. In the next section I will show that the €,(¢) := R{D&€(t)} are 

determined by requiring that certain closure conditions be satisfied; the closure conditions 

are just that the €,(t) must solve Hamilton’s equations. Since the €,(t) define the RT for 

the HJ/DA equation, this should come as no great surprise.
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Since the ¢ and t are independent variables, the d¢/@t vanish. Therefore, S(D&;t) depends 

on time only via the S;;,, and I may equate like coefficients in (5.1) to reduce it to the 

following system of ODE’s: 

S(t) = —Hy(t). (5.4) 

The above system may be solved by a number of standard methods, once the boundary 

conditions (BC’s) have been specified; since I shall need several types of solutions, I shall 

defer the discussion of BC’s for each type until the section in which it is developed. 

5.2 Closure Conditions 

Before I can solve the HJ/DA equation, I must first address a subtle problem: the existence 

of closure conditions. In order to evaluate the right hand side of the HJ/DA equation, 

I must first evaluate ODS/Oq*. In DA this is essentially just a “shift” or “bookkeeping 

operation”: by the “power rule”, 

a so a 
agra”? = in S(;ydq? (1k) 

where j, is the exponent of dz,, t.e., one multiplies each monomial coefficient by its “k*}” 

“kh” exponent by one, then reinserts it in the appropriate “slot” exponent, decrements the 

of the DA vector coresponding to its new exponent, discarding any coefficients for which the 

new 7% is less than zero. Since the DA-library implements DA-vectors as “packed” arrays 

containing only the non-zero coefficients of DA-vectors in sorted order, plus a pair of arrays 

of integers encoding the “index vectors” (7) of the corresponding coefficients, this can be 

done “in place” and very rapidly. 

However, in an n“*-order DA, the value of the (n+ 1)" order coefficients are unknown. Faced 

with this absence of information, Berz elected simply to define all the n‘*-order coefficients 

of the “derivative” of a DA vector to be zero (“zero-padding”). One sees that the set of 

operators 0/0q' act much like “lowering operators” on DA vectors, and that at most (n+1)



applications of members of this set to a vector will “annihilate” every vector of an n‘"-order 

DA. 

Strictly speaking, one should probably view 0/0q' as being a linear map from ,D, to 

n-1Dy. Since we have not defined operations between elements of different DAs, this raises 

concern as to whether the HJ/DA equation is well defined. Even with the “zero-padding” 

trick, which formally extends elements of ,_;D, to ,Dy,, there is still a problem: I have 

potentially lost the “closure” propety of DA under truncation, because the “lowering” action 

of the 0/8q* now allows errors in the higher-order elements of DS to feed “back” as well as 

feed “forward”— errors in P,{ DS} will influence P,_,{DS}, as well as P3,{DS}, which in 

turn will effect P,,2{ DS}, and so on. 

Fortunately, there is a way around this problem. An explicit formula for the monomials of 

the product of two DA-vectors f, g can be written in the “multi-index” notation as: 

(F9)ip) = , Fiuy Iv) Vv (p) :0< \(e)| <n (5.5) 
(i) .(¥) 
(H+ (ve y= (a) 

— 1t.e., one sums over all pairs of multi-indices such that (u)+(v) = (p). Now, let me 

assume that P,{g} vanishes. For the “index norm”, |(p)| = |(z)|+ |(v)| holds. In any 

DA, 0 < |{#)| < 7 for all valid (uz). Therefore, the only element of fi,,, appearing with 

Pn{g} in the product is its real part, fp. But all functions of DA-valued quantities are 

polynomial in the differential part of their argument. Therefore, the only terms in (5.3) in 

which P,,{05/0q'} will appear are the first order terms of H(Dq, Dp; t) involving the p. 

But the first order terms of H can always be eliminated by the following trivial canonical 

transformation: 

q° = qi(t) + q, Pi = Poi(t) + Di, 

OQ . 0 
- H (qo; Po; t), Poi = ~ 324 4 (40, Poi); (5.6) 

Yo 

K(q,P) = H(qo(t)+4,Po(t) +p; t) — go(t)p: + Boi(t) a, 

  qo = 

which is just a simple time-dependent translation causing the new origin of phase-space to 

travel along the RT. In other words, the origin of the new coordinates (q,p) is a fired point
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of the time-evolution map. One can easily verify that this transformation is canonical, and 

that the new Hamiltonian K has no linear terms.’ Since K has no linear terms, the HJ /DA 

equation obtained from it will be closed. 

5.3 Need for More Than One Type of Solution 

The Hamilton-Jacobi function S is an example of a so-called “mixed” generating function, 

because of its dependence on 2d variables, half of which are obtained by selecting one 

variable from each of the d pairs of “old” positions and momenta, and the other half by 

selecting one variable from each of the d pairs of “new” positions and momenta. There are 

thus 2?¢ = 4¢ possible combinations altogether. 

The “mixed” functions map 2d-dimensional submanifolds of the product of the “old” and 

“new” phase-spaces onto the reals: PjjgX Pnew onto R. One can show that such a function 

generates an identically canonical map Pog > Phew by equating (up to a sign) the partial 

derivative of the generating function with respect to each argument with its canonical 

conjugate. The most general proof, found in Carathéodory [Car65, Vol. 1,§ 97, pp. 87-90], 

is somewhat awkward and messy, and makes extensive use of the implicit function theorem; 

IT will not reproduce it here. A simplified version may be found in Goldstein (Gol80, § 9.4, 

pp. 403-405]. 

While in principle one can consider any such partition of the “old” and “new” variables, 

most texts (e.g. Goldstein (Gol80, chap. 9]) emphasize (perhaps overly much) the following 

four classes: 

Fi(qo.di), — -F2(@2,P1) 

F3(p2,41); F4(p2,P1) 

  

’ Actually, (5.6) is more restrictive than necessary; it would have been sufficient to eliminate only those 

linear terms involving the p. However it almost as simple, and far more convienient, to eliminate all the 

linear terms from K, in order to obtain an origin-preserving map.
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(Confusingly, I must take gq, and p. to be “old” variables, and q, and p, to be “new” 

variables, if 1 am to maintain my identification of a with p,.) 

While each class of mixed generating functions produce identically canonical transforma- 

tions, it does not follow that a given canonical transformation can be generated by functions 

from each of the four classes, as Goldstein states, but does not explain [Gol80, § 9.1, p. 385]. 

A given class of generating function may not be suitable to generate a given canonical trans- 

formation beacause of the existence of caustics and foct. 

5.3.1 Caustics, Foci, and Singular Generating Functions 

Caustics [Arn88, p.448] occur when a continuous family of extremals? possesses an envelope; 

when this happens p, and q, no longer uniquely specify a trajectory, and the Hesstan of 

the generating function either vanishes or becomes infinite on some set of points, e.g.: 

  

0? Fy 8° Fy 

092092 9929P1 | — {9 or co} 
0? F> 6? Fy 

Op,0q, Op, dp, 

Caustics can be classified algebraically [Arn88, pp.448-452], and are closely related to 

catastrophe theory [DeW76, DV79]. 

Focal points [Arn88, p.442] occur, when all members of a family of extremals pass through 

the same point q in configuration-space but with different momenta, p. If a family of rays 

from a focus form a caustic, the point on a ray which touches the caustic is said to be 

conjugate to the focus along that ray. A caustic is therefore a set of conjugate points. 

Formal definitions of caustics and conjugate point are best given in terms of Jacobi fields. 

Jacobi fields are solutions to the Jacobi equations. The Jacobi equations are essentially just 

the linearization of the Euler-Lagrange equations about the extremals; however they are 

usually derived by considering the second variation of the action [DeW76]. Jacobi fields are 
  

74.e., a set of extremals labeled by one or more continuous parameters.
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therefore closely related to the second-order part of the solution to the HJ/DA equation, 

the principle difference being that a Jacobi field is a global object, while DS(t) is only an 

expansion about a particular ray. When a caustic exists, it will only be possible to find 

2d — k linearly independent Jacobi fields, with 1 < k < d. The integer k is the multiplicity 

of the conjugate points forming the caustic. 

Caustics and foci are only apparent singularities, being artifacts of “badly” chosen coordi- 

nates. It is always possible, for example, to find at least one set of v variables out of the 

set (qo, Po), so that, when taken with with the “old” coordinates q,, the Hessian does not 

vanish [Arn88, pp. 267-269]; however the existence of such singularities is ubiquitous, and 

therefore a nuisance. 

5.3.2 Classifying Generating Functions by the Images They Can’t Rep- 

resent 

In order to get a feel for how and when caustics and foci appear, I provide the following 

example of a two degree-of-freedom (2-DOF) linear system; it is sufficient to consider lin- 

ear systems because the Hessian and Jacobian matrices on the RT are determined by the 

linearized dynamics. The generalization to fully nonlinear systems should be obvious. 

The transfer map of a 2-DOF linear system, in matrix form, is: 

a b q2 _ q1 (5.7) 

P2 c d Pi 

For a 2-DOF system, the symplectic condition is equivalent to the unimodular condition, 

det{M} = ad — bc = 1. It follows from (5.7) and the symplectic condition that either ad or 

bc may vanish, but not both at the same time, and that the vanishing of a given element 

leads to the following type of imaging: 

a = 0: parallel-to-point, 6 = 0: point-to-point (5.8) 

c = 0: parallel-to-parallel, d = 0: point-to-parallel )
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The generating functions are: 

ld 1 la OF, OF, 
F. = ——g? — = —~—q? =o = —— (92,41) 9522 p 241 + 9 pi? Pi qi” P2 Ban’ 

le 1 16 OF. OF. 
Fo(q2,p1) = 542 + —qop1 — =—p}, a = —, p2 = —; 

a a 2a OP, Oq2 (5.9) 

16 1 le OFS OFS 
fF. =-s 2 —~—¢? = oe = -—_ 3(P2, 41) 5 qh? ~ qb2a + 54% Pi an? @ Opa 

_ la 2 \ 1d 2 _ OF, _ OF, 

F4(p2,p1) = 572 + [Pei — 5 TP N= Bp 9 =~ Ope 

Calculating the Hessians, I find: 

c d 
A(F,) = 5 A(F2)= -, 

q (5.10) 
a b 

A( Fs) = —=, A(Fa) = ~~. 

Consulting (5.8), one can easily see from (5.10) which types of generating functions are 

unsuitable for which types of imaging; one can also see that all four types of imaging are 

covered by either an F, or F2, as claimed. 

In fact, it is even possible to restrict oneself only to the class of Fo-type generating functions, 

composed with the trivially canonical “exchange map” [For84, pp. 5-10]. (¢,p) + (p, —¢). 

One can easily repeat the above argument for 2v-DOF systems, with a, 6, c, and d replaced 

by uxv block matrices; the regularity condition will then be that the determinant of the 

appropriate block not vanish or diverge. 

Can one convert from one representation to another? Yes, one can, as long as both repre- 

sentations satisfy the regularity condition. Converting between representations may then 

be done by a Legendre transformation; one must then perform a partial inversion (to obtain 

the former independent variables in terms of the new independent variables), followed by 

a composition (to reexpress the Legendre-transformed generating function in terms of the 

new independent variables). However, since inversion is the most expensive operation in 

the DA-package, one would rather not do this very often.
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Can one prove that either an F, or Fo cover all possibilities? Unfortunately one cannot; it 

is easy to imagine an astigmatic optical system which produces point-to-parallel imaging in 

one plane, and point-to-point imaging in the perpendicular plane. A practical example is a 

particle storage ring, one characterizes it by its radial and vertical “tunes”, v, and v,, the 

number of radial and vertical betatron oscillations a particle undergoes in making one turn 

around the ring. In order to avoid resonant instabilities, vy, and v, should not be rationally 

related, it i.e., there should not be a triple of integers n, m, p, all of the same sign (one may 

be zero) such that ny, + mv, = p (in practice, only the lower order resonances are really 

dangerous). But if vy, and v, are not rationally related, the particle must pass arbitrarily 

close to every accessible state, including the one where its radial and vertical betatron phases 

are zero and 7/2, respecttvely. A generating function representing this state would have to 

be F -like in the radial plane, and F,-like in the vertical plane. If one insists on representing 

the linear part of the motion by a generating function, it will therefore be necessary to be 

able to represent each of the 2¢ possible cases of “mixed-mixed” generating functions, and be 

able to interconvert between them. The bookkeeping of one’s choice of independent variables 

can be handled by a 2d-bit binary number; converting between representations may be done 

much as before, except that one only performs a partial Legendre transformation. However 

the additional complexity is somewhat daunting, and one would rather avoid it, if one 

could. Therefore, after discussing how one obtains F, and F, type solutions to the HJ/DA 

equation, I shall discuss how one may avoid the problem of caustic and foci altogether, by 

separately treating the linear and nonlinear dynamics. 

5.4 Procedure for F> Solutions 

Obtaining F2-type solutions to the HJ/DA equation is quite straightforward; since Fy (and 

also F3) generators are connected to the identity, I simply choose the DA representation of 

the identity map for my initial generating function: 

S(D@2, Dpi; t=0) = dpi; dq, (5.11)
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I can compute S using the HJ/DA equation, with H replaced by the transformed Hamilto- 

nian K defined by (5.6). 

I can obtain the derivatives I need to compute K from H by simple projection, since 

dq = dq, dp = dp. The complete system of equations is: 

0 
44; = Di := —— DS(t), 5.12 q1 71 Opt (t) ( ) 

0 
dpox, = Dpr := agi DStt), (5.13) 

q2 

Da, := H+ dh, (5.14) 

Dpo := poi + dpri, (5.15) 

DH(t) := H(Dq,, Dpo; t) (5.16) 

vi _ 0 
Go(t) = R{ Opn: pa}, (5.17) 

0 
Ion: (t) = —R< —-DH(t) ?, 5.18 Poi(t) {3 ( ) (5.18) 

DK(t) := DH(t)— 4h(t)dpoi + poi(t)dg, (5.19) 

DS(t) =-DK(t). (5.20) 

5.5 Procedure for F, Solutions 

Obtaining F\-type solutions is unfortunately a bit trickier. While the HJ/DA equation 

results in a system of ODEs of exactly the same form as in the F» case,° the initial value 

problem for an F, solution is ill-defined, because an F\-type function representing the 

identity does not, strictly speaking, exist. A “weak”, or generalized F,-type solution may 

be defined, which for short times approaches the free action. In Cartesian coordinates, for 

non-relativistic (7.e. “T+V”) systems and short times, such “weak” solutions are of the 
  

°The difference between F, and F2 generating functions, as we are using them, implicitly appears in the 

identification of the initial independent variables as the q, rather than the p,, but does not ezplicitly appear 

in the HJ equation itself.
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form: 

m 
S(#1,22; At) ~ TAL M@? — #1)’ + O(At); 

I showed an action of this type in §2.3.2, eqn. (2.18), while discussing Channel and Scoval’s 

Hamilton-Jacobi-based symplectic integrator. Since (z2 — £,) ~ wAt, for finite initial ve- 

locities such “weak” solutions are actually non-singular; nevertheless, I expect difficulties 

when seeking F-solutions to the HJ /DA equation, when treated as an initial value problem. 

Where F; solutions can be expected to come into their own is for integrating through 

caustics and foci. Since an F solution is well behaved in regions where an Fy» solution 

breaks down, one could continue integrating if one could find an F, which represents the 

same map as the Fy. The implicit function theorem guarantees that it is indeed possible 

to convert between F> and F, generating functions, so long as their respective Hessians 

are nonsingular; but this is true by hypothesis. Since the DA package was created with 

this possibility in mind, Berz provided the recurstve partral-tnversion subroutine DAPIN for 

interchanging the roles of a subset of the dependent and independent variables. Therefore 

one can continue integrating through caustics and foci by carrying out a partial inversion 

when the value of the Hessian becomes too large or too small. 

5.6 Procedure for “Hybrid” Solutions 

While F,/F2 conversion provides a mechanism for integrating through caustics or foci, 

the partial-inversion process is the most computationally expensive operation in the DA 

package. Since one “hits” a caustic or a focus roughly four times per oscillation in a 

periodic system, this is an unpleasant prospect, to say the least. 

The problem of caustics and foci arises because the chosen anstaz for S (1.e., the generating 

function is either of type F, or F2) imposes artificial restrictions on the accessible domain of 

P, x P2 which the dynamics does not respect; in geometric terms, the chart induced by each
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particular type of generating function does not cover the entire solution manifold. However, 

it is important to note that these artificial constraints may be expressed entirely in terms of 

the Hesstan, which in turn is determined by the linear part of the map. Generating functions 

are simply the wrong representation for a linear map; the appropriate representation is a 

matriz. By extracting out the linear part of the dynamics and explicitly representing it as a 

matrix, one might hope to eliminate the problem of caustics and foci. Another viewpoint is 

to observe that, by hypothesis, the nonlinear part of perturbative dynamics, by definition 

being of at least one order higher than the l:znear part, is “small” compared to the linear 

dynamics. Therefore the nonlinear part of the map is always “near” the identity in some 

suitable sense, so I can always represent it by an F. 

I begin with Hamilton’s equations in the tensor form (1.8): 

4 = J*, H(é;t) 

Let me perform a time-dependent affine transformation of the phase-space variables: 

€H = E(t) + MEE) ES, —- E* = M~*8(t) (E* — €5(E)) (5.21) 

(since the local chart maps P > R¢x R? ~ R”4, this is always possible). I will go somewhat 

against current mathematical practice by introducing a new symbol H to denote the “old” 

Hamiltonian expressed in terms of the “new” variables: 

H(;t) := H(£.(t)+M(t)-é; #). (5.22) 

Explicitly expand H through second order: 

(E; t) = ho(t) + ha(t) & + Shao(t) Ee + K(G; t) (5.23) 

I shall show below that A,(t) determines the EOM of the RT, and is solved by £,(t); hag(t) 

determines the linearization of the EOMs about th RT, ans is solved by the “matrix part” 

of the evolution map, which is M(t); finally, the “remainder” term K(€;t) contains all the 

nonlinearities of the dynamics. From this point onward I shall usually suppress explicit 

reference to the time dependence of £,(t), M(t), ha(t), and Agg(t).



79 

Using the “chain rule”, I re-express the factor 0, H(é;t) in Hamilton’s equations in terms 

of the “tilde-ed” variables: 

  

aé* A - < = ANE) = Fege HW (E+: bit) = M~SH(E 1 
= M2 tha + hap & + baK(E; ty}, (5.24) 

where 0, is a shorthand notation for 0/0€*. 

Differentiating (5.21a), substituting (5.24) into (1.8), and equating the two, I find: 

ee + mein 4 Mees = MS Sha + hap? +baK (Et). (5.25) 

Identifying like terms, I get: 

Ee = JEM Oh, (5.26) 

Mg = J*’M~'Shap (5.27) 

and 

MBéz = JH M28, K(E; 8) (5.28) 

Rewriting (5.28) as: 

é = M2 ye m8 dg KE; t) (5.29) 

I now demand that (5.29) still have the canonical form; then M must satisfy: 

Moe ge Mok = ye8, = MB 8 Me =, (5.30) 

The above is just the tensor form of the symplectic condttion, (1.10); furthermore, it follows 

that: 

M-*) = I MB Jy}, (5.31) 

Putting it all together, I find: 

Eh = MEI*Ag (5.32) 

M4 = ME I*hg, (5.33)
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and, finally, 

i = J*gK (é; t) (5.34) 

The above equations have the following interpretation: 

e Equation (5.32) is just the EOM of the RT in “tilde-ed” variables: 

hg := Og H|g_9 = MZO.H lene, » => & = MEI MBO, He g, = JM” OLH gm ep 

e Equation (5.33) is the EOM for the linear transfer matriz, describing deviations 

from the RT due to the linearized EOMs: he, = 62, Aso = Mg M230?) Heme, ; 

=> MY = MEI°9 M502, Heng, Mp = JO?) Heme, MP 5 

e Equation (5.34) is the canonical EOM for the deviations from the linearized EOMs 

produced by the “nonlinear effective Hamiltonian”, K. 

Since K has no linear (or quadratic) part by construction, the HJ/DA equation arising from 

K will be closed; our system of ODEs will be (5.32), (5.33), and: 

. 

DS = —DK(t) (5.35) 

where: 

DK(t) := H(Eo(t)+M(t)-d; t) — ha(t)d& — shas(t) dé“ de”, (5.36) 

and 

déu = (dq, djz;), dpo; = aq DS. (5.37) 
2 

The boundary conditions for DS are again taken as the identity: 

DS(t1) = DSo := dp; dq, (5.38) 

Since DK consists of only third- and higher-order terms by construction, by (5.35) one sees 

that Pe3{DS(t)} = dp; dg, is a constant of the motion; therefore the map DS(t) produces 

is indeed a near-identity map, since it differs from DSpo only by higher order infinitesimals.
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Once a solution of the hybrid HJ/DA equation has been obtained, the tranfer matrix is 

implicitly given by: 

. . . ,. 8a 
DEY = bor + égdey, dey = (dq; , dpi:), dq} = Op (5.39) 

and 

. . a ; a 
DE = &2 + MdEs, dé, = (dg, dpai), dp2i = age PO (5.40) 

2 

with DS12 := DS(t2). Equations (5.32), (5.33), (5.35), and (5.36), are the central results of 

this Dissertation; (5.39) and (5.40) provide the means whereby these results may be used. 

Suppose now that instead of the identity, one wished to determine the result of composing 

some previously obtained map with the map produced by the current system. Some thought 

should convince one that this is equivalent to breaking up the domain of integration into 

two pieces, Tj2 := {ty < # < to} and To3 := {tz < t < tg}, and using a Hamiltonian 

corresponding to system “A” during the first part, and “B” during the second part; the 

initial conditions for the second part are then M(t2) = Mo, DS(t2) = DSi2, where M2 and 

DS are the results of the previous integration. Then the map for the composite system will 

again be of the form (5.39) and (5.40), save that 3 replaces 2 everywhere! Therefore, there 

is no need to start both maps from the identity, and then actually perform a composition; 

this is a great advantage, since composition is a very computationally expensive operation. 

5.7 Now that I’ve got it, what do I do with it ... ? 

I have presented a method for extracting a mixed canonical generating-function represen- 

tation of the evolution map from an arbitrary Hamiltonian system. I expect it to be fast, 

efficient, and easy to operate. Since it is a canonical generating function, the map it rep- 

resents is guaranteed to be symplectic, even in the presence of round-off and truncation 

errors. There is only one question: what is a generating function good for?
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The answer is: in and of itself, not much. 

The generating function is an unlovely object. It has no nice symmetries or group properties. 

It contains its information encoded in an implicit, and not especially transparent, way. Its 

importance lies in the results which may be derived from it. by use of differentiation and 

elimination. 

If one’s purpose is symplectic tracking, the expressions (5.39) and (5.40) are already suffi- 

cient; all that remains is to use them in a Newton-Raphson type algorithm to determine 

the final conditions of a specified trajectory, given its initial conditions. Neither I, nor any- 

one else to my knowledge, has yet written such an algorithm; however it should be quite 

straightforward, given the existing routines in the DA-library. 

If ones desires instead the explicit Taylor-series representation (t.e. a “transfer matrix”), 

one need only call the DA partial inversion routine DAPIN to find (dq, dp1;) in terms of 

dé; , then back-substitute into (5.40) using the DA composition routine DACCT, to obtain 

dé, in terms of dé,. However in doing so one must be willing to pay the price of losing 

an identically symplectic representation of the map. This is not a severe handicap, if 

one is not interested in performing long-term tracking studies; for these, the symplectic 

tracking method is clearly superior. (Recall that the Taylor-series and generating-function 

representations of a given symplectic map contain exactly the same amount of information; 

it is only that the Taylor-series contains it in a redundant fashion, because many of its 

coefficients are related by the symplectic identities. It is only the process of evaluating the 

(truncated) Taylor-series to obtain the final state that introduces non-symplecticity into 

the result.) 

To convert to the Lie-algebraic representation, the best path seems to be to descend to 

the Taylor-series representation, as discussed above, then ascend back to the Lie-algebraic 

representation using the Dragt-Finn-Forest algorithm. The properties of generating function 

and Lie transforms seem to be sufficiently different that no simple direct path from the
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former to the latter exists (the converse does exist, however; it is the Neri algorithm discussed 

in §2.3.3). 

Rather than tracking single particles, it is also possible to track the moments of a particle 

distribution function directly [DNR88b]. 

Let M be the system evolution map from ft; to tg. Let f(&;t,) be the initial phase-space 

distribution function. Let P4(€) be a complete set of functions on phase-space. Define the 

moments with respect to P4 by 

(PAY(t) = f PACE) F(Exits) PA, (5.41) 
(PAV(ta) = [ PA(Ea)f(Eaita) der (5.42) 

By Liouville’s theorem, f(€5;t2) = f(€,;t1). Since , = M&,, with M a symplectic map, 

the Jacobian 0£,/0£, is unimodular, and d?4é, = d?¢é,. Therefore, 

(PAY(ta) = f PAMEs) Frits) Pes. (5.43) 
Since the set P4 is complete by hypothesis, there must be some set of coefficients £L4(M) 

such that 

PA(ME) = L(M)P*(é). (5.44) 

it immediately follows that 

(P“)(t2) = LE(M)(P” )(t1) (5.45) 

i.e., the moments transform like vectors under the infinite-dimensional group of symplectic 

diffeomorphisms. 

Things become especially simple if I choose the monomials é“) as my set of basis functions. 

Let m := |(z)|, be the order of the monomial I wish to calculate the moment of. From (5.43), 

(€)(tp) = (Tl Mé"*) f(&5t1) 246. (5.46)
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Expanding M€# in a Taylor series, Mé# = M ( 8 (4) distributing the products over the the 

implied sums on the (A,), and collecting like terms, one finds that that the result is a linear 

combination of moments: 

(€)\(t9) = /\ mee f(€;t1) d?7é 

k=1 

J|xS x ck oo TL ap € | #(€5t1) de 
(A) {Ag Jeeee( Am) 

(Aq aes (An)= {A) 
- ~ 

_ > - chy il Mts fe Gsm) Pte 

d (Ay )rnees(Amn) k=1 
“) L (Agrees (Am =) ] 

7 

(Ar) yeea(A 
= >» »— cy Os) 0 Mix.) (€) (5.47) 

(A) (Ay )yee(Am) 
L (Ag Jae (Am = (A) 4 

where the quantity CR)" (Ak) is a combinatoric factor, the exact form of which I will 

    
not need to know. The important thing to note is that (5.47) just a contraction, or “dot 

product”, over a multi-index () labeling the initial moments. 

