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Biomechanical Adaptations of Human Gait Due to External Loads 

 

Minhyung Lee 

 

Abstract 

 

Gait is the method of human locomotion using limbs. Recently, the analysis of human 

motion, specifically human gait, has received a large amount of research attention.   Human gait 

can contain a wide variety of information that can be used in biometrics, disease diagnosis, 

injury rehabilitation, and load determination.  In this dissertation, the development of a model-

based gait analysis technique to classify external loads is presented. Specifically, the effects of 

external loads on gait are quantified and these effects are then used to classify whether an 

individual gait pattern is the result of carrying an external load or not. 

First of all, the reliability of using continuous relative phase as a metric to determine 

loading condition is quantified by intra-class correlation coefficients (ICC) and the number of 

required trials is computed. The ICC(2, 1) values showed moderate reliability and 3 trials are 

sufficient to determine lower body kinematics under two external load conditions. Then, the 

work was conducted to provide the baseline separability of load carriage conditions into loaded 

and unloaded categories using several lower body kinematic parameters. Satisfactory 

classification of subjects into the correct loading condition was achieved by resorting to linear 

discriminant analysis (LDA). The baseline performance from 4 subjects who were not included 

in training data sets shows that the use of LDA provides an 88.9% correct classification over two 

loaded and unloaded walking conditions. Extra weights, however, can be in the form of an 
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external load carried by an individual or excessive body weight carried by an overweight 

individual. The study now attempts to define the differences in lower body gait patterns caused 

by either external load carriage, excessive body weight, or a combination of both. It was found 

significant gait differences due to external load carriage and excessive body weight. Principal 

Component Analysis (PCA) was also used to analyze the lower body gait patterns for four 

loading conditions: normal weight unloaded, normal weight loaded, overweight unloaded and 

overweight loaded. PCA has been shown to be a powerful tool for analyzing complex gait data. 

In this analysis, it is shown that in order to quantify the effects of external loads for both normal 

weight and overweight subjects, only two principal components (PCs) are needed.  

The results in this dissertation suggest that there are gait pattern changes due to external 

loads, and LDA could be applied successfully to classify the gait patterns with an unknown load 

condition. Both load carriage and excessive body weight affect lower body kinematics, but it is 

proved that they are not the same loading conditions. Methods in the current work also give a 

potential for new medical and clinical ways of investigating gait effects in osteoarthritis patients 

and/or obese people. 
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Chapter 1 - Introduction 

 
 
1.1.  Load effects on gait 

Gait is the method of human locomotion using limbs (Kirtley 2006). Normal gait sequences 

are cyclic and demonstrate almost perfect periodic behavior (Kale, Cuntoor et al. 2003). Recently, 

the analysis of human motion has received a large amount of research attention.   The majority of 

this research focuses on analysis of human gait.  Human gait can contain a wide variety of 

information that can be used in biometrics (Boulgouris, Hatzinakos et al. 2005), disease 

diagnosis (Lehmann and DeLateur 1990; Piecha 2008), injury rehabilitation (Mulder, Nienhuis et 

al. 1998; Hailey and Tomie 2000) and load determination (BenAbdelkader and Davis 2002).  In 

this dissertation, the development of a model-based gait analysis technique to classify external 

loads is presented. Specifically, the effects of external loads on gait are quantified and these 

effects are then used to classify whether an individual gait pattern is the result of carrying an 

external load or not. 

Load carriage is a very common daily activity at home and in the workplace. However, it 

is a common cause of injuries, including those of the knee and lower back (Dalen A, Nilsson J et 

al. 1978; Knapik, Reynolds et al. 1992). Therefore, it is important to understand the effects of 

load carriage on human physiology. There are many previous studies that characterize the nature 

of gait and the effects that external loads have on gait (Kinoshita 1985; Hong and Brueggemann 

2000; Chow, Kwok et al. 2005; Chow, Kwok et al. 2006). These studies found that the duration 

of the swing phase of gait decreases when carrying a load, while the duration of the stance is not 

affected by loads up to 50% of body weight (Kinoshita 1985; Martin and Nelson 1986). 
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Additionally it was found that forward inclination of the trunk increases significantly with a 

backpack loading in order to keep the center of mass (COM) over the feet. Other load 

adaptations are reduced pelvic rotation and an increase in the foot rotations (Kinoshita 1985; 

Martin and Nelson 1985; Martin and Nelson 1986).  

