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Chapter 8:  The Clamped Zernike Radial Polynomials  
 

 

8.1 Introduction 

When conversing between the optical and mechanical worlds, it would be desirable to be 

able to compensate for image aberrations using the structural mode shapes of the 

membrane optic.  Such compensation might be desirable as structural mode shapes are 

preferred energy states of the system, and translating the optical aberration into a 

mechanical mode shape may provide another means for controlling optical image 

compensation.  To the optical engineer, wavefronts are measured using Zernike 

polynomials.  To mechanical engineers, wavefronts are more aptly described using 

structural mode shapes.   

 

The overall goal of this chapter is to demonstrate a novel set of polynomials for 

describing image aberrations.  Each of these polynomials is zero at the membrane edge, 

consequently bridging the gap between the mechanical and optical worlds of the 

membrane lens.  In the first portion of this chapter, we will review the orthonormal mode 

shapes of a clamped circular membrane.  Then, we will introduce the Zernike 

polynomials, a complete set of polynomials that are traditionally used in the optical world 

to describe image aberrations.  Having established both, we will next discuss the use of a 

uniform actuation pressure and boundary displacement to statically correct the image 

aberration.  We will then develop a novel set of polynomials, the clamped Zernike radial 

polynomials, and show their advantage over the traditional Zernike polynomials.  Finally, 

we will describe the Fourier expansion of the clamped Zernike polynomials using the 

basis formed by the orthonormal mode shapes of the circular membrane and demonstrate 

analytically how these shapes could be used to make a nearly 100% effective deformable 

membrane lens for adaptive optics.  This chapter reflects collaborative work between the 

Air Force Research Lab Directed Energy Directorate (AFRL/DE) and Virginia Tech in 

the area of adaptive membrane optics. 
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8.2 Orthonormal Mode Shapes of a Clamped Circular Membrane 

The mode shapes of a clamped circular membrane are given by the solution to Bessel’s 

equation, 
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where Equation 8.1 is the spatial portion of the partial differential equation governing the 

membrane’s transverse dynamics. The solutions to Equation 8.1 are given by 
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Equations 8.2 emphasize that the clamped circular membrane has symmetric mode 

shapes, ),(0 θrnΨ , that are unique, whereas the asymmetric mode shapes, ),( θrmncΨ and 

),( θrmnsΨ , are degenerate. 

 

Next, we wish to normalize the mode shapes given by Equations 8.2.  First, we will 

normalize the symmetric mode shapes.  Following the procedure as outlined by 

Meirovich (1997), we write: 
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Evaluating the integral and solving for the constant nA0  we get: 
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and 
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Following the same procedure for the asymmetric modes, we get: 
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thus giving us: 
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Having found the constants given by Equations 8.5 and 8.7, we now have a set of 

orthogonal and normalized (hence, orthonormal) mode shapes.  By orthonormal, it means 

that the mode shapes demonstrate the following property: 
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This property will help simplify our analysis in subsequent sections. 
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8.3 Zernike Polynomials 

Image aberrations are often defined by a set of orthogonal functions known as the 

Zernike polynomials.  Zernike polynomials are named after their original creator, Frits 

Zernike (circa 1934), who devised a complete set of polynomials orthogonal over a unit 

circle to describe wavefront distortions.  Each Zernike polynomial (except for the 

primary piston mode) has maximum amplitude of +1, minimum amplitude of -1, and an 

average over the surface of zero (Tyson, 2000). 

 

The Zernike functions are used to define wavefront aberration by the relation: 
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in which the coefficients nmA  are a measure of the magnitude of each aberration (usually 

stated in wavelengths of light).  The radial polynomial appearing in Equation 8.9, 

)(2 rR mn
n
− , is defined by: 
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As stated by Malacara (1992), only positive values of n-2s in Equation 8.10 are included 

in the summation.  Also, Equation 8.9 can be written as a function of just a single index, 

k.  By letting 
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we can describe an image aberration as ),( θrZ k , indicating that the image aberration 

includes all terms up to term k.  For example, 
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θθθθ 2sincossin1),( 2
4 rrrrZ +++= .   (8.12) 

 

Table 8.1 describes the first nine Zernike polynomials.  A plot of these Zernike shape 

functions can be found in Figure 8.1. 