Note that from (5.47), (€{#))(t2) is determined by a sum over all initial moments of order 

> |(u)|. This shows why one must face a “feedback” problem in attempting to truncate and 

solve the moment evolution equations directly. But equation (5.46) provides the complete 

solution to the moment evolution equations, as a functional of the map! Since the map’s 

evolution equations are closed, one does not in principle face any additional closure problems 

in truncating and evaluating (5.47) beyond those already faced in truncating the map.* 

The sums and product in (5.47) certainly look terrifying; however in practice they are quite 

easy to handle, since they simply means “collect all the like terms on the right-hand-side”. 

Because DA multiplication is isomorphic to polynomial multiplication through order n, one 

can simply proceed as follows: 
  

*Other than the usual convergence questions involved in truncating an infinite summation, of couse. This 

statement also assumes that the map does not depend explicitly on the beam, t.e., only external forces act on 

the particles. If one includes space charge effects, for example, then the map and beam must be determined 

self-consistenly, and the “feedback” problem will reappear.
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e as before, use DAPIN and DACCT to obtain Dé, := €,(Dé,), which is equivalent to the 

Taylor series representation of the map. 

e evaluate the product: 

pes = J] pee. 
k=1 

The DA product will keep track of the exponents and collect the like terms, automat- 

ically. 

e Form a DA-vector Df whose components are equal to the moments of the initial 

distribution: 

AY i= fg Fe) de 

e Evaluate the “dot product”: 

(62 (ta) = do [De] A”. (5.48) 
(n) (A) 

where Dey”) refers to the component (A) of the product DA-vector pe) . [have 
(A) 

used the symbol “=”, because (5.48) is the result of truncating the infinite summation 

in (5.47) to the order of the DA. 

One sees that transporting moments is almost as easy as transporting particles. 

Finally, note that the HJ/DA method is not limited to the computation of evolution maps 

alone; any function on phase-space may be used to generate a one-parameter Hamiltonian 

flow via the Poisson bracket; in particlar, one may used any conserved quantity to generate a 

symmetry transformation. One aspect of this will be apparent in the next chapter; in three 

of the test-problems examined, the independent variable is z or 8, rather than t, and the 

“Hamiltonian” becomes the (negative of) the corresponding canonically conjugate variable.
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5.8 Bounds on Solution Norm 

I now show that for any norm || - ||, the seminorms ||P<;{.DS(t)}|| are bounded from above 

on every interval T := {t: t; <t < tg} over which ||P;{K(d6;t)}|| is bounded from above, 

for all dé in some bounded domain in | D,, and grows no more rapidly than (t2—t,). For 

the remainder of this section, the following compressed notation shall hold: I shall simply 

write dq and dp instead of dq2 and dp, do := DS — dp-dq, &#(do) := (dq', dp, +0do/dq'), 

and K|do; t| := K(&(do); t). 

In integral form, the HJ/DA equation is: 

t 
da(t,) = — | " K [do(t);t] dt, (5.49) 

ty 

where I have made use of the fact that P2{DS} is a constant of the motion, if K has no 

terms lower than third order, and have chosen DS(t,) = dp-dq as my initial condition. 

By construction, K(€;t), the “nonlinear part” of the Hamiltonian defined by (5.23), contains 

only third order terms and higher: 

K(dé;t) = Ky,dé"dl’dé* + Kyrpdbdé’dé*dé? +... , (5.50) 

where the K,,,, eéc., are totally symmetric phase-space tensors, and the expansion termi- 

nates after at most the n‘* term. Therefore, K maps 1D, - 3Dy. However, I can make a 

stronger statement: let d€, and d&, be two vectors in } D, which agree up to order J; #.e., 

let Adé := (dé, — dé,) € 1 Dy, so that Pe; {Adé} = 0. By examining the following identity, 

K(dé,;t) = K(d€, + Ad€; t) 

= Kyadé{dé{dé} + 3K wade dey Adé* 

+ 3K ypradé4 Adé” Adé* + Ky, Ade" Adé’ Ad€é* (5.51) 

+ Kyvrpdb dey desde? + 4K wrpdeedeydé} Adé? +...
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one concludes that, since that the Ad€ always appear multiplied by at least two of the 

dé, €1D;, K(d€,;t) = K(dé,;t) + 3Kyvrdefdéy Adé* + {HOT s}. Therefore, 

[Kk (d§,;t) - K(d§,;t)] € 1? D,, V d€,,d&,: (dé, — d£,)€ 1 Dy. (5.52) 

So K acts something like a “raising operator” on the difference between two DA-vectors: if 

dé, and dé, differ by terms of order 7 and higher, their images under K will differ by terms 

of order (j7+2) and higher. 

Suppose now that [de. — do,| € 1D, Because of the presence of the 0; operator in the 

definition of dé, [dé(o2) — d€(a1)] € 2>1D, by (5.52), then it also it follows that: 

[K[do2; t|— K[do; t]] € 2+1 Dy. (5.53) 

Now let Dr := {(do,t): t€T, do€ Z} where ¥ is some bounded compact domain in 3D, 

. Since A(d€; t) is a differential polynomial in d€, it follows that the norm of K(d6; t) is 

bounded over Dr, and therefore the seminorms ||P;{K(dé; t)}|| are also bounded. Let the 

bounds on the norms be called 

Emax °= sup |idoll, (5.54) 
T 

and 

Kj = sup |P5{K (dE (do); t)}|] . (5.55) 

(Note that “supp, || - ||” denotes the supremum of the value of the norm over the domain 

Dr; it is the “maximum value of the norm”, not the “max-norm”). I shall show that Dmaz 

is bounded by }°}_3 Kj (t2—t,), for all t such that do(t) remains inside Dr. 

In the spirit of Picard iteration, define the following sequence of approximate solutions 

to (5.49): 
t 

dox(t) = — [ Pes{K{dos_x(t);t1]} ae’, (5.56) 
ty 

with the initial approximation do2(t) = 0 VtET, so that: 

Poe{do;}(t)=0, Vk>j. (5.57)
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will hold identically. From (5.50), one sees that doz € 3 D,, Carrying out the next step in 

the iteration and subtracting, 

doy — doy = — / ” Pea{ K[doa(t’); t}} — Pol K[doo(t"); t]}) dt! 
1 

= ~ [Pal Kidos(t!) 1} + Pes{K[dos(t!); f]-Kldor(e'); Uae’. (6.58) 
1 

By (5.53), the second projector in (5.58) vanishes, since P<3{* D,} = 0. Therefore, 

do, — dog = — [ P4{ K [do3(t'); t'}} € 4Dy. (5.59) 
1 

A consequence of (5.59) is that doz = P<4{do4}, since P4{do3} = 0. 

Continuing on in this fashion, I find the general term: 

t ’ do;-doj. = ~- | P;{K|do,(t'); tI} dt! € i Dy, (5.60) 
1 

=> P<;{do;} = doj-1, (5.61) 

P;{do;} = da; — doj_1 (5.62) 

for all 7 > 2. By (5.61) and (5.62), (5.60) becomes: 

Pi{do,(t)} = — [Py Kldos-s(e)s th a (5.63) 
1 

showing that (5.56) is equivalent to: 

doj41(t) = do;(t) — [ Pi41{ K[do;(t’); ’)} de’. (5.64) 
1 

Since no differential polynomial of order greater than n exists in ,D,, the Picard iteration 

process is guaranteed to converge in exactly (n—2) steps to the value of da(t); it follows 

that P<;{do}(t) = do;(t). 

I now use the triangle inequality to bound each member of the sequence ||do;(t)||: 

dot) - 0, VteT; (5.65) 

laea( < | f Pateidaa ee} ae | 
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< [dora(t'); t'}} de 

< j Ke dt' = K3(t — t1); (5.66) 

laea(ll < [dealt + [ Pal tdoa(e 

< lidos()| + | [Pal tdoa(e eT} del 
< Ki(t—t:) + Ki (t— ty): (5.67) 

|des(Q) < SOKE(t~ 4). (5.68) 
w=3 

A slight variation on the preceding proof bounds each of the the seminorms P;{da}(t) by 

Kj (t— ty). 

Since there are no “feedback” terms, oscillatory and “stiff” behavior are impossible; and 

since the magnitudes of the coefficients of do(t) are bounded by linear growth, given that 

nearly all numerical integrators assume the solution may be well approximated by a poly- 

nomial over each time step, I expect the method to be quite stable, even with relatively 

large time steps. 

5.9 Estimate of the Kj 

Finally, I place crude bounds on the AK; themselves. 

From repeated use of the triangle inequality, for any norm, and any DA-vector DK, 

DE llp < STIPADKFI, (5.69) 
j=0 

(for the special case of the “1-norm”, equality holds).
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For the particular case of DK = K(€(do(t));t), I may futher decompose each of the above 

order projections into “p’s and q’s”: 

|Pe{DK}|] = x Ki s(t) daz? apy | (5.70) 
Gg 

Hedl+Mal=k 

< x IK wy,¢3)(€)| ldas’ dp? |p (5.71) 
Ctpl+ Cs pl=e 

< Sabu [Ky,¢5y(t)| Mead" le lle?” Ip. (5.72) 
(4),09) 

i+ [Cs pl=e 

Ildqs Ip = 1, since it is a basis element of the algebra; whereas, by the product inequality, 

    

‘ d . 

lapy|| = | T] (@»Ds(e))* (5.73) 
k=1 

< 212" TT ae D5) * (5.74) 
k=1 

    

(Since at most |(j)| of the j, will be non-zero, there will be at most |(j)| — 1 factors of 

nbyp-) Since DS(t) = dq}, dp,; + do(t), 

    

d ; 

dp? || < nL TT |dpy, + Aedo(t)|” (5.75) 
k=l 

d . 
. 2 

< ALi TT [Ildprall + lOedo(e)|l] (5.76) 
k=1 

\|dp,,|| = 1, since it is a basis element of the algebra. ||0,.do(t)|| < n||do(é)||,. since 0. 

simply throws some of the coefficients away, shifts the rest of them downward, and multiplies 

them by at most the order of the algebra, n. Therefore: 

d 

apy <n Lat TT [1 + a lido(e)|* = (1+ m{ldo(e)| (5.77) 
k=1 

yielding the final result: 

Pe{K[do(t); HH < SD Bl! [Key gy (t)] [1 + aldo (ey. (5.78) 
{t),(9) 

s)|+a)|=*
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All that now remains is to choose the domain Dy, and determine the suprema of the 

P,{ K[do(t);t}} over it. A particularly simple choice would be to simply set the bound on 

do(t) to some positive constant Umar, in which case: 

KES SD LI! sup [Ky y(t] [L + mE mae] (5.79) 
(5).43) ti StSte 

Hp I+ a lee 

This will in turn set an upper bound on the size of (t2—t,) I may reach, since I must have 

yes AZ (t2—t1) < Umaz if do is to remain inside Dy. I may always push up the bound 

on (t2—t,) by increasing Umar, so long as K and its derivatives do not becomes singular 

somewhere on the RT. However, this does not rule out the possibility that the sequence of 

t2’s thus generated might not accumulate to some upper limit, regardless of how large one 

makes Ymnaz- It will therefore be necessary to determine tz —¢, and the appropriate Lmaz in 

a self-consistent fashion in order to find the Kj; however such problems often occur when 

determining bounds on the solution to an ODE.



Chapter 6 

Verification of the HJ/DA 

Equation 

I now describe the implementation of the “hybrid” HJ/DA method as an algorithm; the 

problems it was tested on; and the results of those tests. I close with an “practical example”: 

minimizing the transverse momentum-spread emerging from a Lithium lenses. 

6.1 Implementation of the Hybrid HJ/DA Equation 

I chose to implement and test only the “hybrid method” of section §5.6, because I expect 

it to be most useful in practice. While I have not actually tested the Fy and F; methods 

described in sections §5.4 and §5.5 on a fully nonlinear problem, it is a simple exercise to 

show that the linear part of the HJ/DA equation is satisfied by the generating functions 

given in (5.9) for the case of the time independent harmonic oscillator!. Since the nonlinear 
  

‘Any stable time-independent 2n-degree of freedom linear Hamiltonian system can be reduced to a 

collection of independent harmonic oscillators. The solution of a general 2n-DOF time-dependent system is 
in principle solvable using matrix techniques, but generally not in closed form; I have not bothered to pursue 

it. 
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parts of both the “pure” and “hybrid” methods are essentially identical, I do not expect any 

surprises; nevertheless, the verification of the F; and F. methods represent “loose ends” of 

this investigation in need of tying off. 

Because [ am primarily interested in a “proof of principle” demonstration, I have endevored 

to keep things simple; the code presented here is not really at the stage of being a practical 

calculation tool, ready to be integrated into a “general purpose” dynamics package, such as 

COSY or MARYLIE; it operates in a “stand-alone”, and must be “hardwired” for the problem 

at hand. In particular, it will need at a minimum a more sophisticated numerical integra- 

tion routine, incorporating automatic error estimation, and adaptive stepsize control. The 

modification of Bulirsch and Stoer’s “Richardson extrapolation” method [BS66] discussed 

by Deufihard [Deu83], would seem ideal for this purpose; this method automatically selects 

both the effective order? and stepsize of the integrator so as to minimize the computational 

effort needed to acheive a desired accuracy, 

Nevertheless, I have attempted to maintain a “general purpose” design philosophy; to write 

the code as if it were to be used in a G.P. package. I have therefore attempted to follow 

the principles of “structured programing” (insomuch as FORTRAN allows). I avoid the use 

of COMMON blocks, passing all variables as arguments to the integrator, including the name 

of the Hamiltonian routine. I have broken program functions up into “modules”, for ease 

of understanding and maintainance. Application-dependent features appear in only two 

modules: the “master” module, and the Hamiltonian itself; this is only one step from 

the irreducible minimum, which is to imbed the routines into a general-purpose dynamics 

package, obviating the driver, and relegating the Hamiltonian to a mere “input file”. 

I describe the functions of the various major blocks of code below; the actual FORTRAN 

listings of the various subroutines involved may be found in appendix A. 

The program consists of the following parts: 
  

?The order of the error in the time-step for the integrator must not be confused with the order of the 
DA; the two are independent parameters.
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e The Master Module: A specialized “master” module controls each problem. The 

master is composed of two routines: Main, and HJDAdrive. 

> Main: The “main program” is essentially a dummy; its only function is to call 

the routine which initializes the DA package®, followed by the “driver” routine 

which actually controls the integration process. 

> HJDAdrive: The “driver” subroutine HJDAdrive initializes the parameters and 

variables used, calls the HJ/DA integrator routine, performs those calculations 

required to check the results in the analytically solvable cases, and writes out 

the final results. The driver routine, and the Hamiltonian routine below, are the 

only two routines which are application-dependent. 

e The Integration Module: 

The name of the current integration module is HJDAbsint. It requires the following 

arguements: 

b> ti: The initial value of the independent variable. 

> x1,R1,Ds0: The initial values of the reference state-variables, linear transfer 

matrix (M, in 5), and DA-valued generating function, respectively. Normally, 

Ri and Dsi are both set to the identity by HJDXident (see below). However by 

using instead the hybrid representation of a map (for example, the result of a 

previous integration) the final result will automatically be the composition of the 

current map with the input map. this is an important feature, as composition is 

the most expensive operation in the DA-library. 

> t2: The final value of the independent variable. 

> x2,r2,Dsi2: The resultant values of the reference state-variables, linear transfer 

matrix, and DA-valued generating function after integration, respectively. When 
  

7A quirk of the current implementation of DA is that the routine DAINI must be called before any other 

DA routine, including the routines that allocate DA variables. Since the subroutine calls to the DA library 

(including the allocating routine DAALL) are normally inserted into a program by the DAFOR preprocessor 

(which currently cannot distinguish between a subroutine and the main program), no DA variables may 

appear in the main program, unless they are allocated “by hand”.
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Ri and Ds0 are initiallized to the identity, R2 is the linear part, and Dsi2 the 

generating function for the nonlinear part, of the map from ti to t2. 

> Dz,Dx: A pair of DA-valued arrays of “scratch-variables”, declared to be of 

dimension 2xnd, order no, and number of variables nv (t.e., Dx(i) € noDny). 

Here nd is the number of pairs of canonically conjugate variables; I allow for the 

possiblity that nv > 2 x nd so that one may include derivatives with respect to 

non-dynamical system parameters in the calculation. 

> no,nv,nd: (See previous item.) 

> nstep,istep: the number of sub-steps the integration interval is to be broken 

up into, and the number of “extrapolation stages” the integrator should use, 

respectively. (The effective order of the integrator is 2x istep.) 

v hmitn: The name of the Hamiltonian, passed in as an EXTERNAL routine. 

Initially, I chose a fixed stepsize fourth-order Runge-Kutta (“RK4”) method for my 

integration algorithm. My motivations were simplicity, a desire for a self-starting 

method, and a desire for ease in checking the dependence of errors on stepsize. I based 

my integration module on the routines RKDUMB and RK4 of Press, et. al.’s “Numerical 

Recipes” [PFT V86, pp. 553-554], modifying it to integrate equations (5.32), (5.33), 

and (5.34), simultaneously. Because of the low order of RK4, excessive computation 

effort was required, and high-accuracy calculations could not be made. This was inti- 

mately connected with the “feedforward” phenomenon; because high-order coefficients 

depend on lower ones, and because of the rapid increase in the number of coefficients 

as the order is increased, round-off error soon began to dominate the result at large 

order. Therefore, I replaced the RK4 integration module With a fixed-stepsize ver- 

sion of the “Numerical Recipes” Bulirsch-Stoer integrator [PFTV86, pp. 563-568]. 

Since the Bulirsch-Stoer method is effectively a variable-order method (effective order 

equal to twice the number of extrapolation stages), this provided the added bonus of 

allowing the error as a function of integrator order to be studied. I have found that



96 

for every problem investigated, four to six extrapolation stages (8**- to 12¢*-order 

integrator) was quite sufficient. 

e The Derivative Module: 

This is the heart of the HJ/DA program. It consists of five subroutines: HJDX1, HJDX2, 

HamSplit, and HJDAderiv. 

> HJDXident: Sets £, = 0, M =I, and DS to the identity. 

> HJIDX1: Computes D€,, at time t1, from £), @ x1, M; © Ri, and DS + Dsi2, 

using (5.21). 

> HJDX2: Computes D€,, at time t2, from 9. & x2, Mz © R2, and DS > Dsi2, 

using (5.21). 

> HamSplit: Separates DH into ha, hag, and DK, using (5.23). 

> HJDAderiv: Evaluates the right hand side of (5.32), (5.33), and (5.34). 

All five of these routines are perfectly general, and could be used in a production code 

without modification. 

e The Matrix Module: 

For clarity, the vector and matrix multiplications involved in evaluating the EOMs for 

€ and M, ((5.32), (5.33), and (5.34)), have been split off into the following subroutines; 

also included is a special-purpose inverter for symplectic matrices: 

> MMmul: multiplication of two matrices, 

> MVmul: multiplication of a vector by a matrix, 

> RJmul: multiplication of a matrix by J from the right, and 

> SympInv: Inversion of a symplectic matrix, using the identity M~! = J M?J-}. 

These routines have been written for simplicity and generality, rather than efficiency; 

while modest improvements in speed could probably be made by “hardwiring” these
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routines into HJDAderiv, the fraction of computational overhead thus eliminated 

would probably not be worth the effort. 

e The Hamiltonian Module: 

Finally, there is the module computing the Hamiltonian itself. It is the only other user- 

supplied module in the program. Its name is passed to the program as an argument 

using FORTRAN’s “EXTERNAL” mechanism, so there are no restrictions on the routine’s 

name. Only a minimal knowledge of DA is required by the user; essentially, one just 

writes a FORTRAN routine to compute the Hamiltonian, and keep in mind a few simple 

rules: 

1. The argument list is of the form: “( t,Dx, no,nv,nd Dh)”. Here t is the 

independent variable, Dx is one-dimensional array of length 2xnd containing the 

DA-valued phase-space variables, no, nv, and nd are defined as before, and Dh is 

the value of the DA-valued Hamiltonian returned. 

2. Dx and Dh must be declared as DA by the statement: 

“*DAEXT(no,nv) Dx(nd*2), Dh”; 

the * must occupy the first column. (All statements flagged for preprocessing by 

DAFOR start with a “*DA” in the first column; therefore the FORTRAN compiler 

considers them to be “comments” .) 

3. Any local DA-valued variables must be declared using a “*DAINT(no,nv)” state- 

ment analogous to the “*DAEXT(no,nv)” statement above. 

4. Any statements containing a DA-valued variable must be flagged by placing a 

“+DA” in the first column. 

And that is all one really needs to know; for examples, please see the routines drift, 

UBfield, and polrsho in appendix ??. 

e The Tracking Module: This module contains two functions used for tracking pur- 

poses: DFeval and DFdot.
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> DFeval: Double precision function DFeval( x0,Df, no,nv, Xn,Xnn ); evalu- 

ates to the value of the DA variable Df interpreted as a Taylor series, at argument 

x0(nv). returns auxilliary 1-D arrays Xn containing the partial sum through each 

order up to no, and Xnn containing the contribution each order makes to DFeval. 

> DFdot: Double precision function DFdot( Df,Dg, DotProd,DotByOrd ); evalu- 

ates to the value of the “dot product” of Df and Dg; returns auxilliary 1-D arrays 

DotProd containing the partial sum through each order up to no, and DotBy0rd 

containing the contribution each order makes to DFdot. 

e Miscellaneous Subroutines: 

> norms: Calculates the sum of the 1-norms and the max of the max-norms for a 

1-D array of DA-valued quantities. Also returns the contribution made by each 

order to the above measures. 

> mypri: Special routine printing a sorted comparison of two DA-valued quantities, 

including the absolute and fractional difference of each component when both are 

non-zero. 

> The RayGen Module: Special truncated Gaussian random beam generator. The 

particle sets it generates are guaranteed to have zero mean, specified standard 

deviations along each axis, and to be “upright beam ellipses”, 1t.e., zero correla- 

tion coefficients in the z—p, and y—p, phase-planes. See the listing in app. ?? for 

details. Includes a subroutine for computing the first and second moments of a 

particle set. 

6.2 Testing the HJ/DA Equation 

Finding a good set of test problems for the HJ/DA equation was somewhat difficult. On 

the one hand, I would like test problems which can be solved in closed form5, so I may
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be confident of my results. On the other hand, I demand test problems which are fully 

nonlinear, in order to provide a true test of the method; however nonlinear systems solvable 

in closed form are hard to find. Fortunately, I can meet both preceding criteria if the test 

problem can be solved using geometry alone. Three such systems are the unsform relattutstic 

drift, two-dimensional simple harmonic osctllator (2D-SHO) in polar coordinates, and a 

particle in a untform magnetic field. 

6.2.1 Case 1: The Uniform Relativistic Drift 

It is customary in both kinds of “optics” to take the arc-length along the RT, s, as the 

evolution parameter, and time as a coordinate. This is because, in perturbative optics, it 

is usually easier to determine when a particle arrives at a given optical element, than it 

is to determine which element a particle has arrived at at a given time. It is simple to 

show that with this parameterization, t and p» := —£ are conjugate variables, while the 

“Hamiltonian” becomes —p, [Dra82]. For example, if I choose s = z, 

i 
1 2 2 2 q 

H=— ll + 90)" ~ (Pe - * Az) ~ (Py - ty) —mict) — =A, (6.1) 

which is exactly what I would get by solving algebraically for —p,. The other p’s do not 

change under this transformation; however Hamilton’s equations now take the form of: 

dz OH dp. __ ‘OH 
—_-_ —_—— ——— 

dz Opn’ dz On’ 

and similarly for y and t. 

The other property I shall need is the change of form of Hamilton’s equations under rescaling. 

For numerical purposes, it is best to scale the physical variables by putting them into 

“dimensionless” form, choosing the scales so that all quantities are of order unity. Suppose 

that ¢ is a cyclic variable (this will be the only case I shall need); then p, can be treated as 

a fixed parameter. Under the scaling transformation: 

z= lX, y = £Y, Pe = pi Px, Py = pi Py, z= LZ,
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the canonical equations become: 

dX _ OH dPxy _ _oH 
dZ ~ OPxy? aZ Ox? (6.2) 

dY _ OH dPy __ of 
dZ ~ OPy? dg ~ oY? 

with: 

_ L 
A(X,Y, Px, Py; Z):= fp TY ps Px pi Py LZ) (6.3) 

L 

Rescaling is not a symplectic transformation, because the determinant is not unity; never- 

theless, the structure of Hamilton’s equations is preserved, so it is conventional to admit 

rescalings to the family of “generalized” canonical transformations {Gol80, chap. 9,p. 381]. 