These previous studies showed that the normal walking pattern was significantly 

modified by either backpack or double-pack external load conditions. The type of external load 

carried also increases the energy cost of gait in (Winsmann and Goldman 1976). It was found 

that the lowest energy cost was achieved when the load was located as close as possible to the 

center of mass of the body. For this reason, it is generally considered that the double-pack 

requires less energy than the backpack (Ramanathan, Datta et al. 1972).  Backpack loading is a 

significantly different loading condition than double-pack loading with an evenly distributed 

load.  Few studies provide a method of classification for loaded vs. unloaded gait using 

kinematic data. The initial goal of the work in this dissertation is to determine if an individual is 

carrying an evenly distributed load without having a priori knowledge of the individual. As a 

result, it is necessary to develop a new external load classification method, using gait analysis, 

which are non-invasive and work at a distance.  Further analysis is also done in order to 

differentiate the gait effects of external loads from those caused by excessive body mass in 

overweight subjects. By understanding the effects of external loads and excessive body mass on 

human movements, it would be possible to detect hidden external loads for security purposes as 

well as improve the understanding of the physical effects of loads on people who carry heavy 

equipment. Methods in the current work also give potential for new medical and clinical ways of 

investigating gait effects in osteoarthritis patients and/or obese people. 
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1.2.  Objective 

Objective:  

This study aims to quantify the gait pattern differences between unloaded and 

loaded walking and classify these differences using simple analytical models. 

 

Specific aims are: 

(1) To evaluate the reliability of lower body kinematics with two external load conditions 

(2) To develop a model to classify external loading conditions for treadmill walking 

(3) To differentiate the effects of external loads with excessive body mass in gait 

(4) To characterize different walking patterns with principal component analysis 
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Chapter 2 – Background 

 

 
2.1. Gait theory 

Normal human gait can be defined by the manner of walking whose normal speed is 

about 2.5 to 3 mph (Whittle 2002). It is a sequence movement of the two legs containing two 

distinct phases.  A single stance phase (swing phase), in which one foot is in contact with the 

ground and a double stance phase (ground phase) in which both feet are in contact with the 

ground. In order for a movement to be classified as normal gait, each of these two phases must 

be present in the motion.  The following terms are used to categorize major events during the gait 

cycle (Figure 2.1): 

 

1. Initial (right) heel contact  (a) 

2. Opposite (left) toe off and heel rise (b) 

3. Opposite (left) initial contact (c) 

4. Toe (right) off (d) 

5. Go back to (right) initial contact (e) 
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Figure 2. 1. One gait cycle with major events labeled. 
 

Table 2.1 shows the percentage of floor contact for each phase during one gait cycle. 

Contact periods for the single stance phase are 4 times longer than ones for the double stance. 

 

Table 2. 1.  Normal Floor Contact Periods (%)(Perry 1992). 
 

Phase Contact Period (%) 

Double Stance 20 

Single Stance 40 

Swing 40 

 
 

There are two types of energy transfer while walking, (1) an exchange of potential and 

kinetic energy and (2) the energy transfer between one limb segment and another (Whittle 2002). 

For example, the most obvious exchange of potential and kinetic energy is the trunk movement. 

In the middle of stance phase, the trunk is the highest vertical position (i.e. maximum potential 

energy). This potential energy is converted into kinetic energy causing an increase of forward 

         (a)                  (b)                  (c)                     (d)                (e) 
 

     
Swing 
(Left) 

Stance 
(Left) Double 

Stance Stance 
(Right) 

Double 
Stance Swing 

(Right) 

Double 
Stance 
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trunk speed. Generally the energy expended during walking can be categorized by three main 

components, the muscles, breathing and basal metabolism. Therefore, the energy expenditure 

should be varied between loaded and unloaded walking and will result in different gait patterns 

eventually. 

There are six major mechanisms used to minimize the excursions(?) of the center of 

gravity, these are called the determinants of gait and are given below (Saunders, Inman et al. 