 

 Table 8.1.  Description of the first nine Zernike polynomials. 

n m k Zernike Polynomial Description 

0 0 1 1 Piston 

1 0 2 θsinr  Tilt about x axis

1 1 3 θcosr  Tilt about y axis

2 0 4 θ2sin2r  Astigmatism 

2 1 5 12 2 −r  Defocus 

2 2 6 θ2cos2r  Astigmatism 

3 0 7 θ3sin3r  Trefoil 

3 1 8 ( ) θsin23 3 rr −  Coma 

3 2 9 ( ) θcos23 3 rr −  Coma 
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Figure 8.1.  Sample plots of the Zernike polynomials describing particular wave 

front aberrations. 

 

It is also important to point out that when the quantity n-2m is zero, the theta dependent 

portion of the Zernike polynomial drops out, leaving only a polynomial that is a function 

of the radius, r.  The piston and defocus terms are examples of this rule (refer to Table 

8.1).  Further, when m = 0, the radial Zernike polynomials simplify to monomials of 

degree n, such that 
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We have now established the optical space and the modal space for a membrane lens.  

Next, we will look at using uniform pressure and boundary displacement to deform the 

surface of the membrane to correct for any image aberration.  This original concept has 

been proposed by the AFRL/DE. 
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8.4 Static Image Aberration Compensation 

To properly correct for image aberrations using a deformable mirror, geometrical optics 

suggests that the required displacement is half of the wavefront aberration (Malacara, 

1992), namely: 
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Here, we introduce the non-dimensional variable
a
rr =ˆ , where a is the radius of the 

membrane lens.   

 

As previously derived, the equation of motion governing the transverse dynamics of a 

circular membrane is given by 
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If a uniform pressure is acting on the interior surface of the membrane, then the 

difference between the top and bottom surface pressures, which we will denote 

as ),,( trp θ∆ , enters into the equation of motion as a forcing function.  Similarly, we can 

also assume for our analysis that a distributed, non-uniform pressure, ),,( trpe θ , is able to 

act on the membrane.  This non-uniform pressure may appear as an electrostatic pressure, 

and would be used to eliminate any remaining residual aberrations.  The electrostatic 

pressure term, ),,( trpe θ , enters the equation of motion in the same manner as the 

uniform pressure term.  Assuming that the incoming wavefront aberrations are changing 

slowly enough for the membrane to achieve a new, static equilibrium position, then 

Equation 8.15 becomes 
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where T is the applied tensile loading to the membrane.  We can non-dimensionalize 

Equation 8.16 by introducing the variable r̂  such that Equation 8.16 becomes 
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where the Laplacian in dimensionless coordinates is given by 
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For the remainder of this chapter, we will assume that the measured image aberration 

consists of Zernike polynomials up to the 5th degree, so that we have 
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To help simplify our analysis, we substitute in the monomials (Equation 8.13) and the 

other radial polynomials (for example, see Table 13.1 in Malacara (1992)), as given by 
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and can consequently rewrite Equation 8.19 as 
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Next, we collect like terms of the form θnr n cosˆ and θnr n sinˆ  in Equation 8.21 and get 
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Combining Equation 8.14 and 8.17, we can solve for the required actuation pressure, 

namely, 
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To control the image aberration using just a uniform pressure and boundary 

displacement, we set 0),,ˆ( =trpe θ  in Equation 8.23.  The general solution to Equation 

