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ABSTRACT 

 

 

Application of composite materials to structures has presented the need for engineering analysis 

and modeling to understand the failure mechanisms.  Unfortunately, composite materials, 

especially in a tubular geometry, present a situation where it is difficult to generate simple stress 

states that allow for the characterization of the ply- level properties.  The present work focuses on 

calculating the mechanical characteristics, both on a global and local level, for composite 

laminate tubes.  Global responses to axisymmetric test conditions (axial tension, torsion, and 

internal pressure) are measured on sections of the material.  New analysis techniques are 

developed to use the global responses to calculate the ply level properties for tubular composite 

structures.  Error analyses are performed to illustrate the sensitivity of the nonlinear regression 

methods to error in the experimental data.  Ideal test matrices are proposed to provide the best 

data sets for improved accuracy of the property estimates. With these values, the stress and strain 

states can be calculated through the thickness of the material, enabling the application of failure 

criteria, and the calculation of failure envelopes.  



 ii 

ACKNOWLEDGEMENTS 

 

 

The author wishes to acknowledge those that have been involved with this process: 

 

• Dr. Kenneth Reifsnider, my advisor at the completion of this degree, for all his time, 

advice, and patience over the last several years. 

• Dr. William Curtin, for serving as my advisor when I entered into the PhD program and 

getting me started on this project. 

• Dr. Scott Case, for his help with all of my work, answering numerous questions, and 

taking the time to serve on my committee. 

• Dr. Michael Hyer, Dr. Jack Lesko, and Dr. Steve Kampe – for their time and effort as 

members of my committee. 

• Xinyu Huang, for his contribution on the McDermott filter research. 

• Mac McCord, for making many of the test fixtures, which worked well even with the 

short notice given and without a good explanation of what was needed. 

• Dr. Howard Halverson and Blair Russell, for their help in developing my experimental 

procedures and practices. 

• Shelia Collins, Beverly Williams, Jan Doran, and the other departmental secretaries for 

their help, organization, and advice on how everything is done within the departments. 

• Dr. Eric Johnson, for the use of the Aerospace Department’s MTS frame that simplified 

testing and data analysis. 

• Dr. Ted Bessman and Kent Probst, for providing the oxide/SiC tubes from Oak Ridge. 

• Bill Patterson and Honeywell Advanced Composites, for supplying the SiC/SiC 

materials. 

• Dr. Rich Wagner and McDermott Technologies, for supplying the hot gas candle filters. 

• Dave Simmons and the staff of the machine shop, for the high quality work on the 

loading fixtures used in this research. 



 iii 

• Dr. Walter H. Carter, my father, for his help with the statistical analyses, and the constant 

support and motivation he has provided. 

• Judy Carter, my mother, for her incredible patience hearing my father and I talk 

incessantly about my research, and the love and support she has provided. 

• The students of the MRG, for their help and company (and lunch) over the last several 

years. 

• Niki Parker and my friends at Virginia Tech for providing a lot of good times and putting 

up with so much. 

• Mike Whaley and Mark Wilson, for giving me the opportunity to have a lot of fun and to 

tend bar in my spare time at TOTS. 

 



 iv 

TABLE OF CONTENTS 

 
1 Introduction.............................................................................................................. 1 

1.1 Objectives..................................................................................................2 
1.2 Materials...................................................................................................3 

1.2.1 McDermott Technologies Hot Gas filter....................................3 
1.2.2 Fabrication of the McDermott Technologies’ Hot Gas Filter..9 
1.2.3 Al2O3/SiC Tube from ORNL.....................................................11 
1.2.4 SiC/SiC Tube from Honeywell..................................................15 
1.2.5 AISI Type 304 Stainless Steel (Control)...................................15 

1.3 Geometric Conventions .........................................................................16 
1.4 Selection of Test Methods......................................................................18 
1.5 Analytical models...................................................................................19 

1.5.1 General Elasticity Solution (“Forward” Solution)..................20 
1.5.2 Degenerate Solutions .................................................................22 

1.6 Inverse Solution......................................................................................24 
2 Experimental Procedures...................................................................................... 30 

2.1 Test Facilities..........................................................................................30 
2.2 Test Procedures......................................................................................31 

2.2.1 MTI Hot Gas Filter Axial Tests................................................31 
2.2.2 Al2O3/SiC from ORNL and Control Sample Axial Tests .......33 
2.2.3 Honeywell Axial Tests................................................................34 
2.2.4 Internal Pressure Testing ..........................................................37 

2.3 Data Reduction.......................................................................................44 
2.3.1 Property calculation...................................................................47 

3 Experimental Results............................................................................................. 48 
3.1 McDermott Technologies Candle Filter...............................................48 

3.1.1 Internal Pressure Tests..............................................................54 
3.2 Fossil SiC/SiC materials........................................................................58 

3.2.1 Internal Pressure Tests Results ................................................66 
3.3 Honeywell Sample..................................................................................67 
3.4 Control Sample.......................................................................................70 
3.5 Discussion of Experimental Results .....................................................73 

4 Forward and Inverse Solutions............................................................................. 75 
4.1 Inverse Solution......................................................................................76 

4.1.1 Verification of Inversion Methods............................................81 
4.2 Application to Experimental Results ...................................................85 

4.2.1 McDermott Technologies Hot Gas Filter.................................87 
4.2.2 ORNL Al 203/SiC Tubes..............................................................90 
4.2.3 Honeywell SiC/SiC Tubes..........................................................94 
4.2.4 Control Sample...........................................................................96 

4.3 Error Sensitivity.....................................................................................97 
4.3.1 Proportional Error.....................................................................98 
4.3.2 Additive or Noise Error...........................................................102 
4.3.3 Effect of error on estimating the different constants............106 



 v 

4.4 Discussion of the Analytical Results...................................................113 
4.5 Application to Failure Envelopes .......................................................116 

5 Summary and Conclusions.................................................................................. 120 
5.1 Summary of Experimental Results.....................................................120 
5.2 Summary of Nonlinear Regression Analysis.....................................120 
5.3 Conclusions ...........................................................................................121 
5.4 Future Work.........................................................................................122 

6 References............................................................................................................. 124 
7 Appendix A – Elasticity Solutions ...................................................................... 129 
8 Appendix B – Elastic Response for Varied Elastic Properties ........................ 133 

8.1 Thin Tube 1 ..........................................................................................134 
8.2 Thick Tube 1.........................................................................................137 
8.3 Thin Tube 2 ..........................................................................................139 
8.4 Thick Tube 2.........................................................................................142 

9 Appendix C.  Levenberg-Marquardt Inversion – Cij....................................... 145 
9.1 Inversion.cpp........................................................................................145 
9.2 Inversion.h............................................................................................162 
9.3 Elastic Solution.cpp..............................................................................163 
9.4 Elastic Solution.h..................................................................................180 
9.5 Data_Input.cpp.....................................................................................180 
9.6 Data_Input.h.........................................................................................185 
9.7 Matrix.cpp ............................................................................................186 
9.8 Matrix.h ................................................................................................186 
9.9 Jacobian.cpp.........................................................................................187 
9.10 Jacobian.h.............................................................................................189 
9.11 Input Files.............................................................................................189 

9.11.1 A typical load program............................................................189 
9.11.2 A typical strain file...................................................................189 
9.11.3 A typical input file....................................................................190 

10 Appendix C.  Levenberg-Marquardt Inversion – Ei......................................... 192 
10.1 Inversion.cpp........................................................................................192 
10.2 Inversion.h............................................................................................208 
10.3 Elastic Solution.cpp..............................................................................209 
10.4 Elastic_Solution.h.................................................................................227 
10.5 Data_Input.cpp.....................................................................................227 
10.6 Data_Input.h.........................................................................................232 
10.7 Matrix.cpp ............................................................................................232 
10.8 Matrix.h ................................................................................................233 
10.9 Jacobian.cpp.........................................................................................233 
10.10Jacobian.h.............................................................................................235 
10.11Input Files.............................................................................................235 

10.11.1 A typical load program.............................................235 
10.11.2 A typical strain file....................................................236 
10.11.3 A typical input file.....................................................236 

11 Appendix E.  Nelder-Mead Simplex Method.................................................... 239 
11.1 Inversion.cpp........................................................................................239 



 vi 

11.2 Inversion.h............................................................................................248 
11.3 Elastic_Solution.cpp.............................................................................249 
11.4 Elastic_Solution.h.................................................................................266 
11.5 Data_Input.cpp.....................................................................................267 
11.6 Data_Input.h.........................................................................................272 
11.7 Matrix.cpp ............................................................................................272 
11.8 Matrix.h ................................................................................................273 
11.9 Jacobian.cpp.........................................................................................273 
11.10Jacobian.h.............................................................................................274 
11.11Pmatrix.dat ...........................................................................................274 

12 Appendix E.  Forward Solution.......................................................................... 277 
12.1 Forward_Solution.cpp.........................................................................277 
12.2 Forward_Solution.h.............................................................................282 
12.3 Elastic_Solution.cpp.............................................................................282 
12.4 Elastic_Solution.h.................................................................................300 
12.5 Data_Input.cpp.....................................................................................301 
12.6 Data_Input.h.........................................................................................304 
12.7 Matrix.cpp ............................................................................................305 
12.8 Matrix.h ................................................................................................305 

13 Vita........................................................................................................................ 306 
 



 vii 

LIST OF FIGURES 

Figure 1-1.  Schematic of a second generation PFBC facility (note the different Hot Gas Cleanup 
areas are highlighted) [Ref. #12, Smith and Ahmadi, 1998 – Reprinted with permission 
from Elseveir Science Publishing]. ......................................................................................... 5 

Figure 1-2.  Schematic of Candle filter assembly [Ref. #12, Smith and Ahmadi, 1998 – Reprinted 
with permission from Elseveir Science Publishing]. .............................................................. 6 

Figure 1-3. Filter operation and a back pulse cleaning cycle.  A)Clogged Filter.  B)Back Pulse. . 7 
Figure 1-4.  Relationship for ply angle and winding parameters.................................................. 10 
Figure 1-5:  Cross section of sample CVI 1173............................................................................ 14 
Figure 1-6.  Global Coordinate System ........................................................................................ 17 
Figure 1-7.  Material Coordinate System...................................................................................... 18 
Figure 1-8. Schematic of nonlinear regression analysis ............................................................... 25 
Figure 1-9.  Schematic of the Nelder-Mead Simplex Method for two variables.   A) Potential 

actions of the simplex (Table 1-XI). B) Movement of the simplex through 2-D space. ...... 28 
Figure 2-1. McDermott filter axial test sample............................................................................. 32 
Figure 2-2.  Sample CVI 1216 axial sample ................................................................................. 33 
Figure 2-3.  Schematic of ORNL and Control axial samples ....................................................... 34 
Figure 2-4. Top view of Honeywell loading fixture ..................................................................... 35 
Figure 2-5.  Cut-away of the Honeywell fixture ........................................................................... 35 
Figure 2-6.  Photographs of the Honeywell fixture ...................................................................... 36 
Figure 2-7.  Honeywell axial sample mounted in loading fixture ................................................ 36 
Figure 2-8:  Schematic of internal pressure test with a cut-away................................................. 37 
Figure 2-9.  Compressive stress/strain curve for the Silastic plug.  The curved line is the 

enginerring stress/strain and the other line is the true stress/strain plot with a best- fit line.  
The equation beside the best- fit line is its slope and R2 value. ............................................. 39 

Figure 2-10.  Results from the internal pressure test for the control sample.  The different lines 
represent the pressure values found using the Linear Elastic, Hyper-Elastic and Lame 
cylinder solutions .................................................................................................................. 41 

Figure 2-11. Internal pressure test for the McDermott filter ........................................................ 42 
Figure 2-12.  Schematic of the elastic off-axis loading response for the tubes. ........................... 44 
Figure 2-13.  Axial tension results from 4 locations on the sample ............................................. 45 
Figure 2-14.  Best fit lines of the data in Figure 2-13 with the average result ............................. 45 
Figure 2-15. Axial strain measurements from the four gages around a McDermott filter sample.

............................................................................................................................................... 46 
Figure 2-16.  The averaged values for the axial strain values in Figure 2-15............................... 46 
Figure 3-1.  Typical axial tension/compression test results for McDermott filter ........................ 49 
Figure 3-2.  Typical torsion test result for the McDermott filter .................................................. 49 
Figure 3-3. Axial stiffness after exposure to simulated back pulses............................................. 51 
Figure 3-4. Torsional stiffness after exposure to simulated back pulses ...................................... 51 
 Figure 3-5. Tensile strength with back pulse exposure.  The square data point is the sample that 

was not exposed to high temperature. ................................................................................... 52 
Figure 3-6.  Tensile strength plot for Sample 7-6-16-C.  Sample strain is calculated using a gage 

length of  10.2 cm. ................................................................................................................ 53 
Figure 3-7.  Sample 7-6-16-C after tensile strength test. .............................................................. 54 
Figure 3-8.  Typical internal pressure test for the McDermott filters ........................................... 55 



 viii 

Figure 3-9.  Burst pressures vs. sample length for the internal pressure tests of the McDermott 
filters.  The round data points were found using a water filled bladder (Alvin, et al. [36]). 56 

Figure 3-10.  Burst pressure vs. back pulse cycle count for the 7.6cm samples........................... 56 
Figure 3-11.  Failure of filter during an internal pressure burst test.  A and B) Shear band 

formation  C) Large scale deformation................................................................................. 57 
Figure 3-12. Schematic of shear band evolution.  Normal tow structure (left) and shear band 

deformation (right). ............................................................................................................... 57 
Figure 3-13: Typical tensile test for sample CVI 1219................................................................. 59 
Figure 3-14.  Typical torsion test for sample CVI 1219 ............................................................... 59 
Figure 3-15: Stress/ Axial Strain curves for tensile strength tests ................................................ 61 
Figure 3-16.  Tensile Strength Plot for CVI 1219. ....................................................................... 61 
Figure 3-17.  Load Profile for CVI 1216 ...................................................................................... 62 
 Figure 3-18.  Strain response for the tension only portion of Figure 2-6 – sample did not fail .. 63 
Figure 3-19.  Strain response for the torque ramp with 246kN load – sample did not fail .......... 63 
Figure 3-20.  Grip induced failure of CVI 1173-1........................................................................ 64 
Figure 3-21:  Fractured tensile strength specimen CVI 1173-1.................................................... 65 
Figure 3-22.  Sample CVI 1219 with large amounts of fiber pullout and delamination .............. 65 
Figure 3-23.  Sample CVI 1219 failure surface with pullout ....................................................... 65 
Figure 3-24.  Measured strain vs. internal pressure for an internal pressure test – the nonlinear 

behavior above 10 MPa is due to plug failure. ..................................................................... 66 
Figure 3-25.  Typical Axial tension test for the SiC/SiC tubes from Honeywell ......................... 68 
Figure 3-26.  Typical torsion response for the SiC/SiC tube from Honeywell............................. 68 
Figure 3-27.  Internal pressure test for Honeywell material ......................................................... 69 
Figure 3-28.  Tensile strength test for the Honeywell sample.  The sample did not fail – at the 

maximum load the sample pulled out to the loading fixture ................................................ 70 
Figure 3-29.  Axial tension test for AISI Type 304 steel.............................................................. 71 
Figure 3-30.  Axial torsion test results for AISI Type 304 steel................................................... 72 
Figure 3-31.  Internal pressure results for AISI Type 304 steel.................................................... 72 
Figure 4-1. Schematic of Inverse solution procedure ................................................................... 78 
Figure 4-2.  Sum of Square Errors for Tube 1 for the two different Newtonian methods............ 83 
Figure 4-3.  Sum of Square Errors for Tube 2 for the two different Newtonian methods............ 84 
Figure 4-4.  The error function for Thick Tube 2 plotted against the value of the multiplier on the 

elastic properties (2 = 2*Ei, i=1..7)....................................................................................... 87 
Figure 4-5.  Axial tension test response – experimental data are represented by data points and 

the model predictions are lines.............................................................................................. 89 
Figure 4-6.  Internal pressure test response – experimental data are represented by data points 

and the model predictions are lines....................................................................................... 89 
Figure 4-7.  Axial torsion test response – experimental data are represented by data points and 

the model predictions are lines.............................................................................................. 90 
Figure 4-8.  Axial tension and compression results – the data points are the experimentally 

observed values and the lines are the model predictions ...................................................... 93 
Figure 4-9.  Axial torsion results– the data points are the experimentally observed values and the 

lines are the model predictions .............................................................................................. 93 
Figure 4-10.  Internal pressure results – the data points are the experimentally observed values 

and the lines are the model predictions ................................................................................. 94 



 ix 

Figure 4-11.  Effect on the Hoop Strain response by variations to E1 and E3 for the Thick Tube 2 
Load Condition 5 (Pi, Fx, Tx simultaneously). .................................................................. 110 

Figure 4-12.  Variation in the properties given error in the strain values ................................... 111 
Figure 4-13. Variation to the strain responses with changes to the elastic properties.  All values 

are for the hoop strain response to load condition #5, except the shear modulus line is for 
the shear strain response. .................................................................................................... 112 

Figure 4-14.  Variation in the strain response with changes to the elastic properties for Thick 
Tube 2.  The E3 line with the large response is for a loading condition of combined internal 
and external pressure........................................................................................................... 113 

Figure 4-15.  Tsai-Hill failure envelope for the McDermott filter ............................................. 119 



 x 

LIST OF TABLES 

 

Table 1-I. Operating Condition for Hot Gas Filter[8,9].................................................................. 7 
Table 1-II.  Dimensions of the McDermott Technologies hot gas filter samples ........................... 9 
Table 1-III.  Reported properties from previous tube samples ..................................................... 12 
Table 1-IV.  Properties of the Nextel/SiC composite tubes .......................................................... 13 
Table 1-V.  Dimensions of the samples ........................................................................................ 14 
Table 1-VI.  Geometry of the Honeywell SiC/SiC material......................................................... 15 
Table 1-VII.  Typical Room Temperature Properties of the Honeywell SiC/SiC material.......... 15 
Table 1-VIII.  Chemical composition of AISI Type 304 Steel..................................................... 16 
Table 1-IX.  Mechanical properties of AISI Type 304 Steel........................................................ 16 
Table 1-X.  Geometry of the control sample tube......................................................................... 16 
Table 1-XI.  The different potential actions of the Nelder-Mead method for the simplex 

illustrated in Figure 1-9 A. .................................................................................................... 28 
Table 3-I.  Axial and shear stiffness for the McDermott filter samples ....................................... 50 
Table 3-II.  Slopes of the strain responses for different loading conditions – average values for 

strain gage data...................................................................................................................... 50 
Table 3-III.  Slopes of the pressure/strain response and the Lamé cylinder estimate of the hoop 

stiffness ................................................................................................................................. 55 
Table 3-IV: Mechanical Properties of the Nextel/SiC composite tubes ....................................... 60 
Table 3-V.  Slopes of the best-fit data for CVI 1219 .................................................................... 66 
Table 3-VI.  Elastic properties for the Honeywell materials ........................................................ 67 
Table 3-VII.  Slopes of the strain responses for the control material ........................................... 71 
Table 4-I.  Elastic Constants for a S-2/Epoxy composite ............................................................. 81 
Table 4-II.  Geometric Constants for two fictitious composite tubes ........................................... 81 
Table 4-III.  Loading Conditions for the tubes ............................................................................. 82 
Table 4-IV.  Strain response for the tubes using the loading conditions from Table 4-III........... 82 
Table 4-V. Results for Tube 1.  LM – Levenberg-Marquardt, NM – Nelder-Mead .................... 83 
Table 4-VI.  Results for Tube 2, LM – Levenberg-Marquardt, NM – Nelder-Mead ................... 83 
Table 4-VII.  The two solutions for Tube 2 found using different start values ............................ 85 
Table 4-VIII.  Geometric inputs for MTI...................................................................................... 88 
Table 4-IX.  Experimental Applied Loads and Measured Strains for the MTI materials ............ 88 
Table 4-X.  Solutions for the McDermott Hot Gas Filter 7-6-16 with 105 simulated back-pulse 

cleaning cycles. ..................................................................................................................... 88 
Table 4-XI.  Geometric inputs for CVI 1219................................................................................ 91 
Table 4-XII.  Experimental Applied Loads and Measured Strains............................................... 91 
Table 4-XIII.  Input and output values for CVI 1219 ................................................................... 92 
Table 4-XIV.  Geometric inputs for the Honeywell tubes ............................................................ 94 
Table 4-XV.  Experimental Applied Loads and Measured Strains for the Honeywell materials. 95 
Table 4-XVI.  Results for the Honeywell tubes............................................................................ 95 
Table 4-XVII.  Results for Honeywell tubes.  Set 1 NAP =7, Set 2 and 3 NAP=4 (In-plane values 

only) ...................................................................................................................................... 96 
Table 4-XVIII.  Geometric inputs for the Control Sample ........................................................... 96 
Table 4-XIX.  Experimental Applied Loads and Measured Strains for the Control Sample ....... 97 



 xi 

Table 4-XX.  Results for the control sample Set 1 NAP =7, Set 2 NAP=4 (In-plane values only).
............................................................................................................................................... 97 

Table 4-XXI. Strain values for Tube 1 with 0.1% random error.................................................. 99 
Table 4-XXII. Strain values for Tube 1 with 1.0% random error................................................. 99 
Table 4-XXIII. Strain values for Tube 1 with 10.0% random error ........................................... 100 
Table 4-XXIV. Strain values for Tube 2 with 0.1% random error ............................................. 100 
Table 4-XXV. Strain values for Tube 2 with 1.0% random error .............................................. 100 
Table 4-XXVI. Strain values for Tube 2 with 10.0% random error ........................................... 101 
Table 4-XXVII.  Effect of the different forms of Error on the property estimate using LM-Ei . 101 
Table 4-XXVIII.  Effect of the different forms of error on the property estimates using LM-Cij

............................................................................................................................................. 102 
Table 4-XXIX.  Inversion results using a larger data set, 100 Loading Conditions – LM-Ei .... 102 
Table 4-XXX.  Strain values for Tube 1 with δ=10-6 ................................................................. 103 
Table 4-XXXI. Strain values for Tube 1 with δ=10-5................................................................. 103 
Table 4-XXXII. Strain values for Tube 1 with δ=10-4................................................................ 104 
Table 4-XXXIII. Strain values for Tube 2 with δ=10-6 .............................................................. 104 
Table 4-XXXIV. Strain values for Tube 2 with δ=10-5 .............................................................. 104 
Table 4-XXXV. Strain values for Tube 2 with δ=10-4 ............................................................... 105 
Table 4-XXXVI.  The effects of the different levels of error on the estimates using LM-Ei ..... 105 
Table 4-XXXVII.  The effects of the different levels of error on the estimates using LM-Cij... 105 
Table 4-XXXVIII Solutions found using larger data sets (100 Load Conditions) Using LM-Ei106 
Table 4-XXXIX.  Geometry of the four different composite simulations.................................. 107 
Table 4-XL.  Applied loads for each tube – thick values calculated to generate the same stress 

state as for the thin tubes..................................................................................................... 107 
Table 4-XLI.  Strain response for the different loading conditions for Thin Tube 1 ................. 108 
Table 4-XLII.  Strain deviation from the Standard Response for the thin Tube 1 with E1= E1/2

............................................................................................................................................. 108 
Table 4-XLIII.  Strain deviation from the Standard Response for the thin Tube 1 with E3=E3/2

............................................................................................................................................. 108 
Table 4-XLIV.  Strain deviation from the Standard Response for the Thick Tube 2 with E3=E3/2

............................................................................................................................................. 109 
Table 4-XLV.  Strain deviation from the Standard Response for the Thick Tube 2 with E3=2*E3

............................................................................................................................................. 110 
Table 4-XLVI.  The elastic properties of the McDermott filter material ................................... 117 
Table 4-XLVII.  The experimental failure loads and resulting stress states at the outer surface of 

the McDermott filter ........................................................................................................... 118 
Table 4-XLVIII.  Tsai-Hill strength values for the McDermott filter ........................................ 118 
Table 8-I.  Elastic Constants for the composite material............................................................ 133 
Table 8-II.  Geometry of the four different composite simulations ............................................ 133 
Table 8-III.  Applied loads for each tube – thick values calculated to generate the same stress 

state as for the thin tubes..................................................................................................... 134 
Table 8-IV.  Strain Response for the different loading conditions for Thin Tube 1................... 134 
Table 8-V.  Strain deviation from the Standard Response for E1/2 ........................................... 134 
Table 8-VI.  Strain deviation from the Standard Response for E2/2 .......................................... 135 
Table 8-VII.  Strain deviation from the Standard Response for E3/2......................................... 135 
Table 8-VIII.  Strain deviation from the Standard Response for G12/2 ..................................... 135 



 xii 

Table 8-IX.  Strain deviation from the Standard Response for nu12/2 ...................................... 136 
Table 8-X. .  Strain deviation from the Standard Response for nu13/2 ...................................... 136 
Table 8-XI.  Strain deviation from the Standard Response for nu23/2 ...................................... 136 
Table 8-XII.  Strain Response for the different loading conditions for Thick Tube 1 ............... 137 
Table 8-XIII.  Strain deviation from the Standard Response for E1/2 ....................................... 137 
Table 8-XIV.  Strain deviation from the Standard Response for E2/2 ....................................... 137 
Table 8-XV.  Strain deviation from the Standard Response for E3/2 ........................................ 138 
Table 8-XVI.  Strain deviation from the Standard Response for G12/2..................................... 138 
Table 8-XVII.  Strain deviation from the Standard Response for nu12/2 .................................. 138 
Table 8-XVIII.  Strain deviation from the Standard Response for nu13/2 ................................. 139 
Table 8-XIX.  Strain deviation from the Standard Response for nu23/2.................................... 139 
Table 8-XX.  Strain Response for the different loading conditions for Thin Tube 2 ................. 139 
Table 8-XXI.  Strain deviation from the Standard Response for E1/2 ....................................... 140 
Table 8-XXII.  Strain deviation from the Standard Response for E2/2 ...................................... 140 
Table 8-XXIII.  Strain deviation from the Standard Response for E3/2 .................................... 140 
Table 8-XXIV.  Strain deviation from the Standard Response for G12/2 .................................. 141 
Table 8-XXV.  Strain deviation from the Standard Response for nu12/2 .................................. 141 
Table 8-XXVI.  Strain deviation from the Standard Response for nu13/2................................. 141 
Table 8-XXVII.  Strain deviation from the Standard Response for nu23/2 ............................... 142 
Table 8-XXVIII.  Strain Response for the different loading conditions for Thick Tube 2 ........ 142 
Table 8-XXIX.  Strain deviation from the Standard Response for E1/2 .................................... 142 
Table 8-XXX.  Strain deviation from the Standard Response for E2/2...................................... 143 
Table 8-XXXI.  Strain deviation from the Standard Response for E3/2 .................................... 143 
Table 8-XXXII.  Strain deviation from the Standard Response for G12/2 ................................ 143 
Table 8-XXXIII.  Strain deviation from the Standard Response for nu12/2 .............................. 144 
Table 8-XXXIV.  Strain deviation from the Standard Response for nu13/2 .............................. 144 
Table 8-XXXV.  Strain deviation from the Standard Response for nu23/2 ............................... 144 



 1

1 Introduction 

 

Utilization of materials for any application requires knowledge of the mechanical properties, 

more specifically the engineering material constants describing the elastic behavior of the 

material.  For isotropic materials, only three independent engineering constants (E, G or ν, and 

α) are needed to describe the elastic response of the material to mechanical and thermal loads.  

With the advent of more advanced composite materials, many of which cannot be described as 

isotropic, more constants are needed to describe the behavior.  For most composite materials, 12 

engineering constants (E1, E2, E3, G12, G13, G23, ν12, ν13, ν23, α1, α2, and α3) are required.   

Measuring these values requires the testing of numerous samples with several different test 

procedures.  These procedures are designed to generate a constant or nearly constant state of 

stress throughout the material, reducing the number of elastic constants needed to describe the 

deformation for the given loading condition to the smallest number possible.  This is usually 

done by using simple geometries, usually planar samples, to measure 1 to 3 engineering 

constants simultaneously (as in an longitudinal modulus test – E1, ν12, and ν13 can be measured 

simultaneously).   In an ideal situation, with the proper test matrix and procedures, all the 

material constants can be calculated, given enough tests and sample materials. 

A problem arises if the situation is not ideal, and, for example, the samples cannot be made 

into planar geometries.   With a change in geometry from planar to cylindrical, the behavior 

cannot be described by using a few elastic constants at a time.  For a composite tube (a 

laminated, anisotropic system), load/displacement relations become geometrically nonlinear, 

turning nearly all displacements into a function of several elastic constants.  It becomes difficult, 

if not impossible, to produce a loading condition that will generate a simple stress state, which 

can be described by a small number of elastic constants.  Characterization of the mechanical 

response is limited to the response of the structure as a whole, and not that of the constituent 

material (ply- level properties of the composite). 

With thermoset and thermoplastic composite materials, the properties are generally well 

documented.  The use of “prepreg” materials allows for the fabrication of test samples from the 

same material as the tubular part.  The problem arises when the fabrication method does not 

allow for the development of traditional test samples to characterize the material, as is the case 
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with many new ceramic matrix composite materials.  Recent work at the Materials Response 

Group at Virginia Tech has been on characterizing several composite materials fabricated with 

new procedures that were developed for tubular samples that do not have planar counterparts for 

characterization [1-5].  The projects have been complicated by the fact that the materials are 

fabricated in tubular geometries, with each tube being in a separate “batch”, posing the 

possibility of different properties for each sample.  Moreover, the properties through the 

thickness and sometimes in the plane of the surface may not be constant, i.e., the materials may 

be point-wise non-uniform.  The processes were not able to fabricate identical materials to 

characterize the elastic properties, and the global response would not provide enough 

information to develop accurate models for use in later applications. 

 The problem has been further complicated by a lack of literature reporting on methods to 

characterize the elastic properties of composite materials in tubular geometries.  There exists a 

large discrepancy in the approaches and procedures.    

 

1.1 Objectives 

 

 There are three primary objectives for this dissertation.  They address the need for 

experimental and analytical methods for characterizing the mechanical properties of composite 

tubes.   

 

1. Develop an experimental test matrix to measure the mechanical characteristics of 

composite tubes.  By this, it is intended that the global response (response of the tube as a 

whole) of the sample be determined by a series of tests.  Axial tension, compression, torsion, 

and internal pressure tests were chosen to characterize the material, both in elastic response 

and for strength.   

2. Develop/refine an analysis for calculating the ply-level properties for the composite 

from the data found by the first objective .  Currently, no systematic method exists for 

calculating the ply- level engineering constants (E1, E2, E3, G12, ν12, ν13, and ν23) for a 

composite tube.  A method, initially utilized with limited success, has been modified, and 

used to calculate the engineering constants from the results of the first objective. 
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3. Determine failure modes and c alculate failure envelopes for this material .  With the 

values from the second objective, the stress and strain in the material can be calculated at the 

failure loads measured from the results of the first objective.  With the state of stress at 

failure known for different loading conditions, failure envelopes can be calculated. 

 

1.2 Materials 

 

The focus of this work is on characterizing the elastic response of different composite tubes.  

There are three composite materials and one control sample used in this investigation.  The first 

material is a candidate hot gas filter supplied by McDermott Technologies, Inc. of Lynchburg, 

Virginia.  The second material is an alumina fiber reinforced silicon carbide (SiC) composite 

material supplied by Oak Ridge National Laboratory (ORNL).  The third composite material is a 

silicon carbide reinforced silicon carbide composite from Honeywell Advanced Composites, of 

Wilmington, Delaware.  The control sample is an AISI Type 304 stainless steel, chosen because 

its properties are well documented and should be similar to the properties of the silicon carbide 

materials.   

In the following sections the background and fabrication procedures of the different 

materials will be explored.  The McDermott material is not a structural composite material and 

has a specific application, so a little more background is given.  The ORNL tubes were 

developed in a scale up of a new fabrication technique for ceramic composite materials, and sent 

to Virginia Tech for characterization of the mechanical properties.  The description will focus 

less on potential applications but more on the fabrication and testing.  A limited background will 

be given on the tubes from Honeywell since the materials were donated and much of the 

fabrication information is proprietary.    

 

1.2.1 McDermott Technologies Hot Gas filter 

 

An effort by the Department of Energy to improve efficiency and reduce emissions of 

fossil fuel based power plants has focused on development of improved plant design and 

technology.  One area of this emphasis is directed at replacing the multiple processes currently 
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used to remove particulate from hot gas streams.  Coal combustion generates large amounts of 

particulate from the noncombustible constituents and incomplete combustion products.  These 

particulates must be removed to prevent excess wear on the gas turbines and to meet 

environmental emission standards.   

Recent advances in the design of Pressurized Fluidized Bed Combustion (PFBC) and 

Integrated Gasification Combined Cycle (IGCC) technologies have utilized hot gas filters to 

remove particulate.  It is believed the improvements will lead to operating efficiencies in excess 

of 50%, compared to 35% for conventional technologies.  Increases in efficiency and economic 

savings will be due to the introduction of new combustion processes and plant designs that use 

hot gas filters.  The filters would work in conjunction with or in place of conventional particulate 

removal systems, such as high efficiency cyclones and electrostatic precipitators, to remove 

particulate from the hot gas stream and meet environmental emission standards [6-20].  Benefits 

of the filters are: higher operating temperatures and efficiency, lower downstream particulate 

concentrations (especially at the smaller particle sizes), the resulting reduction in wear on 

downstream components, a reduction in complexity for hot gas cleaning, and reduced 

maintenance of plant components [6,8-12].    Currently, multiple high efficiency cyclones 

remove greater than 98% of the particulate, but they cause a drop in pressure and cannot operate 

at optimum temperature ranges.  The small amount of particulate that is not removed erodes and 

fouls the blades in the turbines and other downstream components, requiring the use of less 

efficient, more damage tolerant equipment.  The new designs use the hot gas filters directly in 

the hot gas stream, operating at higher temperatures and showing a lower pressure drop that in 

the conventional design.   The filters remove more particulate (>99.8%), eliminating the need for 

cyclones or electrostatic precipitators, and allowing for the use of high efficiency turbines.  A 

schematic of the Power Systems Development Facility (PSDF), located in Wilsonville, AL, with 

four different filtration units utilizing hot gas candle filters is shown in Figure 1-1 and Figure 1-2 

[12].  On the left side of Figure 1-1, coal and limestone are fed into a crusher and sent to the two 

parts of the facility.  The upper branch is a second generation PFBC, while the lower branch is a 

gasification system.  Each branch uses hot gas filters to remove particulate from the different hot 

gas streams.  Figure 1-2 contains the schematic of the hot gas filtration units (highlighted regions 

in Figure 1-1).  The hot gas from the combustion of the fuel (coal or other fossil fuels) enters 

through the side of the housing, passes through the filter from the outer surface to inner region, 
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depositing any particulate, and exits the top of the assembly.  As the deposit, or cake, thickens, 

the filter begins to clog, reducing the airflow.  Periodic cleaning is required to maintain capacity.  

A back pulse cleaning cycle, which consists of a pulse of air forced through the filter in reverse, 

is used when the airflow through the filters falls below a set level.  The pulse breaks the 

particulate cake formation, as seen in schematic diagram located in Figure 1-3.  The particulate 

material falls to the bottom of the unit, and is removed.   

   

Figure 1-1.  Schematic of a second generation PFBC facility (note the different Hot Gas 
Cleanup areas are highlighted) [Ref. #12, Smith and Ahmadi, 1998 – Reprinted with 

permission from Elseveir Science Publishing]. 
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Figure 1-2.  Schematic of Candle filter assembly [Ref. #12, Smith and Ahmadi, 1998 – 
Reprinted with permission from Elseveir Science Publishing]. 
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Figure 1-3. Filter operation and a back pulse cleaning cycle.  A)Clogged Filter.  B)Back 
Pulse. 

 

In-service conditions for the filters are listed in Table 1-I.  The ranges in the particle size and 

dust loading are due to different designs or operating conditions.  Some designs use a cyclone 

prior to the filtration to reduce the frequency of filter cleaning cycles.  It is uncertain if this will 

be used in the plant designs, since some research points to improved performance without the 

cyclone.  The cyclone removes the larger particulate, leaving the finer particles for the filter.  

The smaller particulate imbeds in the filter more and develops a cake that is more difficult to 

remove, decreasing the effectiveness of the cleaning cycles. 

Table 1-I. Operating Condition for Hot Gas Filter[8,9] 

Temperature 
(ºC) 

Pressure 
(MPa) 

Dust Loading 
(ppm) 

Mean Particle 
Size (ìm) 

Pressure Drop 
(kPa) 

650 to 900 0.98 to 1.1 500 to 18000 1.3 to 22 28-41 

A B 

Particulate 
Cake 

Hot Gas Flow Back Pulse 
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Current materials and designs of the filters should allow for long operating lives, but 

application of these materials to actual service conditions has lead to some premature failures.  

Due to the difficulty in observing the filters in-service, many of the reasons for failure of the 

materials are attributed to conditions that are an educated guess as to actual conditions at failure.  

A majority of the failures in the literature have been attributed to plant upset conditions - 

variations, some very rapid and extreme, in the plant conditions.  The startup of the combustors 

and turbine trip conditions result in large pressure and temperature gradients, and have been 

attributed to failure of the materials [10,11].   

Failures during normal plant conditions have been attributed to thermal shock resulting 

from the back pulse cleaning cycles and ash bridging.  The air pulse used in the cleaning cycle is 

cooler than the hot gas stream (in some cases the air is near ambient temperatures).  The very 

rapid influx of the cool gas generates large thermal gradients within the filter.  Many monolithic 

filters do not survive this event, while the composite materials usually fair better.  The cleaning 

of the filters is an important process to the operation of the plant.  It is needed to maintain proper 

airflow and to maintain the filters.  Without proper or complete cleaning, the cake builds and can 

break the filters.  A number of reasons for this breakage have been proposed in the literature.  

The most common observed condition is ash bridging, where incomplete cleaning of the filters 

leads to an ash buildup, which eventually connects two adjacent filters.  This connection places 

added stresses on the filters, breaking them from the tube sheet near the flange.  In some cases, 

the filters were bent by the ash bridge and ultimately broken, while in other conditions falling 

sections of ash buildup were blamed for breaking the filters. 

Application of the filters to test facilities has yielded excellent filtration performance, but 

they have experienced several mechanical failures.  These failures have been attributed to 

excessive stresses induced during plant upset conditions, thermal shock, and insufficient strength 

for certain in-service conditions.  In order to improve the design of the materials and develop 

methods for life predictions, the baseline material properties need to be measured.  With 

composite tubes, there is no way to measure the engineering constants directly, due to the 

complexity of the geometry.  This body of work was developed to address these issues. 
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1.2.2 Fabrication of the McDermott Technologies’ Hot Gas Filter 

 

The candidate design from McDermott Technologies, Inc. (MTI), of Lynchburg, VA, is 

an advanced oxide-oxide ceramic composite.  It consists of two different aluminum oxide fibers 

wound and deposited around a round mandrel and bonded together to form a highly porous 

structure.  The structural component is Nextel 610 fibers (>99% alumina) wound onto a porous 

mandrel while chopped a Saffil fiber (95 – 97% alumina, 3 –5% silica) slurry is applied.  The 

water from the slurry is removed by applying a vacuum to the mandrel, drawing it through the 

green structure.  The two components are bonded together by an alumina bond agent deposited 

using sol-gel processing.  The reaction process is as follows: 

 

 2 3 2 3 2 3 2 3AlOOH Al O Al O Al O Al Oγ δ θ α→ − → − → − → −  (1.1) 

 

The oxyhydroxide of aluminum, or boehmite, transforms to alumina between 450 and 580�C.  

This deposits alumina throughout the filter, bonding the Saffil and Nextel fibers, imparting some 

structural integrity.  The final product is typically a filter 1.5 m in length, 5 cm inner diameter 

and 6 cm outer diameter, with an approximate porosity of 70% [11].   The average dimensions of 

the McDermott samples are in Table 1-II. 

Table 1-II.  Dimensions of the McDermott Technologies hot gas filter samples 

Sample Thermal  
Exposures 

Wall  
Thickness  

(mm) 

Outer  
Diamter 

(mm) 

Inner 
 Diameter 

 (mm) 

Cross-sectional 
 Area 
 (mm2) 

Polar Moment  
of Inertia 
 (mm4) 

7-2-28 0 4.85 59.41 49.80 831.80 6.24E+05 
7-5-13 103 4.93 58.96 49.11 836.52 6.16E+05 
7-6-12 104 5.06 59.41 49.29 863.95 6.44E+05 
7-6-16 105 5.39 59.98 49.19 924.76 6.96E+05 

 

Inspection of the tubes revealed that the outer surface winding angles were not ±45º.  The 

outer fiber tows were closer to ±50º.  The reason for the change in the winding angles was found 

in the thesis by George [21].  When a filament winding procedure is programmed using constant 

winding parameters, namely the transverse movement rate, x’, and the mandrel rotation rate, θ’, 
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adjustments are not made for the change in thickness for each added layer.  For the first layer of 

the composite the rates were chosen so that the transverse length is equal to the circumferential 

length of fiber, which will give a ±45º structure.  With each layer the radius is increased, 

changing the circumferential length of fiber per unit time.  This is illustrated in Figure 1-4, which 

is a 2-D projection of the surface of the tube, with Rθ being an arc length of the circumference 

and X being distance along the axis. 

Figure 1-4.  Relationship for ply angle and winding parameters 

 

From this, the winding angle, φ, is: 

 1 R
tan

x
θφ − ′ =  ′ 

 (1.2) 

For a ±45º winding angle, the transverse rate is equal to the product of the initial radius, Ri, and 

the rotation rate:  

 ix Rθ′ ′=  (1.3) 

By combining these two, an expression can be found for the winding angle as a function of the 

radius for a ±45º structure. 

 1

i

R
tan

R
φ −  

=  
 

 (1.4) 

X’t 
X  

Rθ 

Φ1 

Φ2 R1θ’t 

R2θ’t 
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Measuring the angles of the tows from the etchings of the inner and outer surfaces of the 

McDermott filters confirms this behavior.  The inner surfaces were found to be ±45º, while the 

outer surfaces were ~±50º, which matches the calculated value of ±50.5º. 

Several samples of the McDermott filters were characterized.  The initial work was to 

determine the effect of the back pulse cleaning cycle on the mechanical properties of the 

material.  To simulate the cleaning cycle’s thermal shock event, the samples were placed in a 

furnace, operating at 870ºC, and exposed to an ambient temperature air pulse.  The samples 

tested were in the as-fabricated condition as well as after being subjected to 1, 10, and 100 

thousand cleaning cycles. 

 

1.2.3 Al2O3/SiC Tube from ORNL 

 

The materials from Oak Ridge National Laboratory are part of a project aimed at developing 

advanced ceramic composite materials for use in high temperature applications for future fossil 

fuel based power plants.  Fabrication of these materials has proved to be difficult and costly, so 

research is being performed to develop new fabrication procedures.  One such fabrication 

technique is chemical vapor infiltration (CVI) in which the matrix material is deposited into the 

fiber performs.  This allows for the formation of several different matrix and fiber systems 

without requiring the high processing temperatures seen in other processes.  Unfortunately, 

standard CVI procedures require infiltration times that can be too long to be considered 

economically feasible.   

Development of new processes has resulted in greatly reduced infiltration times, 

overcoming many of the problems of previous CVI techniques.  The previous methods, such as 

isothermal/isobaric CVI, rely upon diffusion processes to deposit the matrix material.  Low 

deposition rates were used to prevent large density gradients caused by the outer surfaces 

becoming fully dense, and not permitting infiltration to the inner portions.  This results in long 

deposition times or high porosity.  Researchers at Oak Ridge National Laboratory (ORNL) have 

developed a new method to overcome the problems of long process times or large density 

gradients [22-25].  The forced flow-thermal gradient process (FCVI) utilizes a temperature 

gradient to change the deposition rates from the inner preform to the outer surface.  The 
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deposition times are reduced from a period of weeks to that of only hours, allowing the 

formation of nearly dense composites without density gradients. 

The process has been used to fabricate planar samples, and it has been scaled-up to 

produce samples with a tubular geometry.  To determine the effectiveness of the process, the 

completed materials have been sent out for material characterization.  Much of the previous 

mechanical testing of composites made using the FCVI technique has been limited to relatively 

small planar samples.  These test methods include flexure tests and some limited axial testing 

[26-28].  With the larger sample size and different sample geometry, different tests need to be 

performed to characterize the mechanical properties of tubular samples.  The Materials Response 

Group at Virginia Tech has performed testing on previous tubes supplied by ORNL and Babcock 

and Wilcox (now McDermott Technologies, Inc., Lynchburg, VA) [29-31].  That work focused 

on the mechanical properties of Nicalon/SiC and alumina/alumina ceramic composites of various 

designs and lay-ups.   The materials were fabricated by different methods, ranging from using 

forced flow CVI for the Nicalon/SiC [31] to sol-gel processing to deposit an alumina matrix for 

the alumina/alumina materials [29,30]  The mechanical properties for these materials are listed in 

Table 1-III.   

Table 1-III.  Reported properties from previous  tube samples 

Material 
Axial Stiffness 
Tension (GPa) 

Shear Stiffness 
(GPa) 

Axial Strength 
(MPa) 

Shear Strength 
(MPa) 

Nicalon/SiC 
Braided tube 

--- 127 --- --- 

Nicalon/SiC 
Cloth wrapped 

~275 94 --- --- 

Almax/Al203 54-61 41-43 41.4, 44.5 56.54 
 

 

1.2.3.1 Fabrication 

The composite tubes used in this investigation were fabricated using the forced-flow, 

thermal gradient chemical vapor infiltration technique developed at Oak Ridge [22-24].  The 

preforms consisted of eight to ten Nextel 610 (Nextel 312 for sample CVI-1173) braided sleeves 

stretched over a polyethylene mandrel.  The green preform was infiltrated with a small amount of 

Borden Durite resin to provide some structural support prior to the silicon carbide infiltration.  
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The preform was compressed by aluminum tube sections and allowed to cure.  The cured 

preform was trimmed to a 35.5-cm length prior to the SiC infiltration via the FCVI process.  The 

FCVI process temperature was 1200°C with a gas flow rate of 5 slm of hydrogen and 1 slm of 

methyltrichlorosilane.  The samples achieved 80 to 90% of theoretical densities in about 36 

hours.  Once processing was completed, the ends of the samples were removed to leave a 30-cm 

long sample.  The final tube properties are listed in Table 1-IV.  It should be noted that in this 

study, no fugitive carbon layer was deliberately deposited to improve composite toughness.  A 

small amount may be present from the decomposition of the resin used to rigidize the preform, 

though none was observed in the initial inspection of the tubes.   

 

Table 1-IV.  Properties of the Nextel/SiC composite tubes 

 CVI 1173 CVI 1216 CVI 1219 

Process Time(hours) 36 43 36 
Density (g/cm3) 3.00 2.88 3.08 

% Theoretical Density 87 81.8 80.3 
Fiber Type Nextel 312 Nextel 610 Nextel 610 

Fiber Volume Fraction (%) 50 37.5 32.2 

Number of layers 10 10 8 
 

 

A cross section of the CVI-1173 tube can be seen in Figure 1-5.  The light gray layer on 

the inner surface is a SiC layer deposited during the FCVI process.  This layer was less than 1 

mm thick at the ends of the tube, and approached 4 mm in thickness in some cross sections taken 

near the middle of the sample.   
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Figure 1-5:  Cross section of sample CVI 1173 

This change in dimension creates problems in accurately calculating the stress in the material.  

The cross sectional area and polar moment of inertia used in this study were calculated from the 

average values of the outer diameter and tube thickness at each end of the sample.  The average 

dimensions for the samples are in Table 1-V.  The changes in the dimensions of Sample CVI 

1219, shown in the last two columns, are due to changes made to the sample during testing.  An 

excess layer of SiC was deposited on the inner surface, and, when the material strength exceeded 

the load capacity of the MTS system, it was returned ORNL and the SiC layer was removed.  

The wall thickness values for the sample after milling exhibits large variations, which is due to 

the inner surface not being concentric with the outer. 

Table 1-V.  Dimensions of the samples 

In mm CVI 1173-1 CVI 1173-2 CVI 1216 CVI 1219  
(as-received) 

CVI 1219  
(after milling) 

Outer Diameter 59.7±0.2 59.7±0.2 59.3±0.06 59.2±0.1 59.1±0.2 
Thickness 6.9±0.7 6.8±0.4 7.6±0.6 7.9±1.8 4.8±0.4 

Inner Diameter 45.8 46.1 43.9 43.4 49.7 
Area  

(10-4 m2) 
11.48 11.24 13.09 14.99 8.14 
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1.2.4 SiC/SiC Tube from Honeywell 

 

The material donated by Honeywell is a SiC/SiC composite material utilizing Ceramic Grade 

Nicalon fibers to reinforce an enhanced SiC matrix deposited by chemical vapor infiltration [32].  

A layer of pyrocarbon was deposited on the interface to improve the composite toughness and 

damage tolerance.  The geometry and mechanical properties are in Table 1-VI and Table 1-VII. 

Three samples, each roughly 11.4 cm (4.5 in) in length, were cut from the same tube of material, 

and were sent to Virginia Tech for testing. 

 

 Table 1-VI.  Geometry of the Honeywell SiC/SiC material  

Outer Diameter (mm) 57.78 Thickness (mm) 3.70 
Inner Diameter (mm) 50.39 Area (mm2) 2543.19 

Density 2.3 g/cc 
Polar Moment of Inertia 

(mm4) 
4.62*105 

Number of Plies 6 woven plies Fiber Vol. Fraction 0.37 
Orientation [0/90] 5 Harness Satin Weave 

 

Table 1-VII.  Typical Room Temperature Properties o f the Honeywell SiC/SiC material  

Axial Stiffness, E 138 GPa (20 Msi) 
Transverse Tensile Strength, Sy 59 MPa (8.5 ksi) 
Ultimate Tensile Strength, UTS 228 MPa (33 ksi) 

Failure Strain 0.39% 
 

1.2.5 AISI Type 304 Stainless Steel (Control) 

 

To test the capabilities of the analysis for a simplest case scenario, a stainless steel control 

tube was subjected to the same tests as the other materials.  The material was chosen since its 

properties are well documented in the literature, it exhibits stiffness greater than that expected for 

most of the materials tested, and it can be expected to exhibit (near) isotropic properties.  The 

well-documented, isotropic properties are important to the analyses developed in the later 

portions of this work, allowing for its use as a good control sample.  The high stiffness of the 

material is significant for the internal pressure test methods developed in the next section.  It 
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allows for testing at high pressures, which would be needed to fail the composite materials.  The 

properties from the material supplier are listed in Table 1-VIII through Table 1-X [33]. 

Table 1-VIII.  Chemical composition of AISI Type 304 Steel 

AISI Type 304 Weight % Range 
Composition Minimum Maximum 

Fe 66.345 74 
Cr 18 20 
Ni 8 10.5 
Mn -- 2 
Si -- 1 
C -- 0.08 
P -- 0.045 
S -- 0.03 

 

Table 1-IX.  Mechanical properties of AISI Type 304 Steel  

Tensile Modulus, E 193-200 GPa 28.565 Msi 
Shear Modulus, G 86 GPa 12.47 Msi 
Yield Strength, óo 215 MPa 31.175 

Tensile Strength, óUTS 505 MPa 73.225 
Elongation, εmax 70%  

 

Table 1-X.  Geometry of the control sample tube  

Average Outer Diameter 2.366±0.01 in 60.1±0.23 mm 
Thickness, t 0.11±0.0 2.79±0.0 mm 

Cross Sectional Area, A 0.78 in2 5.03e-4 m2 

Polar Moment of Inertia, J 0.99 in4 4.14e-7 m4 

 

 
 

1.3 Geometric Conventions 

 

For the remainder of this body of work certain orientations and naming conventions will be 

used.   The focus of this work is on composite tubes; therefore, the cylindrical coordinate system 

will be used to describe the geometry, as illustrated in Figure 1-6.   Due to the different levels of 

this analysis, there will be two different classifications: the global and material levels.  The 
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global level refers to the response of the tube as a whole, without the differentiation for the 

composite structure, and will be labeled with x, r, and/or θ.  For example, the axial stiffness of 

the material is calculated as the axial force divided by the cross sectional area of the tube and the 

axial strain response (labeled Ex).   It does not consider any of the composite material structure or 

orientation, but is intended to describe how the tube responds as a whole.  The second 

classification, the material level, will be used to describe the response on the individual ply level.  

This will be affected by the orientation and ply number for the composite, and will be used for 

the composite analyses.  The material will be described with a 1, 2 and/or 3 direction, with 1 

being along the fibers, 2 perpendicular to the fibers (but in plane of the ply), and 3 perpendicular 

to the ply.  

 

 

Figure 1-6.  Global Coordinate System 

 

 

x axis 

r 

θ 
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Figure 1-7.  Material Coordinate System 

 

1.4  Selection of Test Methods 

 

Much of the background of this work has already been described in previous works by the 

author and others in the Materials Response Group at Virginia Tech [1-5, 21, 29-31].  The focus 

of this work is to develop a series of procedures and analyses to gain the most insight into the 

ply- level material properties of a laminated composite tube.  The initial procedures were 

developed for characterizing the properties of the McDermott filter materials.  The materials 

from Oak Ridge National Laboratory and Honeywell came later, but were composite tubes and 

could be characterized by the same methods with some minor modifications and improvements 

to the procedures, to accommodate the vastly different material properties of the samples. 

 For the candle filters, there are several different test programs to determine the different 

candidate materials and designs for use in the next generation power facilities.  A few 

investigators have performed tests on the materials to determine which are the best for these 

applications.  Papers by Singh, et al., and Alvin, et al., have reported work that characterized the 

performance in terms of property retention after thermal shock conditions and actual service 

1

2 

3
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exposure [34-36]. Little of the literature has focused on the mechanical properties of filter 

materials.  Many have used a variety of experimental procedures to obtain qualitative 

information about the material, with fewer measuring quantitative results.  Tests, such as C-ring 

and O-ring tension and compression, have been performed without being able to evaluate any 

material properties from the results.  The O-ring and C-ring tests apply a large, complex state of 

stress to a small section of the material – making analysis difficult.  Several sources performed 

these tests to characterize changes in the bulk properties with exposure to thermal shock or high 

temperature exposure.  Other tests have been performed that allow for some simplifying 

assumptions in the analysis.  Internal pressure tests, using either a pressurized bladder or 

compressed elastomer plugs, have been used to find some modulus and strength values.  These 

analyses do not account for the composite structure to calculate the material values.  Finally, a 

few researchers have used sonic and ultrasonic time of flight measurements to obtain values for 

the axial modulus of the structures.  These measurements use the relationship between stiffness 

and wave velocity to calculate stiffness values from time of flight measurements for sound 

waves. 

The test methods used in the present work were chosen to generate axisymmetric load 

conditions which would allow for comparison of the results to an elasticity theory model.  The 

analysis by George has been improved and employed to find estimates of the ply- level properties 

[21].  Because of this, procedures that generate axisymmetric load conditions were employed. 

 

1.5  Analytical models  

 

A thesis by George addressed the need for an analysis that would calculate the ply level 

properties from the global response of the composite tube [21].  The work developed a nonlinear 

regression routine that would find the best elastic constants to fit the experimentally observed 

strain results.  The model used expressions derived using elasticity theory to calculate the 

stresses and strains for a given axisymmetric load condition.  The derivation of this work was 

done by Rousseau and Hyer [37,38].  The work is for the general case, where the layers of the 

composite are orthotropic.  For a few special conditions, there are certain solutions that cause the 

equations describing the material behavior to fail.  In the first part of this section the general 

solution will be detailed, with the two degenerate conditions explained thereafter. 
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1.5.1 General Elasticity Solution (“Forward” Solution) 

 

The derivation illustrated is from the work by Rousseau, et al [37,38].  The following 

expressions can be used to calculate the stresses, strains and displacements for a composite 

cylinder under axisymmetric loading conditions (axial tension, compression, torsion, internal and 

external pressure, and uniform temperature change – singly or in combination).  By applying the 

strain-displacement relations to the displacement equations, the different strain components can 

be calculated through the thickness of the tube.  The strain values are related to the stress values 

by the constitutive equations.   

