Chapter 8: The Clamped Zernike Radial Polynomials

8.1 Introduction

When conversing between the optical and mechanical worlds, it would be desirable to be
able to compensate for image aberrations using the structural mode shapes of the
membrane optic. Such compensation might be desirable as structural mode shapes are
preferred energy states of the system, and translating the optical aberration into a
mechanical mode shape may provide another means for controlling optical image
compensation. To the optical engineer, wavefronts are measured using Zernike
polynomials. To mechanical engineers, wavefronts are more aptly described using

structural mode shapes.

The overall goal of this chapter is to demonstrate a novel set of polynomials for
describing image aberrations. Each of these polynomials is zero at the membrane edge,
consequently bridging the gap between the mechanical and optical worlds of the
membrane lens. In the first portion of this chapter, we will review the orthonormal mode
shapes of a clamped circular membrane. Then, we will introduce the Zernike
polynomials, a complete set of polynomials that are traditionally used in the optical world
to describe image aberrations. Having established both, we will next discuss the use of a
uniform actuation pressure and boundary displacement to statically correct the image
aberration. We will then develop a novel set of polynomials, the clamped Zernike radial
polynomials, and show their advantage over the traditional Zernike polynomials. Finally,
we will describe the Fourier expansion of the clamped Zernike polynomials using the
basis formed by the orthonormal mode shapes of the circular membrane and demonstrate
analytically how these shapes could be used to make a nearly 100% effective deformable
membrane lens for adaptive optics. This chapter reflects collaborative work between the
Air Force Research Lab Directed Energy Directorate (AFRL/DE) and Virginia Tech in

the area of adaptive membrane optics.
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8.2 Orthonormal Mode Shapes of a Clamped Circular Membrane
The mode shapes of a clamped circular membrane are given by the solution to Bessel’s

equation,

dr*  rdr 2

r

2 2
d R+ld_R+[132_'u_JR:(), (8.1)

where Equation 8.1 is the spatial portion of the partial differential equation governing the

membrane’s transverse dynamics. The solutions to Equation 8.1 are given by

Y, (r,0)=A4,,J,(B,,7) n=12...
Y (ro)=A4,.J, (B, r)cos(mb) mmn=12.. (8.2)
Y (r,0)=A4,.J, (p,r)sin(mb) mn=12..

Equations 8.2 emphasize that the clamped circular membrane has symmetric mode

shapes, ¥, (r,6), that are unique, whereas the asymmetric mode shapes, ¥, . (7,8)and

mnc

Y (r,0), are degenerate.

Next, we wish to normalize the mode shapes given by Equations 8.2. First, we will

normalize the symmetric mode shapes. Following the procedure as outlined by

Meirovich (1997), we write:

2ra

[ p®,,d0 = [ [ pA%0,J3 (B, )rdrd6 = 1. (8.3)
Q 00

Evaluating the integral and solving for the constant 4,, we get:

2wa

[[p 45,75 (Byr)rdrdo =z pa® 45,0} (By,a) =1, (8.4)
00
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and

1
on — . (85)
a"]l (ﬂOna) V 72.10
Following the same procedure for the asymmetric modes, we get:
2ra T
[ [ A2 2 (B oo (myrirdd = pa 42,07 (Bt) = (8.6)
thus giving us:
Amnc = Amns = \/E N (8'7)

aJ o (Bna) 7o

Having found the constants given by Equations 8.5 and 8.7, we now have a set of
orthogonal and normalized (hence, orthonormal) mode shapes. By orthonormal, it means

that the mode shapes demonstrate the following property:

i=j

T (8.8)
l¢]

1
i PP dQ = {0

This property will help simplify our analysis in subsequent sections.
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8.3 Zernike Polynomials

Image aberrations are often defined by a set of orthogonal functions known as the
Zernike polynomials. Zernike polynomials are named after their original creator, Frits
Zernike (circa 1934), who devised a complete set of polynomials orthogonal over a unit
circle to describe wavefront distortions. Each Zernike polynomial (except for the
primary piston mode) has maximum amplitude of +1, minimum amplitude of -1, and an

average over the surface of zero (Tyson, 2000).