For a free relativistic drift (t.e., a field-free region of space), s is again simply z. For 

simplicity, I limit myself to (2+1) dimensions, (t,z,z). From the “mass-shell constraint”, 

E? — pec? — prc? = moc’, the Hamiltonian is: 

2 
H Pt 

= ~Pz = “ALT — Px* — mc?, 

The sign of H has been chosen to make t increase with increasing z. Choosing units such 

A := —4/pe? — pe? — 1. (6.4) 

Using a prime to denote d/dz, Hamilton’s equations for a drift are: 

that m=c=1, 

, OH , OH Mm _ (-E/c)_ 1 
=-—-— = 0, t= = T= TOOT = 6.5 

Pt Ot Ope A (—p-z) Bz ( ) 

p= 2 6 y — OH _ Pe _ Pe _ Be (6.6) 
Oz OPz H Pz Bz 

the solution of which can be found in closed form: 

P. z 
tg = ty + z=, Pro = Pr, BQ = 21 - 2fe Pe2 = Pei (6.7) H H 

Since the Hamiltonian depends only on the p;, the HJ/DA equation can also be solved in 

closed form. For simplicity I treat the energy as a “fixed parameter”, since pp = —‘7o is a
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constant of motion.’ Initial conditions are: zo; = 0, Psoy = 0 (on-axis beam), M, = I, 

DSo = dp,,d@2. Using 

  

0 0 0 
ha = ; hag = l ’ (6 8) 

0 0 
yoBo 

the solution may easily be verified to be: 

Zz 
  

  

1 
M#(z) = yoPo (6.9) 

0 1 

a 1 dp? 
DK = —[yé62 — dp2]? — -—= 6.10 [yo Bo Pz 2 Foo ( ) 

DSy2(z) = dpzi dz _ zK (per) (6.11) 

(Note: equation (6.11) is actual valid for any “purely nonlinear” Hamiltonian K which 

depends only on the p’s.) 

I ran this test problem in 12D. for z = 1 (a unit length drift), in twenty steps (Az = .02), 

with six extrapolation stages (effective order 12), and the “zero-tolerance cutoff” parameter 

of the DA-library (minimum size below which a coefficient is set to zero) set to 1.0x107*°. 

Since the results of the run are several rather large tables of numbers, I have relegated them 

to appendix A. 

Table A-3 shows the theoretical matrix M:;..; Table A-2 shows the corresponding numerical 

result Mnum. Table A-1 shows the difference between M,,,, and Mnun; there are only two 

non-zero elements, having absolute errors of 4x107!? and 8x10!" or a few parts in 

10-16 fractional error. 

I have not reported a comparison between the theoretical and numerical solutions to the 

RT equations, because this difference is identically zero, by virtue of the ICs chosen (initial 

momentum parallel to z-axis). 
  

*So is pz, for that matter, but I need at least one dynamical variable, or the problem becomes trivial!
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I also do not report a check made of the symplectic identity for the matrix part. The 

measure of symplecticity error used was: MaumM7! pum — 1, Mzl, := IM? ,umJ~; this 
num 

difference is also identically zero, by virtue of the structure of the EOMs for the matrix. 

Table A-4 shows the theoretical and numerical HJ functions, DSinze. and DSnum. Note 

that the difference is again small, about 10718 — 10-16 . The fractional difference is also 

shown; note that even this is very small, about 107!’ —- 10-15 . Had the zero-tolerance 

parameter been set to something more reasonable, like 1.0x10~!° these differences would 

have “vanished”. 

Note that the average magnitude of the coefficients in DS are roughly constant, or at 

best weakly decreasing with order. This should not be cause for alarm, however, since 

as coefficients of a “perturbation expansion”, one expects them to behave at best like an 

asymptotic expansion. Since, even when veiwed at a Taylor-series, the coefficients appear 

multiplied by “small” quantities, DS actually appears to be converging, and converging 

approximately like a geometric series. 

A additional test is provided by rewriting (6.7) as: 

ty = te — a (6.12) 

and 

2, = 22 + 222; (6.13) 
H 

Tables A-5 and A-6, app. A, compare the right- and left-hand sides of A-5 and A-6. Note 

that all terms are again small. 

6.2.2 Case 2: The 2-D Harmonic Oscillator in Polar Coordinates 

In Cartesian coordinates, the 2D-SHO Hamiltonian is a quadratic form, and its equations 

of motion are linear. However by making a “bad” choice of coordinates (polar coordinates),
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the Hamiltonian for this system becomes nonlinear: 

1p, 1 
r 

(I have set m = 1 in H, since it is a “scale” parameter, not a dynamical variable.) 

In this case, I have not been able to find a closed-form solution to the hybrid HJ/DA 

equation, because of the complicated time-dependence induced is K by the RT.° However, 

I don’t really need an explicit solution, since the HJ/DA equation yields implictt relations, 

anyway. If I can find any set of four equations between (71,01, Pri, Pe1) and (T2, 92, Pr2, P62) 

which are identically satisfied by every solution to the EOMs of our harmonic oscillator, they 

must also be satisfied identically by the canonical transformation generated by a solution 

to the HJ equation, since the two are equivalent. The DA equivalent of this statement is 

that an n“*-order solution DS12 to the HJ/DA equation must identically satisfy these same 

th four relations to (n — 1)""-order (since I must differentiate once to obtain the pz and q:). 

Now, I know that the general solution to a 2D-SHO in Cartestan coordinates is given by: 

Zq = 2, cos(wt)+ = pat sin(wt ) (6.15) 

y2 = yy, cos(wt) + = py1 sin(wt) (6.16) 

P22 = —wz2y,sin(wt) + pe; cos(wt) (6.17) 

Py2 = —wy;,sin(wt) + py, cos(wt), (6.18) 

and these, together with the polar-rectangular conversion formulas: 

Pe = Px cos(8) ~ =po sin(8) (6.19) 

Py = Prsin(@) + ~pocos(8) (6.20) 
and 

Pr = Pz Cos(@) + py sin() (6.21) 

pe = [pe sin() + py sin(9) (6.22) 
  

*For the special RT leading to “uniform circular motion”, r, py, and pe are all constant, and a solution 

can in principle be found by separation of variables; however it in addition to being rather complicated, it 

satisfies the wrong BC’s.
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provide four relations of exactly the type I need. So I can still test the HJ/DA method on 

this problem, even though I do not have an ezplictt closed-form solution for DS. 

I ran this test problem for wt = 37/4 (passing through the F, method’s caustic at wt = 1/2, 

just to show it is not a problem for the hybrid method), with a stepsize of wAt = 2/120 

(30 steps), number of extrapolation stages istep = 6, and zero-tolerance parameter set 

to 1.0x10~%° . The initial conditions on the RT were: ro; = to = 1.0, pror = (0.1) row, 

9 = 0.0, peo = (1.1)r2w. Tables B-3-B-6, appendix B, show the differences and fractional 

differences between the right- and left-hand-sides of (6.15-6.18); as in the previous case the 

differences are all small, about 10~!6 - 10-!4 . The fractional differences are also small, 

for the most part; occasional larger values occur, but only between coefficients which are 

themselves very small, and probably would have vanished if the zero-tolerance parameter 

been set to something more reasonable. 

6.2.3 Case 3: Uniform Magnetic Field 

A commonly used charged-particle optics element is the “normal-faced uniform horizontal 

bend”; this is simply a magnet with a uniform vertical field, designed so a particle moving 

on the reference trajectory with the design energy enters and exits perpendicular to the 

faces of the magnet. Neglecting edge-effects, and restricting motion to the z-y plane, one 

knows that inside the magnet, every charged particle must follow an arc of a circle.® If I 

know the energy and entry angle of a particle, it is a matter of simple geometry to work 

out the relations between the phase-space variables at entry and exit: 

. Pri . Pr2 
sin(a,) = ; sin(a2) = ; 6.23 (a1) p (a2) D (6.23) 

pe = qBR = 4/ E? — m?ct = \/ E2 — m?c4 (6.24) 

If I include the z-component as well, the particle move along a helix, instead; however since the Hamil- 

tonian is independent of z, pz is conserved, and has no effect other than to alter the gyration radius. 
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te = Rsin(a;) (6.25) 

rep = Rsin(a2)cos(@) + [r2 — Rcos(az)| sin(9) (6.26) 

yar = 7 — Reos(ar) (6.27) 

yo = —Rsin(az)sin(@) + [r2 — Rcos(a)] cos(9) (6.28) 

where the meanings of the various quantities above are illustrated in figure F-1, appendix F. 

In terms of time, the Lagrangian of a charged particle in a uniform magnetic field Bo is: 

: Bo .: 
L = —mey c? — tr? — 29? — man (6.29) 

c 

Following custom, I shall use @ as my independent variable; the Lagrangian becomes: 

Edt = Ad@ = {me c2t!? — pl? — 2 — | d6 (6.30) 

Introducing dimensionless coordinates p := r/Ro, T := ct/Ro, A becomes: 

BoR 
A= ~meRo | ri? _ pl2 — p24 see (6.31) 

me 

Choose Ro = poc/gBo, the radius of gyration of a particle having the reference momentum 

Po = Mcyo8o. Then A becomes: 

1 . 
A = —mcRo { gi? — pl? — pr 4 570600? } =: mcRoA (6.32) 

Choosing units such that m = c = Ro = 1, the Hamiltonian associated with A; is: 

- 1 
H :=p,t'+ ppp’ -A=p {570600 — \/p2 — p? — i} (6.33) 

Despite its odd-looking form, this is actually just equal to —pg (in non-dimensional form, 

of course!). This is the Hamiltonian I shall use in the HJ/DA equation 

I ran this test problem for @ = 3/4, with thirty steps; I chose the IC’s for the reference 

trajectory as: p91 = 1.0, popo1 = 0.0, so that it is a circle of radius Ro, centered on the 

origin. Since p, = —7y is again a constant of motion, I again treat it as a parameter, and
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p and p, as my only variables. The results are presented in tables UB-mat through UB- 

tst2, appendix C; again, note that the differences between (6.25) and (6.26), (Table C-3, 

appendix ??), and also (6.27) and (6.28) (Table C-4, appendix ??), are quite small. 

As a final amusing example, I integrate with the same initial conditions around a full 27 

radians; The results are presented in tables C-5 through C-8, Appendix C. Note that the RT 

returns very nearly to its initial conditions, and the matrix and generating-function parts to 

the identity; in particular, the coefficients of the generating function differ from the identity 

by only about 107'®- 10714. Occasional large fractional differences do occur, however this 

should not be too surprising: since ideally all the generating function coefficients should 

have vanished, one expects that the small (but non-zero) values observed are entirely due to 

truncation and round-off error in the numerical integrator, and therefore quite uncertain. 

6.2.4 Convergence Study 

The errors shown in appendices A-C are small, but they are not zero. How are these errors 

affected by step size and extrapolation order? To determine the answer, I ran UBfield with 

the same IC’s as before, but with nstep varying from 8 to 128, and istep varying from 2 to 

6. I shall use the matrix max-norm on the symplecticity error matrix, ’ and the sum of the 

1-norms (3.56) or max-norms (3.57) of the error-vectors (differences of (6.25) and (6.26), 

and (6.27) and (6.28)) as a measure of the “overall error”. Since I am also interested in 

the error depends on order, I shall also look at the “1-seminorms” and “max-seminorms” 

defined by (3.62) Because of the closure property of DA, I am guaranteed that the results 

at k** order are not influenced by (k + 1)** and higher orders, so it is sufficient to do this 

once and for all®; I do not need to run the problem for varying values of k. In order to be 

able to compare more readily errors at different orders, I shall look at the “average error 

per coefficient” by rescaling the norm and seminorms by ,,N, and ,Ny_1 = nNy — n-1 No, 
  

"For 2x2 matrices, the matrix 1-norm and max-norm only differ by a factor of 2, because one can show 

that MIM_J = det{M}OfI. 
“Note that I could not have made this claim, if the HJ/DA method were not free of “feedback” problems.
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respectively. I also look at the “max-norm” (3.57. Tables D-1, through D-14, app. D, 

show how these error-measures vary with nstep and istep. One sees that, like the DA- 

coefficients themselves, they vary only slowly with order; again, this should not be cause 

for alarm, unless the fractional error increases with order. Since DS is equivalent to a 

“perturbation expansion”, one expects that it is at best an asymptotic expansion anyway, 

and therefore one should expect its coefficients to begin to diverge for sufficiently high order. 

Figures F-4—F-17, app. F, show log-log plots of the sum of the 1-norms and max-norms 

vs nstep; these curves are qualitatively very similar, since inspection of tabels A-5, A-6, 

B-3-B-6, C-3, C-4, and C-7, C-8 show that there are usually one or two coeffieciemts at 

each order which dominate the error. The slope of the early portions of these curves are 

consistent with the O(h?+8*¢P) behavior one expects from the integrator. The tendency of 

these curves to “bottom out” at about nstep ~ 24 and begin to slowly rise again is also 

quite typical behavior for a numerical integrator [How74, HNW87): for large step size (small 

nstep), the “local truncation error” (discretization error; “order” of method) dominates, 

and the error goes like O((h/nstep)??***P): while for small step size (small nstep), the 

“global round-off error” dominates, so the error goes like O((h/nstep)~*). 

For comparison, I also hold the stepsize fixed and vary the number of extrapolation stages 

istep. Figures F-18—F-31 show log-linear plots of the errors vs istep; since the error due 

to finite step-size is proportional to h?+8*®P, these should be straight lines (the coefficient of 

the error term actually also varies somewhat with istep, as well as the effective order, so 

one does not expect them to be ezactly straight). Ones sees that the lines on figs. F-18-F-31 

are indeed remarkably straight; however they also tend to “bottom out” for sufficiently high 

nstep and istep. 

The “bottoming out” tendency shows that there is little point in increasing nstep and istep 

beyond a certain point. This points out the need for effective methods of order and step size 

control in a “practical” implementation of the HJ/DA method. Fortunately, the Bulirsh- 

Stoer method also provides an internal estimate of the solution error, and algorithms exist
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which automatically optimizing the order and step size to achieve a perscribed estimated 

error with minimum computational effort [BS66], [HNW87]. As stated earlier, I chose not 

to implement order and step size control in HJDAbsint, because it would have made the 

integrator much more complex, and greatly complicate the convgerence behavior analysis; 

however I consider it a “must” for a production version of this code. 

6.3 Example Application: Optimization of a Lithium Lens 

To show an application of the HJ/DA method to a “practical” calculation, I give the 

following example: optimization of a combined target /lithium-lens system for minimum 

final transverse momentum spread. Before I discuss what a lithium lens is, and why a 

minimum final transverse momentum spread is desirable, I must first give a brief discussion 

of the “emittance” and “beam ellipse” concepts. 

6.3.1 The “Emittance” and “Beam Ellipse” Concepts 

The “emittance”, €, is a common figure of merit for beam quality. Emittance is a measure 

of the “phase-space volume” a distribution of particles occupies. One often desires the 

emittance of a beam to be as small as possible; for example, the event rate in a colliding- 

beam experiment naively scales like 1/ez€,. 

Now by Liouville’s theorem, the phase-volume of a distribution is conserved by Hamilto- 

nian flows; ideally, emittance should share this property. Finding a good measure of the 

phase-volume is difficult, however, since in practice some form of “course graining” must 

be performed. The problem is exacerbated by the fact that, for many-particle systems, 

Liouville’s theorem is valid only for the 2dN-dimensional N-particle distribution function, 

whereas the experimenter usually only has access to averages over the 1-particle distribu-
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tion function at best.? “Emittance” is therefore a somewhat ambiguously defined quantity. 

There are many definitions of “emittance” in common use; unfortunately, the principle 

thing that they all have in common is that they are unsatisfactory in some way [LLG73]. 

One popular version is the “rms-emittance”, defined in terms of second moments of the 

distribution function. For linear systems, with no cross-plane coupling, the quantity ‘© 

ex = (Al{ (22) (p2) - (epe)?}? (6.34) 

is a constant of the motion, as is the analogously defined ¢,. (The factor of four in square 

brackets is frequently dropped.) 

For nonlinear systems, (6.34) is no longer conserved, and is usually observed to increase. 

This is usually attributed to “phase-space filamentation and mixing”, discussed further 

below. 

To get a physical interpretation of (6.34), assume the beam has a Gaussian distribution in 

the transverse coordinates and momenta, !! and again, that there is no coupling between 

planes; then €, enjoys simple physical interpretation: it is equal to the area of the elliptical 

“one-sigma” contour in the z—p, plane, divided by 7. This picture is so common and useful 

that “phase space ellipses” are used almost exclusively to describe the shape of a beam. 

The mathematical description of beams is either in terms of the “Twiss parameters” a, £, 

and y, }* which are related to the one-sigma contour by: 

€ 

ye? + 2ampe+Bp,=—, By-a’=1. 
  

®Even more likely, one only has access to averages of projections of the distribution onto the spatial 

coordinates. Relatively non-invasive methods of measuring the spatial distribution of the beam exist, however 

momentum measurements are much harder. Usually one must insert a slit or pinhole into the beam, then 

measure the spatial distribution of the emerging beam after a short drift. 

“Tt is actually far more common to use the “slopes” z’ and y’, z’ := dz/dz to describe particle trajectories, 

rather than pz, py. However z’ ~ pz/pz, pz ~ {const} to second order in transverse coordinates and 

momenta, so my description differs from the conventional one only by a scale factor. 

This is actually fairly close to what is usually seen, so long as space charge effect are negligable. 

2One of the more confusing aspects of accelerator physics is the extrordinary number of unrelated things 

the letters a, G6, and 7 are used for.
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Alternatively, one uses the “sigma matrix” which is related to the Gaussian beam distribu- 

tion by: 

F(€;t) « exp[—3& -o7*- &], 

in which case the one-sigma contour is given by £-a-'- € = 1. 

While the “one-sigma” emittance provides an intuitive picture for Gaussian beams, closely 

related to the only physical scales one has in this case, it is somewhat unsatisfactory in 

that one can show that even in only two dimensions, only 14.7% of a Gaussian beam is 

contained within the one-sigma contour; it therefore represents only the innermost core of 

the beam, and the fraction get rapidly smaller as the dimensionality increases. It is also not 

clear how one should apply the “one sigma” criterion to non-Gaussian beams; for example, 

a space-charge dominated beam tends to evolve until its spatial distribution function is 

approximately uniform (a “flat” beam); what does one mean by the “one sigma contour” 

then? One sometimes defines the emittance to be the area of the smallest ellipse containing 

some large specified fraction of the beam — 90% and 95% are popular choices. 

The definition (6.34) reduces to the one-sigma ellipse for Gaussian beams, and has the 

advantage of being well-defined even for “point” distributions, such as one obtains from a 

Monte-Carlo simulation. Unfortunately, it is not “robust”— the second moment tends to 

weight “outliers” too highly, and so may overestimate the size of the beam, rather than 

underestimate it. Furthermore, there are fairly well-behaved distributions for which the 

second moment diverges — a Lorentzian, for example. Again, one may compromise by 

choosing the ellipse having the same aspect ratio and orientation as the ellipse determined 

via second moments (assuming they exist; for a finite size particle set this is always the 

case), but rescaled so that 90% or 95% of the beam is included. 

Lawson, Lapostolle, and Gluckstern have shown that the entropy of the distribution is 

proportional to the log of the rms emittance [LLG73]. One might therfore suggest that 

“emittance ” be defined in terms of beam entropy for non-Gaussian beams. Unfortunately, 

the entropy of the beam is impossible to measure, in practice, so this definition is of only
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conceptual utility, as they themselves recognize. However it might be a useful definition of 

emittance for numerical simulations using non-Gaussian beams. 

Despite its potential pitfalls, for the remainder of this section one may assume that I 

mean (6.34) when I say “emittance”, as it is simple to calculate in a Monte-Carlo sim- 

wlation, and I shall be using Gaussian beams in my example. 

A “dual” concept to emittance is the acceptance. This is the area of the largest phase-area 

in each phase-plane that a beam transport line can accept without losses. It, too, is usually 

parameterized by assuming it is an ellipse. A characteristic of the most common beam 

transport lines is that if the beam ellipse and acceptance ellipse are geometrically similar 

on injection, they will remain similar as the beam is transported down the beamline. A 

beam satisfying this condition is said to be “matched”. If a beam is not matched, then it 

“rotates” relative to the acceptance ellipse. When nonlinear effects are present, the resulting 

dependence of frequency on amplitude cause the beam to deform as it rotates, making it 

“wrap up” until the initially elliptical beam looks more like a spiral nebula. The beam 

therefore tends to “fill up” the machine ellipse which initially contained it, causing most 

measures of its emittance to grow. This process is called “filamentation and mixing”, and 

the result is refered to as “emittance dilution”. 

6.3.2 The Lithium Lens 

A “lithium lens” is an axisymmetric focusing device used for highly relativistic particles. It 

is essentially a solid cylinder of lithium (chosen for its low particle scattering and absorp- 

tion cross-sections) through which one drives a high-density axial current (~ MA/cm?). 

Assuming a uniform current density J,, 3 by Ampere’s law the resulting circumferential 
  

Uniform current density is physically reasonable for time-independent currents. However a lithium lens 

is almost always pulsed, in order to cope with the heating caused by the immense current-density used. 

Therefore the current-density will be non-uniform, because the magnetic field must diffuse into (out of) the 
body of the metal cylinder during the leading (trailing) edge of the pulse. The pulse is usually timed so that 

the particles to be focused pass through the lens at the moment of maximum current uniformity.
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magnetic induction is given by: 

2uT 
Bg = —J;,. 

c 

One sees that Bg, rises linearly with distance from the axis. The field is essentially confined 

to within the body of the cylinder, because one usually arranges for the return current to 

flow back along a coaxial shell surrounding the lens; this helps to minimize the inductance 

of the system. 

The vector potential producing a linearly rising Bg is: 

__%,,2_ lof)’ 
A, = eo = oz) 

where Jp is the total current through the lens, and Ro its radius. Since —A, plays the 

role of the “potential” when the evolution parameter is z, one therefore expects harmonic 

oscillator-like behavior for sufficiently small transverse momenta. 

The Lagrangian is given by: 

  

  

  

  

  

  

    

/  Cdt = fh (ear) | at 
ec R? 

= — mey c2dt? — dx? ~— dy? — dz? — £0 (=E"] ix} 

= — mey/c?t!? ~ a? —y? ce (“Ee dz (6.35) 

(6.36) 

The corresponding Hamiltonian is: 

H = - 42 ~ p2 — ph — mrt + 22 (Ft) (6.37) 

- -e--+ B (S) (6.38) 
~ —pot pei t + 1 (=e) (6.39) 

where I have eliminated p; in favor of the total momentum, 

1 po i= y/—gp? ~ mic?,
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since pp = —£ is a constant of the motion. For small transverse momenta, po ~ p;. 

For |p,| and |py| small compared to |pp{ one sees that the particle indeed executes simple 

harmonic motion in z and y as a function of z, with wave-number 

poc? R23’ 

The phase-plane orbits are therefore concentric ellipses in this approximation; particles 

progress “clockwise” about the ellipse as z increases. 

Now consider a beam striking a production target. The distribution of particles produced 

will have the same transverse dimensions as the primary beam, but the transverse momen- 

tum spread will increase. Therefore, at a production target, one desires that the momentum 

spread therefore as large as possible, (and therefore, by (6.34), that the beam be as small as 

possible), so the increase in emittance will be minimized. This occurs at what is evocatively 

known as a “waist”. At a waist, the beam also satisfies the condition (zp,) = 0, in which 

case the ellipse is said to be “upright”. When the ellipse is upright, its major and minor axes 

are aligned with the coordinate axes. One also has (zp,) = 0 when the momentum spread 

is minimized (and the beam size therfore maximized) this might be called a “momentum 

waist”, or an “antiwaist”. 

On the other hand, the maximum transverse momentum a beam transport line can accept 

is limited — generally, it is smaller than the transverse momentum spread emerging from 

the target. It is therefore necessary to transform, or “match”, the emittance of the beam 

to the acceptance of the beamline. This is the function of the lithium lens. 

First of all, one ideally desires the lens to be as close to the production target as possible 

(“minimum drift space”), so the spray of particles produced in the target will not have 

time to spread out. From (6.7), one sees that the effect of a drift is to “shear” the ellipse; 

for each particle, p, is constant in a drift, while z translates at a rate proportional to p,. 

Therefore, while a somewhat weaker and/or shorter lens can be used, it must have a larger
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diameter or particles will be lost. Furthermore, since the orbits within the lens are ellipses, 

and the area of a phase-plane ellipse is related to the emittance, a “stand off” distance puts 

the most extreme particles on orbits of larger “effective emittance” (emittance of a matched 

ellipse). Nonlinear effects will lead to filamentation and mixing, causing the beam to more 

nearly fill its effective beam ellipse; this is to be avoided. 

Finally, for a target of non-zero length, the differences in distance to the lens for particles 

produced at various points along the target results in their respective ellipses being sheared 

by varying amounts. The result is a characteristic “bow tie” or “butterfly” pattern for the 

phase-plane distribution. The longer the particles drift, the larger the phase ellipse required 

to enclose this odd shape. 

The ultimate limit, of course, would be to actually have the lens surround the target like a 

blanket. Alternatively, one can run current through the target itself [Aut83]. 

If the current is adjusted so the lens is approximately a half-wavelength long, the particles 

produced in the target will then more or less uniformly fill a phase-space ellipse in both the 

z—p, and y—p, planes. The ellipse so produced still has the same large maximum transverse 

momentum, however the maximum displacement is now on the order of a centimeter, rather 

than a millimeter or less. The aspect ratio of the ellipse is therefore much closer to that of 

the acceptance ellipse of a typical beam transport line, and hence easier to match. 

Unfortunately, practical limitations on the current-density exist, due to heating, thermome- 

chanical, or magnetomechanical effects. Practical current-densities may make such an ideal 

“half-wave transformer” impractical, because the target will have to be too long, resulting 

in too much antiproton absorbtion (targets are typically made of high-Z metals, such as 

copper, tungsten, or tungsten-rhenium alloy). This is particularly true if one is using the 

target itself as the conducting medium. 

For short targets, the ideal length is therfore approximately a quarter wavelength, since the 

momentum spread will then be a minimum; if the lens is close to linear (1.e., p, < p.), and
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surrounds the target along its full length, the ideal length works out to be: 

rN Ltarget Liens = 2 + —taraet., 
len 47 5 

Nonlinear effects will modify this, since the orbits will now be neither precisely elliptical, 

nor the wavenumber amplitude independent. 