 

Displacement Equations  – u = axial displacement, v = tangential displacement and w = radial 

displacement 
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Strain-Displacement Equations  
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which for the general case expand to: 
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Constitutive Equations  
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At this point the expressions for stress, strain and displacement can be derived in terms of 

the transformed material stiffness matrix ( ijC ), ε0, γ0, A1 and A2.  Since the elastic properties and 

geometric considerations are known for a given structure, the ijC  values can be calculated for 

each ply.  The remaining unknown terms - ε0, γ0, A1 and A2 – need to be found using the 

boundary conditions.  For a laminated structure composed of N layers, there will be 2N+2 
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unknowns – ε0, γ0, N A1’s, and N A2’s. The first boundary cond ition is a relation between the 

applied axial force and the axial stress.  For a tube in axial tension, the applied axial force, Fx, 

must be equal to the sum of the integrals of the axial stress through the thickness.  The same 

applies to a tube with an applied torque, Tx, the sum of the integrals of the shear stress multiplied 

by the radial position must equal the applied torque.  The expressions for these boundary 

conditions are: 
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This gives two equations towards the 2N+2 unknowns.  Two more come from the pressurized 

cylinder condition.  The pressure at the inner and outer surfaces must be equal and opposite to 

the applied pressures.  These can be equated as: 
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where pi and po are in the applied internal and external pressures, Ri and Ro are the inner and 

outer radii, and the superscript on the stress expression is the layer of the material.  The last two 

requirements for the tube are that of continuity of traction and displacements at ply interfaces, or: 
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This gives the last 2(N-1) equations needed to solve for the unknowns.  Simultaneously solving 

the above equations will give the 2N+2 unknowns for the displacement, strain and stress 

equations.  

 

1.5.2 Degenerate Solutions 

 

By examining Equation (1.5), there are two conditions that cause zero to appear in the 

denominator in the expression for Ã, namely the conditions where 22 33C C=  or 22 334C C= .  The 
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first of these conditions occurs when the material is isotropic or transversely isotropic with a 0 

degree orientation.  The second condition has not been associated with an easily explained 

physical situation, but is included for completeness.  In both of the degenerate conditions, the 

expressions for both u and v remain the same as before, but that for w changes [39].   

 

For the case of 22 33C C=  (ë=1), w becomes: 
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For the case of 22 334C C=  (ë=2), w becomes: 

2
1 2

22

33

12 13

33

26 36

33

2 3

33

( ) (4ln( ) 1)

2

3

2

16

( )

3

o o

i i i

w r A r A r r r r r T

C
C

C C
C

C C
C

C C

C

λ λ ε γ

λ

α

−= + + Γ +Ω − + Ψ ∆

= =

 −Γ =  
 
 −Ω =  
 
 −

Ψ =    

∑

  (1.13) 

 

A more detailed derivation of these expressions can be found in Appendix A.  Since the value of 

ë varies from ply to ply, the choice of the expression for w, and the resultant expressions for the 

boundary conditions, must be made for each layer. 
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1.6 Inverse Solution 

 

The elasticity or Forward Solution calculates the stresses and strains generated by an 

applied load given the elastic properties of the materials.  This is a useful model, but it requires 

the knowledge of the in-plane and some out-of-plane constants.  Complete sets of these values 

are not known for many materials and are, in general, difficult to calculate.  An added 

complication is encountered for tubular materials that do not have a planar counterpart for 

determining the elastic constants, which was the case for the materials used in this body of work.  

Both the MTI filter and ORNL materials were fabricated in processes designed for tubular 

geometry, therefore creating planar samples for testing was not possible.   For these laminate 

structures with varied ply orientations, the geometric effects do not allow for the generation of a 

simple stress state to estimate the material stiffnesses.  A methodology was developed by George 

to calculate the properties from the tubular samples by nonlinear regression analysis of the strain 

data [12].  In this body of work the analysis is called the Inverse solution to the elasticity theory 

derived by Hyer and Rousseau [37,38].  This is not a closed form solution for calculating the 

material properties, but is an analysis that relies on nonlinear regression techniques to calculate a 

set of material parameters that minimize an error function.  A simple schematic of the method is 

located in Figure 1-8.  The analysis uses the Forward solution, as the core of the program.  The 

user inputs the geometric properties needed to describe the sample.  The start or “guess” values 

for the material properties are entered, as are the experimentally recorded strain and loads.  It 

should be noted that the applied loads (axial force, axial torque, and internal pressure) are 

entered and not the calculated stresses (axial stress and shear stress).  With this information, the 

forward solution calculates a predicted strain response at the same load levels as the 

experimental results.  The difference between the measured and calculated values is determined.  

The error function, the sum of squared errors, is minimized through a number of iterations until a 

minimum is found or the program exceeds set parameters.  The termination of the procedures 

relies upon declared convergence criteria, basically a series of values or conditions that 

determine whether a solution has been found or that a reasonable amount of time or iterations has 

been exceeded. 
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Figure 1-8. Schematic of nonlinear regression analysis 
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 The method employed in the thesis by George is termed a Newtonian method, which 

utilizes the partial derivatives to calculate an incremental step.  The equation for the step values, 

bi, are: 

 ( )
( )

1

1

exp

k k
i i i

T T

calc
i i i

E E b

b J J J φ

φ ε ε

+

−

= +

=

= −

 (1.14) 

where Ei are the different elastic constants (E1, E2, E3, G12, ν12, ν13, and ν23), the superscript k is 

the interation count, φi is the difference between each of the calculated and measured strain 

values, and J is the Jacobian matrix: 
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where φ is the difference between the observed and predicted values, defined in (1.14).  The size 

of the φ vector depends upon the number of different loading conditions and number of different 

strain measurements.  For this work, the value N in the Jacobian is set to be three times the 

number of different loading conditions, since there are three strain values used per load (εx, εθ, 

γxθ).  The derivative values are approximated, since deriving the exact expressions would be 

exceedingly complicated to implement into computer codes.  The values are approximated by: 
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where φ± are the φ values calculated with the Xi (Xi = Ei) changed to Xi(1±h), and h is a small 

value (h<<1). 

 With each iteration, the procedure evaluates whether the new values are decreasing the 

error function, or 

 1( ) ( )k k
i iSSE X SSE X+ <  (1.17) 

If the error decreases, the values are incremented by the step values, and the process proceeds to 

the next iteration.  If the error is not decreased, the program begins a routine the decreases the 
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size of the step values, such as, the step size is cut in half until a decrease is achieved.  A set 

number of repeats is usually set, after which, the program declares a local minimum since a small 

step does not decrease the error, and terminates.   

 The program by George was tested using strain data generated by the Forward Solution 

and input into the Inversion program with erroneous start values.  After several iterations, the 

program found the correct values for the elastic constants, minimizing the error function.  

Attempts to apply this procedure to experimental results met with limited success.  Only axial 

tension and torsion were used to generate the strain data sets.  Due to the limited amount of data 

and the requirement that the system be overdefined (more data points than unknown values – a 

condition needed for any regression work), two of the Poisson ratios were set to be constant 

since there was insufficient data to optimize all values.  The number of experimental data points 

fell to 6, limiting the number of variables to 5. 

Initial work using Newtonian methods to search for a minimum was problematic.  As the 

analysis neared a solution, the step values would become large, sending the solution to an 

undesirable set of values.  To validate the Newtonian method and to investigate the unusual 

behavior, a second minimization approach has been used to minimize the error function.  The 

Nelder-Mead Downhill Simplex method was employed [40-42].  A simplex can be thought of as 

a shape with N+1 vertices, where N is the dimension of the problem (N variables – for a 2-D 

problem, the simplex would be a triangle).  The Nelder-Mead method evaluates the function at 

each vertex, and it would move the simplex away from larger values by reflecting, extending, 

contracting, or shrinking.  A schematic of this behavior for a 2 variable system is illustrated in 

Figure 1-9 and Table 1-XI [41].  The simplex moves in a downhill fashion, in that it moves from 

the high values to the lower ones, changing its shape to move more efficiently towards a 

minimum.  It is termed a “direct” method in that it does not use derivatives of the objective 

function as the Newton method does.  This provides advantages in that it would not be adversely 

affected by the topography of the solution, such as large gradients.  It is not an efficient process, 

requiring a large number of iterations to locate a minimum, but is easily handled by a PC – 

usually taking only a few seconds to a few minutes.  This was on the same order as the 

Newtonian method, if not quicker, but used more iterations (several thousand for NM vs. less 

than 100 for the Newtonian method).  The difference in efficiency between this method and 

gradient methods is in the operation. The Nelder-Mead method moves to decreasing values by 
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moving away from higher values rather than moving in a straight line towards a minimum.  The 

algorithm for the Nelder-Mead method was taken from Numerical Recipes [42, pages 408-412], 

and applied to minimize the sum of squared errors from the Forward Solution.     

 

 

Figure 1-9.  Schematic of the Nelder-Mead Simplex Method for two variables.   A) 
Potential actions of the simplex ( Table 1-XI). B) Movement of the simplex through 2-D 

space. 

 

Table 1-XI.  The different potential actions of the Nelder-Mead method for the simplex 
illustrated in Figure 1-9 A. 
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containing negative values or, say, Poisson’s ratios much larger than 1).  If during the execution 

of the program, a vertex lands on a value violating a constraint, the associated error value is 

made very large  (very large means larger than any other error value).  This will cause the 

simplex to move away from that value, and toward more meaningful solutions. 

 The development of these procedures allows for an added benefit in characterizing the 

strength of the materials under multi-axial stress conditions.  The testing of composite tubes 

allows for the generation of complex stress states without the need for different orientations of 

the composite laminates by application of differing levels of axial load, torque, and internal 

pressure.  The added benefit of no edge effects, as seen in planar coupons, should allow better 

characterization of different failure conditions.   The elastic solution described allows for the 

calculation of the stress state in the material at all points through the thickness.  It is not expected 

that the results in this research will allow for research to be done on multi-axial failure theory or 

even the calculation of failure envelopes for the different materials tested, due to an insufficient 

number of available sample failures, but it does provide a framework that would allow for both 

of these if more data could be obtained.  The test procedures will allow for the generation of 

complex load states, and the analysis should determine the elastic properties of the material.  The 

elasticity model will allow for the calculation of the stress states for the materials at each of the 

failure levels. 
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2 Experimental Procedures 

 

As was noted in the first section, the goal of this work is to gain as much information as 

possible about the mechanical properties of composite tubes from a few tests.  The procedures 

were chosen so that they would generate an axisymmetric load condition, so that the data could 

be used in a non- linear regression analysis.  Due to the different properties of each material and 

some improvements made as the testing was conducted, there are differences in the procedures 

used for each sample, which will be described in this section.   

 

2.1 Test Facilities 

 

All the tests described were performed using MTS servohydraulic load frames.  System 

control and the load profiles used the TESTSTAR II software from MTS.  The initial tests 

conducted on the MTI materials used an external data acquisition system.  A computer with an 8-

channel data acquisition board was used to record six channels from the sample, and 2 (load and 

displacement) channels from the MTS controller.  Later tests utilized a MTS frame with 

extended data acquisition capabilities, allowing for the recording of all the pertinent information 

(up to 14 external channels plus all internal load and displacement readings) during the tests by 

the TESTSTAR II software.  This was advantageous since now all the controls and data were 

handled internally, greatly simplifying testing.    

For the samples that fit directly into the frame (ORNL and the control samples), special 

collets were used to grip the samples.  Due to the large size of the samples, two 63.5 mm (2.400 

in) round collets were developed to grip directly on the outer surface of the sample.  For other 

samples that either couldn’t support the large compressive stresses in the collets or would not fit, 

different load fixtures were developed to transfer load from the frame to the sample.  These were 

designed to fit into the 38.1 mm (1.500 in.) round collets from MTS. 
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2.2 Test Procedures 

 

During the testing of the different materials, three different procedures were used for the 

axial tests (axial tension, compression and torsion), while only one was used for the internal 

pressure tests.  Most were made to accommodate the different material properties of the different 

specimens, but the changes in the axial procedures for the material from Honeywell was due to 

improved data acquisition accommodations.  The specifics of the procedures and rationale 

behind the changes are listed in the following sections. 

 

2.2.1 MTI Hot Gas Filter Axial Tests 

 

Due to the low strength of the material, other methods, such as gripping the sample in the 

MTS grips, was not possible.  Due to the large number of samples expected from MTI, a fixture 

that would be interchangeable from sample to sample was needed.  To accommodate this, the 

MTI materials were pin loaded for the axial and torque tests, and used a test fixture to transfer 

the load from the MTS frame to the pins placed through the ends of the tube.  The axial samples 

were 18.5 cm (7.25 inches) in length with a pin spacing of ~12 cm (5 inches).  A schematic of 

the axial test samples is in Figure 2-1.  The effects of the pinholes and concentrated load points 

were removed by potting the end in epoxy.  This locally strengthened the material and distributed 

the load from the pin.   Initially, the end plug used a bonded ceramic foam plug to distribute the 

load away from the pins, with the hope of doing tests at elevated temperatures.  During some of 

the early strength tests, failure occurred by cracks propagating from the pinhole and winding 

around the sample.  The plug was not removing the stress concentrations at the hole, so the ends 

were cast in epoxy.  With the new configuration, the sample experienced gage section failures. 

To cast the ends, the outer surface was wrapped in plastic to prevent leaking, and filled 

with the liquid epoxy to a level even with the loading pins.  The epoxy hardened level with the 

top of the pin, with a small amount of wicking into the sample (as can be seen as the dark region 

on the sample above the pin level in Figure 2-1).  Dissection of failed samples revealed the 

epoxy permeated only as far as is visible on the outer surface (no permeation into the gage 

section).  This gave an approximate gage section of 10cm (4 in).   
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Figure 2-1. McDermott filter axial test sample.  

 

Strain measurements were made using both extensometers and strain gage rosettes.  The 

axial stiffness calculations were based on extensometer measurements, while the rosettes were 

used for the shear strain values.  Strain gage data were on the order of 15% stiffer than the 

extensometer measurements for the axial tensile strain, and is believed to be due to the adhesive 

permeating and locally reinforcing the matrix.  It has been shown that the axial stiffness is 

predominantly controlled by the matrix properties, while the torsional stiffness is more closely 

related to that of the reinforcing fiber properties (and experiences little to no influence from the 

local reinforcement) [2].   This is expected since the material is a ±45° woven structure, which 

would allow the fibers to bear the applied torque.  The load ranges for elastic testing were ±445N 

(±100 lb) in tension/compression and ± 22.5N-m (±200in- lb) in torque.  The tests were run under 

load control, at a rate of 45 N/sec (10 lb/sec) in tension, and a rate of 2.5 N-m/sec (20 in- lb/sec) 

for the torsion tests.  The tensile strength tests were run in displacement control at a rate of 0.64 

mm/sec (0.025 in/sec) to a maximum range of 6.4 mm (0.25 in.) for the early samples, and a 

maximum range of 25 mm (1 in.) for the later tests. 

 

Loading Pin 

End Plug 

Extensometer Tab 
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2.2.2 Al2O3/SiC from ORNL and Control Sample Axial Tests 

 

The test procedures for the ORNL and Control samples were identical.  Both materials 

exhibited sufficient strength to survive direct gripping into the MTS collets.  In order for the 

samples to fit, the outer diameter needed to be 2.400±0.001 inches (tolerance listed for the MTS 

grips).  Both materials were smaller than 2.4 inches, so the outer surfaces were coated with 

epoxy and machined down to tolerance.  The initial tests with the SiC samples revealed that the 

material, if left unsupported, would be damaged by the grip pressure and cause grip induced 

failures.  In order to provide some support steel inserts were made that closely matched the inner 

surface of the materials (Figure 2-3).  With the inserts bonded in place by epoxy, the outer 

surface could be built up with the potting epoxy and machined to tolerance.  This procedure was 

repeated for the remaining SiC materials from ORNL and the steel control sample. 

Figure 2-2.  Sample CVI 1216 axial sample 
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Figure 2-3.  Schematic of ORNL and Control axial samples 

 

2.2.3 Honeywell Axial Tests 

 

The samples from Honeywell were tested with a different approach from the other 

materials.  The diameter of this material was sufficient to allow access to the inner surfaces for 

strain gaging, which provides more information for the analyses used later in this work.  This 

precluded the other approaches to loading the samples, since they would not allow the wires 

from the strain gages to exit the sample and reach data acquisition boards.  In order to allow 

access to the inner surfaces, caps were made to fit on each end of the materials, as shown in 

Figure 2-4 through Figure 2-6.  The fixtures had a groove cut into each end that would fit the 

sample and a small gap for an epoxy layer.  Approximately seven to ten thousandths of an inch 

was allowed on each side of the sample for the epoxy layer.  Four holes drilled through the end 

caps allowed the strain gage lead wires to exit the sample.  Shims were used to center the tube in 

the caps when the epoxy was placed in the sample, to assure a uniform epoxy thickness.  Figure 

2-7 contains photographs of a sample from Honeywell. 

Epoxy coating 

Sample 

Steel insert 



 35

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4. Top view of Honeywell loading fixture  

 

Figure 2-5.  Cut-away of the Honeywell fixture 
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Top View Side View 

Figure 2-6.  Photographs of the Honeywell fixture 

 

 

 

Figure 2-7.  Honeywell axial sample mounted in loading fixture 
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2.2.4 Internal Pressure Testing 

 

Internal pressure testing is a common method used for characterizing composite tubes [1-

4,34-36,44].  The method generates stress in the material primarily in the hoop direction of the 

sample.  This provides more information on the properties of the material when used with axial 

tests. In this work, the compressed rubber plug technique as described in Singh, et al, was 

utilized for the internal pressure tests [34,35].   A schematic of the test is found in Figure 2-8.  

Poisson expansion resulting from compression of a rubber plug generates pressure on the inner 

surface. 

 

Figure 2-8:  Schematic of internal pressure test with a cut-away 

 

The pressure generated at the inner surface of the sample is related to the applied stress in the 

material.   To analyze this situation we start with the Hooke’s Law expression for the strain in 

the x direction (the axis of the cylinder), and simplify by applying two conditions: r θσ σ= in this 

axisymmetric condition where ór is the internal pressure to the sample [43, pages 383-384].  

Using these conditions in the Hooke’s Law expression 
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 [ ]1
2x x r

PE
ε σ νσ= −  (2.2) 

 

For the internal pressure test, σr = -Pi, which allows for the internal pressure calculation: 

 
2

p x x
i

p

E
P

ε σ
ν

−
=  (2.3) 

 

Where Pi is the internal pressure, σx, Ep, εx and νp are the compressive stress, Young’s modulus, 

axial strain, and Poisson’s ratio for the plug material.  This expression is derived from an 

elasticity solution for an isotropic, linear elastic material.  For an incompressible, linear elastic 

material (í = 0.5), the expression in Equation (2.3) simplifies to:  

 i p x xP E ε σ= −  (2.4) 

or 

 E
i x xP σ σ= −  (2.5) 

 

where E
xσ is the elastic stress for a given ε (Εε  for linear elastic materials under small 

deformations). It is important to note that due to the large deformations used for these tests (30 to 

60% strain, on average), the engineering values for stress and strain are no longer correct, and 

true stress and strain values should be used for this procedure.  These values are found from the 

engineering stress and strain values by: 
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where σ%  and ε%  are the true stress and strain and σ and ε are the engineering stress and strain 

[45, page 162]  A plot of the stress-strain behavior of Dow Corning Silastic silicone rubber for a 

compression test is included in Figure 2-9.  The two lines are the engineering and true stress 

strain curves.  Linear regression analysis of the true stress/strain values yields a slope of 2.05 

MPa (298 psi) and an R2 > 0.99.  Finding the Young’s modulus in this way yields a different 

stress strain relation: 
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By combining Equation (2.5) and (2.8), the expression for calculating the pressure from 

the stress measurements for the internal pressure test procedure is: 
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The σx value is the applied stress to the plug and åx is the engineering strain. 

 

Figure 2-9.  Compressive stress/strain curve for the Silastic plug.  The curved line is the 
enginerring stress/strain and the other line is the true stress/strain plot with a best-fit line.  

The equation beside the best-fit line is its slope and R2 value. 
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If the elastomer used for the plug is incompressible (i.e. has a Poisson’s ratio of 0.5), and 

the test begins with the plug in intimate contact with the inner surface of the sample, a 

hydrostatic state is generated with the application of pressure.  By this, the internal pressure 

would equal the stress generated by the applied axial force.  For the tests performed in this work, 

the plug diameter was smaller than the inner diameter of the sample.  This required a certain 

stress state in the material for contact to be made with the inner surface.  By using Equations 

(2.5) and (2.8), the contact stress can be subtracted out to leave the pressure value.  

 Other research has been conducted independently on this procedure, using similar 

procedures and materials at Oak Ridge National Laboratory (46).  Instead of viewing the Silastic 

materials as a linear elastic material, hyperelastic theory is used to describe the material 

response.  This theory accounts for the nonlinear stress/strain behavior exhibited during large 

deformations of elastomeric compounds.  There are several equations used to describe the 

behavior, but, for the Silastic compound, the Mooney-Rivlin equations are adequate to describe 

the deformation.  The resulting expression to describe the deformation is: 
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CCσ λ

λ λ
   = − +     

 (2.10) 

 

where σo is the stress value using the original cross sectional area, C1 and C2 are constants fit to 

the data of an unconstrained compression test, and ë=1+å [47, pages 309-312].  Again, the 

pressure term is calculated by subtracting the contact stress value from the measured axial stress, 

as shown in Equation(2.5). 

To verify if this method is accurate in determining the internal pressure, the stainless steel 

control sample was used since it allows for the calculation of the pressure by different methods.  

For the test, four strain gage rosettes were placed around the sample recording the hoop strain so 

the pressure could be calculated from the equations for a Lamé cylinder solution [43, pages 68-

71].  The internal pressure was calculated using the linear elastic and hyperelastic equations, and 

they were checked by a pressure value found using a Lamé cylinder.  The hoop stress at the outer 

surface by the Lamé cylinder solution is: 
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where ri and ro are the inner and outer radii and Pi is the internal pressure.  Rearranging (2.11) to 

solve for the pressure value gives: 
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with ES being the Young’s modulus of the steel and εH is the hoop strain.  Figure 2-10 shows the 

pressure as a function of time during the test.  The three values are nearly superimposed onto 

each other.    

 

Figure 2-10.  Results from the internal pressure test for the control sample.  The different 
lines represent the pressure values found using the Linear Elastic, Hyper-Elastic and Lame 

cylinder solutions 
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2.2.4.1 Internal Pressure Tests for the McDermott Filters 

 

For the MTI materials, the tests were conducted using a Dow Silastic T-2 silicon rubber 

cylinder.  The Silastic liquid was cast into cylinders that were nearly the same height as the 

sample and slightly smaller than the inner diameter.  This allowed for the initial contact between 

the compressed plug and the inner surface to occur when the plug was shorter than the sample, in 

order to prevent early failure in the tube due to edge effects.  The tests were conducted with a 

layer of lubricant between the elastomer plug and the sample to prevent frictional loading of the 

sample during the compression.  This condition would create a biaxial loading condition that 

couldn’t be accounted for in the analysis of the material properties.  Due to the porous nature of 

the MTI materials, the lubricant layer was sandwiched between to polymer sheets (Saran Wrap).  

This sandwich prevented the lubricant from penetrating the material and potentially affecting the 

tests.  That sample did not exhibit any movement during the tests (this is not the case for all 

materials, as is described in the next section).  Figure 2-11 is of a MTI sample during an internal 

pressure test.  The sample is positioned with the plug being the same length of the sample, but is 

slightly smaller than the inner diameter.  This positioning allows the plug to be slightly shorter 

than the sample when contact is made, preventing the loads to be generated at the edge of the 

sample, where edge effects would affect the outcome of the test by a premature failure that 

would not be indicative of the material strength.   

Figure 2-11. Internal pressure test for the McDermott filter 
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2.2.4.2 Internal Pressure Tests for the ORNL, Honeywell, and Control Samples 

 

The elastomer compound used for these tests was Dow Corning Silastic silicone rubber 

(Silastic T-2).  Initial work with this material was unsuccessful, due to the material failing by 

shearing out around the compression platens at high pressures.  Later attempts used a urethane 

rubber compound, which exhibited better shear properties.  Difficulties arose with accurately 

predicting the pressure generated due to the nonlinear elastic and viscoelastic properties of the 

urethane.  The Silastic compounds were re-examined and found to exhibit linear elastic behavior 

with no appreciable viscoelastic effects.  The compression platens were made to match the inner 

diameter of the sample more closely, which eliminated problems with the shear deformations and 

failure of the plug.   

A high-pressure lubricant is applied to the plug, plunger, and inner surface of the sample 

to minimize compressive loads generated by friction and generate a more uniform internal 

pressure.  After each test, the plug and sample are inspected for any damage associated with the 

test.  To date, the tests have not been run to a level sufficient to damage the SiC composites, or to 

yield the steel.  By improving the fit of the compression platen to the inner surface of the sample 

should allow for increased pressure ranges.  This would keep the stress in the plug to a true 

hydrostatic compressive stress, instead of the unpressurized area around the edges where the 

large shear stresses develop.  The presence of the gap for the experiments in this study was due 

to the roughness of the inner surface for many of the samples.  Because of this, the platens were 

made smaller than the inner diameter to prevent contact with the sample during the test.  The 

platens used in this study were either plexiglass (for the MTI samples) or aluminum, so that if 

contact was made the platen material was softer than that of the sample and would not damage it.  

Again, the plugs were cast slightly longer than the sample with a smaller diameter, so that when 

the plug made contact with the sample, it would be shorter and not apply load directly to the 

edges.  For these materials, a small frame was made to hold the samples in place so that the 

platens would be positioned properly to prevent loading to the edges of the samples 
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2.3 Data Reduction 

 

With samples of this geometry, off-axis loading is a problem that has to be considered.  

Small sample misalignments can generate significant stress/strain variations around the sample.  

To remove the elastic contributions of the bending, strain was measured at four, equally spaced 

locations around the sample.  By averaging the strain values, the variations created by off-axis 

loading may be removed.  Figure 2-12 is a schematic of the variations to the strain values due to 

the bending contributions. 

Figure 2-12.  Schematic of the elastic off-axis loading response for the tubes. 

 

Due to the number of strain measurements, at times all the channels could not be read 

simultaneously, so the tests were repeated with changes made to the location of the extensometer 

or active strain gage.  When it was time to reduce the strain data, the data from the different 

locations would not be directly comparable since the load profiles would vary due to system 

noise and control.  To change the data to the same load profile, the individual stress/strain curves 

were fitted using a 4th to 6th order polynomial regression line (6th order is the highest order fit 

available in Microsoft Excel), depending on which best represented the data. Once the data were 

represented it could be calculated at the same values for averaging.  When all the data could be 

recorded simultaneously, the values could be averaged without having to represent the data with 

best-fit lines.  An example of this is in Figure 2-15 and Figure 2-16.  The offset of the average 

line is due to the amplifiers for the strain gages being “zeroed” with a small load applied to the 
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sample.  Due to the off-axis conditions and low loads for the filter materials, it was difficult to 

have this value equal zero.  To correct this, the intercept value was dropped, shifting the data 

back to a line passing through the origin. 
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Figure 2-13.  Axial tension results from 4 locations on the sample  
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Figure 2-14.  Best fit lines of the data in Figure 2-13 with the average result 
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Figure 2-15. Axial strain measurements from the four gages around a McDermott filter 
sample. 

 

Figure 2-16.  The averaged values for the axial strain values in Figure 2-15 
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2.3.1 Property calculation 

 

With the data reduced to the average value for each strain component, values for the 

stiffnesses can be calculated.  For each material, the global stiffness values were calculated using 

the nominal stress field, which is the applied load divided by the area for axial 

tension/compression, and shear stress at the outer surface divided by the measured shear strain 

for the axial torsion tests.  The shear stress value was calculated by the expression for torsion of 

a cylinder: 
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where τ is the shear stress, T is the applied torque, J is the polar moment of inertia for a cylinder, 

and ro and ri are the outer and inner radii. 

 The results for the internal pressure tests can be presented in two fashions, relating to 

either the pressure or estimated hoop stress.  The pressure values are straight forward in that they 

relate the changes in the strain to that of the change in pressure.  The hoop stress values are 

termed estimates since they are calculated from the internal pressure value through a Lamé 

cylinder model [43, pages 68-71].  The model used is for a homogeneous, isotropic material, 

which is inconsistent with the samples used in this study.  The hoop stress values from this 

model are given by: 
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Linear regression of the experimental data was used to calculate the stiffness values.  A line with 

two degrees of freedom (y=mx+b) was used to remove the offset values created by not having 

the zero for the strain gage amplifiers match the zero for the load cells (Figure 2-16 does not pass 

through the origin).  Once a slope value is found, the offset value was discarded, shifting the 

resulting response back through the origin. 
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3 Experimental Results 

 

The mechanical characteristics of the materials were measured using the procedures detailed 

in the previous section.  Reported values will be those of the axial, shear, and hoop stiffness 

(estimated from the internal pressure tests).  The slopes of the other strain terms will be included, 

since they are important to the analysis developed in the following section.  The values are given 

with the standard deviation on the significant stress directions except for the internal pressure test 

results since the test is run only once on a sample (except for ORNL CVI 1219 – one repeat was 

performed).  Tensile strength values are reported for the McDermott filter materials and some of 

the ORNL samples.  The strength of one of the ORNL samples and the Honeywell material 

exceeded the capacity of the equipment or loading fixtures, so the plots are given with the largest 

load condition reached.  The internal pressure burst values are only for the McDermott filters, 

since the elastomer plug experienced shear failures at pressures below the strength of the sample 

for the other materials.  The plots for each of the internal pressure tests are for the largest 

pressure reached.  Many exhibit nonlinear behavior that is attributed to either the plug failure 

process or frictional loading of the sample. 

 

3.1 McDermott Technologies Candle Filter 

 

Typical stress strain curves for axial tension and torsion of the McDermott filters are 

shown in Figure 3-1 and Figure 3-2. The axial and hoop strain lines in Figure 3-2 exhibit a large 

deviation from linearity between zero and 200 kPa.  This nonlinearity is due to the pin loading 

fixture shifting as the load is applied, and this behavior was seen in several of the tests.  It 

contaminates the data and renders the slope values meaningless, but was easily overcome by 

removing those values from the data set.  By doing this, a good fit could be found, as can be seen 

in the low scatter in the axial and torsional stiffness results in Table 3-I, and plotted in Figure 3-3 

and Figure 3-4.  The average stiffness and standard deviation results are the calculated from the 

values from repeated tests on the same sample.  The average slopes of the different strain 

components are listed in Table 3-II (important for use in the nonlinear regression analysis). 
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Figure 3-1.  Typical axial tension/compression test results for McDermott filter 

 

Figure 3-2.  Typical torsion test result for the McDermott filter 
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Table 3-I.  Axial and shear stiffness for the McDermott filter samples 

Tube ID Cycles Tensile Stiffness 
(GPa) 

STD DEV. % Shear Stiffness 
 (GPa) 

STD DEV. % 

7-2-28-3 0 3.300±0.055 1.669 7.581±0.183 2.420 

7-2-28-4 0 3.378±0.074 2.183 7.855±0.216 2.755 

7-5-13-C 103 3.441±0.004 0.125 -- -- 

7-5-13-E 103 3.324±0.101 3.033 7.853±0.084 1.064 

7-5-13-NH 103 3.504±0.064 1.820 6.970 -- 

7-6-12-A 104 4.323±0.102 2.364 7.516±0.179 2.378 

7-6-12-C 104 3.498±0.039 1.127 8.661±0.127 1.469 

7-6-12-E 104 3.458±0.012 0.358 7.961±0.122 1.533 

7-6-12-NH 104 3.244 -- 8.567±0.081 0.950 

7-6-16-C 105 3.848±0.061 1.574 9.428±0.106 1.124 

7-6-16-A 105 3.260±0.029 0.895 8.986±0.058 0.642 

 

Table 3-II.  Slopes of the strain responses for different loading conditions – average values 
for strain gage data 

Sample Axial Strain 
GPa 

Hoop Strain 
GPa 

Shear Strain 
GPa 

Poisson’s  
ratio 

7-6-12 
Axial Stress 4.45 -8.07 -224.46 0.55 

Shear Stress 285.15 -430.01 9.04  

Internal Pressure -1.13 1.26 29.24 1.11 

7-6-16 
Axial Stress 4.40 -8.53 162.80 0.52 

Shear Stress -272.96 748.69 8.16  

Internal Pressure -1.07 1.26 -89.67 1.18 
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Figure 3-3. Axial stiffness after exposure to simulated back pulses. 

 

Figure 3-4. Torsional stiffness after exposure to simulated back pulses 
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Neither the axial stiffness nor the shear stiffness are adversely affected by repeated thermal 

shock of the simulated back pulse cleaning cycles.  The variations in the torsional stiffness are 

probably batch-induced variations as suggested by the way the data are clustered (each tube is an 

independent “batch” – and only one tube was subjected to the different thermal cycling).  A plot 

of the effect of the back pulse cleaning cycle on the tensile strength is in Figure 3-5. The figure 

contains data for the samples that experienced gage section failures with exposure to the 1 to 100 

thousand cycle samples.  The data for the as- fabricated tubes were not included since it used the 

ceramic foam end plug, which exhibited crack initiation from the pin holes (not a gage section 

failure).  

 Figure 3-5. Tensile strength with back pulse exposure.  The square data point is the sample 
that was not exposed to high temperature. 

 

The decrease in tensile strength is on the order of 20%, but with the small number of 

samples that experienced gage section failure and significant scatter in the results, it is difficult to 

attribute this to changes in the material.   No changes in the failure mode were observed.   Failure 

begins with the formation of a shear band that follows a fiber tow around the sample.  The fiber 
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the shear band would lead to a large crack that would permeate through the wall of the tube, but 

would be bridged by the transverse tows, which would remain intact.  This was common in the 

materials that exhibited failure due to crack initiation at the loading pin.  For most failures, the 

damage was more evenly dispersed throughout the material, as seen in Figure 3-7.  The load-

strain curve for the tensile strength test for Sample 7-6-16-C is found in Figure 3-6.  The strain 

values plotted are calculated using the displacement measured by the MTS frame, since the strain 

gage values are not useful past the initial failure event.  The gage length was 10.2 cm with a final 

displacement of 2.54 cm (25% strain). 

 

Figure 3-6.  Tensile strength plot for Sample 7 -6-16-C.  Sample strain is calculated using a 
gage length of  10.2 cm. 

 

A photograph of the failed sample is in Figure 3-7.  The fiber tows are intact with the matrix 

material having failed.   
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Figure 3-7.  Sample 7-6-16-C after tensile strength test.    

 

 

3.1.1 Internal Pressure Tests 

 

A plot of the strain response during an internal pressure test for the McDermott filters is 

in Figure 3-8.  The sample length used for these experiments was 7.6 cm, since below this 

sample length the burst pressure decreases significantly with decreases in length.  When 

compared to a 25 cm sample pressurized using a water-filled bladder, this procedure yields 

comparable results, as can be seen in Figure 3-9 [36].  This may be expected since the material is 

extremely porous, and requires a certain length to remove the edge effects.  By exploring the 

values for the 7.6 cm samples, the effect of back pulse exposure is negligible, as shown in Figure 

3-10. 

Slopes of the strain response are in Table 3-III.  The values are the slopes of the 

pressure/strain plots, as seen in Figure 3-8.  Included is the estimate of the hoop stiffness found 

using the Lamé equation described in the Materials and Procedures section.  It is higher than the 

observed values for the axial stiffness.  For a ±45º laminate, one would expect the axial stiffness 
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and hoop stiffness to be the same by symmetry, but the McDermott materials exhibited a 

variation in the winding angle, and the fibers are oriented at 50 degrees on the outer surface.   

Due to this, one would expect the hoop stiffness to be higher than the axial. 

Table 3-III.  Slopes of the pressure/strain response and the Lamé cylinder estimate of the 
hoop stiffness 

Sample Axial Strain 
GPa 

Hoop Strain 
GPa 

Shear Strain 
GPa 

Hoop Strain/Hoop Stress 
GPa 

7-6-12 -1.13 1.26 29.24 5.53 
7-6-16 -1.07 1.26 -89.67 5.19 

 

Figure 3-8.  Typical internal pressure test for the McDermott filters 
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Figure 3-9.  Burst pressures vs. sample length for the internal pressure tests of t he 
McDermott filters.  The round data points were found using a water filled bladder (Alvin, 

et al. [36]) 

 

Figure 3-10.  Burst pressure vs. back pulse cycle count for the 7.6cm samples 
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The material does not exhibit a significant change due to the simulated service 

conditions.  As in the axial tension tests, the material did not exhibit catastrophic failure, but 

underwent a gradual increase in damage throughout the sample.  There were no preferred failure 

sites or large amounts of crack initiation and propagation.  A burst sample at different points of 

an internal pressure burst test is seen in Figure 3-11.   

Figure 3-11.  Failure of filter during an internal pressure burst test.  A and B) Shear band 
formation  C) Large scale deformation 

 

Figure 3-12. Schematic of shear band evolution.  Normal tow structure (left) and shear 
band deformation (right). 
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Figure 3-11A shows the sample in the early stages of failure.  A shear band has formed and is 

located along the tows at the end of the arrows.  In Figure 3-11B, the shear band has become 

more prominent.  The surface tows can be seen as they change orientation and debond from the 

filter.  This behavior is described in the schematic deformations in Figure 3-12.  The fiber 

structure on the right is the undeformed filter structure.  Once strength of the material is 

exceeded, the structure deforms in a region between to adjacent fiber tows.  The fiber tows 

remain intact, while the matrix material begins to crumble and fall off, and can be seen lying 

around the sample. Figure 3-11C is the same sample at large-scale deformation.  The fiber tows 

are still intact, but are subject to large displacements and have debonded from the surface. 

 

 

3.2 Fossil SiC/SiC materials  

 

Typical axial stress/strain curves for the tubes from ORNL are located in Figure 3-13 (axial 

tension/compression) and Figure 3-14 (axial torsion), with the measured mechanical properties 

listed in Table 3-IV.  The two sets of elastic values listed for both CVI 1216 and 1219 are due to 

the changes made in the samples after the first series of tests, where neither sample failed in 

tension.  For both samples, the SiC layer on the inner surface of the tube was relatively thick (on 

the order of 4-mm thick for CVI 1219), increasing the cross-sectional area, thereby decreasing 

the stress in the material during testing.  Due to this, the strength of the sample exceeded the load 

capacity of the MTS system (246 kN).  The steel inserts were removed by burning off the epoxy 

layer by placing the sample in a furnace at 400ºC for 1 hour.  The power was turned off, and the 

system was allowed to cool over night before the sample was removed.  The epoxy burned off 

leaving the samples coated in charred epoxy resin and soot, but free of the inserts.  The SiC layer 

on CVI 1216 was too thin for effective machining without damaging the sample, so it was 

repotted and returned to testing. 
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Figure 3-13: Typical tensile test for sample CVI 1219 

 

Figure 3-14.  Typical torsion test for sample CVI 1219 
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CVI 1219 was returned to ORNL, and the SiC layer was machined off the inner surface.  For 

Sample CVI 1216 – AR is for As-Received and AHT is for After Heat Treatment.  For Sample 

CVI 1219 – AR is for As-Received and AM for After-Milling.   

Table 3-IV: Mechanical Properties of the Nextel/SiC composite tubes 

Tube ID Axial Stiffness 
(GPa) 

Torsional Stiffness 
(GPa) 

Poisson 
Ratio 

Tensile Strength 
(MPa) 

1173-1 172.5±0.9 66.1±2.1 0.25 31.1 
1173-2 165.2±0.6 65.7±0.1 0.24 68.1 

1216 AR 168.1±1.1 62.8±1.0 0.20 >171.5 
1216 
AHT 

167.5±4.6 80.17±1.2 0.27 >197.4 Axial + 43.5 Shear 

1219 
AR 142.1±0.9 65.1±0.5 0.31 >137 

1219 
AM 148.8±1.3 67.3±0.5 0.52 200.2 

 

 The axial stiffness for CVI 1216 was not affected by the thermal exposure to remove the 

epoxy, while the torsional stiffness increased by 28%.  The torsional tests have been repeated, 

with little variation in the observed modulus.  Investigation into what structural changes may 

have occurred has not been conducted at this point.  The properties for CVI 1219 increased 

slightly with the removal of the SiC inner coating.   

The stress/strain curves for the tensile strength tests of the CVI 1173 samples are in 

Figure 3-15.  The tensile strength values for the two 1173 samples are not indicative of the 

material since both exhibited grip induced failures. Both 1173 samples exhibited a small amount 

of nonlinear behavior, as can be seen in the departure from the CVI 1216 line.  The fracture 

surface exhibited some fiber pullout, as can be seen in Figure 3-21.  CVI 1219 failed in the gage 

section, and the tensile strength plot is in Figure 3-16.  An extension of the linear behavior of the 

material is included to illustrate the nonlinear behavior.  The value is believed to be lower than 

what would be expected for the material, since the sample was changed by the machining 

process.  The inner and outer surfaces were not concentric, creating wall thickness variations 

around the sample.   
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Figure 3-15: Stress/ Axial Strain curves for tensile strength tests 

Figure 3-16.  Tensile Strength Plot for CVI 1219. 
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During the testing of samples 1216 and 1219 AR, the load profile reached the system 

limit before failure.  The values listed are the largest nominal stress values applied before the 

246kN (55 kip) limit or prior to slippage of the sample.  In order to test CVI 1216 and 1219, the 

grip pressure was boosted to 38 MPa, from the normal setting of 20 MPa, to prevent slipping at 

the higher loads.  For CVI 1216 AHT, the load profile was altered so that torque would be 

applied when the axial load limit was reached.  The load profile for CVI 1216 is in Figure 3-17.  

The axial force reaches 246 kN and an applied torque of 1422 N-m before the sample slipped out 

of the grips of the MTS frame.  Later attempts to repeat the test to a higher level failed due to 

wear on the epoxy grip surface.  

Figure 3-17.  Load Profile for CVI 1216  

 

Figure 3-18 and Figure 3-19 are of the strain response to the different sections of the loading 

profile.  Figure 3-18 has the pure tension results, while 2-8 contains the result for the torque 

ramp with a constant 246 kN axial load. 
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 Figure 3-18.  Strain response for the tension only portion of Figure 2 -6 – sample did not 
fail 

Figure 3-19.  Strain response for the torque ramp with 246kN load – sample did not fail 
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 Photographs of the failed of samples CVI 1173-1 and CVI 1219 are in Figure 3-20 

through Figure 3-23.  The first three images show the grip- induced failure of the CVI 1173-1.  

The failure originated in the region above the grip area, as can be seen in Figure 3-20 and Figure 

3-21.  Figure 3-22 and Figure 3-23 are of CVI 1219.  All the samples exhibited fiber pullout, 

while CVI 1219 had delamination and pullout (highlighted in Figure 3-22).   

 

 

 

 

 

Figure 3-20.  Grip induced failure of CVI 1173-1 
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Figure 3-21:  Fractured tensile strength specimen CVI 1173-1  

 

Figure 3-22.  Sample CVI 1219 with large amounts of fiber pullout and delamination 

 

 

Figure 3-23.  Sample CVI 1219 failure surface with pullout  

Delamination 
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3.2.1 Internal Pressure Tests Results  

 

The results of the internal pressure tests are in Table 3-V.  The values are the slopes 

found by linear regression for the data, as shown in Figure 3-24 (Pressure/strain).  The strains 

become nonlinear between 10 and 12 MPa due to frictional loading and shear failure of the plug.  

The slope values were found by fitting the data below 8 MPa, to avoid the nonlinear affects.   

 

Figure 3-24.  Measured strain vs. internal pressure for an internal pressure test – the 
nonlinear behavior above 10 MPa is due to plug failure. 

 

 

Table 3-V.  Slopes of the best-fit data for CVI 1219  

AVG Values Axial (GPa) Hoop (GPa) Shear (GPa) Poisson’s ratio 

Pressure/Strain -65.50±1.21 11.75±0.72 94.51±7.20 0.18 

Hoop Stress/Strain -343.89 61.71 496.17 0.17 

0

2

4

6

8

10

12

14

16

18

20

-0.002 -0.001 0 0.001 0.002 0.003 0.004

Strain

P
re

ss
ur

e 
(M

P
a)

AVG AX
AVG Hoop
AVG Shear



 67

 

 
3.3 Honeywell Sample 

 

Typical strain response plots for the axial tension and torsion tests for the Honeywell 

materials are in Figure 3-25 and Figure 3-26.  A plot of the strain response of the internal 

pressure test is found in Figure 3-27.  The axial and shear strain components exhibit nonlinear 

behavior and become more negative throughout the test.  The nonlinear response is believed to 

be due to frictional loading by the plug at the higher pressures.  By taking the slope of the data at 

low loads, the affects of the loading are avoided, and the performance of the material due to pure 

internal pressure can be recorded.  The elastic properties for the Honeywell materials are in 

Table 3-VI.   

 

Table 3-VI.  Elastic properties for the Honeywell materials 

Value Axial Strain 
(GPa) 

Hoop Strain 
(GPa) 

Shear Strain 
(GPa) 

Poisson’s 
 Ratio 

Axial Stress 
(Inner) 

135.13±1.97 -1.1*103 -1.5*103 0.12 

Axial Stress 
(Outer) 

133.04±0.77 -888 -412 0.15 

Shear Stress 
(Inner) 

16.2*106 -23.9*103 48.40±0.32 -- 

Shear Stress 
(Outer) 

-55.2*103 -2.2*103 48.40±0.25 -- 

Pressure 712 20.26 -504 -0.03 
Hoop Stress 4.5*103 128.87 -3.2*103 -0.03 
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Figure 3-25.  Typical Axial tension test for the SiC/SiC tubes from Honeywell 

 

Figure 3-26.  Typical torsion response for the SiC/SiC tube from Honeywell 
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Figure 3-27.  Internal pressure test for Honeywell material  

 

The plot of the tensile strength test is in Figure 3-28.  The material exhibits a near perfect 

bilinear behavior due to the 90-degree plies failing in transverse tension around 80 MPa.  The 

test ran to a maximum of 144 MPa, when the epoxy bond in the loading fixture (see Figure 2-5) 

failed and the sample pulled out (not allowing for measurement of the ultimate tensile strength).   
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Figure 3-28.  Tensile strength test for the Honeywell sample.  The sample did not fail – at 
the maximum load the sample pulled out to the loading fixture 

 

 
3.4 Control Sample 

 

The elastic response of the steel tube to the different test conditions is listed in Table 3-VII, 

with the typical stress/strain plots in Figure 3-29 through Figure 3-31.  The axial and hoop 

moduli are within the range listed for this material (193-200 GPa).  The shear modulus is below 

the published value of 86 GPa, but the measured value follows the predicted value for an 

isotropic material, giving some doubt about the published value. 
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Table 3-VII.  Slopes of the strain responses for the control material  

Load Condition Axial Strain (GPa) 
Hoop Strain  

(GPa) 
Shear Strain 

(GPa) 
Poisson’s Ratio 

Axial Stress 192.1±2.2  -700 -25.5*103 0.274±0.005 
Shear Stress 21.2*103  -9.73*105  73.5±0.6  -- 

Pressure -104.32 21.01 -147.54 0.20 
Hoop Stress -968 194.95 -1.37*103 0.20 

 

 

Figure 3-29.  Axial tension test for AISI Type 304 steel 
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Figure 3-30.  Axial torsion test results for AISI Type 304 steel  

Figure 3-31.  Internal pressure results for AISI Type 304 steel 
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3.5 Discussion of Experimental Results 

 

The first objective for this work was to develop experimental procedures to measure the 

mechanical properties of the composite tubes from several different sources.  The procedures 

chosen were selected since they would subject the sample to a near-constant stress state over the 

entire gage section.  This provides better insight into the properties than several of the other tests 

proposed in the literature, such as the O-ring or C-ring tests.  The strains are measurable and 

(ideally) uniform throughout the gage section, allowing for more accurate determination of the 

material properties.   

The axial tension/compression and torsion tests were straightforward in their experimental 

procedures.  Complications arose due to sample misalignment, but could be compensated for 

with the use of 4 gages around the sample.  By averaging the values, the bending contributions 

were removed and accurate measurement of the tube stiffness could be obtained.  The different 

methods for loading the samples were successful in transferring load from the MTS frame to the 

samples.  The pin loading approach for the filter materials is not ideal, since there were several 

failures due to the pinholes in the samples.  The low strength of the material prevented the use of 

the other loading approaches, but once the end was potted in epoxy, it experienced gage section 

failures.  The two other approaches, directly gripping the sample and the end caps, were more 

desirable.  Sample misalignment was reduced for both methods to that measured in the filter 

materials.  The end caps used for the Honeywell material worked very well, in that the 

misalignment was reduced, if not completely removed.  The one drawback was the bond failure 

that prevented the measurement of the ultimate tensile strength.  This was due to the fact that the 

depth of the groove was not machined to the specifications in the diagram.  The groove could 

only be milled to between 7 and 10 mm in depth due to the small width.  With a deeper channel, 

it is likely that the fixture would survive past the tensile strength of the sample. 

Values for the axial strength were found for the McDermott filter materials, but not for the 

Honeywell or ORNL materials.  Sample CVI 1219 failed in axial tension after the silicon carbide 

coating on the inner surface was removed.  The strength of the material is expected to be higher 

than the measured value due to the presence of thickness variations.  The milling process 

removed some of the composite material from the inner surface, cutting into the woven layers, 

and possibly inducing damage within the material, which would be expected to reduce strength.  
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Even though the ultimate strength could not be measured for the Honeywell material, the strain 

response reveals the transverse strength of the composite to be around 80 MPa. 

The procedures for the internal pressure tests were developed during this research.  This 

work was done independently of the research at ORNL that developed similar methods.  The 

internal pressure results are in agreement with the values calculated from the hoop response of 

the control sample, and supported by the results from the axial tests for the McDermott and 

Honeywell samples.  The hoop stiffness values are similar to thee axial stiffness values, as would 

be expected from the symmetry of the material (or isotropy for the control).  The oxide/SiC 

composites from ORNL did not exhibit this behavior.  Several factors may contribute to the 

deviation, but damage incurred during other tests and due to the removal of the SiC layer are 

more likely.  The samples had been used for testing with the urethane plugs.  Pressures estimated 

to be in excess of 10 MPa were applied to these materials.  It is uncertain if any matrix cracking 

was present due to the previous loading or machining process to remove the SiC layer (which 

was removed from the internal pressure test sample as well).  Both of these factors would 

decrease the stiffness, due to the increased compliance of the cracked material.   

The responses of the materials at low pressures were in agreement with what is to be 

expected.  This is not necessarily the case at higher pressures.  The strain responses for many of 

the samples exhibited deviations from linearity, as can be seen in the axial and shear strain 

responses in Figure 3-27.  These are not believed to be due to damage in the material, but more 

from frictional loading of the sample.  Selecting a better high-pressure lubricant can reduce this 

problem.  Also, the tests were not conducted to pressures sufficient to fail the materials.  The 

Silastic plug would shear out around the compression platens prior to failure of the material.  A 

compression platen that more closely matches the inner diameter of the test sample should 

alleviate this problem, since it would generate a pure, or at least, nearly pure hydrostatic load 

condition.  The large shear stresses would not be present without the spacing between the platen 

and the sample.  A better fitting platen was not developed in this work since the surface 

roughness of the samples required some space to prevent the platen from directly loading the 

sample in compression. 
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4 Forward and Inverse Solutions 

 

 As was described in the Introduction, a nonlinear regression technique has been utilized 

to calculate estimates of the elastic constants for an orthotropic composite tube.  The work by 

George was successful in minimizing the error in data sets calculated by the Forward solution, 

but was not able to find good estimates for the elastic properties for experimental data sets.  

Since that work, several alterations have been made to the original idea, adding functionality to 

the analysis, in the hopes of improving its usefulness.  Also, a separate optimization analysis was 

developed that works the same problem with a different approach.  Instead of using a Newtonian 

or gradient-based regression technique, this new method utilizes the Nelder-Mead simplex 

method.  

The changes to the analysis from the work of George and the new methods utilized will be 

described in this section.  They will be validated by simulated test data found using the Forward 

solution.  Each of the methods developed for this work will be given a data set of accurate strain 

values, and allowed to search for a solution given the same set of start values, which are 

significantly different from the solution set.  The analysis will be applied to the experimental 

data and the results will be given.  To understand the influence of error on the final solutions, the 

more efficient methods will be given strain data sets with random error introduced.  This will 

allow for the effects of different forms of error on the experimental data to be illustrated, and 

give some information of the level of accuracy needed in experimental result for these methods 

to find an accurate inverse solution.  Also, the variations of the strain response due to changes in 

the individual elastic constants are investigated to determine which tests are the most effective in 

generating the most useful data sets. 

Extensions of the research methods proposed in this body of work are the development and 

application of suitable multi-axial failure theories and increasing the scope of the analysis to find 

thermal and hygroscopic expansion constants.  The experimental results provide information on 

the elastic properties and strength under several different loading conditions.  The Forward 

solution allows for the calculation of the stress state through the thickness for the failure loads.  

With enough variation in the failure conditions, sufficient data would be available to calculate 

failure envelopes for these materials.  A brief framework and example of applying a multiaxial 



 76

failure criterion will be given using the results from the McDermott filter data, since it was the 

only material with failures under different loading conditions (Pi, Fx, Fx+Tx).   

 

4.1 Inverse Solution 

 

The first alteration made to the analysis was the use of the Levenberg-Marquardt 

compromise to stabilize the performance of the nonlinear regression analysis.  This is a small 

change to the operation of the Newtonian method, which decreases sensitivity to poorly formed 

Jacobian matrices.  The next change was to the value being optimized.  The original program 

optimized the elastic properties, where as a new approach alters the values of the stiffness matrix 

(Cij) directly, reducing the nonlinearity of the system of equations.  Another added feature allows 

for the user to reduce the number of active parameters (Ei values) from the seven to any value 

desired.  This is significant since it allows for any number of variables to be set constant while 

the remaining values are optimized.  The final change was to increase the amount of data 

available to the analysis by allowing data from the inner surface to be included.     

The method used to change the Ei or Cij values is a Newtonian or gradient method.  For the 

Newtonian methods, the changes to the elastic constants are calculated using the error vector, Ö, 

and the Jacobian matrix, J. 

 ( ) 11i i T TX X J J J
−+ = + Φ  (4.1) 

where X is the variable (Ei or Cij), X
i+1 is the new, adjusted value, Xi is the previous value, and φ 

is the difference between the measured and predicted strain value.   This method requires that the 

gradient is defined and continuous at all points, and that the Jacobian matrix is well formed (non-

singular and not ill conditioned or collinear).   

A problem with this method arises with a near singular Jacobian matrix due to 

collinearity in the data.  The step value can become extremely large, causing the parameters to go 

into an undesirable region of parameter space.  The Levenberg-Marquardt compromise was 

developed to reduce the sensitivity of the analysis to this condition [48, pages 80-81, and 49, 

pages 624-627].  Diagonalizing the inverted section of (4.1) by adding a small value stabilizes 

the matrix and reduces sensitivity to abrupt changes in the gradients.  There are several methods 

for changing the matrix, but the method employed in this research changes (4.1) to: 
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 ( ) 11i i T TX X J J kD J
−+ = + + Φ  (4.2) 

Where D is the diagonal values of the JTJ matrix and k is a scaling factor (chosen so k<<1).  This 

is the Marquardt method, where the diagonal terms are multiplied by a factor of (1+k).   The 

increment values range from the original Newtonian step value (k=0), to what would be the step 

value for the method of steepest descent (k��).  The steepest descent uses infinitely small steps 

calculated from each gradient, allowing for the most direct path to a minimum, but is not feasible 

due to the increased number of computations for the small steps.  The flow chart for the program 

using the Levenberg-Marquardt compromise is found in Figure 4-1. 