The Zernike functions are used to define wavefront aberration by the relation:

sin((n —2m)@), n—2m >0

k_ n
Z(I/-, 0) _ Z ZAnmR:ll—Zm (r) or Y (8.9)
n=0 m=0 COS((n — 2m)9)’ n— 2m < 0

in which the coefficients 4, are a measure of the magnitude of each aberration (usually

stated in wavelengths of light). The radial polynomial appearing in Equation 8.9,
R'"(r), is defined by:

m —q)!
R ()= 3 (-1)° (n—ys)! -29) (8.10)
s=0

sl(m—s)!(n—m—s)!

As stated by Malacara (1992), only positive values of n-2s in Equation 8.10 are included
in the summation. Also, Equation 8.9 can be written as a function of just a single index,

k. By letting

_nn+l)

k m+1l (8.11)

we can describe an image aberration asZ, (r,0), indicating that the image aberration

includes all terms up to term £. For example,
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Z,(r,0)=1+rsin@+rcos@+r’sin26.

(8.12)

Table 8.1 describes the first nine Zernike polynomials. A plot of these Zernike shape

functions can be found in Figure 8.1.

Table 8.1.

Description of the first nine Zernike polynomials.
n | m | k | Zernike Polynomial | Description
0j0 |11 Piston

1[0 |2 rsinf Tilt about x axis
1|1 (3] rcos@ Tilt about y axis
210 |4 ?sin26 Astigmatism
211 (5] 2221 Defocus

212 |6 r%cos20 Astigmatism
310 (7] »3sin36 Trefoil

311 [8] (3 -2r)sing Coma

31219 (3r3 - 2r)cos 0 Coma
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Figure 8.1. Sample plots of the Zernike polynomials describing particular wave

front aberrations.

It is also important to point out that when the quantity n-2m is zero, the theta dependent
portion of the Zernike polynomial drops out, leaving only a polynomial that is a function
of the radius, ». The piston and defocus terms are examples of this rule (refer to Table
8.1). Further, when m = 0, the radial Zernike polynomials simplify to monomials of

degree n, such that

R'(r)y=r". (8.13)
We have now established the optical space and the modal space for a membrane lens.
Next, we will look at using uniform pressure and boundary displacement to deform the

surface of the membrane to correct for any image aberration. This original concept has

been proposed by the AFRL/DE.
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8.4 Static Image Aberration Compensation
To properly correct for image aberrations using a deformable mirror, geometrical optics
suggests that the required displacement is half of the wavefront aberration (Malacara,

1992), namely:

W(F0) = %Z(ﬁ,&). (8.14)

. . . ) . T . .
Here, we introduce the non-dimensional variable7 =—, where a is the radius of the
a

membrane lens.

As previously derived, the equation of motion governing the transverse dynamics of a

circular membrane is given by

1 &*w
VZFHW:_ .
¢ ot

(8.15)

If a uniform pressure is acting on the interior surface of the membrane, then the
difference between the top and bottom surface pressures, which we will denote

asAp(r,0,t), enters into the equation of motion as a forcing function. Similarly, we can
also assume for our analysis that a distributed, non-uniform pressure, p,(r,6,¢), is able to
act on the membrane. This non-uniform pressure may appear as an electrostatic pressure,
and would be used to eliminate any remaining residual aberrations. The electrostatic
pressure term, p,(r,6,t), enters the equation of motion in the same manner as the
uniform pressure term. Assuming that the incoming wavefront aberrations are changing

slowly enough for the membrane to achieve a new, static equilibrium position, then

Equation 8.15 becomes

Ap+ p,

Vo w+ =0, (8.16)

219



where T is the applied tensile loading to the membrane. We can non-dimensionalize