8.17 has been solved by Wilkes (2005) and is given by: 
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where C0, Cn, and Dn are all constants to be determined based on the amount of aberration 

present in the measured wavefront signal.  The correctable wavefront aberration, using 

the definition of Equation 8.14, is given by: 
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The residual aberration, ),ˆ( θrZ res , is the difference between the measured aberration and 

the correctable portion, ),ˆ(),ˆ(),ˆ( θθθ rZrZrZ cres −= .  Explicitly, we have: 
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By setting like power terms equal to each other, we see that the defocus terms (those 

proportional to 2r̂ ) can be eliminated by applying a uniform pressure of 
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Similarly, the piston (constant) term can be eliminated by rigidly displacing the boundary 
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Finally, solving for the remaining unknowns in Equation 8.26, we find that by displacing 

the boundary according to the following relations: 
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we can eliminate all terms of the form θnr n cosˆ  and θnr n sinˆ  for n = 1, …, 5.  The 

residual aberration (Equation 8.26) can therefore be reduced to 
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A summary of the correctable aberrations and residual aberrations is given in Table 8.2.  

Notice that none of the residual aberration terms given in Table 8.2 are amiable to the 

boundary conditions imposed by the mechanical lens.  Motivated by the inconsistencies 

between the mechanical and optical domains, the next section will derive a new basis 

with which to express the incoming image aberration.  This new basis will be referred to 

as the clamped Zernike radial polynomials. 
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Table 8.2.  Summary of wavefront correction for a membrane optic using uniform 

pressure difference (across the outer and inner surfaces of the membrane) and 

boundary displacement. 

Zernike Polynomial Correctable Portion Residual Aberration 

1 1 0 

θsinr̂  θsinr̂  0 

θcosr̂  θcosr̂  0 

θ2sinˆ2r  θ2sinˆ2r  0 

1ˆ2 2 −r  1ˆ2 2 −r  0 

θ2cosˆ2r  θ2cosˆ2r  0 

θ3sinˆ3r  θ3sinˆ3r  0 

( ) θsinˆ2ˆ3 3 rr −  θsinˆ2r−  θsinˆ3 3r  

( ) θcosˆ2ˆ3 3 rr −  θcosˆ2r−  θcosˆ3 3r  

θ3cosˆ3r  θ3cosˆ3r  0 

θ4sinˆ4r  θ4sinˆ4r  0 

( ) θ2sinˆ3ˆ4 24 rr −  θ2sinˆ3 2r−  θ2sinˆ4 4r  

1ˆ6ˆ6 24 +− rr  1ˆ6 2 +− r  4ˆ6r  

( ) θ2cosˆ3ˆ4 24 rr −  θ2cosˆ3 2r−  θ2cosˆ4 4r  

θ4cosˆ4r  θ4cosˆ4r  0 

θ5sinˆ5r  θ5sinˆ5r  0 

( ) θ3sinˆ4ˆ5 35 rr −  θ3sinˆ4 3r−  θ3sinˆ5 5r  

( ) θsinˆ3ˆ12ˆ10 35 rrr +−  θsinˆ3r  ( ) θsinˆ12ˆ10 35 rr −  

( ) θcosˆ3ˆ12ˆ10 35 rrr +− θcosr̂  ( ) θcosˆ12ˆ10 35 rr −  

( ) θ3cosˆ4ˆ5 35 rr −  θ3cosˆ4 3r−  θ3cosˆ5 5r  

θ5cosˆ5r  θ5cosˆ5r  0 
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8.5 A Novel Transformation for Describing Image Aberrations 

As previously mentioned, the mismatch between the mechanical and optical domains of 

the deformable membrane mirror poses a challenge.  The following subsections will 

describe a novel basis with which to express the Zernike polynomials that is more 

suitable to the mechanical properties of the membrane lens. 