With the addition of the scaling term k, the problem has become more complex since now 

this term must be maintained.  The size of the k value must be changed to maintain the best 

optimization step size.  As k increases, the step size decreases, and conversely, as k decreases, 

the step size increases.  The method employed in this analysis is not computationally efficient, 

but it is efficient in choosing the best step value.  It evaluates the error function for three 

different k values (step sizes) and chooses the step that results in the largest decrease.  This 

roughly triples the number of evaluations of the error function, increasing the computation time 

and decreasing efficiency.  The initial k value is chosen to be small (k=0.0001), and the first step 

is calculated.  To take the next step, three values are chosen for k; k/10, k, and 10k, and the error 

functions are evaluated.  The step that produces the smallest error is chosen for the step.  If the 

smallest error of the three steps is not smaller than the previous error value, then the program 

goes into an interval-reducing scheme (seen in the lower right portion of Figure 4-1).  The value 

of k is multiplied by ten (k, 10k, 100k), reducing the step size, and is repeated (10k, 100k, 1000k, 

etc…) until the step reduces the error function.  If the value of k exceeds a set large value, the 

program stops, and the data inspected to see if it is a local minimum or a bad set of values.  
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Figure 4-1. Schematic of Inverse solution procedure 
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Another addition to the program is the ability to optimize on the elastic constants (E1, E2, 

E3…) or on the stiffness matrix values (Cij).  This is significant in that it reduces the nonlinearity 

of the equations by removing the nonlinear conversion from Ei to Cij, as can be seen in (4.3). 
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The more terms that can be removed from the nonlinear aspects of the problem, the better the 

linear step value will improve the estimates.  In the first several steps of the Forward solution 

(Step 2 in Figure 4-1), the elastic constants are used to calculate the stiffness values (C ij).  Since 

there is only one set of stiffness values for the material, they can be used for the optimization 

values.  This is not possible for the transformed stiffness matrices since they are dependant upon 

the geometry of the each layer and not just the material constants (for an N ply composite – 1 set 

of Cij values but up to N sets of ijC values).  The disadvantage of optimizing the stiffness matrix 

is that it precludes another process where the number of constants being optimized is reduced 

from the seven original values to a set input by the user ranging from 1 to 7 active parameters.   

 A concern with this analysis is the small amount of data available to optimize seven 

elastic parameters.   Early results with this process would find some reproducible solutions, but 

the out-of-plane values would return far outside acceptable ranges.  These variations are due to 

the experimental error in the limited data sets.  There are two possible ways to handle the limited 

data sets; one is to reduce the number of variables, and the other is to increase the amount of 

data.  By decreasing the number of active parameters, or fixing certain elastic constants to set 

values and optimizing on the remaining values, the user can control variables that tend to 

unrealistic values, and find values for the others.  An example of this would be to set the out-of-
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plane values to be constant and optimize on the remaining in-plane values.  To reduce the active 

parameters, the input data includes the number of active parameters and information on the 

values.  With this information the Jacobian matrix is reduced in size, including the terms 

applying to the active values.  The program operates in the same fashion, but only increments the 

variables defined as active, leaving the other terms constant and equal to the start value.  The 

routines for making these changes can be found in the Jacobian routines found in the source 

codes in the Appendices.   

The second method is to increase the amount of data available to the analysis.  One 

means of this is to input values for the strain response from the inner surface of the sample.  This 

increases the total amount of data by doubling the measurements for each test.  It will reduce the 

number of possible solutions, since the values need to predict the strain response on the two 

surfaces.  Also, it should give more information on the out-of-plane properties from the internal 

pressure tests, since the largest out-of-plane stress state is at the inner surface.  The limitation of 

actually measuring the strain of the inner surface accurately with pressure applied is beyond this 

work.  The elastomer compression method does not allow for these measurements. 

The selection of convergence criteria is important to the success of the analysis.  A 

balance must be made between declaring convergence and terminating the program, and 

allowing the system to find a true minimum.  If the criteria are chosen too loosely, the program 

declares a minimum before a true minimum is found.  Conversely, we wish to stop the analysis 

from wasting computation time making insignificant changes to the estimates or continuing 

when the estimates are well outside acceptable values.  Several convergence criteria are 

employed to determine convergence or to prevent the system from running for excessive periods 

of time.  From the flow chart in Figure 4-1, there are three locations for terminating the 

procedure; if k becomes too large, the analysis exceeds a fixed number of iterations, or if the 

solution meets the convergence criteria.  The user of the program sets the maximum number of 

iterations, so that program terminates if no solution has been found in a reasonable amount of 

time. This is not a convergence criterion, since it does not inspect the data itself, but merely 

prevents the program from running for extended periods of time unchecked.  There are two main 

criteria employed in this program to check for significant change in the estimates of the elastic 

properties.  The first is that the program continues as long as one of active elastic constants 

changes by more that 0.01% over 5 iterations, and the second is if the scaling factor, k, exceeds a 



 81

set large value.  Usually, when k becomes large (k>106), the step sizes become small enough that 

the program hits the other criterion, in that the changes to the active parameters become very 

small.  If the criterion is not reached, the step sizes are very large, indicating the potential that the 

solution has entered an undesirable section of parameter space.  The program stops and reports 

which criterion was reached, which allows for the user to inspect the solution, and choose a 

suitable course of action (i.e. determine if a genuine solution has been found or to change the 

guess values and repeat the analysis).   

 

4.1.1 Verification of Inversion Methods 

 

To verify if the different methods calculate the best elastic properties, test runs were 

conducted using each.  A fictitious sample was created using the typical values for an S-2 

Glass/Epoxy composite (50, page 14).  The properties and geometry values are in Table 4-I and 

Table 4-II.  The Forward solution was used to calculate the strains for a basic set of load 

conditions, listed in Table 4-III.  The values of the loads were chosen to be similar to those seen 

in experiments.  The calculated strain response, listed in Table 4-IV, are listed for the different 

loading conditions and surfaces (I=inner or O=outer).  

Table 4-I.  Elastic Constants for a S-2/Epoxy composite 

Elastic Properties GPa (Msi) 
E1 43.5 (6.31) 
E2 11.5 (1.67) 
E3 11.5 (1.67) 
G12 3.45 (0.5) 

νν12 0.27 
νν13 0.4 

νν23 0.4 

 

Table 4-II.  Geometric Constants for two fictitious composite tubes 

Tube ID Inner Radius 
 mm (in) 

Outer Radius 
 mm (in) 

Number of Plies Orientation Ply Thickness mm 
(in) 

1 25.4 (1.0) 27.9 (1.1) 20 [45/-45]10 0.127 (0.005) 
2 25.4 (1.0) 27.9 (1.1) 20 [0/90]10 0.127 (0.005) 
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Table 4-III.  Loading Conditions for the tubes  

Load # Pi  
MPa (ksi) 

Fx 
kN (lbf.) 

Tx 
N-m (in-lbf) 

1 10 (1.45) 0 0 
2 0 5 (1125) 0 

3 0 0 100 (885) 
4 0 5 (1125) 100 (885) 
5 10 (1.45) 5 (1125) 100 (885) 

 

Table 4-IV.  Strain response for the tubes using the loading conditions from Table 4-III 

  Tube 1 Tube 2 
Load # Surface εx εθ γxθ εx εθ γxθ 

1 O -5.5713E-03 8.4283E-03 -5.9773E-06 -3.348E-04 3.440E-03 -1.177E-18 

2 O 1.0406E-03 -6.4180E-04 2.0183E-06 4.251E-04 -5.393E-05 2.215E-20 
3 O 1.4434E-06 -4.2934E-07 7.4009E-04 1.584E-20 -9.157E-20 2.671E-03 
4 O 1.0421E-03 -6.4223E-04 7.4211E-04 4.251E-04 -5.393E-05 2.671E-03 

5 O -4.5292E-03 7.7860E-03 7.3613E-04 9.022E-05 3.386E-03 2.671E-03 
1 I -5.5713E-03 9.4626E-03 -5.4339E-06 -3.348E-04 3.977E-03 -1.070E-18 
2 I 1.0406E-03 -6.8795E-04 1.8348E-06 4.251E-04 -4.135E-05 2.014E-20 

3 I 1.4434E-06 -5.2785E-07 6.7281E-04 1.584E-20 -1.039E-19 2.428E-03 
4 I 1.0421E-03 -6.8848E-04 6.7464E-04 4.251E-04 -4.135E-05 2.428E-03 
5 I -4.5292E-03 8.7741E-03 6.6921E-04 9.022E-05 3.935E-03 2.428E-03 

 

 

The first check of the analyses is to input a perfect data set (one with no error included in 

the 5 significant digits listed above) and give bad start values.  The results for the different 

optimization methods given the same start values are listed in Table 4-V and Table 4-VI.  The 

different methods are the Levenberg-Marquardt compromise (LM) and the Nelder-Mead simplex 

method (NM) optimizing the stiffness matrix values (Cij) and the elastic constants, (Ei).  Plots of 

the Sum of Square Errors (SSE) at each iteration are located in Figure 4-2 and Figure 4-3.  The 

values of the SSE are on a logarithmic scale, starting at an initial value between 10-2 and 10-3, 

and plateau at the solution at 10-15.   
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Table 4-V. Results for Tube 1.  LM – Levenberg-Marquardt, NM – Nelder-Mead 

Properties Start LM – Cij LM – Ei NM - Cij NM - Ei 
E1 (GPa) 6.90 43.61 43.61 46.20 46.75 
E2 (GPa) 3.45 11.40 11.40 8.48 7.93 
E3 (GPa) 3.45 11.52 11.52 8.00 10.89 
G12 (GPa) 0.69 3.45 3.45 3.45 3.45 

ν12 0.3 0.273 0.273 0.357 0.385 

ν13 0.3 0.402 0.402 0.443 0.627 

ν23 0.3 0.398 0.398 0.257 0.171 
Final SSE 5.98E-15 5.98E-15 1.34E-11 2.18E-11 
Iterations 14 62   

Computation time 1.04 Minutes 3.1 minutes 8.8 minutes 44 seconds 

 

Table 4-VI.  Results for Tube 2, LM – Levenberg-Marquardt, NM – Nelder-Mead 

Properties Start  LM – Cij LM – Ei NM - Cij NM - Ei 
E1 (GPa) 6.90 42.42 43.86 27.92 47.64 
E2 (GPa) 3.45 12.66 11.14 27.24 7.38 
E3 (GPa) 3.45 11.52 11.49 10.83 6.09 
G12 (GPa) 0.69 3.45 3.45 3.45 3.43 

ν12 0.3 0.246 0.279 0.114 0.365 

ν13 0.3 0.385 0.402 0.640 -0.002 

ν23 0.3 0.421 0.395 0.195 1.054 
Final SSE 1.53E-15 1.53E-15 5.37E-12 4.65E-08 
Iterations 14 15   

Computation time 60 seconds 1.21 minutes 50 seconds 8.4 minutes 

Figure 4-2.  Sum of Square Errors for Tube 1 for the two different Newtonian methods. 
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Figure 4-3.  Sum of Square Errors for Tube 2 for the two different Newtonian methods. 

 

Upon inspection of the results, the two Newtonian methods are more accurate, finding the 

estimates of the elastic constants to within a few percent of the true values (the accuracy can be 

increased by including a larger number of significant digits in the strain data – as can be seen in 

the two LM-Cij lines in Figure 4-2 – one contains 5 significant digits and found a minimum at  

10-15 and the other has 6 digits and terminated with a final SSE of 10-17).  The Nelder-Mead 

methods improved the values, but not to the same level as the other two approaches.   

An interesting side effect of this analysis was found using both of the optimization 

methods; a second solution exists for the Tube 2 geometry.  For the Levenberg-Marquardt 

compromise on the elastic constants, a second solution to the problem was found by changing the 

start values (Table 4-VII).  With the [0/90] structure of the tube, a second solution is an average 

of the E1 and E2 values. It has the same residual error, meaning without knowing the correct 

answer, it would be impossible to determine which solution is the correct with some other 

information to differentiate them.   
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Table 4-VII.  The two solutions for Tube 2 found using different start values 

Properties Start 1 LM – Ei Start 2 LM – Ei 
E1 (GPa) 6.90 42.42 6.90 27.92 
E2 (GPa) 3.45 12.66 6.90 27.44 
E3 (GPa) 3.45 11.52 6.90 11.38 
G12 (GPa) 0.69 3.45 0.69 3.45 

ν12 0.3 0.246 0.2 0.112891 

ν13 0.3 0.385 0.3 0.171464 

ν23 0.3 0.421 0.3 0.674271 
Final SSE 1.53E-15  1.53E-15 
Iterations 14  15 

Computation time 60 seconds  1.2 minutes 

 

 

4.2 Application to Experimental Results 

 

 The data described in Section 2 of this paper has been reduced for input into the analysis 

by fitting the linear elastic portions of the data with a best- fit line.  The slopes of the data were 

used to calculate the strain response at the maximum load ranges for each of the tests.   The same 

numbers of data points were included from each test, so the results would not be biased towards 

one set of data.   

 There is a discrepancy between the model used and the experimental composite samples.  

The model was designed to describe the deformations in a laminated structure composed of 

orthotropic layers of various orientations.  The experimental samples are a laminated structure 

with woven plies, which do not behave in a consistent fashion to unidirectional plies.  To 

approximate the behavior of the woven plies, each layer is modeled as two cross-ply layers.   

Different data sets were created from each of the different materials tested.  The inputs for 

each of the optimization techniques will be listed (geometric input values), and the output 

solutions.  Tables of the start and output values with final error are given, and graphs of the 

solutions will be presented to illustrate the fit to the experimental results. 

 Selection of start values is important for the operation of the analysis.  Poor start values 

can cause the program to converge to an incorrect solution, or at least cause the system to waste 

time in searching for values.  A good estimate of the elastic properties is always the best start 

value, since the closer the start is to the solution, the more likely it is to find it.  This seems 

obvious – if one already has a good idea of the properties, this analysis isn’t necessary.  This 

procedure has the capability of starting with bad start values and finding the right solution, but 
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the further away the start, the greater the possibility that the solution that is found is an alternate 

solution – as was seen with the results for Tube 2 in Table 4-VII.  Experience with start values 

seems to indicate that conservative estimates work better.  That is to say that starting smaller 

than the probable solution appears to work better than picking values known to be larger.  The 

percentage change between using smaller or larger values of the material constants is best 

illustrated by examining their behavior.  The difference value is found by subtracting the new 

strain response from that of the original, or:  

 exp exp 1
1calc

i i i
i iE E

σε ε ε− → − ∝ −  (4.4) 

where ε is the strain value, exp and calc refer to the experimental and calculated values, and Ei 

are the elastic properties.   Since both the experimental strain and the stress values are constant, 

the change in the strain response should follow a (1-1/X) behavior (as shown in Equation (4.4)).  

Consequently, the sum of square errors should be proportional to (1-1/X)2.  Since all the 

independent variations to the different material values would be too numerous to include in this 

report, a plot of the variation of the SSE as a function of a constant times all of the material 

properties if found in Figure 4-4.  The plot of the (1-1/X)2 line is not to scale, but shown to 

illustrate the similar behavior.  The small variations to the error values above one would be 

susceptible to change by the introduction of error in the measured values, and could result in the 

formation of a local minima that is not the ideal solution.  The large variations to the values 

below one would be more tolerant of error effects, leading to a better chance of finding a 

minimum.   

 For each of the experimental results, several start values will be used for each material, 

and will include a set of values smaller than the anticipated values and a set of “good” estimates.  

The small values are found by simply choosing a number sufficiently smaller than the expected 

values, anywhere from a few percent to orders of magnitude, depending on the performance of 

the analysis.  The good values are any value that can be considered a decent estimate of the 

expected value.  For the unknown properties of the composite materials, micromechanics models 

will be used to calcula te an estimate from the constituent properties. 
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Figure 4-4.  The error function for Thick Tube 2 plotted against the value of the multiplier 
on the elastic properties (2 = 2*Ei, i=1..7). 

 

 

4.2.1 McDermott Technologies Hot Gas Filter 

 

The geometric input values for the McDermott filter material are in Table 4-VIII.  The 

winding angle variations follow the expression derived in the Introduction, and are calculated at 

every layer interfacial radius.  The experimental load and strain response values are listed in 

Table 4-IX.  The values were calculated from the average responses of all the tests, and since 

they are linear, only one value from each test is needed (the model passes through the origin 

giving a second point for a linear response). 
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Table 4-VIII.  Geometric inputs for MTI 

Inner radius- cm (in) 2.46 (0.968) 
Outer radius - cm (in) 3.00 (1.18) 

Number of Layers 36 
Layer Thickness - cm (in) 0.015 (0.006) 

Orientation 45º to 50º 

 

Table 4-IX.  Experimental Applied Loads and Measured Strains for the MTI materials 

Loads Strain 

Po  
(MPa) 

Pi  
(kPa) 

Axial Load  
(kN) 

Torque  
(N-m) 

εx εθ γxθ 

0 690 0 0 -0.00064 0.000546 -7.69E-06 
0 0 0.445 0 0.00011 -5.65E-05 2.96E-06 
0 0 0 11.3 -1.78E-06 6.51E-07 5.97E-05 

 

The Levenberg-Marquardt method optimizing the Ei values was used to find the best-fit elastic 

properties; the three different start values used are listed in Table 4-X.  The first is a small start 

value, where the values should be smaller than the expected properties.  The second is a set of 

start values calculated from a micromechanics approach developed by Huang [3,51].  The final 

set is found with the out-of-plane values set as constants.  Plots of the experimentally observed 

strain response versus the predicted strain response for Solution Set #1 are in Figure 4-5 through 

Figure 4-7. 

 

Table 4-X.  Solutions for the McDermott Hot Gas Filter 7-6-16 with 105 simulated back-
pulse cleaning cycles. 

 Set 1 Set 2 Set 3 

Properties  
GPa (Msi) 

Input Output Input Output Input Output 

E1 0.69 (0.1) 26.75 (3.88) 29.65 (4.3) 26.75 (3.88) 29.65 (4.30) 35.03 (5.08) 
E2 0.07 (0.01) 8.62 (1.25) 2.30 (0.333) 8.62 (1.25) 2.30 (0.333) 10.62 (1.54) 
E3 0.07 (0.01) 0.10 (0.015) 2.30 (0.333) 0.10 (0.015) 0.42 (0.061) 0.42 (0.061) 
G12 0.28 (0.04) 1.26 (0.183) 1.15 (0.167) 1.26 (0.183) 1.15 (0.167) 1.14 (0.165) 

ν12 0.2 0.149 0.01 0.149 0.15 0.699 
ν13 0.15 -26.2 0.01 -26.2 0.01 0.01 
ν23 0.1 1.32 0.01 1.32 0.01 0.01 

Error (SSE) 3.66E-5 1.34E-11 9.21E-9 1.34E-11 2.67E-9 9.70E-10 
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Figure 4-5.  Axial tension test response – experimental data are represented by data points 
and the model predictions are lines 

Figure 4-6.  Internal pressure test response – experimental data are represented by data 
points and the model predictions are lines 
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Figure 4-7.  Axial torsion test response – experimental data are represented by data points 
and the model predictions are lines 

 

The best-fit values accurately describe the response of the material, in that the lines for 

each of the strain values are very close to the experimental data points.  The values for the in-

plane responses are good, but the out-of-plane values are outside expected ranges. 

 

4.2.2 ORNL Al 203/SiC Tubes 

 

The geometric inputs for CVI 1219 are in Table 4-XI.  The experimental inputs, loads 

and strains, are in Table 4-XII.   
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Table 4-XI.  Geometric inputs for CVI 1219 

Inner radius- cm (in) 2.5 (0.98) 
Outer radius - cm (in) 2.95 (1.16) 

Number of Layers 16 
Layer Thickness - cm (in) 0.47 (0.187) 

Orientation ±45 
 

Table 4-XII.  Experimental Applied Loads and Measured Strains  

Loads Strain 

Po 
(MPa) 

Pi 
(MPa) 

Axial Load 
(kN) 

Torque 
(N-m) εx εθ γxθ 

0 4.14 0 0 -6.2E-05 0.000337 4.63E-05 
0 6.21 0 0 -9.4E-05 0.000506 6.94E-05 
0 0 -22.2 0 -0.00018 9.51E-05 -6.64E-07 
0 0 22.2 0 1.84E-04 -9.51E-05 6.64E-07 
0 0 0 -215 -4.44E-06 3.99E-06 -1.56E-04 
0 0 0 215 4.44E-06 -3.99E-06 1.56E-04 

 
 

 The results for different sets of start values are in Table 4-XIII.  The values in Set 1 are 

rough estimates of the measured stiffness values listed in Table 3-IV and Table 3-V, while those 

in Set 2 are rough estimates calculated using micromechanics models for E1 and E2 :  

 1 (1 )f f f mE V E V E= + −  (4.5) 

 

( )2

11

1

f f

m f f f m

V V

E E E V V E

−
= +

+ −
   (4.6) 

 

where Ef and Em are the modulus of the fiber and the matrix and Vf  is the fiber volume fraction 

[39].  The modulus values used for the SiC and the Nextel 610 fiber are 414 and 372 GPa1, 

respectively, and a fiber volume fraction of 0.32 was used.   The input values used in Set 3 were 

solut ions from the Nelder-Mead approach using the values from Set 1 as start values.  As can be 

seen, the Nelder-Mead solution is not a minima, since the Newtonian method found a different 

set of values. 

                                                 

1 Values taken from reports on the 3M website 
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Table 4-XIII.  Input and output values for CVI 1219 

 Set 1 Set 2 Set 3 

Properties 
GPa (Msi) 

Input Output Input Output Input Output 

E1 172 (25.0) 208 (30.1) 414 (60.0) 175 (25.5) 199 (28.8) 254 (36.9) 
E2 76 (11.0) 108 (15.7) 276 (40.0) 141 (20.4) 53 (7.67) 59 (8.59) 
E3 69 (10.0) 4964(720.0) 276 (40.0) 1855 (269.0) 77 (11.2) 155 (22.5) 
G12 62 (9.0) 65 (9.49) 131 (19.0) 66 (9.55) 33 (4.84) 62 (9.02) 
ν12 0.15 0.27 0.1 0.21 -0.01 0.38 

ν13 0.15 -0.13 0.15 -0.07 0.23 -0.67 
ν23 0.25 0.13 0.25 0.07 0.63 0.58 

Error (SSE)  7.66E-09  7.59E-09  8.27E-09 

 

 The output values are different for each set of starting values.  The only value that is 

consistent is the shear modulus value.  The other in-plane values (1-2 values) are calculated with 

a range of values that are acceptable, while the out-of-plane values are not.  The through-

thickness stiffness (E3) ranges in value from 155 GPa to 4964 GPa (22.5 Msi to 720 Msi), while 

the two Poisson’s ratios (ν13 and ν23) range from –0.67 to 0.58.  These values are well outside the 

expected ranges for these values (E3 � E2 and ν12 � ν13), and at this time no start values have been 

found that return all values in the expected ranges.  This is not indicative that analysis has failed 

to minimize the error function.  Figure 4-8 through Figure 4-10 are the graphs of the 

experimental data plotted with the calculated results.  In each graph, the experimental strain 

measurements are plotted as data points, while the model predictions are the lines.  In all cases 

the model matches the data very closely, with the possible exception of the shear strain values in 

Figure 4-10.   
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Figure 4-8.  Axial tension and compression results – the data points are the experimentally 
observed values and the lines are the model predictions  

Figure 4-9.  Axial torsion results– the data points are the experimentally observed values 
and the lines are the model predictions  

-6000

-4000

-2000

0

2000

4000

6000

-0.00025 -0.0002 -0.00015 -0.0001 -0.00005 0 0.00005 0.0001 0.00015 0.0002 0.00025

Strain

A
xi

al
 L

oa
d 

(lb
f) Axial Experimental

Hoop Experimental
Shear Experimental
Axial Model
Hoop Model
Shear Model

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

-2.00E-04 -1.50E-04 -1.00E-04 -5.00E-05 0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04

Strain

A
xi

al
 T

or
qu

e 
(in

-lb
)

Axial Experimental
Hoop Experimental
Shear Experimental
Axial Model
Hoop Model
Shear Model



 94

Figure 4-10.  Internal pressure results – the data points are the experimentally observed 
values and the lines are the model predictions  
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strain responses are in Table 4-XV.  Unlike the data for the McDermott filters and the ORNL 

tubes, the responses include data from the inner surface and combined load conditions (Fx and 

Tx). 

Table 4-XIV.  Geometric inputs for the Honeywell tubes 

Inner radius- cm (in) 2.51 (0.99) 
Outer radius - cm (in) 2.90 (1.14) 

Number of Layers 24 
Layer Thickness - cm (in) 0.015 (0.006) 

Orientation [0/90] 
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Table 4-XV.  Experimental Applied Loads and Measured Strains for the Honeywell 
materials 

Loads Strain 

Po 
(MPa) 

Pi 
(MPa) 

Axial Load 
(kN) 

Torque 
(N-m) Surface εx εθ γxθ 

0.0 3447.5 0.00 0.0 o 4.841E-06 1.702E-04 -6.836E-06 
0.0 0.0 4.48 0.0 o 5.310E-05 -7.955E-06 -1.715E-05 
0.0 0.0 0.00 113.0 o -1.283E-07 -3.173E-06 1.463E-04 
0.0 0.0 4.48 0.0 i 5.166E-05 -6.477E-06 -4.582E-06 
0.0 0.0 0.00 113.0 i 3.793E-10 -2.570E-07 1.270E-04 
0.0 0.0 2.23 56.2 o 2.609E-05 -4.160E-06 7.231E-05 
0.0 0.0 -2.26 -56.0 o -2.543E-05 3.541E-06 -7.445E-05 
0.0 0.0 2.27 -55.8 o 2.693E-05 -4.049E-06 -7.371E-05 
0.0 0.0 -2.24 56.1 o -2.744E-05 4.484E-06 7.210E-05 
0.0 0.0 2.23 55.9 i 2.788E-05 -5.629E-06 -6.044E-05 
0.0 0.0 -2.24 -56.3 i -2.991E-05 6.486E-06 6.172E-05 
0.0 0.0 2.27 -56.5 i 2.187E-05 2.139E-07 6.636E-05 
0.0 0.0 -2.22 55.4 i -2.549E-05 1.750E-06 -6.428E-05 

 

 

The results for the three sets of start values are listed in Table 4-XVI.  As was seen in the results 

for Tube 2, there exist two different solutions.  Set 2 and 3 find similar solutions, where the Set 1 

values for E1 and E2 are the average of those in Set 2.   

Table 4-XVI.  Results for the Honeywell tubes 

 Set 1 Set 2 Set 3 

Properties 
 GPa (Msi) 

Input Output Input Output Input Output 

E1 137.90 (20.0) 134.45 (19.5) 206.85 (30.0) 199.27 (28.9) 2.07 (0.3) 201.33 (29.2) 
E2 137.90 (20.0) 129.63 (18.8) 68.95 (10.0) 67.09 (9.73) 0.69 (0.1) 73.78 (10.7) 
E3 137.90 (20.0) 373.02 (54.1) 68.95 (10.0) 436.45 (6.33) 0.69 (0.1) 181.34 (26.3) 
G12 48.27 (7.0) 84.12 (12.2) 62.06 (9.0) 82.74 (12.0) 0.62 (0.09) 84.12 (12.2) 

ν12 0.2 0.048 0.1 0.085 0.1 0.101 
ν13 0.29 0.600 0.25 0.676 0.25 1.053 
ν23 0.29 0.596 0.25 0.396 0.25 0.658 

Error (SSE)  5.09E-08  5.10E-08  5.09E-08 

 

The out-of-plane values again are outside of expected ranges, but are not outrageously so, as for 

the McDermott ORNL materials.  The analys is was repeated setting the out-of-plane values as 

constants (number of active parameters (NAP) = 4), with E3 set approximately equal to E2 from 

the Set 2 solution and the Poisson ratios set to 0.2 and 0.5. 
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Table 4-XVII.  Results for Honeywell tubes.  Set 1 NAP =7, Set 2 and 3 NAP=4 (In-plane 
values only)  

 Set 1 Set 2 Set 3 

Properties 
 GPa (Msi) 

Input Output Input Output Input Output 

E1 206.9 (30.0) 199.3 (28.9) 206.9 (30.0) 250.3 (36.3) 206.9 (30.0) 245.5 (35.6) 
E2 68.95 (10.0) 66.33 (9.62) 68.95 (10.0) 2.75 (0.399) 68.95 (10.0) 17.24 (2.5) 
E3 68.95 (10.0) 413.0 (60.0) 68.95 (10.0) 68.95 (10.0) 68.95 (10.0) 68.95 (10.0) 
G12 84.12 (12.2) 84.12 (12.2) 84.12 (12.2) 84.12 (12.2) 84.12 (12.2) 84.12 (12.2) 
ν12 0.1 0.086 0.1 2.217 0.1 0.37 
ν13 0.2 0.694 0.2 0.200 0.5 0.50 

ν23 0.2 0.404 0.2 0.200 0.5 0.50 
Error (SSE)  5.09E-08  5.10E-08  5.09E-08 

 

With the reduction of active parameters, the out-of-plane properties are set as constants and the 

remaining values are optimized.  By examining the solutions for Set 2 and Set 3, one notices the 

in-plane values change to compensate for the lack of contribution from the out-of-plane values. 

 

4.2.4 Control Sample  

 

The geometric inputs for the control sample are in Table 4-XVIII.  The experimental load 

conditions and strain response is in Table 4-XIX.  As with the Honeywell material, the 

experimental results contain combined axial load and torque, giving more information for the 

analysis, but without access to the inner surface, the strain response is only from the outer 

surface. 

 

Table 4-XVIII.  Geometric inputs for the Control Sample 

Inner radius- cm (in) 2.73 (1.07) 
Outer radius - cm (in) 3.00 (1.18) 

Number of Layers 1 
Layer Thickness - cm (in) 0.28 (0.11) 

Orientation 0 
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Table 4-XIX.  Experimental Applied Loads and Measured Strains for the Control Sample 

Loads Strain 

Po  
(MPa) 

Pi  
(MPa) 

Axial Load  
(kN) 

Torque  
(N-m) 

Surface εx εθ γxθ 

0.0 2758.0 0.00 0.0 o -2.692E-05 1.281E-04 1.267E-05 
0.0 0.0 44.35 0.0 o 4.601E-04 -1.284E-04 -1.036E-05 
0.0 0.0 0.00 418.1 o -1.769E-06 -1.320E-06 4.194E-04 
0.0 0.0 4.48 55.7 o 4.468E-05 -1.277E-05 5.353E-05 
0.0 0.0 3.37 112.5 o 3.333E-05 -1.026E-05 1.094E-04 
0.0 0.0 4.51 112.5 o 4.495E-05 -1.355E-05 1.093E-04 
0.0 0.0 4.52 -112.5 o 4.556E-05 -1.256E-05 -1.124E-04 
0.0 0.0 8.92 112.8 o 9.073E-05 -2.253E-05 1.136E-04 
0.0 0.0 -8.91 -113.2 o -9.119E-05 2.761E-05 -1.098E-04 
0.0 0.0 -8.93 111.8 o -9.119E-05 2.662E-05 1.128E-04 
0.0 0.0 8.96 -112.0 o 9.124E-05 -2.167E-05 -1.092E-04 

 

With the isotropy (or at least near- isotropy) of the metal, estimates of the properties were 

entered for Set 1.  For the second data set, the out-of-plane values were set to be constant, and 

the process repeated. 

Table 4-XX.  Results for the control sample Set 1 NAP =7, Set 2 NAP=4 (In-plane values 
only). 

 Set 1 Set 2 

Properties 
 GPa (Msi) Input Output Input Output 

E1 186.2 (27.0) 190.85 (27.7) 186.17  (27.0) 190.99 (27.7) 
E2 172.38 (25.0) 194.44 (28.2) 172.38 (25.0) 199.96 (29.0) 
E3 172.38 (25.0) -4467.27 (-648) 193.06 (28.0) 193.06 (28.0) 
G12 68.95 (10.0) 72.81 (10.6) 68.95 (10.0) 73.09 (10.6) 

ν12 0.25 0.273 0.25 0.272584 

ν13 0.3 1.066 0.27 0.27 

ν23 0.3 6.575E+09 0.27 0.27 

Error (SSE)  4.165E-10  4.70E-10 

 

 

4.3 Error Sensitivity 

 

As with any regression analysis, linear or nonlinear, the quality of the estimates for the 

variables depends upon the quality and quantity of the data.  When the data have a large amount 

of error or scatter, it is advantageous to increase the amount of data to improve the fit.  For the 

experimental work done here, there is a limit to the amount of data due to the limits of the model 

and experimental procedures.  To illustrate the effects of different forms of error on the 
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regression analysis, simulations using the elasticity model were developed, and the strain results 

adjusted to illustrate two different forms of error.  One is called a proportional error, which is a 

straight percentage variation to the strain.  The second will be the addition of a fixed level of 

error, which adversely affects the smaller strain measurements more than the large values.  This 

is analogous to signal noise affects for the different measurements employed.  For both 

conditions the RAND() function from Microsoft Excel will be utilized to calculate the error 

value.  It generates a flat distribution between 0 and 1 (all values between 1 and 0 have the same 

probability).  

 This does not address several other forms of error that could be expected in the 

experimental data.  This assumes that all the tests used to generate the results are perfectly done.  

This is to say that all tests generate the exact same amount of error in the data, and it is 

distributed randomly throughout all the values.  For the axial tension and torsion tests this is 

probably not a bad assumption since they are performed at the same time using the same MTS 

system controls, but it might not be applicable to the internal pressure tests.  The pressure 

calculated by the elastomer plug method here matches the data well for the control sample, but 

with the rougher surfaces of the composite materials there is probably a small axial load 

generated.  The load would change the axial and hoop strain results, biasing the data.   

A bonus to the recording of the data was the use of 4 rosettes to record the stain.  This 

was primarily to remove elastic bending contributions due to specimen misalignment, but has the 

added benefit of reducing several sources of experimental error.  Random noise and orientation 

variations will be reduced since the stains are the average of four gages.  Another method of 

reducing experimental error is the averaging of the slopes for the repeated tests on each sample.  

For each test, the data are recorded, a best- fit line is found and the slope is recorded, and the 

slopes are averaged.   

 

4.3.1 Proportional Error 

 

As was described earlier, a proportionate error was included to test for sensitivity to error.  

This generated an error such that all strains were within fixed percentage range of the correct 

strain values.  Microsoft Excel worksheets were used to tabulate the data, and the random 
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number function, RAND, was used to generate the distribution.  Since the RAND function is a 

distribution between 0 and 1, by shifting the values by 1-2RAND, as seen in Equation (4.7), will 

give a new distribution from 1 to –1.  This will allow for the median value to correspond to the 

original strain value, and the distribution to be between the percentage factor, %δ, or [ε(1−δ) ≤ ε ' 

≤ ε(1+δ)]. 

 ( )( )1 % 1 2 RANDε ε δ′ = + −  (4.7) 

Error values of 0.1, 1, and 10% will be used for this illustration, and are listed in Table 4-XXI 

through Table 4-XXVI.  The range for the percentage error should be excess of what could be 

seen in experimental results (0.1% is better than what can be expected and 10% is the accepted 

upper limit).  In each table are the load condition (see Table 4-III), the surface of the readings, 

the altered strain values, and the percentage change from the values in Table 4-IV. 

 

Table 4-XXI. Strain values for Tube 1 with 0.1% random error 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -5.573E-03 8.433E-03 -5.982E-06 -0.028 -0.058 -0.086 
2 o 1.041E-03 -6.421E-04 2.017E-06 -0.035 -0.051 0.082 
3 o 1.443E-06 -4.296E-07 7.403E-04 0.013 -0.054 -0.030 
4 o 1.042E-03 -6.424E-04 7.426E-04 -0.010 -0.032 -0.065 
5 o -4.532E-03 7.785E-03 7.366E-04 -0.069 0.010 -0.058 
1 i -5.569E-03 9.470E-03 -5.437E-06 0.036 -0.075 -0.052 
2 i 1.041E-03 -6.877E-04 1.836E-06 -0.068 0.038 -0.061 
3 i 1.444E-06 -5.277E-07 6.724E-04 -0.064 0.019 0.065 
4 i 1.042E-03 -6.884E-04 6.749E-04 0.038 0.010 -0.042 
5 i -4.528E-03 8.776E-03 6.698E-04 0.020 -0.025 -0.084 

 

Table 4-XXII. Strain values for Tube 1 with 1.0% random error 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -5.582E-03 8.399E-03 -5.979E-06 -0.196 0.345 -0.031 
2 o 1.035E-03 -6.367E-04 2.023E-06 0.503 0.793 -0.227 
3 o 1.431E-06 -4.303E-07 7.435E-04 0.824 -0.225 -0.459 
4 o 1.040E-03 -6.406E-04 7.369E-04 0.239 0.254 0.703 
5 o -4.564E-03 7.813E-03 7.367E-04 -0.762 -0.348 -0.080 
1 i -5.540E-03 9.505E-03 -5.400E-06 0.557 -0.449 0.632 
2 i 1.033E-03 -6.914E-04 1.848E-06 0.687 -0.495 -0.726 
3 i 1.436E-06 -5.245E-07 6.689E-04 0.510 0.637 0.574 
4 i 1.032E-03 -6.838E-04 6.745E-04 0.930 0.673 0.016 
5 i -4.515E-03 8.690E-03 6.759E-04 0.304 0.959 -0.994 
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Table 4-XXIII. Strain values for Tube 1 with 10.0% random error 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -6.023E-03 8.225E-03 -5.873E-06 -8.105 2.412 1.743 

2 o 1.102E-03 -6.014E-04 1.956E-06 -5.932 6.293 3.111 

3 o 1.576E-06 -4.638E-07 7.649E-04 -9.210 -8.022 -3.357 
4 o 1.079E-03 -6.520E-04 7.638E-04 -3.570 -1.514 -2.920 
5 o -4.947E-03 8.304E-03 7.105E-04 -9.230 -6.648 3.475 
1 i -5.025E-03 9.161E-03 -5.698E-06 9.803 3.191 -4.852 
2 i 1.054E-03 -7.058E-04 1.901E-06 -1.294 -2.595 -3.596 
3 i 1.429E-06 -4.803E-07 6.396E-04 0.996 9.012 4.932 
4 i 1.094E-03 -7.318E-04 6.897E-04 -5.025 -6.297 -2.236 
5 i -4.407E-03 8.825E-03 6.310E-04 2.704 -0.583 5.708 

 

Table 4-XXIV. Strain values for Tube 2 with 0.1% random error 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -3.351E-04 3.438E-03 -1.177E-18 -0.082 0.041 0.000 

2 o 4.250E-04 -5.391E-05 2.216E-20 0.004 0.043 -0.017 

3 o 1.586E-20 -9.148E-20 2.672E-03 -0.098 0.095 -0.029 
4 o 4.252E-04 -5.396E-05 2.672E-03 -0.021 -0.057 -0.046 
5 o 9.027E-05 3.384E-03 2.673E-03 -0.052 0.042 -0.093 
1 i -3.351E-04 3.980E-03 -1.070E-18 -0.065 -0.095 0.021 
2 i 4.247E-04 -4.136E-05 2.016E-20 0.085 -0.030 -0.084 
3 i 1.586E-20 -1.040E-19 2.429E-03 -0.089 -0.088 -0.031 
4 i 4.251E-04 -4.137E-05 2.426E-03 -0.002 -0.065 0.083 
5 i 9.023E-05 3.935E-03 2.429E-03 -0.008 0.022 -0.031 

 

Table 4-XXV. Strain values for Tube 2 with 1.0% random error 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -3.364E-04 3.422E-03 -1.177E-18 -0.452 0.503 0.039 

2 o 4.248E-04 -5.445E-05 2.215E-20 0.054 -0.968 0.034 

3 o 1.572E-20 -9.080E-20 2.660E-03 0.747 0.833 0.402 
4 o 4.219E-04 -5.361E-05 2.680E-03 0.753 0.594 -0.353 
5 o 8.948E-05 3.411E-03 2.696E-03 0.821 -0.732 -0.951 
1 i -3.368E-04 3.947E-03 -1.072E-18 -0.585 0.748 -0.161 
2 i 4.222E-04 -4.112E-05 2.029E-20 0.678 0.550 -0.728 
3 i 1.588E-20 -1.048E-19 2.440E-03 -0.239 -0.877 -0.498 
4 i 4.221E-04 -4.165E-05 2.432E-03 0.687 -0.720 -0.172 
5 i 8.944E-05 3.931E-03 2.420E-03 0.863 0.108 0.315 
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Table 4-XXVI. Strain values for Tube 2 with 10.0% random error 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -3.564E-04 3.126E-03 -1.123E-18 -6.448 9.124 4.558 

2 o 4.350E-04 -4.862E-05 2.284E-20 -2.334 9.856 -3.101 

3 o 1.597E-20 -8.885E-20 2.875E-03 -0.799 2.969 -7.651 
4 o 4.038E-04 -5.851E-05 2.632E-03 5.008 -8.488 1.469 
5 o 8.173E-05 3.242E-03 2.693E-03 9.408 4.232 -0.821 
1 i -3.446E-04 4.284E-03 -1.083E-18 -2.917 -7.727 -1.260 
2 i 4.523E-04 -4.330E-05 1.972E-20 -6.411 -4.730 2.072 
3 i 1.676E-20 -1.074E-19 2.609E-03 -5.808 -3.369 -7.473 
4 i 3.986E-04 -3.955E-05 2.480E-03 6.234 4.352 -2.163 
5 i 8.194E-05 3.846E-03 2.242E-03 9.178 2.269 7.675 

 

For each of the error values, the strains are input with the same starting values used in Table 4-V 

and Table 4-VI.  The number of iterations was limited to 1000 (except for one run of Tube 2 

data) 

Table 4-XXVII.  Effect of the different forms of Error on the property estimate using LM-
Ei 

Correct Values Tube 1 Tube 2 

 GPa 0.10% 1.0% 10.0% 0.10% 1.0% 10.0% 
E1 43.51 43.71 12.62 0.14 43.99 44.06 Singular 
E2 11.51 11.31 42.06 48.27 10.96 11.24 Matrix 

E3 11.51 15.17 4.08 0.01 10.89 1.46  
G12 3.45 3.45 3.45 3.45 3.45 3.44  
í12 0.27 0.278 0.069 -0.006 0.284 0.241  

í  13 0.40 0.437 -0.368 -3.466 0.469 -2.132  
í  23 0.40 0.426 0.831 -9.072 0.338 2.184  

Final SSE 4.54E-11 1.21E-08 9.79E-07 1.67E-11 1.96E-09  

Iterations 11 67 1000 (max) 15 15  
Time (minutes) 1.17 3.41 61.42 1.28 1.15  
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Table 4-XXVIII.  Effect of the different forms of error on the property estimates using LM-
Cij 

 Correct Tube 1 Tube 2 
 Values 0.10% 1.0% 10.0% 0.10% 1.0% 10.0% 

E1 43.51 43.71 12.62 -2.62 41.85 64.05 -140.66 
E2 11.51 11.31 42.06 51.64 13.24 -1.28 197.89 
E3 11.51 15.17 4.08 -0.35 10.89 -0.34 -36.96 
G12 3.45 3.45 3.45 3.45 3.45 3.44 3.39 
í  12 0.27 0.278 0.069 -0.006 0.235 -2.427 0.021 
í  13 0.40 0.437 -0.368 -3.487 0.441 3.230 1.993 
í  23 0.40 0.426 0.831 -1.380 0.376 2.016 1.205 

Final SSE 4.54E-11 1.21E-08 9.79E-07 1.67E-11 1.96E-09 2.08E-07 
Iterations 16 17 18 48 319 1500 (max) 

Time (minutes) 1.15 1.34 1.19 2.5 13.14 60.6 

 

The values of the final solution quickly deviate from the correct values with the 

introduction of error in the data.  Since this data are a random distribution around the correct 

value, a larger data sets should remove this error, as can be seen in Table 4-XXIX.  A data set of 

100 different load conditions (formed using the same method as for the smaller sets of 10 loading 

conditions) was input into the analysis and given the same start values.  The solutions are more 

accurate, and will continue to improve as the data set is increased. 

Table 4-XXIX.  Inversion results using a larger data set, 100 Loading Conditions – LM-Ei 

 Correct Tube 1 
 Values 0.10%  1.0%  10.0%  

E1 43.51 43.78 46.27 15.31 
E2 11.51 11.24 8.48 38.41 

E3 11.51 13.51 7.72 2.28 
G12 3.45 3.45 3.45 3.42 
í  12 0.27 0.277265 0.367 0.063 

í  13 0.40 0.455982 0.358 -1.00 
í  23 0.40 0.359598 0.370 1.64 

Final SSE 2.02E-09 1.97E-07 1.89E-05 

Iterations 21 60 54 
Time (minutes) 14.8 32.4 35.7 

 

4.3.2 Additive or Noise Error 

 

A more realistic form of error would be noise introduced in the readings of the strain and 

load from the strain gage amplifiers or load cells.  This type of error wouldn’t be proportional to 
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the incoming signal, but a type that would affect the smaller measurements more than the large.  

To simulate this, the strain values will be shifted by adding a small, random value, instead of by 

multiplying by a percentage term as used in the previous section.  This value will be a much 

larger percentage change to small values but a smaller change to the larger values, as random 

noise would do to experimental measurements.  The RAND function was used to generate a 

random scaling factor such that the range would be [ε−δ ≤ ε ' ≤ ε+δ] or: 

 ( )1 2RANDε ε δ′ = + −  (4.8) 

The values for delta will range from 1*10-6 to 1*10-4, or 1 to 100 microstrain.  The new strain 

data sets are listed in Table 4-XXX through Table 4-XXXV.  The percentage change from the 

original data, as listed in Table 4-IV, is usually small except for the conditions that contain a 

near-zero strain component (i.e. shear strain in axial tension). 

 

Table 4-XXX.  Strain values for Tube 1 with δδ =10-6 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -5.571E-03 8.428E-03 -6.333E-06 0.010 0.000 -5.943 
2 o 1.041E-03 -6.425E-04 2.822E-06 -0.082 -0.102 -39.8 
3 o 1.415E-06 -1.345E-06 7.409E-04 1.950 -213.4 -0.109 
4 o 1.043E-03 -6.423E-04 7.428E-04 -0.086 -0.010 -0.096 
5 o -4.529E-03 7.786E-03 7.362E-04 0.013 -0.003 -0.015 
1 i -5.571E-03 9.463E-03 -5.607E-06 0.005 -0.003 -3.189 
2 i 1.040E-03 -6.877E-04 8.371E-07 0.049 0.037 54.4 
3 i 1.944E-06 -3.566E-07 6.723E-04 -34.7 32.4 0.070 
4 i 1.042E-03 -6.894E-04 6.750E-04 0.024 -0.126 -0.058 
5 i -4.529E-03 8.774E-03 6.682E-04 -0.002 0.002 0.149 

 

Table 4-XXXI. Strain values for Tube 1 with δδ =10-5 

  Strain Values Percent Change to Original 
Load Surface εx εθ γxθ εx εθ γxθ 

1 o -5.562E-03 8.435E-03 -3.532E-06 0.171 -0.079 40.9 
2 o 1.034E-03 -6.415E-04 1.888E-06 0.628 0.055 6.462 
3 o -3.610E-06 4.890E-06 7.395E-04 350.1 1239.0 0.085 
4 o 1.044E-03 -6.448E-04 7.515E-04 -0.191 -0.405 -1.263 
5 o -4.528E-03 7.783E-03 7.280E-04 0.029 0.038 1.101 
1 i -5.577E-03 9.464E-03 -2.675E-06 -0.096 -0.018 50.77 
2 i 1.048E-03 -6.864E-04 -3.269E-06 -0.757 0.231 278.2 
3 i 9.853E-06 3.122E-06 6.769E-04 -582.6 691.5 -0.612 
4 i 1.048E-03 -6.977E-04 6.833E-04 -0.553 -1.344 -1.277 
5 i -4.533E-03 8.771E-03 6.625E-04 -0.090 0.036 0.999 
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Table 4-XXXII. Strain values for Tube 1 with δδ =10-4 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -5.541E-03 8.432E-03 7.869E-05 0.540 -0.041 1416.4 
2 o 9.698E-04 -5.523E-04 -2.938E-05 6.805 13.95 1555.5 
3 o 3.643E-05 -4.908E-05 7.329E-04 -2423.8 -11330.8 0.977 
4 o 9.637E-04 -6.350E-04 8.355E-04 7.519 1.128 -12.583 
5 o -4.477E-03 7.695E-03 8.080E-04 1.155 1.168 -9.763 
1 i -5.599E-03 9.384E-03 -9.803E-05 -0.489 0.833 -1704.0 
2 i 1.040E-03 -6.701E-04 3.606E-05 0.060 2.594 -1865.5 
3 i -8.301E-05 -7.084E-05 7.105E-04 5851.1 -13320.3 -5.597 
4 i 1.007E-03 -6.218E-04 7.476E-04 3.337 9.689 -10.81 
5 i -4.542E-03 8.832E-03 6.870E-04 -0.279 -0.657 -2.660 

 

Table 4-XXXIII. Strain values for Tube 2 with δδ =10-6 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -3.349E-04 3.441E-03 -3.161E-07 0.00 -0.02 -2.69E+13 
2 o 4.260E-04 -5.463E-05 6.046E-07 -0.22 -1.29 -2.73E+15 
3 o -4.929E-07 1.057E-07 2.670E-03 3.11E+15 1.15E+14 0.01 
4 o 4.253E-04 -5.472E-05 2.672E-03 -0.06 -1.47 -0.04 
5 o 9.051E-05 3.386E-03 2.671E-03 -0.32 0.00 -0.01 
1 i -3.340E-04 3.976E-03 -8.325E-07 0.25 0.01 -7.78E+13 
2 i 4.257E-04 -4.166E-05 -2.519E-07 -0.14 -0.76 1.25E+15 
3 i 1.271E-07 -6.901E-07 2.428E-03 -8.02E+14 -6.64E+14 -0.01 
4 i 4.249E-04 -4.160E-05 2.428E-03 0.04 -0.61 0.00 
5 i 9.049E-05 3.935E-03 2.429E-03 -0.30 0.01 -0.04 

 

Table 4-XXXIV. Strain values for Tube 2 with δδ =10-5 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -3.327E-04 3.449E-03 5.931E-06 0.63 -0.26 5.04E+14 
2 o 4.315E-04 -5.254E-05 4.454E-06 -1.51 2.58 -2.01E+16 
3 o -7.945E-06 5.296E-06 2.669E-03 5.02E+16 5.78E+15 0.08 
4 o 4.170E-04 -5.864E-05 2.671E-03 1.90 -8.73 -0.01 
5 o 9.945E-05 3.383E-03 2.674E-03 -10.23 0.07 -0.11 
1 i -3.294E-04 3.976E-03 -8.699E-06 1.63 0.02 -8.13E+14 
2 i 4.220E-04 -3.992E-05 -3.899E-06 0.72 3.46 1.94E+16 
3 i 3.641E-06 1.310E-06 2.434E-03 -2.30E+16 1.26E+15 -0.26 
4 i 4.312E-04 -3.150E-05 2.427E-03 -1.45 23.81 0.04 
5 i 9.766E-05 3.933E-03 2.425E-03 -8.24 0.05 0.13 
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Table 4-XXXV. Strain values for Tube 2 with δδ =10-4 

  Strain Values Percent Change to Original 
Load Surface εεx εεθθ  γγ xθθ  εεx εεθθ  γγ xθθ  

1 o -2.886E-04 3.523E-03 -6.711E-05 13.81 -2.41 -5.70E+15 
2 o 3.411E-04 3.899E-05 -8.576E-05 19.76 172.29 3.87E+17 
3 o -3.790E-05 6.313E-05 2.641E-03 2.39E+17 6.89E+16 1.13 
4 o 4.682E-04 -1.161E-04 2.762E-03 -10.14 -115.34 -3.42 
5 o 1.824E-04 3.378E-03 2.669E-03 -102.13 0.22 0.05 
1 i -2.429E-04 4.056E-03 -7.699E-05 27.47 -2.00 -7.20E+15 
2 i 4.626E-04 -7.879E-05 -5.107E-05 -8.82 -90.55 2.54E+17 
3 i 5.289E-05 -7.744E-05 2.499E-03 -3.34E+17 -7.45E+16 -2.94 
4 i 3.394E-04 -2.317E-05 2.378E-03 20.15 43.97 2.05 
5 i 1.580E-04 3.980E-03 2.423E-03 -75.09 -1.12 0.19 

 

Table 4-XXXVI.  The effects of the different levels of error on the estimates using LM-Ei 

 Correct Tube 1 Tube 2 

 Values 1.00E-06 1.00E-05 1.00E-04 1.00E-06 1.00E-05 1.00E-04 
E1 43.51 45.02 48.40 0.32 43.99 Singular 52.06 
E2 11.51 9.86 5.72 27.58 10.96 Matrix 2.30 

E3 11.51 11.72 12.96 0.70 16.00  80.67 
G12 3.45 3.45 3.45 3.46 3.45  3.43 
í  12 0.27 0.316 0.549 0.075 0.287  1.166 

í  13 0.40 0.392 0.165 -0.623 0.721  0.802 
í  23 0.40 0.400 0.547 4.747 0.164  0.171 

Final SSE 7.24E-12 8.25E-10 8.15E-08 6.27E-12  8.85E-08 

Iterations 18 11 1000 13  315 
Time (minutes) 1.45 1.07 41.97 1.20  13.67 

 

Table 4-XXXVII.  The effects of the different levels of error on the estimates using LM -Ci j   

 Correct Tube 1 Tube 2 

 Values 1.00E-06 1.00E-05 1.00E-04 1.00E-06 1.00E-05 1.00E-04 
E1 43.51 45.02 48.40 -26.06 37.92 48.40 -26.06 
E2 11.51 9.86 5.72 80.67 17.31 5.72 80.67 

E3 11.51 11.72 12.96 4.51 15.86 12.96 4.51 
G12 3.45 3.45 3.45 3.46 3.45 3.45 3.46 
í  12 0.27 0.316 0.549 0.050 0.182 0.549 0.050 

í  13 0.40 0.392 0.165 -1.285 0.616 0.165 -1.285 
í  23 0.40 0.400 0.547 1.742 0.272 0.547 1.742 

Final SSE 7.24E-12 8.25E-10 8.14E-08 6.27E-12 8.25E-10 8.14E-08 

Iterations 18 15 18 76 44 18 
Time (minutes) 1.45 1.16 1.38 3.64 2.24 1.38 
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Table 4-XXXVIII Solutions found using larger data sets (100 Load Conditions) Using LM-
Ei 

 Correct Tube 1 
 Values 1.00E-06 1.00E-05 1.00E-04 

E1 43.51 43.73 44.06 26.55 

E2 11.51 11.28 10.89 28.75 
E3 11.51 11.52 10.62 3.85 
G12 3.45 3.45 3.45 3.45 

í  12 0.27 0.276 0.286445 0.106 
í  13 0.40 0.406 0.422087 1.10 
í  23 0.40 0.394 0.382472 -0.454 

Final SSE 2.054E-10 9.94E-09 9.21E-07 
Iterations 22 16 47 

Time (minutes) 16.1 12.96 25.2 

 

 

The effects of the different types of error in the data are insignificant for the small error 

amount and severe for the larger two, in some cases causing the estimates to grow so large that 

they caused the program to crash.   However, the effects of random error will be decreased with 

increasing data set sizes, as can be seen in the improved estimates in Table 4-XXXVIII.  With an 

increasing amount of data, the random distributions average out to a more correct value, 

increasing the accuracy of the estimate.  

  

4.3.3 Effect of error on estimating the di fferent constants 

 

While the data used in the previous section contained error randomly distributed in a 

range with the median being the accurate value, experimental data may contain error that bias the 

data such that the average is no longer accurate.  The effects of the bias would cause the solution 

to change from the true values.  Larger data sets would not improve the final solutions, since the 

data itself is no longer consistent with the desired result.  By investigating the different 

experimental results and those from the simulated error effects, one can notice that the different 

constants are more or less sensitive to error.  That is, the out-of-plane values begin to vary with 

the introduction of a small amount of error, while the in plane properties are, by comparison, 

relatively unaffected.  It would be beneficial to estimate the scale of the contribution of each 

variable, and its variations, to the strain response of the tube.  To accomplish this task, the 
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elasticity solution was used to calculate the strain response for the two tube geometries listed in 

Table 4-II, but with an added set of geometries of tubes with a wall thickness two and a half 

times thicker, as listed in Table 4-XXXIX.  Table 4-XL contains the different load profiles for 

the tubes, which have been shifted to generate the same stress state at the outer surface for a 

more direct comparison of the strain responses. 