Equation 8.16 by introducing the variable 7 such that Equation 8.16 becomes

A
Viow = —(%]az, (8.17)

where the Laplacian in dimensionless coordinates is given by

0w

1
+——+
orr  FOFr 1?00 For

Viow= (8.18)

ow 10w 1 G(Aaw] 1 *w
= — |+ — :

or ) 7 o06?
For the remainder of this chapter, we will assume that the measured image aberration

consists of Zernike polynomials up to the 5™ degree, so that we have

Z(#,0) = Ay, + A, R} (7)cos @ — A, R| (7)sin @ + A,y R; (7)cos(20) + A, R (7) — A,, R; (7)sin 20
+ Ay R (F)cos30 + Ay Ry (7) cos @ — A, Ry (7)sin @ — A, R; (7)sin 30 + A, R, (7) cos 40
+ A, R; (7)c0s20 + A, R) (7) — AR (7)sin 20 — A, R} (7)sin 40
+ A R: (7)cos 50+ Ay R (7)cos30 + Ay, Ri(#) cos @ — A, RL(F)sin O
— Ay, R: (7)sin 30 — A, R: (7)sin 56.
(8.19)

To help simplify our analysis, we substitute in the monomials (Equation 8.13) and the

other radial polynomials (for example, see Table 13.1 in Malacara (1992)), as given by

R} =27 -1, R] =6/" 67" +1,
Ry =3/ =27, R} =47* =377, , (8.20)
R =107 —127° + 37, R} =57° —47°

and can consequently rewrite Equation 8.19 as
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Z(7,0)= Ay + Ayy7 cos@ — A, 7sin @ + A, 7° cos(20) — A,,7” sin 20+ A, 7 cos 30
— A7 sin30 + A, 7" cos 40— A, 7" sin 40+ Ay 7> cos 50— A7 sin 50 + A, (277 —1)
+ Ay, (671 — 677 +1) + (37 — 27)(4,, cos O — Ay, sin 0) + (47* = 377)(4,, cos 26 — A, sin 26)
+ (1077 = 127> + 37)(4,, cos @ — Ay, sin @) + (57° — 47 )( A, cos 30 — A, sin36).
(8.21)

Next, we collect like terms of the form 7" cosn@and 7" sinné in Equation 8.21 and get

Z(F,0)= Ay — Ay, + Ay + (A — 24, + 345, )P cos O — (A4, — 245, + 34, )Fsin
+ (A, —34,, )P cos(20) — (A, =34, )#* sin 20+ (4,, — 44, ) cos 360
— (A4, — 44, ) sin30 + (4, )F* cos40—(4,, )F* sin 46+ (4, )F° cos 50
— (A )F® sin 50 + (24, — 64, > + 64,7* +37°(4,, cos@ — A, sin 0)
+47* 4,,(cos 20 — A, sin 20)+ (107° —127° | 4,, cos 0 — Ay, sin )
+57°(4,, cos30 — A, sin36).

(8.22)

Combining Equation 8.14 and 8.17, we can solve for the required actuation pressure,

namely,
T o
Ap+pe = —gv Z . (823)

To control the image aberration using just a uniform pressure and boundary

displacement, we set p,(7,6,t) =0 in Equation 8.23. The general solution to Equation

8.17 has been solved by Wilkes (2005) and is given by:

a’Ap
4T

n'n

w.(7,0) = C, +[ j(l—f2)+ >(C,7 cosnf+ D, sinnd), (8.24)
n=1

where Cy, C,, and D, are all constants to be determined based on the amount of aberration
present in the measured wavefront signal. The correctable wavefront aberration, using

the definition of Equation 8.14, is given by:

221



a’Ap
4T

Z.(7,0) = 2C, + 2[ J(l —#)+23(C,7 cosnd + D, 7, sinnd). (8.25)
n=1

The residual aberration, Z__(7,0), is the difference between the measured aberration and

res

the correctable portion, Z,, (#,0) = Z(7,0)— Z,(7,0) . Explicitly, we have:

res

7. (7,0)= Ay — Ay, + Ay + (A, — 245, + 34, JFcos @ — (A, — 245, + 34, JFsin &
+(Ay — 34, )7 cos(20) — (Ay, — 34, )P sin 20+ (4, — 44;, )7 cos36
—(A4y, — 44, ) sin 36 + (4, JF* cos 40— (4,, ) sin 40+ (4, )7° cos 50
— (A )P sin 50 + (24, — 64, JF* + 64,7 +37°(4,, cos @ — 4, sin 9)
+ 47 4, (c0s 20 — A, sin 20)+ (107* —127° ) 4, cos @ — A, sin )
a’Ap
417
+(C,7* c0s 26 + D, sin 20) + (C,#° cos 30 + D, sin 30)
+(C,7* c0s26 + D,7* sin 46) + (Cs7° cos 56 + D7 sin 56) .