 

First, we will define the clamped Zernike radial polynomials, and then we will apply this 

new set of polynomials to our static aberration correction analysis.  A comparison 

between the residual aberrations from our previous analysis with the clamped Zernike 

radial polynomials analysis will demonstrate a significant advantage of using the newly 

proposed basis.  Finally, we will look at possible methods of control based on the newly 

defined clamped residuals. 

 

8.5.1 Definition of the Clamped Zernike Radial Polynomials 

In this section, we will cast the wavefront aberration in terms of the dynamical mode 

shapes of a clamped circular membrane.  In doing so, we will define a novel basis of 

clamped radial polynomials.  Let us define the image aberration radial polynomial as: 
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where the clamped radial polynomials are defined as: 
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which vanish at both r = 0 and at r = 1.  This basis is advantageous to use as it has the 

same boundary conditions as the clamped membrane.  This advantage will be exploited 

subsequently.  Following the definition of Equation 8.32, we have 
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Next, we will insert our definition of the clamped Zernike radial polynomials into our 

measured wavefront aberration (Equation 8.19), thus yielding: 
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Now, we wish to derive an expression for the residual wavefront error, as we previously 

defined in Equations 8.25 and 8.26.  Performing a similar analysis as was performed by 

Wilkes (2005), we get the following expression: 
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As before, we see that by setting like power terms equal to each other, the defocus terms 

(those proportional to 2r̂ ) can be eliminated by applying a uniform pressure of 
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Similarly, the piston (constant) term can be eliminated by rigidly displacing the boundary 

 

( )4221000 2
1 AAAC ++= .    (8.37) 

 

Finally, solving for the remaining unknowns in Equation 8.35, we find that by displacing 

the boundary according to the following relations: 
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  (8.38) 

 

we can eliminate all terms of the form θnr n cosˆ  and θnr n sinˆ  for n = 1, …, 5.  The 

residual aberration (Equation 8.35) can therefore be reduced to 
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           (8.39) 

 

Due to our definition of the novel clamped Zernike radial polynomials, the residual 

aberration is proportional to the mode shapes of a clamped circular membrane.  Table 8.3 

summarizes the residuals from the previous traditional Zernike analysis as well as the 

current clamped Zernike analysis. 
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Table 8.3.  Summary of the residual wavefront aberrations using only uniform 

pressure and boundary control as expressed using traditional Zernike radial 

polynomials and the proposed clamped Zernike radial polynomials. 

 

Zernike Polynomial Residual Aberration 

Traditional Zernike Radial

Residual Aberration 

Clamped Zernike Radial

( ) θsinˆ2ˆ3 3 rr −  θsinˆ3 3r  ( ) θsinˆˆ3 3 rr −  

( ) θcosˆ2ˆ3 3 rr −  θcosˆ3 3r  ( ) θcosˆˆ3 3 rr −  

( ) θ2sinˆ3ˆ4 24 rr −  θ2sinˆ4 4r  ( ) θ2sinˆˆ4 24 rr −  

1ˆ6ˆ6 24 +− rr  4ˆ6r  ( )24 ˆˆ6 rr −  

( ) θ2cosˆ3ˆ4 24 rr −  θ2cosˆ4 4r  ( ) θ2cosˆˆ4 24 rr −  

( ) θ3sinˆ4ˆ5 35 rr −  θ3sinˆ5 5r  ( ) θ3sinˆˆ5 35 rr −  

( ) θsinˆ3ˆ12ˆ10 35 rrr +−  ( ) θsinˆ12ˆ10 35 rr −  ( ) θsinˆ2ˆ12ˆ10 35 rrr +−  

( ) θcosˆ3ˆ12ˆ10 35 rrr +−  ( ) θcosˆ12ˆ10 35 rr −  ( ) θcosˆ2ˆ12ˆ10 35 rrr +−  

( ) θ3cosˆ4ˆ5 35 rr −  θ3cosˆ5 5r  ( ) θ3cosˆˆ5 35 rr −  

 

To highlight the benefit of the proposed clamped Zernike radial expressions, Figures 8.2 

– 8.5 plot the two residual expressions against each other.  In the comparison plots, the 

sine and cosine terms have been set to unity, plotting the 2-D slice of each residual term 

along its angular line of maximum amplitude. 
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Figure 8.2.  Comparison between the clamped Zernike polynomial residual )ˆ(1
3 rC  

and the corresponding traditional Zernike residual. 