 

Table 4-XXXIX.  Geometry of the four different composite simulations 

Tube ID Inner Radius 
mm (in) 

Outer Radius 
mm (in) 

Number 
 of Plies 

Orientation Ply Thickness mm (in) 

Thin 1 25.4 (1.0) 27.9 (1.1) 20 [45/-45]10 0.127 (0.005) 
Thick 1 25.4 (1.0) 31.75 (1.25) 20 [45/-45]10 0.3125 (0.0125) 
Thin 2 25.4 (1.0) 27.9 (1.1) 20 [0/90]10 0.127 (0.005) 
Thick 2 25.4 (1.0) 31.75 (1.25) 20 [0/90]10 0.3125 (0.0125) 

Table 4-XL.  Applied loads for each tube – thick values calculated to generate the same 
stress state as for the thin tubes 

Po Pi Fx Tx Po Pi Fx Tx  
MPa MPa kN N-m MPa MPa kN N-m 

1 0.0 34.5 0.00 0.0 0.0 92.3 0.00 0.0 
2 0.0 0.0 44.80 0.0 0.0 0.0 120.00 0.0 
3 0.0 0.0 0.00 1130.0 0.0 0.0 0.00 3088.4 
4 0.0 0.0 44.80 1130.0 0.0 0.0 120.00 3088.4 
5 0.0 34.5 44.80 1130.0 0.0 92.3 120.00 3088.4 

 

For each of the four tubes listed, the strain profiles were calculated for the original elastic 

properties, and repeated with each constant individually reduced by 50% (tables for each of the 

variations are in Appendix B).  This should illustrate the contribution of each constant, and give 

an idea of the sensitivity of the strain measurements needed to find accurate estimates.  Each of 

the tables contains the differences between the strain values found using the normal material 

properties and those with the reduced properties.  The resulting percentage change is listed to 

give a gage for the significance of the variation.  It is important to look at both values, since in 

many cases the largest percentage changes are on strains that are too small to be measured 

experimentally.    
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Table 4-XLI.  Strain response for the different loading conditions for Thin Tube 1  

Standard Response 

Load Surface Axial Hoop Shear 
1 I -1.92E-02 3.26E-02 -1.87E-05 
1 o -1.92E-02 2.91E-02 -2.06E-05 
2 I 9.25E-03 -6.12E-03 1.63E-05 
2 o 9.25E-03 -5.70E-03 1.79E-05 
3 I 1.63E-05 -5.96E-06 7.60E-03 
3 o 1.63E-05 -4.85E-06 8.36E-03 
4 I 9.27E-03 -6.12E-03 7.62E-03 
4 o 9.27E-03 -5.71E-03 8.38E-03 
5 I -9.95E-03 2.65E-02 7.60E-03 
5 o -9.95E-03 2.34E-02 8.36E-03 

 

 

Table 4-XLII.  Strain deviation from the Standard Response for the thin Tube 1 with E1= 
E1/2 

 Percentage Change from Standard Deviation from Standard 

Load 
Surface 

Axial Hoop Shear Axial Hoop Shear 
1 I -15.65 10.22 -76.25 -3.01E-03 -3.33E-03 -1.43E-05 
1 o -15.65 9.42 -76.25 -3.01E-03 -2.74E-03 -1.57E-05 
2 I 9.41 -15.65 -33.42 -8.71E-04 -9.57E-04 5.45E-06 
2 o 9.41 -13.74 -33.42 -8.71E-04 -7.84E-04 6.00E-06 
3 I -33.42 -76.25 76.65 5.45E-06 -4.55E-06 -5.83E-03 
3 o -33.42 -77.11 76.65 5.45E-06 -3.74E-06 -6.41E-03 
4 I 9.34 -15.71 76.42 -8.65E-04 -9.62E-04 -5.82E-03 
4 o 9.34 -13.79 76.42 -8.65E-04 -7.87E-04 -6.40E-03 
5 I -38.94 16.20 76.80 -3.87E-03 -4.29E-03 -5.84E-03 
5 o -38.94 15.10 76.79 -3.87E-03 -3.53E-03 -6.42E-03 

 

Table 4-XLIII.  Strain deviation from the Standard Response for the thin Tube 1 with 
E3=E3/2 

 Percentage Change from Standard Deviation from Standard 
Load 

Surface 
Axial Hoop Shear Axial Hoop Shear 

1 I 0.00 0.29 10.98 -9.00E-07 -9.37E-05 2.06E-06 
1 o 0.00 -0.15 10.98 -9.00E-07 4.31E-05 2.26E-06 
2 I 0.00 0.00 -0.05 -1.00E-08 -2.60E-07 7.90E-09 
2 o 0.00 0.00 -0.05 -1.00E-08 2.40E-07 8.80E-09 
3 I -0.05 10.98 0.00 7.90E-09 6.55E-07 -3.00E-08 
3 o -0.05 -12.87 0.00 7.90E-09 -6.24E-07 -3.00E-08 
4 I 0.00 0.01 0.00 0.00E+00 4.00E-07 -2.00E-08 
4 o 0.00 -0.01 0.00 0.00E+00 -3.80E-07 -2.00E-08 
5 I -0.01 0.35 -0.03 -8.20E-07 -9.33E-05 2.04E-06 
5 o -0.01 -0.18 -0.03 -8.20E-07 4.27E-05 2.24E-06 
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 The out-of-plane elastic constants, E3, ν13, and ν23, do not contribute significantly for the 

thin materials.  A 50% drop in any of these results in a 5% change, at best, to the observed strain 

response for all the measurable strain components.  Some of the values listed Table 4-XLIII 

illustrate a percentage change of greater than 5%, but inspecting the difference value reveals 

these are changes too small to measure (10-6 strain or smaller).  For the value of E3, the change 

does not alter any of the measurable strain components by even 1%.  Even for the thicker 

materials, which should be influenced by the out-of-plane properties more than the thin, these 

variations only grow to range between 1 and 5%.  By comparison, the in-plane properties are 

more responsive.  The changes in many of the strain responses are on the order of 30 to 75% for 

a 50% decrease in the E1 value, and this behavior is similar for the other in-plane constants.   

 These results represent the changes due to a 50% drop in the elastic properties, and they 

can not be assumed to be symmetric about the value.  The values listed in Table 4-XLIV and 

Table 4-XLV show the changes in the strain response for changes in E3 from E3/2 to 2*E3 (-50% 

to +100%).  The variations are not symmetric, and agree with the (1-1/X) behavior in that the 

larger values do not alter the response as greatly as the smaller values do.  The largest effect of 

being within a range of -50 to +200% of the accurate value is seen as a variation of only 3.61% 

to –1.83% change in the hoop strain response on the inner surface of an internal pressure test 

(which is the largest observable change).   

 

Table 4-XLIV.  Strain deviation from the Standard Response for the Thick Tube 2 with 
E3=E3/2 

 Percentage Change from Standard Deviation from Standard 
Load 

Surface 
Axial Hoop Shear Axial Hoop Shear 

1 I 0.65 3.61 -0.29 5.79E-06 -6.14E-04 -1.09E-20 
1 o 0.65 -1.94 -0.29 5.79E-06 2.29E-04 -1.37E-20 
2 I 0.00 0.65 -0.03 -3.00E-08 1.84E-06 5.40E-23 
2 o 0.00 -0.27 -0.03 -3.00E-08 -1.46E-06 6.70E-23 
3 I -0.03 -0.29 0.00 5.50E-23 -3.56E-21 0.00E+00 
3 o -0.03 0.32 0.00 5.50E-23 2.90E-21 0.00E+00 
4 I 0.00 0.65 0.00 -3.00E-08 1.84E-06 0.00E+00 
4 o 0.00 -0.27 0.00 -3.00E-08 -1.46E-06 0.00E+00 
5 I -0.20 3.66 0.00 5.76E-06 -6.13E-04 0.00E+00 
5 o -0.20 -2.02 0.00 5.76E-06 2.27E-04 0.00E+00 
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Table 4-XLV.  Strain deviation from the Standard Response for the Thick Tube 2 with 
E3=2*E3 

 Percentage Change from Standard Deviation from Standard 
Load 

Surface 
Axial Hoop Shear Axial Hoop Shear 

1 I -0.33 -1.83 0.15 -2.95E-06 3.11E-04 5.56E-21 
1 o -0.33 0.99 0.15 -2.95E-06 -1.17E-04 6.96E-21 
2 I 0.00 -0.33 0.02 1.00E-08 -9.39E-07 -2.70E-23 
2 o 0.00 0.14 0.02 1.00E-08 7.44E-07 -3.40E-23 
3 I 0.02 0.15 0.00 -2.70E-23 1.81E-21 0.00E+00 
3 o 0.02 -0.16 0.00 -2.70E-23 -1.48E-21 0.00E+00 
4 I 0.00 -0.33 0.00 1.00E-08 -9.39E-07 0.00E+00 
4 o 0.00 0.14 0.00 1.00E-08 7.44E-07 0.00E+00 
5 I 0.10 -1.85 0.00 -2.94E-06 3.10E-04 0.00E+00 
5 o 0.10 1.03 0.00 -2.94E-06 -1.16E-04 0.00E+00 

 

The plot of the sensitivity of the tube response to changes in the elastic properties is 

illustrated in Figure 4-11.  This is the plot of the hoop strain variation for a combined loading 

condition (#5) for the Thick Tube 2 sample, and it was chosen since it gives the largest variation 

in all the strain responses.  The variations to in-plane values cause a large change in the strain 

response, while the out-of-plane property, E3 in this case, only creates large variations as the 

value tends to zero. 

 

Figure 4-11.  Effect on the Hoop Strain response by variations to E1 and E3 for the Thick 
Tube 2 Load Condition 5 (Pi, Fx, Tx simultaneously). 
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By switching the axes and zooming in on the origin of Figure 4-11, as seen in Figure 

4-12, the plot illustrates the range of the elastic values that describe a given strain response 

within an error range.  For an accuracy of ±5%, the variation of the in-plane values is roughly 

symmetric about the origin, and small.  This illustrates that the in-plane values can be calculated 

with decent accuracy given small but non-trivial amount of error, since a small range of the in-

plane elastic constant describe that range of the strain value. The out-of-plane properties do not 

exhibit the same behavior.  They are not symmetric about the origin and exhibit large variations 

in values for small amounts of error.  This requires a very high degree of accuracy to find an 

accurate estimate of the elastic constant value, since variation range of ±1 to 2% can result in 

property variation range well in excess of 100%. 
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Figure 4-12.  Variation in the properties given error in the strain values 

 

These graphs give a range of values that fall within a small percentage variation of the 

measured strain response.  This evaluates the variation of only one value at a time with in-plane 

strain measurements, but it gives insight into appropriate test selection.  By choosing tests that 

result in responses for the out-of-plane properties similar to the in-plane values in Figure 4-13, a 
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test matrix can be created that will yield better result s for all the elastic constants.  There are no 

significant responses for the out-of-plane values using the test matrix and strain values described 

in the experimental procedures.  By changing the test matrix to include internal and external 

pressure with measured values for radial strain, the E3 contribution is significant, as can be seen 

in Figure 4-14 (in this, the plots for the hoop strain from Figure 4-11 are included to give a 

reference), and would allow for improved calculation of E3 and the other out-of-plane values.  

 

Figure 4-13. Variation to the strain responses with changes to the elastic properties.  All 
values are for the hoop strain response to load condition #5, except the shear modulus line 

is for the shear strain response. 
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Figure 4-14.  Variation in the strain response with changes to the elastic properties for 
Thick Tube 2.  The E3 line with t he large response is for a loading condition of combined 

internal and external pressure. 

 

 

4.4 Discussion of the Analytical Results 

 

Four different approaches to optimizing the elastic properties for a set of experimentally 

observed strain values have been illustrated.  The Nelder-Mead routines used for this research 

were easily implemented, but they were not as accurate in finding the minimum of the error 

function.  The Newtonian methods found the minimum with good accuracy when given data sets 

free from error.   Both methods were usually able to find solutions in less than five minutes, but 

there were exceptions where calculations ran substantially longer.   The computation time for the 

LM-Cij program was shorter than that of the LM-Ei program, since the LM-Cij program was 

more efficient and took fewer steps to find a minimum.  The analyses performed on many of the 

simulations and experimental were performed using the LM-Ei code for reproducibility when the 

number of active parameters was reduced.   

The presence of a second solution that accurately describes the strain data for the Tube 2 

geometry presents an undesirable situation.  Without extra knowledge or other criteria, no means 

is available to distinguish which solution contains the true values.  This is possible with other 
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tube structures, but it is believed that this ply lay-up should be avoided.  The symmetry of the 

lay-up is identical to the loading conditions, so that for each condition a pure loading condition is 

generated (axial tension – all 0º plies are in perfect longitudinal tension and the 90º plies are in 

transverse tension – for torsion tests all plies are in the same state of stress – internal pressure is 

the same as the axial tension just rotated by 90º).  While the symmetry of the ±45º presents the 

same condition, the loading conditions are not simple as that for of [0/90] lay-up.  The change in 

the stress state from the [0/90] to the [±45] lay-up appears to be sufficient to remove the second 

solution.  When the values of the second solution for Tube 2 are entered as the start values for 

Tube 1 the program still calculates the best estimates to be the correct values.  It is unknown at 

this point if there are other solutions within acceptable property ranges for the geometries used 

for this work, but it is clear that the [0/90] structure is not ideal for sample geometries for this 

procedure. 

Application of the optimization methods to the experimental results illustrates the need for 

better experimental accuracy and a larger test matrix.  The out-of-plane estimates were well 

outside acceptable ranges for most of the experimental results, and most of the values varied with 

different start values.  This variation precludes declaring the solutions for all of the elastic 

constants as the true values.  The small data sets for the McDermott filter and ORNL tubes are 

not the best for calculating the values.  Larger data sets should be used for this method, since 

with more data points the sensitivity of the optimization method to random error is decreased.  

Data from the inner surface should also be included, again to increase the amount of data for the 

analysis and require the solution to meet the strain response at both surfaces.  The results for the 

Honeywell material and the control sample are closer to acceptable data values giving some 

credence to the larger data sets work better (and that the changes to the experimental procedures 

were improvements).  The in-plane results for the steel sample are within a few percent of the 

accepted values, but the out-of-plane values are clearly wrong.  The results for the Honeywell 

sample exhibit two solutions, as was seen with the Tube 2 example.  The in-plane properties 

exhibit small variation in the different solutions, giving the impression that they may be close to 

the accurate values. 

The ability for the user to change the number of active parameters is attractive, but has its 

drawbacks.  The good quality of being able to set the out-of-plane response to constant values 

and allowing the minimum to be found using only the in-plane constants is offset by the large 



 115

variations this can cause in the results.  As with the control sample, the elastic constants for the 

material were calculated with good accuracy when the out-of-plane values were removed from 

the program.  This was not the case for the Honeywell material. The change by reducing the 

active parameters caused large changes in the elastic constants.  For the control sample, the out-

of-plane constants were chosen with good accuracy by the isotropy of the sample, keeping them 

consistent with the expected results.  The values for the Honeywell material, these values were 

not known, so if the values are inconsistent with the true properties then the data could cause 

significant variation in the in-plane values.   

Investigations into the effects of error on the different value estimates illustrated that the 

in-plane values are more tolerant of error in the strain data than the out-of-plane values.  

Inspection of the strain variations for the test matrix used for this work proved that the level of 

accuracy needed to accurately describe the out-of-plane values is beyond the level of 

experimental procedure.  Different test methods are needed, and the capability to measure the 

radial strain response is necessary to accurately determine all the elastic constants.  The radial 

strain needs to be recorded, since in each of the tests to date, the out-of-plane values are 

indirectly measured by observing the in-plane strain response.   This indirect measurement 

requires a high level of accuracy to calculate the out-of-plane values.  A test of combined 

internal and external pressure generates a radial stress condition that would allow for the direct 

observation of the out-of-plane values. 

Up to this point, this discussion has focused on creating a good set of data to minimize the 

sensitivity to the experimental error, but little has been done to document whether an apparently 

good solution is “good”.  This is presented since the “bad” solutions are easily identifiable since 

the values are outside acceptable values, but what of the solutions that are not so outrageously 

incorrect.   All of the constants will be altered by error in the data, but with a proper test matrix, 

including the radial strain meaurement, the variations to the engineering values will be of the 

same magnitude as the experimental error (<10%) instead of the large variations seen in this 

work.  As with the materials used in this research, in many cases it may not be possible to check 

the values against published values (the material has truly unknown properties), so methods to 

verify the results are needed.  There are a few methods to check for a good solution which can be 

described here and a few that will have to be developed in later work.  The easiest check of the 

data is to predict the strain response to a new load condition (one that was not entered into the 
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analysis).  If the prediction is accurate, it is likely that the estimated elastic parameters are good.  

Another means of checking the solution is to inspect the stress and strain profiles predicted for 

the different loading conditions.  Non-typical responses would give indication to a poor solution.  

Both of these methods are qualitative in nature, in that they do not give a numerical measurement 

of the quality of the fit, but merely provide an illustration of good versus bad values.  Further 

statistical analyses are needed to generate standard deviations or confidence intervals on the 

estimates.   

 

4.5 Application to Failure Envelopes 

 

A useful aspect of the models used in this approach are the multi-axial stress states that 

are present during testing, and the ability to control and model them through the thickness of the 

materials.  The presents a useful means to conduct failure analysis of the materials, with 

controlled application of multi-axial stress states.   

Unfortunately, of all the materials tested for this body of work, only the McDermott 

candle filters failed in sufficient number to perform this analysis.  The other materials did not fail 

in all test procedures; therefore not generating failure loads in different loading conditions.  This 

is problematic since the material properties for the McDermott materials have only been 

calculated by the inversion technique developed here, and the out-of-plane values are well 

outside acceptable values.  This does not defeat the effectiveness of this research, but merely 

shows that without more data to reduce error in the values or published results to compare 

against, the error is unknown and believed to be significant.  This section of the work is 

performed more for illustrative purposes than to determine the failure properties of the material.  

This example is merely to illustrate that with a complete test matrix to characterize the elastic 

properties, and a sufficient number of samples to fail under a wide variety of combined load 

conditions, the failure envelope could be calculated.   

 The failure events observed in the McDermott materials can be generally cast into two 

different forms:  shear band formation and large single crack formation.  The large crack 

formation was observed in samples that failed due to crack initiation at the loading pins, and is 

not believed to be indicative of the materials strength.  The shear band formation was visible in 

all the internal pressure failures and tensile failures, and it will be used as the failure mechanism.  
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As was illustrated earlier, the fiber tows do not fail, but it is the matrix material between fiber 

tows that is responsible for the failure.  For this illustration, a Tsai-Hill criterion will be used to 

describe the failure properties of the McDermott Technologies filter material.  The failure will be 

assumed to be near the outer surface since the outer surface contained more of the bond agent, 

and should be the strongest area of the material.  Also, this allows for simplification to an in-

plane failure criterion, since the stress in the 3-direction is zero at the outer surface.  The Tsai-

Hill criterion for in-plane failures is:  

 

 
2 2 2
1 1 2 2 12
2 2 2 2

1
X X Y S
σ σ σ σ τ− + + =  (4.9) 

 

where X, Y and S are the axial, transverse and shear strength, respectively [47, pages 314-316, 

52, pages 76-80].  For this simple model and with limited data, the values of X and Y will not be 

changed for different tensile and compressive strengths, or XT=XC=X and YT=YC=Y.  The 

values of the failure stresses are low and the tensile strength of the fiber tows should be large, so 

the criterion can be simplified to: 

 
2 2
2 12
2 2

1
Y S
σ τ+ =  (4.10) 

for matrix controlled failure.  The ply- level stresses at failure are calculated by entering the 

values for the elastic constants found using the analysis (listed in Table 4-XLVI) and the failure 

loading conditions into the Forward solution.  The stress values in Table 4-XLVII are for the 

stress value at the outer surface, since it is assumed that is the location where failure occurs. 

 

Table 4-XLVI.  The elastic properties of the McDermott filter material  

Set 3 

Properties - GPa  

E1 35.0 
E2 10.6 
E3 0.42 
G12 1.14 
ν12 0.70 
ν13 0.01 

ν23 0.01 
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Table 4-XLVII.  The experimental failure loads and resulting stress states at the outer 
surface of the McDermott filter 

Applied Load Stress Generated at Outer Surface 
Po Pi (MPa) Fx (kN) Tx (N-m) ó1 (MPa) ó 2(MPa) ô12(MPa) ó 3 (MPa) 
0.00 0.00 2.56 0.00 1.04 2.02 2.66 -1.5E-17 
0.00 0.00 3.50 0.00 1.42 2.76 3.64 -2E-16 
0.00 1.05 0.00 0.00 2.35 -0.54 -4.34 5.85E-17 
0.00 1.14 0.00 0.00 2.54 -0.58 -4.68 6.87E-17 
0.00 1.13 0.00 0.00 2.51 -0.57 -4.63 2.66E-16 
0.00 0.00 3.48 -44.45 3.88 3.26 3.35 3.36E-16 

 

Enough data exists to apply the ply- level stresses and the Tsai-Hill criterion to calculate the 

values for Y and S.  A nonlinear regression routine in the MathCAD software was used to find 

the best parameters to fit the model.  The results are in Table 4-XLVIII are for the solution to 

both Equation (4.9) and (4.10).  The plot of the surface of the failure envelope with the 

experimental stresses is found in Figure 4-15. 

Table 4-XLVIII.  Tsai -Hill strength values for the McDermott filter 

 2 Variables (Y and S) 3 Variables (X, Y, and S) 
X (MPa) -- 1.04E+05 
Y (MPa) 4.27 4.25 
S (MPa) 4.55 4.56 
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Figure 4-15.  Tsai-Hill failure envelope for the McDermott filter 

 

This demonstration of calculating a failure envelope was made with large assumptions and is not 

intended to represent the failure performance of the McDermott filter material.  It has been 

included since the method is a direct extension of this research and provided a powerful tool for 

characterizing not only the elastic properties but also the strength of the material under multiaxial 

stress conditions. 
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5 Summary and Conclusions  

 

This body of work has addressed each of the three research objectives listed in the 

Introduction.  Experimental procedures have been developed, the regression analysis has 

been improved and sensitivity of the method has documented, and a framework for 

developing failure analyses in composite tubes has been presented.  In this section, a brief 

summary of each of the major sections is given, and the final conclusions of this thesis 

are presented.  A few ideas are presented in the Future Work section. 

 

5.1 Summary of Experimental Results 

 

Experimental procedures were developed for characterizing the elastic response 

and the strength of composite tubes.  Different loading fixtures were developed for 

applying different axisymmetric load cond itions to the axial samples.  The fixture used 

for the Honeywell sample generated the simplest stress state since it was not exposed to 

the large compressive stresses by the MTS collets as was the case for the ORNL 

materials, or the effects of the stress concentrations found in the MTI filters.  The failure 

of the fixture at loads below the ultimate tensile strength of the sample can be overcome 

by increasing the depth of the groove, thereby increasing the epoxy bond area and 

strength.  The internal pressure test procedure developed here is sufficient for testing 

composite materials for internal pressure results.  The method did not generate sufficient 

pressure to fail the SiC ceramics, but it is believed that improved fit between the 

compression platen and the inner surface of the sample will increase the pressure limit to 

that exceeding the strength of the samples.   

 

5.2 Summary of Nonlinear Regression Analysis 

 

Several improvements to the original programs developed by George have been 

implemented.  The new analyses can process more data from each test and are more 

stable in operation.  The Newtonian and Nelder-Mead Simplex methods reduce the error 
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in a set of initial guesses, and output a set of estimates of the material properties that best 

describe the data.  The Newtonian methods are more accurate for this application than the 

Nelder-Mead Simplex methods.  The Levenberg-Marquardt method of optimizing the 

elastic constants has been applied to the experimental results.  The best- fit values are 

varied, and many of the out-of-plane responses are returned outside acceptable ranges.  

This behavior is attributed to limited data set sizes, which increase the sensitivity to 

experimental error and biases in the data.  By examining the effects of the variation of 

individual elastic constants on the strain response, illustrations of the change to the 

different strain responses for variations to the in-plane and out-of-plane constants have 

been developed.  The plots illustrate that the procedures developed in the experimental 

section require an unattainable level of accuracy to determine the out-of-plane constants.  

The results indicate that recording the radial strain response is necessary for this 

procedure to work for all the values. 

 

5.3 Conclusions 

 

In the attempt to address the three objectives stated for this dissertation, a series of 

conclusions were found for the experimental and analytical methodologies presented: 

 

1. The elastomer compression method for internal pressure testing is successful.  

The pressure calculated matches that observed in the control samples, and is 

supported by the experimental results for the composite tubes.  It is not ideal for 

use for generating data for the inversion techniques since it does not allow access 

to the inner surface and a small axial compressive stress is present (which would 

introduce an unpredicted change in the strain data – essentially error). 

2. A test matrix must include axial tension, torsion, and internal pressure, at a 

minimum, to calculate values for the elastic constants, but using only these values 

requires extreme accuracy in the load and strain measurements. 

3. The [0/90] architecture should be avoided for use in the experimental samples.  A 

second “false” solution exists that perfectly describes the strain response. 
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4. The Newtonian regression methods were more accurate than the Nelder-Mead 

Simplex method for calculating the material property estimates. 

5. Larger data sets are more tolerant of random error in the experimental results. 

6. Out-of-plane property prediction will improve with the direct measurement of 

out-of-plane responses.  The methods used in this work only estimate the out-of-

plane values from the in-plane responses.  This means including radial strain 

values, and ideally, a combined state of internal and external pressure. 

7. A recommended test matrix includes internal and external pressure, axial tension, 

compression, and axial torsion with the ability to apply those singly and in 

combination while recording axial, hoop, radial, and shear strain from both 

surfaces.  This would give an ideal test data set for characterizing all seven of the 

elastic constants. 

 

 

5.4 Future Work 

 

There have been several areas in this research where future work is needed to 

develop these methods to the point of being a useful tool to the engineer.   The first is the 

testing of the proposed test matrix where strain measurements (axial, hoop, radial, and 

shear) can be made on both surfaces for a tube subjected to axial tension, torsion, and 

internal and external pressure.  Unfortunately, executing that test matrix was not possible 

during this research.  The thickness change or radial strain measurement procedures 

would have to be developed and applied to the samples under the test matrix conditions.  

The other major development to this work requires developing methods for quantifying 

error in the solution values for an unknown material.  This work has shown methods 

believed to reduce the sensitivity of the analysis so that the results have a similar level of 

error as the data, but it does not relate any information on the scatter in the values.  

Methods for calculating the standard deviation for the estimates given error levels in the 

data would be beneficial.   

A number of logical extensions of this work could be easily pursued with small 

changes to the analyses and experimental procedures.  A test matrix with all the different 
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axisymmetric load conditions and measurement of the four strain components can be 

used to optimize not only the elastic constants but also the thermal and hygroscopic 

expansion constants.  The thermal and hygroscopic expansion conditions fall within the 

axisymmetric conditions required of the elasticity model and analysis as long as they are 

performed so that they are uniform for the entire sample.  A simple change to the 

equations in the computer program would allow for the system to optimize on the seven 

elastic, three thermal, and three hygroscopic properties.   
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7 Appendix A – Elasticity Solutions 

 

The work by Hyer and Rousseau derived the general solution for a composite tube 

consisting of orthotropic material layers.  The displacement equations are the solution for 

a composite tube, consisting of orthotropic layers oriented at an angle to the axis of the 

tube, subjected to axisymmetric loading conditions.  The general solution is given as: 
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By examination of the equations for the Γ, Ω, and Ψ terms, two conditions create a 

condition where the denominator goes to zero, namely when 22 33C C=  (λ = 1) and 

22 334C C=  (λ = 2).  For both of these conditions, a degenerate solution can be found by 

starting with the Equilibrium condition equations. 
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The constraints imposed by the axisymmetric conditions and boundary equations, the 

Equilibrium equations simplify to: 
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The strain displacement relations and constitutive equations are needed to translate the 

displacements to strains and stresses that can be used to solve the equations. 
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After several steps of work in Hyer and Rousseau, it was found that: 

 

 
o
x

o

u x

v xr

ε

γ

=

=
 (7.5) 

 

 

The degenerate conditions arise from the expression used to find w(r): 
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The values for σr and σθ are: 
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which expand to: 
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Collecting for w, the expression for the general solution is: 

 ( )
2

12 13
33 22 26 362 2

1
2 o o

x

d w dw w C C
C C C C

dr r dr r r
γ ε

  − + − = − +     
 (7.9) 

 

which is listed in Equation (7.1).  In the first of the two degenerate conditions, λ=1, the 

expression becomes: 
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which solves to: 
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The second degenerate condition is: 
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which solves to: 
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With these expressions, the different programs used to calculate the stress and strain 

responses check the value of λ and use the appropriate expressions.
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8 Appendix B – Elastic Response for Varied Elastic 

Properties 

After the analysis is run on data sets with error incorporated, certain properties 

seem less sensitive to error.  The in plane values usually came back with small amounts 

variation in comparison to the out of plane properties.  To investigate this and the effect 

that thickness may play on the calculations, the strain responses for four different tube 

geometries will be calculated with different variations of elastic properties.  In each 

condition a single elastic constant will be reduced to one-half of its original value.  The 

strain response to the same loading conditions will illustrate the sensitivity to error for 

that value by illustrating the level of accuracy needed to get within 50% of the correct 

value.  Two of the geometries have been altered to increase the wall thickness of the 

material.  To keep the loads in similar ranges, the loads have been scaled to generate the 

same stress state in the material, as the thinner samples experienced.   

 

 

Table 8-I.  Elastic Constants for the composite material  

Elastic Properties GPa (Msi) 
E1 43.5 (6.31) 
E2 11.5 (1.67) 
E3 11.5 (1.67) 
G12 3.45 (0.5) 
νν 12 0.27 
νν 13 0.4 
νν 23 0.4 

 

Table 8-II.  Geometry of the four different composite simulations 

Tube ID Inner Radius 
 mm (in) 

Outer Radius 
 mm (in) 

Number of Plies Orientation Ply Thickness mm (in) 

Thin 1 25.4 (1.0) 27.9 (1.1) 20 [45/-45]10 0.127 (0.005) 

Thick 1 25.4 (1.0) 31.75 (1.25) 20 [45/-45]10 0.3125 (0.0125) 
Thin 2 25.4 (1.0) 27.9 (1.1) 20 [0/90]10 0.127 (0.005) 
Thick 2 25.4 (1.0) 31.75 (1.25) 20 [0/90]10 0.3125 (0.0125) 
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Table 8-III.  Applied loads for each t ube – thick values calculated to generate the 
same stress state as for the thin tubes 

 Thin Tube Loading Conditions Thick Tube Loading Conditions 
 Po Pi Fx Tx Po Pi Fx Tx 

Load Case psi psi lbf In-lbf psi psi lbf In-lbf 
1 0 5000 0 0 0 13393 0 0 
2 0 0 10000 0 0 0 26786 0 
3 0 0 0 10000 0 0 0 27331 
4 0 0 10000 10000 0 0 26786 27331 
5 0 5000 10000 10000 0 13393 26786 27331 

 

 

8.1 Thin Tube 1 

 

Table 8-IV.  Strain Response for the different loading conditions for Thin Tube 1  

Standard Response 
Load Surface Axial Hoop Shear 

1 I -1.92E -02 3.26E-02 -1.87E -05 
1 o -1.92E -02 2.91E-02 -2.06E -05 
2 I 9.25E-03 -6.12E -03 1.63E-05 
2 o 9.25E-03 -5.70E -03 1.79E-05 
3 I 1.63E-05 -5.96E -06 7.60E-03 
3 o 1.63E-05 -4.85E -06 8.36E-03 
4 I 9.27E-03 -6.12E -03 7.62E-03 
4 o 9.27E-03 -5.71E -03 8.38E-03 
5 I -9.95E -03 2.65E-02 7.60E-03 
5 o -9.95E -03 2.34E-02 8.36E-03 

 

 

Table 8-V.  Strain deviation from the Standard Response for E1/2 

E1/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -15.65 10.22 -76.25 -3.01E -03 -3.33E -03 -1.43E -05 
1 o -15.65 9.42 -76.25 -3.01E -03 -2.74E -03 -1.57E -05 
2 I 9.41 -15.65 -33.42 -8.71E -04 -9.57E -04 5.45E-06 
2 o 9.41 -13.74 -33.42 -8.71E -04 -7.84E -04 6.00E-06 
3 I -33.42 -76.25 76.65 5.45E-06 -4.55E -06 -5.83E -03 
3 o -33.42 -77.11 76.65 5.45E-06 -3.74E -06 -6.41E -03 
4 I 9.34 -15.71 76.42 -8.65E -04 -9.62E -04 -5.82E -03 
4 o 9.34 -13.79 76.42 -8.65E -04 -7.87E -04 -6.40E -03 
5 I -38.94 16.20 76.80 -3.87E -03 -4.29E -03 -5.84E -03 
5 o -38.94 15.10 76.79 -3.87E -03 -3.53E -03 -6.42E -03 
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Table 8-VI.  Strain deviation from the Standard Response for E2/2 

E2/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -5.37 3.42 0.13 -1.03E -03 -1.12E -03 2.37E-08 
1 o -5.37 3.31 0.13 -1.03E -03 -9.61E -04 2.60E-08 
2 I 3.28 -5.37 32.35 -3.03E -04 -3.29E -04 -5.28E -06 
2 o 3.28 -4.85 32.35 -3.03E -04 -2.77E -04 -5.80E -06 
3 I 32.35 0.13 6.78 -1.07E -05 4.56E-06 5.31E-03 
3 o 32.35 4.09 6.78 -5.28E -06 1.99E-07 -5.67E -04 
4 I 3.33 -5.37 6.83 -3.09E -04 -3.29E -04 -5.21E -04 
4 o 3.33 -4.85 6.83 -3.09E -04 -2.77E -04 -5.73E -04 
5 I -13.49 5.45 6.85 -1.34E -03 -1.45E -03 -5.21E -04 
5 o -13.49 5.30 6.85 -1.34E -03 -1.24E -03 -5.73E -04 

 

Table 8-VII.  Strain deviation from the Standard Response for E3/2 

E3/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.00 0.29 10.98 -9.00E -07 -9.37E -05 2.06E-06 
1 o 0.00 -0.15 10.98 -9.00E -07 4.31E-05 2.26E-06 
2 I 0.00 0.00 -0.05 -1.00E -08 -2.60E -07 7.90E-09 
2 o 0.00 0.00 -0.05 -1.00E -08 2.40E-07 8.80E-09 
3 I -0.05 10.98 0.00 7.90E-09 6.55E-07 -3.00E -08 
3 o -0.05 -12.87 0.00 7.90E-09 -6.24E -07 -3.00E -08 
4 I 0.00 0.01 0.00 0.00E+00 4.00E-07 -2.00E -08 
4 o 0.00 -0.01 0.00 0.00E+00 -3.80E -07 -2.00E -08 
5 I -0.01 0.35 -0.03 -8.20E -07 -9.33E -05 2.04E-06 
5 o -0.01 -0.18 -0.03 -8.20E -07 4.27E-05 2.24E-06 

 

Table 8-VIII.  Strain deviation from the Standard Response for G12/2 

G12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 129.81 80.22 197.32 2.49E-02 -2.62E -02 3.70E-05 
1 o 129.81 81.88 197.32 2.49E-02 -2.38E -02 4.07E-05 
2 I 81.77 129.81 68.75 -7.56E -03 7.94E-03 -1.12E -05 
2 o 81.77 126.51 68.75 -7.56E -03 7.22E-03 -1.23E -05 
3 I 68.75 197.32 0.00 -1.12E -05 1.18E-05 -2.00E -08 
3 o 68.75 220.56 0.00 -1.12E -05 1.07E-05 -2.00E -08 
4 I 81.75 129.88 0.15 -7.57E -03 7.95E-03 -1.12E -05 
4 o 81.75 126.59 0.15 -7.57E -03 7.23E-03 -1.23E -05 
5 I 174.60 68.76 -0.34 1.74E-02 -1.82E -02 2.57E-05 
5 o 174.60 70.95 -0.34 1.74E-02 -1.66E -02 2.83E-05 

 

 



 136

Table 8-IX.  Strain deviation from the Standard Response for nu12/2 

Nu12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axia l Hoop  Shear 

1 I -1.95 1.19 -9.23 -3.74E -04 -3.88E -04 -1.73E -06 
1 o -1.95 1.25 -9.23 -3.74E -04 -3.64E -04 -1.90E -06 
2 I 1.25 -1.95 -2.70 -1.16E -04 -1.19E -04 4.41E-07 
2 o 1.25 -1.96 -2.70 -1.16E -04 -1.12E -04 4.85E-07 
3 I -2.70 -9.23 -4.60 4.41E-07 -5.51E-07 3.50E-04 
3 o -2.70 -9.15 -4.60 4.41E-07 -4.44E -07 3.85E-04 
4 I 1.24 -1.96 -4.60 -1.15E -04 -1.20E -04 3.50E-04 
4 o 1.24 -1.96 -4.60 -1.15E -04 -1.12E -04 3.85E-04 
5 I -4.92 1.92 -4.59 -4.90E -04 -5.08E -04 3.49E-04 
5 o -4.92 2.04 -4.59 -4.90E -04 -4.76E-04 3.83E-04 

 

Table 8-X. .  Strain deviation from the Standard Response for nu13/2 

Nu13/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.29 -0.38 21.69 5.55E-05 1.25E-04 4.06E-06 
1 o 0.29 0.00 21.69 5.55E-05 4.00E-07 4.47E-06 
2 I 0.00 0.29 3.32 4.50E-07 1.77E-05 -5.41E -07 
2 o 0.00 -0.30 3.32 4.50E-07 -1.71E -05 -5.95E -07 
3 I 3.32 21.69 0.00 -5.49E -07 6.39E-07 3.00E-08 
3 o 3.32 25.18 0.00 -5.41E-07 1.22E-06 0.00E+00 
4 I 0.00 0.31 0.01 -1.00E -07 1.90E-05 -5.40E -07 
4 o 0.00 -0.28 0.01 -1.00E -07 -1.59E -05 -5.90E -07 
5 I 0.56 -0.54 -0.05 5.55E-05 1.44E-04 3.52E-06 
5 o 0.56 0.07 -0.05 5.55E-05 -1.55E -05 3.87E-06 

 

Table 8-XI.  Strain deviation from the Standard Response for nu23/2 

Nu23/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.34 -0.43 -32.85 6.57E-05 1.40E-04 -6.16E -06 
1 o 0.34 -0.01 -32.85 6.57E-05 4.10E-06 -6.77E -06 
2 I -0.01 0.34 3.93 5.30E-07 2.09E-05 -6.41E -07 
2 o -0.01 -0.36 3.93 5.30E-07 -2.03E -05 -7.05E -07 
3 I 3.93 -32.85 0.00 -6.41E -07 -1.96E -06 -1.00E -08 
3 o 3.93 -44.37 0.00 -6.41E -07 -2.15E -06 -2.00E -08 
4 I 0.00 0.31 0.01 -1.10E -07 1.90E-05 -6.50E -07 
4 o 0.00 -0.39 0.01 -1.10E -07 -2.25E -05 -7.10E -07 
5 I 0.66 -0.60 0.09 6.56E-05 1.59E-04 -6.81E -06 
5 o 0.66 0.08 0.09 6.56E-05 -1.84E -05 -7.49E -06 
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8.2 Thick Tube 1 

Table 8-XII.  Strain Response for the different loading conditions for Thick Tube 1  

Standard Response 
Load Surface Axial Hoop Shear 

1 I -2.01E -02 3.85E-02 -4.58E -05 
1 o -2.01E -02 2.90E-02 -5.73E -05 
2 I 9.24E-03 -6.41E -03 3.51E-05 
2 o 9.24E-03 -5.45E -03 4.39E-05 
3 I 3.58E-05 -1.49E -05 6.69E-03 
3 o 3.58E-05 -9.17E -06 8.36E-03 
4 I 9.27E-03 -6.43E -03 6.73E-03 
4 o 9.27E-03 -5.46E -03 8.41E-03 
5 I -1.09E -02 3.21E-02 6.68E-03 
5 o -1.09E -02 2.36E-02 8.35E-03 

 

Table 8-XIII.  Strain deviation from the Standard Response for E1/2 

E1/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -16.82 11.31 -75.74 -3.39E -03 -4.36E -03 -3.47E -05 
1 o -16.82 9.56 -75.74 -3.39E-03 -2.78E -03 -4.34E -05 
2 I 9.52 -16.82 -33.32 -8.79E -04 -1.08E -03 1.17E-05 
2 o 9.52 -12.38 -33.32 -8.79E -04 -6.75E -04 1.46E-05 
3 I -33.32 -75.74 76.65 1.19E-05 -1.13E -05 -5.13E -03 
3 o -33.32 -77.80 76.65 1.19E-05 -7.13E -06 -6.41E -03 
4 I 9.35 -16.96 76.08 -8.67E -04 -1.09E -03 -5.12E -03 
4 o 9.35 -12.49 76.08 -8.67E -04 -6.82E -04 -6.40E -03 
5 I -39.17 16.97 77.12 -4.26E -03 -5.45E -03 -5.15E -03 
5 o -39.17 14.66 77.12 -4.26E -03 -3.46E -03 -6.44E -03 

Table 8-XIV.  Strain deviation from the Standard Response for E2/2 

E2/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -5.67 3.51 -1.82 -1.14E -03 -1.35E -03 -8.34E -07 
1 o -5.67 3.46 -1.82 -1.14E -03 -1.01E-03 -1.04E -06 
2 I 3.33 -5.67 32.48 -3.07E -04 -3.63E -04 -1.14E -05 
2 o 3.33 -4.47 32.48 -3.07E -04 -2.44E -04 -1.42E -05 
3 I 32.48 -1.82 6.78 -2.36E -05 1.10E-05 4.67E-03 
3 o 32.48 7.66 6.78 -1.16E -05 7.02E-07 -5.67E -04 
4 I 3.44 -5.66 6.91 -3.19E -04 -3.63E-04 -4.65E -04 
4 o 3.44 -4.45 6.91 -3.19E -04 -2.43E -04 -5.81E -04 
5 I -13.44 5.35 6.97 -1.46E -03 -1.72E -03 -4.66E -04 
5 o -13.44 5.30 6.97 -1.46E -03 -1.25E -03 -5.82E -04 
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Table 8-XV.  Strain deviation from the Standard Response for E3/2 

E3/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -0.05 1.48 23.05 -1.10E -05 -5.72E -04 1.06E-05 
1 o -0.05 -0.80 23.05 -1.10E -05 2.33E-04 1.32E-05 
2 I 0.00 -0.05 -0.26 -1.10E -07 -3.48E -06 9.14E-08 
2 o 0.00 0.05 -0.26 -1.10E -07 2.96E-06 1.14E-07 
3 I -0.26 23.05 0.00 9.33E-08 3.43E-06 -1.30E -07 
3 o -0.26 -33.50 0.00 9.33E-08 -3.07E -06 -1.60E -07 
4 I 0.00 0.00 0.00 -2.00E -08 -5.00E -08 -3.00E -08 
4 o 0.00 0.00 0.00 -2.00E -08 -1.20E -07 -4.00E -08 
5 I -0.10 1.78 -0.16 -1.09E -05 -5.72E -04 1.05E-05 
5 o -0.10 -0.99 -0.16 -1.09E -05 2.32E-04 1.32E-05 

 

Table 8-XVI.  Strain deviation from the Standard Response for G12/2 

G12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 131.21 76.96 183.99 2.64E-02 -2.97E -02 8.43E-05 
1 o 131.21 81.77 183.99 2.64E-02 -2.37E -02 1.05E-04 
2 I 81.15 131.21 68.15 -7.50E -03 8.41E-03 -2.39E -05 
2 o 81.15 123.52 68.15 -7.50E -03 6.74E-03 -2.99E -05 
3 I 68.15 183.99 0.00 -2.44E -05 2.74E-05 -8.00E -08 
3 o 68.15 239.19 0.00 -2.44E -05 2.19E-05 -1.00E -07 
4 I 81.10 131.33 0.36 -7.52E -03 8.44E-03 -2.40E -05 
4 o 81.10 123.72 0.36 -7.52E -03 6.76E-03 -3.00E -05 
5 I 173.98 66.08 -0.90 1.89E-02 -2.12E -02 6.03E-05 
5 o 173.98 72.05 -0.90 1.89E-02 -1.70E -02 7.54E-05 

 

Table 8-XVII.  Strain deviation from the Standard Response for nu12/2 

Nu12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -1.93 1.11 -9.24 -3.88E -04 -4.29E -04 -4.24E -06 
1 o -1.93 1.28 -9.24 -3.88E -04 -3.70E -04 -5.29E -06 
2 I 1.26 -1.93 -2.68 -1.17E -04 -1.24E -04 9.40E-07 
2 o 1.26 -1.96 -2.68 -1.17E -04 -1.07E -04 1.18E-06 
3 I -2.68 -9.24 -4.60 9.59E-07 -1.38E -06 3.08E-04 
3 o -2.68 -9.05 -4.60 9.59E-07 -8.30E -07 3.85E-04 
4 I 1.25 -1.95 -4.59 -1.16E -04 -1.25E -04 3.09E-04 
4 o 1.25 -1.97 -4.59 -1.16E -04 -1.07E -04 3.86E-04 
5 I -4.64 1.72 -4.56 -5.04E -04 -5.53E -04 3.05E-04 
5 o -4.64 2.03 -4.56 -5.04E -04 -4.78E -04 3.81E-04 
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Table 8-XVIII.  Strain deviation from the Standard Response for nu13/2 

Nu13/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.66 -0.91 19.86 1.32E-04 3.49E-04 9.10E-06 
1 o 0.66 -0.01 19.86 1.32E-04 2.00E-06 1.14E-05 
2 I -0.03 0.66 3.30 2.44E-06 4.20E-05 -1.16E -06 
2 o -0.03 -0.72 3.30 2.44E-06 -3.91E -05 -1.45E -06 
3 I 3.30 19.86 0.00 -1.27E -06 -4.74E -07 1.40E-07 
3 o 3.30 28.20 0.00 -1.18E -06 2.59E-06 1.00E-08 
4 I -0.01 0.70 0.02 1.25E-06 4.50E-05 -1.15E -06 
4 o -0.01 -0.67 0.02 1.25E-06 -3.65E -05 -1.43E -06 
5 I 1.23 -1.23 -0.12 1.33E-04 3.94E-04 7.95E-06 
5 o 1.23 0.15 -0.12 1.33E-04 -3.45E -05 9.95E-06 

 

Table 8-XIX.  Strain deviation from the Standard Response for nu23/2 

Nu23/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.77 -0.95 -26.95 1.55E-04 3.66E-04 -1.24E -05 
1 o 0.77 -0.08 -26.95 1.55E-04 2.22E-05 -1.54E -05 
2 I -0.03 0.77 3.88 2.90E-06 4.94E-05 -1.36E -06 
2 o -0.03 -0.85 3.88 2.90E-06 -4.61E -05 -1.70E -06 
3 I 3.88 -26.95 0.00 -1.39E -06 -4.01E -06 -6.00E -08 
3 o 3.88 -54.52 0.00 -1.39E -06 -5.00E -06 -7.00E -08 
4 I -0.02 0.71 0.02 1.50E-06 4.54E-05 -1.42E -06 
4 o -0.02 -0.94 0.02 1.50E-06 -5.11E -05 -1.77E -06 
5 I 1.44 -1.28 0.21 1.57E-04 4.11E-04 -1.38E -05 
5 o 1.44 0.12 0.21 1.57E-04 -2.90E-05 -1.72E -05 

 

 

8.3 Thin Tube 2 

 

Table 8-XX.  Strain Response for the different loading conditions for Thin Tube 2  

Standard Response 
Load Surface Axial Hoop Shear 

1 I -1.15E -03 1.37E-02 -3.69E -18 
1 o -1.15E -03 1.19E-02 -4.06E -18 
2 I 3.78E-03 -3.68E -04 1.79E-19 
2 o 3.78E-03 -4.79E -04 1.97E-19 
3 I 1.79E-19 -1.17E -18 2.74E-02 
3 o 1.79E-19 -1.03E -18 3.02E-02 
4 I 3.78E-03 -3.68E -04 2.74E-02 
4 o 3.78E-03 -4.79E -04 3.02E-02 
5 I 2.62E-03 1.33E-02 2.74E-02 
5 o 2.62E-03 1.14E-02 3.02E-02 
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Table 8-XXI.  Strain deviation from the Standard Response for E1/2 

E1/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 199.01 64.84 -38.38 2.30E-03 -8.89E -03 -1.42E -18 
1 o 199.01 65.71 -38.38 2.30E-03 -7.79E -03 -1.56E -18 
2 I 65.59 199.01 24.48 -2.48E -03 7.31E-04 -4.38E -20 
2 o 65.59 156.79 24.48 -2.48E -03 7.52E-04 -4.82E -20 
3 I 24.48 -38.38 0.00 -4.38E -20 -4.51E -19 0.00E+00 
3 o 24.48 -38.00 0.00 -4.38E -20 -3.93E -19 0.00E+00 
4 I 65.59 199.01 0.00 -2.48E -03 7.31E-04 0.00E+00 
4 o 65.59 156.79 0.00 -2.48E -03 7.52E-04 0.00E+00 
5 I 6.87 61.15 0.00 -1.80E -04 -8.16E -03 0.00E+00 
5 o 6.87 61.87 0.00 -1.80E -04 -7.04E -03 0.00E+00 

 

Table 8-XXII.  Strain deviation from the Standard Response for E2/2 

E2/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -49.44 11.83 14.89 -5.71E -04 -1.62E -03 5.49E-19 
1 o -49.44 11.97 14.89 -5.71E -04 -1.42E -03 6.04E-19 
2 I 11.84 -49.44 -107.62 -4.47E -04 -1.82E -04 1.93E-19 
2 o 11.84 -29.83 -107.62 -4.47E -04 -1.43E -04 2.12E-19 
3 I -107.62 14.89 0.00 2.36E-19 6.26E-19 0.00E+00 
3 o -107.62 14.11 0.00 1.93E-19 1.46E-19 0.00E+00 
4 I 11.84 -49.44 0.00 -4.47E -04 -1.82E -04 0.00E+00 
4 o 11.84 -29.83 0.00 -4.47E -04 -1.43E -04 0.00E+00 
5 I 38.80 13.52 0.00 -1.02E -03 -1.80E -03 0.00E+00 
5 o 38.80 13.73 0.00 -1.02E -03 -1.56E -03 0.00E+00 

 

Table 8-XXIII.  Strain deviation from the Standard Response for E3/2 

E3/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.05 0.72 -0.03 5.70E-07 -9.92E -05 -1.14E -21 
1 o 0.05 -0.36 -0.03 5.70E-07 4.29E-05 -1.25E -21 
2 I 0.00 0.05 0.00 0.00E+00 1.81E-07 3.00E-24 
2 o 0.00 -0.03 0.00 0.00E+00 -1.60E -07 4.00E-24 
3 I 0.00 -0.03 0.00 3.00E-24 -3.60E -22 0.00E+00 
3 o 0.00 0.03 0.00 3.00E-24 3.30E-22 0.00E+00 
4 I 0.00 0.05 0.00 0.00E+00 1.81E-07 0.00E+00 
4 o 0.00 -0.03 0.00 0.00E+00 -1.60E -07 0.00E+00 
5 I -0.02 0.74 0.00 5.70E-07 -9.91E -05 0.00E+00 
5 o -0.02 -0.38 0.00 5.70E-07 4.27E-05 0.00E+00 
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Table 8-XXIV.  Strain deviation from the Standard Response for G12/2 

G12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.00 0.00 121.90 0.00E+00 0.00E+00 4.50E-18 
1 o 0.00 0.00 121.90 0.00E+00 0.00E+00 4.95E-18 
2 I 0.00 0.00 237.55 0.00E+00 0.00E+00 -4.25E -19 
2 o 0.00 0.00 237.55 0.00E+00 0.00E+00 -4.68E -19 
3 I 237.55 121.90 100.00 -4.25E -19 1.43E-18 -2.74E -02 
3 o 237.55 122.62 100.00 -4.25E -19 1.27E-18 -3.02E -02 
4 I 0.00 0.00 100.00 0.00E+00 0.00E+00 -2.74E -02 
4 o 0.00 0.00 100.00 0.00E+00 0.00E+00 -3.02E -02 
5 I 0.00 0.00 100.00 0.00E+00 0.00E+00 -2.74E -02 
5 o 0.00 0.00 100.00 0.00E+00 0.00E+00 -3.02E -02 

 

Table 8-XXV.  Strain deviation from the Standard Response for nu12/2 

Nu12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -60.20 0.39 3.29 -6.95E -04 -5.31E -05 1.21E-19 
1 o -60.20 0.51 3.29 -6.95E -04 -5.99E -05 1.34E-19 
2 I 0.50 -60.20 -7.45 -1.90E -05 -2.21E -04 1.33E-20 
2 o 0.50 -42.66 -7.45 -1.90E -05 -2.04E -04 1.47E-20 
3 I -7.45 3.29 0.00 1.33E-20 3.87E-20 0.00E+00 
3 o -7.45 3.23 0.00 1.33E-20 3.34E-20 0.00E+00 
4 I 0.50 -60.20 0.00 -1.90E -05 -2.21E -04 0.00E+00 
4 o 0.50 -42.66 0.00 -1.90E-05 -2.04E -04 0.00E+00 
5 I 27.22 2.06 0.00 -7.14E -04 -2.74E -04 0.00E+00 
5 o 27.22 2.32 0.00 -7.14E -04 -2.64E -04 0.00E+00 

 

Table 8-XXVI.  Strain deviation from the Standard Response for nu13/2 

Nu13/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 5.30 -0.87 0.28 6.12E-05 1.19E-04 1.04E-20 
1 o 5.30 0.04 0.28 6.12E-05 -4.20E -06 1.15E-20 
2 I 0.01 5.30 -0.15 -2.60E -07 1.95E-05 2.69E-22 
2 o 0.01 -3.24 -0.15 -2.60E -07 -1.55E -05 2.96E-22 
3 I -0.15 0.28 0.00 2.66E-22 3.67E-21 0.00E+00 
3 o -0.15 -0.29 0.00 2.69E-22 -3.05E -21 0.00E+00 
4 I 0.01 5.30 0.00 -2.60E -07 1.95E-05 0.00E+00 
4 o 0.01 -3.24 0.00 -2.60E -07 -1.55E -05 0.00E+00 
5 I -2.32 -1.04 0.00 6.09E-05 1.39E-04 0.00E+00 
5 o -2.32 0.17 0.00 6.09E-05 -1.97E -05 0.00E+00 
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Table 8-XXVII.  Strain deviation from the Standard Response for nu23/2 

Nu23/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 5.76 -1.07 -1.05 6.65E-05 1.47E-04 -3.88E -20 
1 o 5.76 -0.09 -1.05 6.65E-05 1.04E-05 -4.27E -20 
2 I 0.01 5.76 -0.24 -3.10E -07 2.12E-05 4.23E-22 
2 o 0.01 -4.22 -0.24 -3.10E -07 -2.02E -05 4.65E-22 
3 I -0.24 -1.05 0.00 4.23E-22 -1.24E -20 0.00E+00 
3 o -0.24 1.13 0.00 4.23E-22 1.17E-20 0.00E+00 
4 I 0.01 5.76 0.00 -3.10E -07 2.12E-05 0.00E+00 
4 o 0.01 -4.22 0.00 -3.10E -07 -2.02E -05 0.00E+00 
5 I -2.52 -1.26 0.00 6.62E-05 1.68E-04 0.00E+00 
5 o -2.52 0.09 0.00 6.62E-05 -9.80E -06 0.00E+00 

 

8.4 Thick Tube 2 

 

Table 8-XXVIII.  Strain Response for the different loading conditions for Thick 
Tube 2 

Standard Response 
Load Surface Axial Hoop Shear 

1 I -8.89E -04 1.70E-02 -3.72E -18 
1 o -8.89E -04 1.18E-02 -4.65E -18 
2 I 3.78E-03 -2.83E -04 1.70E-19 
2 o 3.78E-03 -5.45E -04 2.13E-19 
3 I 1.74E-19 -1.21E -18 2.41E-02 
3 o 1.74E-19 -9.02E -19 3.02E-02 
4 I 3.78E-03 -2.83E -04 2.41E-02 
4 o 3.78E-03 -5.45E -04 3.02E-02 
5 I 2.89E-03 1.67E-02 2.41E-02 
5 o 2.89E-03 1.13E-02 3.02E-02 

 

 

Table 8-XXIX.  Strain deviation from the Standard Response for E1/2 

E1/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 253.58 62.63 -38.64 2.25E-03 -1.07E -02 -1.44E -18 
1 o 253.58 66.40 -38.64 2.25E-03 -7.83E -03 -1.80E -18 
2 I 65.48 253.58 23.05 -2.48E -03 7.17E-04 -3.92E -20 
2 o 65.48 140.49 23.05 -2.48E -03 7.65E-04 -4.91E -20 
3 I 23.05 -38.64 0.00 -4.00E -20 -4.67E -19 0.00E+00 
3 o 23.05 -37.84 0.00 -4.00E -20 -3.41E -19 0.00E+00 
4 I 65.48 253.58 0.00 -2.48E -03 7.17E-04 0.00E+00 
4 o 65.48 140.49 0.00 -2.48E -03 7.65E-04 0.00E+00 
5 I 7.72 59.40 0.00 -2.23E -04 -9.94E -03 0.00E+00 
5 o 7.72 62.81 0.00 -2.23E -04 -7.07E -03 0.00E+00 
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Table 8-XXX.  Strain deviation from the Standard Response for E2/2 