+57°( 4, cos36 — A, sin30) - 2{C, + [ )(1 — )+ (C,Fcos@ + D,isin 0)

(8.26)

By setting like power terms equal to each other, we see that the defocus terms (those

proportional to#*) can be eliminated by applying a uniform pressure of

4T
Ap = __(A21 - 3A42)- (8.27)

a2
Similarly, the piston (constant) term can be eliminated by rigidly displacing the boundary

1
C, = E(AO0 + A, —54,,). (8.28)

Finally, solving for the remaining unknowns in Equation 8.26, we find that by displacing

the boundary according to the following relations:

222



1 1

C =5(A10 —24;, +34;, )a D, = _E(An —24;, +34; )=
1 1

Cz =E(A20 —3A41), D, = _E(Azz _3A43 )a
1 1

C3 = 5(1430 —4A51), D3 = _E(AB _4A54 ), (3.29)
1 1

C4 :EA40’ D4 =—5A44,
1 1

Cs :EASM Ds :_EAssa

we can eliminate all terms of the form 7" cosn@ and r"sinn@ forn =1, ..., 5. The

residual aberration (Equation 8.26) can therefore be reduced to

Z,..(7,0) = 64,,7* +37°(4,, cos@ — A, sin0)+ 47*(4,, cos26 — A, sin 20)
+ (10?5 —127° XA52 cos @ — A, sin 8)+ 57° (A4, cos 30 — A, sin 30). (8:39)
A summary of the correctable aberrations and residual aberrations is given in Table 8.2.
Notice that none of the residual aberration terms given in Table 8.2 are amiable to the
boundary conditions imposed by the mechanical lens. Motivated by the inconsistencies
between the mechanical and optical domains, the next section will derive a new basis
with which to express the incoming image aberration. This new basis will be referred to

as the clamped Zernike radial polynomials.
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Table 8.2. Summary of wavefront correction for a membrane optic using uniform

pressure difference (across the outer and inner surfaces of the membrane) and

boundary displacement.

Zernike Polynomial

Correctable Portion

Residual Aberration

1 1 0

Fsin @ Fsin @ 0

Fcos® Fcos6 0

7 sin 20 7 sin 20 0

277 —1 27 —1 0

7 cos26 7 cos26 0

7’ sin 36 7 sin 36 0

37 —2f)sina9 —2rsin@ 377 sin @
(3?3 - 2f)cost9 —27cos® 37° cos @
7 cos36 7’ cos36 0

7*sin 40 7 sin 40 0

(47* 37 )sin 26 ~372sin 20 47* 5in 20
67/ —67% +1 -6/ +1 67"

(4?4 — 377 )cos 260 — 37 cos26 47* cos 20
7* cos46 7* cos46 0

7’ sin 56 7’ sin 56 0

(5r5 )sin 30 — 47’ sin36 57° sin36
(107° —127° +37)sin@ | 37sin® (107° —127° )sin 6
(107° —127° +3F)cos @ | #cosd (107° —127* )cos 6
(5?5 —4193)00539 —47° cos30 57° cos 36
7> cos50 7> cos50 0
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8.5 A Novel Transformation for Describing Image Aberrations

As previously mentioned, the mismatch between the mechanical and optical domains of
the deformable membrane mirror poses a challenge. The following subsections will
describe a novel basis with which to express the Zernike polynomials that is more

suitable to the mechanical properties of the membrane lens.

First, we will define the clamped Zernike radial polynomials, and then we will apply this
new set of polynomials to our static aberration correction analysis. A comparison
between the residual aberrations from our previous analysis with the clamped Zernike
radial polynomials analysis will demonstrate a significant advantage of using the newly
proposed basis. Finally, we will look at possible methods of control based on the newly

defined clamped residuals.