 
Figure 8.3.  Comparison between the clamped Zernike polynomial residual 

)ˆ(2
4 rC  and the corresponding traditional Zernike residual. 
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Figure 8.4.  Comparison between the clamped Zernike polynomial residual 

)ˆ(3
5 rC  and the corresponding traditional Zernike residual. 

 
Figure 8.5.  Comparison between the clamped Zernike polynomial residual 

)ˆ(1
5 rC  and the corresponding traditional Zernike residual. 



 231

8.5.2 Fourier Analysis of the Clamped Zernike Radial Polynomials 

Up until this point in our analysis, we have assumed that only a uniform pressure and 

boundary control were available for image compensation control.  Now we will relax this 

assumption and express the optically clamped Zernike radial polynomials in the 

mechanical domain of the membrane lens. 

 

Given the clamped Zernike radial polynomials, denoted mn
nC 2− , describing the residual 

wavefront aberration, we wish to find the Fourier expansion approximation of the 

clamped Zernike shape functions using the basis formed by the mode shapes of a 

clamped circular membrane, denotedΨ . Our Fourier expansion begins by assuming that, 

given the orthonormal basis formed by the mode shapes nψ  and the functions mn
nC 2−   

living in the same Hilbert space, the function mn
nC 2−  can be expressed as the Fourier 

series: 

 

......221100
2 +++++=−

ii
mn

n zzzzC ψψψψ .   (8.40) 

 

We wish to find the constants zn, otherwise known as the Fourier coefficients of mn
nC 2−  

with respect to the basisΨ (Tolstov, 1962).  To calculate the Fourier coefficients, we 

multiply Equation 8.40 by nψ  and assume that the resulting series can be integrated term 

by term over the entire membrane domain, Ω.  Doing so, we have: 

 

...),2,1(22 =Ω∫=Ω∫
ΩΩ

− idzdC iii
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n ψψ .   (8.41) 

 

Solving for the Fourier coefficients, we get: 

 

2

2

2

2

i

i
mn

n

i

i
mn

n

i

dC

d

dC
z

ψ

ψ

ψ

ψ ∫ Ω
=

∫ Ω

∫ Ω
= Ω

−

Ω

Ω

−

.    (8.42) 
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Equations 8.40-8.42 assume equality, but such equality can only hold if an infinite 

number of basis functions are available.  Since we do not have an infinite number of basis 

functions available, we will have to truncate our analysis and form the best 

approximation we can using a limited number of terms.  We define the approximated 

clamped Zernike residual wavefront aberration as 

 

NN
N zzzzC ψψψψ ++++= ...221100 .   (8.43) 

 

Further, note that since our basis Ψ  was defined to be orthonormal previously, the norm 

appearing in Equation 8.42 is equal to unity.  Substituting accordingly, we find that 

 

∫ Ω=
Ω

− dCz i
mn

ni ψ2 .    (8.44) 

 

8.5.3 Example Fourier Expansion of the Clamped Zernike Radial Polynomials 

Having defined our Fourier coefficients in Equation 8.44, we will now apply this 

expansion to the residual aberrations described using the clamped Zernike radial 

polynomials, as given explicitly in Table 8.3.  We will form our modal basis from the 

first 36 mode shapes of the clamped membrane, including both symmetric and 

asymmetric modes.  Further, we will only take the theta dependent mode shapes that are 

functions of sine and use them as a basis for the clamped Zernike radial polynomials that 

are also a function of sine and / or r̂ .  We could also take the cosine terms in our 

analysis, but since they are orthogonal to the clamped Zernike radial polynomials, the 

integration term by term would give trivial solutions. 