E2/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -75.36 11.39 15.54 -6.70E -04 -1.94E -03 5.78E-19 
1 o -75.36 12.48 15.54 -6.70E -04 -1.47E -03 7.23E-19 
2 I 11.89 -75.36 -105.22 -4.50E -04 -2.13E -04 1.79E-19 
2 o 11.89 -22.26 -105.22 -4.50E -04 -1.21E -04 2.24E-19 
3 I -105.22 15.54 0.00 2.23E-19 6.55E-19 0.00E+00 
3 o -105.22 13.57 0.00 1.83E-19 1.22E-19 0.00E+00 
4 I 11.89 -75.36 0.00 -4.50E -04 -2.13E -04 0.00E+00 
4 o 11.89 -22.26 0.00 -4.50E -04 -1.21E -04 0.00E+00 
5 I 38.68 12.85 0.00 -1.12E -03 -2.15E -03 0.00E+00 
5 o 38.68 14.16 0.00 -1.12E -03 -1.59E-03 0.00E+00 

 

Table 8-XXXI.  Strain deviation from the Standard Response for E3/2 

E3/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.65 3.61 -0.29 5.79E-06 -6.14E -04 -1.09E -20 
1 o 0.65 -1.94 -0.29 5.79E-06 2.29E-04 -1.37E -20 
2 I 0.00 0.65 -0.03 -3.00E -08 1.84E-06 5.40E-23 
2 o 0.00 -0.27 -0.03 -3.00E -08 -1.46E -06 6.70E-23 
3 I -0.03 -0.29 0.00 5.50E-23 -3.56E -21 0.00E+00 
3 o -0.03 0.32 0.00 5.50E-23 2.90E-21 0.00E+00 
4 I 0.00 0.65 0.00 -3.00E -08 1.84E-06 0.00E+00 
4 o 0.00 -0.27 0.00 -3.00E -08 -1.46E -06 0.00E+00 
5 I -0.20 3.66 0.00 5.76E-06 -6.13E -04 0.00E+00 
5 o -0.20 -2.02 0.00 5.76E-06 2.27E-04 0.00E+00 

 

Table 8-XXXII.  Strain deviation from the Standard Response for G12/2 

G12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 0.00 0.00 121.47 0.00E+00 0.00E+00 4.52E-18 
1 o 0.00 0.00 121.47 0.00E+00 0.00E+00 5.65E-18 
2 I 0.00 0.00 235.49 0.00E+00 0.00E+00 -4.01E -19 
2 o 0.00 0.00 235.49 0.00E+00 0.00E+00 -5.01E -19 
3 I 235.49 121.47 100.00 -4.09E -19 1.47E-18 -2.41E -02 
3 o 235.49 123.14 100.00 -4.09E -19 1.11E-18 -3.02E -02 
4 I 0.00 0.00 100.00 0.00E+00 0.00E+00 -2.41E -02 
4 o 0.00 0.00 100.00 0.00E+00 0.00E+00 -3.02E -02 
5 I 0.00 0.00 100.00 0.00E+00 0.00E+00 -2.41E -02 
5 o 0.00 0.00 100.00 0.00E+00 0.00E+00 -3.02E -02 
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Table 8-XXXIII.  Strain deviation from the Standard Response for nu12/2 

Nu12/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I -82.83 0.23 3.31 -7.36E -04 -3.96E -05 1.23E-19 
1 o -82.83 0.51 3.31 -7.36E -04 -6.06E -05 1.54E-19 
2 I 0.50 -82.83 -7.04 -1.89E -05 -2.34E -04 1.20E-20 
2 o 0.50 -35.79 -7.04 -1.89E -05 -1.95E -04 1.50E-20 
3 I -7.04 3.31 0.00 1.22E-20 4.00E-20 0.00E+00 
3 o -7.04 3.15 0.00 1.22E-20 2.84E-20 0.00E+00 
4 I 0.50 -82.83 0.00 -1.89E -05 -2.34E -04 0.00E+00 
4 o 0.50 -35.79 0.00 -1.89E -05 -1.95E -04 0.00E+00 
5 I 26.09 1.64 0.00 -7.55E -04 -2.74E -04 0.00E+00 
5 o 26.09 2.27 0.00 -7.55E -04 -2.55E -04 0.00E+00 

 

Table 8-XXXIV.  Strain deviation from the Standard Response for nu13/2 

Nu13/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 16.81 -1.91 0.62 1.49E-04 3.25E-04 2.32E-20 
1 o 16.81 0.12 0.62 1.49E-04 -1.46E -05 2.90E-20 
2 I 0.03 16.81 -0.64 -1.06E -06 4.76E-05 1.08E-21 
2 o 0.03 -6.37 -0.64 -1.06E -06 -3.47E -05 1.35E-21 
3 I -0.64 0.62 0.00 1.05E-21 1.11E-20 0.00E+00 
3 o -0.64 -0.74 0.00 1.11E-21 -6.66E -21 0.00E+00 
4 I 0.03 16.81 0.00 -1.06E -06 4.76E-05 0.00E+00 
4 o 0.03 -6.37 0.00 -1.06E-06 -3.47E -05 0.00E+00 
5 I -5.12 -2.23 0.00 1.48E-04 3.73E-04 0.00E+00 
5 o -5.12 0.44 0.00 1.48E-04 -4.93E -05 0.00E+00 

 

Table 8-XXXV.  Strain deviation from the Standard Response for nu23/2 

Nu23/2  Percentage Change from Standard Deviation from Standard 
Load Surface Axial Hoop Shear Axial Hoop  Shear 

1 I 18.26 -2.20 -2.32 1.62E-04 3.75E-04 -8.63E -20 
1 o 18.26 -0.25 -2.32 1.62E-04 2.99E-05 -1.08E -19 
2 I 0.03 18.26 -0.97 -1.23E -06 5.17E-05 1.65E-21 
2 o 0.03 -8.30 -0.97 -1.23E -06 -4.52E -05 2.07E-21 
3 I -0.97 -2.32 0.00 1.69E-21 -2.80E -20 0.00E+00 
3 o -0.97 2.79 0.00 1.69E-21 2.52E-20 0.00E+00 
4 I 0.03 18.26 0.00 -1.23E -06 5.17E-05 0.00E+00 
4 o 0.03 -8.30 0.00 -1.23E -06 -4.52E -05 0.00E+00 
5 I -5.56 -2.55 0.00 1.61E-04 4.27E-04 0.00E+00 
5 o -5.56 0.14 0.00 1.61E-04 -1.53E -05 0.00E+00 
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9 Appendix C.  Levenberg-Marquardt Inversion – Cij 

 
Here is the source code for the Inversion code using the Levenberg-Marquardt compromise to optimize the Cij values.  Included are 
the C source codes for all the files.  Files included: 
 
v Inversion.cpp 
v Inversion.h 
v Elastic_Solution.cpp 
v Elastic_Solution.h 
v Data_Input.cpp 
v Data_Input.h 
v Matrix.cpp 
v Matrix.h 
v Jacobian.cpp 
v Jacobian.h 

 
 

9.1  Inversion.cpp 
 
// Inversion Program -> Inversion.cpp 
 
#include <stdlib.h> 
#include <iostream.h> 
#include <iomanip.h> 
 
#include "Data_Input.h" 
#include "Elastic_Solution.h" 
#include "Inversion.h" 
#include "jacobian.h" 
#include <time.h> 
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void main() 
{ 
 int count, convergence, i; 
 int matnum, mat[K]; 
 double E[5][10], Enew[7], Eout[7], C[5][7], PHI[ND], SSE, B[NAP], Cij[MaxIteration][7]; 
 double radii[K+1], theta[K], Loads[numloads][4], Exp_Strain[numloads][3], Calculated_Strain[3], 
C_Strain[numloads][3], duration; 
 double C_original[7], SSEmin=1.0, E_original[7], *del, delta; 
 char position[numloads]; 
 ofstream  CijFile; 
 clock_t start, finish; 
 ofstream  SSEFile; 
  
 SSEFile.open("SSE.dat"); 
 CijFile.open("Cij.dat"); 
  
 delta= 0.0001; 
 del=&delta; 
  
 start = clock(); 
 
// STEP 1.  Read in all data 
 
 matnum = Input(E, C, mat, radii, theta, Loads, Exp_Strain, position); 
 
 
// Check for an inversion, search for a minimum or mapping of initial SSE values (much quicker than search) 
 for (int a=0;a<7;a++) 
 { 
  C_original[a] = C[0][a]; 
  E_original[a] = E[0][a]; 
 } 
 
/****************************************************************************************/ 
 
// STEP 2.  Show initial results  
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 CijFile << "Initial Values:"<<endl; 
  
 CijFile << endl<< "E Values:"<< endl; 
 CijFile << "\nE1"<< "\t"<< E[0][0]<<"\t"; 
 CijFile << "\nE2"<< "\t"<< E[0][1]<<"\t"; 
 CijFile << "\nE3"<< "\t"<< E[0][2]<<"\t"; 
 CijFile << "\nG12"<< "\t"<< E[0][3]<<"\t"; 
 CijFile << "\nnu12"<< "\t"<< E[0][4]<<"\t"; 
 CijFile << "\nnu13"<< "\t"<< E[0][5]<<"\t"; 
 CijFile << "\nnu23"<< "\t"<< E[0][6]<<"\t"; 
   
 CijFile << "\n\nCij Values:"<<endl;  
 CijFile << "\nC11"<< "\t"<< C[0][0]<<"\t";  
 CijFile << "\nC12"<< "\t"<< C[0][1]<<"\t"; 
 CijFile << "\nC13"<< "\t"<< C[0][2]<<"\t"; 
 CijFile << "\nC22"<< "\t"<< C[0][3]<<"\t"; 
 CijFile << "\nC23"<< "\t"<< C[0][4]<<"\t"; 
 CijFile << "\nC33"<< "\t"<< C[0][5]<<"\t"; 
 CijFile << "\nC66"<< "\t"<< C[0][6]<<"\t"<<endl; 
 
 Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, B, &SSE,del); 
 
 cout << endl << "\nInitial SSE = " <<SSE; 
 cout << endl << "Acceptable Error Value = "<< Acceptable << endl; 
 CijFile << endl << "\nInitial SSE = " <<SSE; 
 SSEFile <<"Initial SSE for Guess Values\t"<<SSE<<endl; 
 SSEFile <<"\n0\t"<< SSE<<"\t"<<*del; 
 
 
// STEP 3.  Minimize the error function and return information on the type of solution reached 
 
 convergence = Minimize(E, C, matnum, mat, Cij, radii,  theta, Loads,Exp_Strain, position, PHI, B, 
&SSE,&count, SSEFile,del); 
/* 
 if (convergence==4) 
 { 
  *del=0; 
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  convergence = Minimize(E, C, matnum, mat, Cij, radii,  theta, Loads,Exp_Strain, position, PHI, 
B, &SSE,&count, SSEFile,del); 
 } 
*/ 
// STEP 4.  Give information on convergence conditions 
  
 switch(convergence) 
 { 
  case 0: cout<<"\nSingular matrix encountered"<<endl; 
   break; 
  case 1: cout<< endl<<"Local minimum encountered"<< endl; 
   break; 
  case 2: cout<< endl<<"Exceded Maximum interations"<< endl; 
   break; 
  case 3: cout<< endl<<"SSE sufficiently small"<< endl; 
   break; 
  case 4: cout<<endl<<"Insignificant change to values"<< endl; 
   break; 
  case 5: cout << endl<<"Did not Converge"<< endl; 
   break; 
 } 
     
// STEP 5.  Output final values 
 if(convergence!=0) 
 { 
  cout<< "\nFinal SSE Value = " << SSE << endl; 
  cout<< "\nNumber of iterations = "<< count+1<< endl; 
  CijFile << "\nNumber of iterations = \t"<< count+1<< endl; 
  CijFile << endl<< "Final Cij Values:"<< endl; 
  
  CijFile << "\nC11"<< "\t"<< C[0][0]<<"\t"; 
  CijFile << "\nC12"<< "\t"<< C[0][1]<<"\t"; 
  CijFile << "\nC13"<< "\t"<< C[0][2]<<"\t"; 
  CijFile << "\nC22"<< "\t"<< C[0][3]<<"\t"; 
  CijFile << "\nC23"<< "\t"<< C[0][4]<<"\t"; 
  CijFile << "\nC33"<< "\t"<< C[0][5]<<"\t"; 
  CijFile << "\nC66"<< "\t"<< C[0][6]<<"\t";  
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  C_to_E(&(C[0][0]),&(Enew[0])); 
  
  CijFile << endl<<endl<< "Final E Values:"<< endl; 
  CijFile << "\nE1"<< "\t"<< Enew[0]<<"\t"; 
  CijFile << "\nE2"<< "\t"<< Enew[1]<<"\t"; 
  CijFile << "\nE3"<< "\t"<< Enew[2]<<"\t"; 
  CijFile << "\nG12"<< "\t"<< Enew[3]<<"\t"; 
  CijFile << "\nnu12"<< "\t"<< Enew[4]<<"\t"; 
  CijFile << "\nnu13"<< "\t"<< Enew[5]<<"\t"; 
  CijFile << "\nnu23"<< "\t"<< Enew[6]<<"\t"; 
  
  CijFile <<"\nFinal SSE = \t" << SSE<< endl<<endl; 
  for(i=0;i<7;i++) 
   E[0][i]=Enew[i]; 
 } 
 else 
 { 
  CijFile<<"\nSingular Matrix\n"; 
 } 
 
//Calculate the strain response for the solution values and output in table for easy plotting 
   
 CijFile<<"\nCalculated Strains for the Final Values"; 
 CijFile<<"\nLoads\t\t\t\t\t"<<"Measured Strains\t\t\t\t"<<"Calculated Strains\n"; 
 CijFile<<"Po\t"<<"Pi\t"<<"Fx\t"<<"Tx\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t"
<<"\tSurface\n"; 
  
 for(i=0 ; i<numloads ; i++) 
 { 
  
  Elastic_Solution(C, E, matnum, mat, radii, theta, &(Loads[i][0]), Calculated_Strain, 
position[i]); 
  
  for(int j=0;j<3;j++) 
   C_Strain[i][j]=Calculated_Strain[j]; 
  for(j=0;j<4;j++) 
   CijFile<<Loads[i][j]<<"\t"; 
  CijFile<<"\t"; 
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  for(j=0;j<3;j++) 
   CijFile<<Exp_Strain[i][j]<<"\t"; 
  CijFile<<"\t"; 
  for(j=0;j<3;j++) 
   CijFile<<C_Strain[i][j]<<"\t"; 
  CijFile<<"\t"<<position[i]<<endl; 
 
 } 
   
// Calculates time used to find solution 
 
 finish = clock();   
 duration = (double)(finish - start)/CLOCKS_PER_SEC; 
 if(duration>60.0) 
 { 
  duration=duration/60.0; 
  cout << "\nCalculation Time:  "<<duration<< " minutes."<< endl; 
 } 
 else 
 { 
  cout << "\nCalculation Time:  "<<duration<< " seconds."<< endl; 
 } 
 
 for(i=0;i<count+1;i++) 
 { 
  CijFile <<"\nIteration #\t"<<i+1<<endl; 
  CijFile << "\nC11"<< "\t"<< Cij[i][0]<<"\t"; 
  CijFile << "\nC12"<< "\t"<< Cij[i][1]<<"\t"; 
  CijFile << "\nC13"<< "\t"<< Cij[i][2]<<"\t"; 
  CijFile << "\nC22"<< "\t"<< Cij[i][3]<<"\t"; 
  CijFile << "\nC23"<< "\t"<< Cij[i][4]<<"\t"; 
  CijFile << "\nC33"<< "\t"<< Cij[i][5]<<"\t"; 
  CijFile << "\nC66"<< "\t"<< Cij[i][6]<<"\t"<<endl;  
 
  C_to_E(&(Cij[i][0]),&(Eout[0])); 
 
  CijFile << "\nE1"<< "\t"<< Eout[0]<<"\t"; 
  CijFile << "\nE2"<< "\t"<< Eout[1]<<"\t"; 
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  CijFile << "\nE3"<< "\t"<< Eout[2]<<"\t"; 
  CijFile << "\nG12"<< "\t"<< Eout[3]<<"\t"; 
  CijFile << "\nnu12"<< "\t"<< Eout[4]<<"\t"; 
  CijFile << "\nnu13"<< "\t"<< Eout[5]<<"\t"; 
  CijFile << "\nnu23"<< "\t"<< Eout[6]<<"\t"<<endl; 
 } 
 CijFile.close(); 
} 
 
//--------------------------------------------------------------------------------------------------- 
/*Calc_Increment calculates the error value PHI and SSE as well as the incremental step value for Cij  
*/ 
int Calc_Increment(double E[][10], double C[][7], int matnum, int mat[], double radii[], double theta[], 
double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SumSquareErr, 
double *del) 
{ 
 int indx[NAP],i,crash=0; 
 double J[ND][NAP], JtJ[NAP][NAP]; 
  
 *SumSquareErr = 0.0; 
 
 for (i=0;i<NAP;i++) 
 { 
  for(int jj=0; jj<NAP;jj++) 
   JtJ[i][jj] = 0.0; 
 } 
 for(i=0;i<ND;i++) 
  PHI[i] = 0.0; 
 
 PhiSub(E, C, matnum, mat, radii,theta,Loads, Exp_Strain, position, PHI); 
  
 for(i=0;i<ND;i++) 
  *SumSquareErr += pow(PHI[i],2); //Calculate the Sum of Square Errors  
  
 Jacobian(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, position, J); 
 
 //Calculate ([J]t[J])^(-1)[J]t{PHI} 
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 for(i=0;i<NAP;i++) // [J]t[J] 
 { 
  for(int j=0;j<NAP;j++) 
  { 
   for(int ii=0;ii<ND;ii++) 
    JtJ[i][j] += J[ii][i]*J[ii][j]; 
  } 
 } 
//Levenberg-Marquardt (JtJ+delta*D) 
 for(i=0;i<NAP;i++) 
  JtJ[i][i] *=(1.0 + *del); 
 
 for(i=0;i<NAP;i++) //[J]t{PHI} 
 { 
  B[i] = 0.0; 
  for (int j=0;j<ND;j++) 
   B[i] -=J[j][i]*PHI[j];   
 } 
 //SysScale(&(JtJ[0][0]),B,NAP);    
 crash = LUDecomposition(&(JtJ[0][0]),NAP,indx,i); 
 if(crash!=0) 
 { 
  cout <<"\nSingular Matrix"<<endl; 
  *SumSquareErr = 1.0; 
  return 1; 
 } 
 
 LUBackSub(&(JtJ[0][0]),NAP,indx,B); 
 return 0; 
} 
 
//---------------------------------------------------------------------------------------------------- 
//Function to minimize error and apply convergence criteria 
int Minimize(double E[][10], double C[][7], int matnum, int mat[], double Cij[][7], double radii[], double 
theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *sse, 
int *counter, ofstream SSEFile, double *del) 
{ 
 int crash_big, crash_small, crash_del,i,j,flag,count=0; 
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 double CNew[5][7], CNew2[5][7],SSEnew, SSEold, del_orig, deltabig, deltasmall,minimum; 
 double SSE_del=0.0, SSE_big=0.0,SSE_small=0.0, B_big[7], B_small[7], ratio[7],max=0.0,SSE_ratio; 
 double CNew_big[5][7],CNew_small[5][7],SSE_del_old=0.0, SSE_big_old=0.0,SSE_small_old=0.0; 
 SSEnew = 1000000; 
 SSEold = 1000000; 
 flag=0; 
 minimum=0.0001; 
 del_orig = *del; 
 
 cout<<"\nIteration\t"<<"SSE"<<"\tdelta"; 
 
//***********Define the new C values************ 
 for(i=0;i<matnum;i++) 
 { 
  for(j=0;j<7;j++) 
  { 
   CNew[i][j]=C[i][j]; 
   CNew2[i][j]=C[i][j]; 
   CNew_small[i][j]=C[i][j]; 
   CNew_big[i][j]=C[i][j]; 
  } 
 } 
//*********Check solution near convergence******** 
/* if(*del==0) 
 { 
  crash_del = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B, &SSE_del, del); 
  if (crash_del!=0) 
  { 
   cout<<"Singular Matrix at solution"; 
   return 1; 
  } 
  SSEold=SSE_del; 
  for (i=0;i<7;i++) 
  { 
   CNew[0][i]+=B[i]; 
  } 
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  crash_del = Calc_Increment(E, CNew, matnum, mat, radii, theta, Loads, Exp_Strain, position, 
PHI, B, &SSE_del, del); 
 } 
*/ 
 for (int iteration=0;iteration <MaxIteration;iteration++) 
 { 
  *counter=iteration; 
//  count+=1; 
//  if(count==10)//periodically perturb del to make sure it is optimizing 
//  { 
//   *del/=10000; 
//   count=0; 
//  } 
//***********Calculate error function and correction to values************* 
  
  deltabig=*del*10; 
  deltasmall=*del/10; 
  del_orig = *del; 
 
//Most efficient step size delta*10, 1, 0.1 
//************Calculate three different B values for the different delta values************ 
 
  crash_del = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B, &SSE_del, del); 
  crash_big = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B_big, &SSE_big, &deltabig); 
  crash_small = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B_small, &SSE_small, &deltasmall); 
  
  SSEold=SSE_del;  //all SSE values are the same here - same C values input, only the B 
values change 
 
  if(SSEold<=Acceptable) 
  { 
   *sse = SSEold; 
   SSEFile << endl<<iteration+1<<"\t"<<SSEold<<"\t"<<*del; 
   cout<<endl<<SSEold; 
   return 3; 
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  } 
 
  if ((crash_del != 0)&&(crash_big !=0)&&(crash_small !=0)) 
  { 
   *sse = 1.0; 
   return 0; 
  } 
   
  for(i=0;i<7;i++) 
  { 
   CNew[0][i]=C[0][i]+B[i]; 
   ratio[i]=B[i]; 
   CNew_big[0][i]=C[0][i]+B_big[i]; 
   CNew_small[0][i]=C[0][i]+B_small[i]; 
  } 
  if ((CNew[0][3]==CNew[0][5])||(CNew[0][3]==4*CNew[0][5])) 
   CNew[0][5]+=1; 
  if ((CNew_big[0][3]==CNew_big[0][5])||(CNew_big[0][3]==4*CNew_big[0][5])) 
   CNew_big[0][5]+=1; 
  if ((CNew_small[0][3]==CNew_small[0][5])||(CNew_small[0][3]==4*CNew_small[0][5])) 
   CNew_small[0][5]+=1; 
 
   
  crash_del = Calc_Increment(E, CNew, matnum, mat, radii, theta, Loads, Exp_Strain, position, 
PHI, B, &SSE_del, del); 
  crash_big = Calc_Increment(E, CNew_big, matnum, mat, radii, theta, Loads, Exp_Strain, position, 
PHI, B, &SSE_big, &deltabig); 
  crash_small = Calc_Increment(E, CNew_small, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B, &SSE_small, &deltasmall); 
 
   
  if ((crash_del != 0)&&(crash_big !=0)&&(crash_small !=0)) 
  { 
   *sse = 1.0; 
   return 0; 
  } 
/*  for(i=0;i<7;i++) 
  { 
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   if(CNew[0][i]<=0.0) 
   { 
    SSE_del = 1e23; 
   } 
   if(CNew_big[0][i]<=0.0) 
   { 
    SSE_big = 1e23; 
   } 
   if(CNew_small[0][i]<=0.0) 
   { 
    SSE_small = 1e23; 
   } 
  } 
*/ 
  SSEnew= SSE_del; 
 
  if((SSE_big<SSE_del)&&(SSE_big<SSE_small)) 
  { 
   *del*=10; 
   SSEnew= SSE_big; 
   for(i=0;i<7;i++) 
   { 
    CNew[0][i]=CNew_big[0][i]; 
    ratio[i]=B_big[i]; 
   } 
 
  } 
  if((SSE_small<SSE_del)&&(SSE_small<SSE_big)) 
  { 
   *del/=10; 
   SSEnew= SSE_small; 
   for(i=0;i<7;i++) 
   { 
    CNew[0][i]=CNew_small[0][i]; 
    ratio[i]=B_small[i]; 
   } 
  } 
//If value is below the threshold level 
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  if(SSEnew<=Acceptable)//if error is below an acceptable value - quit 
   { 
    for(i=0;i<7;i++) 
    { 
     C[0][i] = CNew[0][i]; 
     Cij[iteration][i] = CNew[0][i]; 
    } 
    *sse = SSEnew; 
    SSEFile <<endl <<iteration+1<<"\t"<<SSEnew<<"\t"<<*del; 
    cout<<endl<<SSEnew; 
    return 3; 
   } 
//**********if the revision reduces SSE - take step*********** 
  if(SSEnew<=SSEold) 
  { 
   max=0.0; 
   for(i=0;i<7;i++) 
   { 
    C[0][i] = CNew[0][i]; 
    Cij[iteration][i] = CNew[0][i]; 
    ratio[i]/=CNew[0][i];   //Checking the size of the steps 
    if(max<ratio[i])    //take the largest  
     max=ratio[i]; 
   } 
   SSE_ratio = SSEnew/SSEold; 
   SSEold = SSEnew; 
   *sse = SSEnew; 
    
 
   if((max<=minimum))//||((1-SSE_ratio)<=minimum)) 
   { 
    flag+=1; 
   } 
   else 
   { 
    flag=0; 
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   } 
   if(flag>4) 
    return 4; 
  } 
//***********if not - Change Delta to see if it helps - repeat until it is or quit*********** 
  else 
  { 
   while (SSEnew>SSEold) 
   { 
    *del*=10; 
    cout<<"\nChanging Delta Value - del = "<<*del; 
    
//***********Trying something********** 
    deltabig=*del*10; 
    deltasmall=*del/10; 
    del_orig = *del; 
  
    crash_del = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B, &SSE_del, del); 
    crash_big = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B_big, &SSE_big, &deltabig); 
    crash_small = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B_small, &SSE_small, &deltasmall); 
     
    if ((crash_del != 0)||(crash_big !=0)||(crash_small !=0)) 
    { 
     *sse = 1.0; 
     return 0; 
    } 
    
   
    for(i=0;i<7;i++) 
    { 
     CNew[0][i]=C[0][i]+B[i]; 
     CNew_big[0][i]=C[0][i]+B_big[i]; 
     CNew_small[0][i]=C[0][i]+B_small[i]; 
    } 
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    crash_del = Calc_Increment(E, CNew, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B, &SSE_del, del); 
    crash_big = Calc_Increment(E, CNew_big, matnum, mat, radii, theta, Loads, 
Exp_Strain, position, PHI, B, &SSE_big, &deltabig); 
    crash_small = Calc_Increment(E, CNew_small, matnum, mat, radii, theta, Loads, 
Exp_Strain, position, PHI, B, &SSE_small, &deltasmall); 
 
   
    if ((crash_del != 0)||(crash_big !=0)||(crash_small !=0)) 
    { 
    *sse = 1.0; 
    return 0; 
    } 
   
    SSEnew= SSE_del; 
  
/*    for(i=0;i<7;i++) 
    { 
     if(CNew[0][i]<=0.0) 
     { 
      SSE_del = 1e23; 
     } 
     if(CNew_big[0][i]<=0.0) 
     { 
      SSE_big = 1e23; 
     } 
     if(CNew_small[0][i]<=0.0) 
     { 
      SSE_small = 1e23; 
     } 
    } 
*/ 
    if((SSE_big<SSE_del)&&(SSE_big<SSE_small)) 
    { 
     SSEnew= SSE_big; 
     for(i=0;i<7;i++) 
     CNew[0][i]=CNew_big[0][i]; 
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    } 
    if((SSE_small<SSE_del)&&(SSE_small<SSE_big)) 
    { 
     SSEnew= SSE_small; 
     for(i=0;i<7;i++) 
      CNew[0][i]=CNew_small[0][i]; 
 
    } 
 
//***********Check new values now that delta is increased 
 
 
    if(SSEnew<SSEold) //if SSE is reduced after a interval halving - make changes 
    { 
     for(i=0;i<7;i++) 
     { 
      C[0][i] = CNew[0][i]; 
      Cij[iteration][i] = C[0][i]; 
     } 
     SSEold = SSEnew; 
     *sse = SSEnew; 
 
    } 
    if (*del>1000) //after several interval halving steps 
    { 
     *sse = SSEold; 
     SSEFile <<endl <<iteration+1<<"\t"<<SSEold<<"\t"<<*del; 
 
     cout<<endl<<SSEold; 
     for(i=0;i<7;i++) 
      Cij[iteration][i] = C[0][i]; 
     return 1; 
    } 
    
   } 
   cout<<endl<<iteration<<"\t"<<*sse<<"\t"<<*del; 
  } 
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  SSEFile <<endl <<iteration+1<<"\t"<<*sse<<"\t"<<*del; 
  cout<<endl<<iteration+1<<"\t"<<*sse<<"\t"<<*del; 
 } 
  
 *sse = SSEnew; 
 SSEFile.close(); 
 return 2; 
} 
 
/*************************************************************************************/ 
//This function converts the Cij Values back to E1, E2, E3, G12, nu12, nu13, nu23 
 
void C_to_E(double *c, double *Evalues) 
{ 
 
 double S[4][4], col[4], CijMatrix[4][4]; 
 int i, j, indx[4], d=1; 
 
 
 
 //Need to build the Cij matrix 
 for(i=0;i<4;i++) 
 { 
  col[i]=0.0; 
  for(j=0;j<4;j++) 
  { 
   CijMatrix[i][j]=0.0; 
   S[i][j] = 0.0; 
  } 
 } 
 
 CijMatrix[0][0] = c[0]; //C11 
 CijMatrix[0][1] = c[1]; //C12 
 CijMatrix[1][0] = c[1]; //C21 
 CijMatrix[0][2] = c[2]; //C13 
 CijMatrix[2][0] = c[2]; //C31 
 CijMatrix[1][1] = c[3]; //C22 
 CijMatrix[1][2] = c[4]; //C23 
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 CijMatrix[2][1] = c[4]; //C32 
 CijMatrix[2][2] = c[5]; //C33 
 CijMatrix[3][3] = c[6]; //C66 
  
 
//Invert the Cij Matrix to get the Sij Matrix 
      
 LUDecomposition(&CijMatrix[0][0],4,indx,d); 
 for(j=0;j<4;j++) 
 { 
  for(i=0;i<4;i++) 
   col[i] = 0.0; 
  col[j] = 1.0; 
  LUBackSub(&(CijMatrix[0][0]),4,indx,&col[0]); 
  for(i=0;i<4;i++) 
   S[i][j]=col[i]; 
 } 
 
//Calculate E values from the Sij Values 
 
 Evalues[0] = 1.0/S[0][0]; 
 Evalues[1] = 1.0/S[1][1]; 
 Evalues[2] = 1.0/S[2][2]; 
 Evalues[3] = 1.0/S[3][3]; 
 Evalues[4] = -S[0][1]*Evalues[0]; 
 Evalues[5] = -S[0][2]*Evalues[0]; 
 Evalues[6] = -S[1][2]*Evalues[1]; 
} 
 

9.2  Inversion.h 
//Inversion.h 
 
// Header file for the Inverse Solution 
// Modify the needed information for each different material run 
#include <math.h> 
#include <fstream.h> 
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#define K 10    //Number of plies in the composite lay-up 
#define KK 2*K+2  //Number of equations for Elastic Solution 
#define dT 0   //Temperature change for thermal strains and stresses 
#define Pi acos(-1)  //Define Pi 
#define numloads 3  //Number of load conditions applied (1 Fx + 1 Tx + 1 Pi = 3 !!!REQUIRED!!!) 
#define NAP 7   //Number of active parameters (number of parameters being optimized - 7 Cij 
values) 
#define ND 3*numloads //Number of data points (number of strain points given - 3 strains per load 
applied) 
#define Acceptable 1e-015 //Convergence Criteria - SSE value that is sufficiently small 
#define MaxIteration 100  //Number of iterations before quitting 
 
int Calc_Increment(double E[][10], double C[][7],int matnum, int mat[], double radii[], double theta[], 
double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SumSquareErr, 
double *del); 
int Minimize(double E[][10], double C[][7],int matnum, int mat[], double Cij[][7], double radii[], double 
theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SSE, 
int *count, ofstream SSEFile, double *del); 
//void Calc_SSE(double E[][10], double C[][7], int matnum, int mat[], double radii[], double theta[], 
double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double *SumSquareErr); 
void C_to_E(double *c, double *Evalues); 
 

9.3  Elastic Solution.cpp 
//Elastic_Solution.cpp 
#include "Elastic_Solution.h" 
#include <iostream.h> 
#include <fstream.h> 
 
void Elastic_Solution(double C[][7], double E[][10], int matnum, int mat[], double r[], double th[], double 
*load, double Calc_Strain[], char strainposition) 
{ 
 int i=0,indx[KK]; 
 long theErr=0; 
 double sc[K][4][5], bc[K][3], L[K], cbm[K][4][4], et[K][4]; 
 double A[KK][KK], B[KK]; 
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 Cbar(C, th, E, matnum, mat, cbm, et);  //Transformations to create the cbar matrix 
 
 stress(cbm, et, L, bc, sc);    //Relations between strain, displacement and stress 
 
 mat_stack(cbm, sc, L, bc, r, load, A, B); //Creates matrix to solve for constants Eo,Go, A1's and 
A2's 
    
 SysScale(&(A[0][0]),B,KK);    //Scaling to increase numerical accuracy 
  
 for (int jj=0;jj<KK;jj++)   
  indx[jj] = 0; 
 
 LUDecomposition(&(A[0][0]),KK,indx,i); //performs PA=LU for LUBackSub 
  
 LUBackSub(&(A[0][0]),KK,indx,B);  //Solves system PAx=PB (returns x in B) 
  
 
 output(B, r, L, bc, Calc_Strain, strainposition);//Returns calculated strains 
} 
 
//************************************************************ 
//***********Internal Subroutines***************************** 
 
 
void Cbar(double C[][7], double theta[], double E[][10], int matnum, int mat[], double cbm[][4][4], double 
et[][4]) 
{ 
 //c-bar matrix function 
 
 int i,j,k,p; 
 double m=0.0,n=0.0; 
 
 for(i=0;i<K;i++) 
  for(j=0;j<4;j++) 
   for(k=0;k<4;k++) 
    cbm[i][j][k]=0.0; 
 
 for(i=0;i<K;i++) 
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 { 
  m = cos(theta[i]); 
  n = sin(theta[i]); 
 
  p = mat[i];  //allows for the different material layers 
 
  cbm[i][0][0] = C[p][0]*pow(m,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(n,4); 
  cbm[i][0][1] = pow(m*n,2)*(C[p][0] + C[p][3] - 4*C[p][6]) + C[p][1]*(pow(m,4) + pow(n,4)); 
  cbm[i][0][2] = C[p][2]*m*m + C[p][4]*n*n; 
  cbm[i][0][3] = m*n*(C[p][0]*m*m - C[p][3]*n*n - (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][1][1] = C[p][0]*pow(n,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(m,4); 
  cbm[i][1][2] = C[p][2]*n*n + C[p][4]*m*m; 
  cbm[i][1][3] = m*n*(C[p][0]*n*n - C[p][3]*m*m + (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][2][2] = C[p][5]; 
  cbm[i][2][3] = m*n*(C[p][2] - C[p][4]); 
  cbm[i][3][3] = (C[p][0] + C[p][3] - 2*C[p][1])*pow(m*n,2) + C[p][6]*pow((m*m - n*n),2); 
 
  for(j = 1; j<4 ; j++) 
   for(k = 0; k<j ; k++) 
    cbm[i][j][k] = cbm[i][k][j];  //stacks symmetric terms 
 
  et[i][0] = (E[p][7]*m*m + E[p][8]*n*n)*dT;   //X       thermal strain 
  et[i][1] = (E[p][7]*n*n + E[p][8]*m*m)*dT;   //THETA   thermal strain 
  et[i][2] = E[p][9]*dT;                    //R       thermal strain 
  et[i][3] = 2*m*n*(E[p][7] - E[p][8])*dT;     //X-THETA thermal strain 
 
  
 } 
  
} 
 
void stress(double cbm[][4][4],double et[][4],double L[],double bc[][3],double sc[][4][5]) 
{ 
 //stress coefficients 
  
 short i,j; 
 double zz=0; 
 int a; 
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 for(i=0 ; i<K ; i++) 
 { 
  a=0; 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
 // cout <<"\nL["<<i<<"]\t"<<L[i]; 
  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
   
 switch(a) 
  { 
  case 1:  //Isotropic and Transversely Isotropic Condition cbm[i][1][1] = cbm[i][2][2] 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(2*cbm[i][2][2]);    
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(4*cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1/(2*cbm[i][2][2]);         
   //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
      
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
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    } 
   } 
   break; 
  case 2:  //Causes the b[i][1] term to blowup in default equations 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(3*cbm[i][2][2]);  //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(16*cbm[i][2][2]); //Omega 
    bc[i][2] = 1/(3*cbm[i][2][2]);        
 //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
      
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
 
    } 
   } 
   break; 
  default:  //The General Solution for the Composite Cylinder model 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2]) / (cbm[i][2][2] - cbm[i][1][1]);  
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2 * cbm[i][2][3]) / (4 * cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1 / (cbm[i][2][2] - cbm[i][1][1]);       
   //Psi 
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    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
     sc[i][j][0] = cbm[i][0][j] + bc[i][0]*(cbm[i][1][j] + cbm[i][2][j]); 
     sc[i][j][1] = cbm[i][j][3] + bc[i][1]*(cbm[i][1][j] + 2*cbm[i][2][j]); 
     sc[i][j][2] = cbm[i][1][j] + L[i] * cbm[i][2][j]; 
     sc[i][j][3] = cbm[i][1][j] - L[i] * cbm[i][2][j]; 
     sc[i][j][4] = bc[i][2]*(cbm[i][1][j] + cbm[i][2][j])- et[i][0]*cbm[i][0][j]; 
     sc[i][j][4] += -et[i][1]*cbm[i][1][j] - et[i][2]*cbm[i][2][j] - 
et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
    } 
   } 
  } 
 } 
} 
 
 
void mat_stack(double cbm[][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double A[][KK], double B[]) 
{ 
 //subroutine for stacking the components of the linear system Ax=B 
 
 short i, j, ic; 
 double ro,ri,r2, ro2, r3, ro3, r4, ro4, b1t2, b2t2; 
 int a; 
 
 for(i = 0; i<KK ; i++)                 //initialize [A],{B} 
 { 
  B[i] = 0.0; 
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  for(j = 0; j<KK ; j++) 
  A[i][j] = 0.0; 
 } 
 
 //next two loops stack elements associated with the integrated B.C. 
 b1t2 = 0; 
 b2t2 = 0; 
 
 
 for(i = 0; i<K ;i++) 
 { 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
  a=0; 
 //set up terms for switching for the degenerate cases 
  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
 
  //define radii terms for ease of programming and debugging 
  ri = r[i]; 
  ro = r[i+1]; 
  r2 = pow(r[i],2); 
  ro2 = pow(r[i+1],2); 
  ro3 = pow(r[i+1],3); 
  r3 = pow(r[i],3); 
  ro4 = pow(r[i+1],4); 
  r4 = pow(r[i],4); 
 
  switch(a) 
  { 
  case 1: 
   { 
    A[0][0] += 0.5*(ro2-r2)*(cbm[i][0][0]); 
    A[0][0] += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbm[i][0][1]; 
    A[0][0] += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbm[i][0][2]; 
 
    A[0][1] += (cbm[i][0][3]+bc[i][1]*(cbm[i][0][1]+2*cbm[i][0][2]))*(ro3-r3)/3.0; 
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    A[1][0] += (cbm[i][0][3]*(ro3-r3))/3.0; 
    A[1][0] += (((1.0/3.0)-log(ri))*cbm[i][1][3]+((-2.0/3.0)-
log(ri))*cbm[i][2][3])*bc[i][0]*r3/3.0; 
    A[1][0] += ((log(ro)-
(1.0/3.0))*cbm[i][1][3]+((2.0/3.0)+log(ro))*cbm[i][2][3])*bc[i][0]*ro3/3.0; 
    A[1][1] += (cbm[i][3][3]+bc[i][1]*(cbm[i][1][3]+2*cbm[i][2][3]))*(ro4-r4)/4.0; 
  
     
    b1t2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*cbm[i][0][1]*bc[i][2]; 
    b1t2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*cbm[i][0][2]*bc[i][2]; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
 
    b2t2 += ((3.0*log(ro)-
1.0)*cbm[i][1][3]+(3.0*log(ro)+2.0)*cbm[i][2][3])*ro3*bc[i][2]/9.0; 
    b2t2 -= ((3.0*log(ri)-
1.0)*cbm[i][1][3]+(3.0*log(ri)+2.0)*cbm[i][2][3])*r3*bc[i][2]/9.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  case 2: 
   { 
    A[0][0] += (cbm[i][0][0]+bc[i][0]*(cbm[i][0][1]+cbm[i][0][2]))*(ro2-r2)/2.0; 
    A[0][1] += (((4.0*log(ro)-7.0/3.0)*ro3-(4.0*log(ri)-
7.0/3.0)*r3)*cbm[i][0][1]*bc[i][1])/3.0; 
    A[0][1] += (((4.0*log(ro)-1.0/3.0)*ro3-(4.0*log(ri)-
1.0/3.0)*r3)*2*cbm[i][0][2]*bc[i][1])/3.0; 
    A[0][1] += (ro3-r3)*cbm[i][0][3]/3.0; 
 
    A[1][0] += (cbm[i][0][3]+bc[i][0]*(cbm[i][1][3]+cbm[i][2][3]))*(ro3-r3)/3.0; 
    A[1][1] += (ro4-r4)*cbm[i][3][3]/4.0+((log(ro)-
0.5)*cbm[i][1][3]+2*log(ro)*cbm[i][2][3])*bc[i][1]*ro4; 
    A[1][1] -= ((0.5-log(ri))*cbm[i][1][3]-2*log(ri)*cbm[i][2][3])*bc[i][1]*r4; 
 
     
    b1t2 += (cbm[i][0][1]+cbm[i][0][2])*(ro2-r2)*(bc[i][2])/2.0; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
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    b2t2 += (cbm[i][1][3]+cbm[i][2][3])*(ro3-r3)*bc[i][2]/3.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  default: 
   {//A[0][i] = Fx Conditions  A[1][i] = Tx Conditions 
    A[0][0] += (sc[i][0][0]*( ro2 - r2 )) / 2.0;     //e terms 
    A[1][0] += (sc[i][3][0]*( ro3 - r3 )) / 3.0;     
    A[0][1] += (sc[i][0][1]*( ro3 - r3 )) / 3.0;     //g terms 
    A[1][1] += (sc[i][3][1]*( ro4 - r4 )) / 4.0; 
 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0;      //thermal 
terms 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  } 
 } 
 
 ic = 0; 
 for(i = 2; i<(KK-1) ; i += 2) 
 { 
  ic++; 
   
   
 //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic-1]==1.0) 
   a = 1; 
  if(L[ic-1]==2.0) 
   a = 2; 
 
  //define radii terms for ease of programming and debugging 
 
  ri = r[ic-1]; 
  ro = r[ic]; 
  r2 = pow(r[ic-1],2); 
  ro2 = pow(r[ic],2); 



 172

  ro3 = pow(r[ic],3); 
  r3 = pow(r[ic-1],3); 
  ro4 = pow(r[ic],4); 
  r4 = pow(r[ic-1],4); 
   
  switch(a) 
  { 
  case 1: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+cbm[ic-1][0][2])*(r2-ro2)/2.0; 
    A[0][i+1] = (log(ro)-log(ri))*(cbm[ic-1][0][1]-cbm[ic-1][0][2]);//check 2*cbm[ic-
1][0][2] 
    A[1][i] = (ro3-r3)*(cbm[ic-1][1][3]+cbm[ic-1][2][3])/3.0; 
    A[1][i+1] = (ro-ri)*(cbm[ic-1][1][3]-cbm[ic-1][2][3]); 
 
   } 
   break; 
  case 2: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+2*cbm[ic-1][0][2])*(ro3-r3)/3.0; 
    A[0][i+1] = (2.0*cbm[i][0][2]-cbm[i][0][1])*((1.0/ro) - (1.0/ri)); 
    A[1][i] = (cbm[ic-1][1][3]+2*cbm[ic-1][2][3])*(ro4-r4)/4; 
    A[1][i+1] = (cbm[ic-1][1][3]-2*cbm[ic-1][2][3])*(log(ro)-log(ri)); 
   } 
   break; 
  default: 
   { 
    A[0][i] = sc[ic-1][0][2]*(pow(ro, 1+L[ic-1]) - pow(ri, 1+L[ic-1]) ) / (1+L[ic-1]); 
    A[0][i+1] = sc[ic-1][0][3]*(pow(ro, 1-L[ic-1]) - pow(ri, 1-L[ic-1]) ) / (1-L[ic-
1]); 
    A[1][i] = sc[ic-1][3][2]*(pow(ro, 2+L[ic-1]) - pow(ri, 2+L[ic-1]) ) / (2+L[ic-1]); 
    A[1][i+1] = sc[ic-1][3][3]*(pow(ro, 2-L[ic-1]) - pow(ri, 2-L[ic-1]) ) / (2-L[ic-
1]); 
   } 
   break; 
  } 
 } 
 //Applied Loads 
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 B[0] = (load[2] / (2 * Pi)) - b1t2;        
 B[1] = (load[3] / (2 * Pi)) - b2t2; 
 
 //next loop stacks the elements associated with the interface conditions w[i](r) = w[i+1](r) and sigma-r 
 
 ic = 0; 
 for(i = 2; i<(KK-3) ; i += 2) 
 { 
 
  //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic]==1.0) 
   a = 1; 
  if(L[ic]==2.0) 
   a=2; 
 
  ic++;  
 
  switch(a) 
  { 
 
  case 1: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]*log(r[ic])+cbm[ic-
1][2][2]*(log(r[ic])+1))); 
    A[i][0] -
=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))); 
    A[i][1] = ((cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*bc[ic-1][1]+cbm[ic-1][2][3])*r[ic]; 
    A[i][1] -=((cbm[ic][1][2]+2*cbm[ic][2][2])*bc[ic][1]+cbm[ic][2][3])*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+cbm[ic-1][2][2]) ; 
    A[i][i+1] = (cbm[ic-1][1][2]-cbm[ic-1][2][2])*pow(r[ic],-2);//check2*cbm[ic-
1][2][2] 
    A[i][i+2] = -(cbm[ic][1][2]+cbm[ic][2][2]); 
    A[i][i+3] = -(cbm[ic][1][2]-cbm[ic][2][2])*pow(r[ic],-2);//check2*cbm[ic-1][2][2] 
     
    //The w(r) conditions 
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    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))*bc[ic][2]; 
    B[i] -= (cbm[ic-1][1][2]*log(r[ic])+cbm[ic-1][2][2]*(log(r[ic])+1))*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]*log(r[ic]); 
   } 
   break; 
 
  case 2: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]+cbm[ic-1][2][2])); 
    A[i][0] -=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]+cbm[ic][2][2])); 
    A[i][1] = (cbm[ic-1][2][3]+bc[ic-1][1]*(cbm[ic-1][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic-1][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
    A[i][1] -=(cbm[ic][2][3]+bc[ic][1]*(cbm[ic][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*r[ic] ; 
    A[i][i+1] = (cbm[ic-1][1][2]-2*cbm[ic-1][2][2])*pow(r[ic],-3); 
    A[i][i+2] = -(cbm[ic][1][2]+2*cbm[ic][2][2])*r[ic]; 
    A[i][i+3] = -(cbm[ic][1][2]-2*cbm[ic][2][2])*pow(r[ic],-3); 
     
    //The w(r) conditions 
    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
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    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2] + cbm[ic][2][2])*bc[ic][2]-(cbm[ic-1][1][2] + cbm[ic-
1][2][2])*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
    
   } 
   break; 
 
  default: 
   { 
  
    A[i][0] = sc[ic-1][2][0] - sc[ic][2][0];    //eo terms 
    A[i][1] = ( sc[ic-1][2][1] - sc[ic][2][1] ) * r[ic]; //go terms 
 
    A[i + 1][0] = ( bc[ic-1][0] - bc[ic][0] ) * r[ic];   
    A[i + 1][1] = ( bc[ic-1][1] - bc[ic][1] ) * r[ic]*r[ic]; 
         
    A[i][i] = sc[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) ); 
    A[i][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) ); 
    A[i][i+2] = -sc[ic][2][2] * pow(r[ic], (L[ic] - 1) ); 
    A[i][i+3] = -sc[ic][2][3] * pow(r[ic], (-L[ic] - 1) ); 
 
    A[i+1][i] = pow(r[ic], L[ic-1] ); 
    A[i+1][i+1] = pow(r[ic], -L[ic-1] ); 
    A[i+1][i+2] = -pow(r[ic], L[ic] ); 
    A[i+1][i+3] = -pow(r[ic], -L[ic] ); 
 
    B[i] = sc[ic][2][4] - sc[ic-1][2][4]; 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
 
   } 
   break; 



 176

  } 
 }  
        
 //next lines stack the matrix elements associated with the pressure B.C. 
 