To obtain the nondimensional form of the Hamiltonian, I choose the rescaling: 

e2=tX, y=l¥, pe=piPx, py=piPy, z=L2, 

where £ is a transverse scale length, Z is a longitudinal scale length, and p, is a transverse 

scale momentum. The Hamiltonian then becomes: 

a 

= _Pi(p24 p = = £0 won (2 . H - (42 ; ee ( 2 4 ")| +375. Bp walk +¥?), (6.40) 

An alternative parameterization is 

1 
72) p > Lpogmecly € 3 2 

HA=- ( P2 + P. + —-—-+—— xX“ +Y 6.41 
£pi j.- al * ?) Lpie po 7, Fe ). ( ) 

Here I have introduced the quantities By := Bg( Ro), the magnetic induction at r = Ro, the 

“magnetic rigidity”, 

Bp:= Pot _ 
         ax [kGauss-cm]. 

and the “Alfvén current”, 
3 

Tae oe = NTO KA 
Pel e€ 

  

(m, is the electron mass, and e the electron charge). Please note that Bp is a compound 

symbol, and should be read as a single unit; note also that it is not an independent scale, but 

is simply proportional to the momentum. The advantage of the parameterizations (6.40) 

and (6.41) is that they are manifestly dimensionless, and allow one to easily study the cases 

Bo = {const} and Ip = {const}.



116 

In my case-study I chose to use the following parameters, inspired by the FermiLab antipro- 

ton source [Peo89}: 

£=L = lcm 

pi = 1.0GeV 

Po = 8.89GeV 

Ryo = 1.0cm 

Bo = 100kGauss => Jp = 500kKA 

Ltarget = 65cm 

With the above parameters, 4/4 ~ 27.05cm. 

This problem is complicated by a distributed source of particles. I initially attempted to 

optimize the lens by dividing the target up into “slices”, integrating from each slice through 

the lens, and then tracking a swarm of particles through the lens for each slice. Since the 

Hamiltonian is independent of z in this case, J do not need to do the integrals separately, 

but can acculmulate them by “automatic composition”, t.e., restart the integral with the 

x, R, and DS obtained from the previous slice. This method proved to have much too large 

statistical fluctuations even for large numbers of particles. 

Therefore, I used “moment transport” instead. In the case of a distributed source, the 

solution to the moment transport equation becomes 

A ” A ad (PA\(ts) i= f° [ PAM (He) fst) aE at (6.42) 
1 

where f is the source term in the transport equation. 

I solved for the map as before, transporting moments through tenth order from each of ten 

“slices” to the end of the lens. I did the integral over the source via Simpson’s rule. Since the 

current HJ/DA code was intended for “proof of principle” only, I did not make provision for 

including an optimizing package. I therefore employed a “brute force” approach of simply
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stepping the length of the lens through a near 4/4, observing which subinterval had the 

minimum beam divergence (i.e., minimum (p2)), then stepping through that subinterval 

around the minimum, etc., until the minimum was located to four significant figures. 

The minimum beam divergence was found to be at Ljen, ~ (1.0826) x A/4; for comparison, 

the theoretical value for the minimum is 

» 1 
Liens = + 5 target ~ (1.0924) x A/4 = 29.549 cm. 

Therefore the effect of including nonlinearities is to make the lens about 1% shorter; the 

magnitude of this effect is consistent with the fact that the assumed transverse momentum 

is about 10% of the longitudinal momentum, and that only even powers of p, /py enter into 

the Taylor expansion of the Hamiltonian. The effects of nonlinearity are therefore fairly 

small, perhaps obviating the entire calculation. Numerical results are contained in app. E. 

Fig. F-32 gives a scatter-plot of the final z—p, phase-space distribution, together with the 

50% and 90% contours (the 14.7% contour is too small to be shown). Note that the ellipse 

has no visible “tilt” (the fitting routine gave the angle between the major axis and the X axis 

as 0.03°). Therefore the desired “upright” beam distribution has been very nearly achieved. 

The “uprightness” of the beam is confirmed by the value of (X Py) which, according to 

table E-1, appears to cross through zero somewhere quite close to the minimum value found 

for (P2); hence the beam does seem to be passing through an “antiwaist”. Despite this, 

there would appear to be a small but significant asymmetry to the scatter plot — the upper 

left and lower right “wingtips” of the butterfly seem to be slightly longer and more pointed 

than the other two. Perhaps this asymmetry represents the begining of the filamentation 

process. 

Finally, it is perhaps interesting to note that a near cancellation occurs between the con- 

tributions made by the fourth- and sixth-order moments to (P?) over the whole range 

investigated; the difference between them is comparable to the eighth order contributions. 

The tenth order effects are an order of magnitude smaller than the eighth order effects.



Chapter 7 

Conclusion 

I have presented a new method, the HJ/DA equation, for calculating the perturbative 

transfer map of an arbitrary Hamiltonian system, using the new method of Differential 

Algebra. The results of Chapter 6 demonstrate that it indeed functions as advertised: 

one needs only write a FORTRAN routine for calculating the Hamiltonian, run it through 

the DAFOR preprocessor, integrate it, and one has an implicit representation of the map 

though arbitrarily high order, which will be accurate, and exactly symplectic, except for 

the linear part (which is still quite accurate). I also presented methods based on F; and 

F, generating functions which will be exactly symplectic for the linear part as well. Using 

the tools of the DA-library, one can then convert them into whatever representation one 

desires, for use in analysis or tracking programs. I have not yet compared computational 

efficiency to competitive methods, however my experience in working with the DA-package 

vs other packages suggests that it will be comparable, and quite possibly superior. With 

the inclusion of automatic step-size and order control into the integrator, and the use of 

a symplectic integration algorithm to obtain the reference trajectory and linear transfer 

matrix, the potential for a fast, general, fully symplectic analysis program for arbitrary 

nonlinear systems, to arbitrarily high order, now appears to exist. 
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Appendix A 

Numerical Results — Drift to 12¢ 

Order 

The Hamiltonian used for this run was the “relativistic drift”. Initial conditions were as 

follows: 

é HJDAdrift: Particle in a Uniform Relativistic Drift. 

¥, no = 6 
4, nstep = 20 
4 istep = 5 
4 eps = 1.000000E-30 
4, 
i, t_i = 0.000000E+00 
4, x_i = 0.000000E+00 
% Pt_i = -2.000000E+00 ( = - Gamma0 ) 
} Px_i = 0.000000E-01 

y z_i = 0.000000E+00 
4, z_i = 1.000000E+00 
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Table A-1: Difference between Ro numer and Ro theo 

Ow ene ee ane ee ae ee wee cm nme came me Oe ne we ree re ee ee ee ee ee te ee ts ee re et ee et ee ee es a ee oe ee see es ee et oe et oe I 

1.Q000000E+00, 0.QQQ0000E+00, 1.924501E-01, 0.000000E+00 
0.000000E+00, 1.Q000000E+00, 0.000000E+00, 5.773503E-01 
0.Q000000E+00, O.QQQ000E+00, 1.Q000000E+00, 0.000000E+00 
0.Q000000E+00, 0.000000E+00, 0.O000000E+00, 1.000000E+00 

Table A-2: Numerically determined Ro 

1.QQ0Q0000E+00, 0.Q00000E+00, 1.924501E-01, 0.000000E+00 
0.Q0Q00000E+00, 1.000Q000E+00, 0.000000E+00, 5.773503E-01 
0.000000E+00, 0.Q00000E+00, 1.Q000000E+00, 0.000000E+00 
0.000000E+00, 0.000000E+00, 0.O000000E+00, 1.000000E+00 

Table A-3: Theoretically Determined Ry 

r2,numer - r2,theo 

0.QQ00000E+00, 0.Q000000E+00, 3.816392E-17, 0.Q00000E+00 
0.Q000000E+00, 0.Q000000E+00, 0.QQ0000E+00, 8.326673E-17 
0.000000E+00, 0.Q000000E+00, 0.000000E+00, 0.000000E+00 
0 .QOO000E+00, 0.000000E+00, 0.Q000000E+00, 0.000000E+00
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Table A-4: Numerical vs Theoretical DS. 
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Table A-5: Numerical vs Theoretical Dt, 

Order Exponents Diff. Frac. 

® 
T
N
 

© 
IWOe 

@ 
i
o
 

Hi 

CETTE 
B
A
H
 

eA 
kort 

Aa 

s
t
 

y
 S ® 

Hho 
W 

#4 oO 
> 

> 
eer 

a
e
 

| 
Gy 

a 
A 

@Q 

N
N
 

¥ 
0 

w
a
r
t
 

HO 

m
 

Neon 
oo 

C
o
x
 

G 
=aak 

oO 
ord 
oO 
ed 
Gq 

Gt 
@ ° 

M
r
 

EO 
O
w
 

R
e
t
 

< 
A
r
 

f
h
 tt 

seb 

3 fe fe of afc afk ake aie ae akc ae ate ake ate ake ke ale ade ai aie aie fe af afc ae oe ake ae oe ik ae afc oc oie ae abe oie af akc akc aie aie ate oe aie oft af oie fe aft ae ate af ob ie akc ae aie ofc akc kc ale af akc ic ate ate sie ale ake ate abe afk afc ate aft ke 

A 
B 
* 

0000 0 1.665335E-16 

0.Q00000E+00 0.000000E+00 1. Q00000E+00 2 
3 

O
N
T
O
 

O
T
N
O
S
 

O
o
o
o
 

O
o
o
o
 

O
N
T
O
 

L
O
O
 

O
o
o
o
 

O
O
0
°
O
 

O
N
H
O
O
 

D
O
W
N
S
 

O
O
0
0
°
O
 

O
O
O
O
 

O
N
H
O
W
 

A
M
M
 

O
O
o
o
o
0
e
 

O
o
o
o
e
o
 

es 
es 

8 
@ 

68 

so 
8 

» 
2 

8 
@ 

A
O
 

MD 
H
O
 

P
p
r
a
g
d
s
 

A
O
 
T
O
O
R
.
 

MIEN 
E
M
C
I
 
C
I
E
)



132 

Table A-6: Numerical vs Theoretical Dz, 

Order Exponents Diff. Frac. 
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Appendix B 

Numerical Results — 2DSHO 

The Hamiltonian used for this run was the “2-D simple harmonic oscillator, in polar coor- 

dinates”. Initial conditions were as follows: 

4, HJDApolrsho: Harmonic Oscillator in Polar Coordinates 

%, no = 6 
4, nstep = 30 
4 istep = 6 
4 eps = 1.000000E-30 
4 
4 R_i = 1.000000E+00 
" Theta_i = 0.000000E+00 
4, Pr_i = 1.000000E-01 
b Ptheta_i = 1.100000E+00 

vi ti = 0.000000E+00 
4 t2 = 7.500000E-01 
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Table B-1: Reference Trajectory, Matrix, and Symplecticity Error at f2 

x2 r2 

1.104536E+00; -1.095483E+00, 0.O000000E+00, 1.440921E-02, 1.585013E-01 
4.621729E+00; -9.016393E-02, 1.000000E+00, -1.435004E-01, 1.304549E-02 

-5.688529E-01; -1.133043E+00, 0.000000E+00, -8.979365E-01, 8.163059E-02 
6 .911504E+00; 0.000000E+00, 0.000000E+00, 0.O000000E+00, 1.000000E+00 

r2 * ( J r2°T J“-1) - I 

1.QQ00000E+00, 0.000000E+00, 0.000000E+00, -5.690934E-14 
-3.781697E-16, 1.Q000000E+00, 5.690934E-14, 0.000000E+00 
0.000000E+00, 0.000000E+00, 1.000000E+00, -3.799044E-16 
0.Q000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00
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EXPONENTS 

INA = 30 
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Table B-2: (cont.) DS 2 for 2D-SHO 
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Table B-3: (cont.) Numerical vs Theoretical z2 
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Table B-4: Numerical vs Theoretical yg (continue next page) 

Order Exponents Diff. Frac. 
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Table B-4: (cont.) Numerical vs Theoretical ye 
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Table B-5: (cont.) Numerical vs Theoretical pz2 
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Order Exponents 
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Table B-6: Numerical vs Theoretical p,2 (continue next page) 
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Appendix C 

Numerical Results — Uniform 

B-Field 

C.1 g= 37/4, Nstep = 30 

The Hamiltonian used for this pair of runs was the “particle in a uniform magnetic field”. 
Initial conditions for this run were as follows: 

i 
4 HJDAubfield: Particle in Uniform Magnetic Field 
4, 
4 no = 6 
4 nstep = 30 
4, istep = 5 
hk eps = 1.000000E-30 
4 
4, Ri = 1.100000E+00 
i Pr_i = 1.000000E-01 

Y btgma0 = 2.000000E+00 
4 btgma = 2.000000E+00 
4, 
j Theta/Pi = 7.500000E-01 
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Table C-1: Reference Trajectory and Matrix at 62 

ox? ccccceccccs = 12 eeccceccescececesceseecss= 
9.580246E-01 ; -7.831684E-01, 2.959188E-01 

-2.139009E-01; -1.414214E+00, -7.425064E-01 

+t ee ee 

3.330669E-16, 0.000000E+00 
0.Q00000E+00, 3.330669E-16 

Table C-2: Generating Function DS 2 for Nonlinear Part 

DS12 NO = 6, NV= 2, INA = 30 
FIG OOOO IO OIC IG GIOI SIG IOI GIO II GI ICIOI GR IOI ICI K 

I COEFFICIENT ORDER EXPONENTS 

ALL ORDER O COMPONENTS ZERO 
ALL ORDER 1 COMPONENTS ZERO 

1 1.00000000000000E+00 2 11 

2 -1.19902474675693E-01 3 3 0 
3 ~1.88857659591831E-01 3 21 
4 ~-9.91561841765567E-02 3 1 2 
5 -5.91767734245905E-02 3 03 

6 2.70873076393160E-02 4 40 
7 §5&.68867383178616E-02 4 3 1 
8 4.48009780014250E-02 4 22 
9 1.56812774078993E-02 4 1 3 

10 1.27213614476274E-03 4 0 4 

11 -1.72558379916914E-02 5 5 9 
12 -4.52992760188530E-02 65 41 
13 -4.75670763441395E-02 5 3 2 
14 -2.49742043447617E-02 5 23 
15 -6.55611959563663E-03 5 1 4 
16 -2.28044523482362E-03 5 05 

17 §©9.71743155865738E-03 6 6 0 
18  3.06117348516066E-02 6 5 1 
19 4.01802980280223E-02 6 42 
20 2.81278859443401E-02 6 3 3 
21 1.10760155765804E-02 6 24 
22 2.32610198141271E-03 6 1 5 
23 1.04454375976331E-04 6 0 6
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Table C-3: Comparison of Orbit Center Coordinates z., and z.2 

Order Exponents Diff. Frac. 

-9.341486E-16 -9.341486E-15 
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C.2 @= 27, Nstep = 80 

Initial conditions for this second run were as follows: 

4 
4 HJDAubfield: Particle in Uniform Magnetic Field 
4, 

i, no = 6 
4 nstep = 80 
4 istep = 5 
4 eps = 1.000000E-30 
4, 

ih Ri = 1.100000E+00 
i Pr_i = 1.Q00000E-01 

Y btgma0 = 2.000000E+00 
4 btgma = 2.000000E+00 
4 
i Theta/Pi = 2.000000E+00 

Table C-5: Reference Trajectory and Matrix at 02 

wee eecececescs = te ececneccecescescescescecs 
1.100000E+00;  1.000000E+00, 1.037240E-15 
1.Q00000E-01; -4.460940E-15, 1.000000E+00 

_Symplecticity check: r2 * ( J r2°T J7-1) - I 
6.106227E-16, 0.Q0Q00000E+00 
0.Q00000E+00, 6.106227E-16
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Table C-6: Generating Function DSi. for Nonlinear Part 

DS12 NO = 6, NV= 2, INA = 30 
FOO DIS GOI IOIIO IOI ROG IG IG IOI I ii i i iG Kk ak aK 

I COEFFICIENT ORDER EXPONENTS 

ALL ORDER = 0 COMPONENTS ZERO 
ALL ORDER = i COMPONENTS ZERO 

1 1.00000000000000E+00 2 11 

2 -9.73649630983299E-17 3 3 0 
3 -2194156275898013F-16 3 21 
4 -6.84970263060207E-16 3 12 
5 ~-2:132089625640220F-16 3 03 

6 1.03538494485060E-16 4 40 
7  2131273081086090F-17 4 31 
8  4:79044082980069E-17 4 2 2 
9 -§.76525073441647E-17 4 13 

10 ~2:84399772180143E-17 4 04 

11 5.40183941875706E-17 5 5 0 
12 -6.39739683078226E-17 5 41 
13 4°81378310947689E-18 5 3 3 
14 -2:28971268059336E-17 5 2 3 
15 -2:08236528802238E-17 5 1 4 
16 -1.59992295904328E-17 5 05 

17 ~-7.40507241315178E-16 6 6 0 
18 -3.00826260165498E-16 6 5 1 
19 -3.84638519297185E-16 6 4 3 
20 -1:59277776986345E-16 6 3 3 
91 -1.:48979394264212E-18 6 24 
22 -2133887665519119E-17 6 15 
23. 6.15458737494442F-18 6 06 

Table C-7: Comparison of Orbit Center Coordinates z.; and 2.2 

A = XCi NO = 6, NV = 2, ina = 47 
B = XC2 NO = 6, NV = 2, inb = 49 
me i a JOO OOO OOOO ISOC IG AION GIG IGIOI IOI I IO IOI I iO OI IOI OI I IGIOIOI OI I i Ra OI OI IOI kfc tok i 

I A Coefficient B Coefficient Difference Frac. Diff. Order Exponents 

1 5.000000E-02 5.Q00000E-02 -7.832276E-16 -7.832276E-15 0 00 

2 ~2.253355E-15 1 0 
3 5.Q000000E-01 5.0Q00000E-01 3.816392E-16 3.816392E-16 i o1 

4 -1.460474E-16 2 20 

5 2.070770E-16 3. 30 

6 1.350460E-16 4 40 

7 -2.221522E-15 5 50
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Table C-8: Comparison of Orbit Center Coordinates y., and yx2 

Order Exponents Diff. Frac. 

1.344411E-15 6.639014E-15 
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Appendix D 

Numerical Results — 

Convergence Study 

The Hamiltonian used for this series of runs was the “particle in a uniform magnetic field”. 
Initial conditions were as follows: 

4 no = 6 
4 nstep = 8--128 
4 istep = 2--6 
4 eps = 1.000000E-30 
4 
4 R_i = 1.100000E+00 
i Pr_i = 1.000000E-01 

¥ btgma0 = 2.000000E+00 
h btgma = 2.000000E+00 
4, 
% Theta/Pi = 7.500000E-01 
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Table D-1: Matrix Max-Norm of Symplecticity Error 

| Istep 
Netep | 2 3 4 5 6 

8 4.3255E-05 1.4004E-07 3.8900E-09 2.5965E-11 1.0636E-13 
16 1.7103E-06 5.6948E-11 6.3016E-12 1.2795E-14 5.8287E-16 

1.7545E-09 2.2787E-14 6.1062E-16 8.0491E-16 5.8287E-16 

| 
| 

32 | 5.5742E-08 2.4746E-12 1.2185E-14 1.1102E-16 5.4123E-16 

| 5.4844E-11 1.1380E-15 1.6098E-15 5.5511E-16 4.5797E-16
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Table D-2: One-Norm of Error Measure — All Orders 

Istep 
Nstep | 2 3 4 5 6 

8 | 8.7363E-05 1.1586E-06 8.2371E-09 3.6458E-11 1.8395E-13 
16 | 4.7546E-06 1.6343E-08 3.0054E-11 3.2756E-14 1.5609E-16 
32 | 2.7570E-07 2.3849F-10 1.1050E-13 1.0717E-16 2.2938E-16 
64 | 1.6593E-08 3.5820E-12 4.1035E-16 1.3580E-16 1.6327E-16 

128 | 1.0212E-09 5.4930E-14 1.9134E-16 1.0803E-16 3.4782E-16 

Table D-3: Max-Norm of Error Measure — All Orders 

Cp Tstep 
Nstep | 2 3 4 5 6 

8 | 9.6068E-04 8.1473E-06 6.2660E-08 3.5457E-10 1.5664E-12 
16 | 5.7081E-05 1.2726E-07 3.1962E-10 4.4822E-13 1.4303E-15 
32 | 3.4779E-06 1.9798E-09 1.3288E-12 9.2981E-16 2.8987E-15 
64 | 2.1476E-07 3.0897E-11 5.2358E-15 8.5348E-16 1.2598E-15 

128 | 1.3345E-08 4.8369E-13 1.6445E-15 1.1657E-15 3.8008E-15 

Table D-4: One-Norm of Error Measure — Zeroth Order 

EE TIstep 
Nstep | 2 3 4 5 6 

8 | 1.4585E-04 1.2221F-06 5.6287E-09 1.4608E-11 1.2657E-14 
16 | 8.6334E-06 1.9119E-08 2.3363E-11 1.7544E-14 2.0010E-15 
32 | 5.2445E-07 2.9721E-10 9.3363E-14 1.0339E-15 3.2196E-15 
64 | 3.2331E-08 4.6308E-12 7.5981E-16 4.7184E-16 3.1572E-16 

128 | 2.0073E-09 7.2026E-14 8.4394E-16 1.3548E-15 4.5198E-15 

Table D-5: Max-Norm of Error Measure — Zeroth Order 

Tstep 
Nstep | 2 3 4 5 6 

8 | 9.5403E-05 8.1925E-07 3.8990E-09 1.0734E-11 1.1559E-14 
16 | 5.6817E-06 1.2722E-08 1.5789E-11 1.2055E-14 1.4303E-15 
32 3.4703E-07 1.9768E-10 6.2488E-14 9.2981E-16 2.8987E-15 
64 2.1460E-08 3.0803E-12 6.5573E-16 3.7990E-16 2.0817E-16 

128 | 1.3345E-09 4.7467E-14 6.2884E-16 1.1657E-15 3.8008E-15
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Table D-6: One-Norm of Error Measure — First Order 

| 3.7734E-04 3.1842E-06 1.5105E-08 4.3018E-11 5.2152E-14 
| 2.2348E-05 4.9804E-08 6.1246E-11 4.3498E-14 6.0878E-16 

32 | 1.3581E-06 7.7435E-10 2.4480E-13 2.6617E-16 5.6997E-16 
| 8.3744E-08 1.2067E-11 9.2797E-16 4.4506E-16 6.0119E-16 
| 5.2001E-09 1.8899E-13 9.8109E-16 4.2425E-16 1.4972E-15 

Table D-7: Max-Norm of Error Measure — First Order 

i Istep 
Nstep | 2 3 4 5 6 

8 | 9.6068E-04 8.1473E-06 3.8140E-08 1.0202E-10 9.0504E-14 
16 | 5.7081E-05 1.2726E-07 1.5692E-10 1.0947E-13 1.0270E-15 
32 | 3.4779E-06 1.9798E-09 6.2583E-13 4.1937E-16 7.3552E-16 
64 | 2.1476E-07 3.0865E-11 2.1649E-15 8.5348E-16 1.2598E-15 

128 | 1.3345E-08 4.8304E-13 1.6445E-15 7.2858E-16 1.7907E-15 

Table D-8: One-Norm of Error Measure — Second Order 

| Istep 
Nstep | 2 3 4 5 6 

8 | 7.6389E-05 6.5523E-07 3.1885E-09 1.0963E-11 3.8708E-14 
16 | 4.5539E-06 1.0307E-08 1.2915E-11 9.2793E-15 2.5349E-16 
32 | 2.7806E-07 1.6094E-10 5.1824E-14 1.6032E-16 2.3383E-16 
64 | 1.7191E-08 2.5138E-12 1.4369E-16 1.8887E-16 3.6133E-16 

128 | 1.0690E-09 3.9403E-14 2.9714E-16 2.6202E-16 6.5992E-16 

Table D-9: Max-Norm of Error Measure — Second Order 

ee ee ae ee tees ee ce tee ee ce teeter cee ec see ee ee ee eee ee ee ee ee ee ee ee ee ee ee ee ee 

ea ee ree ee ee ey ee re ee ec eee ee we eee ee ee es ee we ee ce ee ee ee ee ee ee ee ee ee ee ee 

| 1.7013E-04 1.5262E-06 7.9260E-09 2.5574E-11 8.0630E-14 
| 9.9042E-06 2.2670E-08 2.9305E-11 2.2067E-14 8.5522E-16 

32 | 5.9660E-07 3.4293E-10 1.1024E-13 5.1695E-16 7.6848E-16 
| 3.6610E-08 5.2672E-12 3.3307E-16 6.9389E-16 9.5757E-16 
| 2.2675E-09 8.2092E-14 4.7184E-16 5.2042E-16 1.7087E-15
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Table D-10: One-Norm of Error Measure — Third Order 

| Istep 
Nstep | 2 3 4 5 6 

8 | 8.2636E-05 9.6916E-07 6. 0277E- 09 2.3532E-11 6.0571E-14 
16 | 5.2976E-06 1.6329E-08 2.6309E-11 2.6570E-14 6.4239E-17 
32 | 3.3389E-07 2.6025E-10 1.0578E-13 8.4093E-17 2.2602E-16 
64 | 2.0941E-08 4.0932E-12 4.1068E-16 1.3799E-16 1.2640E-16 

128 | 1.3110E-09 6.4109E-14 1.2097E-16 7.2398E-17 2.1489E-16 

Table D-11: Max-Norm of Error Measure — Third Order 

| Istep 
Nstep | 2 3 4 5 6 

8 | 2.7359E-04 3.2444E-06 1.9296E-08 7.0275E-11 1.6394E-13 
16 | 1.7174E-05 5.2564E-08 7.9429E-11 7.2648E-14 3.0791E-16 
32 | 1.0755E-06 8.2593E-10 3.1176E-13 2.9837E-16 9.4933E-16 
64 6.7299E-08 1.2907E-11 1.1800E-15 5.4904E-16 2.7409E-16 

128 4.2091E-09 2.0139E-13 2.4199E-16 1.6567E-16 5.5077E-16 

Table D-12: One-Norm of Error Measure — Fourth Order 

pe Istep s—SsSSSS 
Nstep | 2 3 4 5 6 

8 | 7.2452E-05 9.7214E-07 6.2704E-09 2.6137E-11 1.7642E-13 
16 | 3.4235E-06 1.1909E-08 1.9725E-11 1.9272E-14 7.5881E-1i7 
32 | 1.8891E-07 1.6773E-10 7.1463E-14 5.9848E-17 1.9396E-16 
64 | 1.1062E-08 2.4733E-12 2.7637E-16 1.3751E-16 1.4704E-16 

128 | 6.9157E-10 3.7498E-14 1.5688E-16 3.5592E-17 1.5850E-16 

Table D-13: Max-Norm of Error Measure — Fourth Order 

| 1.7701E-04 2.7549E-06 2.0074E-08 8.9340E-11 4.7668E-13 
[| 1.1032E-05 4.0305E-08 7.1566E-11 8.9522E-14 3.6299E-16 

32 | 7.1724E-07 6.5739E-10 2.9129E-13 2.7886E-16 7.4116E-16 
| 4.5839E-08 1.0501E-11 1.1848E-15 4.9570E-16 5.8200E-16 
| 2.8984E-09 1.6574E-13 3.4261EF-16 8.1532E-17 4.6491E-16
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Table D-14: One-Norm of Error Measure — Fifth Order 

| Istep 
Nstep | 2 3 4 5 6 

8 1.1610E-04 2.4595E-06 2.2098E-08 1.1163E-10 6.3326E-13 
16 5.3578E-06 3.2108E-08 7.7456E-11 9.8486E-14 1.2593E-16 

| 
| 

32 | 2.7116E-07 4.3630E-10 2.7031E-13 1.3913E-16 1.8295E-16 

| 
64 1.5052E-08 6.2609EF-12 9.6639E-16 1.4506E-16 1.4773E-16 

128 8.8032E-10 9.3651E-14 1.3560E-16 4.0867E-17 1.4217E-16 

Table D-15: Max-Norm of Error Measure — Fifth Order 

tap 
Nstep | 2 3 4 5 6 

8 4.2670E-04 7.4183E-06 6.2660E-08 3.5457E-10 1.5664E-12 
16 1.6992E-05 1.1878E-07 3.1962E-10 4.4822E-13 4.2848E-16 

5.9088E-08 3.0897E-11 5.2358E-15 5.1174E-16 5.0307E-16 

| 
| 

32 | 9.5011E-07 1.9561E-09 1.3288E-12 5.9436E-16 7 .8475E-16 

| 3.6685E-09 4.8369E-13 4.0853E-16 1.0755E-16 5.1088E-16
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Table E-1: Contributions to 02(3,3) := (P%.) made by each order. Columns labeled by Ord 

give order of contribution. Rows labeled by Tot give total contribution to o(3,3) summed 

through order Ord. Rows labeled by Inc give incremental contribution to o(3,3) made by 

order Ord. 