8.5.1 Definition of the Clamped Zernike Radial Polynomials
In this section, we will cast the wavefront aberration in terms of the dynamical mode
shapes of a clamped circular membrane. In doing so, we will define a novel basis of

clamped radial polynomials. Let us define the image aberration radial polynomial as:

R:—Zm = R:—Zm _fn—Zm + fn—Zm = C:—Zm +fn—2m , (831)

where the clamped radial polynomials are defined as:

Cr 2 =R"™"(F) =" m > 2, (8.32)

which vanish at both » = 0 and at » = [. This basis is advantageous to use as it has the
same boundary conditions as the clamped membrane. This advantage will be exploited

subsequently. Following the definition of Equation 8.32, we have

C) =R) -7’ =6/ -6/,
C, =R, —7' =3/ =37, C; =R; —7* = 47" — 472, (8.33)
Ci=R.-7"=10/ -12/° + 27, C} =R} - > =5/° - 5¢°.
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Next, we will insert our definition of the clamped Zernike radial polynomials into our

measured wavefront aberration (Equation 8.19), thus yielding:

Z(F,0) = Ay — Ay, + Ay + (24, )P + (4, + Ay, + A, JFcos O — (4, + Ay, + A, JFsin @
+ (A, + Ay )PP cos(20) — (4y, + A,y )P sin 20+ (4, + A, ) cos 360
—(Ay;, + Ay, )7 sin 36 + (4,, )F* cos 46— (4,, ) sin 46+ (4, )F° cos 50
— (A )P sin 50 + A,,CY (7) + Ay, C(F) cos O — A,,Ca(7)sin @ + A,,CL(F) cos 20
— A,,C; (7)sin 20 + A4,,C: () cos 30 + A,,Ci(7) cos @ — A, CL(F)sin O
— 4,,C: (7)sin 30.

(8.34)

Now, we wish to derive an expression for the residual wavefront error, as we previously
defined in Equations 8.25 and 8.26. Performing a similar analysis as was performed by

Wilkes (2005), we get the following expression:

Z..(F,0)= Ay — Ay, + Ay + (2.4, )P + (A, + Ay, + Ag, JFcosO — (A4, + Ay, + As, JFsin O
+(Ayy + A, )P c08(20) — (A, + A, )P sin 20+ (4, + Aq, )P cos36
— (A, + A, )P sin 30 + (4, ) cos 46— (4,, )F* sin 40+ (A4, JF° cos 560
— (A4, )P sin 50 + A,,C)(F) + A, Cy(7)cos 0 — A, Ci(F)sin 6 + A,,CL(7)cos 26
— 4,,C;(7)sin 20 + A,,C; (7)cos30 + A, Ci(7)cos @ — A, Ci(7)sin O

4T
+(C,7? 0820 + D,7* sin 20) + (C,7* cos 30 + D7’ sin 30)
+(C,7* c0s20 + D, sin 46) + (Cs7° cos 56 + D7 sin 56) .

A . . ..
—A54C53(P)sin349—2{C0+(a P (1= 7) + (C Fcos@ + D, sin 0)

(8.35)

As before, we see that by setting like power terms equal to each other, the defocus terms

those proportional to7#”) can be eliminated by applying a uniform pressure of
prop y applying

Ap ==y (8.36)
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Similarly, the piston (constant) term can be eliminated by rigidly displacing the boundary
1
C, = E(AO0 + Ay +Ay,). (8.37)

Finally, solving for the remaining unknowns in Equation 8.35, we find that by displacing

the boundary according to the following relations:

1 1

Cl :E(AIO +A31 + Asz)a D1 = _E(All +A32 + Ass)a
1 1

Cz =E(Azo +A41), D, = _E(Azz +A43 )a
1 1

G, = E(Aao + 45 ), D, = _E(Asa + A4, ), (8.38)
1 1

C4 =EA4oa D, =_EA445
1 1

Cs :EAsoa Ds :_EASS’

we can eliminate all terms of the form 7" cosn@ and 7" sinn@ forn = 1, ..., 5. The

residual aberration (Equation 8.35) can therefore be reduced to

Z. (7,0)= A,C;(F)+ 4,,C;(7)cos(0) — 4,,Ci(#)sin @ + A,,C; (#) cos 26
— A,,C2 (7)sin 20 + A, C: () cos30 + A,,Ci(7)cos @ — A,,CL(7)sin @
— A,,C:(7)sin 30.