 //The inner surface pressure conditions 
  a=0; 
  //set up terms for switching for the degenerate cases 
  if(L[0]==1.0) 
   a = 1; 
  if(L[0]==2.0) 
   a=2; 
  switch(a) 
  { 
  case 1: 
   { 
    A[KK-2][0] = 
(cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))); 
    A[KK-2][1] = ((cbm[0][1][2]+2*cbm[0][2][2])*bc[0][1]+cbm[0][2][3])*r[0]; 
    A[KK-2][2] = (cbm[0][1][2]+cbm[0][2][2]); 
    A[KK-2][3] = (cbm[0][1][2]-cbm[0][2][2])*pow(r[0],-2); 
 
    B[KK-2] = -load[1] - (cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))*bc[0][2] - 
sc[0][2][4]; 
   } 
   break; 
  case 2: 
   { 
    A[KK-2][0] = (cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]+cbm[0][2][2])); 
    A[KK-2][1] = (cbm[0][1][2]*(4*log(r[0])-
1)+2*cbm[0][2][2]*(4*log(r[0])+1))*bc[0][1]*r[0]; 
    A[KK-2][2] = (cbm[0][1][2]+2*cbm[0][2][2])*r[0]; 
    A[KK-2][3] = (cbm[0][1][2]-2*cbm[0][2][2])*pow(r[0],-3); 
 
    B[KK-2] = -load[1] - (cbm[0][1][2]+cbm[0][2][2])*bc[0][2] - sc[0][2][4]; 
   } 
   break; 
  default: 
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   { 
    A[KK-2][0] = sc[0][2][0]; 
    A[KK-2][1] = sc[0][2][1] * r[0]; 
    A[KK-2][2] = sc[0][2][2] * pow(r[0], (L[0] - 1) ); 
    A[KK-2][3] = sc[0][2][3] * pow(r[0], (-L[0] - 1) ); 
 
    B[KK-2] = -load[1] - sc[0][2][4]; 
   } 
   break; 
  } 
 //The outer surface pressure conditions 
   a=0; 
  //set up terms for switching for the degenerate cases 
  if(L[K-1]==1.0) 
   a = 1; 
  if(L[K-1]==2.0) 
   a=2; 
  switch(a) 
  { 
  case 1: 
   { 
    A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]*log(r[K])+cbm[K-
1][2][2]*(log(r[K])+1))); 
    A[KK-2][1] = ((cbm[K-1][1][2]+2*cbm[K-1][2][2])*bc[K-1][1]+cbm[K-1][2][3])*r[K]; 
    A[KK-2][2] = (cbm[K-1][1][2]+cbm[K-1][2][2]); 
    A[KK-2][3] = (cbm[K-1][1][2]-cbm[K-1][2][2])*pow(r[K],-2); 
 
    B[KK-2] = -load[0] - (cbm[K-1][1][2]*log(r[K])+cbm[K-1][2][2]*(log(r[K])+1))*bc[K-
1][2]- sc[K-1][2][4]; 
   } 
   break; 
  case 2: 
   { 
    A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]+cbm[K-1][2][2])); 
    A[KK-2][1] = (cbm[K-1][1][2]*(4*log(r[K])-1)+2*cbm[K-
1][2][2]*(4*log(r[K])+1))*bc[K-1][1]*r[K]; 
    A[KK-2][2] = (cbm[K-1][1][2]+2*cbm[K-1][2][2])*r[K]; 
    A[KK-2][3] = (cbm[K-1][1][2]-2*cbm[K-1][2][2])*pow(r[K],-3); 
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    B[KK-2] = -load[0] - (cbm[K-1][1][2]+cbm[K-1][2][2])*bc[K-1][2]- sc[K-1][2][4]; 
   } 
   break; 
  default: 
   { 
    A[KK-1][0] = sc[K-1][2][0]; 
    A[KK-1][1] = sc[K-1][2][1] * r[K]; 
    A[KK-1][KK-2] = sc[K-1][2][2] * pow(r[K], ( L[K-1] - 1) ); 
    A[KK-1][KK-1] = sc[K-1][2][3] * pow(r[K], ( -L[K-1] - 1) ); 
 
    B[KK-1] = -load[0] - sc[K-1][2][4]; 
   } 
   break; 
  } 
} 
void output(double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition) 
{ 
 double ex=0.0, eo=0.0, gxo=0.0, w=0.0, Rc; 
 int a, i; 
 
 
 for (int ab=0;ab<3;ab++) 
 { 
  Calc_Strain[ab]=0.0; 
  
 } 
 
 //Inner or Outer Surface Strains? 
 if(strainposition =='i'||strainposition=='I') 
 { 
  i=0; 
  Rc=r[0]; 
 
 } 
 else //Outer Surface is the Default condition 
 { 
  Rc=r[K]; 



 179

  i=K-1; 
 
 } 
  
 a=0; 
 if(L[i]==1.0) 
  a = 1; 
 if(L[i]==2.0) 
  a=2; 
 switch (a) 
 { 
  case 1:  //Isotropic or Transversely Isotropic 
   { 
    w = bc[i][0]*Rc*log(Rc)*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*Rc + x[2*(i)+3]/Rc 
+ bc[i][2]*log(Rc); 
     ex = x[0];  // Ex: Epsilon x 
    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
  case 2:  //bc[i][1] = 0 
   { 
    w = bc[i][0]*Rc*x[0] + bc[i][1]*x[1]*pow(Rc,2)*(4*log(Rc)-1) + x[2*(i)+2]*pow(Rc, 
L[i]) + x[2*(i)+3]*pow(Rc, -L[i]) + bc[i][2]*Rc; 
    ex = x[0];  // Ex: Epsilon x 
    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
  default: //General Case 
   { 
    w = bc[i][0]*Rc*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*pow(Rc, L[i]) + 
x[2*(i)+3]*pow(Rc, -L[i]) + bc[i][2]*Rc; 
    ex = x[0];  // Ex: Epsilon x 
    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
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 }           
  Calc_Strain[0] = ex; //Epsilon X            
  Calc_Strain[1] = eo; //Epsilon Y            
  Calc_Strain[2] = gxo; //Epsilon XY 
} 
 

9.4  Elastic Solution.h 

 
//Elastic_Solution.h 
 
#include "Inversion.h" 
#include "matrix.h" 
#include <iostream.h> 
#include <fstream.h> 
/*******************************/ 
/*routines internal to CCM*/ 
/*******************************/ 
void Elastic_Solution(double C[][7], double E[][10], int matnum, int mat[], double r[], double theta[], 
double *load, double Calc_Strain[], char strainposition); 
void Cbar(double C[][7], double theta[], double E[][10], int matnum, int mat[], double cbm[][4][4], double 
et[][4]); 
void stress(double cbm[][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]); 
void mat_stack(double cbm[][4][4], double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double A[][KK], double B[]); 
void output(double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition); 

 

 

9.5  Data_Input.cpp 

 

//Data_Input.cpp 
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#include "Data_Input.h" 
 
ifstream inputfile, loadfile,expstrain;  //Data file containing input data (material properties, 
geometry, loads) 
ofstream tracking;    //Data files for data output and intermediate values 
 
int Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[]) 
{ 
 inputfile.open("ICEinput.dat"); // Input.dat contains initial guess E's, and geometry 
 loadfile.open("ICELOADS.dat");  // loads.dat contains all loading conditions (must alter 
numloads value in Inversion.h) 
 expstrain.open("ICEstrain.dat");// expstrain.dat contains all the measured strain values (ex, ey, 
gxy) for each load condition (numload # of sets)  
 tracking.open("tracking.dat"); // Opening Data files for output and tracking of values 
 
  
 double temp; 
 char datatype; 
 int i,j,matval, matnum; 
 
// First input value must be the number of material layers 
 
 inputfile>>matnum; 
  
 for(matval=0;matval<matnum;matval++) 
 { 
  inputfile>>datatype; 
  
//If the first value in the input file is 'C' then reads in Cij values 
  if((datatype == 'C')||(datatype=='c')) 
  { 
   for(i=0;i<7;i++) 
    inputfile>>C[matval][i]; 
   for(i=7;i<10;i++) 
    inputfile>>E[matval][i];  //reads in the thermal coefficients 
   C_to_E(&(C[matval][0]),&(E[matval][0])); 
  } 
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//If 'E' - Reads in Elastic Moduli (E1,E2,E3,G12,nu12,nu13,nu23,a1,a2,a3) IN ORDER!!! 
  if((datatype == 'E')||(datatype=='e'))   
  { 
   for(i=0; i<10; i++)    
    inputfile >> E[matval][i]; 
   CMatrix(E,C,matnum);  //Calculates the Cij values  
  } 
 } 
 
//Reads in all surface radii 
 for(j=0; j<K+1; j++)   
  inputfile >> radii[j]; 
  
 
//Reads in each ply angle (degrees) and converts to radians 
 for(i=0; i<K; i++)     
 { 
  inputfile >> temp; 
  theta[i] = temp * (Pi/180.0); 
  inputfile >> mat[i]; 
 } 
 
//Reads in all load and experimental strain values 
 for (i=0; i<numloads; i++)    // !!!!LOAD CONDITIONS!!!!   !!!STRAIN 
CONDITIONS!!! 
 {       
  expstrain>>position[i];    // position[i] = i or o for inner or outer surface 
strains 
  for(j=0; j<4; j++)     // Loads[0] = External Pressure 
 exp_strain[][0] = e-x 
   loadfile >> Loads[i][j];  // Loads[1] = Internal Pressure 
 exp_strain[][1] = e-y 
  for(int k=0;k<3;k++)    // Loads[2] = Axial Load  
 exp_strain[][2] = gamma-xy 
   expstrain>> Exp_Strain[i][k]; // Loads[3] = Torsional Load       
 }          
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//Writes all data and stiffness values to the tracking file 
 Output_data(E,matnum, mat,radii,theta,Loads, Exp_Strain, position, C);  
 inputfile.close(); 
 loadfile.close();        //Close the data files 
 expstrain.close();  
 tracking.close(); 
 
 cout << endl; 
 return matnum; 
} 
//------------------------------------------------------------------------------------------- 
void Output_data(double E[][10],int matnum, int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[], double C[][7]) 
{ 
  
 tracking << "Tube properties entered:" << endl; 
 
//Prints Elastic Moduli (E1,E2,E3,G12,nu12,nu13,nu23,a1,a2,a3) 
 for(int i=0;i<matnum;i++) 
 { 
  tracking << "\nMaterial #"<<i+1; 
  tracking << "\nE1 =\t"<<E[i][0]; 
  tracking << "\nE2 =\t"<<E[i][1]; 
  tracking << "\nE3 =\t"<<E[i][2]; 
  tracking << "\nG12 =\t"<<E[i][3]; 
  tracking << "\nnu12 =\t"<<E[i][4]; 
  tracking << "\nnu13 =\t"<<E[i][5]; 
  tracking << "\nnu23 =\t"<<E[i][6]; 
  tracking << "\nalpha-1 =\t"<<E[i][7]; 
  tracking << "\nalpha-2 =\t"<<E[i][8]; 
  tracking << "\nalpha-3 =\t"<<E[i][9]<<endl<<endl; 
 } 
 
 tracking <<"\n\nTube geometry entered:\n"; 
 
 for(i=0; i<K; i++) 
 { 
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  tracking << "Ri and Ro of ply #" << i+1<< "\t"<<radii[i]<<"\t\t"<<radii[i+1]<<"\t\tAngle"<< 
"\t"<< theta[i]*(180/Pi)<<"\tMaterial #\t"<<mat[i]+1<<endl; 
 } 
 for(int ii=0;ii<numloads;ii++) 
 { 
// Printing out the Load conditions to the tracking file 
  tracking << "\nLoad Set #"<< ii+1<<endl; 
  tracking << "\nLoading Conditions and Measured Strains:" << endl; 
  tracking << "Axial Load = \t" << Loads[ii][2] << endl; 
  tracking << "Torque = \t" << Loads[ii][3] << endl; 
  tracking << "Internal Pressure = \t" << Loads[ii][1] << endl; 
  tracking << "External Pressure = \t" << Loads[ii][0] << endl; 
 
//Printing out the Measured Strain values for each applied load condition 
 
  tracking << "\nSurface = "; 
  if (position[ii]=='i'||position[ii]=='I') 
   tracking << "\tInner Surface Strains"; 
  else if (position[ii]=='o'||position[ii]=='O') 
   tracking << "\tOuter Surface Strains"; 
  else 
   tracking << "\tINVALID Response!"; 
  tracking << "\nAxial Strain (ex) =\t" << Exp_Strain[ii][0] << endl; 
  tracking << "Hoop Strain (ey) =\t" << Exp_Strain[ii][1] << endl; 
  tracking << "Shear Strain (gxy) =\t" << Exp_Strain[ii][2] << endl; 
 } 
 tracking << "\n\nInitial Cij Values:" << endl; 
 for(i=0;i<matnum;i++) 
 { 
  tracking << "\nMaterial #"<<i+1; 
  tracking << "\nC11 = \t"<<C[i][0]; 
  tracking << "\nC12 = \t"<<C[i][1]; 
  tracking << "\nC13 = \t"<<C[i][2]; 
  tracking << "\nC22 = \t"<<C[i][3]; 
  tracking << "\nC23 = \t"<<C[i][4]; 
  tracking << "\nC33 = \t"<<C[i][5]; 
  tracking << "\nC66 = \t"<<C[i][6]<<endl<<endl; 
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 tracking << endl; 
 } 
} 
 
// Calcualtes the C Matrix Values from the input data 
//--------------------------------------------------------------------------------- 
void CMatrix(double E[][10], double C[][7], int matnum) //c matrix subroutine 
{ 
 double v; 
  
 for(int i=0;i<matnum;i++) 
 { 
  v = (1 - E[i][4] *(E[i][4] * E[i][1] / E[i][0] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][0]) - 
E[i][5] * E[i][5] * E[i][2] / E[i][0] - E[i][6] * E[i][6] * E[i][2] / E[i][1]); 
 
  C[i][0] = (1 - E[i][6] * E[i][6] * E[i][2] / E[i][1]) * E[i][0] / v;        // c11 
  C[i][1] = (E[i][4] + E[i][5] * E[i][6] * E[i][2] / E[i][1]) * E[i][1] / v;     // c12 
  C[i][2] = (E[i][5] + E[i][4] * E[i][6]) * E[i][2] / v;                   // c13 
  C[i][3] = (1 - E[i][5] * E[i][5] * E[i][2] / E[i][0]) * E[i][1] / v;        // c22 
  C[i][4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][0]) * E[i][2] / v;     // c23 
  C[i][5] = (1 - E[i][4] * E[i][4] * E[i][1] / E[i][0]) * E[i][2] / v;        // c33 
  C[i][6] = E[i][3];                                              // c66 
 
  v=0.0; 
 } 
} 

 
9.6  Data_Input.h 
// Data Input.h 
 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "Inversion.h" 
#include <fstream.h> 
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int Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[]); 
void Output_data(double E[][10], int matnum, int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[], double C[][7]); 
void CMatrix(double E[][10], double C[][7], int matval); //c matrix subroutine 

 

9.7  Matrix.cpp 
#include "Matrix.h" 
#include <math.h> 
#include <stdlib.h> 
#include <iostream.h> 
//Matrix.cpp 
 
 
void SysScale(double *A,double *B,int n) 
 
 
int LUDecomposition (double *A,int n,int *indx,int d) 
 
void LUBackSub (double *A,int n,int *indx,double *B) 
 
long Gauss(double *A,double *B,double *X,int n) 
 
 

9.8  Matrix.h 

 
//Matrix.h 
 
#include <math.h> 
#include "Inversion.h" 
 



 187

The following subroutines have been omitted due to copyright considerations.  The 
appropriate subroutines can be found in Numerical Recipes (sections on LU Decomposition 
and Backsubstitution). 
 
 
void SysScale(double *A,double *B,int n); 
int LUDecomposition (double *A,int n,int *indx,int d); 
void LUBackSub (double *A,int n,int *indx,double *B); 
long Gauss(double *A,double *B,double *X,int n); 
 

 

9.9  Jacobian.cpp 

 
#include <fstream.h> 
#include "jacobian.h" 
#include "Elastic_Solution.h" 
 
//Jacobian.cpp 
 
void Jacobian(double E[][10],double C[][7], int matnum, int mat[], double r[],double th[],double 
load[][4],double Exp_Strain[][3], char position[], double jaco[][NAP]) 
{ 
 int i,j; 
 double h=0.00001; 
 double Ctemp[5][7]; 
 double PHIminus[ND], PHIplus[ND]; 
 
 for(i=0;i<matnum;i++) 
 { 
  for(j=0; j<7; j++) 
   Ctemp[i][j] = C[i][j]; 
 } 
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 for(i=0; i<NAP; i++) 
 { 
  Ctemp[0][i] = C[0][i]*(1-h); 
  PhiSub(E, Ctemp, matnum, mat, r, th, load, Exp_Strain, position, PHIminus);  
  
  Ctemp[0][i] = C[0][i]*(1+h); 
 
  PhiSub(E, Ctemp, matnum, mat, r, th, load, Exp_Strain, position, PHIplus); 
   
 
  Ctemp[0][i] = C[0][i]; 
 
  for(j=0; j<ND; j++) 
   jaco[j][i] = (PHIplus[j] - PHIminus[j])/(2 * h * C[0][i]); 
   } 
 
} 
 
void PhiSub(double E[][10],double C[][7], int matnum, int mat[], double r[],double th[],double 
load[][4],double Exp_Strain[][3], char position[], double PHI[])  
{ 
 double Calc_Strain[3]; 
  
 for(int i=0 ; i<numloads ; i++) 
 { 
   
  Elastic_Solution(C, E, matnum, mat, r, th, &(load[i][0]), Calc_Strain, position[i]); 
 
  PHI[i*3] = Exp_Strain[i][0] - Calc_Strain[0];             // Ex 
  PHI[i*3+1] = Exp_Strain[i][1] - Calc_Strain[1];           // Ey 
  PHI[i*3+2] = Exp_Strain[i][2] - Calc_Strain[2];    // Gxy 
 } 
 
} 
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9.10 Jacobian.h 

 
//Jacobian.h 
 
#include "Inversion.h" //for the parameters NAP,ND,etcÉ 
 
void Jacobian(double E[][10],double C[][7],int matnum, int mat[], double r[],double th[],double 
eload[][4],double Exp_Strain[][3], char position[], double jaco[][NAP]); 
void PhiSub(double E[][10],double C[][7], int matnum, int mat[], double r[],double th[],double 
eload[][4],double Exp_Strain[][3], char position[], double PHI[ND]); 

 

9.11 Input Files 

9.11.1 A typical load program 

Po Pi Fx Tx 
0 400 0 0 
0 0 9900 0 
0 0 0 3700 

 

 

9.11.2 A typical strain file 

Surface ex   eq  gxq 

o -2.692E-05  0.000128074  1.26742E-05 
o 0.000460103  -0.000128363 -1.03551E-05 
o -1.76911E-06 -1.32018E-06 0.000419356 
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9.11.3 A typical input file 

 
1    Number of different materials 
e    Type of material data (c for Cij, e for Ei) 
3.67463e+007  Ei or Cij Values 
3.67463e+007  
2.40486e+007  
5.3941e+006  
0.24  
0.24  
0.24 
0 
0    CTE’s 
0 
0.979084646 
0.990834146 
1.002583646 
1.014333146 
1.026082646  
1.037832146  
1.049581646  
1.061331146  
1.073080646   Interfacial radii 
1.084830146  
1.096579646  
1.108329146  
1.120078646  
1.131828146  
1.143577646  
1.155327146  
1.167076646  
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45 0 
-45 0 
45 0   Individual ply orientations and ply material type (dependant upon # of mat’ls) 
-45 0 
45 0 
-45 0 
45 0 
-45 0 
45 0 
-45 0 
45 0 
-45 0 
45 0 
-45 0 
45 0 
-45 0 
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10 Appendix C.  Levenberg-Marquardt Inversion – Ei 

 
Here is the source code for the Inversion code using the Levenberg-Marquardt compromise to optimize the Ei values.  Included are the 
C source codes for all the files.  Files included: 
 
v Inversion.cpp 
v Inversion.h 
v Elastic_Solution.cpp 
v Elastic_Solution.h 
v Data_Input.cpp 
v Data_Input.h 
v Matrix.cpp 
v Matrix.h 
v Jacobian.cpp 
v Jacobian.h 

 
 

10.1 Inversion.cpp 

 
 
// Inversion Program -> Inversion.cpp 
 
#include <stdlib.h> 
#include <iostream.h> 
#include <iomanip.h> 
 
#include "Data_Input.h" 
#include "Elastic_Solution.h" 
#include "Inversion.h" 
#include "jacobian.h" 
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#include <time.h> 
 
void main() 
{ 
 int count, convergence, i; 
 int matnum, mat[K], P[7]; 
 double E[5][10], PHI[ND], SSE, B[NAP], Ei[MaxIteration+1][7]; 
 double radii[K+1], theta[K], Loads[numloads][4], Exp_Strain[numloads][3], Calculated_Strain[3]; 
 double SSEmin=1.0, *del, delta, duration, C_Strain[numloads][3]; 
 char position[numloads]; 
 ofstream  EiFile; 
 clock_t start, finish; 
 ofstream  SSEFile; 
  
 SSEFile.open("SSE.dat"); 
 EiFile.open("Eioutput.dat"); 
  
 delta= 0.0001; 
 del=&delta; 
  
 start = clock(); 
 
// STEP 1.  Read in all data 
 
 matnum = Input(E, P, mat, radii, theta, Loads, Exp_Strain, position); 
 
 
/****************************************************************************************/ 
 
 
// STEP 2.  Show initial results  
    
    
 EiFile << "Initial Values:"<<endl; 
  
 EiFile << endl<< "E Values:"<< endl; 
 EiFile << "\nE1"<< "\t"<< E[0][0]<<"\t"; 
 EiFile << "\nE2"<< "\t"<< E[0][1]<<"\t"; 
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 EiFile << "\nE3"<< "\t"<< E[0][2]<<"\t"; 
 EiFile << "\nG12"<< "\t"<< E[0][3]<<"\t"; 
 EiFile << "\nnu12"<< "\t"<< E[0][4]<<"\t"; 
 EiFile << "\nnu13"<< "\t"<< E[0][5]<<"\t"; 
 EiFile << "\nnu23"<< "\t"<< E[0][6]<<"\t"; 
   
 Calc_Increment(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, B, &SSE,del); 
 
 cout << endl << "\nInitial SSE = " <<SSE; 
 cout << endl << "Acceptable Error Value = "<< Acceptable << endl; 
 EiFile << endl << "\nInitial SSE = " <<SSE; 
 SSEFile <<"Initial SSE for Guess Values\t"<<SSE<<endl; 
 SSEFile <<"\n0\t"<< SSE<<"\t"<<*del; 
 
 
// STEP 3.  Minimize the error function and return information on the type of solution reached 
 
 convergence = Minimize(E, P, matnum, mat, Ei, radii,  theta, Loads,Exp_Strain, position, PHI, B, 
&SSE,&count, SSEFile,del); 
/* 
 if (convergence==4) 
 { 
  *del=0; 
  convergence = Minimize(E, C, matnum, mat, Cij, radii,  theta, Loads,Exp_Strain, position, PHI, 
B, &SSE,&count, SSEFile,del); 
 } 
*/ 
// STEP 4.  Give information on convergence conditions 
  
 switch(convergence) 
 { 
  case 0: cout<<"\nSingular matrix encountered"<<endl; 
   break; 
  case 1: cout<< endl<<"Local minimum encountered"<< endl; 
   break; 
  case 2: cout<< endl<<"Exceded Maximum interations"<< endl; 
   break; 
  case 3: cout<< endl<<"SSE sufficiently small"<< endl; 
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   break; 
  case 4: cout<<endl<<"Insignificant change to values"<< endl; 
   break; 
  case 5: cout << endl<<"Did not Converge"<< endl; 
   break; 
 } 
     
 
// STEP 5.  Output final values 
 if(convergence!=0) 
 { 
  cout<< "\nFinal SSE Value = " << SSE << endl; 
  cout<< "\nNumber of iterations = "<< count+1<< endl; 
  EiFile << "\nNumber of iterations = \t"<< count+1<< endl; 
  EiFile << endl<< "Final Cij Values:"<< endl; 
  
 
  EiFile  << endl<<endl<< "Final E Values:"<< endl; 
  EiFile  << "\nE1"<< "\t"<< E[0][0]<<"\t"; 
  EiFile << "\nE2"<< "\t"<< E[0][1]<<"\t"; 
  EiFile << "\nE3"<< "\t"<< E[0][2]<<"\t"; 
  EiFile << "\nG12"<< "\t"<< E[0][3]<<"\t"; 
  EiFile << "\nnu12"<< "\t"<< E[0][4]<<"\t"; 
  EiFile << "\nnu13"<< "\t"<< E[0][5]<<"\t"; 
  EiFile << "\nnu23"<< "\t"<< E[0][6]<<"\t"; 
  
  EiFile <<"\nFinal SSE = \t" << SSE<< endl<<endl; 
 
 } 
 else 
 { 
  EiFile<<"\nSingular Matrix\n"; 
 } 
 
  
 
//Calculate the strain response for the solution values and output in table for easy plotting 
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 EiFile<<"\nCalculated Strains for the Final Values"; 
 EiFile<<"\nLoads\t\t\t\t\t"<<"Measured Strains\t\t\t\t"<<"Calculated Strains\n"; 
 EiFile<<"Po\t"<<"Pi\t"<<"Fx\t"<<"Tx\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t"<
<"\tSurface\n"; 
  
 for(i=0 ; i<numloads ; i++) 
 { 
  
  Elastic_Solution(E, matnum, mat, radii, theta, &(Loads[i][0]), Calculated_Strain, position[i]); 
  
  for(int j=0;j<3;j++) 
   C_Strain[i][j]=Calculated_Strain[j]; 
  for(j=0;j<4;j++) 
   EiFile<<Loads[i][j]<<"\t"; 
  EiFile<<"\t"; 
  for(j=0;j<3;j++) 
   EiFile<<Exp_Strain[i][j]<<"\t"; 
  EiFile<<"\t"; 
  for(j=0;j<3;j++) 
   EiFile<<C_Strain[i][j]<<"\t"; 
  EiFile<<"\t"<<position[i]<<endl; 
 
 } 
   
// Calculates time used to find solution 
 
 finish = clock();   
 duration = (double)(finish - start)/CLOCKS_PER_SEC; 
 if(duration>60.0) 
 { 
  duration=duration/60.0; 
  cout << "\nCalculation Time:  \t"<<duration<< "\t minutes."<< endl; 
  EiFile << "\nCalculation Time:  \t"<<duration<< "\t minutes."<< endl; 
 
 } 
 else 
 { 
  cout << "\nCalculation Time:  \t"<<duration<< "\tseconds."<< endl; 
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  EiFile << "\nCalculation Time:  \t"<<duration<< "\tseconds."<< endl; 
 } 
 
 EiFile<<"\n\nIteration"<<"\tE1"<<"\tE2"<<"\tE3"<<"\tG12"<<"\tnu12"<<"\tnu13"<<"\tnu23"<<endl; 
 for(i=0;i<count+1;i++) 
 { 
 
  EiFile <<i;   
  EiFile <<"\t"<< Ei[i][0]; 
  EiFile <<"\t"<< Ei[i][1]; 
  EiFile <<"\t"<< Ei[i][2]; 
  EiFile <<"\t"<< Ei[i][3]; 
  EiFile <<"\t"<< Ei[i][4]; 
  EiFile <<"\t"<< Ei[i][5]; 
  EiFile <<"\t"<< Ei[i][6]<<endl; 
 } 
 EiFile.close(); 
 
} 
 
 
 
//--------------------------------------------------------------------------------------------------- 
/*Calc_Increment calculates the error value PHI and SSE as well as the incremental step value for Cij  
*/ 
int Calc_Increment(double E[][10], int P[], int matnum, int mat[], double radii[], double theta[], double 
Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SumSquareErr, double 
*del) 
{ 
 int indx[NAP],i,crash=0; 
 double J[ND][NAP], JtJ[NAP][NAP]; 
  
 
 *SumSquareErr = 0.0; 
 
 for (i=0;i<NAP;i++) 
 { 
  for(int jj=0; jj<NAP;jj++) 
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   JtJ[i][jj] = 0.0; 
 } 
 for(i=0;i<ND;i++) 
  PHI[i] = 0.0; 
 
 
 PhiSub(E, matnum, mat, radii,theta,Loads, Exp_Strain, position, PHI); 
  
 for(i=0;i<ND;i++) 
  *SumSquareErr += pow(PHI[i],2); //Calculate the Sum of Square Errors  
  
 Jacobian(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, position, J); 
 
 //Calculate ([J]t[J])^(-1)[J]t{PHI} 
 
 for(i=0;i<NAP;i++) // [J]t[J] 
 { 
  for(int j=0;j<NAP;j++) 
  { 
   for(int ii=0;ii<ND;ii++) 
    JtJ[i][j] += J[ii][i]*J[ii][j]; 
  } 
   
 } 
//Levenberg-Marquardt (JtJ+delta*D) 
 for(i=0;i<NAP;i++) 
  JtJ[i][i] *=(1.0 + *del); 
 
 for(i=0;i<NAP;i++) //[J]t{PHI} 
 { 
  B[i] = 0.0; 
  for (int j=0;j<ND;j++) 
   B[i] -=J[j][i]*PHI[j];   
 } 
 //SysScale(&(JtJ[0][0]),B,NAP);    
 crash = LUDecomposition(&(JtJ[0][0]),NAP,indx,i); 
 if(crash!=0) 
 { 
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  cout <<"\nSingular Matrix"<<endl; 
  *SumSquareErr = 1.0; 
  return 1; 
 } 
 
 LUBackSub(&(JtJ[0][0]),NAP,indx,B); 
 return 0; 
} 
 
 
//---------------------------------------------------------------------------------------------------- 
//Function to minimize error and apply convergence criteria 
int Minimize(double E[][10], int P[], int matnum, int mat[], double Ei[][7], double radii[], double 
theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *sse, 
int *counter, ofstream SSEFile, double *del) 
{ 
 int crash_big, crash_small, crash_del,i,j,flag,count=0; 
 double ENew[5][10], ENew2[5][10],SSEnew, SSEold, del_orig, deltabig, deltasmall,minimum; 
 double SSE_del=0.0, SSE_big=0.0,SSE_small=0.0, B_big[7], B_small[7], ratio[7],max=0.0,SSE_ratio; 
 double ENew_big[5][10],ENew_small[5][10],SSE_del_old=0.0, SSE_big_old=0.0,SSE_small_old=0.0; 
 SSEnew = 1000000; 
 SSEold = 1000000; 
 flag=0; 
 minimum=0.0001; 
 del_orig = *del; 
 
 cout<<"\nIteration\t"<<"SSE"<<"\tdelta"; 
 
//***********Define the new E values************ 
 for(i=0;i<matnum;i++) 
 { 
  for(j=0;j<10;j++) 
  { 
   ENew[i][j]=E[i][j]; 
   ENew2[i][j]=E[i][j]; 
   ENew_small[i][j]=E[i][j]; 
   ENew_big[i][j]=E[i][j]; 
  } 
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 } 
 for(i=0;i<7;i++) 
  Ei[0][i]=E[0][i]; 
//*********Check solution near convergence******** 
/* if(*del==0) 
 { 
  crash_del = Calc_Increment(E, C, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B, &SSE_del, del); 
  if (crash_del!=0) 
  { 
   cout<<"Singular Matrix at solution"; 
   return 1; 
  } 
  SSEold=SSE_del; 
  for (i=0;i<7;i++) 
  { 
   CNew[0][i]+=B[i]; 
  } 
 
  crash_del = Calc_Increment(E, CNew, matnum, mat, radii, theta, Loads, Exp_Strain, position, 
PHI, B, &SSE_del, del); 
 } 
*/ 
 for (int iteration=1;iteration <MaxIteration+1;iteration++) 
 { 
  *counter=iteration; 
//  count+=1; 
//  if(count==10)//periodically perturb del to make sure it is optimizing 
//  { 
//   *del/=10000; 
//   count=0; 
//  } 
//***********Calculate error function and correction to values************* 
  
  deltabig=*del*10; 
  deltasmall=*del/10; 
  del_orig = *del; 
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//Most efficient step size delta*10, 1, 0.1 
//************Calculate three different B values for the different delta values************ 
 
  crash_del = Calc_Increment(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B, &SSE_del, del); 
  crash_big = Calc_Increment(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B_big, &SSE_big, &deltabig); 
  crash_small = Calc_Increment(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, position, PHI, 
B_small, &SSE_small, &deltasmall); 
  
  SSEold=SSE_del;  //all SSE values are the same here - same C values input, only the B 
values change 
 
  if(SSEold<=Acceptable) 
  { 
   *sse = SSEold; 
   SSEFile << endl<<iteration<<"\t"<<SSEold<<"\t"<<*del; 
   cout<<endl<<SSEold; 
   return 3; 
  } 
 
  if ((crash_del != 0)&&(crash_big !=0)&&(crash_small !=0)) 
  { 
   *sse = 1.0; 
   return 0; 
  } 
   
  for(i=0;i<NAP;i++) 
  { 
   ENew[0][P[i]]=E[0][P[i]]+B[i]; 
   ratio[i]=B[i]; 
   ENew_big[0][P[i]]=E[0][P[i]]+B_big[i]; 
   ENew_small[0][P[i]]=E[0][P[i]]+B_small[i]; 
  } 
   
  crash_del = Calc_Increment(ENew, P, matnum, mat, radii, theta, Loads, Exp_Strain, position, 
PHI, B, &SSE_del, del); 
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  crash_big = Calc_Increment(ENew_big, P, matnum, mat, radii, theta, Loads, Exp_Strain, position, 
PHI, B, &SSE_big, &deltabig); 
  crash_small = Calc_Increment(ENew_small, P, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B, &SSE_small, &deltasmall); 
 
   
  if ((crash_del != 0)&&(crash_big !=0)&&(crash_small !=0)) 
  { 
   *sse = 1.0; 
   return 0; 
  } 
 
  SSEnew= SSE_del; 
 
  if((SSE_big<SSE_del)&&(SSE_big<SSE_small)) 
  { 
   *del*=10; 
   SSEnew= SSE_big; 
   for(i=0;i<NAP;i++) 
   { 
    ENew[0][P[i]]=ENew_big[0][P[i]]; 
    ratio[i]=B_big[i]; 
   } 
 
  } 
  if((SSE_small<SSE_del)&&(SSE_small<SSE_big)) 
  { 
   *del/=10; 
   SSEnew= SSE_small; 
   for(i=0;i<NAP;i++) 
   { 
    ENew[0][P[i]]=ENew_small[0][P[i]]; 
    ratio[i]=B_small[i]; 
   } 
  } 
//If value is below the threshold level 
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  if(SSEnew<=Acceptable)//if error is below an acceptable value - quit 
   { 
    for(i=0;i<7;i++) 
    { 
     E[0][i] = ENew[0][i]; 
     Ei[iteration][i] = ENew[0][i]; 
    } 
    *sse = SSEnew; 
    SSEFile <<endl <<iteration<<"\t"<<SSEnew<<"\t"<<*del; 
    cout<<endl<<SSEnew; 
    return 3; 
   } 
//**********if the revision reduces SSE - take step*********** 
  if(SSEnew<=SSEold) 
  { 
   max=0.0; 
   for(i=0;i<7;i++) 
    Ei[iteration][i] = ENew[0][i]; 
   for(i=0;i<NAP;i++) 
   { 
    E[0][P[i]] = ENew[0][P[i]]; 
    ratio[i]/=ENew[0][P[i]];   //Checking the size of the steps 
    if(max<ratio[i])    //take the largest  
     max=ratio[i]; 
   } 
   SSE_ratio = SSEnew/SSEold; 
   SSEold = SSEnew; 
   *sse = SSEnew; 
    
 
   if((max<=minimum))//||((1-SSE_ratio)<=minimum)) 
   { 
    flag+=1; 
   } 
   else 
   { 
    flag=0; 
   } 
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   if(flag>5 ) 
   { 
    SSEFile <<endl <<iteration<<"\t"<<SSEnew<<"\t"<<*del; 
    return 4; 
   } 
  } 
//***********if not - Change Delta to see if it helps - repeat until it is or quit*********** 
  else 
  { 
   while (SSEnew>SSEold) 
   { 
    *del*=10; 
    cout<<"\nChanging Delta Value - del = "<<*del; 
    
 
    deltabig=*del*10; 
    deltasmall=*del/10; 
    del_orig = *del; 
  
    crash_del = Calc_Increment(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B, &SSE_del, del); 
    crash_big = Calc_Increment(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B_big, &SSE_big, &deltabig); 
    crash_small = Calc_Increment(E, P, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B_small, &SSE_small, &deltasmall); 
     
    if ((crash_del != 0)||(crash_big !=0)||(crash_small !=0)) 
    { 
     *sse = 1.0; 
     return 0; 
    } 
    
   
    for(i=0;i<NAP;i++) 
    { 
     ENew[0][P[i]]=E[0][P[i]]+B[i]; 
     ENew_big[0][P[i]]=E[0][P[i]]+B_big[i]; 
     ENew_small[0][P[i]]=E[0][P[i]]+B_small[i]; 
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    } 
   
   
    crash_del = Calc_Increment(ENew, P, matnum, mat, radii, theta, Loads, Exp_Strain, 
position, PHI, B, &SSE_del, del); 
    crash_big = Calc_Increment(ENew_big, P, matnum, mat, radii, theta, Loads, 
Exp_Strain, position, PHI, B, &SSE_big, &deltabig); 
    crash_small = Calc_Increment(ENew_small, P, matnum, mat, radii, theta, Loads, 
Exp_Strain, position, PHI, B, &SSE_small, &deltasmall); 
 
   
    if ((crash_del != 0)||(crash_big !=0)||(crash_small !=0)) 
    { 
    *sse = 1.0; 
    return 0; 
    } 
   
    SSEnew= SSE_del; 
  
    if((SSE_big<SSE_del)&&(SSE_big<SSE_small)) 
    { 
     SSEnew= SSE_big; 
     for(i=0;i<NAP;i++) 
     ENew[0][P[i]]=ENew_big[0][P[i]]; 
    } 
    if((SSE_small<SSE_del)&&(SSE_small<SSE_big)) 
    { 
     SSEnew= SSE_small; 
     for(i=0;i<NAP;i++) 
      ENew[0][P[i]]=ENew_small[0][P[i]]; 
    } 
 
//***********Check new values now that delta is increased 
 
 
    if(SSEnew<SSEold) //if SSE is reduced after a interval halving - make changes 
    { 
     for(i=0;i<7;i++) 
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     { 
      E[0][i] = ENew[0][i]; 
      Ei[iteration][i] = E[0][i]; 
     } 
     SSEold = SSEnew; 
     *sse = SSEnew; 
 
    } 
    if (*del>100000000) //after several interval halving steps 
    { 
     *sse = SSEold; 
     SSEFile <<endl <<iteration<<"\t"<<SSEold<<"\t"<<*del; 
 
     cout<<endl<<SSEold; 
     for(i=0;i<7;i++) 
      Ei[iteration][i] = E[0][i]; 
     return 1; 
    } 
    
   } 
   cout<<endl<<iteration<<"\t"<<*sse<<"\t"<<*del; 
   for(i=0;i<7;i++) 
   { 
    E[0][i] = ENew[0][i]; 
    Ei[iteration][i] = E[0][i]; 
   } 
  } 
  SSEFile <<endl <<iteration<<"\t"<<*sse<<"\t"<<*del; 
  cout<<endl<<iteration<<"\t"<<*sse<<"\t"<<*del; 
 } 
 *sse = SSEnew; 
 SSEFile.close(); 
 return 2; 
} 
 
/*************************************************************************************/ 
//This function converts the Cij Values back to E1, E2, E3, G12, nu12, nu13, nu23 
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void C_to_E(double *c, double *Evalues) 
{ 
 
 double S[4][4], col[4], CijMatrix[4][4]; 
 int i, j, indx[4], d=1; 
 
 //Need to build the Cij matrix 
 for(i=0;i<4;i++) 
 { 
  col[i]=0.0; 
  for(j=0;j<4;j++) 
  { 
   CijMatrix[i][j]=0.0; 
   S[i][j] = 0.0; 
  } 
 } 
 
 CijMatrix[0][0] = c[0]; //C11 
 CijMatrix[0][1] = c[1]; //C12 
 CijMatrix[1][0] = c[1]; //C21 
 CijMatrix[0][2] = c[2]; //C13 
 CijMatrix[2][0] = c[2]; //C31 
 CijMatrix[1][1] = c[3]; //C22 
 CijMatrix[1][2] = c[4]; //C23 
 CijMatrix[2][1] = c[4]; //C32 
 CijMatrix[2][2] = c[5]; //C33 
 CijMatrix[3][3] = c[6]; //C66 
  
 
//Invert the Cij Matrix to get the Sij Matrix 
      
 LUDecomposition(&CijMatrix[0][0],4,indx,d); 
 for(j=0;j<4;j++) 
 { 
  for(i=0;i<4;i++) 
   col[i] = 0.0; 
  col[j] = 1.0; 
  LUBackSub(&(CijMatrix[0][0]),4,indx,&col[0]); 
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  for(i=0;i<4;i++) 
   S[i][j]=col[i]; 
 } 
 
//Calculate E values from the Sij Values 
 
 Evalues[0] = 1.0/S[0][0]; 
 Evalues[1] = 1.0/S[1][1]; 
 Evalues[2] = 1.0/S[2][2]; 
 Evalues[3] = 1.0/S[3][3]; 
 Evalues[4] = -S[0][1]*Evalues[0]; 
 Evalues[5] = -S[0][2]*Evalues[0]; 
 Evalues[6] = -S[1][2]*Evalues[1]; 
} 

 
 

10.2 Inversion.h 
//Inversion.h 
 
// Header file for the Inverse Solution 
// Modify the needed information for each different material run 
#include <math.h> 
#include <fstream.h> 
#define K 20    //Number of plies in the composite lay-up 
#define KK 2*K+2  //Number of equations for Elastic Solution 
#define dT 0   //Temperature change for thermal strains and stresses 
#define Pi acos(-1)  //Define Pi 
#define numloads 100  //Number of load conditions applied (1 Fx + 1 Tx + 1 Pi = 3 !!!REQUIRED!!!) 
#define NAP 7   //Number of active parameters (number of parameters being optimized - 7 Cij 
values) 
#define ND 3*numloads //Number of data points (number of strain points given - 3 strains per load 
applied) 
#define Acceptable 1e-030 //Convergence Criteria - SSE value that is sufficiently small 
#define MaxIteration 1000  //Number of iterations before quitting 
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int Calc_Increment(double E[][10], int P[], int matnum, int mat[], double radii[], double theta[], double 
Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SumSquareErr, double 
*del); 
int Minimize(double E[][10], int P[], int matnum, int mat[], double Cij[][7], double radii[], double 
theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SSE, 
int *count, ofstream SSEFile, double *del); 
 
 

10.3 Elastic Solution.cpp 

 
//Levenberg-Marquardt Ei -- Elastic_Solution.cpp 
#include "Elastic_Solution.h" 
#include <iostream.h> 
#include <fstream.h> 
 
void Elastic_Solution(double E[][10], int matnum, int mat[], double r[], double th[], double *load, double 
Calc_Strain[], char strainposition) 
{ 
 int i=0, j, k, indx[KK]; 
 long theErr=0; 
 double sc[K][4][5], bc[K][3], L[K], cbm[K][4][4], et[K][4],  (*pC)[7]; 
 double A[KK][KK], B[KK], Cmatrix[5][7]; 
  
 for(j=0;j<matnum;j++) 
  for(k=0;k<7;k++) 
   Cmatrix[j][k]=0.0; 
 
 pC=Cmatrix; 
 
 CMatrix(E, pC, matnum); 
 
 Cbar(pC, th, E, matnum, mat, cbm, et);  //Transformations to create the cbar matrix 
 
 stress(cbm, et, L, bc, sc);    //Relations between strain, displacement and stress 
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 mat_stack(cbm, sc, L, bc, r, load, A, B); //Creates matrix to solve for constants Eo,Go, A1's and 
A2's 
    
 SysScale(&(A[0][0]),B,KK);    //Scaling to increase numerical accuracy 
  
 for (int jj=0;jj<KK;jj++)   
  indx[jj] = 0; 
 
 theErr=LUDecomposition(&(A[0][0]),KK,indx,i); //performs PA=LU for LUBackSub 
 if(theErr!=0) 
 { 
  cout<<"\nSingular Matrix!!!!\n"; 
  //put in output file for A matrix 
 } 
 
 LUBackSub(&(A[0][0]),KK,indx,B);  //Solves system PAx=PB (returns x in B) 
  
 
 output(B, r, L, bc, Calc_Strain, strainposition);//Returns calculated strains 
 
} 
 
//************************************************************ 
//***********Internal Subroutines***************************** 
 
// Calcualtes the C Matrix Values from the input data 
//--------------------------------------------------------------------------------- 
void CMatrix(double E[][10], double (*C)[7], int matnum) //c matrix subroutine 
{ 
 double v; 
  
 for(int i=0;i<matnum;i++) 
 { 
  v = (1 - E[i][4] *(E[i][4] * E[i][1] / E[i][0] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][0]) - 
E[i][5] * E[i][5] * E[i][2] / E[i][0] - E[i][6] * E[i][6] * E[i][2] / E[i][1]); 
 
  C[i][0] = (1 - E[i][6] * E[i][6] * E[i][2] / E[i][1]) * E[i][0] / v;        // c11 
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  C[i][1] = (E[i][4] + E[i][5] * E[i][6] * E[i][2] / E[i][1]) * E[i][1] / v;     // c12 
  C[i][2] = (E[i][5] + E[i][4] * E[i][6]) * E[i][2] / v;                   // c13 
  C[i][3] = (1 - E[i][5] * E[i][5] * E[i][2] / E[i][0]) * E[i][1] / v;        // c22 
  C[i][4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][0]) * E[i][2] / v;     // c23 
  C[i][5] = (1 - E[i][4] * E[i][4] * E[i][1] / E[i][0]) * E[i][2] / v;        // c33 
  C[i][6] = E[i][3];                                              // c66 
 
  v=0.0; 
 } 
} 
 
 
void Cbar(double (*C)[7], double theta[], double E[][10], int matnum, int mat[], double cbm[][4][4], double 
et[][4]) 
{ 
 //c-bar matrix function 
 
 int i,j,k,p; 
 double m=0.0,n=0.0; 
 
 for(i=0;i<K;i++) 
  for(j=0;j<4;j++) 
   for(k=0;k<4;k++) 
    cbm[i][j][k]=0.0; 
 
 for(i=0;i<K;i++) 
 { 
  m = cos(theta[i]); 
  n = sin(theta[i]); 
 
  p = mat[i];  //allows for the different material layers 
 
  cbm[i][0][0] = C[p][0]*pow(m,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(n,4); 
  cbm[i][0][1] = pow(m*n,2)*(C[p][0] + C[p][3] - 4*C[p][6]) + C[p][1]*(pow(m,4) + pow(n,4)); 
  cbm[i][0][2] = C[p][2]*m*m + C[p][4]*n*n; 
  cbm[i][0][3] = m*n*(C[p][0]*m*m - C[p][3]*n*n - (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][1][1] = C[p][0]*pow(n,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(m,4); 
  cbm[i][1][2] = C[p][2]*n*n + C[p][4]*m*m; 
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  cbm[i][1][3] = m*n*(C[p][0]*n*n - C[p][3]*m*m + (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][2][2] = C[p][5]; 
  cbm[i][2][3] = m*n*(C[p][2] - C[p][4]); 
  cbm[i][3][3] = (C[p][0] + C[p][3] - 2*C[p][1])*pow(m*n,2) + C[p][6]*pow((m*m - n*n),2); 
 
  for(j = 1; j<4 ; j++) 
   for(k = 0; k<j ; k++) 
    cbm[i][j][k] = cbm[i][k][j];  //stacks symmetric terms 
 
  et[i][0] = (E[p][7]*m*m + E[p][8]*n*n)*dT;   //X       thermal strain 
  et[i][1] = (E[p][7]*n*n + E[p][8]*m*m)*dT;   //THETA   thermal strain 
  et[i][2] = E[p][9]*dT;                    //R       thermal strain 
  et[i][3] = 2*m*n*(E[p][7] - E[p][8])*dT;     //X-THETA thermal strain 
 } 
} 
 
void stress(double cbm[][4][4],double et[][4],double L[],double bc[][3],double sc[][4][5]) 
{ 
 //stress coefficients 
  
 short i,j; 
 double zz=0; 
 int a; 
 
 for(i=0 ; i<K ; i++) 
 { 
  a=0; 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
 // cout <<"\nL["<<i<<"]\t"<<L[i]; 
  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
   
 switch(a) 
  { 
  case 1:  //Isotropic and Transversely Isotropic Condition cbm[i][1][1] = cbm[i][2][2] 
   { 
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    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(2*cbm[i][2][2]);    
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(4*cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1/(2*cbm[i][2][2]);         
   //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
      
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
    } 
   } 
   break; 
  case 2:  //Causes the b[i][1] term to blowup in default equations 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(3*cbm[i][2][2]);  //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(16*cbm[i][2][2]); //Omega 
    bc[i][2] = 1/(3*cbm[i][2][2]);        
 //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
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    { 
      
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
 
    } 
   } 
   break; 
  default:  //The General Solution for the Composite Cylinder model 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2]) / (cbm[i][2][2] - cbm[i][1][1]);  
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2 * cbm[i][2][3]) / (4 * cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1 / (cbm[i][2][2] - cbm[i][1][1]);       
   //Psi 
 
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
     sc[i][j][0] = cbm[i][0][j] + bc[i][0]*(cbm[i][1][j] + cbm[i][2][j]); 
     sc[i][j][1] = cbm[i][j][3] + bc[i][1]*(cbm[i][1][j] + 2*cbm[i][2][j]); 
     sc[i][j][2] = cbm[i][1][j] + L[i] * cbm[i][2][j]; 
     sc[i][j][3] = cbm[i][1][j] - L[i] * cbm[i][2][j]; 
     sc[i][j][4] = bc[i][2]*(cbm[i][1][j] + cbm[i][2][j])- et[i][0]*cbm[i][0][j]; 
     sc[i][j][4] += -et[i][1]*cbm[i][1][j] - et[i][2]*cbm[i][2][j] - 
et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
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     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
 
    } 
 
   } 
 
  } 
 } 
} 
 
 
void mat_stack(double cbm[][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double A[][KK], double B[]) 
{ 
 //subroutine for stacking the components of the linear system Ax=B 
 
 short i, j, ic; 
 double ro,ri,r2, ro2, r3, ro3, r4, ro4, b1t2, b2t2; 
 int a; 
 
 for(i = 0; i<KK ; i++)                 //initialize [A],{B} 
 { 
  B[i] = 0.0; 
  for(j = 0; j<KK ; j++) 
  A[i][j] = 0.0; 
 } 
 
 //next two loops stack elements associated with the integrated B.C. 
 b1t2 = 0; 
 b2t2 = 0; 
 
 
 for(i = 0; i<K ;i++) 
 { 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
  a=0; 
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 //set up terms for switching for the degenerate cases 
  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
 
  //define radii terms for ease of programming and debugging 
  ri = r[i]; 
  ro = r[i+1]; 
  r2 = pow(r[i],2); 
  ro2 = pow(r[i+1],2); 
  ro3 = pow(r[i+1],3); 
  r3 = pow(r[i],3); 
  ro4 = pow(r[i+1],4); 
  r4 = pow(r[i],4); 
 
  switch(a) 
  { 
  case 1: 
   { 
    A[0][0] += 0.5*(ro2-r2)*(cbm[i][0][0]); 
    A[0][0] += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbm[i][0][1]; 
    A[0][0] += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbm[i][0][2]; 
 
    A[0][1] += (cbm[i][0][3]+bc[i][1]*(cbm[i][0][1]+2*cbm[i][0][2]))*(ro3-r3)/3.0; 
 
    A[1][0] += (cbm[i][0][3]*(ro3-r3))/3.0; 
    A[1][0] += (((1.0/3.0)-log(ri))*cbm[i][1][3]+((-2.0/3.0)-
log(ri))*cbm[i][2][3])*bc[i][0]*r3/3.0; 
    A[1][0] += ((log(ro)-
(1.0/3.0))*cbm[i][1][3]+((2.0/3.0)+log(ro))*cbm[i][2][3])*bc[i][0]*ro3/3.0; 
    A[1][1] += (cbm[i][3][3]+bc[i][1]*(cbm[i][1][3]+2*cbm[i][2][3]))*(ro4-r4)/4.0; 
  
     
    b1t2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*cbm[i][0][1]*bc[i][2]; 
    b1t2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*cbm[i][0][2]*bc[i][2]; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
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    b2t2 += ((3.0*log(ro)-
1.0)*cbm[i][1][3]+(3.0*log(ro)+2.0)*cbm[i][2][3])*ro3*bc[i][2]/9.0; 
    b2t2 -= ((3.0*log(ri)-
1.0)*cbm[i][1][3]+(3.0*log(ri)+2.0)*cbm[i][2][3])*r3*bc[i][2]/9.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  case 2: 
   { 
    A[0][0] += (cbm[i][0][0]+bc[i][0]*(cbm[i][0][1]+cbm[i][0][2]))*(ro2-r2)/2.0; 
    A[0][1] += (((4.0*log(ro)-7.0/3.0)*ro3-(4.0*log(ri)-
7.0/3.0)*r3)*cbm[i][0][1]*bc[i][1])/3.0; 
    A[0][1] += (((4.0*log(ro)-1.0/3.0)*ro3-(4.0*log(ri)-
1.0/3.0)*r3)*2*cbm[i][0][2]*bc[i][1])/3.0; 
    A[0][1] += (ro3-r3)*cbm[i][0][3]/3.0; 
 
    A[1][0] += (cbm[i][0][3]+bc[i][0]*(cbm[i][1][3]+cbm[i][2][3]))*(ro3-r3)/3.0; 
    A[1][1] += (ro4-r4)*cbm[i][3][3]/4.0+((log(ro)-
0.5)*cbm[i][1][3]+2*log(ro)*cbm[i][2][3])*bc[i][1]*ro4; 
    A[1][1] -= ((0.5-log(ri))*cbm[i][1][3]-2*log(ri)*cbm[i][2][3])*bc[i][1]*r4; 
 
     
    b1t2 += (cbm[i][0][1]+cbm[i][0][2])*(ro2-r2)*(bc[i][2])/2.0; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
 
    b2t2 += (cbm[i][1][3]+cbm[i][2][3])*(ro3-r3)*bc[i][2]/3.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  default: 
   {//A[0][i] = Fx Conditions  A[1][i] = Tx Conditions 
    A[0][0] += (sc[i][0][0]*( ro2 - r2 )) / 2.0;     //e terms 
    A[1][0] += (sc[i][3][0]*( ro3 - r3 )) / 3.0;     
    A[0][1] += (sc[i][0][1]*( ro3 - r3 )) / 3.0;     //g terms 
    A[1][1] += (sc[i][3][1]*( ro4 - r4 )) / 4.0; 
 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0;      //thermal 
terms 
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    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  } 
 } 
 
 ic = 0; 
 for(i = 2; i<(KK-1) ; i += 2) 
 { 
  ic++; 
   
   
 //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic-1]==1.0) 
   a = 1; 
  if(L[ic-1]==2.0) 
   a = 2; 
 
  //define radii terms for ease of programming and debugging 
 
  ri = r[ic-1]; 
  ro = r[ic]; 
  r2 = pow(r[ic-1],2); 
  ro2 = pow(r[ic],2); 
  ro3 = pow(r[ic],3); 
  r3 = pow(r[ic-1],3); 
  ro4 = pow(r[ic],4); 
  r4 = pow(r[ic-1],4); 
   
  switch(a) 
  { 
  case 1: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+cbm[ic-1][0][2])*(r2-ro2)/2.0; 
    A[0][i+1] = (log(ro)-log(ri))*(cbm[ic-1][0][1]-cbm[ic-1][0][2]);//check 2*cbm[ic-
1][0][2] 
    A[1][i] = (ro3-r3)*(cbm[ic-1][1][3]+cbm[ic-1][2][3])/3.0; 
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    A[1][i+1] = (ro-ri)*(cbm[ic-1][1][3]-cbm[ic-1][2][3]); 
 
   } 
   break; 
  case 2: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+2*cbm[ic-1][0][2])*(ro3-r3)/3.0; 
    A[0][i+1] = (2.0*cbm[i][0][2]-cbm[i][0][1])*((1.0/ro) - (1.0/ri)); 
    A[1][i] = (cbm[ic-1][1][3]+2*cbm[ic-1][2][3])*(ro4-r4)/4; 
    A[1][i+1] = (cbm[ic-1][1][3]-2*cbm[ic-1][2][3])*(log(ro)-log(ri)); 
   } 
   break; 
  default: 
   { 
    A[0][i] = sc[ic-1][0][2]*(pow(ro, 1+L[ic-1]) - pow(ri, 1+L[ic-1]) ) / (1+L[ic-1]); 
    A[0][i+1] = sc[ic-1][0][3]*(pow(ro, 1-L[ic-1]) - pow(ri, 1-L[ic-1]) ) / (1-L[ic-
1]); 
    A[1][i] = sc[ic-1][3][2]*(pow(ro, 2+L[ic-1]) - pow(ri, 2+L[ic-1]) ) / (2+L[ic-1]); 
    A[1][i+1] = sc[ic-1][3][3]*(pow(ro, 2-L[ic-1]) - pow(ri, 2-L[ic-1]) ) / (2-L[ic-
1]); 
   } 
   break; 
  } 
 } 
 //Applied Loads 
 B[0] = (load[2] / (2 * Pi)) - b1t2;        
 B[1] = (load[3] / (2 * Pi)) - b2t2; 
 
 //next loop stacks the elements associated with the interface conditions w[i](r) = w[i+1](r) and sigma-r 
 
 ic = 0; 
 for(i = 2; i<(KK-3) ; i += 2) 
 { 
 
  //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic]==1.0) 
   a = 1; 
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  if(L[ic]==2.0) 
   a=2; 
 
  ic++;  
 
  switch(a) 
  { 
 
  case 1: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]*log(r[ic])+cbm[ic-
1][2][2]*(log(r[ic])+1))); 
    A[i][0] -
=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))); 
    A[i][1] = ((cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*bc[ic-1][1]+cbm[ic-1][2][3])*r[ic]; 
    A[i][1] -=((cbm[ic][1][2]+2*cbm[ic][2][2])*bc[ic][1]+cbm[ic][2][3])*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+cbm[ic-1][2][2]) ; 
    A[i][i+1] = (cbm[ic-1][1][2]-cbm[ic-1][2][2])*pow(r[ic],-2);//check2*cbm[ic-
1][2][2] 
    A[i][i+2] = -(cbm[ic][1][2]+cbm[ic][2][2]); 
    A[i][i+3] = -(cbm[ic][1][2]-cbm[ic][2][2])*pow(r[ic],-2);//check2*cbm[ic-1][2][2] 
     
    //The w(r) conditions 
    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))*bc[ic][2]; 
    B[i] -= (cbm[ic-1][1][2]*log(r[ic])+cbm[ic-1][2][2]*(log(r[ic])+1))*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
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    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]*log(r[ic]); 
   } 
   break; 
 
  case 2: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]+cbm[ic-1][2][2])); 
    A[i][0] -=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]+cbm[ic][2][2])); 
    A[i][1] = (cbm[ic-1][2][3]+bc[ic-1][1]*(cbm[ic-1][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic-1][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
    A[i][1] -=(cbm[ic][2][3]+bc[ic][1]*(cbm[ic][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*r[ic] ; 
    A[i][i+1] = (cbm[ic-1][1][2]-2*cbm[ic-1][2][2])*pow(r[ic],-3); 
    A[i][i+2] = -(cbm[ic][1][2]+2*cbm[ic][2][2])*r[ic]; 
    A[i][i+3] = -(cbm[ic][1][2]-2*cbm[ic][2][2])*pow(r[ic],-3); 
     
    //The w(r) conditions 
    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2] + cbm[ic][2][2])*bc[ic][2]-(cbm[ic-1][1][2] + cbm[ic-
1][2][2])*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
   } 
   break; 
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  default: 
   { 
    A[i][0] = sc[ic-1][2][0] - sc[ic][2][0];    //eo terms 
    A[i][1] = ( sc[ic-1][2][1] - sc[ic][2][1] ) * r[ic]; //go terms 
 
    A[i + 1][0] = ( bc[ic-1][0] - bc[ic][0] ) * r[ic];   
    A[i + 1][1] = ( bc[ic-1][1] - bc[ic][1] ) * r[ic]*r[ic]; 
         
    A[i][i] = sc[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) ); 
    A[i][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) ); 
    A[i][i+2] = -sc[ic][2][2] * pow(r[ic], (L[ic] - 1) ); 
    A[i][i+3] = -sc[ic][2][3] * pow(r[ic], (-L[ic] - 1) ); 
 
    A[i+1][i] = pow(r[ic], L[ic-1] ); 
    A[i+1][i+1] = pow(r[ic], -L[ic-1] ); 
    A[i+1][i+2] = -pow(r[ic], L[ic] ); 
    A[i+1][i+3] = -pow(r[ic], -L[ic] ); 
 
    B[i] = sc[ic][2][4] - sc[ic-1][2][4]; 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
   } 
   break; 
  } 
 
 }  
        
 //next lines stack the matrix elements associated with the pressure B.C. 
 