For comparison, the value of o2(1,3) := (X2Px,2) is also given; note that o{1,3) changes 

sign, as it should, as o(3,3) passes through the minimum near Lien, ~ (1.0826) Lo, where 

= A/4, 
LLens = 29.2794 (LLens/LO) = 1.08244 
Sigma_2(3,3) = 41,068445E-02 Sigma_2(1,3) = §.140557E-04 

Ord | 2 4 6 8 10 
> ee ee ee ee ee ee ee ee ee ee ee ee oe ee ee oe ee ee ee ee oe ee ee ee ge ee ee Oe ee Oe EF om ae Oe ee ee ee OD Os ee ee oe oe oe ee a 

Tot | 1.068086E-02 1.034107E-02 1.065238E-02 1.068151E-02 1.068445E-02 
Inc | 1.068086E-02 -3.397882E-04 3.113170E-04 2.912617E-05 2.942961E-06 

LLens = 29.2815 (LLens/LO) = 1.08252 
Sigma_2(3,3) = 1.068440E-02 Sigma_2(1,3) = 2.724777E-04 
Ord | 2 4 6 8 10 
SSSSVSFS SS VV SST ISS SS SSS SSS SSS SSS SSS SSS SSS STS STS SST SSS SS SS SSS SSSSS2ESE=2E=2eE2=2E=2S2=zSeze= 

Tot | 1.067701E-02 1.034085E-02 1.065232E-02 1.068146E-02 1.068440E-02 
Inc | 1.067701E-02 -3.361656E-04 3.114788E-04 2.913545E-05 2.943701E-06 

LLens = 29.2837 (LLens/LO) = 1.08260 
Sigma_2(3,3) = 1.068438E-02 Sigma_2(1,3) = 3.089970E-05 

Ord | 2 4 6 8 10 
8 ee ee e888 S22 BITE SESE SS 8 SS 8 SS ee 8 8 ie eS 8 i Se ee ee ee ee ee a St a ee Oe SE a ee a ae ee ae ee ee ee 

Tot | 1.067320E-02 1.034065E-02 1.065229E-02 1.068144E-02 1.068438E-02 
Inc | 1.067320E-02 -3.325426E-04 3.116407E-04 2.914474E-05 2.944438E-06 

LLens = 29.2859 (LLens/LO) = 1.08268 
Sigma_2(3,3) = 1.068439E-02 Sigma_2(1,3) = -2.106783E-04 

Ord | 2 4 6 8 10 

Tot | 1.066941E-02 1.034049E-02 1.065230E-02 1.068145E-02 1.068439E-02 _ 
Inc | 1.066941E-02 -3.289191E-04 3.118026E-04 2.915402E-05 2.945178E-06 

LLens = 29.2880 (LLens/LO) = 1.08276 
Sigma_2(3,3) = 1.068444E-02 Sigma_2(1,3) = -4.522563E-04 

Ord | 2 4 6 8 10 

ToT | 1.066566E-02 1.034036E-02 1.065233E-02 1.068149E-02 1.068444E-02 _ 
Inc | 1.066566E-02 -3.252952E-04 3.119644E-04 2.916330E-05 2.945918E-06
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Ro- 

  

      
Figure F-1: Geometry for uniform magnetic field test problem. Note: 6 is measured clock- 

wise, a; and a2 are measured counterclockwise.
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Symplecticity Lrror vs Nstep 
Matrix Max—Norm 
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Figure F-2: Symplecticity Error vs Nstep 
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Figure F-3: Symplecticity Error vs Istep 
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Error Measure vs Nstep 
i-Norm, All Orders 
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Figure F-4: 1-Norm of Error Measure vs Nstep (All Orders). 

Error Measure vs Nstep 
Max—Norm, Al) Orders 

  

      
Log 

| 

_ 

_ }— 

-? 

10 1 T T T 
4 8 16 a2 64 128 206 

Nstep 

Figure F-5: Max-Norm of Error Measure vs Nstep (All Orders). 
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Error Measure vs Nstep 
1-Norm, Zeroth Order 
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Figure F-6: 1-Norm of Error Measure vs Nstep (Zeroth Order). 
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Figure F-7: Max-Norm of Error Measure vs Nstep (Zeroth Order). 
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Frror Measure vs Nstep 
{-Norm, First Order 

| 1 Le L 

  10° 

t- O: Istep 
~6 

4 

| NN - 9: Istep 
7 a 

am r- 4: Istep 

107° + L 

4 r a: [step 

197"! _ _ 

7 NN *: [step 
“15 

-17 

10 

J / l       10 ~7 T ~ T T 
4 8 18 32 64 128 256 

Nstep 

Figure F-8: 1-Norm of Error Measure vs Nstep (First Order). 
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Figure F-9: Max-Norm of Error Measure vs Nstep (First Order). 
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Error Measure vs _ Nstep 
Max—Norm, Second Order 
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Figure F-10: 1-Norm of Error Measure vs Nstep (Second Order). 
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Figure F-11: Max-Norm of Error Measure vs Nstep (Second Order). 
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Frror Measure vs Nstep 
1—Norm, Third Order 
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Figure F-12: 1-Norm of Error Measure vs Nstep (Third Order). 
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Figure F-13: Max-Norm of Error Measure vs Nstep (Third Order). 
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Frror Measure vs Nstep 
1—-Norm, Fourth Order 
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Figure F-14: 1-Norm of Error Measure vs Nstep (Fourth Order). 
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Max-Norm of Error Measure vs Nstep (Fourth Order). 
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Error Measure vs Nstep 
1—-Norm, Fifth Order 
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Figure F-16: 1-Norm of Error Measure vs Nstep (Fifth Order). 
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Figure F-17: Max-Norm of Error Measure vs Nstep (Fifth Order). 
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Error Measure vs Istep 
1—Norm, All Orders 
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Figure F-18: 1-Norm of Error Measure vs Istep (All Orders). 

Error Measure vs_ Istep 
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Figure F-19: Max-Norm of Error Measure vs Istep (All Orders). 
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Error Measure vs Istep 
i1—Norm, All Orders 
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Figure F-20: 1-Norm of Error Measure vs Istep (ALL Orders). 
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Figure F-21: Max-Norm of Error Measure vs Istep (All Orders).
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Frror Measure vs_ [step 
1-—Norm, First Order 
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Figure F-22: 1-Norm of Error Measure vs Istep (First Order). 
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Figure F-23: Max-Norm of Error Measure vs Istep (First Order). 
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Krror Measure vs Istep 
i—Norm, Second Order 
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Figure F-24: 1-Norm of Error Measure vs Istep (Second Order). 
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Figure F-25: Max-Norm of Error Measure vs Istep (Second Order).
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Error Measure vs_ Istep 
1—Norm, Third Order 
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Figure F-26: 1-Norm of Error Measure vs Istep (Third Order). 
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Figure F-27: Max-Norm of Error Measure vs Istep (Third Order).
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Error Measure vs Istep 
1—~Norm, Fourth Order 
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Figure F-28: 1-Norm of Error Measure vs Istep (Fourth Order). 
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Figure F-29: Max-Norm of Error Measure vs Istep (Fourth Order)



Er
ro
r 

Er
ro
r 

175 

Error Measure vs Istep 
i1—Norm, Fifth Order 
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Figure F-30: 1-Norm of Error Measure vs Istep (Fifth Order). 
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Figure F-31: Max-Norm of Error Measure vs Istep (Fifth Order).
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Contours show 50% and Figure F-32: Scatter-plot of z vs p, for optimized lithium lens. 
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Appendix G 

FORTRAN Code 

G.1 Master Modules 

G.1.1 HJDAdrift 

PROGRAM HJDAdrift 
PARAMETER ( no=12, nd=2) 
EXTERNAL drift 

* 

Ce st rr ee Steinar teres str Sse sees rere Sisters seers s Sees sssss rss rsssssesrs= 

x 
CALL daini( no, (nd*2), (-10) ) 
CALL HJDAdrive( drift ) 

STOP 
P END 

177
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COO IC OOO IOI IOI IORI iO i OIG I ii IOI IO EEG IOI iO IC ICICI Ci i foie aici ake ke kok ak aie ac aie ak ake ate ae aie 
* 

SUBROUTINE HJDAdrive( hmltn ) 
IMPLICIT NONE 

INTEGER no, nd, nv, nstep, istep 

PARAMETER ( no=1i2, nd=2, nv=nd*2, nstep=20, istep=4 ) 
DOUBLE PRECISION zero, one, two, four 

PARAMETER ( zero=0.0d0, one=1.0d0, two=2.0d0, four=4.0d0) 

INTEGER i, j 

DOUBLE PRECISION z, gamma0, beta0, bgma0 

DOUBLE PRECISION zi, xi(mv), ri(nv,nv) 
DOUBLE PRECISION z2, x2(nv), r2(nv,nv) 

DOUBLE PRECISION x0, ri(nv,nv), temp(nv,nv) 

DOUBLE PRECISION f(nv), a(nv,nv) 

EXTERNAL hmitn 

INTEGER lxt, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8 
INTEGER isala, isa2a, isa3a 

*DAINT(no,nv) DSO, DS12 
*DAINT(no,nv) Dx(nv), Dy, Dz(nv) 

*DAINT (no,nv) Dxi(nv), Dx2(nv) 
*DAINT(no,nv) Dtci, Dxci, Dpti1, Dpxi 
*DAINT (no ,nv) Dtc2, Dxc2, Dpt2, Dpx2 
*DAINT (no ,nv) Ttc2, Txc2, Tpt2, Tpx2 
*DAINT (no ,nv) Dh, Dpz, Tst(nv), GS, DStheo, Diff 
* 
CSE SSSS esse Serre re sr ese Sees ar eS SS Se SSSS SSeS TSS SS SS SSS SSSeeeserses2ss2ss 
* 

CALL daeps (1 .0d-30) 

zl = ZERO 
zZ2 = ONE 
z =2z2- zl 

gammaO = TWO 
betaO = sqrt( ONE - ONE/gamma0/gamma0 ) 
bgmaO = sqrt( gamma0*gammaO - ONE ) 

KIRM SAMAR SASS HSS See See ST SSeS HST SS TS SST SST Sess Sess Ss sss sss sess ssa== 

CALL HJDXident( no,nv,nd,nv, Dz, x1,r1,Ds0) 

xi(i) = ZERO 
xi(2) = ZERO 
x1(3) = - gamma0d 
x1(4) = ZERO 

CALL HJDAbsint( zi, xi,ri,DSO, 22, x2,r2,DS12, Dz,Dx, 

& no,nv,nd,nv, nstep,istep, hmlitn) 

RESUS MSSSSEK SSS SSS S SSS STS ASS SSS SPSS KS SS SS SSSss Sess sss SsSsesss2rss2sse2== 

CALL HJDAderiv( 22, x2,r2,DS12, f,a,Gs, no,nv,nd,nv, Dz,Dx2, hmltn) 

*DA DStheo = DSO + z*Gs 
*DA Diff = DSi2 - DStheo
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ee SSE SS SS SSS SSS SST SS TST TSS SSVI SVA TS SS SHS ASS SSS SSS sSSssSssesssesez= 

CALL danot(no-1) 

CALL HJDX1( x1,r1,DS12, no,nv,nd,nv, Dz, Dx1) 
CALL HJDX2( x2,r2,DS12, no,nv,nd,nv, Dz, Dx2) 

*DA Dtci = Dxi(1) 
*DA Dxcl = Dxi(2) 
*DA Dpti = Dxi(3) 
*DA Dpxi = Dxi(4) 

*DA Dtc2 = Dx2(1) 
*DA Dxc2 = Dx2(2) 
*DA Dpt2 = Dx2(3) 
*DA Dpx2 = Dx2(4) 

CALL drift( z2, Dx2, no,nv,nd, Dh) 

*DA Dpz = zero - Dh 
CALL dapri( Dpz, 10 ) 

*DA Ttc2 = Dtci - Dpti/Dpz 
*DA Txc2 = Dxci + Dpxi/Dpz 
*DA  Tpt2 = Dpti 
*DA Tpx2 = Dpxi 

we 

SSR SMS SS HS SSS SSA SHS SST SS SS SSS SS SSS SSAA ASS SS SS SST SSS STS SSS SsSssSSSS=5=z= 

WRITE( 10, ’(thi)’) 
WRITE( 10, ’(a)’ ) ’ xi; ri’ 

DO i=i,nv 
WRITE( 10, 2001) x1(i), (ri(i,j), j=i,nv) 

END DO 
WRITE( 10, *) 

WRITE( 10, ’{a)’ ) ? x2; _r2? 
DO i=1t,nv 

WRITE( 10, 2001) x2(i), (r2(i,j), j=i,nv) 
END DO 

WRITE( 10, *) 

CALL sympinv( r2,nv, ri,nv, nd) 
CALL mmmul( r2,nv, ri,nv, temp,nv, nv) 

DO i=i,nv 

temp(i,i) = temp(i,i) - ONE 
END DO 

WRITE( 10, ’(a)’) 
& > Symplecticity check: r2 * ( J r2°T J*-1) - I’ 
DO i=1i,nv 

WRITE( 10, 2002) (temp(i,j), j=i,nv) 
END DO
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DO j=i,nv 
DO iti,nv 

temp(i,j) = ZERO 
END DO 

temp(j,j) = ONE 
END DO 

temp(1,3) = z/bgma0/bgma0/bgma0 
temp(2,4) = z/beta0/gamma0 

WRITE( 10, ’(1x)’) 
DO i=i,nv 

WRITE( 10, 2002) ( temp(i,j), j=i,nv) 
END DO 

WRITE( 10, ’(1x)’) 
DO i=i,nv 

WRITE( 10, 2002) ( (R2(i,j)-temp(i,j)), j=i,nv) 
END DO 

WRITE( 10, ’(ih1)’) 
CALL mypri( DS12, DStheo, 10) 

WRITE( 10, ’(i1h1)’) 
CALL mypri( Dtc2, Ttc2, 10) 

WRITE( 10, ’(1ih1)’) 
CALL mypri( Dxc2, Txc2, 10) 

WRITE( 10, ’(1h1)’) 
CALL mypri( Dpt2, Tpt2, 10) 

WRITE( 10, ’(ih1)’) 
CALL mypri( Dpx2, Tpx2, 10) 

* 
* 

2001 FORMAT(ix, 1pei5.8, ’; ’, ipei5.8, 4(’, ’, ipei5.8)) 
2002 FORMAT(1x, 15x, 3x, ipel5.8, 4(’, ’, ipei5.8)) 

x 

RETURN 
END 

* 

Coda io iokkkekoiotoioiotkdototeae Em Qf FaLeg te ote teak oie ake ote oie ate te ote ote ake ike ie ak RR ai i FOR i oe i ke
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G.1.2 HJDApolrsho 

PROGRAM HJDApolrsho 
PARAMETER ( nd=2 
EXTERNAL polrsho 

re ome me ee ee me ee Se ee ee sie ee ee ee ee ee ee oe ee eS ee ee eee ee ee eS ae ee Se Oe On oe ey ae Oe See Oe ee oe ane ey Se en oem Went Sm Oe se ee me ee ee et 

WRITE( ¥*, (x, 1th no = , $)’) 
READ ( *,’(i10)’) no 

CALL daini( no, (nd¥*2), (-10) ) 
CALL HJDAdrive( no, polrsho) 

STOP 
END 

CORR Rk OR OR Ori IIIa i IIR RIC ak Ok akc ai ai aie ak aie a ake ac ake ie aie aie 2c oie ai 2 aie te ic ae ke fe ake aft oie ake fe ake akc aie aie ake ake ake ake ake a ake ake ae ae fe ake ake 
* 

SUBROUTINE HJDAdrive( no, hmitn) 
IMPLICIT NONE 

INTEGER no, nd, nv, nstep, istep 

PARAMETER ( nd=2, nv=nd*2) 
DOUBLE PRECISION zero, one, two, four 

PARAMETER ( zero=0.0d0, one=1.0d0, two=2.0d0, four=4.0d0) 

DOUBLE PRECISION eps 

INTEGER i, j 
DOUBLE PRECISION ti, xi€ nv), ri(€ nv, nv) 

DOUBLE PRECISION t2, x2( nv), r2( nv, nv) 

DOUBLE PRECISION x0, ri(€ nv, nv), temp( nv, nv) 

DOUBLE PRECISION R_i, Theta_i, Pr_i, Ptheta_i 
DOUBLE PRECISION ct, st 

DOUBLE PRECISION pi, pi2, w 
COMMON pi, pi2, w 

EXTERNAL hmltn 

INTEGER ixi, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8, 1x9 
INTEGER isaia, isa2a, isa3a 

*DAINT(no,nv) DsO, Dsi2 
*DAINT (no ,nv) Dz(nv), Dx (nv) 
*DAINT (no, nv) Dxi(nv), Dx2(nv) 
*DAINT (no ,nv) Dri, Dthi, Dpri, Dpti 
*DAINT(no,nv) Dr2, Dth2, Dpr2, Dpt2 
*DAINT(no,nv) Dxc1, Dpxi, Dyci, Dpy1 
*DAINT(no,nv) Dxc2, Dpx2, Dyc2, Dpy2 
*DAINT(no,nv) Txc2, Tpx2, Tyc2, Tpy2 
*DAINT(no,nv) Tst( nv)
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ane ee eee ee a ee ee ee ee ee ee ee ee ee ee ee ee es ee ee re 0 re ee se ee es we ee ee ee oe ee ee oe oe ee Se ee ee See ee eee eas ae ae ee eet et Oe ee ee ee ee ee ee a ee a ee a a SS Oe Se OT OT SO eS ae a ee a a a 

pi = FOUR * atan( ONE) 
pi2 = TWO * pi 
w = pi2 

tl = zero 
t2 = 2.0d0 / 3.0d0 

WRITE( 10, ’(/a/)’) 
& > HJDApolrsho: Harmonic Oscillator in Polar Coordinates ’ 

write( 10, ’(x, 1tih no = , i4)’) no 

write( *, *(x, 1th nstep = , $)’) 
read ( *,’(i10)’) nstep 
write( 10, (x, 11h nstep = , i4)’) nstep 

write( *, (x, ih istep = , $)’) 
read ( *,’(i10)’) istep 
write( 10, *(x, 1ih istep = , i4)’) istep 

write( *, *{x, 1ih eps = , $)’) 
read ( *,’(ipe20.10)’) eps 
write( 10, ’(x, 11h eps = , ipel3.6)’) eps 
CALL daeps( eps) 

write( *, (x, 1ih Ri= , $)’) 
read ( *,’(1pe20.10)’) R_i 
write( 10, (x, 1ih R_i = , 1pe13.6)’) Ri 

write( *, *(x, 1ih Pr.i= , $)’) 
read ( * ;? (1pe20. 10)’) Pr_i 
write( 10, (x, 1th Pr_i= , 1pei3.6)’) Pri 

write( *, ’(x, 1LihPtheta_i = , $)’) 
read ( * ;? (1pe20. 10)’) Ptheta_i 
write( 10, (x, LihPtheta_i = , 1pe13.6)’) Ptheta_i 

write( 10, (x, 11h ti = , 1pei3.6)’) t1 
write( 10, (x, 11h t2 = , 1pe13.6)’) t2 

Theta_i = ZERO . 
ri = Pri * woe Ri ; 

Ptheta_i = Ptheta_i * w* Ri * Ri 

CALL HJDXident( no,nv,nd,nv, Dz, xi,ri,Ds0) 

xi(i) = Ri 
x1(2) = Theta_i 
x1(3) = Pri 
xi(4) = Ptheta_i 

ee ee ee ee ee we ee et me oe ee oe om Oe 0m oe ee et re Oe et re ee Oe ee Se ee ee ee ee ee ee ee Se ee es en Oe a ee ee ee oe oe 0 Se eee ee Se ee ae Se Oe ae ee ee Se ee ee eet ee es es eS ee ee ee Se ee a ee ee ee ee ee ee ee Se a oe a oe a ae na a oe 

CALL HJDAbsint( ti, xi,ri,Ds0, t2, x2,r2,Ds1i2, 
& Dz,Dx, no,nv,nd,nd,nd*2, nstep,istep, hmltn) 

ee ce ee ee ee a ee ne oe re ee ee Oe ee we ce ee ee ee ee ee ee ee ee en et ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee es es a
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* 

CALL danot (no-1) 

CALL HJDX1( x1i,ri,DS12, no,nv,nd,nv, Dz, Dx1i) 
. CALL HJDX2( x2,r2,DS12, no,nv,nd,nv, Dz, Dx2) 

KER SP SSS SSS SSS SSS SS SSS STS SS SSS SSS SSS TSS SSS SSS SS SSS SSA SS SSS SSS SSS SsSSsS SE 

* 

st = sin(w*(t2-t1)) 
ct = cos(w*(t2-t1)) 

*DA Dri = Dxi(1) 
*DA Dthi = Dxi(2) 
*DA Dpri = Dx1i(3) 
*DA Dpti = Dxi(4) 

*DA Dxcit = Dri * cos( Dth1) 
*DA Dyci = Dri * sin( Dtht) 
*DA Dpxi = Dpri * cos( Dthi) - Dpti * sin( Dthi) / Dri 
*DA  Dpyi = Dpri * sin( Dthi) + Dpti * cos( Dthi) / Dri 

*DA Dr2 = Dx2(1) 
*DA Dth2 = Dx2(2) 
*DA  Dpr2 = Dx2(3) 
*DA  Dpt2 = Dx2(4) 
*DA Dxc2 = Dr2 * cos( Dth2) 
*DA Dyc2 = Dr2 * sin( Dth2) 
*DA Dpx2 = Dpr2 * cos( Dth2) - Dpt2 * sin( Dth2) / Dr2 
*DA Dpy2 = Dpr2 * sin( Dth2) + Dpt2 * cos( Dth2) / Dr2 

*DA Txc2 = Dxcixct + Dpxi*st/w 
*DA Tyc2 = Dyci*ct + Dpyi*st/w 
*DA Tpx2 = Dpxi*ct - Dxcl*st*w 
*DA Tpy2 = Dpyi*ct - Dyci*st*w 

*DA tst(i) = Txc2 - Dxc2 
*DA tst(2) = Tyc2 - Dyc2 
*DA tst(3) = ( Tpx2 - Dpx2) / w 
*DA tst(4) = ( Tpy2 - Dpy2) / w 

* 
ee eS SS SSS SSS SS SS SSS SS SSS TSS SS SS SS SSS SSS SSS SSS SSS SSSSscSesszE5= 

* 

WRITE( 10, ’(1h1)’) 

WRITE( 10, ’(a)’) ’ xi; ri’ 
DO i=i,nv 

WRITE( 10, 2001) xi(€i), (riGi,j), jei,nv) 
END BY 

. WRITE( 10, *) 

WRITE( 10, ’(a)’) ’ x2; r2’ 
DO i=i,nv 

WRITE( 10, 2001) x2(i), (r2(i,j), j=i1,nv) 
END BO 
WRITE( 10, *)



184 

CALL sympinv( r2,nv, ri,nv, nd) 
CALL mmmul( r2,nv, ri,nv, temp,nv, nv) 