(8.39)

Due to our definition of the novel clamped Zernike radial polynomials, the residual
aberration is proportional to the mode shapes of a clamped circular membrane. Table 8.3
summarizes the residuals from the previous traditional Zernike analysis as well as the

current clamped Zernike analysis.
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Table 8.3. Summary of the residual wavefront aberrations using only uniform
pressure and boundary control as expressed using traditional Zernike radial

polynomials and the proposed clamped Zernike radial polynomials.

Zernike Polynomial Residual Aberration Residual Aberration
Traditional Zernike Radial | Clamped Zernike Radial

(3 ’ 2P)sm 0 37’ sin @ 3(?3 - f)sin 0

(3 ’ 2A)cost9 37 cos @ 3( } )cosH

( Pt =377 )sin 260 47* sin 20 4( ! )sm 20

67" —67% +1 67 6(7* - 7)

(4?4 —3?2)00529 47" cos 26 4( ! )cos 20

(5r5 )sin 36 57° sin36 5(?5 -7 )sin 30

(107° =127 +37)sin® | (107° —127° )sin 0 (107° —127° +27)sin @

(107° —127° +3F)cos@ | (107° =127 )cos 6 (107° —127° + 27)cos 0

(5?5 —4?3)cos3t9 57° cos36 5(195 —f3)cos3t9

To highlight the benefit of the proposed clamped Zernike radial expressions, Figures 8.2
— 8.5 plot the two residual expressions against each other. In the comparison plots, the
sine and cosine terms have been set to unity, plotting the 2-D slice of each residual term

along its angular line of maximum amplitude.
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Figure 8.2. Comparison between the clamped Zernike polynomial residual Cj(7)

and the corresponding traditional Zernike residual.
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Figure 8.3. Comparison between the clamped Zernike polynomial residual

C; (#) and the corresponding traditional Zernike residual.
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Figure 8.4. Comparison between the clamped Zernike polynomial residual
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Figure 8.5. Comparison between the clamped Zernike polynomial residual

C.(7) and the corresponding traditional Zernike residual.
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8.5.2 Fourier Analysis of the Clamped Zernike Radial Polynomials

Up until this point in our analysis, we have assumed that only a uniform pressure and
boundary control were available for image compensation control. Now we will relax this
assumption and express the optically clamped Zernike radial polynomials in the

mechanical domain of the membrane lens.

Given the clamped Zernike radial polynomials, denoted C’~*", describing the residual

wavefront aberration, we wish to find the Fourier expansion approximation of the
clamped Zernike shape functions using the basis formed by the mode shapes of a

clamped circular membrane, denoted 't . Our Fourier expansion begins by assuming that,

given the orthonormal basis formed by the mode shapes w, and the functions C’™*"

living in the same Hilbert space, the function C’*" can be expressed as the Fourier

series:

Co" = 2 + 2+ 2 e 2 (8.40)

We wish to find the constants z,, otherwise known as the Fourier coefficients of C;’*Z’”

with respect to the basis'W (Tolstov, 1962). To calculate the Fourier coefficients, we

multiply Equation 8.40 by y, and assume that the resulting series can be integrated term

by term over the entire membrane domain, Q. Doing so, we have:

[CI?"y dQ =z, [yldQ (i=1,2,.). (8.41)
Q

Q

Solving for the Fourier coefficients, we get:

[Cr"ydQ [Cr"y,dQ
2 =2 (8.42)

zZ. =

o qplaa |yl
Q
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Equations 8.40-8.42 assume equality, but such equality can only hold if an infinite
number of basis functions are available. Since we do not have an infinite number of basis
functions available, we will have to truncate our analysis and form the best
approximation we can using a limited number of terms. We define the approximated

clamped Zernike residual wavefront aberration as
CV =z, +zW, + 2,0, +t 2 W . (8.43)

Further, note that since our basis ¥ was defined to be orthonormal previously, the norm

appearing in Equation 8.42 is equal to unity. Substituting accordingly, we find that

z, = [C'"y.dQ. (8.44)
Q

8.5.3 Example Fourier Expansion of the Clamped Zernike Radial Polynomials

Having defined our Fourier coefficients in Equation 8.44, we will now apply this
expansion to the residual aberrations described using the clamped Zernike radial
polynomials, as given explicitly in Table 8.3. We will form our modal basis from the
first 36 mode shapes of the clamped membrane, including both symmetric and
asymmetric modes. Further, we will only take the theta dependent mode shapes that are
functions of sine and use them as a basis for the clamped Zernike radial polynomials that
are also a function of sine and / or 7. We could also take the cosine terms in our
analysis, but since they are orthogonal to the clamped Zernike radial polynomials, the

integration term by term would give trivial solutions.