1953). 

1. Pelvic rotation in transversal plane (related to stride length) 

2. Pelvic obliquity in frontal plane (reduce the total vertical excursion of the trunk) 

3. Knee flexion in stance phase (for the ground clearance) 

4. Ankle mechanism (foot loading response) 

5. Foot mechanism (toe off) 

6. Lateral displacement of body (side to side movement, reduction in lateral leads to less 

muscular energy.) 

 

Analyses for this dissertation will be based on these parameters in order to effectively investigate 

the different gait patterns generated by loaded and unloaded conditions. 

 

2.2. Analysis using phase portraits 

 

A phase portrait, which is a function of a state vector, is a method to show the trajectories 

of a dynamic system in the phase plane (Stergiou 2004). The plot consists of the displacement on 

the x-axis and the velocity on the y-axis. It helps describe the behavior of the dynamic system by 
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showing the current state of the system versus its rate of change. For human movements, 

especially gait, it provides insight of the neuromuscular system as well as the control 

mechanisms (Stergiou 2004). 

The x-axis intersections, for instance, are related to transitions of movement patterns. The 

angular velocity at these points is zero. This happens when there are sudden interruptions in the 

system; therefore, they are a local minimum or maximum in the angular displacement.  A higher 

number of these points suggests a greater number of dynamic changes in the system (Winstein 

and Garfinkel 1989). Specifically, it is a good initial indicator of neuromuscular control between 

normal and abnormal gait patterns.   

Variability of the trajectory can be also used to quantify the stability of the 

neuromuscular system if many gait cycles are plotted (Clark and Phillips 1993). Usually the 

neuromuscular response to perturbations during the gait cycle are shown as slight variations of 

the trajectory (Stergiou 2004). These variations help in maintaining a stable movement pattern. 

On the other hand, instabilities of the neuromuscular system are shown as excessive variability. 

In this case, it may indicate a disorder in the neuromuscular system (Herman, Giladi et al. 2005).  

The phase portrait can be used as a way of quantifying the lower body movements during a gait 

cycle. The phase angle, for example, quantifies the behavior of a lower extremity. In order to 

calculate the phase angle, the phase portrait is transformed from ( xx &, ) positions to polar 

coordinates (r, θ), as shown in Figure 2.2. The angle from the horizontal axis is the phase angle 

of the trajectory as shown in Equation 2.1. 

 



8 
 









= −

i

i

x

x&1tanθ                                                                                                  Equation 2.1 

 

Where x&  is the angular velocity and x is the angular displacement at ith point of the trajectory. 

The phase angle is defined between the x-axis and the vector r. In this work, quantification of the 

phase portrait is done by the path length of the trajectory as well as the phase angle. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2. A definition of the phase angle. 
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2.3. Fundamentals of reliability using ICC  

 

There are variations between data sets when repeated measurements are performed. The 

intraclass correlation coefficient (ICC) is often used as an index for consistency between data 

sets. It is also used to determine the sample size required to test a hypothesis (McGraw and 

Wong 1996). ICC values are varied from zero (no reliability) to one (strong reliability). Higher 

ICC values indicate that reliability of data sets measured is good.  Because the ICC is an average 

correlation across measurements, low ICC values are caused when measurements have different 

trends (Figure 2.3).  
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Figure 2. 3. An example of (A) a low ICC value (= 0.425) because Rater 3 demonstrates 
inconsistent responses and (B) a high ICC value (= 0.982) because all raters show consistent 
responses. 
 
 

The ICC is calculated based on an analysis of variance (ANOVA) (Shrout and Fleiss 

1979). There are several statistical advantages to using ICC over other reliability methods. The 

reliability for two or more trials is easily measured and there are three major models for ICC. 

The ICC models vary depending on types of trials (judges) and targets (subjects). These 

considerations make six (=3 models x 2 types) forms of intraclass correlation (Shrout and Fleiss 

1979; Portney and Watkins 2000). A brief description of the ICC types is introduced below. 