WRITE( 10, ’?(a)’) ° Symplecticity check: 3r2 * ( J r2°T J7-1) ’ 
DO i=i,nv 

WRITE( 10, 2002) (temp(i,j), j=1,nv) 
END DO 

WRITE( 10, ’(ih1)’) 
CALL dapri( Ds0, 10) 
WRITE( 10, *) 

DO i=i,nv 
CALL dapri( Dxi(i), 10) 
WRITE( 10, *) 

END DO 

WRITE( 10, *(ih1)’) 
CALL dapri( Dsi2, 10) 
WRITE( 10, *) 

DO i=i,nv 

CALL dapri( Dx2(i), 10) 
WRITE( 10, *) 

END DO 

WRITE( 10, ’(1h1)’) 
DO i=i,nd*2 

CALL dapri( tst(i), 10) 
END DO 

WRITE( 10, ’(1hi)’) 
CALL dapri( Txc2, 10) 
CALL dapri( Dxc2, 10) 

WRITE( 10, ’(ih1)’) 
CALL dapri( Tyc2, 10) 
CALL dapri( Dyc2, 10) 

WRITE( 10, ’(1hi)’) 
CALL dapri( Tpx2, 10) 
CALL dapri( Dpx2, 10) 

WRITE( 10, ’(4h1)’) 
CALL dapri( Tpy2, 10) 
CALL dapri( Dpy2, 10)
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WRITE( 10, ’(1hi)’) 
CALL mypri( Txc2, Dxc2, 10) 
CALL mypri( Tyc2, Dyc2, 10) 
CALL mypri( Tpx2, Dpx2, 10) 
CALL mypri( Tpy2, Dpy2, 10) 

* 

2001 FORMAT(1ix, 1pei3.6, °; ’, ipei3.6, 3(’, ’, ipei3.6)) 
2002 FORMAT(1x, 13x, , >, 4pei3.6, 3(’, °, 1pe13.6)) 

* 

RETURN 
END 

* 

COO oORaaogok End Of Fle (2G GOI IOI IOI i iO foi toi i a ioi ri tote



G.1.3 HJDAubfield 

PROGRAM 
ERRAMET 
EXTERNA 

WRITE( 
READ ( 
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HjDAu field 
ER ( nd= "5 
L ngtte d 

*, (x, 11h no = , $)’) 
*,’(i10)’) no 

ini( no, (nd¥*2), (-10) ) CALL da 
CALL HJDAdrive( no, ubfield) 

STOP 
END 

COICO IO OR ICI IO ICI OIC I ICIOR IOI ICIOIOI IOI I IOI IOI I IOI IOI I IORI I aR I it akc aie ak ak ak ac ak ie a ai 

SUBROUTINE HJDAdrive( no, hmltn) 
* 

IMPLICI 

INTEGER 
PARAMET 
DOUBLE 
PARAMET 

DOUBLE 

INTEGER 

DOUBLE 
DOUBLE 

DOUBLE 

DOUBLE 
DOUBLE 

DOUBLE 
DOUBLE 
DOUBLE 

DOUBLE 
COMMON 

DOUBLE 
& 

COMMON 
& 

SAVE 

EXTERNA 

INTEGER 
INTEGER 

T NONE 

ER 
PRECISION 
ER 

PRECISION 

PRECISION 
PRECISION 

PRECISION 

PRECISION 
PRECISION 

PRECISION 
PRECISION 
PRECISION 

PRECISION 

PRECISION 

/ubfield/ 

/ubfield/ 

L 

no, nd, nv, nstep, istep 

( nd=1, nv=nd*2) 
zero, one, two, four 
zero=0.0d0, one=1.0d0, two=2.0d0, four=4.0d0) 

eps 

ij 
ti, xi( nv), ri(€ nv, nv) 
t2, x2( nv), r2( nv, nv) 

temp( nv, nv) xO, ri(€ nv, nv), 

R_i, Pri, Theta, Pratio 
Cth, Sth 

Enorm, Emax 

Qmax((-1):10) 
Tmax ((-1):10) 

Qnorm((-1):10), 
Tnorm((-1):10), 

pi, pi2 
pi, pi2 

beta0, gammaO, btgma0, const, 

beta, gamma, btgma, bgbg 

betaO, gammaO, btgma0, const, 

beta, gamma, btgma, bgbg 

hmltn 

Ixi, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8, 1x9 
isaia, isa2a, isa3a
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*DAINT (no, nv) Ds0, Ds12 
*DAINT (no ,nv) Dz(nv), Dx (nv) 
*DAINT (no ,nv) Dxi (nv), Dx2 (nv) 
*DAINT(no,nv) Dri, Dpri, Dr2, Dpr2 
*DAINT(no,nv) Cai, Sai, Ca2, Sa2 
*DAINT(no,nv) Xc1, Yel, Xc2, Y¥c2, Xc2p, Yc2p 
*DAINT(no,nv) Tst (nv) 

* 
ee SSeS SSS SS S88 a SS Se SS RS SS SS SS SS SSS SSS SSIS SSSSSsscsesssssseososse= 

* 

pi = FOUR * atan( ONE) 
pi2 = TWO * pi 
write( 10, ’(/a/)’) 

& ’ HJDAubfield: Particle in Uniform Magnetic Field ’ 

write( 10, ?(x, 1tih no = , i4)’) no 

write( *, (x, 1ih nstep = , $)’) 
read ( *,’(i10)’) nstep 
write( 10, ’(x, 11h nstep = , i4)’) nstep 

write( *, (x, 1th istep = , $)’) 
read ( *,’(i10)’) istep 
write( 10, (x, 1ih istep = , i4)’) istep 

write( *, ’(x, Lih eps = , $)’) 
read ( *,’(1pe20.10)’) eps 
write( 10, ’(x, iLih eps = , 1ipei3.6)’) eps 
write( 10, *) 
CALL daeps( eps) 

write( *, >(x, 1th Riz, $)’) 
read ( *,’(ipe20.10)’) Ri 
write( 10, (x, 1ih Ri= , ipei3.6)’) Ri 

write( *, (x, 1ih Pr_i= , $)’) 
read ( »*,’(ipe20.10)’) Pri 
write( 10, (x, 1tih Pr_i = , 1pe13.6)’) Pri 
write( 10, *) 

write( *, *(x, 11h btgmad = , $)’) 
read ( *,’(ipe20.10)’) btgma0 
write( 10, ’(x, 1ih btgmaO = , tpei3.6)’) btgma0d 

write( *, (x, ifh btgma = , $)’) 
read ( *,’(ipe20.10)’)  btgma 
write( 10, >(x, 11h btgma = , ipel3.6)’) btgma 

write( 10, *) 

write( * >(x, 1ihTheta/Pi = , $)’) 
read ( *,’(1pe20.10)’) Theta 
write( 10, ?(x, 1ihTheta/Pi = , 1ipe13.6)’) Theta
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* 

Theta = Theta * pi 

const = btgmad / TWO 
bgbg = btgma * btgma 

gammaOQ = sqrt( ONE + btgmaO * btgma0 ) 
gamma = sqrt( ONE + btgma * btgma ) 

betaO = sqrt( ONE - ONE / ( gammaO * gammaO ) ) 
beta = sqrt( ONE - ONE / ( gamma * gamma ) ) 

Pratio = btgma / btgma0 

* 

CALL HJDXident( no,nv,nd,nv, Dz, xi,ri,Ds0) 

ti = ZERO 
t2 = Theta 

xi(1) = RLi * Pratio 
x1(2) = Pr_i * Pratio 

oe 
KRESS SSS SSP SS STB SSB VSS SS SS BS BBS SS BP SSS SSS SSS SSS SSS SSSSSESeEesSeoqreSeseSsz==ze=e= 

* 

CALL HJDAbsint( ti, xi,ri,DsO, t2, x2,r2,Ds12, 
& Dz,Dx, no,nv,nd,nd*2, nstep,istep, hmitn) 

* 
MESS SSS SSS SS SSSA SSS SST STS SH SSS STS SVS ST SSS STS SSS SS SHS SSS SSSHSSSSsSsSqSqeqqeeo2r22x2=2 

* 

CALL danot(no-1) 

CALL HJDX1( xi,r1,DS12, no,nv,nd,nv, Dz, Dxi) 
. CALL HJDX2( x2,r2,DS12, no,nv,nd,nv, Dz, Dx2) 

Ke eS SSS SS SS eee eee aS SS SSS SST TSS SSE SS sss ss ss 2 ES s=E= 

* 

Sth = sin( Theta ) 
Cth = cos( Theta ) 

*DA Dri = Dx1i(1) 
*DA Dpri = Dx1i(2) 

*DA Sal = Dpri / btgma 
*DA Cai = sqrt( ONE - Sai*Sai ) 

*DA Dr2 Dx2(1) 
*DA Dpr2 = Dx2(2) 

*DA Sa2 = Dpr2 / btgma 
*DA Ca2 = sqrt( ONE - Sa2#Sa2 ) 

*DA Xci = Pratio * Sal 
*DA Yci = Dri - Pratio * Cal 

*DA Xc2p = Pratio * Sa2 
*DA Yc2p = Dr2 - Pratio * Ca2 

*DA Xc2 = Ye2p * Sth + Xc2p * Cth 
*DA Yco2 = Yce2p * Cth - Xc2p * Sth 

*DA tst(1) = Xce2 - Xcel 
*DA tst(2) = Yce2 - Yel 
*
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MS Ss ee ee SS SSS SS SSS SS SS 2 STs ZsZ ZZ 

* 

WRITE( 10, ’(1h1)’) 

WRITE( 10, ’(€a)’) ? x1; ri’ 
DO i=i,nv 

WRITE( 10, 2001) x1(i), (ri(i,j), j=1,nv) 
END Be 
WRITE( 10, *) 

WRITE( 10, ’(a)’) ? x2; r2’ 
DO i=i,nv 

WRITE( 10, 2001) x2(i), (r2(i,j), j=i,nv) 
END x 
WRITE( 10, *) 

CALL sympinv( r2,nv, ri,nv, nd) 
CALL mmmul( r2,nv, ri,nv, temp,nv, nv) 

WRITE( 10, ’(a)’) 
& > Symplecticity check: r2* ( J r2°T J*-1) - I? 

DO i=i,nv 

temp(i,i) = temp(i,i) - ONE 
END DO 

DO i=i,nv 

WRITE( 10, 2002) (temp(i,j), j=i,nv) 
END DO 

Enorm = ZERO 
Emax = ZERO 
DO j=1,nd*2 

DO i=1,nd*2 

Enorm = Enorm + abs(temp(i,j)) 
Emax = max( Emax , abs(temp(i,j)) ) 

END DO 
END DO 

CALL norms( tst, no,nv,nd¥*2,nd*2, Tnorm, Tmax) 

WRITE( 10, ’(1ix)’) 

WRITE( 10, ’(1x)’) 
WRITE( 10, ’(1x)?’) 
WRITE( 10, 2003) Enorm, Emax 

WRITE( 10, ’(1x)’) 
WRITE( 10, 2003) Tnorm(-1), Tmax(-1) 

WRITE( 10, °(4ix)’) 
DO j=0,no 
WRITE( 10, 2003) Tnorm(j), Tmax(j) 
END DO



* 

2001 
2002 
2003 

* 

Cole ooo ooeigckioioodiok End O07 File te io lagi oii GI IOI OK aD IOK 
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WRITE( 10, ’(ihi)’) 
CALL dapri( Ds0, 10) 
WRITE( 10, *) 

DO i=1i,nv 
CALL dapri( Dxi(i), 10) 
WRITE( 10, *) 

END DO 

WRITE( 10, ’(41hi)’) 
CALL dapri( Ds12, 10) 
WRITE( 10, *) 
DO i=i,nv 

CALL dapri( Dx2(i), 10) 
WRITE( 10, *) 

END DO 

WRITE( 10, ’(ih1)’) 
DO i=1,nd*2 

CALL dapri( tst(i), 10) 
END DO 

WRITE( 10, ’(ihi)’) 
CALL dapri( Xce1i, 10) 
CALL dapri( Xc2, 10) 

WRITE( 10, ’(1h1i)?) 
CALL dapri( Yci, 10) 
CALL dapri(€ Yc2, 10) 

WRITE( 10, ’(iht)’) 
CALL mypri( Xc1, Xc2, 10) 
CALL mypri( Yc1, Yc2, 10) 

FORMAT(1x, ipei3.6, ’; >, 1lpei3.6, ’, ’, 1pei3.6) 
FORMAT(1ix, 13x, ? >, 1pe13.6, ’, ’, 1pei3.6) 
FORMAT(1x, 1pei3.6, ’, ’, 1pei3.6) 
RETURN 
END



G.1.4 LiLens 

PROGRAM LiLens2 
IMPLICIT NONE 

INTEGER NO, NV 
PARAMETER ( NO=10, 

DOUBLE PRECISION 
PARAMETER 

DOUBLE PRECISION 
COMMON /PiBlok/ 

DOUBLE PRECISION 
COMMON /Lens/ 

EXTERNAL LiLens 

pi = 
pi2 = TWO * pi 
HalfPi = HALF * Pi 

( 

CALL DAini( NO,NV, 

CALL HJDAdrive( LiLens ) 

STOP 
END 
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NV=4 ) 

ONE, TWO, FOUR, HALF 
ONE=1.0d0, TWO=2.0d0, FOUR=4.0d0, HALF=0.5d0 ) 

Pi, Pi2, HalfPi 
Pi, Pi2, HalfPi 

RatScl, RatPO,RatP0O2, RatPX,RatPX2, RatBR,RatRO 
RatScl, RatPO,RatPO2, RatPX,RatPX2, RatBR,RatRO 

FOUR * atan(ONE) 

(-10) ) 

CIO OR IO ICO IOI I ICICI i i ak IC #6 ak ake akc ke ake aki ake ate ake ai aie ake aie ai ai akc aie ae ake ak ake fe Cake ake ate ake ic afc ade ake ate cafe ate ate ake ake ake ae 

SUBROUTINE HJDAdrive( LiLens ) 
* 

IMPLICIT NONE 

INTEGER 
INTEGER 
PARAMETER 
PARAMETER 

INTEGER 
PARAMETER 
PARAMETER 

DOUBLE PRECISION 
PARAMETER 

DOUBLE PRECISION 
PARAMETER 
PARAMETER 
PARAMETER 
PARAMETER 

INTEGER 
INTEGER 
INTEGER 
INTEGER*4 

NO, NV, ND 
Nstepi, Nstep2, Istep, Nslice, ItMax 
NO=10, NV=4, ND=2 ) 
Nstepi=25, Nstep2=1, Istep=6, 
Nslice=10, ItMax=10 ) 

Nprim, Nrays,NraysT, Nbuf ,NbufT 

Nprim=25, Nrays=4*Nprim, Nbuf=Nrays ) 
NraysT=Nrays*Nslice, NbufT=NraysT ) 

ZERO, ONE, TWO, FOUR 
ZERO=0.0d0, ONE=1.0d0, TWO=2.0d0, FOUR=4.0d0 ) 

PO, Bmax, Brho, RO 
PO = 8.89d0_ ) ' GeV/c 
Bmax = 100.0d0 ) ! kGauss 
Brho = 3335.6d0*PO ) ! kGauss-cm 
RO = 1.0d0 ) ! cm 

1, j, K, n 

j1,j2,j3,j4, jjj, nnn, Jpin(NV) 
iter, islice 
Iseed



DOUBLE 
DOUBLE 
DOUBLE 

DOUBLE 

DOUBLE 

DOUBLE 
DOUBLE 
DOUBLE 

DOUBLE 
DOUBLE 
DOUBLE 
DOUBLE 

DOUBLE 

H
E
E
 

DOUBLE 
COMMON 

DOUBLE 
COMMON 

DOUBLE 
DOUBLE 
COMMON 

DOUBLE 
COMMON 

EXTERNA 

INTEGER 

*DAINT(NO,NV) 
*DAINT(NO,NV) 
*DAINT(NO,NV) 

* 

*« 

PRECISION 
PRECISION 
PRECISION 

PRECISION 

PRECISION 

PRECISION 
PRECISION 
PRECISION 

PRECISION 
PRECISION 
PRECISION 
PRECISION 

PRECISION 

PRECISION 

/PiBlok/ 

PRECISION 

/Beam/ 

PRECISION 
PRECISION 

/Lens/ 

PRECISION 

/Scales/ 

L 

Lkscale 
PXscale 
LZscale 
PZscale 

StDevxX 
StDevP 

StDevs(1) 
StDevs (2) 
StDevs (3) 
StDevs (4) 

Scales (1) 
Scales (2) 
Scales (3) 
Scales (4) 

Pz 

“
o
i
 

u
u
 

u
n
n
o
u
 

ou 
G
u
u
 

a 

StDevP 

Lkscale 
Lxscale 
PXscale 
PXscale 

PO 
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xi (NV), RICNV,NV) 
x2(NV), R2(NV,NV) 
RICNV,NV), Temp(NV,NV) 

parn, 

zi, z2, DFdot, w(O:Nslice), a,b 

xO1(NV), xO2(NV) 
Xbufi(Nbuf ,NV), Xbuf2(Nbuf , NV) 

XbufT (NbufT, NV) 

Scales(NV), StDevs(NV) 
Xavg(NV), Sigmal(NV,NV), Sigma2(NV,NV) 
DotProd(NO+1), DotByOrd(NO0+1) 
TotProd(NO+1), TotByOrd(NO+1) 

Tnorm(-1:no), Tmax(-1:no) 

Pi, Pi2, HalfPi 
Pi, Pi2, HalfPi 

StDevX, StDevP, PZ 
StDevX, StDevP, PZ 

LO, Li, L2, Ltarg, LLens 

RatScl, RatPO,RatPO2, RatPX,RatPX2, RatBR,RatRO 
RatScl, RatPO,RatPO2, RatPX,RatPX2, RatBR,RatRO 

LXscale, PXscale, LZscale, PZscale 

Lxkscale, PXscale, LZscale, PZscale 

LiLens 

lxi, 1x2, 1x3 

DSO ,DS12 

Dx1i (NV) ,Dx2(NV), Dy, Dz(NV) ,Dx (NV) 

DxTild(NV), DxTay(NV), DxMom1, DxMom2 

cm 
' GeV/c 

/ LxXscale 
/ Liscale 
/ PXscale 
/ PXscale
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RatScl = (LZscale/LXscale) * (PZscale/PXscale) 
RatPO = PO PZscale 
RatP02 = RatPo * fate 
RatPx = PXscale PZscale 
RatPX2 = RatPX * RatPX 
RatBR = Bmax*RO /Brho 
RatRO = RO / LXscale 

* 

LO = HalfPi * RO / sqrt( RatBR ) 
LLens = (1.0826d0) * LO 
Ltarg = (5.00d0) ! cm 

* 

CHAFEE ERE EERE EEEEE EEE EEE LEFHEEEEEFEEEEEFEEEEAFAFEEEEAFEFEFEE THEE HEHE HH 
.. Fifth-order Simpson’s rule coefficients. 

17.0d0 / 48.0d0 
59.0d0 / 48.0d0 

w(Nslice-1) 59.0d0 / 48.0d0 
w(Nslice) 17.0d0 / 48.0d0 
DO i=2,(Nstep-2) ,2 

wCi) = 43.0d0 / 48.0d0 
END. 
DO i=3,(Nstep-3) ,2 

w (4) = 49.0d0 / 48.0d0 
END D 

i
u
 

u
n
 

CALL GaussLoad( StDevs, no,2*nd, DxMomi ) 
CALL DApri( DxMomi, 13 ) 
CALL norms( DxMomi, no,nd*2,(1), Tnorm, Tmax) 
WRITE( 11, °?(€1x,a)’) ’Norms of DxMom1’ 
WRITE( 11, 2001) (Tnorm(n), n=2,N0,2), Tnorm(-i) 
WRITE( 11, 2001) (Tmax( n), n=2,N0,2), Tmax( -1) 

Zi = ZERO 
z2 = LLens - Ltarg 

CALL DAnot( NO ) 
CALL HJDXident( NO,NV,ND,NV, Dz, x1,Ri,DSO ) 

CALL HJDAbsint( z1, x1,R1,DSO, z2, x2,R2,DS12, 
& NO,NV,ND,NV, Nstepi1,Istep, LiLens ) 

CALL DApri( DS12, 13 ) 

CALL norms( DS12, no,nd*2,(1), Tnorm, Tmax) 

WRITE( 10, ’(ix,a)’) ’Norms of DS12’ 

WRITE( 10, 2001) (Tnorm(n), n=2,N0,2), Tnorm(-1) 

WRITE( 10, 2001) (Tmax( n), n=2,N0O,2), Tmax( -1) 

CStSSs Sessa ese rete eee SSeS SSS SSS SSS SSS SSS SSS SSS SSS SSS SSS SSS SST Ssssrssssss= 

DO n=1, (NO+1) 
TotProd(n) 
TotByOrd(n) 

END DO 

DO j=1,NV 
DO i=1,NV 

Sigma2(i,j) = ZERO 
END DO 

END DO 

ou N t=
 

J o
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CALL DAnot( NQ-1 ) 

DO j=1,ND 
CALL DAder( (j+ND), DS12, Dz(j) ) 
CALL DAder( (j), DS12, Dz(j+ND) ) 
Jpin(j) = 4 
Jpin(j+ND) = 0 

END DO 

CALL DApin( Dz,NV, DxTild,NV, Jpin ) 

DO j=1,NV 
CALL DAcon( Dy, ZERO ) 
DO k=1,NV 

a = R2(j,k) 
CALL DAcma( Dy, DxTild(k),a, Dy ) 

END DO 
CALL DAcad( Dy, x2(j), DxTay(j) ) 

END DO 

CALL DAnot( NO ) 

KR RSSH SS ST ES SSMS SSS SS STS SSSA SPSS SS SS SS SSS SAL SVS SHS ASS SS SSS sss Ssssssle2 

DO j=1,NV 
DO i=1,(j-1) 

CALL DAmul( DxTay(i),DxTay(j), Dy ) 
Sigma2(i,j) = w(0) * DFdot( Dy,DxMomi, DotProd,DotByOrd ) 
Sigma2(j,i) = Sigma2(i,j) 

ND DO 
CALL DAmul( DxTay(j) ,DxTay(j), Dy ) 
Sigma2(j,j) = w(0) * DFdot( Dy,DxMom1, DotProd,DotByOrd ) 

END DO 

CHEF FFAFAL ELE TE FAFAEEFEAFEE EEE EF EFEEEEFEFEEEEE EEF EETEE EEE FEE HHH ttt 
C ... Sigma2(4,4) = Sigma2(3,3) is my figure of merit; 
Cc copy contents of DotProd and DotBy0rd (last one is (4,4) 
C resultant) into TotProd and TotByQrd. 