Now we will focus our analysis on the following residual aberration
terms: C,,Cisin@,C; sin20,Cisin@, andC;sin30. Following through with the

integration scheme stated in Equation 8.44 we get the following non-trivial terms:
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Clr  —1.4276y, —1.2518y,, —0.3659, —0.1497y,, —0.0748y . —0.0425y,,
Clsin@~ —1.0694y,, —0.1742y,,, —0.0571y,;, —0.0254y,,. —0.0135p,,. —0.0080y,, .,

C?2sin260 ~—0.8883y/,,, —0.2017y,,, —0.0767y ;. —0.0372y,,. —0.0208y,.. —0.0128,, ,
C2sin30 ~—0.7721y,,, —0.2156y,, —0.0910p;. —0.0470y,, —0.0274y . —0.0174y,,.,

Clsin@~ —0.5894y,, —0.7622y,, —0.2986y/,,, —0.1411y,, ...

~0.0768y,,, —0.0462y/,,. —0.0002y..
(8.45)

To further exhibit the excellent match between the modal expansion and the original
residual aberration, Figures 8.6 — 8.10 plot the original residual, the projected residual,

and the error between the two. In each of the plots, the residual aberrations have been

normalized by their largest respective magnitude.
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Qriginal Projection

Figure 8.6. Comparison between the C,siné residual term (top left) and its

modal projection (top right) and the error between the two spaces (bottom).
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Figure 8.7. Comparison between the C; sin26 residual term (top left) and its

modal projection (top right) and the error between the two spaces (bottom).
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Figure 8.8. Comparison between the C| residual term (top left) and its modal

projection (top right) and the error between the two spaces (bottom).
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Figure 8.9. Comparison between the C: sin36 residual term (top left) and its

modal projection (top right) and the error between the two spaces (bottom).
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Figure 8.10. Comparison between the C;sin@ residual term (top left) and its

modal projection (top right) and the error between the two spaces (bottom).
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Figures 8.6 — 8.10 demonstrate a useful mapping between the optical and mechanical
worlds. By transforming a known incoming image aberration into two parts, a portion
that can be corrected using uniform actuation pressure on the backside of the membrane
lens and a portion that can be corrected using a distributed actuation pressure, we have
shown that the deformable face of a membrane mirror can be used as a nearly 100%
effective optic. The novel clamped Zernike radial polynomials provide a means for
translating the incoming aberration into the two mentioned portions while simultaneously
describing the necessary pressure distribution and magnitude for effective adaptive optic
control. A proposed control scheme will be discussed in the future works section of the

next chapter.

8.6 Chapter Summary

In the present chapter, we have developed a novel basis for conversing between the
optical and mechanical worlds. The analysis performed has demonstrated that the
structural characteristics of a circular membrane lens can be used advantageously as an
advanced adaptive optic deformable mirror for eliminating nearly 100% of a 5™ order

image aberration.

The proposed basis transformation has been described as the clamped Zernike radial
polynomials. The clamped Zernike radial polynomials differ from traditional Zernike
polynomials in that they have zero displacement at the boundary of the described image
aberration. Consequently, the image aberration can be divided into two parts. The first
portion of the aberration can be corrected by applying a uniform pressure on the backside
of the membrane and via continuous deformation control of the boundary. The remaining
residual portion requires a distributed actuation on the backside of the membrane.
However, through the use of the clamped Zernike radial polynomials, the remaining
residual is zero along the edge of the membrane—a conformable transformation to the
structural configuration of the lens. Consequently, the distributed pressure necessary to
eliminate the residual aberration can be easily transformed via a Fourier analysis into a

modal summation based on the modes of a clamped circular membrane. Such a mapping
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is key for describing the necessary form of actuation for making a 100% effective

deformable membrane optic a reality in the near future.
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