 

Now we will focus our analysis on the following residual aberration 

terms: 0
4C , θsin1

3C , θ2sin2
4C , θsin1

5C , and θ3sin3
5C .  Following through with the 

integration scheme stated in Equation 8.44 we get the following non-trivial terms: 
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.0002.00462.00768.0
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,0425.00748.01497.03659.02518.14276.1

561615

14131211
1
5

363534333231
3
5

262524232221
2
4

161514131211
1
3

060504030201
0
4

sss

ssss

ssssss

ssssss

ssssss

C

C

C

C

C

ψψψ
ψψψψθ

ψψψψψψθ

ψψψψψψθ

ψψψψψψθ

ψψψψψψ

−−−
−−−−≈

−−−−−−≈

−−−−−−≈

−−−−−−≈

−−−−−−≈

           (8.45) 

 

To further exhibit the excellent match between the modal expansion and the original 

residual aberration, Figures 8.6 – 8.10 plot the original residual, the projected residual, 

and the error between the two.  In each of the plots, the residual aberrations have been 

normalized by their largest respective magnitude. 
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Figure 8.6.  Comparison between the θsin1
3C  residual term (top left) and its 

modal projection (top right) and the error between the two spaces (bottom). 
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Figure 8.7.  Comparison between the θ2sin2
4C  residual term (top left) and its 

modal projection (top right) and the error between the two spaces (bottom). 
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Figure 8.8.  Comparison between the 0
4C  residual term (top left) and its modal 

projection (top right) and the error between the two spaces (bottom). 
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Figure 8.9.  Comparison between the θ3sin3
5C  residual term (top left) and its 

modal projection (top right) and the error between the two spaces (bottom). 
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Figure 8.10.  Comparison between the θsin1
5C  residual term (top left) and its 

modal projection (top right) and the error between the two spaces (bottom). 
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Figures 8.6 – 8.10 demonstrate a useful mapping between the optical and mechanical 

worlds.  By transforming a known incoming image aberration into two parts, a portion 

that can be corrected using uniform actuation pressure on the backside of the membrane 

lens and a portion that can be corrected using a distributed actuation pressure, we have 

shown that the deformable face of a membrane mirror can be used as a nearly 100% 

effective optic.  The novel clamped Zernike radial polynomials provide a means for 

translating the incoming aberration into the two mentioned portions while simultaneously 

describing the necessary pressure distribution and magnitude for effective adaptive optic 

control.  A proposed control scheme will be discussed in the future works section of the 

next chapter. 

 

8.6 Chapter Summary 

In the present chapter, we have developed a novel basis for conversing between the 

optical and mechanical worlds.  The analysis performed has demonstrated that the 

structural characteristics of a circular membrane lens can be used advantageously as an 

advanced adaptive optic deformable mirror for eliminating nearly 100% of a 5th order 

image aberration. 

 

The proposed basis transformation has been described as the clamped Zernike radial 

polynomials.  The clamped Zernike radial polynomials differ from traditional Zernike 

polynomials in that they have zero displacement at the boundary of the described image 

aberration.  Consequently, the image aberration can be divided into two parts.  The first 

portion of the aberration can be corrected by applying a uniform pressure on the backside 

of the membrane and via continuous deformation control of the boundary.  The remaining 

residual portion requires a distributed actuation on the backside of the membrane.  

However, through the use of the clamped Zernike radial polynomials, the remaining 

residual is zero along the edge of the membrane—a conformable transformation to the 

structural configuration of the lens.  Consequently, the distributed pressure necessary to 

eliminate the residual aberration can be easily transformed via a Fourier analysis into a 

modal summation based on the modes of a clamped circular membrane.  Such a mapping 
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is key for describing the necessary form of actuation for making a 100% effective 

deformable membrane optic a reality in the near future. 