DO n=1, (NO+1) 
TotProd(n) = w(0) * DotProd(n) 
TotByOrd(n) = w(0) * DotByOrd(n) 

END DO 

WRITE( 11, ’(ix)’) 
WRITE( 11, ’(ix,a)’) ’Sigma(4,4) by orders’ 
WRITE( 11, 2003 ) (DotProd(n), n=3,(NO+1),2) 
WRITE( 11, 2003 ) (DotByOrd(n), n=3, (NO+1) ,2) 

CHPtt St StS Seer es SS St SSS eS SS SSS SSS THES SSS aS SSS SST SSR TS SSS SSS Ssssssesss



DO islice=1,Nslice 

Zi = z2 , 
z2 = z2 + Ltarg/dfloat(Nslice-1) 

DO j=1,NV 
x1(j) = x2(j) 

DO i=1,NV 
R1i(i,j) = R2(i,3) 

END DO 
END DO 
CALL DAcop(DS12,DS0) 

CALL HJDAbsint( zi, x1,R1,DSO, z2, x2,R2,DS12, Dz,Dx, 
& NO,NV,ND,NV, Nstep2,Istep, LiLens ) 

CALL DApri( DS12, 13 ) 
CALL norms( DSi2, no,nd*2,(1), Tnorm, Tmax) 

WRITE( 10, ’(1x)’) 
WRITE( 10, 2001) (Tnorm(n), n=2,N0,2), Tnorm(-1) 
WRITE( 10, 2001) (Tmax( n), n=2,N0,2), Tmax( -1) 

MPSS SSS SSS SSS SSS SSS SS SS SSS TTS TS SSS VSS SVS SRV SSS SS SVS SSS SVST SSS SSS SS SsSSsSsesaSoez== 

* 

CALL DAnot( NO-1 ) 

DO j=1,ND 
CALL DAder( (j+ND), DS12, Dz(j) ) 
CALL DAder( (j), DSi2, Dz(j+ND) ) 
Jpin(j) 1 
Jpin(j+ND) = 0 

END DO 

CALL DApin( Dz,NV, DxTild,NV, Jpin ) 

DO j=1,NV 
CALL DAcon( Dy, ZERO ) 
DO k=1,NV 

a = R2(j,k) 
CALL DAcma( Dy, DxTild(k),a, Dy ) 

END DO 
CALL DAcad( Dy, x2(j), DxTay(j) ) 

END DO 

CALL DAnot( NO ) 

KS SSS SSS SS SSS SS SS SS SS Se Se Se es SS Se ee SS SS SS SS SSS SSS SS SS S222 22E22—E=2= 

DO j=1,NV 
DO i=1,(j-1) 

CALL DAmul( DxTay(i) ,DxTay(j), Dy ) 
Sigma2(i,j) = Sigma2(i,j) 

& + w(islice) * DFdot( Dy,DxMom1, DotProd,DotByOrd ) 
Sigma2(j,i) = Sigma2(i,j) 

END DO 
CALL DAmul( DxTay(j),DxTay(j), Dy ) 
Sigma2(j,j) = Sigma2(j,j) 

& + w(islice) * DFdot( Dy,DxMomi, DotProd,DotByOrd ) 
END DO
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WRITE( 11, ’(1x)’) 
WRITE( 11, 2003 ) (DotProd(n), n=3, (NO+1) ,2) 
WRITE( 11, 2003 ) (DotByOrd(n), n=3, (NO+1) ,2) 

DO n=1, (NO+1) 
TotProd(n) = TotProd(n) + w(islice)*DotProd(n) 
TotByOrd(n) = TotByOrd(n) + w(islice)*DotBy0rd(n) 

END DO 

END DO 

WRITE( 11, ’(ix)’) 

WRITE( 11, ’(1x)’) 
WRITE( 11, ’(1x,a)’) ’Total Sigma(4,4) by orders’ 
WRITE( 11, 2003 ) (TotProd(n), n=3,(NO+1),2) 
WRITE( 11, 2003 ) (TotByOrd(n), n=3, (NO+1) ,2) 

* 

2001 FORMAT( ix, 1tpei3.6, 7(ix, ipe13.6,:)) 
2002 FORMAT( ix, ’iter = ’,i3, ’, LLens = ’, 1pgi3.6, 

& ?, (LLens/LO) = ’, 1pgi3.6, 
& >, $33 =’, 1pgi3.6, °, S13 =’, 1pgi3.6 ) 

2003 FORMAT( 1x, 9(1ipgi3.6,:,1x)) 
2012 FORMAT( ix, ipei3.6, ’; ’, 1pei3.6,:, 3 (’, ’, ipei3.6,:)) 

* 

RETURN 
END
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CoO IGOR OF oko a GO GIO GIGI IG iI i IOI IOI I IID IGI IO i ak kok akc ak ake ake ai aie ak kit akc ak ake ate te ak 
e 

SUBROUTINE LiLens( z, Dx, no,nd, Dh) 
IMPLICIT NONE 

DOUBLE PRECISION ZERO, ONE, TWO, FOUR 
PARAMETER ( ZERO=0.0d0, ONE=1.0d0, TWO=2.0d0, FOUR=4.0d0 ) 

INTEGER no, nd 
DOUBLE PRECISION Z, 8, Ww, R 

DOUBLE PRECISION RatScl, RatPO,RatPO2, RatPX,RatPX2, RatBR,RatRO 
COMMON /Lens/ RatScl, RatPO,RatPO2, RatPX,RatPX2, RatBR,RatRO 

* 

INTEGER 1x2 

*DAEXT (no, nd*2) Dx(nd*2), Dh 
*DAINT (no ,nd*2) Dx2, Dy2, Dpx2, Dpy2 

w = RatPO * RatBR /RatRO/RatRO /TWO 

CALL DAsqr( Dx(1i), Dx2 ) 
CALL DAsqr( Dx(2), Dy2 ) 
CALL DAsqr( Dx(3), Dpx2 ) 
CALL DAsqr( Dx(4), Dpy2 ) 

*DA Dh = RatScl * ( w*(Dx24+Dy2) - sqrt(RatPO2 ~ RatPX2*(Dpx2+Dpy2)) ) 

RETURN 
* END 

CO i Goi iok cick = END OF FILE 4 ote otk oe ot otek ate sae ak ak ak ike 2k a i aie i aka ae
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G.2 The Hamiltonian Modules 

G.2.1 Drift 

SUBROUTINE drift( z, Dx, no,nv,nd, Dh) 

DOUBLE PRECISION zero, one 

PARAMETER ( zero=0.0d0, one=1.0d0 ) 

DOUBLE PRECISION 2z 

* DOUBLE PRECISION beta, gamma, btgma 
* COMMON /relfac/ beta, gamma, btgma 

*DAEXT(NO,NV) DX( ND*2), DH 
*DAINT(NO,NV) PT2, PX2 

CESSES rears Sr tesr etree rr reser ere e ss ess See Sse res SssSsSsSs ts sss ssss2ess 

*DA pt2 = Dx(3) * Dx(3) 
*DA px2 = Dx(4) * Dx(4) 

*DA Dh = zero - sqrt( pt2 - px2 - one ) 

RETURN 
* END 

ClO oR END OF FILE (2k se teste ak steak ac ae ot ot teak ok tek aie aie ake ie ate aie ae ak ake abe fe
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G.2.2. PolrSHO 

COR RIOR IR IO IGIOIOIOI I I IOI ICICI OI i OR IOI ki ako ic ak ak akc ak ake ak aie ake ake aie af ie aie aie ac 2 oe ae eof oe ake ake ake ate afc a ake oe ake aie ade aie akc ake 
* 

SUBROUTINE polrsho( t, Dx, no,nv,nd, Dh) 

INCLUDE *daparm.inc/LIST’ 

DOUBLE PRECISION onehaf 
PARAMETER ( onehaf=0.5d0 ) 

DOUBLE PRECISION t 

DOUBLE PRECISION pi, pi2, w, w2 
COMMON pi, pi2, w 

DOUBLE PRECISION Yr, rsqr 

INTEGER jj(LNV), kount 
DATA (jj(i), i=1,LNV) /LNV*0/, kount /0/ 

*DAEXT (NO,NV) DX( ND*2), DH 
*DAINT(NO,NV) R2, PR2, PTH2 

Ce SS Se ester eset See Sse Sr Sere e SSS Tee e SSS SSS TSS SS SSS SSS sss VS ssssssssssc= 

w2 = weW 

*DA x2 = Dx(1)*Dx(1) 
*DA pr2 = Dx(3)*Dx(3) 

*DA pth2 = Dx(4)/Dx(1) 
*DA pth2 = pth2*pth2 

*DA Dh = onehaf * ( pr2 + pth2 + w2*r2 ) 

RETURN 
END 

* 

COO OOO iogiioReOad END OF FILE se eG took iio Oi i iol i i a Oi IOI IOI
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G.2.3 UBfield 

CORIO IO IO IO OIC III IG IGG DIGI OK OIOIOI ORO ICI SII OI OI OI IO IOI aOR GIGI IOI i IK 

. SUBROUTINE ubfield( t, Dx, no,nv,nd, Dh) 

DOUBLE PRECISION t 

DOUBLE PRECISION pi, pi2 
COMMON pi, pi2 
DOUBLE PRECISION betaO, gammaO, btgma0, const, 

& beta, gamma, btgma, bgbg 

COMMON /ubfield/ beta0, gamma0, btgma0, const, 
& beta, gamma, btgma, bgbg 

*DAEXT (no,nv) Dx(nd*2), Dh 
*DAINT (no,nv) rho, prho 

* 

CSRS SSPt esse seers SSS Seer reser See Str TSS SS TTS SST SSeS SS TTS sss ss ssssssssss 

*DA rho = Dx(1) 
*DA  prho = Dx(2) 

*DA Dh = rho * ( const * rho - sqrt ( bgbg - prho*prho ) ) 

RETURN 
END 

Coo OOOO oOo = END OF FILE oo ag tokio tok i gioi ioiokoi koi ioiasak ieteieak
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G.3 The Integration Module 

G.3.1 HJDAbsint 

CORIO OR III I IO IOC GIO II IGOR IOI I IG IOI Io I IOI IOI II OIC Ik Kk a ait a ak ak afc aie ake ale ak ai aici ak ate aie ake a ak 

SUBROUTINE HJDAbsint( ti, xi,ri,Ds1, t2, x2,r2,Ds2, Dz,Dx, 
& no,nv,nd,nj, nstep,istep, hmitn) 
IMPLICIT NONE 

INTEGER NMAX 
PARAMETER ( NMAX=10 ) 

DOUBLE PRECISION ZERO, ONE 
PARAMETER ( ZERO=0.0d0, ONE=1.0d0 ) 

INTEGER no, nd, nj, nstep, istep 

DOUBLE PRECISION ti, xi(nj), ri(nj,nj) 
DOUBLE PRECISION +2, x2(nj), r2(nj,nj) 

DOUBLE PRECISION 4H0O, Hk 
DOUBLE PRECISION tt, s5s 
DOUBLE PRECISION x(NMAX), r (NMAX , NMAX) 
DOUBLE PRECISION f(NMAX), a(NMAX ,NMAX) 
DOUBLE PRECISION Xnext(NMAX), Rnext (NMAX,NMAX) 
DOUBLE PRECISION Xextr(NMAX), Rextr(NMAX,NMAX) 
DOUBLE PRECISION Xdiff(NMAX), Rdiff(NMAX,NMAX) 

INTEGER i,j,k,n, icall, knext 

EXTERNAL hmltn 
INTEGER 1x3 

*DAEXT(no,nv) DS1, Dz(nd*2), Dx(nd*2) 
*DAEXT (no,nv) DS2 
*DAINT(no,nv) DS, GS, DSnext, DSextr, DSdiff 

* 
CSSS Se Setar eS SS ee S eae SSeS SSeS t se SSS SSS SSR SSS SSS SSRASSSSSV SAV TTS Tsssss=s==== 

DO j=1,nd*2 
x(j) = x19) 
CALL davar( Dz(j), ZERO, j) 

DO i=1,nd*2 

r(i,j) = ri(i,j) 
END DO 

END DQ 
CALL dacop(DS1 ,DS) 

HO = (t2-t1)/dfloat (nstep) 
t t1 

DO n=1,nstep 

s = dfloat(n-1) / dfloat(nstep) 
t = (ONE-s)*t1 + (s)*t2 
CALL HJDAderiv(t, x,r,DS, f,a,Gs, no,nv,nd,NMAX, Dz,Dx, hmltn) 

DO icall=1,istep 
knext = geicall 
Hk = HO dfloat(knext)
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IF ( (t+Hk) .EQ. (t) ) THEN 
PAUSE ’Stepsize not significant in HJDABSINT.’ 

END IF 

CALL HiDAmmid( ti1,HO,knext, x,r,DS, f£,a,GS, 
& Xnext ,Rnext,DSnext, no,nv,nd,NMAX, Dz,Dx, hmitn) 

CALL HJDAextr( icall,knext, Xnext,Xextr,Xdiff, 
& Rnext ,Rextr,Rdiff, DSnext ,DSextr,DSdiff, no,nv,nd,NMAX, istep) 

END DO 

DO j=1,nd*2 
x(j) = Xextr(j) 

DO i=1,nd*2 
r(i,j) = Rextr(i,j) 

D 
CALL dacop(DSextr,DS) 

END DO 

DO j=1,nd*2 
x2(j) = Xextr(j) 

DO i=1i,nd*2 
r2(i,j) = Rextr(i,j) 

END DQ 
END DO 
CALL dacop(DSextr,DS2) 

RETURN 
END
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G.3.2 HJDAmmid 

CIO OI IOIIOIIOIOR OIG OI OIG OO II I II IOI IOI ICICI ICI i gai ak a ak kok ak ake aka ate ake tote ak ake ake ake ake ake 

SUBROUTINE HJDAmmid( t1,HO,nstep, Xin,Rin,DSin, Fin,Ain,GSin, 

& Xout ,Rout,DSout, no,nv,nd,nj, Dz,Dx, hmltn) 
IMPLICIT NONE 
EXTERNAL hmltn 

INTEGER NMAX 
PARAMETER ( NMAX=10 ) 

DOUBLE PRECISION OneHaf, Two 
PARAMETER ( OneHaf=0.5d0, Two=2.0d0 ) 

INTEGER no,nv,nd,nj, nstep 

DOUBLE PRECISION ti, HO 
DOUBLE PRECISION tt, Hk, TwoH, temp 
DOUBLE PRECISION Xin (NMAX), Rin (NMAX,NMAX) 
DOUBLE PRECISION Xout(NMAX), Rout (NMAX,NMAX) 
DOUBLE PRECISION Fin (NMAX), Ain (NMAX,NMAX) 

INTEGER i, j, n 
DOUBLE PRECISION Xm(NMAX), Rm(NMAX , NMAX) 
DOUBLE PRECISION Xn(NMAX), Rn (NMAX , NMAX) 
DOUBLE PRECISION Fn(NMAX), An (NMAX , NMAX) 

INTEGER 1x2, isala 
*DAEXT(no,nv) DSin, GSin, DSout, Dz(nd*2), Dx(nd*2) 
*DAINT(no,nv) DSm, DSn, GSn, Dtemp 

SSS SSS SSS SS SS SSE SSS SESS SSS SSS SS SS SSS SSS SSS VSS BP SS SSS SSS S SSS SSS SSEserese22z52=2 

Hk = HO/float(nstep) 

DO j=1, (nd*2) 
Xm(j) = Xin(j) 
Xn(j) = Xin(j) + Hk*Fin(j) 

DO i=1, (nd*2) 
Rm(i,j) = Rin i,j) 
Rn(i,j) = Rin(i,j) + Hk*Ain(i,j) 

END DO 
END DQ 
CALL dacop( DSin, DSm) 
CALL dacma( DSin, GSin,Hk, DSn) 

t = ti + Hk 
CALL HJDAderiv(t, Xn,Rn,DSn, Fn,An,GSn, no,nv,nd,NMAX, Dz,Dx, hmltn) 

TwoH = Two * Hk 
DO n=2,nstep 

DO j=1, (nd*2) 
temp = Xm(j) + TwoH*Fn(j) 
Xm(j) = Xn(j) 
Xn(j) = temp 

DO i=1, (nd*2) 
temp = Rm(i,j) + TwoH*An(i,j) 

Rm(i,j) = Rn(i,j) 
Rn(i,j) = temp 

END DO
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END DQ 
CALL dacma( DSm, GSn,TwoH, Dtemp) 
CALL dacop( DSn, DSm) 

CALL dacop( Dtemp, DSn) 

t = t + Hk 
CALL BsDAderiv(t, Xn,Rn,DSn, Fn,An,GSn, no,nv,nd,NMAX, Dz,Dx, hmltn) 

DO j=1, (nd*2) 
Xout(j) = QneHaf * ( Xm(j) + Xn(j) + Hk*Fn(j) ) 

DO i=1, (nd*2) 
Rout(i,j) = OneHaf * ( Rm(i,j) + Rn(i,j) + Hk*An(i,j) ) 

END DO 
END DO 
CALL dacma( DSn, GSn,Hk, Dtemp) 
CALL daadd( DSm, Dtemp, Dtemp) 

CALL dacmu( Dtemp, OneHaf, DSout) 

RETURN 
END
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G.3.3 HJDAextr 

CoRR OI IIR ROI I I IO I IK I Oi IC ICICI OIC I i kok ae keke aie ke ofc aie ai ae ake ake te oie aie ake akc ac ae te af ah ake fe ate 
bd 

SUBROUTINE HJDAextr( icall,knext, Xnext,textr,Xdiff, 

& Rnext ,Rextr,Rdiff, Snext,Sextr,Sdiff, no,nv,nd,nj, nuse) 
IMPLICIT NONE 

DOUBLE PRECISION ZERO, ONE 
PARAMETER ( ZERO=0.0d0, ONE=1.0d0 ) 

INTEGER NMAX, IMAX, NCOL 
PARAMETER ( NMAX=10, IMAX=11, NCOL=7 ) 

INTEGER icall, knext, no, nd, nj, nuse 
DOUBLE PRECISION Xnext(NMAX), Xextr(NMAX), Xdiff(NMAX), 

& Rnext (NMAX,NMAX), Rextr(NMAX,NMAX), Rdiff(NMAX,NMAX) 

INTEGER kstack(IMAX), i,j,k, n, ni 
DOUBLE PRECISION al, a2, f1, £2, den, delta, temp 
DOUBLE PRECISION Xd (NMAX) , Xq(NMAX,NCOL) 
DOUBLE PRECISION Rd(NMAX,NMAX), Rq(NMAX,NMAX,NCOL) 
SAVE Xq, Rq 

INTEGER 1x2, 1x3, isala 

*DAEXT(no,nv) Snext, Sextr, Sdiff 
*DAINT(no,nv) Sq(NCOL), Sd 
*DAINT(no,nv) Ddelita, Dtemp 

kstack(icall) = knext 

DO j=1, (nd*2) 
Xdiff(j) = Xnext(j) 
Xextr(j) = Xnext(j) 

DO i=1, (nd*2) 
Rdiff(i,j) = Rnext(i,j) 
Rextr(i,j) = Rnext (i,j) 

END DO 
END DO 
CALL dacop(Snext ,Sdiff) 
CALL dacop(Snext ,Sextr) 

IF ( icall .EQ. (1) ) THEN 
DO j=1, (nd*2) 

Xd(j) = ZERO 
Xq(j,1) = Xnext(j) 

DO k=2,NCOL 
Xq(j,k) = ZERO 

END DO 

DO i=1i, (nd*2) 
Rq(i,j,1) = Rnext(i,j) 

END DQ 
DO k=2,NCOL 

Rq(i,j,k) = ZERO 
END DO
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END DO 
CALL dacop(Snext ,Sq(1)) 
DO k=2,NCOL 

CALL DAcon(Sq(k) , ZERO) 
END DO 

ELSE 

ni = min(icall,nuse) 
DO j=1, (nd*2) 

Xd(j) = Xnext(j) 
DO i=1, (nd*2) 

Rd(i,j) = Rnext(i,j) 

CALL dacop(Snext ,Sd) 

DO n=1, (ni-1) 

al = float (kstack(icall-n)) 
a2 = float (knext) 
den = ( a2-ai ) * ( a2tai ) 
fi = ( al*xai ) / den 
£2 = ( a2*a2 ) / den 
delta = ( aixal * a2*a2 ) / den 

DO j=1, (nd*2) 

temp = Xq(j.n) 
Xq(j,n) = Xdiff(j) 

delta = Xd(j) - temp 
Xdiff(j) = f1 * delta 
Xd(j) = £2 * delta 
Xextr(j) = Xextr(j) + Xdiff(j) 

DO i=1, (nd*2) 

temp = Rq(i,j,n) 
Rq(i,j.n) = Rdiff (i,j) 

delta = Rd(i,j) - temp 
Rdiff(i,j) = f1 * delta 
Rd(i,j) = £2 * delta 
Rextr(i,j) = Rextr(i,j) + Rdiff(i,j) 

END DO 

END DO 

CALL dacop( Sq(n), Dtemp) 
CALL dacop( Sdiff, Sq(n)) 

CALL dasub( Sd, Dtemp, Ddelta) 
CALL dacmu( Ddelta, fi, Sdiff) 
CALL dacmu( Ddelta, f2, Sd) 
CALL daadd( Sextr, Sdiff, Sextr) 

END DO 

DO j=1, (nd*2) 
Xq(j.ni) = Xdiff(j) 

DO i=1, (nd*2)
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Rq(i,j,ni) = Rdiff(i,j) 
END DO 

END DO . 
CALL dacop( Sdiff, Sq(n1)) 

END IF 

RETURN 
. END 

CORI IOI IOI IO ROR koi i i ak END OF FILE BRE AR ae ie ok ic ate aie ae ah ete ofc ake a atc ade aie fe ah ae ate ai aie ae ak akc
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G.4 The Derivative Module 

G.4.1 HJDAderiv 

Cok CK KOK OR ii iI Ik i aici ake ake ike ak ok kok kok ake ie ake ake ake ak i ok ake akc ake ic fe ake aie af aie ac ae aie fe afc afc afc afc a afk af ake ake fe abe abe aie ake aie ote abe ate ake fe ake ake af abe ake abe 

SUBROUTINE HJDAderiv(t, x,r,DS, f,a,Gs, no,nv,nd,nj, Dz,Dx, hmitn) 
* 

IMPLICIT NONE 

INTEGER 
PARAMETER ( 

DOUBLE PRECISION 
PARAMETER 

INTEGER 

DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 

DOUBLE PRECISION 
DOUBLE PRECISION 

EXTERNAL 

* 

INTEGER 

*DAEXT (no,nv) 
*DAEXT (no,nv) 
*DAINT (no,nv) 

CALL HJDX2( x,r,DS, 

CALL hmltn( t, Dx, 

CALL hamsplit( Dh, Dz, 

CALL rjmul( r,nj, 
CALL mvmul( rj,NMAX, 

CALL mmmul( rj,NMAX, 

CALL dasuc( Dk, ZERO, 

RETURN 
END 

NMAX 
NMAX=10 ) 

ZERO 
ZERO=0.0d0 ) 

no, nd, nj 

t 
x(nj), r(nj,nj) 
f(nj), a(nj,nj) 
rj (NMAX , NMAX) 
hi(NMAX), h2(NMAX,NMAX) 

hmitn 

1x3 

DS, Dz(nd*2), Dx(nd*2) 

no,nv,nd,nj, 

no,nv,nd, 

no ,nv,nd,NMAX, 

rj,NMAX, 
hi,NMAX, f,nj, 
h2,NMAX, a,nj, 
GS) 

Dh) 
hi,h2, Dk) 

nd) 
nd*2) 
nd*2)
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G.4.2 HiIDXident 

Co OI ICICI i iI IOI II I OI III I Rk I I IOI I ok IG ie ak akc cae ake ak aie ake ake ake aie ake ake ae oi ak ake oie ate ake ake fe ae 
* 

SUBROUTINE HJDXident( no,nv,nd,nj, Dz, x,r,DS) 
IMPLICIT NONE 

DOUBLE PRECISION ZERO, ONE 
PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 ) 

INTEGER 1, j, no,nv,nd,nj 

DOUBLE PRECISION x(nj), r(nj,nj) 

INTEGER isa2a, isa3a 

*DAEXT(no,nv) DS, Dz(nd*2), Dtemp 

Csesssesassssssesssrssssasssssssssesssssessssssesssssessssssssessscessss 
* 

DO j=1, (nd*2) 
DO i=1, (nd*2) 

r( i, j) = ZERO 
END DO ~ 

r( j, j) = ONE 
x( j) ZERO 

END DO 

CALL dacon( DS, ZERO) 
DO i=i,nd 

CALL davar( Dz(i), ZERO, (i) ) 

CALL davar( Dz(itnd), ZERO, (itnd) ) 
CALL damul( Dz(i), Dz(itnd), Dtemp ) 
CALL daadd( Ds, Dtemp, DS ) 

END DO 

RETURN 
END
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G.4.3 HJDX1 

COCR IOIOIOIOR OI IO IO IOIC ICICI III ICR IID IGOR RIOR I KOI ak aOR HEC C Hea ak a ah ake aie ae 
* 

SUBROUTINE HJDXi(€ x,r,DS, no,nv,nd,nj, Dz, Dx) 
IMPLICIT NONE 

DOUBLE PRECISION ZERO 
PARAMETER ( ZERO=0.0d0 ) 

INTEGER no, nd, nj 
DOUBLE PRECISION x(nj), r(nj,nj) 

INTEGER i, j 

DOUBLE PRECISION xO, a 

INTEGER 1x2, isala 

*DAEXT (no, nv) DS, Dz(nd*2), Dx(nd*2) 
*DAINT(no,nv) Dy 

KRVSSTBSStSSSss SS TSSS tS SSS TSS SSS SSS SS SS STH SSS SS SSS SSS SS SES SES ssesesezeezz 22 

DO i=1,nd 
CALL dader( (nd+i), DS, Dz i) ) 

CALL davar( Dz(nd+i), ZERO, (ndti) ) 
END DO 

DO i=1i,nd*2 

CALL dacon( Dy, ZERO) 
DO j=1,nd*2 

a = r(i,j) 
CALL dacma( Dy, Dz(j),a, Dy ) 

END DO 
xO = x(i) 
CALL dacad( Dy ,x0, Dx(i) ) 

END DO 

RETURN 
END



G.4.4 HJDX2 
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CIO OR IO IOI IO IOI IOI IOI Ok III OR IRI I RR IOIO ICICI I ICR fei If ae ake ak ake aie ai ake ake ale aft ae ale ake ake ake ake ake ake 
* 

SUBROUTINE HJDX2( x, 
IMPLICIT NONE 

DOUBLE PRECISION 

r,DS, no,nv,nd,nj, Dz, Dx) 

ZERO 
PARAMETER ( ZERO=0.0d0 ) 

INTEGER 
DOUBLE PRECISION 

INTEGER 

DOUBLE PRECISION 

INTEGER 

no, nd, nj 

x( nj), r(€ nj, nj) 

xO, a 

1x2, isala 

*DAEXT(no,nv) DS, Dz(nd*2), Dx (nd*2) 
*DAINT(no,nv) Dy 

MESSSTST SS SSS SS SSS SSS SS SSS SS SSS SV SVS SSS SST SSSI VHS SSS SBS SSS SS STS SST SSS SSsSe=522 

DO i=i,nd 
CALL davar( Dz(i), ZERO, (i) ) 
CALL dader( (i), 

END DO 

DO i=1,nd*2 
CALL dacon( Dy, 

DO j=i,nd*2 
a = r(i,j) 
CALL dacma( Dy, 

END DO 
x0 = x(i) 
CALL dacad( Dy, 

END DO 

RETURN 
END 

DS, Dz(nd+i) ) 

ZERO) 

Dz(j),a, Dy ) 

xO, Dx(i) )
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G.4.5 HamSplit 

CORO IOI GIO IOI IOI i ak a aie akc af ok afk ie ofc ak CCC aC akc ake ope ae af ae ake oie of of ofc aC abe ke ake ae akc ake ake aie ai alk abe afc abe afc ake ake ae ake 
* 

SUBROUTINE HamSplit( Dh, Dz, no,nv,nd,nj, hi,h2, Dk) 
IMPLICIT NONE 

* 

INCLUDE *DA:daparm.inc/LIST’ 
INCLUDE ’DA:dapool.inc/LIST’ 

* 

DOUBLE PRECISION ZERO, OneHaf, TWO 
* PARAMETER ( ZERO=0.0d0, OneHaf=0.5d0, TWO =2.0d0 ) 

INTEGER no, nd, nj 
INTEGER i, j, nn(20) 
INTEGER iordk, isav 
INTEGER*4 ik, iki, ik2, jk 

INTEGER*4 inoh,invh,ipoh,ilmh,illh 

INTEGER*4 inok,invk,ipok,ilmk,iillk 

DOUBLE PRECISION a, hi(nj), h2(nj,nj) 

INTEGER 1x2 
INTEGER isala, isa2a, isa4¢a 

*DAEXT(no,nv) Dh, Dz(nd*2), Dk, Dtemp 

CALL dainf (Dh,inoh,invh,ipoh,ilmh,illh) 

CALL dainf (Dk, inok,invk,ipok,ilmk,illk) 