 //The inner surface pressure conditions 
  a=0; 
  //set up terms for switching for the degenerate cases 
  if(L[0]==1.0) 
   a = 1; 
  if(L[0]==2.0) 
   a=2; 
  switch(a) 
  { 
  case 1: 
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   { 
    A[KK-2][0] = 
(cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))); 
    A[KK-2][1] = ((cbm[0][1][2]+2*cbm[0][2][2])*bc[0][1]+cbm[0][2][3])*r[0]; 
    A[KK-2][2] = (cbm[0][1][2]+cbm[0][2][2]); 
    A[KK-2][3] = (cbm[0][1][2]-cbm[0][2][2])*pow(r[0],-2); 
 
    B[KK-2] = -load[1] - (cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))*bc[0][2] - 
sc[0][2][4]; 
   } 
   break; 
  case 2: 
   { 
    A[KK-2][0] = (cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]+cbm[0][2][2])); 
    A[KK-2][1] = (cbm[0][1][2]*(4*log(r[0])-
1)+2*cbm[0][2][2]*(4*log(r[0])+1))*bc[0][1]*r[0]; 
    A[KK-2][2] = (cbm[0][1][2]+2*cbm[0][2][2])*r[0]; 
    A[KK-2][3] = (cbm[0][1][2]-2*cbm[0][2][2])*pow(r[0],-3); 
 
    B[KK-2] = -load[1] - (cbm[0][1][2]+cbm[0][2][2])*bc[0][2] - sc[0][2][4]; 
   } 
   break; 
  default: 
   { 
    A[KK-2][0] = sc[0][2][0]; 
    A[KK-2][1] = sc[0][2][1] * r[0]; 
    A[KK-2][2] = sc[0][2][2] * pow(r[0], (L[0] - 1) ); 
    A[KK-2][3] = sc[0][2][3] * pow(r[0], (-L[0] - 1) ); 
 
    B[KK-2] = -load[1] - sc[0][2][4]; 
   } 
   break; 
  } 
 //The outer surface pressure conditions 
   a=0; 
  //set up terms for switching for the degenerate cases 
  if(L[K-1]==1.0) 
   a = 1; 
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  if(L[K-1]==2.0) 
   a=2; 
  switch(a) 
  { 
  case 1: 
   { 
    A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]*log(r[K])+cbm[K-
1][2][2]*(log(r[K])+1))); 
    A[KK-2][1] = ((cbm[K-1][1][2]+2*cbm[K-1][2][2])*bc[K-1][1]+cbm[K-1][2][3])*r[K]; 
    A[KK-2][2] = (cbm[K-1][1][2]+cbm[K-1][2][2]); 
    A[KK-2][3] = (cbm[K-1][1][2]-cbm[K-1][2][2])*pow(r[K],-2); 
 
    B[KK-2] = -load[0] - (cbm[K-1][1][2]*log(r[K])+cbm[K-1][2][2]*(log(r[K])+1))*bc[K-
1][2]- sc[K-1][2][4]; 
   } 
   break; 
  case 2: 
   { 
    A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]+cbm[K-1][2][2])); 
    A[KK-2][1] = (cbm[K-1][1][2]*(4*log(r[K])-1)+2*cbm[K-
1][2][2]*(4*log(r[K])+1))*bc[K-1][1]*r[K]; 
    A[KK-2][2] = (cbm[K-1][1][2]+2*cbm[K-1][2][2])*r[K]; 
    A[KK-2][3] = (cbm[K-1][1][2]-2*cbm[K-1][2][2])*pow(r[K],-3); 
 
    B[KK-2] = -load[0] - (cbm[K-1][1][2]+cbm[K-1][2][2])*bc[K-1][2]- sc[K-1][2][4]; 
   } 
   break; 
  default: 
   { 
    A[KK-1][0] = sc[K-1][2][0]; 
    A[KK-1][1] = sc[K-1][2][1] * r[K]; 
    A[KK-1][KK-2] = sc[K-1][2][2] * pow(r[K], ( L[K-1] - 1) ); 
    A[KK-1][KK-1] = sc[K-1][2][3] * pow(r[K], ( -L[K-1] - 1) ); 
 
    B[KK-1] = -load[0] - sc[K-1][2][4]; 
   } 
   break; 
  } 
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} 
void output(double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition) 
{ 
 double ex=0.0, eo=0.0, gxo=0.0, w=0.0, Rc; 
 int a, i; 
 
 
 for (int ab=0;ab<3;ab++) 
 { 
  Calc_Strain[ab]=0.0; 
 } 
 
 //Inner or Outer Surface Strains? 
 if(strainposition =='i'||strainposition=='I') 
 { 
  i=0; 
  Rc=r[0]; 
 } 
 else //Outer Surface is the Default condition 
 { 
  Rc=r[K]; 
  i=K-1; 
 } 
  
 a=0; 
 if(L[i]==1.0) 
  a = 1; 
 if(L[i]==2.0) 
  a=2; 
 switch (a) 
 { 
  case 1:  //Isotropic or Transversely Isotropic 
   { 
//    w = bc[i][0]*Rc*log(Rc)*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*Rc + x[2*(i)+3]/Rc 
+ bc[i][2]*Rc*log(Rc); 
     ex = x[0];  // Ex: Epsilon x 
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    eo = bc[i][0]*log(Rc)*x[0] + bc[i][1]*x[1]*Rc + x[2*(i)+2] + x[2*(i)+3]/(Rc*Rc) + 
bc[i][2]*log(Rc); 
//    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
  case 2:  //bc[i][1] = 0 
   { 
//    w = bc[i][0]*Rc*x[0] + bc[i][1]*x[1]*pow(Rc,2)*(4*log(Rc)-1) + x[2*(i)+2]*pow(Rc, 
L[i]) + x[2*(i)+3]*pow(Rc, -L[i]) + bc[i][2]*Rc; 
    ex = x[0];  // Ex: Epsilon x 
    eo = bc[i][0]*x[0] + bc[i][1]*x[1]*Rc*(4*log(Rc)-1) + x[2*(i)+2]*pow(Rc, L[i]-1) + 
x[2*(i)+3]*pow(Rc, -L[i]-1) + bc[i][2]; 
//    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
  default: //General Case 
   { 
//    w = bc[i][0]*Rc*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*pow(Rc, L[i]) + 
x[2*(i)+3]*pow(Rc, -L[i]) + bc[i][2]*Rc; 
    ex = x[0];  // Ex: Epsilon x 
    eo = bc[i][0]*x[0] + bc[i][1]*x[1]*Rc + x[2*(i)+2]*pow(Rc, L[i]-1) + 
x[2*(i)+3]*pow(Rc, -L[i]-1) + bc[i][2]; 
//    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
 } 
   
             //Epsilon X 
  Calc_Strain[0] = ex; 
             //Epsilon Y 
  Calc_Strain[1] = eo; 
             //Epsilon XY 
  Calc_Strain[2] = gxo; 
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} 
 

10.4 Elastic_Solution.h 

 
//Elastic_Solution.h 
 
#include "Inversion.h" 
#include "matrix.h" 
#include <iostream.h> 
#include <fstream.h> 
/*******************************/ 
/*routines internal to CCM*/ 
/*******************************/ 
void Elastic_Solution(double E[][10], int matnum, int mat[], double r[], double theta[], double *load, 
double Calc_Strain[], char strainposition); 
void Cbar(double (*C)[7], double theta[], double E[][10], int matnum, int mat[], double cbm[][4][4], double 
et[][4]); 
void stress(double cbm[][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]); 
void mat_stack(double cbm[][4][4], double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double A[][KK], double B[]); 
void output(double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition); 
void CMatrix(double E[][10], double (*C)[7], int matval); //c matrix subroutine 

 

 

10.5 Data_Input.cpp 

 
//Data_Input.cpp 
 
#include "Data_Input.h" 
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ifstream inputfile, loadfile,expstrain;  //Data file containing input data (material properties, 
geometry, loads) 
ofstream tracking;    //Data files for data output and intermediate values 
 
int Input(double E[][10], int P[], int mat[], double radii[], double theta[], double Loads[][4], double 
Exp_Strain[][3], char position[]) 
{ 
 inputfile.open("Testinput.dat"); // Input.dat contains initial guess E's, and geometry 
 loadfile.open("TestLOADS.dat");  // loads.dat contains all loading conditions (must alter 
numloads value in Inversion.h) 
 expstrain.open("Teststrain.dat");// expstrain.dat contains all the measured strain values (ex, ey, 
gxy) for each load condition (numload # of sets)  
 tracking.open("tracking.dat"); // Opening Data files for output and tracking of values 
 
  
 double temp; 
 int i,j,matval, matnum; 
 
// First input value must be the number of material layers 
 
 inputfile>>matnum; 
 
// Read in the Active Parameters (start at 0 to 6) 
 for(i=0;i<NAP;i++) 
 { 
 
 inputfile>>P[i];  // Active Parameter list 
 
 } 
 
 for(matval=0;matval<matnum;matval++) 
 { 
  for(i=0; i<10; i++)    
   inputfile >> E[matval][i]; 
 } 
 
//Reads in all surface radii 
 for(j=0; j<K+1; j++)   



 229

  inputfile >> radii[j]; 
  
 
//Reads in each ply angle (degrees) and converts to radians 
 for(i=0; i<K; i++)     
 { 
  inputfile >> temp; 
  theta[i] = temp * (Pi/180.0); 
  inputfile >> mat[i]; 
 } 
 
//Reads in all load and experimental strain values 
 for (i=0; i<numloads; i++)    // !!!!LOAD CONDITIONS!!!!   !!!STRAIN 
CONDITIONS!!! 
 {       
  expstrain>>position[i];    // position[i] = i or o for inner or outer surface 
strains 
  for(j=0; j<4; j++)     // Loads[0] = External Pressure 
 exp_strain[][0] = e-x 
   loadfile >> Loads[i][j];  // Loads[1] = Internal Pressure 
 exp_strain[][1] = e-y 
  for(int k=0;k<3;k++)    // Loads[2] = Axial Load  
 exp_strain[][2] = gamma-xy 
   expstrain>> Exp_Strain[i][k]; // Loads[3] = Torsional Load       
 }          
 
  
//Writes all data and stiffness values to the tracking file 
 Output_data(E,P,matnum, mat,radii,theta,Loads, Exp_Strain, position);  
 inputfile.close(); 
 loadfile.close();        //Close the data files 
 expstrain.close();  
 tracking.close(); 
 
 cout << endl; 
 return matnum; 
} 
//------------------------------------------------------------------------------------------- 
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void Output_data(double E[][10], int P[], int matnum, int mat[], double radii[], double theta[], double 
Loads[][4], double Exp_Strain[][3], char position[]) 
{ 
  
 tracking << "Tube properties entered:" << endl; 
 
//Prints Elastic Moduli (E1,E2,E3,G12,nu12,nu13,nu23,a1,a2,a3) 
 for(int i=0;i<matnum;i++) 
 { 
  tracking << "\nMaterial #"<<i+1; 
  tracking << "\nE1 =\t"<<E[i][0]; 
  tracking << "\nE2 =\t"<<E[i][1]; 
  tracking << "\nE3 =\t"<<E[i][2]; 
  tracking << "\nG12 =\t"<<E[i][3]; 
  tracking << "\nnu12 =\t"<<E[i][4]; 
  tracking << "\nnu13 =\t"<<E[i][5]; 
  tracking << "\nnu23 =\t"<<E[i][6]; 
  tracking << "\nalpha-1 =\t"<<E[i][7]; 
  tracking << "\nalpha-2 =\t"<<E[i][8]; 
  tracking << "\nalpha-3 =\t"<<E[i][9]<<endl<<endl; 
 } 
// Print the Active Value list 
 for(i=0;i<NAP;i++) 
 { 
  tracking << "\nActive Value #\t"<<i+1; 
  switch(P[i]) 
  { 
  case 0: tracking << "\tE1"; 
   break; 
  case 1: tracking << "\tE2"; 
   break; 
  case 2: tracking << "\tE3"; 
   break; 
  case 3: tracking << "\tG12"; 
   break; 
  case 4: tracking << "\tnu12"; 
   break; 
  case 5: tracking << "\tnu13"; 
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   break; 
  case 6: tracking << "\tnu23"; 
   break; 
  } 
 } 
 
 tracking <<"\n\nTube geometry entered:\n"; 
 
 for(i=0; i<K; i++) 
 { 
  tracking << "Ri and Ro of ply #" << i+1<< "\t"<<radii[i]<<"\t\t"<<radii[i+1]<<"\t\tAngle"<< 
"\t"<< theta[i]*(180/Pi)<<"\tMaterial #\t"<<mat[i]+1<<endl; 
 } 
 for(int ii=0;ii<numloads;ii++) 
 { 
// Printing out the Load conditions to the tracking file 
  tracking << "\nLoad Set #"<< ii+1<<endl; 
  tracking << "\nLoading Conditions and Measured Strains:" << endl; 
  tracking << "Axial Load = \t" << Loads[ii][2] << endl; 
  tracking << "Torque = \t" << Loads[ii][3] << endl; 
  tracking << "Internal Pressure = \t" << Loads[ii][1] << endl; 
  tracking << "External Pressure = \t" << Loads[ii][0] << endl; 
 
//Printing out the Measured Strain values for each applied load condition 
 
  tracking << "\nSurface = "; 
  if (position[ii]=='i'||position[ii]=='I') 
   tracking << "\tInner Surface Strains"; 
  else if (position[ii]=='o'||position[ii]=='O') 
   tracking << "\tOuter Surface Strains"; 
  else 
   tracking << "\tINVALID Response!"; 
  tracking << "\nAxial Strain (ex) =\t" << Exp_Strain[ii][0] << endl; 
  tracking << "Hoop Strain (ey) =\t" << Exp_Strain[ii][1] << endl; 
  tracking << "Shear Strain (gxy) =\t" << Exp_Strain[ii][2] << endl; 
 } 
 
} 
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10.6 Data_Input.h 

 
// Data Input.h 
 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "Inversion.h" 
#include <fstream.h> 
 
 
int Input(double E[][10], int P[], int mat[], double radii[], double theta[], double Loads[][4], double 
Exp_Strain[][3], char position[]); 
void Output_data(double E[][10], int P[], int matnum, int mat[], double radii[], double theta[], double 
Loads[][4], double Exp_Strain[][3], char position[]); 
 

 

10.7 Matrix.cpp 
 
#include "Matrix.h" 
#include <math.h> 
#include <stdlib.h> 
#include <iostream.h> 
//Matrix.cpp 
 
 
void SysScale(double *A,double *B,int n) 
 
The following subroutines have been omitted due to copyright considerations.  The 
appropriate subroutines can be found in Numerical Recipes (sections on LU Decomposition 
and Backsubstitution). 
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int LUDecomposition (double *A,int n,int *indx,int d) 
void LUBackSub (double *A,int n,int *indx,double *B) 
long Gauss(double *A,double *B,double *X,int n) 
 
 
 

10.8 Matrix.h 

 
//Matrix.h 
 
#include <math.h> 
#include "Inversion.h" 
 
 
void SysScale(double *A,double *B,int n); 
int LUDecomposition (double *A,int n,int *indx,int d); 
void LUBackSub (double *A,int n,int *indx,double *B); 
long Gauss(double *A,double *B,double *X,int n); 
 
 

10.9 Jacobian.cpp 

 

#include <fstream.h> 
#include "jacobian.h" 
#include "Elastic_Solution.h" 
 
//Jacobian.cpp 
 
void Jacobian(double E[][10], int P[], int matnum, int mat[], double r[],double th[],double 
load[][4],double Exp_Strain[][3], char position[], double jaco[][NAP]) 
{ 
 int i,j; 
 double h=0.00001; 
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 double Etemp[5][10]; 
 double PHIminus[ND], PHIplus[ND]; 
 
  
  
 for(i=0;i<matnum;i++) 
 { 
  for(j=0; j<10; j++) 
   Etemp[i][j] = E[i][j]; 
 } 
 
 for(i=0; i<NAP; i++) 
 { 
  Etemp[0][P[i]] = E[0][P[i]]*(1-h); 
  PhiSub(Etemp, matnum, mat, r, th, load, Exp_Strain, position, PHIminus);  
  
  Etemp[0][P[i]] = E[0][P[i]]*(1+h); 
 
  PhiSub(Etemp, matnum, mat, r, th, load, Exp_Strain, position, PHIplus); 
   
 
  Etemp[0][P[i]] = E[0][P[i]]; 
 
  for(j=0; j<ND; j++) 
   jaco[j][i] = (PHIplus[j] - PHIminus[j])/(2 * h * E[0][P[i]]); 
   } 
 
} 
 
void PhiSub(double E[][10], int matnum, int mat[], double r[],double th[],double load[][4],double 
Exp_Strain[][3], char position[], double PHI[])  
{ 
 double Calc_Strain[3]; 
  
 
 for(int i=0 ; i<numloads ; i++) 
 { 
  Elastic_Solution(E, matnum, mat, r, th, &(load[i][0]), Calc_Strain, position[i]); 
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  PHI[i*3] = Exp_Strain[i][0] - Calc_Strain[0];             // Ex 
  PHI[i*3+1] = Exp_Strain[i][1] - Calc_Strain[1];           // Ey 
  PHI[i*3+2] = Exp_Strain[i][2] - Calc_Strain[2];    // Gxy 
 } 
} 

 

10.10 Jacobian.h 

 
//Jacobian.h 
 
#include "Inversion.h" //for the parameters NAP,ND,etcÉ 
 
void Jacobian(double E[][10],int P[], int matnum, int mat[], double r[],double th[],double 
eload[][4],double Exp_Strain[][3], char position[], double jaco[][NAP]); 
void PhiSub(double E[][10], int matnum, int mat[], double r[],double th[],double eload[][4],double 
Exp_Strain[][3], char position[], double PHI[ND]); 

 

10.11 Input Files 

10.11.1 A typical load program 

Po Pi Fx Tx 

0 400 0 0 
0 0 9900 0 
0 0 0 3700 
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10.11.2 A typical strain file 

Surface ex   eq  gxq 
o -2.692E-05  0.000128074  1.26742E-05 
o 0.000460103  -0.000128363 -1.03551E-05 
o -1.76911E-06 -1.32018E-06 0.000419356 
  

 

10.11.3 A typical input file 

Data file    Description 
1     Number of different materials  
0     Active Parameters 
1 
2 
3 
4 
5 
6 
1.03633e+008   Guess Values for material properties (E1, E2, E3, etc – Not Cij)  
6.56901e+007  
1.35229e+009  
1.22377e+007  
0.0220688  
0.276952  
0.20983  
0     CTE’s 
0 
0 
0.991833333    Interfacial Radii 
0.997901042 
1.00396875 
1.010036458 
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1.016104167 
1.022171875 
1.028239583 
1.034307292 
1.040375 
1.046442708 
1.052510417 
1.058578125 
1.064645833 
1.070713542 
1.07678125  
1.082848958  
1.088916667  
1.094984375  
1.101052083  
1.107119792  
1.1131875  
1.119255208  
1.125322917  
1.131390625  
1.137458333  
0 0    Ply Orientation and Material Type 
90 0 
0 0 
90 0 
0 0 
90 0 
0 0 
90 0 
0 0 
90 0 
0 0 
90 0 
90 0 
0 0 
90 0 
0 0 
90 0 
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0 0 
90 0 
0 0 
90 0 
0 0 
90 0 
0 0 
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11 Appendix E.  Nelder-Mead Simplex Method 

 
Here is the source code for the Nelder Mead Simplex method for minimization of the error function for the composite tube model 
 
v Inversion.cpp 
v Inversion.h 
v Elastic_Solution.cpp 
v Elastic_Solution.h 
v Data_Input.cpp 
v Data_Input.h 
v Matrix.cpp 
v Matrix.h 
v Jacobian.cpp 
v Jacobian.h 

 
 

11.1 Inversion.cpp 

 
 
// Inversion Program -> Inversion.cpp 
 
#include <stdlib.h> 
#include <iostream.h> 
#include <iomanip.h> 
 
#include "Data_Input.h" 
#include "Elastic_Solution.h" 
#include "Inversion.h" 
#include "jacobian.h" 
#include <time.h> 
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void main() 
{ 
 int count, i,j,ndim=7,finished=0; 
 int matnum, mat[K]; 
 double E[5][10], C[5][7], Etemp[5][10],C_Strain[numloads][3],Calculated_Strain[3]; 
 double radii[K+1], theta[K], Loads[numloads][4], Exp_Strain[numloads][3]; 
 double SSEmin=1.0,  duration; 
 double P[8][7], tolerance, Y[8], (*pP)[7],(*pE)[10], (*pC)[7]; 
 char  position[numloads]; 
 ofstream  CijFile; 
 clock_t start, finish; 
 ifstream InputP; 
  
 InputP.open("PMatrix.dat"); 
 CijFile.open("Cij.dat"); 
  
 tolerance=1e-8; 
 start = clock();  //Starts the timer for time of calculation 
 
// STEP 1.  Read in all data 
 
 matnum = Input(E, C, mat, radii, theta, Loads, Exp_Strain, position); 
 //Reads in the values for Cij and E - in case of multiple layers - changes C[0][i] values 
 //the rest are constant throughout all calculations 
 
// Read in the 8 sets of start values 
 
 for(i=0;i<8;i++) 
 { 
  for(j=0;j<7;j++) 
   InputP>>P[i][j];  //The eight initial start values (Ei values) 
 } 
//Calculate the SSE values for each of the start values 
 for(i=0;i<matnum;i++) 
 { 
  for(j=0;j<10;j++) 
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   Etemp[i][j]=E[i][j]; 
 } 
 
 
//check input values to make sure it works 
 
 CijFile<<"\n\nVertex\t"<<"SSE\t"<<"C11\t"<<"C12\t"<<"C13\t"<<"C22\t"<<"C23\t"<<"C33\t"<<"C66"<<endl; 
 for (i=0;i<8;i++) 
 { 
  for(j=0;j<7;j++) 
   Etemp[0][j]=P[i][j]; 
  E_to_C(Etemp,C,matnum); 
  Y[i]=Calc_SSE(Etemp, C, matnum, mat, radii, theta, Loads, Exp_Strain, position); 
 
  cout <<Y[i]<<endl; 
  CijFile<<i<<"\t"<<Y[i]; 
  for(j=0;j<7;j++) 
   CijFile<<"\t"<<C[i][j]; 
  CijFile<<endl; 
  
 } 
 
 CijFile<<"Vertex\t"<<"SSE\t"<<"E1\t"<<"E2\t"<<"E3\t"<<"G12\t"<<"nu12\t"<<"nu13\t"<<"nu23"<<endl; 
 for (i=0;i<8;i++) 
 { 
 
 
  CijFile<<i<<"\t"<<Y[i]; 
  for(j=0;j<7;j++) 
   CijFile<<"\t"<<P[i][j]; 
  CijFile<<endl; 
 } 
 
//Run Nelder-Mead Simplex Minimization method 
 
    
 pP=P; 
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 finished=amoeba(pP, Y, ndim, tolerance, &count, E, C,matnum,mat,radii, theta, Loads, Exp_Strain, 
position); 
 
     
 if(finished!=0) 
 { 
 
 } 
//Output final values 
 
  cout<< "\nNumber of iterations = "<< count+1<< endl; 
  CijFile << "\nIterations = \t"<< count+1<< endl; 
  
 for(i=0;i<8;i++) 
 { 
  for(j=0;j<7;j++) 
   Etemp[0][j]=P[i][j]; 
  
  CijFile << "\nFinal Cij Values:"<< "\t\t\tFinal E Values:"<< endl;; 
 
  E_to_C(Etemp,C,matnum); 
 
  CijFile << "\nC11"<< "\t"<< C[i][0]<<"\t\t"<<"E1\t"<< P[i][0]; 
  CijFile << "\nC12"<< "\t"<< C[i][1]<<"\t\t"<<"E2\t"<< P[i][1]; 
  CijFile << "\nC13"<< "\t"<< C[i][2]<<"\t\t"<<"E3\t"<< P[i][2]; 
  CijFile << "\nC22"<< "\t"<< C[i][3]<<"\t\t"<<"G12\t"<< P[i][3]; 
  CijFile << "\nC23"<< "\t"<< C[i][4]<<"\t\t"<<"nu12\t"<< P[i][4]; 
  CijFile << "\nC33"<< "\t"<< C[i][5]<<"\t\t"<<"nu13\t"<< P[i][5]; 
  CijFile << "\nC66"<< "\t"<< C[i][6]<<"\t\t"<<"nu23\t"<< P[i][6];  
  cout<< "\nFinal SSE Value = " << Y[i] << endl; 
  CijFile<< "\nFinal SSE Value = " << Y[i] << endl; 
 } 
 
 
  
 CijFile<<"\n\nVertex\t"<<"SSE\t"<<"C11\t"<<"C12\t"<<"C13\t"<<"C22\t"<<"C23\t"<<"C33\t"<<"C66"<<endl; 
 for (i=0;i<8;i++) 
 { 



 243

  cout <<Y[i]<<endl; 
  CijFile<<i<<"\t"<<Y[i]; 
  for(j=0;j<7;j++) 
   CijFile<<"\t"<<C[i][j]; 
  CijFile<<endl; 
 } 
 CijFile<<"Vertex\t"<<"SSE\t"<<"E1\t"<<"E2\t"<<"E3\t"<<"G12\t"<<"nu12\t"<<"nu13\t"<<"nu23"<<endl; 
 for (i=0;i<8;i++) 
 { 
  CijFile<<i<<"\t"<<Y[i]; 
  for(j=0;j<7;j++) 
   CijFile<<"\t"<<P[i][j]; 
  CijFile<<endl; 
 } 
  
 
//Calculate the strain response for the solution values and output in table for easy plotting 
   
 for(i=0;i<7;i++) 
  E[0][i]=P[0][i]; 
  
 E_to_C(E,C,matnum); 
 CijFile<<"\n\nCalculated Strains for the Final Values"; 
 CijFile<<"\nLoads\t\t\t\t\t"<<"Measured Strains\t\t\t\t"<<"Calculated Strains\n"; 
 CijFile<<"Po\t"<<"Pi\t"<<"Fx\t"<<"Tx\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t"
<<"\tSurface\n"; 
  
 for( i=0 ; i<numloads ; i++) 
 { 
   
  Elastic_Solution(C, E, matnum, mat, radii, theta, &(Loads[i][0]), Calculated_Strain, 
position[i]); 
   
  for(int j=0;j<3;j++) 
   C_Strain[i][j]=Calculated_Strain[j]; 
  for(j=0;j<4;j++) 
   CijFile<<Loads[i][j]<<"\t"; 
  CijFile<<"\t"; 
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  for(j=0;j<3;j++) 
   CijFile<<Exp_Strain[i][j]<<"\t"; 
  CijFile<<"\t"; 
  for(j=0;j<3;j++) 
   CijFile<<C_Strain[i][j]<<"\t"; 
  CijFile<<"\t"<<position[i]<<endl; 
    
 } 
 
// Calculates time used to find solution 
 
 finish = clock();   
 duration = (double)(finish - start)/CLOCKS_PER_SEC; 
 if(duration>60.0) 
 { 
  duration=duration/60.0; 
  cout << "\nCalculation Time:  "<<duration<< " minutes."<< endl; 
  CijFile << "\nCalculation Time:  "<<duration<< " minutes."<< endl; 
 
 } 
 else 
 { 
  cout << "\nCalculation Time:  "<<duration<< " seconds."<< endl; 
  CijFile << "\nCalculation Time:  "<<duration<< " seconds."<< endl; 
 
 } 
 switch (finished) 
 { 
 
  case 0: 
  { 
   cout<<"\nLocal Minimum Found\n"; 
   break; 
  } 
  case 2: 
  { 
   cout<<"\nMaximum Iterations\n"; 
   return; 



 245

  } 
 } 
 
 CijFile.close(); 
} 
 
//--------------------------------------------------------------------------------------------------- 
/*Calc_Increment calculates the error value PHI and SSE as well as the incremental step value for Cij  
*/ 
double Calc_SSE(double E[][10], double C[][7], int matnum, int mat[], double radii[], double theta[], 
double Loads[][4], double Exp_Strain[][3], char position[]) 
{ 
 int i; 
 double SSE, PHI[ND]; 
  
 
 SSE = 0.0; 
 
 
 for(i=0;i<ND;i++) 
  PHI[i] = 0.0; 
 
 
 PhiSub(E, C, matnum, mat, radii,theta,Loads, Exp_Strain, position, PHI); 
  
 for(i=0;i<ND;i++) 
  SSE += pow(PHI[i],2); //Calculate the Sum of Square Errors  
  
 return SSE; 
} 
 
 
//---------------------------------------------------------------------------------------------------- 
 
/*************************************************************************************/ 
//This function converts the Cij Values back to E1, E2, E3, G12, nu12, nu13, nu23 
 
void C_to_E(double *c, double *Evalues) 



 246

{ 
 double S[4][4], col[4], CijMatrix[4][4]; 
 int i, j, indx[4], d=1; 
 
 //Need to build the Cij matrix 
 for(i=0;i<4;i++) 
 { 
  col[i]=0.0; 
  for(j=0;j<4;j++) 
  { 
   CijMatrix[i][j]=0.0; 
   S[i][j] = 0.0; 
  } 
 } 
 
 CijMatrix[0][0] = c[0]; //C11 
 CijMatrix[0][1] = c[1]; //C12 
 CijMatrix[1][0] = c[1]; //C21 
 CijMatrix[0][2] = c[2]; //C13 
 CijMatrix[2][0] = c[2]; //C31 
 CijMatrix[1][1] = c[3]; //C22 
 CijMatrix[1][2] = c[4]; //C23 
 CijMatrix[2][1] = c[4]; //C32 
 CijMatrix[2][2] = c[5]; //C33 
 CijMatrix[3][3] = c[6]; //C66 
  
 
//Invert the Cij Matrix to get the Sij Matrix 
      
 LUDecomposition(&CijMatrix[0][0],4,indx,d); 
 for(j=0;j<4;j++) 
 { 
  for(i=0;i<4;i++) 
   col[i] = 0.0; 
  col[j] = 1.0; 
  LUBackSub(&(CijMatrix[0][0]),4,indx,&col[0]); 
  for(i=0;i<4;i++) 
   S[i][j]=col[i]; 
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 } 
 
//Calculate E values from the Sij Values 
 
 Evalues[0] = 1.0/S[0][0]; 
 Evalues[1] = 1.0/S[1][1]; 
 Evalues[2] = 1.0/S[2][2]; 
 Evalues[3] = 1.0/S[3][3]; 
 Evalues[4] = -S[0][1]*Evalues[0]; 
 Evalues[5] = -S[0][2]*Evalues[0]; 
 Evalues[6] = -S[1][2]*Evalues[1]; 
} 
 
void E_to_C(double (*e)[10], double (*c)[7], int matnum) //c matrix subroutine 
{ 
 double v; 
  
 for(int i=0;i<matnum;i++) 
 { 
  v = (1 - e[i][4] *(e[i][4] * e[i][1] / e[i][0] + 2 * e[i][6] * e[i][5] * e[i][2] / e[i][0]) - 
e[i][5] * e[i][5] * e[i][2] / e[i][0] - e[i][6] * e[i][6] * e[i][2] / e[i][1]); 
 
  c[i][0] = (1 - e[i][6] * e[i][6] * e[i][2] / e[i][1]) * e[i][0] / v;        // c11 
  c[i][1] = (e[i][4] + e[i][5] * e[i][6] * e[i][2] / e[i][1]) * e[i][1] / v;     // c12 
  c[i][2] = (e[i][5] + e[i][4] * e[i][6]) * e[i][2] / v;                   // c13 
  c[i][3] = (1 - e[i][5] * e[i][5] * e[i][2] / e[i][0]) * e[i][1] / v;        // c22 
  c[i][4] = (e[i][6] + e[i][4] * e[i][5] * e[i][1] / e[i][0]) * e[i][2] / v;     // c23 
  c[i][5] = (1 - e[i][4] * e[i][4] * e[i][1] / e[i][0]) * e[i][2] / v;        // c33 
  c[i][6] = e[i][3];                                              // c66 
 
  v=0.0; 
 } 
} 
 
The following subroutines have been removed due to copyright considerations.  The 
appropriate subroutines can be adapted from those in Numerical Recipes (Nelder-Mead 
simplex routines). 
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void GET_PSUM (double (*p)[7], double *psum) 
 
void SWAP(double *a, double *b)  
 
int amoeba (double (*p)[7], double y[], int ndim, double ftol, int *nfunk,double E[][10], double C[][7], 
int matnum, int mat[], double radii[], double theta[], double Loads[][4], double Exp_Strain[][3], char 
position[]) 
 
 
double amotry(double (*p)[7], double y[], double psum[], int ndim, int ihi, double fac, double E[][10], 
double C[][7], int matnum, int mat[], double radii[], double theta[], double Loads[][4], double 
Exp_Strain[][3], char position[]) 
 
 
 

11.2 Inversion.h 

 

//Inversion.h 
 
// Header file for the Inverse Solution 
// Modify the needed information for each different material run 
#include <math.h> 
#include <fstream.h> 
 
#define K 20   //Number of plies in the composite lay-up 
#define KK 2*K+2  //Number of equations for Elastic Solution 
#define dT 0   //Temperature change for thermal strains and stresses 
#define Pi acos(-1)  //Define Pi 
#define numloads 10  //Number of load conditions applied (1 Fx + 1 Tx + 1 Pi = 3 !!!REQUIRED!!!) 
#define NAP 7   //Number of active parameters (number of parameters being optimized - 7 Cij 
values) 
#define ND 3*numloads //Number of data points (number of strain points given - 3 strains per load 
applied) 
#define Acceptable 1e-030 //Convergence Criteria - SSE value that is sufficiently small 
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#define MaxIteration 100 //Number of iterations before quitting 
 
#define TINY 1.0e-12 
#define NMAX 20000 
 
 
double Calc_SSE(double E[][10], double C[][7],int matnum, int mat[], double radii[], double theta[], double 
Loads[][4], double Exp_Strain[][3], char position[]); 
void C_to_E(double *c, double *Evalues); 
void E_to_C(double (*e)[10], double (*c)[7], int matnum);  
 
int amoeba (double (*p)[7], double y[], int ndim, double ftol, int *nfunk, double E[][10], double C[][7], 
int matnum, int mat[], double radii[], double theta[], double Loads[][4], double Exp_Strain[][3], char 
position[]); 
double amotry(double (*p)[7], double y[], double psum[], int ndim, int ihii, double fac, double E[][10], 
double C[][7], int matnum, int mat[], double radii[], double theta[], double Loads[][4], double 
Exp_Strain[][3], char position[]); 
void GET_PSUM (double (*p)[7], double *psum); 
void SWAP(double *a, double *b) ; 
 

 
 

11.3 Elastic_Solution.cpp 

 

//Elastic_Solution.cpp 
#include "Elastic_Solution.h" 
#include <iostream.h> 
#include <fstream.h> 
 
void Elastic_Solution(double C[][7], double E[][10], int matnum, int mat[], double r[], double th[], double 
*load, double Calc_Strain[], char strainposition) 
{ 
 int i=0,indx[KK]; 
 long theErr=0; 
 double sc[K][4][5], bc[K][3], L[K], cbm[K][4][4], et[K][4]; 
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 double A[KK][KK], B[KK]; 
  
 
 Cbar(C, th, E, matnum, mat, cbm, et);  //Transformations to create the cbar matrix 
 
 stress(cbm, et, L, bc, sc);    //Relations between strain, displacement and stress 
 
 mat_stack(cbm, sc, L, bc, r, load, A, B); //Creates matrix to solve for constants Eo,Go, A1's and 
A2's 
    
 SysScale(&(A[0][0]),B,KK);    //Scaling to increase numerical accuracy 
  
 for (int jj=0;jj<KK;jj++)   
  indx[jj] = 0; 
 
 LUDecomposition(&(A[0][0]),KK,indx,i); //performs PA=LU for LUBackSub 
  
 LUBackSub(&(A[0][0]),KK,indx,B);  //Solves system PAx=PB (returns x in B) 
  
 
 output(B, r, L, bc, Calc_Strain, strainposition);//Returns calculated strains 
 
} 
 
//************************************************************ 
//***********Internal Subroutines***************************** 
 
 
void Cbar(double C[][7], double theta[], double E[][10], int matnum, int mat[], double cbm[][4][4], double 
et[][4]) 
{ 
 //c-bar matrix function 
 
 int i,j,k,p; 
 double m=0.0,n=0.0; 
 
 for(i=0;i<K;i++) 
  for(j=0;j<4;j++) 
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   for(k=0;k<4;k++) 
    cbm[i][j][k]=0.0; 
 
 for(i=0;i<K;i++) 
 { 
  m = cos(theta[i]); 
  n = sin(theta[i]); 
 
  p = mat[i];  //allows for the different material layers 
 
  cbm[i][0][0] = C[p][0]*pow(m,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(n,4); 
  cbm[i][0][1] = pow(m*n,2)*(C[p][0] + C[p][3] - 4*C[p][6]) + C[p][1]*(pow(m,4) + pow(n,4)); 
  cbm[i][0][2] = C[p][2]*m*m + C[p][4]*n*n; 
  cbm[i][0][3] = m*n*(C[p][0]*m*m - C[p][3]*n*n - (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][1][1] = C[p][0]*pow(n,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(m,4); 
  cbm[i][1][2] = C[p][2]*n*n + C[p][4]*m*m; 
  cbm[i][1][3] = m*n*(C[p][0]*n*n - C[p][3]*m*m + (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][2][2] = C[p][5]; 
  cbm[i][2][3] = m*n*(C[p][2] - C[p][4]); 
  cbm[i][3][3] = (C[p][0] + C[p][3] - 2*C[p][1])*pow(m*n,2) + C[p][6]*pow((m*m - n*n),2); 
 
  for(j = 1; j<4 ; j++) 
   for(k = 0; k<j ; k++) 
    cbm[i][j][k] = cbm[i][k][j];  //stacks symmetric terms 
 
  et[i][0] = (E[p][7]*m*m + E[p][8]*n*n)*dT;   //X       thermal strain 
  et[i][1] = (E[p][7]*n*n + E[p][8]*m*m)*dT;   //THETA   thermal strain 
  et[i][2] = E[p][9]*dT;                    //R       thermal strain 
  et[i][3] = 2*m*n*(E[p][7] - E[p][8])*dT;     //X-THETA thermal strain 
 } 
} 
 
void stress(double cbm[][4][4],double et[][4],double L[],double bc[][3],double sc[][4][5]) 
{ 
 //stress coefficients 
  
 short i,j; 
 double zz=0; 
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 int a; 
 
 for(i=0 ; i<K ; i++) 
 { 
  a=0; 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
 // cout <<"\nL["<<i<<"]\t"<<L[i]; 
  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
   
 switch(a) 
  { 
  case 1:  //Isotropic and Transversely Isotropic Condition cbm[i][1][1] = cbm[i][2][2] 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(2*cbm[i][2][2]);    
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(4*cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1/(2*cbm[i][2][2]);         
   //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
    } 
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   } 
   break; 
  case 2:  //Causes the b[i][1] term to blowup in default equations 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(3*cbm[i][2][2]);  //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(16*cbm[i][2][2]); //Omega 
    bc[i][2] = 1/(3*cbm[i][2][2]);        
 //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
      
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
    } 
   } 
   break; 
  default:  //The General Solution for the Composite Cylinder model 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2]) / (cbm[i][2][2] - cbm[i][1][1]);  
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2 * cbm[i][2][3]) / (4 * cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1 / (cbm[i][2][2] - cbm[i][1][1]);       
   //Psi 
 
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
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    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
     sc[i][j][0] = cbm[i][0][j] + bc[i][0]*(cbm[i][1][j] + cbm[i][2][j]); 
     sc[i][j][1] = cbm[i][j][3] + bc[i][1]*(cbm[i][1][j] + 2*cbm[i][2][j]); 
     sc[i][j][2] = cbm[i][1][j] + L[i] * cbm[i][2][j]; 
     sc[i][j][3] = cbm[i][1][j] - L[i] * cbm[i][2][j]; 
     sc[i][j][4] = bc[i][2]*(cbm[i][1][j] + cbm[i][2][j])- et[i][0]*cbm[i][0][j]; 
     sc[i][j][4] += -et[i][1]*cbm[i][1][j] - et[i][2]*cbm[i][2][j] - 
et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
 
    } 
   } 
  } 
 } 
} 
 
 
void mat_stack(double cbm[][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double A[][KK], double B[]) 
{ 
 //subroutine for stacking the components of the linear system Ax=B 
 
 short i, j, ic; 
 double ro,ri,r2, ro2, r3, ro3, r4, ro4, b1t2, b2t2; 
 int a; 
 
 for(i = 0; i<KK ; i++)                 //initialize [A],{B} 
 { 
  B[i] = 0.0; 
  for(j = 0; j<KK ; j++) 
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  A[i][j] = 0.0; 
 } 
 
 //next two loops stack elements associated with the integrated B.C. 
 b1t2 = 0; 
 b2t2 = 0; 
 
 for(i = 0; i<K ;i++) 
 { 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
  a=0; 
 //set up terms for switching for the degenerate cases 
  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
 
  //define radii terms for ease of programming and debugging 
  ri = r[i]; 
  ro = r[i+1]; 
  r2 = pow(r[i],2); 
  ro2 = pow(r[i+1],2); 
  ro3 = pow(r[i+1],3); 
  r3 = pow(r[i],3); 
  ro4 = pow(r[i+1],4); 
  r4 = pow(r[i],4); 
 
  switch(a) 
  { 
  case 1: 
   { 
    A[0][0] += 0.5*(ro2-r2)*(cbm[i][0][0]); 
    A[0][0] += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbm[i][0][1]; 
    A[0][0] += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbm[i][0][2]; 
 
    A[0][1] += (cbm[i][0][3]+bc[i][1]*(cbm[i][0][1]+2*cbm[i][0][2]))*(ro3-r3)/3.0; 
 
    A[1][0] += (cbm[i][0][3]*(ro3-r3))/3.0; 
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    A[1][0] += (((1.0/3.0)-log(ri))*cbm[i][1][3]+((-2.0/3.0)-
log(ri))*cbm[i][2][3])*bc[i][0]*r3/3.0; 
    A[1][0] += ((log(ro)-
(1.0/3.0))*cbm[i][1][3]+((2.0/3.0)+log(ro))*cbm[i][2][3])*bc[i][0]*ro3/3.0; 
    A[1][1] += (cbm[i][3][3]+bc[i][1]*(cbm[i][1][3]+2*cbm[i][2][3]))*(ro4-r4)/4.0; 
  
     
    b1t2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*cbm[i][0][1]*bc[i][2]; 
    b1t2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*cbm[i][0][2]*bc[i][2]; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
 
    b2t2 += ((3.0*log(ro)-
1.0)*cbm[i][1][3]+(3.0*log(ro)+2.0)*cbm[i][2][3])*ro3*bc[i][2]/9.0; 
    b2t2 -= ((3.0*log(ri)-
1.0)*cbm[i][1][3]+(3.0*log(ri)+2.0)*cbm[i][2][3])*r3*bc[i][2]/9.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  case 2: 
   { 
    A[0][0] += (cbm[i][0][0]+bc[i][0]*(cbm[i][0][1]+cbm[i][0][2]))*(ro2-r2)/2.0; 
    A[0][1] += (((4.0*log(ro)-7.0/3.0)*ro3-(4.0*log(ri)-
7.0/3.0)*r3)*cbm[i][0][1]*bc[i][1])/3.0; 
    A[0][1] += (((4.0*log(ro)-1.0/3.0)*ro3-(4.0*log(ri)-
1.0/3.0)*r3)*2*cbm[i][0][2]*bc[i][1])/3.0; 
    A[0][1] += (ro3-r3)*cbm[i][0][3]/3.0; 
 
    A[1][0] += (cbm[i][0][3]+bc[i][0]*(cbm[i][1][3]+cbm[i][2][3]))*(ro3-r3)/3.0; 
    A[1][1] += (ro4-r4)*cbm[i][3][3]/4.0+((log(ro)-
0.5)*cbm[i][1][3]+2*log(ro)*cbm[i][2][3])*bc[i][1]*ro4; 
    A[1][1] -= ((0.5-log(ri))*cbm[i][1][3]-2*log(ri)*cbm[i][2][3])*bc[i][1]*r4; 
 
     
    b1t2 += (cbm[i][0][1]+cbm[i][0][2])*(ro2-r2)*(bc[i][2])/2.0; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
 
    b2t2 += (cbm[i][1][3]+cbm[i][2][3])*(ro3-r3)*bc[i][2]/3.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
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   } 
   break; 
  default: 
   {//A[0][i] = Fx Conditions  A[1][i] = Tx Conditions 
    A[0][0] += (sc[i][0][0]*( ro2 - r2 )) / 2.0;     //e terms 
    A[1][0] += (sc[i][3][0]*( ro3 - r3 )) / 3.0;     
    A[0][1] += (sc[i][0][1]*( ro3 - r3 )) / 3.0;     //g terms 
    A[1][1] += (sc[i][3][1]*( ro4 - r4 )) / 4.0; 
 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0;      //thermal 
terms 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  } 
 } 
 
 ic = 0; 
 for(i = 2; i<(KK-1) ; i += 2) 
 { 
  ic++; 
   
   
 //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic-1]==1.0) 
   a = 1; 
  if(L[ic-1]==2.0) 
   a = 2; 
 
  //define radii terms for ease of programming and debugging 
 
  ri = r[ic-1]; 
  ro = r[ic]; 
  r2 = pow(r[ic-1],2); 
  ro2 = pow(r[ic],2); 
  ro3 = pow(r[ic],3); 
  r3 = pow(r[ic-1],3); 
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  ro4 = pow(r[ic],4); 
  r4 = pow(r[ic-1],4); 
   
  switch(a) 
  { 
  case 1: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+cbm[ic-1][0][2])*(r2-ro2)/2.0; 
    A[0][i+1] = (log(ro)-log(ri))*(cbm[ic-1][0][1]-cbm[ic-1][0][2]);//check 2*cbm[ic-
1][0][2] 
    A[1][i] = (ro3-r3)*(cbm[ic-1][1][3]+cbm[ic-1][2][3])/3.0; 
    A[1][i+1] = (ro-ri)*(cbm[ic-1][1][3]-cbm[ic-1][2][3]); 
 
   } 
   break; 
  case 2: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+2*cbm[ic-1][0][2])*(ro3-r3)/3.0; 
    A[0][i+1] = (2.0*cbm[i][0][2]-cbm[i][0][1])*((1.0/ro) - (1.0/ri)); 
    A[1][i] = (cbm[ic-1][1][3]+2*cbm[ic-1][2][3])*(ro4-r4)/4; 
    A[1][i+1] = (cbm[ic-1][1][3]-2*cbm[ic-1][2][3])*(log(ro)-log(ri)); 
   } 
   break; 
  default: 
   { 
    A[0][i] = sc[ic-1][0][2]*(pow(ro, 1+L[ic-1]) - pow(ri, 1+L[ic-1]) ) / (1+L[ic-1]); 
    A[0][i+1] = sc[ic-1][0][3]*(pow(ro, 1-L[ic-1]) - pow(ri, 1-L[ic-1]) ) / (1-L[ic-
1]); 
    A[1][i] = sc[ic-1][3][2]*(pow(ro, 2+L[ic-1]) - pow(ri, 2+L[ic-1]) ) / (2+L[ic-1]); 
    A[1][i+1] = sc[ic-1][3][3]*(pow(ro, 2-L[ic-1]) - pow(ri, 2-L[ic-1]) ) / (2-L[ic-
1]); 
   } 
   break; 
  } 
 } 
 //Applied Loads 
 B[0] = (load[2] / (2 * Pi)) - b1t2;        
 B[1] = (load[3] / (2 * Pi)) - b2t2; 
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 //next loop stacks the elements associated with the interface conditions w[i](r) = w[i+1](r) and sigma-r 
 
 ic = 0; 
 for(i = 2; i<(KK-3) ; i += 2) 
 { 
 
  //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic]==1.0) 
   a = 1; 
  if(L[ic]==2.0) 
   a=2; 
 
 
  ic++;  
 
  switch(a) 
  { 
 
  case 1: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]*log(r[ic])+cbm[ic-
1][2][2]*(log(r[ic])+1))); 
    A[i][0] -
=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))); 
    A[i][1] = ((cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*bc[ic-1][1]+cbm[ic-1][2][3])*r[ic]; 
    A[i][1] -=((cbm[ic][1][2]+2*cbm[ic][2][2])*bc[ic][1]+cbm[ic][2][3])*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+cbm[ic-1][2][2]) ; 
    A[i][i+1] = (cbm[ic-1][1][2]-cbm[ic-1][2][2])*pow(r[ic],-2);//check2*cbm[ic-
1][2][2] 
    A[i][i+2] = -(cbm[ic][1][2]+cbm[ic][2][2]); 
    A[i][i+3] = -(cbm[ic][1][2]-cbm[ic][2][2])*pow(r[ic],-2);//check2*cbm[ic-1][2][2] 
     
    //The w(r) conditions 
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    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))*bc[ic][2]; 
    B[i] -= (cbm[ic-1][1][2]*log(r[ic])+cbm[ic-1][2][2]*(log(r[ic])+1))*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]*log(r[ic]); 
   } 
   break; 
 
  case 2: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]+cbm[ic-1][2][2])); 
    A[i][0] -=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]+cbm[ic][2][2])); 
    A[i][1] = (cbm[ic-1][2][3]+bc[ic-1][1]*(cbm[ic-1][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic-1][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
    A[i][1] -=(cbm[ic][2][3]+bc[ic][1]*(cbm[ic][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*r[ic] ; 
    A[i][i+1] = (cbm[ic-1][1][2]-2*cbm[ic-1][2][2])*pow(r[ic],-3); 
    A[i][i+2] = -(cbm[ic][1][2]+2*cbm[ic][2][2])*r[ic]; 
    A[i][i+3] = -(cbm[ic][1][2]-2*cbm[ic][2][2])*pow(r[ic],-3); 
     
    //The w(r) conditions 
    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
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    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2] + cbm[ic][2][2])*bc[ic][2]-(cbm[ic-1][1][2] + cbm[ic-
1][2][2])*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
    
   } 
   break; 
 
  default: 
   { 
  
    A[i][0] = sc[ic-1][2][0] - sc[ic][2][0];    //eo terms 
    A[i][1] = ( sc[ic-1][2][1] - sc[ic][2][1] ) * r[ic]; //go terms 
 
    A[i + 1][0] = ( bc[ic-1][0] - bc[ic][0] ) * r[ic];   
    A[i + 1][1] = ( bc[ic-1][1] - bc[ic][1] ) * r[ic]*r[ic]; 
         
    A[i][i] = sc[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) ); 
    A[i][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) ); 
    A[i][i+2] = -sc[ic][2][2] * pow(r[ic], (L[ic] - 1) ); 
    A[i][i+3] = -sc[ic][2][3] * pow(r[ic], (-L[ic] - 1) ); 
 
    A[i+1][i] = pow(r[ic], L[ic-1] ); 
    A[i+1][i+1] = pow(r[ic], -L[ic-1] ); 
    A[i+1][i+2] = -pow(r[ic], L[ic] ); 
    A[i+1][i+3] = -pow(r[ic], -L[ic] ); 
 
    B[i] = sc[ic][2][4] - sc[ic-1][2][4]; 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
 
   } 
   break; 
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  } 
 }  
        
 //next lines stack the matrix elements associated with the pressure B.C. 
 