IF ( ( invh .EQ. 0) .OR. ( invk .EQ. 0 ) ) THEN 
PRINT *, ’ERROR: HAMSPLIT called with CA VECTOR’ 

CALL dadeb( 111, ’ERR hmsplt’, 1) 

END IF 

CALL dachk(Dh,inoh,invh, ’ > ,-1,-1,Dk,inok,invk) 

CHELELFFFEFEFF FEL ELEFEE FATE TEE FAFEEEEE EEE ETE FEET EEE Ett ETAT EFF ttt tt ttt 
C Find and subtract off the linear part of Dh 

eae ee eee mm cme woe mee es yO ee ee mp te ne RD rm me weet em me yO me See cies ee ee eee ee es ee ee ee ee ee 

CALL dacop(Dh,Dk) 
CALL dainf (Dk,inok,invk,ipok,ilmk,illk) 

DO 100 ik=ipok,ipokt+illk-1 

iki = 11(ik) 
ik2 = i12(ik) 

iordk = ieo( iai(iki) + ia2(ik2) ) 

CALL dancd( iki, ik2, nn) 

IF ( iordk .EQ. (1) ) THEN 
DO i=1,20 

IF ( nn(i) .EQ. (1) ) THEN 

hi(i) = cc(ik) 
GOTO 100 

END I 
END DO 

END IF 

100 CONTINUE
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DO i=1i,nd*2 

a = -hi(i) 
CALL dacma( Dk, Dz(i),a, Dk) 

END DO 

CHFFFAFEALEAALAFAFEAT EFA LEFF FEAL EFE FEE FEEAF EEF FEEEEEFE EEA EEE EEE FEF Et ttt 
C Find and subtract off the quadratic part of Dh. 
(on oe en nn nn nn nn nn nn nn nn nn ee nn ee ee nn en eee 

CALL dainf (Dk, inok,invk,ipok,ilmk,i11k) 

DO 200 ik=ipok,ipok+illk-1 

ik1 = i1(ik) 
1k2 = i2(ik) 

iordk = ieo( iait(iki) + ia2(ik2) ) 

CALL dancd( iki, ik2, nn) 

IF ( iordk .EQ. (2) ) THEN 
isav = 0 

DO i=1,20 

IF € nn(i) .EQ. (2) ) THEN 

h2(i,i) = cc(ik) 
GOTO 200 

ELSE IF ( nn(i) .EQ. (1)) THEN 

IF ( isav .EQ. (0) ) THEN 
isav =i 

ELSE 
h2( i, isav) = cc(ik) 
h2( isav, i) = cc(ik) 
GOTO 200 

END IF 
END IF 

END DO 
END IF 

200 CONTINUE 

DO i=i,nd*2 
DO j=i,nd*2 

a= “h2(i,j) 

CALL damul( Dz(i), Dz(j),  Dtemp ) 
CALL dacma( Dk, Dtemp,a, Dk ) 

END DO 
END DO 

DO i=1,nd*2 
h2(i,i) = TWO*h2(i,i) 

END DO 

CHEFFEEE FEES EEEE ALES EEEE TFET TEESE EEEEFEEEEFEEEE ESE HEF EEE HEHE EHH 
C Null out any {order} < (3) parts left by roundoff 

CALL dainf(Dk,inok,invk,ipok,ilmk,illk) 

jk = ipok - i 

DO 300 ik=ipok,ipok+illk-1 
iki ii (ik) 
1k2 i2(ik) h

o
u



214 

jiordk = ieo( iai(iki) + ia2(ik2) ) 

IF ( iordk .GE. (3) ) THEN 
jk = jk +1 
ce(jk) = ce(ik) 
i1(jk) = i1(ik) 
i2(jk) = i2Cik) 

END IF 

300 CONTINUE 
idall(Dk) = jk - ipok + 1 

IF ( idall(Dk) .GT. idalm(Dk) ) THEN 
PRINT*, ’ERROR in HAMSPLIT: max size of Dk exceeded’ 

CALL dadeb(1iii,’ERR HmSpl’,1) 
END IF 

RETURN 
* END 

COR oii tctotokdctok FIND OF FTL ei ote ok ot ote ate te ot ote te a oi ake ote 0 te oe ae ie tate i ai aie a ae ake ake
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G.5 The Matrix Module 

G.5.1 RJmul 

CoO OIC IOI IOI lO OR I GiGi iI IOIOI II ICI iii IR I He akc ak af ate aie aie ake ake ae aie ake ake ak oie 
* 

SUBROUTINE RJmul( fa,na, fj,nj, nd) 

DOUBLE PRECISION fa(na,na), fj(nj,nj) 

DO 20 j=1,nd 
DO 10 i=1,nd*2 

fjC i, j) = - faC i, j+nd) 
fj( i, j+nd) = fa( i, j) 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 

* 

G.5.2 MVmul 

COICO IOI SOI IOI IOI III I IOIGIO IOI IOI III IG GIGI IOI IOI IOI ICR IOI CI i ai ak ake 
*x 

SUBROUTINE MVmul( fa,na, vb,nb, vc,ne, nj) 

DOUBLE PRECISION ZERO 
PARAMETER ( ZERO=0.0d0 ) 

DOUBLE PRECISION a, fa(na,na), vb(nb), vc(nc) 

DO 20 i=1,nj 
a = ZERO 

DO 10 j=i,nj 

a=a+fa( i, j) * vb( j) 
10 CONTINUE 

ve( i) =a 

20 CONTINUE 

RETURN 
END



G.5.3 MMmul 
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COIR OR IO OI GO IO I ICI OI IOI IC CIC IC ICI akc ake ake ak ac ake ake ake ake te fe ake of ake ate dc ke oie kc ake ake ke ake ake ake 

SUBROUTINE MMmul( fa,na, 
* 

DOUBLE PRECISION 
PARAMETER 

DOUBLE PRECISION a, 

DO 30 i=1,nj 
DO 20 k=1,nj 

a = ZERO 
DO 10 j=1,nj 

a = 

10 CONTINUE 
fe(C i, kK) =a 

20 CONTINUE 
30 CONTINUE 

RETURN 
. END 

G.5.4 SympInv 

ZERO 
( ZERO=0.0d0 ) 

fb,nb, fc,nc, nj) 

fa(na,na), fb(nb,nb), fc(nc,nc) 

a+ faC i, j) * fb( j, k) 

CORR IOIOIIOR ICR OI OR IOI RII ik OIC HCC fC Cok 0 Cit aie ait aft ake ait aie ate ake fe ate ake a ake ake ake ate ake abe ae ake ake ate ake ate ate ade ate ak 
* 

SUBROUTINE SympInv( fa,na, fi,ni, nd) 
DOUBLE PRECISION fa(na,na), fi(ni,ni) 

DO 20 j=1,nd 
DO 10 i=1,nd 

fi( j; i) = fa( itnd, j+nd) 
fi j, itnd) = - faC i, j+nd) 
fi( jtnd, i) = - fa( itnd, j) 
fi( jtnd, itnd) = fa( i, jp 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 

* 

Coo gioiokdoiioiokde END OF FILE tk tate okte ok ok otek atoke ak i a ake teat aie ate ae ak 2k ke a ai
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G.6 The Tracking Module 

G.6.1 DFeval 

COO IO ko IOI OR IOI IOICIOIOK IO GR iia a IR II IC ICC 2 ak ai RR IO ROI He aie aie ote ake ic ait afc de ofc ake ake ate fe ae ote aie 

DOUBLE PRECISION FUNCTION DFeval( x0,Df, no,nv) 

CHEF AFEFLEEFE EEE FEEEFEE EEE EEEE EE EEFE PETE ALE ET TE EEE ETAT ETFS E Et ttt ttt 
C This function evaluates the result of the DA-vector Df acting 
C on the real vector x0 as a ‘‘trunctated power-series’’. 

ae 

IMPLICIT NONE 

DOUBLE PRECISION ZERO, ONE 
PARAMETER ( ZERO=0.0d0, ONE=1.0d0 ) 

INCLUDE ?’daparm.inc/LIST’ 
INCLUDE ’dapool.inc/LIST’ 

INTEGER no ,nv 
DOUBLE PRECISION x0 (nv) 

INTEGER i,j, jjCLNV) 
INTEGER if, Df,inof,invf,ipof,ilmf,illf 
DOUBLE PRECISION q 

CORO IGG iO OI IOI OI ICIOIOIG IOI IR IR IOI ICI Oi ik ak ke sick te ake ie ste ake aie ale ale aie ake ake ake ake ate ake af ae ae afc 

100 

CALL dainf(Df,inof ,invf,ipof,ilmf,illf) 

IF ( invf .EQ. (0) ) THEN 
PRINT *, ’ERROR, DFeval called with CA vector’ 

END TREE dadeb( 111, ’ERR DADER ’, (1)) 

DFeval = ZERO. 
DO 100 if=ipof, (ipof+illf-1) 

IF ( ieo( iai(il(€if)) + ia2(i2(if)) ) .GT. no ) GOTO 100 
CALL dancd( ii(if),i2(if), jj) 
q = ONE 
DO i=i,nv 

DO j=1,jj Ci) 

0 
DFeval = DFeval + gqxcc(if) 

CONTINUE 

RETURN 
END
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G.6.2. DFeval 

(CR R OK ROR I OR IO RI GI Gi keke ake ak aie fe ake aici ake ake ate ake ke ake aR oie ake ake ake ic aie ake aie ate fe afc aie afc aie aie ae ake ake ake afc ake ake ab abe ade ae ae ae ake aie ak ai ake 
* 

DOUBLE PRECISION FUNCTION DFdot( ina,inb, DotProd, DotByOrd ) 

SEEEEEEFEFE EEE FEE EEE EEPEEEE EEE EEEEE EE EEE FEF EFA FEE EEE FEF FEET EEE Ee ett 

of two DA vectors A and B; the resulting real scalar 

C 
C 
C This subroutine calculates the Euclidian "dot" product 
Cc 
C quantity is returned as the value of "DFdot". 
C 

Qa
 

INCLUDE *DA2:daimplct.inc/LIST’ 
INCLUDE ’DA2:daparm.inc/LIST’ 
INCLUDE ’DA2:dapool.inc/LIST’ 
INCLUDE *DA2:daname.inc/LIST’ 

INTEGER iord, ii, jj(20) 
DOUBLE PRECISION Prod, DotProd(*), DotBy0rd(*) 

CSS testa Sersasrter SesSes tees set Ste SSSsrsa reese stress sre stssrssrsse2sexe 

* 

CALL dainf( ina,inoa,inva,ipoa,ilma,illa) 

CALL dainf( inb,inob,invb,ipob,ilmb,illb) 

CALL dachk(ina,inoa,inva, ’ ? ,-1,-1,inb,inob, invb) 

DFdot 0.0d0 
DO i=i,inoa 

DotProd(i) 0.0d0 
0.0d0 DotByOrd (i) 

END DO 

IF ( (Cilla .EQ. 0) .OR. (illb .EQ. 0) ) RETURN 

ia 

ib 

jamax 

ibmax 

ipoa 
ipob 

ipoa + illa - 1 
ipob + illb - i 

ja iai(il(ia)) + ia2(i2(ia)) 
jb iai(ii(ib)) + ia2(i2(ib)) 

CEREEEEEFEEEEREEEEEEEEA EE EEEEE EAA EEA EEFEFEEEERE EEE EE EEF EF THEE ttt tte tt tsetse 
Compare DA ordering-indices ja and jb 

DO 100 WHILE ( ( ia .LE. iamax ) .AND. ( ib .LE. ibmax ) ) 
IF ( ja - jb ) 30, 20, 40 

CHAFEE ERLE FHEEFEEEFEEEEFELEEEEEEEEEEEFEEEAEAEEAEEEEEEEEAEEEEEEEEEEPE PE EEE 
C Both terms non-zero; accumulate product 

20 CONTINUE EE EEE 
iord = ieo(iai(ii(ia))+ia2(i2(ia))) 

IF ( iord .LE. nocut ) THEN 
Prod = cc(ia) * cc(ib) 
DFdot = DFdot + Prod 
DotByOrd(iord+1) = DotByOrd(iord+1) + Prod 

END IF 

ja =ia+1 
ib=ib+ti
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IF ( ia .GT. iamax ) GOTO 101 
IF ( ib .GT. ibmax ) GOTO 101 

ja = iai(it(ia)) + ia2(i2(ia)) 
jb = iai(ii(ib)) + ia2(i2(ib)) 

GOTO 100 

CHFFEFEA FEA EEAAALEFEFEAFEEFEEEA EFA FEA EE FEF EEAFEEEFEEAFEEEATEFAE EEE EEE ETS 
C ( ja < jb ) ==> next nonzero B farther than next nonzero A; 
C increment "ia" to catch up. 
C 

30 CONTINUE 
ja=iat i. . araa(a 
ja = iai(ii(ia)) + ia2(i2(ia)) 

GOTO 100 

CHEER TEA FEEL FEA FAFEA FEAF EAA LEFA FEA LEFEEE ET EEE FEEAFEHEAFEFEATE PFET E PETE ttt 
C ( ja > jb ) ==> next nonzero A farther than next nonzero B; 

increment "ib" to catch up. 
C 

40 CONTINUE 
i ib +1. (sacs 
jb = ial(il(ib)) + ia2(i2(ib)) 

GOTO 100 

CHEAFFEFLEFEAEFALA LEFF AFAFEEAFEF TEFL EF EE EEAFEEEFEFEE FEET EF EE EAH tt tt ttt 
End comparison block 

100 CONTINUE 

101 CONTINUE 
DotProd(1i) = DotBy0rd(1) 

DO n=2, (nocut+1) 
DotProd(n) = DotByOrd(n) + DotProd(n-1) 

END DO 

RETURN 
END 

COO ORO RO Om OR eG END OF FILE et toioiok okie toi got iiai toi tok i atk kok
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G.7 Gaussload 

COORG IOC OR IOI I ICI II OIG i Ok i I IR I RICHI iC aie ake ke ae ak akc at ak aie ake ate ok ate ae af of ai a akc afc ake ofc ate ake ate fe fk 
* 

SUBROUTINE GaussLoad( StDev, no,nv, DxMom ) 
IMPLICIT NONE 

INTEGER no, nv 

* DOUBLE PRECISION StDev(*) 

INTEGER j1,j2,j3,j34, jj), j 
INTEGER ni,n2,n3,n4 
DOUBLE PRECISION Xjj, GaussMom 

* 

INTEGER DxMom 
CALL DAall( DxMom,i, ’DxMom >, no,nv ) 

CS SS SSS SESS SS SSS SSE SESS SS SSSSSS SESS ESSE SERRE SEES SESE SSE SSS SESSSSESSESSES 

IF nv .GT. (20) ) THEN 
RINT *, ’ERROR IN GaussLoad, NV = ’,NV 

RETURN 
END IF 

* 

n4 = no 
DO 100 j4=0,n4,2 

n3 = n4- j4 

jj(4) = j4 
DO 100 j3=0,n3,2 

n2 = n3- j3 
jj(3) = j3 

DO 100 j2=0,n2,2 
ni = n2- j2 
jj(2) = j2 

DO 100 ji=0,n1,2 

jj(1) = ji 

Xjj = GaussMom( StDev, no,nv, jj ) 
CALL DApok( DxMom, jj, Xjj ) 

WRITE( 13, 2001 ) Xjj, (jjGj),j=1,4) 
2001 FORMAT( ix, 1pei3.6, 3x, 413 ) 

100 CONTINUE 

RETURN 
END 

Cop ICC IC CI OR IGOR IOI IK iI I GIGI IOI i I IIR i ak aioli ak io k ai ai ai ak ai ai ai ake ak keke ak ak aki ake afc ake ak 
* 

DOUBLE PRECISION FUNCTION GaussMom( StDev, no,nv, jj ) 
IMPLICIT NONE 

INTEGER no, nv, jj(*) 
DOUBLE PRECISION StDev(*) 

INTEGER i, j 
* DOUBLE PRECISION x 

OE
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GaussMom = 1.0d0 
DO j=i,nv 

IF ( mod(jj(j),(2)) .NE. (0) ) THEN 

GaussMom = 0.0d0 
RETURN 

x = StDev(j) * StDev(j) 

GaussMom = dfloat(i) * x * GaussMom 
END DO 

END DO 

RETURN 
END
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G.8 RayGen 

CORO II IOI OGIO OR OI IOI IO oR loi IO I IOI I I IC ici i ae aki teak ak i i af ake ie ake ae af ake ale akc ake af fe a aie ake aie eae ake 
* 

SUBROUTINE SigCalc( Xbuf ,Nbuf, Nv,Nrays, Xavg,Sigma ) 
IMPLICIT NONE 

DOUBLE PRECISION ZERO 
PARAMETER ( ZERO=0.0d0 ) 

INTEGER i,j.,n, Nbuf, Nv, Nrays 

DOUBLE PRECISION Xbuf (Nbuf ,Nv), Xavg(Nv), Sigma(Nv,Nv) 
* 
CSeetetSstrrStr ses as te SS SSs SS Ses Ses Sas See Sess Sess arsssesesstsssssrc= 

*« 

DO j=1,Nv 

Xavg(j) = ZERO 
DO i=1,Nv 

Sigma(i,j) = ZERO 
END DO 

END DO 

BO j=i, Nv 

Xavg(j) = Xavg(j) + Xbuf(n,j)/dfloat( Nrays ) 

DO i=1,Nv 
DO n=1,Nrays 

Sigma(i,j) = Sigma(i,j) + 
& (Xbuf(n,i)-Xavg(i)) * (Xbuf(n,j)-Xavg(j)) / dfloat(Nrays) 

END DO 

CIO IOI OIC OR IOI IO TOR I IOI IOI I I ICI I IOI IRI OI I i a ike Oi ak i iO it ie air ait ake ade aie 
*« 

SUBROUTINE RayGen( Xbuf,Nbuf, Nprim, Iseed ) 

IMPLICIT NONE 

INTEGER NV, Nmax 
PARAMETER ( NV=4, Nmax=4000 ) 

DOUBLE PRECISION ONE, TWO 
PARAMETER ( ONE=1.0d0, TWO=2.0d0 ) 

INTEGER Nbuf, Nprim 
INTEGER*4 teeed 
DOUBLE PRECISION Xbuf (Nbuf ,NV), Ybuf (Nmax,NV) 

INTEGER nh,nn,nnn, nsav 
DOUBLE PRECISION s 

DOUBLE PRECISION Sx, Spx, Pz 
COMMON /Beam/ Sx, Spx, Pz
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DOUBLE PRECISION Xscale,PXscale, Zscale,PZscale 

COMMON /Scales/ Xscale,PXscale, Zscale,PZscale 

A ee Se a YO YS eee SE ts ES Ses ED See OT ce A ee Simin ee SD ED Oe Se TS ie ES A ee Ome SD ee Oe cee Se Oe Oe me fee ae Se ee Oe on we ee aD Se om OD Oy OE ee oe ee es I 

CALL SphereGen( Ybuf,Nmax, Nprim, Iseed ) 

nnn = 0 
DO nn=1,Nprim 

munn = ann+} 
Xbuf (nnn ,1 = (Sx/Xscale) * Ybuf(nn,1) 
Xbuf (nnn, 2) = (Sx/Xscale) * Ybuf(nn,2) 
Xbuf (nnn, 3) = (Spx/PXscale) * Ybuf(nn,3) 
Xbuf(nnn,4) = (Spx/PXscale) * Ybuf(nn,4) 

nsav = nnn 

nnn = nnn+t 
Xbuf (nnn, 1 = - Xbuf (nsav,1) 
Xbuf (nnn, 2) = - Xbuf(nsav,2) 
Xbuf (nnn, 3) = Xbuf(nsav,3) 
Xbuf (nnn, 4) = Xbuf(nsav,4) 

= nnnt+ 
Xbuf (nnn, mmnty = Xbuf (nsav,1) 
Xbuf (nnn, 2) = Xbuf (nsav, 2) 
Xbuf (nnn ,3) = - Xbuf (nsav,3) 
Xbuf (nnn, 4) = - Xbuf(nsav,4) 

= nnnt 
Xbuf (nnn, nnnyy = - Xbuf(nsav,1) 
Xbuf (nnn, 2) = - Xbuf(nsav, 2) 
Xbuf (nnn ,3) = - Xbuf(nsav,3) 
Xbuf (nnn, 4) = - Xbuf (nsav,4) 

END DO 

RETURN 
END 

(C2 2k ok oe te ate fe a af te ke ake ai fe cake of ate ae afc ake ic ake ake ate a ake ae ate af ake ake ae af afc ake af ake ak ae ake fe akc ab ake ake abe abc ake fe at afc ate tc afc ake akc ake ait ak ake ake fe af afc ate ake ake af ake ae 
a 

SUBROUTINE SphereGen( Ybuf,Nbuf, Nrays, Iseed) 
IMPLICIT NONE 

INTEGER NV, Nmax 

PARAMETER ( NV=4, Nmax=4000 ) 

DOUBLE PRECISION ZERO, ONE, TWO, HALF, RO 
PARAMETER ( ZERO=0.0d0, ONE=1.0d0, TWO=2.0d0, HALF=0.5d0 ) 
PARAMETER ( RO=3.0d0 ) 

INTEGER Nbuf, Nrays 

DOUBLE PRECISION Zbuf (Nmax,NV), Ybuf (Nbuf ,NV) 

INTEGER*4 Iseed 
DATA Tseed/-123454321/ ! used when routine autoinit’d 
SAVE Iseed i used when routine autoinit’d 

INTEGER i,j,k, n, nout, Itrial 

DOUBLE PRECISION a, z(NV), rho, Rmax 
DOUBLE PRECISION T(NV,NV), D(NV), ECNV)
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DOUBLE PRECISION <Xavg(NV), Sigma(NV,NV) 

DOUBLE PRECISION S(NV,NV) 

a ee eee et ee ee oe oe ee oe ee ae oe ee oe ee ee ee ee ee eS a ee ee ee oe ee ee ae ee ee ae ee ee a ee a a et Se a ee a Se ee eS eS ee oe a a a 

Itrial = 
nout = 999 | 

DO_WHILE ( ( Itrial ,LT. (20) ) .AND. ( nout .GT. (0) ) ) 
Itrial = Itrial + 1 
DO j=1,NV 

Xavg(j) = ZERO 
END DO 
DO n=1,Nrays 

CALL MakeRay( Iseed,RO, z ) 
a = ZERO 

DO j=1, NV 
a=a+ z(j)*Xavg(j) 

END DO 
DO j=1,NV 

IF ( a .LT. (ZERO) ) THEN 
zbuf(n,j) = z(j) 

Xavg(j) = Xavg(j) + z(j) 
ELSE 

- z(j) 
Xavg(j) - z(j) 

N oC
 

c Hy
 

o~
 

-o
 

qo
. 

es
 

CT 

bg
 if 

nout = 999 
DO WHILE( ( k .LT. (Nrays/4) ) .AND. ( nout .GT. (0) ) ) 

k =k +1 
CALL SigCalc( Zbuf ,Nmax, NV,Nrays, Xavg,Sigma ) 

DO j=1,NV 
DO n=1,Nrays 

Zbuf(n,j) = Zbuf(n,j) - Xavg(j) 
END DO 
DO i=1,NV 

T(i,j) = Sigma(i,j) 
END DO 

END DO 

CALL tred2( T, NV,NV, D,E ) 
CALL tqli( D,E, NV,NV, T ) 

DO j=1,NV 
IF ( (D(j).GT.TWO) .OR. (D(j).LT.HALF) ) THEN 

PRINT *, ’Failure; restart at Itrial = ’ ,Itrial 
nout=999 
GOTO 100 ' Restart 

END VF 

Rmax = ZERO 
nout = 0 

DO n=1,Nrays 

DO j=1,NV 

a = ZERO 
rho = ZERO 
DO i=1,NV
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a= 2 + Zbuf(n,i)*T(i,j) 
END D 
Ybuf (n, j) = a / sqrt( D(j) ) 
rho = rho + Ybuf(n,j)*Ybuf(n,j) 

END DO 
Rmax = max( rho, Rmax) 
iF ( rho .GT. ROFRO ) THEN 

out = nout + 
CALL MakeRay ( Iseed, RO, z ) 
DO j=1,NV 

Zbuf (n, j) = z(j) 
END _DO 

END IF 
END DO ! n=1,Nrays 

END DO ! WHILE(C (k.LT.(10)). AND. (nout.GT.(0)) ) 

IF ( (k.EQ.(Nrays/4)).AND.(nout.NE.(0)) ) THEN 
PRINT *, ’bad rays after (Nrays/4) sweeps; restarting’ 

END 
100 CONTINUE 

END DO 

PRINT *, ’ERROR in SphereGen: failure after Imax Restarts’ 

STOP 
END 

Co OI i iO loi iO ICI IOI Ii iii I Ck aiok ko ake ake ikea ake a aii te ae ate ake ate ake ake ate abe te ic ait aie abe ake ofc ae ake fe ote ai afc ale ade ake ake 
* 

SUBROUTINE MakeRay( Iseed,RO, z ) 
IMPLICIT NONE 

DOUBLE PRECISION ONE, TWO 
PARAMETER ( ONE=1.0d0, TWO=2.0d0 ) 

INTEGER*4 Iseed 
DOUBLE PRECISION RO, z(*) 

INTEGER k 
DOUBLE PRECISION a, u,v, r,p, Umin, RanO, rho 

DOUBLE PRECISION Pi, Pi2, HalfPi 
COMMON /PiBlok/ Pi, Pi2, HalfPi 

CS SSR SSS SS SSeS sree SSS See SSeS SSS SSS SS SSS SSSR SS SS sss Sess ss Ses ssessSesrsrss 

Umin = exp(-R0O*R0/TWO) 

= Pi2 * RanO(Iseed) 
= Pi2 * RanO(Iseed) 

= sqrt( - TWO * log( Umin + (ONE-Umin)*Ran0( Iseed 
= sqrt( - TWO * log( Umin + (ONE-Umin)*Ran0O( Iseed 
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