 //The inner surface pressure conditions 
  a=0; 
  //set up terms for switching for the degenerate cases 
  if(L[0]==1.0) 
   a = 1; 
  if(L[0]==2.0) 
   a=2; 
  switch(a) 
  { 
  case 1: 
   { 
    A[KK-2][0] = 
(cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))); 
    A[KK-2][1] = ((cbm[0][1][2]+2*cbm[0][2][2])*bc[0][1]+cbm[0][2][3])*r[0]; 
    A[KK-2][2] = (cbm[0][1][2]+cbm[0][2][2]); 
    A[KK-2][3] = (cbm[0][1][2]-cbm[0][2][2])*pow(r[0],-2); 
 
    B[KK-2] = -load[1] - (cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))*bc[0][2] - 
sc[0][2][4]; 
   } 
   break; 
  case 2: 
   { 
    A[KK-2][0] = (cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]+cbm[0][2][2])); 
    A[KK-2][1] = (cbm[0][1][2]*(4*log(r[0])-
1)+2*cbm[0][2][2]*(4*log(r[0])+1))*bc[0][1]*r[0]; 
    A[KK-2][2] = (cbm[0][1][2]+2*cbm[0][2][2])*r[0]; 
    A[KK-2][3] = (cbm[0][1][2]-2*cbm[0][2][2])*pow(r[0],-3); 
 
    B[KK-2] = -load[1] - (cbm[0][1][2]+cbm[0][2][2])*bc[0][2] - sc[0][2][4]; 
   } 
   break; 
  default: 
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   { 
    A[KK-2][0] = sc[0][2][0]; 
    A[KK-2][1] = sc[0][2][1] * r[0]; 
    A[KK-2][2] = sc[0][2][2] * pow(r[0], (L[0] - 1) ); 
    A[KK-2][3] = sc[0][2][3] * pow(r[0], (-L[0] - 1) ); 
 
    B[KK-2] = -load[1] - sc[0][2][4]; 
   } 
   break; 
  } 
 //The outer surface pressure conditions 
   a=0; 
  //set up terms for switching for the degenerate cases 
  if(L[K-1]==1.0) 
   a = 1; 
  if(L[K-1]==2.0) 
   a=2; 
  switch(a) 
  { 
  case 1: 
   { 
    A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]*log(r[K])+cbm[K-
1][2][2]*(log(r[K])+1))); 
    A[KK-2][1] = ((cbm[K-1][1][2]+2*cbm[K-1][2][2])*bc[K-1][1]+cbm[K-1][2][3])*r[K]; 
    A[KK-2][2] = (cbm[K-1][1][2]+cbm[K-1][2][2]); 
    A[KK-2][3] = (cbm[K-1][1][2]-cbm[K-1][2][2])*pow(r[K],-2); 
 
    B[KK-2] = -load[0] - (cbm[K-1][1][2]*log(r[K])+cbm[K-1][2][2]*(log(r[K])+1))*bc[K-
1][2]- sc[K-1][2][4]; 
   } 
   break; 
  case 2: 
   { 
    A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]+cbm[K-1][2][2])); 
    A[KK-2][1] = (cbm[K-1][1][2]*(4*log(r[K])-1)+2*cbm[K-
1][2][2]*(4*log(r[K])+1))*bc[K-1][1]*r[K]; 
    A[KK-2][2] = (cbm[K-1][1][2]+2*cbm[K-1][2][2])*r[K]; 
    A[KK-2][3] = (cbm[K-1][1][2]-2*cbm[K-1][2][2])*pow(r[K],-3); 
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    B[KK-2] = -load[0] - (cbm[K-1][1][2]+cbm[K-1][2][2])*bc[K-1][2]- sc[K-1][2][4]; 
   } 
   break; 
  default: 
   { 
    A[KK-1][0] = sc[K-1][2][0]; 
    A[KK-1][1] = sc[K-1][2][1] * r[K]; 
    A[KK-1][KK-2] = sc[K-1][2][2] * pow(r[K], ( L[K-1] - 1) ); 
    A[KK-1][KK-1] = sc[K-1][2][3] * pow(r[K], ( -L[K-1] - 1) ); 
 
    B[KK-1] = -load[0] - sc[K-1][2][4]; 
   } 
   break; 
  } 
} 
void output(double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition) 
{ 
 double ex=0.0, eo=0.0, gxo=0.0, w=0.0, Rc; 
 int a, i; 
 
 
 for (int ab=0;ab<3;ab++) 
 { 
  Calc_Strain[ab]=0.0; 
  
 } 
 
 //Inner or Outer Surface Strains? 
 if(strainposition =='i'||strainposition=='I') 
 { 
  i=0; 
  Rc=r[0]; 
 
 } 
 else //Outer Surface is the Default condition 
 { 
  Rc=r[K]; 
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  i=K-1; 
 
 } 
  
 a=0; 
 if(L[i]==1.0) 
  a = 1; 
 if(L[i]==2.0) 
  a=2; 
 switch (a) 
 { 
  case 1:  //Isotropic or Transversely Isotropic 
   { 
    w = bc[i][0]*Rc*log(Rc)*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*Rc + x[2*(i)+3]/Rc 
+ bc[i][2]*log(Rc); 
     ex = x[0];  // Ex: Epsilon x 
    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
  case 2:  //bc[i][1] = 0 
   { 
    w = bc[i][0]*Rc*x[0] + bc[i][1]*x[1]*pow(Rc,2)*(4*log(Rc)-1) + x[2*(i)+2]*pow(Rc, 
L[i]) + x[2*(i)+3]*pow(Rc, -L[i]) + bc[i][2]*Rc; 
    ex = x[0];  // Ex: Epsilon x 
    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
  default: //General Case 
   { 
    w = bc[i][0]*Rc*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*pow(Rc, L[i]) + 
x[2*(i)+3]*pow(Rc, -L[i]) + bc[i][2]*Rc; 
    ex = x[0];  // Ex: Epsilon x 
    eo = w/Rc;  // Eo: Epsilon theta 
    gxo = x[1]*Rc; // Gxo: Gamma x-theta 
   } 
   break; 
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 } 
   
             //Epsilon X 
  Calc_Strain[0] = ex; 
             //Epsilon Y 
  Calc_Strain[1] = eo; 
             //Epsilon XY 
  Calc_Strain[2] = gxo; 
} 
 
 

 

 

11.4 Elastic_Solution.h 
 //Elastic_Solution.h 
 
#include "Inversion.h" 
#include "matrix.h" 
#include <iostream.h> 
#include <fstream.h> 
/*******************************/ 
/*routines internal to CCM*/ 
/*******************************/ 
void Elastic_Solution(double C[][7], double E[][10], int matnum, int mat[], double r[], double theta[], 
double *load, double Calc_Strain[], char strainposition); 
void Cbar(double C[][7], double theta[], double E[][10], int matnum, int mat[], double cbm[][4][4], double 
et[][4]); 
void stress(double cbm[][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]); 
void mat_stack(double cbm[][4][4], double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double A[][KK], double B[]); 
void output(double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition); 
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11.5 Data_Input.cpp 

 

//Data_Input.cpp 
 
#include "Data_Input.h" 
 
ifstream inputfile, loadfile,expstrain;  //Data file containing input data (material properties, 
geometry, loads) 
ofstream tracking, outputfile;    //Data files for data output and intermediate values 
 
int Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[]) 
{ 
 inputfile.open("Testinput.dat"); // Input.dat contains initial guess E's, and geometry 
 loadfile.open("TestLOADS.dat");  // loads.dat contains all loading conditions (must alter 
numloads value in Inversion.h) 
 expstrain.open("Teststrain.dat");// expstrain.dat contains all the measured strain values (ex, ey, 
gxy) for each load condition (numload # of sets)  
 tracking.open("tracking.dat"); // Opening Data files for output and tracking of values 
 
  
 double temp; 
 char datatype; 
 int i,j,matval, matnum; 
 
// First input value must be the number of material layers 
 
 inputfile>>matnum; 
  
 for(matval=0;matval<matnum;matval++) 
 { 
  inputfile>>datatype; 
  
//If the first value in the input file is 'C' then reads in Cij values 
  if((datatype == 'C')||(datatype=='c')) 
  { 
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   for(i=0;i<7;i++) 
    inputfile>>C[matval][i]; 
   for(i=7;i<10;i++) 
    inputfile>>E[matval][i];    //reads in the thermal coefficients 
   C_to_E(&(C[matval][0]),&(E[matval][0])); //calculates E's 
  } 
 
//If 'E' - Reads in Elastic Moduli (E1,E2,E3,G12,nu12,nu13,nu23,a1,a2,a3) IN ORDER!!! 
  if((datatype == 'E')||(datatype=='e'))   
  { 
   for(i=0; i<10; i++)    
    inputfile >> E[matval][i]; 
   CMatrix(E,C,matnum);  //Calculates the Cij values  
  } 
 } 
 
//Reads in all surface radii 
 for(j=0; j<K+1; j++)   
  inputfile >> radii[j]; 
  
 
//Reads in each ply angle (degrees) and converts to radians 
 for(i=0; i<K; i++)     
 { 
  inputfile >> temp; 
  theta[i] = temp * (Pi/180.0); 
  inputfile >> mat[i]; 
 } 
 
//Reads in all load and experimental strain values 
 for (i=0; i<numloads; i++)    // !!!!LOAD CONDITIONS!!!!   !!!STRAIN 
CONDITIONS!!! 
 {       
  expstrain>>position[i];    // position[i] = i or o for inner or outer surface 
strains 
  for(j=0; j<4; j++)     // Loads[0] = External Pressure 
 exp_strain[][0] = e-x 
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   loadfile >> Loads[i][j];  // Loads[1] = Internal Pressure 
 exp_strain[][1] = e-y 
  for(int k=0;k<3;k++)    // Loads[2] = Axial Load  
 exp_strain[][2] = gamma-xy 
   expstrain>> Exp_Strain[i][k]; // Loads[3] = Torsional Load       
 }          
 
  
//Writes all data and stiffness values to the tracking file 
 Output_data(E,matnum, mat,radii,theta,Loads, Exp_Strain, position, C);  
 inputfile.close(); 
 loadfile.close();        //Close the data files 
 expstrain.close();  
 tracking.close(); 
 
 cout << endl; 
 return matnum; 
} 
//------------------------------------------------------------------------------------------- 
void Output_data(double E[][10],int matnum, int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[], double C[][7]) 
{ 
  
 tracking << "Tube properties entered:" << endl; 
 
//Prints Elastic Moduli (E1,E2,E3,G12,nu12,nu13,nu23,a1,a2,a3) 
 for(int i=0;i<matnum;i++) 
 { 
  tracking << "\nMaterial #"<<i+1; 
  tracking << "\nE1 =\t"<<E[i][0]; 
  tracking << "\nE2 =\t"<<E[i][1]; 
  tracking << "\nE3 =\t"<<E[i][2]; 
  tracking << "\nG12 =\t"<<E[i][3]; 
  tracking << "\nnu12 =\t"<<E[i][4]; 
  tracking << "\nnu13 =\t"<<E[i][5]; 
  tracking << "\nnu23 =\t"<<E[i][6]; 
  tracking << "\nalpha-1 =\t"<<E[i][7]; 
  tracking << "\nalpha-2 =\t"<<E[i][8]; 
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  tracking << "\nalpha-3 =\t"<<E[i][9]<<endl<<endl; 
 } 
 
 tracking <<"\n\nTube geometry entered:\n"; 
 
 for(i=0; i<K; i++) 
 { 
  tracking << "Ri and Ro of ply #" << i+1<< "\t"<<radii[i]<<"\t\t"<<radii[i+1]<<"\t\tAngle"<< 
"\t"<< theta[i]*(180/Pi)<<"\tMaterial #\t"<<mat[i]+1<<endl; 
 } 
 for(int ii=0;ii<numloads;ii++) 
 { 
// Printing out the Load conditions to the tracking file 
  tracking << "\nLoad Set #"<< ii+1<<endl; 
  tracking << "\nLoading Conditions and Measured Strains:" << endl; 
  tracking << "Axial Load = \t" << Loads[ii][2] << endl; 
  tracking << "Torque = \t" << Loads[ii][3] << endl; 
  tracking << "Internal Pressure = \t" << Loads[ii][1] << endl; 
  tracking << "External Pressure = \t" << Loads[ii][0] << endl; 
 
//Printing out the Measured Strain values for each applied load condition 
 
  tracking << "\nSurface = "; 
  if (position[ii]=='i'||position[ii]=='I') 
   tracking << "\tInner Surface Strains"; 
  else if (position[ii]=='o'||position[ii]=='O') 
   tracking << "\tOuter Surface Strains"; 
  else 
   tracking << "\tINVALID Response!"; 
  tracking << "\nAxial Strain (ex) =\t" << Exp_Strain[ii][0] << endl; 
  tracking << "Hoop Strain (ey) =\t" << Exp_Strain[ii][1] << endl; 
  tracking << "Shear Strain (gxy) =\t" << Exp_Strain[ii][2] << endl; 
 } 
 tracking << "\n\nInitial Cij Values:" << endl; 
 for(i=0;i<matnum;i++) 
 { 
  tracking << "\nMaterial #"<<i+1; 
  tracking << "\nC11 = \t"<<C[i][0]; 
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  tracking << "\nC12 = \t"<<C[i][1]; 
  tracking << "\nC13 = \t"<<C[i][2]; 
  tracking << "\nC22 = \t"<<C[i][3]; 
  tracking << "\nC23 = \t"<<C[i][4]; 
  tracking << "\nC33 = \t"<<C[i][5]; 
  tracking << "\nC66 = \t"<<C[i][6]<<endl<<endl; 
  
 tracking << endl; 
 } 
} 
 
// Calculates the C Matrix Values from the input data 
//--------------------------------------------------------------------------------- 
void CMatrix(double E[][10], double C[][7], int matnum) //c matrix subroutine 
{ 
 double v; 
  
 for(int i=0;i<matnum;i++) 
 { 
  v = (1 - E[i][4] *(E[i][4] * E[i][1] / E[i][0] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][0]) - 
E[i][5] * E[i][5] * E[i][2] / E[i][0] - E[i][6] * E[i][6] * E[i][2] / E[i][1]); 
 
  C[i][0] = (1 - E[i][6] * E[i][6] * E[i][2] / E[i][1]) * E[i][0] / v;        // c11 
  C[i][1] = (E[i][4] + E[i][5] * E[i][6] * E[i][2] / E[i][1]) * E[i][1] / v;     // c12 
  C[i][2] = (E[i][5] + E[i][4] * E[i][6]) * E[i][2] / v;                   // c13 
  C[i][3] = (1 - E[i][5] * E[i][5] * E[i][2] / E[i][0]) * E[i][1] / v;        // c22 
  C[i][4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][0]) * E[i][2] / v;     // c23 
  C[i][5] = (1 - E[i][4] * E[i][4] * E[i][1] / E[i][0]) * E[i][2] / v;        // c33 
  C[i][6] = E[i][3];                                              // c66 
 
  v=0.0; 
 } 
} 
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11.6 Data_Input.h 

 

// Data Input.h 
 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "Inversion.h" 
#include <fstream.h> 
 
 
 
 
int Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[]); 
void Output_data(double E[][10], int matnum, int mat[], double radii[], double theta[], double Loads[][4], 
double Exp_Strain[][3], char position[], double C[][7]); 
void CMatrix(double E[][10], double C[][7], int matval); //c matrix subroutine 
 

11.7 Matrix.cpp 

 

#include "Matrix.h" 
#include <math.h> 
#include <stdlib.h> 
#include <iostream.h> 
//Matrix.cpp 
 
 
The following subroutines have been omitted due to copyright considerations.  The 
appropriate subroutines can be found in Numerical Recipes (sections on LU Decomposition 
and Backsubstitution). 
 



 273

 
void SysScale(double *A,double *B,int n) 
int LUDecomposition (double *A,int n,int *indx,int d) 
void LUBackSub (double *A,int n,int *indx,double *B) 
long Gauss(double *A,double *B,double *X,int n) 
 
 
 

11.8 Matrix.h 

 

//Matrix.h 
 
#include <math.h> 
#include "Inversion.h" 
 
 
void SysScale(double *A,double *B,int n); 
int LUDecomposition (double *A,int n,int *indx,int d); 
void LUBackSub (double *A,int n,int *indx,double *B); 
long Gauss(double *A,double *B,double *X,int n); 
 
 

11.9 Jacobian.cpp 

 

#include <fstream.h> 
#include "jacobian.h" 
#include "Elastic_Solution.h" 
 
//Jacobian.cpp 
 
void PhiSub(double E[][10],double C[][7], int matnum, int mat[], double r[],double th[],double 
load[][4],double Exp_Strain[][3], char position[], double PHI[])  
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{ 
  
 
 double Calc_Strain[3]; 
  
 
 for(int i=0 ; i<numloads ; i++) 
 { 
   
  Elastic_Solution(C, E, matnum, mat, r, th, &(load[i][0]), Calc_Strain, position[i]); 
   
 
  PHI[i*3] = Exp_Strain[i][0] - Calc_Strain[0];             // Ex 
  PHI[i*3+1] = Exp_Strain[i][1] - Calc_Strain[1];           // Ey 
  PHI[i*3+2] = Exp_Strain[i][2] - Calc_Strain[2];    // Gxy 
 
 } 
 
} 
 

11.10 Jacobian.h 

 

//Jacobian.h 
 
#include "Inversion.h" //for the parameters NAP,ND,etcÉ 
 
void Jacobian(double E[][10],double C[][7],int matnum, int mat[], double r[],double th[],double 
eload[][4],double Exp_Strain[][3], char position[], double jaco[][NAP]); 
void PhiSub(double E[][10],double C[][7], int matnum, int mat[], double r[],double th[],double 
eload[][4],double Exp_Strain[][3], char position[], double PHI[ND]); 
 

11.11 Pmatrix.dat 
5.09E+06 
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6.07E+05 
5.15E+05 
1.21E+05 
1.24E-01 
2.89E-01 
2.66E-01 
 
4.05E+06 
5.44E+05 
4.32E+05 
1.20E+05 
9.94E-02 
3.44E-01 
2.78E-01 
 
4.70E+06 
4.50E+05 
5.15E+05 
1.07E+05 
1.06E-01 
2.42E-01 
3.46E-01 
 
6.19E+06 
3.75E+05 
5.29E+05 
1.24E+05 
1.03E-01 
2.29E-01 
3.55E-01 
 
4.80E+06 
5.03E+05 
3.97E+05 
9.54E+04 
8.56E-02 
2.49E-01 
2.47E-01 
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4.39E+06 
3.83E+05 
4.95E+05 
8.66E+04 
8.55E-02 
2.77E-01 
2.54E-01 
 
5.60E+06 
5.91E+05 
5.25E+05 
1.08E+05 
1.20E-01 
2.99E-01 
2.97E-01 
 
5.39E+06 
5.41E+05 
5.97E+05 
9.14E+04 
1.24E-01 
2.51E-01 
3.38E-01 
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12 Appendix E.  Forward Solution 

 
Here is the source code for the Forward Solution containing the degenerate solutions 
 
v Forward_Solution.cpp 
v Forward_Solution.h 
v Elastic_Solution.cpp 
v Elastic_Solution.h 
v Data_Input.cpp 
v Data_Input.h 
v Matrix.cpp 
v Matrix.h 

 
 

12.1 Forward_Solution.cpp 

// First attempt at writing a Forward Solution Program 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "Data_Input.h" 
#include "Forward_Solution.h" 
#include "Elastic_Solution.h" 
#include <fstream.h> 
#include <math.h> 
 
void Profile(double cc[][7], double ee[][10], double rad[K+1], double th[K], int mat[matnum], double 
BB[KK], ofstream responsexy, ofstream response12); 
 
void main() 
{ 
 int i,mat[K], theErr=0; 
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 double E[matnum][10], C[matnum][7],B[KK]; 
 double radii[K+1], theta[K], Loads[numloads][4], Ep[6], EpX[6]; 
 ofstream strainfile; 
 ofstream responsexy, response12; 
 
 responsexy.open("responsexy.dat"); 
 response12.open("response12.dat"); 
 strainfile.open("strain.dat"); 
 
 
 Input(E, radii, theta,mat, Loads);  //Reads the input file for all data values 
 CMatrix(E,C);      //Calculates the Stiffness Matrix Values 
 
  Output_data(E,radii,theta,mat,Loads,C); //Writes all data and stiffness values to the screen 
and tracking file 
  
  strainfile << "Loading Condition\n"; 
   
  for(i=0;i<numloads;i++) 
  { 
   theErr=Elastic_Solution(C,E,radii,theta,mat, (&Loads[i][0]),Ep, EpX, B);  
    
   if (theErr==1) 
   { 
    cout<<"Singular Matrix"; 
    strainfile<<"\nSingular Matrix\n"; 
   } 
   strainfile << "\nExternal Pressure\t"<<Loads[i][0]; 
   strainfile << "\t\tAxial Strain"<<"\tHoop Strain"<<"\tShear Strain"; 
   strainfile << "\nInternal Pressure\t"<<Loads[i][1]<<"\tInner Surface 
Strain\t"<<EpX[0]<<"\t"<< EpX[1]<<"\t"<<EpX[2];  
   strainfile << "\nAxial Force\t"<<Loads[i][2]<<"\tOuter Surface Strain\t"<< 
EpX[3]<<"\t"<<EpX[4]<<"\t"<<EpX[5]; 
 
   strainfile << "\nTorque\t"<<Loads[i][3]; 
   strainfile << endl; 
    
   responsexy<<"Load Condition =\t"<<i; 
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   responsexy<<"\tPo =\t"<<Loads[i][0]<<"\tPi =\t"<<Loads[i][1]<<"\tAxial Force 
=\t"<<Loads[i][2]<<"\tTorque =\t"<<Loads[i][3]; 
 
   response12<<"Load Condition =\t"<<i; 
   response12<<"\tPo =\t"<<Loads[i][0]<<"\tPi =\t"<<Loads[i][1]<<"\tAxial Force 
=\t"<<Loads[i][2]<<"\tTorque = \t"<<Loads[i][3]; 
 
   Profile(C,E,radii,theta,mat,B,responsexy, response12); 
 
  } 
 strainfile.close(); 
 
 //Calculate the stress/strain response through the tube wall thickness 
 
 
 responsexy.close(); 
 response12.close(); 
 
} 
 
void Profile(double cc[][7], double ee[][10], double rad[K+1], double th[K],int mat[], double BB[KK], 
ofstream responsexy, ofstream response12) 
{ 
  
 int i=0,j=0,a; 
 double axstrain, axstress,hoopstrain, hoopstress, shearstrain,shearstress, radstrain, radstress,r; 
 double sc[K][4][5],bc[K][3], L[K], cbm[K][4][4], et[K][4]; 
 double e1, e2, e3, g12,s1,s2,s3,s12,m,n; 
 
 
 Cbar(cc, th, mat, ee, cbm, et); 
 
 stress(cbm, et, L, bc, sc);  
 
 responsexy<<"\nPly number"<<"\tRadius"<<"\tAx Strain"<<"\tHoop Strain"<<"\tShear Strain"<<"\tRadial 
Strain"<<"\tAx Stress"<<"\tHoop Stress"<<"\tShear Stress"<<"\tRadial Stress"<<endl; 
 response12<<"\nPly number"<<"\tRadius"<<"\t1 Strain"<<"\t2 Strain"<<"\t12 Strain"<<"\t3 Strain"<<"\t1 
Stress"<<"\t2 Stress"<<"\t12 Stress"<<"\t3 Stress"<<endl; 
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 for (i=0;i<K;i++) 
 { 
  a=0; 
  if(L[i]==1.0) 
   a=1; 
  if(L[i]==2.0) 
   a=2; 
 
  for(j=0;j<5;j++) 
  {  
   //increments steps through each layer 
   r= rad[i]+j*((rad[i+1]-rad[i])/4);  
//************check bc[i][2] definitions - does it need to be mult by r???******************    
   switch(a) 
   { 
   case 1: 
    { 
    //Strain Response x-y coordinates 
     radstrain = (BB[2*i+2])-(BB[2*i+3]*pow(r,-
2))+bc[i][0]*BB[0]*(log(r)+1)+2*bc[i][1]*BB[1]*r+bc[i][2]*(log(r)+1); 
     hoopstrain = (BB[2*i+2])+(BB[2*i+3]*pow(r,-
2))+bc[i][0]*BB[0]*log(r)+bc[i][1]*BB[1]*r+bc[i][2]*log(r); 
     axstrain = BB[0]; 
     shearstrain = BB[1]*r; 
    } 
    break; 
   case 2: 
    { 
    //Strain Response x-y coordinates 
     radstrain = (2*BB[2*i+2]*r)-(2*BB[2*i+3]*pow(r,-
3))+bc[i][0]*BB[0]+bc[i][1]*BB[1]*2*r*(4*log(r)+1)+bc[i][2]; 
     hoopstrain = (BB[2*i+2]*r)+(BB[2*i+3]*pow(r,-
3))+bc[i][0]*BB[0]+bc[i][1]*BB[1]*r*(4*log(r)-1)+bc[i][2]; 
     axstrain = BB[0]; 
     shearstrain = BB[1]*r; 
 
    } 
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    break; 
   default: 
    { 
    //Strain Response x-y coordinates 
     radstrain = (L[i]*BB[2*i+2]*pow(r, L[i]-1))-(L[i]*BB[2*i+3]*pow(r,-L[i]-
1))+bc[i][0]*BB[0]+2*bc[i][1]*BB[1]*r+bc[i][2]; 
     hoopstrain = BB[2*i+2]*pow(r,L[i]-1)+BB[2*i+3]*pow(r,-L[i]-
1)+bc[i][0]*BB[0]+bc[i][1]*BB[1]*r+bc[i][2]; 
     axstrain = BB[0]; 
     shearstrain = BB[1]*r; 
    } 
    break; 
   } 
 
  //Stress Response x-y coordinates 
   axstress = cbm[i][0][0]*(axstrain-et[i][0])+cbm[i][0][1]*(hoopstrain-
et[i][1])+cbm[i][0][2]*(radstrain-et[i][2])+cbm[i][0][3]*(shearstrain-et[i][3]); 
   hoopstress =cbm[i][0][1]*(axstrain-et[i][0])+cbm[i][1][1]*(hoopstrain-
et[i][1])+cbm[i][1][2]*(radstrain-et[i][2])+cbm[i][1][3]*(shearstrain-et[i][3]); 
   radstress = cbm[i][0][2]*(axstrain-et[i][0])+cbm[i][1][2]*(hoopstrain-
et[i][1])+cbm[i][2][2]*(radstrain-et[i][2])+cbm[i][2][3]*(shearstrain-et[i][3]); 
   shearstress =  cbm[i][0][3]*(axstrain-et[i][0])+cbm[i][1][3]*(hoopstrain-
et[i][1])+cbm[i][2][3]*(radstrain-et[i][2])+cbm[i][3][3]*(shearstrain-et[i][3]); 
  
  //Rotate to the material coordinates 1-2 
   m=cos(th[i]); 
   n=sin(th[i]); 
 
   e1 = axstrain*m*m+hoopstrain*n*n+shearstrain*m*n; 
   e2 = axstrain*n*n+hoopstrain*m*m-shearstrain*m*n; 
   e3 = radstrain; 
   g12 = 2*m*n*(hoopstrain-axstrain)+shearstrain*(m*m-n*n); 
 
   s1 = axstress*m*m+hoopstress*n*n+shearstress*m*n; 
   s2 = axstress*n*n+hoopstress*m*m-shearstress*m*n; 
   s3 = radstress; 
   s12 = 2*m*n*(hoopstress-axstress)+shearstress*(m*m-n*n); 
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  //Output the data to a file 
  
 responsexy<<i+1<<"\t"<<r<<"\t"<<axstrain<<"\t"<<hoopstrain<<"\t"<<shearstrain<<"\t"<<radstrain<<"\t"<
<axstress<<"\t"<<hoopstress<<"\t"<<shearstress<<"\t"<<radstress<<endl; 
  
 response12<<i+1<<"\t"<<r<<"\t"<<e1<<"\t"<<e2<<"\t"<<g12<<"\t"<<e3<<"\t"<<s1<<"\t"<<s2<<"\t"<<s12<<"\t
"<<s3<<endl; 
     
    
  } 
 } 
 responsexy <<endl<<endl; 
 response12 <<endl<<endl;  
} 
 

12.2 Forward_Solution.h 
// Header file for the Forward solution 
// Modify the needed information for each different material run 
#include <math.h> 
 
#define K 20     //Number of plies in the composite lay-up 
#define KK 2*K+2  //Number of equations for Elastic Solution 
#define h 0.0001  //Size of difference used in approximate derivative 
#define dT 0   //Temperature change for thermal strains and stresses 
#define Pi acos(-1) 
#define numloads 50  //Number of load conditions 
#define matnum 1  //Number of different material components (for hybrid composites) 
 

 

12.3 Elastic_Solution.cpp 

 

#include "Elastic_Solution.h" 
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//Forward Solution -- Elastic_Solution.cpp 
 
int Elastic_Solution(double C[][7], double E[][10], double r[], double th[], int mat[],double *load, double 
Ep[], double EpX[], double B[]) 
{ 
 int i=0,j,jj,k,indx[KK],flag1=0, flag2=0, num, theErr=0; 
 double sc[K][4][5], bc[K][3], L[K], cbm[K][4][4], et[K][4]; 
 double Amatrix[KK][KK]; 
 
 for(j=0;j<KK;j++) 
  for(k=0;k<KK;k++) 
   Amatrix[j][k]=0.0; 
  
 num=KK; 
 Cbar(C, th, mat,E, cbm, et);     //Transformations to create the cbar matrix 
 
 stress(cbm, et, L, bc, sc);      //Relations between strain, displacement 
and stress 
 
  
 mat_stack(cbm,sc, L, bc, r, load, &(Amatrix[0]), B);  //Creates matrix to solve for constants 
Eo,Go, A1's and A2's 
    
 
 for(j=0;j<KK;j++)       //Checks A for isotropic, single layer 
condition of  
 {            //either pure tension or pure 
shear 
  if(Amatrix[j][0]==0.0) 
   flag1+=1; 
  if(Amatrix[j][1]==0.0) 
   flag2+=1; 
 } 
 
 if(flag1==KK-1)        //Isotropic condition of pure shear - no 
axial strain 
 { 
  for(j=0;j<KK;j++) 
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  { 
   for(k=0;k<KK-1;k++) 
   { 
    Amatrix[j][k]= Amatrix[j][k+1]; 
    B[k]=B[k+1]; 
   } 
  } 
  num=KK-1; 
 } 
   
  if(flag2==KK-1)       //Isotropic condition of pure axial 
tension - no shear strain 
 { 
  for(j=0;j<KK;j++) 
  { 
   for(k=1;k<KK-1;k++) 
   { 
    Amatrix[j][k]= Amatrix[j][k+1]; 
    B[k]=B[k+1]; 
   } 
  } 
  num=KK-1; 
 } 
 
 
 SysScale(&(Amatrix[0][0]),B,num);    //Scaling to increase numerical accuracy 
 
  
 for (jj=0;jj<num;jj++) 
  indx[jj] = 0; 
 
 theErr=LUDecomposition(&(Amatrix[0][0]),num,indx,i); //performs PA=LU for LUBackSub 
 if (theErr!=0) return(theErr); 
  
 LUBackSub(&(Amatrix[0][0]),num,indx,B);    //Solves system PAx=PB (returns x in B) 
 
 
 if (flag1==KK-1) 
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 { 
  for(j=KK-1;j>0;j--) 
   B[j]=B[j-1]; 
  B[0]=0; 
 } 
 if (flag2==KK-1) 
 { 
  for(j=KK-1;j>1;j--) 
   B[j]=B[j-1]; 
  B[1]=0; 
 } 
 
 output(B, th, r, L, bc, Ep, load, EpX);   //Returns calculated strains 
 return(theErr); 
} 
 
//************************************************************ 
//***********Internal Subroutines***************************** 
 
 
void Cbar(double C[][7], double theta[], int mat[], double E[][10], double cbm[][4][4], double et[][4]) 
{ 
 //c-bar matrix function 
 
 short i,j,k; 
 int p; 
 double m=0.0,n=0.0; 
 
 for(i=0;i<K;i++) 
 { 
  m = cos(theta[i]); 
  n = sin(theta[i]); 
 
  p = mat[i]; 
 
  cbm[i][0][0] = C[p][0]*pow(m,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(n,4); 
  cbm[i][0][1] = pow(m*n,2)*(C[p][0] + C[p][3] - 4*C[p][6]) + C[p][1]*(pow(m,4) + pow(n,4)); 
  cbm[i][0][2] = C[p][2]*m*m + C[p][4]*n*n; 
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  cbm[i][0][3] = m*n*(C[p][0]*m*m - C[p][3]*n*n - (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][1][1] = C[p][0]*pow(n,4) + (2*pow(m*n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(m,4); 
  cbm[i][1][2] = C[p][2]*n*n + C[p][4]*m*m; 
  cbm[i][1][3] = m*n*(C[p][0]*n*n - C[p][3]*m*m + (C[p][1] + 2*C[p][6])*(m*m - n*n)); 
  cbm[i][2][2] = C[p][5]; 
  cbm[i][2][3] = m*n*(C[p][2] - C[p][4]); 
  cbm[i][3][3] = (C[p][0] + C[p][3] - 2*C[p][1])*pow(m*n,2) + C[p][6]*pow((m*m - n*n),2); 
 
  for(j = 1; j<4 ; j++) 
   for(k = 0; k<j ; k++) 
    cbm[i][j][k] = cbm[i][k][j];  //stacks symmetric terms 
 
  et[i][0] = (E[p][7]*m*m + E[p][8]*n*n)*dT;   //X       thermal strain 
  et[i][1] = (E[p][7]*n*n + E[p][8]*m*m)*dT;   //THETA   thermal strain 
  et[i][2] = E[p][9]*dT;                    //R       thermal strain 
  et[i][3] = 2*m*n*(E[p][7] - E[p][8])*dT;     //X-THETA thermal strain 
 
 } 
} 
 
 
void stress(double cbm[][4][4],double et[][4],double L[],double bc[][3],double sc[][4][5]) 
{ 
 //stress coefficients with the added degenerate cases of L=1,2 
  
 short i,j; 
 double zz=0; 
 int a; 
 
 for(i=0 ; i<K ; i++) 
 { 
  a=0; 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
   



 287

 
  switch(a) 
  { 
  case 1:  //Isotropic and Transversely Isotropic Condition cbm[i][1][1] = cbm[i][2][2] 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(2*cbm[i][2][2]);    
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(4*cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1/(2*cbm[i][2][2]);         
   //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
    } 
   } 
   break; 
  case 2:  //Causes the b[i][1] term to blowup in default equations 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2])/(3*cbm[i][2][2]);  //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2*cbm[i][2][3])/(16*cbm[i][2][2]); //Omega 
    bc[i][2] = 1/(3*cbm[i][2][2]);        
 //Psi 
     
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
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    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    {   
     sc[i][j][4] = - et[i][0]*cbm[i][0][j] - et[i][1]*cbm[i][1][j]; 
     sc[i][j][4] -=  et[i][2]*cbm[i][2][j] + et[i][3]*cbm[i][j][3]; 
     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
    } 
   } 
   break; 
  default:  //The General Solution for the Composite Cylinder model 
   { 
    bc[i][0] = (cbm[i][0][1] - cbm[i][0][2]) / (cbm[i][2][2] - cbm[i][1][1]);  
 //Gamma 
    bc[i][1] = (cbm[i][1][3] - 2 * cbm[i][2][3]) / (4 * cbm[i][2][2] - cbm[i][1][1]);
 //Omega 
    bc[i][2] = 1 / (cbm[i][2][2] - cbm[i][1][1]);       
   //Psi 
 
    zz=(cbm[i][0][2]-cbm[i][0][1])*et[i][0]+(cbm[i][1][2]-cbm[i][1][1])*et[i][1]; 
    zz += (cbm[i][2][2]-cbm[i][1][2])*et[i][2]+(cbm[i][2][3]-cbm[i][1][3])*et[i][3]; 
 
    bc[i][2] *= zz; 
 
    for(j = 0; j<4 ; j++) 
    { 
     sc[i][j][0] = cbm[i][0][j] + bc[i][0]*(cbm[i][1][j] + cbm[i][2][j]); 
     sc[i][j][1] = cbm[i][j][3] + bc[i][1]*(cbm[i][1][j] + 2*cbm[i][2][j]); 
     sc[i][j][2] = cbm[i][1][j] + L[i] * cbm[i][2][j]; 
     sc[i][j][3] = cbm[i][1][j] - L[i] * cbm[i][2][j]; 
     sc[i][j][4] = bc[i][2]*(cbm[i][1][j] + cbm[i][2][j])- et[i][0]*cbm[i][0][j]; 
     sc[i][j][4] += -et[i][1]*cbm[i][1][j] - et[i][2]*cbm[i][2][j] - 
et[i][3]*cbm[i][j][3]; 
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     //j=0: SIGMAx      coefficients :last indx=0-> coeff of Eo 
     //j=1: SIGMAtheta  coefficients :last indx=1-> coeff of (Go R) 
     //j=2: SIGMAr      coefficients :last indx=2-> coeff of A1 R^(L-1) 
     //j=3: TAUx-theta  coefficients :last indx=3-> coeff of A2 R^(-L-1) 
     //                              :last indx=4-> constant 
 
    } 
   } 
  } 
 } 
} 
 
 
void mat_stack(double cbm[][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double (*A)[KK], double B[]) 
{ 
 //subroutine for stacking the components of the linear system Ax=B 
 
 short i, j, ic; 
 double ro,ri,r2, ro2, r3, ro3, r4, ro4, b1t2, b2t2; 
 int a; 
 
 for(i = 0; i<KK ; i++)                 //initialize [A],{B} 
 { 
  B[i] = 0.0; 
  for(j = 0; j<KK ; j++) 
  A[i][j] = 0.0; 
 } 
 
 //next two loops stack elements associated with the integrated B.C. 
 b1t2 = 0; 
 b2t2 = 0; 
 
 for(i = 0; i<K ;i++) 
 { 
  L[i] = sqrt(fabs(cbm[i][1][1] / cbm[i][2][2])); 
  a=0; 
 //set up terms for switching for the degenerate cases 
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  if(L[i]==1.0) 
   a = 1; 
  if(L[i]==2.0) 
   a=2; 
 
  //define radii terms for ease of programming and debugging 
  ri = r[i]; 
  ro = r[i+1]; 
  r2 = pow(r[i],2); 
  ro2 = pow(r[i+1],2); 
  ro3 = pow(r[i+1],3); 
  r3 = pow(r[i],3); 
  ro4 = pow(r[i+1],4); 
  r4 = pow(r[i],4); 
 
  switch(a) 
  { 
  case 1: 
   { 
    A[0][0] += 0.5*(ro2-r2)*(cbm[i][0][0]); 
    A[0][0] += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbm[i][0][1]; 
    A[0][0] += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbm[i][0][2]; 
 
    A[0][1] += (cbm[i][0][3]+bc[i][1]*(cbm[i][0][1]+2*cbm[i][0][2]))*(ro3-r3)/3.0; 
 
    A[1][0] += (cbm[i][0][3]*(ro3-r3))/3.0; 
    A[1][0] += (((1.0/3.0)-log(ri))*cbm[i][1][3]+((-2.0/3.0)-
log(ri))*cbm[i][2][3])*bc[i][0]*r3/3.0; 
    A[1][0] += ((log(ro)-
(1.0/3.0))*cbm[i][1][3]+((2.0/3.0)+log(ro))*cbm[i][2][3])*bc[i][0]*ro3/3.0; 
    A[1][1] += (cbm[i][3][3]+bc[i][1]*(cbm[i][1][3]+2*cbm[i][2][3]))*(ro4-r4)/4.0; 
  
     
    b1t2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*cbm[i][0][1]*bc[i][2]; 
    b1t2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*cbm[i][0][2]*bc[i][2]; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
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    b2t2 += ((3.0*log(ro)-
1.0)*cbm[i][1][3]+(3.0*log(ro)+2.0)*cbm[i][2][3])*ro3*bc[i][2]/9.0; 
    b2t2 -= ((3.0*log(ri)-
1.0)*cbm[i][1][3]+(3.0*log(ri)+2.0)*cbm[i][2][3])*r3*bc[i][2]/9.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  case 2: 
   { 
    A[0][0] += (cbm[i][0][0]+bc[i][0]*(cbm[i][0][1]+cbm[i][0][2]))*(ro2-r2)/2.0; 
    A[0][1] += (((4.0*log(ro)-7.0/3.0)*ro3-(4.0*log(ri)-
7.0/3.0)*r3)*cbm[i][0][1]*bc[i][1])/3.0; 
    A[0][1] += (((4.0*log(ro)-1.0/3.0)*ro3-(4.0*log(ri)-
1.0/3.0)*r3)*2*cbm[i][0][2]*bc[i][1])/3.0; 
    A[0][1] += (ro3-r3)*cbm[i][0][3]/3.0; 
 
    A[1][0] += (cbm[i][0][3]+bc[i][0]*(cbm[i][1][3]+cbm[i][2][3]))*(ro3-r3)/3.0; 
    A[1][1] += (ro4-r4)*cbm[i][3][3]/4.0+((log(ro)-
0.5)*cbm[i][1][3]+2*log(ro)*cbm[i][2][3])*bc[i][1]*ro4; 
    A[1][1] -= ((0.5-log(ri))*cbm[i][1][3]-2*log(ri)*cbm[i][2][3])*bc[i][1]*r4; 
 
     
    b1t2 += (cbm[i][0][1]+cbm[i][0][2])*(ro2-r2)*(bc[i][2])/2.0; 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0; 
 
    b2t2 += (cbm[i][1][3]+cbm[i][2][3])*(ro3-r3)*bc[i][2]/3.0; 
    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  default: 
   {//A[0][i] = Fx Conditions  A[1][i] = Tx Conditions 
    A[0][0] += (sc[i][0][0]*( ro2 - r2 )) / 2.0;     //e terms 
    A[1][0] += (sc[i][3][0]*( ro3 - r3 )) / 3.0;     
    A[0][1] += (sc[i][0][1]*( ro3 - r3 )) / 3.0;     //g terms 
    A[1][1] += (sc[i][3][1]*( ro4 - r4 )) / 4.0; 
 
    b1t2 += (sc[i][0][4]*( ro2 - r2 )) / 2.0;      //thermal 
terms 
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    b2t2 += (sc[i][3][4]*( ro3 - r3 )) / 3.0; 
   } 
   break; 
  } 
 } 
 
 ic = 0; 
 for(i = 2; i<(KK-1) ; i += 2) 
 { 
  ic++; 
   
   
 //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic-1]==1.0) 
   a = 1; 
  if(L[ic-1]==2.0) 
   a = 2; 
 
  //define radii terms for ease of programming and debugging 
 
  ri = r[ic-1]; 
  ro = r[ic]; 
  r2 = pow(r[ic-1],2); 
  ro2 = pow(r[ic],2); 
  ro3 = pow(r[ic],3); 
  r3 = pow(r[ic-1],3); 
  ro4 = pow(r[ic],4); 
  r4 = pow(r[ic-1],4); 
   
  switch(a) 
  { 
  case 1: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+cbm[ic-1][0][2])*(r2-ro2)/2.0; 
    A[0][i+1] = (log(ro)-log(ri))*(cbm[ic-1][0][1]-cbm[ic-1][0][2]);//check 2*cbm[ic-
1][0][2] 
    A[1][i] = (ro3-r3)*(cbm[ic-1][1][3]+cbm[ic-1][2][3])/3.0; 
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    A[1][i+1] = (ro-ri)*(cbm[ic-1][1][3]-cbm[ic-1][2][3]); 
   } 
   break; 
  case 2: 
   { 
    A[0][i] = (cbm[ic-1][0][1]+2*cbm[ic-1][0][2])*(ro3-r3)/3.0; 
    A[0][i+1] = (2.0*cbm[i][0][2]-cbm[i][0][1])*((1.0/ro) - (1.0/ri)); 
    A[1][i] = (cbm[ic-1][1][3]+2*cbm[ic-1][2][3])*(ro4-r4)/4; 
    A[1][i+1] = (cbm[ic-1][1][3]-2*cbm[ic-1][2][3])*(log(ro)-log(ri)); 
   } 
   break; 
  default: 
   { 
    A[0][i] = sc[ic-1][0][2]*(pow(ro, 1+L[ic-1]) - pow(ri, 1+L[ic-1]) ) / (1+L[ic-1]); 
    A[0][i+1] = sc[ic-1][0][3]*(pow(ro, 1-L[ic-1]) - pow(ri, 1-L[ic-1]) ) / (1-L[ic-
1]); 
    A[1][i] = sc[ic-1][3][2]*(pow(ro, 2+L[ic-1]) - pow(ri, 2+L[ic-1]) ) / (2+L[ic-1]); 
    A[1][i+1] = sc[ic-1][3][3]*(pow(ro, 2-L[ic-1]) - pow(ri, 2-L[ic-1]) ) / (2-L[ic-
1]); 
   } 
   break; 
  } 
 } 
 //Applied Loads 
 B[0] = (load[2] / (2 * Pi)) - b1t2;        
 B[1] = (load[3] / (2 * Pi)) - b2t2; 
 
 
 //next loop stacks the elements associated with the interface conditions w[i](r) = w[i+1](r) and sigma-r 
 
 ic = 0; 
 for(i = 2; i<(KK-3) ; i += 2) 
 { 
 
  //set up terms for switching for the degenerate cases 
  a=0; 
  if(L[ic]==1.0) 
   a = 1; 



 294

  if(L[ic]==2.0) 
   a=2; 
  ic++;  
 
  switch(a) 
  { 
 
  case 1: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]*log(r[ic])+cbm[ic-
1][2][2]*(log(r[ic])+1))); 
    A[i][0] -
=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))); 
    A[i][1] = ((cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*bc[ic-1][1]+cbm[ic-1][2][3])*r[ic]; 
    A[i][1] -=((cbm[ic][1][2]+2*cbm[ic][2][2])*bc[ic][1]+cbm[ic][2][3])*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+cbm[ic-1][2][2]) ; 
    A[i][i+1] = (cbm[ic-1][1][2]-cbm[ic-1][2][2])*pow(r[ic],-2);//check2*cbm[ic-
1][2][2] 
    A[i][i+2] = -(cbm[ic][1][2]+cbm[ic][2][2]); 
    A[i][i+3] = -(cbm[ic][1][2]-cbm[ic][2][2])*pow(r[ic],-2);//check2*cbm[ic-1][2][2] 
     
    //The w(r) conditions 
    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2]*log(r[ic])+cbm[ic][2][2]*(log(r[ic])+1))*bc[ic][2]; 
    B[i] -= (cbm[ic-1][1][2]*log(r[ic])+cbm[ic-1][2][2]*(log(r[ic])+1))*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]*log(r[ic]); 
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   } 
   break; 
 
  case 2: 
   { 
    //The sigma r conditions 
    A[i][0] = (cbm[ic-1][0][2]+bc[ic-1][0]*(cbm[ic-1][1][2]+cbm[ic-1][2][2])); 
    A[i][0] -=(cbm[ic][0][2]+bc[ic][0]*(cbm[ic][1][2]+cbm[ic][2][2])); 
    A[i][1] = (cbm[ic-1][2][3]+bc[ic-1][1]*(cbm[ic-1][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic-1][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
    A[i][1] -=(cbm[ic][2][3]+bc[ic][1]*(cbm[ic][1][2]*(4.0*log(r[ic])-
1)+2.0*cbm[ic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic]; 
 
    A[i][i] =(cbm[ic-1][1][2]+2*cbm[ic-1][2][2])*r[ic] ; 
    A[i][i+1] = (cbm[ic-1][1][2]-2*cbm[ic-1][2][2])*pow(r[ic],-3); 
    A[i][i+2] = -(cbm[ic][1][2]+2*cbm[ic][2][2])*r[ic]; 
    A[i][i+3] = -(cbm[ic][1][2]-2*cbm[ic][2][2])*pow(r[ic],-3); 
     
    //The w(r) conditions 
    A[i+1][0] =(bc[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]); 
    A[i+1][1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic]; 
 
 
    A[i+1][i] = r[ic]; 
    A[i+1][i+1] = 1.0/r[ic]; 
    A[i+1][i+2] = -r[ic]; 
    A[i+1][i+3] = -1.0/r[ic]; 
 
    //The thermal contributions 
    B[i] = (cbm[ic][1][2] + cbm[ic][2][2])*bc[ic][2]-(cbm[ic-1][1][2] + cbm[ic-
1][2][2])*bc[ic-1][2]; 
    B[i] += sc[ic][2][4] - sc[ic-1][2][4]; 
 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
   } 
   break; 
 
  default: 
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   { 
    A[i][0] = sc[ic-1][2][0] - sc[ic][2][0];    //eo terms 
    A[i][1] = ( sc[ic-1][2][1] - sc[ic][2][1] ) * r[ic]; //go terms 
 
    A[i + 1][0] = ( bc[ic-1][0] - bc[ic][0] ) * r[ic];   
    A[i + 1][1] = ( bc[ic-1][1] - bc[ic][1] ) * r[ic]*r[ic]; 
         
    A[i][i] = sc[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) ); 
    A[i][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) ); 
    A[i][i+2] = -sc[ic][2][2] * pow(r[ic], (L[ic] - 1) ); 
    A[i][i+3] = -sc[ic][2][3] * pow(r[ic], (-L[ic] - 1) ); 
 
    A[i+1][i] = pow(r[ic], L[ic-1] ); 
    A[i+1][i+1] = pow(r[ic], -L[ic-1] ); 
    A[i+1][i+2] = -pow(r[ic], L[ic] ); 
    A[i+1][i+3] = -pow(r[ic], -L[ic] ); 
 
    B[i] = sc[ic][2][4] - sc[ic-1][2][4]; 
    B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]; 
   } 
   break; 
  } 

}  
        
 //next lines stack the matrix elements associated with the pressure B.C. 
 
 //The inner surface pressure conditions 
 a=0; 
 //set up terms for switching for the degenerate cases 
 if(L[0]==1.0) 
  a = 1; 
 if(L[0]==2.0) 
  a=2; 
 switch(a) 
 { 
 case 1: 
  { 
   A[KK-2][0] = (cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))); 
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   A[KK-2][1] = ((cbm[0][1][2]+2*cbm[0][2][2])*bc[0][1]+cbm[0][2][3])*r[0]; 
   A[KK-2][2] = (cbm[0][1][2]+cbm[0][2][2]); 
   A[KK-2][3] = (cbm[0][1][2]-cbm[0][2][2])*pow(r[0],-2); 
 
   B[KK-2] = -load[1] - (cbm[0][1][2]*log(r[0])+cbm[0][2][2]*(log(r[0])+1))*bc[0][2] - 
sc[0][2][4]; 
  } 
  break; 
 case 2: 
  { 
   A[KK-2][0] = (cbm[0][0][2]+bc[0][0]*(cbm[0][1][2]+cbm[0][2][2])); 
   A[KK-2][1] = (cbm[0][1][2]*(4*log(r[0])-1)+2*cbm[0][2][2]*(4*log(r[0])+1))*bc[0][1]*r[0]; 
   A[KK-2][2] = (cbm[0][1][2]+2*cbm[0][2][2])*r[0]; 
   A[KK-2][3] = (cbm[0][1][2]-2*cbm[0][2][2])*pow(r[0],-3); 
 
   B[KK-2] = -load[1] - (cbm[0][1][2]+cbm[0][2][2])*bc[0][2] - sc[0][2][4]; 
  } 
  break; 
 default: 
  { 
   A[KK-2][0] = sc[0][2][0]; 
   A[KK-2][1] = sc[0][2][1] * r[0]; 
   A[KK-2][2] = sc[0][2][2] * pow(r[0], (L[0] - 1) ); 
   A[KK-2][3] = sc[0][2][3] * pow(r[0], (-L[0] - 1) ); 
 
   B[KK-2] = -load[1] - sc[0][2][4]; 
  } 
  break; 
 } 
 //The outer surface pressure conditions 
 a=0; 
 //set up terms for switching for the degenerate cases 
 if(L[K-1]==1.0) 
  a = 1; 
 if(L[K-1]==2.0) 
  a=2; 
 switch(a) 
 { 
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 case 1: 
  { 
   A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]*log(r[K])+cbm[K-
1][2][2]*(log(r[K])+1))); 
   A[KK-2][1] = ((cbm[K-1][1][2]+2*cbm[K-1][2][2])*bc[K-1][1]+cbm[K-1][2][3])*r[K]; 
   A[KK-2][2] = (cbm[K-1][1][2]+cbm[K-1][2][2]); 
   A[KK-2][3] = (cbm[K-1][1][2]-cbm[K-1][2][2])*pow(r[K],-2); 
 
   B[KK-2] = -load[0] - (cbm[K-1][1][2]*log(r[K])+cbm[K-1][2][2]*(log(r[K])+1))*bc[K-1][2]- 
sc[K-1][2][4]; 
  } 
  break; 
 case 2: 
  { 
   A[KK-2][0] = (cbm[K-1][0][2]+bc[K-1][0]*(cbm[K-1][1][2]+cbm[K-1][2][2])); 
   A[KK-2][1] = (cbm[K-1][1][2]*(4*log(r[K])-1)+2*cbm[K-1][2][2]*(4*log(r[K])+1))*bc[K-
1][1]*r[K]; 
   A[KK-2][2] = (cbm[K-1][1][2]+2*cbm[K-1][2][2])*r[K]; 
   A[KK-2][3] = (cbm[K-1][1][2]-2*cbm[K-1][2][2])*pow(r[K],-3); 
 
   B[KK-2] = -load[0] - (cbm[K-1][1][2]+cbm[K-1][2][2])*bc[K-1][2]- sc[K-1][2][4]; 
  } 
  break; 
 default: 
  { 
   A[KK-1][0] = sc[K-1][2][0]; 
   A[KK-1][1] = sc[K-1][2][1] * r[K]; 
   A[KK-1][KK-2] = sc[K-1][2][2] * pow(r[K], ( L[K-1] - 1) ); 
   A[KK-1][KK-1] = sc[K-1][2][3] * pow(r[K], ( -L[K-1] - 1) ); 
 
   B[KK-1] = -load[0] - sc[K-1][2][4]; 
  } 
  break; 
 } 
} 
void output(double BB[], double th[], double rad[], double L[], double bc[][3], double Ep[], double *load, 
double EpX[]) 
{ 
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 int surface[2]={0,K-1},i,j,a; 
 double radstrain, hoopstrain, axstrain, shearstrain, r;  
 
 for (int ab=0;ab<6;ab++) 
 { 
  EpX[ab]=0.0; 
  Ep[ab]=0.0; 
 } 
 
 for (j=0;j<2;j++) 
 { 
  i=surface[j]; 
  a=0; 
  if(L[i]==1.0) 
   a=1; 
  if(L[i]==2.0) 
   a=2; 
 
  if(j==1) 
   r=rad[i+1]; 
  else 
   r=rad[i]; 
 
//************check bc[i][2] definitions - does it need to be mult by r???******************    
  switch(a) 
  { 
  case 1: 
   { 
   //Strain Response x-y coordinates 
    radstrain = (BB[2*i+2])-(BB[2*i+3]*pow(r,-
2))+bc[i][0]*BB[0]*(log(r)+1)+2*bc[i][1]*BB[1]*r+bc[i][2]*(log(r)+1); 
    hoopstrain = (BB[2*i+2])+(BB[2*i+3]*pow(r,-
2))+bc[i][0]*BB[0]*log(r)+bc[i][1]*BB[1]*r+bc[i][2]*log(r); 
    axstrain = BB[0]; 
    shearstrain = BB[1]*r; 
   } 
   break; 
  case 2: 
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   { 
   //Strain Response x-y coordinates 
    radstrain = (2*BB[2*i+2]*r)-(2*BB[2*i+3]*pow(r,-
3))+bc[i][0]*BB[0]+bc[i][1]*BB[1]*2*r*(4*log(r)+1)+bc[i][2]; 
    hoopstrain = (BB[2*i+2]*r)+(BB[2*i+3]*pow(r,-
3))+bc[i][0]*BB[0]+bc[i][1]*BB[1]*r*(4*log(r)-1)+bc[i][2]; 
    axstrain = BB[0]; 
    shearstrain = BB[1]*r; 
   } 
   break; 
  default: 
   { 
   //Strain Response x-y coordinates 
    radstrain = (L[i]*BB[2*i+2]*pow(r, L[i]-1))-(L[i]*BB[2*i+3]*pow(r,-L[i]-
1))+bc[i][0]*BB[0]+2*bc[i][1]*BB[1]*r+bc[i][2]; 
    hoopstrain = BB[2*i+2]*pow(r,L[i]-1)+BB[2*i+3]*pow(r,-L[i]-
1)+bc[i][0]*BB[0]+bc[i][1]*BB[1]*r+bc[i][2]; 
    axstrain = BB[0]; 
    shearstrain = BB[1]*r; 
   } 
   break; 
  } 
  EpX[3*j]=axstrain; 
  EpX[3*j+1]=hoopstrain; 
  EpX[3*j+2]=shearstrain; 
 } 
} 
 
 

12.4 Elastic_Solution.h 

 

//Elastic_Solution.h 
 
#include "Forward_Solution.h" 
#include "matrix.h" 
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#include <iostream.h> 
#include <fstream.h> 
/*******************************/ 
/*routines internal to CCM*/ 
/*******************************/ 
int Elastic_Solution(double C[][7], double E[][10], double r[], double theta[], int mat[], double *load, 
double Ep[], double EpX[], double B[]); 
void Cbar(double C[][7], double theta[], int mat[], double E[][10], double cbm[][4][4], double et[][4]); 
void stress(double cbm[][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]); 
void mat_stack(double cbm[][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *load, 
double (*A)[KK], double B[]); 
void output(double BB[], double theta[], double rad[], double L[], double bc[][3], double Ep[], double 
*load,double EpX[]); 
 

12.5 Data_Input.cpp 

 

// File for input and output of information to data files 
 
#include "Data_Input.h" 
 
ifstream inputfile, loadfile;   //Data file containing input data (material properties, geometry, 
loads) 
ofstream tracking, outputfile;   //Data files for data output and intermediate values 
char *input, *load; 
 
void Input(double E[][10], double radii[], double theta[], int mat[], double Loads[numloads][4]) 
{  
// Change for input from User 
 
 input = "Testinput.dat"; 
 load = "TestLOADS.dat"; 
 
 inputfile.open(input); 
 loadfile.open(load); 
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 tracking.open("tracking.dat");  // Opening Data files for input, output and tracking of 
values 
 outputfile.open("output.dat"); 
  
 int i,j; 
 double temp; 
 
 for(i=0; i<matnum;i++) 
 { 
  for( j=0; j<10; j++)   //Reads in Elastic Moduli 
(E1,E2,E3,G12,nu12,nu13,nu23,a1,a2,a3) IN ORDER!!! 
   inputfile >> E[i][j]; 
 } 
 
 for(j=0; j<K+1; j++)    //Reads in all surface radii 
  inputfile >> radii[j]; 
  
 for(i=0; i<K; i++)     //Reads in each ply angle (degrees) and converts to 
radians 
 { 
  inputfile >> temp; 
  theta[i] = temp * (Pi/180); 
  inputfile >> mat[i];   //Reads in the material number information (0,1,2...) 
 } 
 
 for(i=0;i<numloads;i++) 
 {         // !!!!LOAD CONDITIONS!!!! 
  for(j=0; j<4; j++)    // Loads[0] = External Pressure 
   loadfile >> Loads[i][j]; // Loads[1] = Internal Pressure 
 }         // Loads[2] = Axial Load 
          // Loads[3] = Torsional Load 
} 
 
void Output_data(double E[][10],double radii[], double theta[], int mat[], double Loads[numloads][4], 
double C[][7]) 
{ 
 tracking << "Tube properties entered:" << endl; 
 for(int i=0;i<matnum;i++) 
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 { 
  tracking << "\n\nMaterial #"<<i+1; 
  for(int j=0;j<10;j++) 
  { 
   tracking << "\nE["<<j<<"] =\t"<<E[i][j]; 
  } 
  tracking<<endl<<endl; 
 } 
 tracking <<"\nTube geometry entered:\n"; 
 
 for(i=0; i<K; i++) 
 { 
  tracking << "Ri and Ro of ply #" << i+1<< "\t"<<radii[i]<<"\t\t"<<radii[i+1]<<"\t\tAngle"<< 
"\t"<< theta[i]*(180/Pi)<<"\tMaterial #\t"<<mat[i]<<endl; 
 } 
 
 for(i=0;i<numloads;i++) 
 { 
  tracking << "\nLoading Conditions #"<<i+1<<":" << endl; 
  tracking << "Axial Load = \t" << Loads[i][2] << endl; 
  tracking << "Torque = \t" << Loads[i][3] << endl; 
  tracking << "Internal Pressure = \t" << Loads[i][1] << endl; 
  tracking << "External Pressure = \t" << Loads[i][0] << endl<<endl; 
 } 
 for (i=0;i<matnum;i++) 
 { 
  tracking<<"\nCij Values for Material #"<<mat[i]<<endl; 
  for (int j=0;j<7;j++) 
   tracking << "\nC["<<j<<"] = "<<C[i][j]; 
 
  tracking<< endl<<endl; 
 } 
 tracking << endl; 
 tracking.close(); 
} 
 
// Calcualtes the C Matrix Values from the input data 
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void CMatrix(double E[][10], double C[][7]) //c matrix subroutine 
{ 

double v; 
  
 for(int i=0;i<matnum;i++) 
 { 
  v = (1 - E[i][4] *(E[i][4] * E[i][1] / E[i][0] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][0]) - 
E[i][5] * E[i][5] * E[i][2] / E[i][0] - E[i][6] * E[i][6] * E[i][2] / E[i][1]); 
 
  C[i][0] = (1 - E[i][6] * E[i][6] * E[i][2] / E[i][1]) * E[i][0] / v;        // c11 
  C[i][1] = (E[i][4] + E[i][5] * E[i][6] * E[i][2] / E[i][1]) * E[i][1] / v;     // c12 
  C[i][2] = (E[i][5] + E[i][4] * E[i][6]) * E[i][2] / v;                   // c13 
  C[i][3] = (1 - E[i][5] * E[i][5] * E[i][2] / E[i][0]) * E[i][1] / v;        // c22 
  C[i][4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][0]) * E[i][2] / v;     // c23 
  C[i][5] = (1 - E[i][4] * E[i][4] * E[i][1] / E[i][0]) * E[i][2] / v;        // c33 
  C[i][6] = E[i][3];                                              // c66 
 } 
} 
 

12.6 Data_Input.h 

 

// Data Input.h 
 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "Forward_Solution.h" 
#include <fstream.h> 
 
 
void Input(double E[][10], double radii[], double theta[],int mat[], double Loads[numloads][4]); 
void Output_data(double E[][10], double radii[], double theta[],int mat[], double Loads[numloads][4], 
double C[][7]); 
void CMatrix(double E[][10], double C[][7]); //c matrix subroutine 
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12.7 Matrix.cpp 

 

#include "Matrix.h" 
#include <math.h> 
#include <stdlib.h> 
#include <iostream.h> 
//Matrix.cpp 
 
The following subroutines have been omitted due to copyright considerations.  The 
appropriate subroutines can be found in Numerical Recipes (sections on LU Decomposition 
and Backsubstitution). 
 
void SysScale(double *A,double *B,int n) 
int LUDecomposition (double *A,int n,int *indx,int d) 
void LUBackSub (double *A,int n,int *indx,double *B) 
long Gauss(double *A,double *B,double *X,int n) 
 

12.8 Matrix.h 

 

//Matrix.h 
 
#include <math.h> 
 
 
 
void SysScale(double *A,double *B,int n); 
int LUDecomposition (double *A,int n,int *indx,int d); 
void LUBackSub (double *A,int n,int *indx,double *B); 
long Gauss(double *A,double *B,double *X,int n) 
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