More information about ICC models and sample size requirements can be found in (Shrout and 

Fleiss 1979; Donner and Eliasziw 1987; Walter, Eliasziw et al. 1998; Portney and Watkins 2000; 

Bonett 2002). 
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Model 1 (one-way random effects model):  

This model is good for a design where subjects are evaluated by raters. In this model, 

“subjects” are treated as the independent variables. In other words, the ICC is interpreted as the 

proportion of subject variance associated with differences among the scores of the subjects. This 

model can be computed by Equation 2.3. 

 

BMS

WMSBMS
kICC

−
=),1(                                                                                 Equation. 2.3 

 

Where k is the number of ratings for each subject, BMS is the between-subjects mean square 

from the analysis of variance, and WMS is the within-groups (error) mean square. 

 

 Model 2 (Two-way random effects model): 

This is the most often used model for inter-rater reliability studies where all n subjects are 

measured by k raters. It is based on a repeated measures analysis of variance as shown in 

Equation 2.4. The ICC is interpreted as the proportion of subject plus rater variance that is 

associated with differences among the scores of the subjects. This model is also used for the 

current work to determine the reliability of gait variables. 

 

( )
n

EMSRMS
BMS

EMSBMS
kICC

−
+

−
=),2(                                                                   Equation 2.4 

 

Where EMS is the error mean square, RMS is the between-raters mean square, k is the number 

of raters, and n is the number of subjects tested. 
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Model 3 (Two-way mixed model): 

This model is also based on a repeated measures analysis of variance (Equation 2.5). This 

model is appropriate for testing intra-rater reliability with multiple scores from the same rater, as 

it is not reasonable to generalize one rater’s scores to a larger population of raters. The ICC is 

interpreted as not being generalizable beyond the given judges. 

 

 
BMS

EMSBMS
kICC

−
=),3(                                                                                  Equation 2.5 

 

For this dissertation, Model 2 is used to calculate the reliability of gait variables since it is  a 

repeated measures method. In addition, the sample size requirements are computed based on the 

ICC values. Detailed results will be introduced in Chapter 4. 

 

2.4. Linear Discriminant Analysis (LDA) 

 

LDA is a statistical method used to find the linear relationship that can classify two or more 

classes of data (McLachlan 2004). It is basically used to express one dependent variable as a 

linear combination of other measurements in order to model the difference between the classes 

(Johnson and Wichern 1998). There are many methods for classification of data. Principal 

Component Analysis (PCA) and LDA are two common methods used to classify data as well as 

reduce dimensionality (McLachlan 2004). In PCA, the location and shape of the original data 

sets change after transformation to a different space. However, LDA does not change the 



13 
 

location, rather it provides more class separability. Detailed information for PCA is introduced in 

the next section.  

 The dependent variable for LDA is the group and the independent variables are the 

characteristics of the group. In this study, the dependent variables are unloaded and loaded 

walking while the independent variables are related to the lower body movements such as joint 

angles and phase angles. If data has a normal distribution and the same covariance matrix, the 

means and a covariance matrix from the variables of the training data set are calculated. Then, 

the discriminant function, f, is computed by following (Johnson and Wichern 1998): 

    

( )iT

ii

T

kii pxCxCf ln
2

1 11 +−= −− µµ                                                                    Equation 2.6 

Where µ is a mean, C is a covariance matrix, x is independent variables, p is a probability vector, 

k is an object, and i is a group. In order to test, the testing data are converted into the f1-f2 

coordinates. Figure 2.4 shows the example of classification results.  
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Figure 2. 4. An example of linear discriminant analysis with 4 subjects data showing two 
separate classes of data. 
 

2.5. An artificial neural network 

 

An artificial neural network (ANN) is an interconnected group of artificial neurons that 

use a mathematical or computational model to minimize the desired error measure (Mehrotra, 

Mohan et al. 1996). Generally, ANNs are an adaptive system that change its structure based on 

external or internal information throughout the network. In more practical terms, ANNs are a 

parallel information-processing system that has certain characteristics that mimic brain function. 

For that reason, ANNs are able to model complex relationships between inputs and outputs or to 

find/classify patterns in data. Briefly, the characteristics of ANNs are 1) learning from 

experience, 2) generalization from previous cases to new data and 3) abstraction from 

insufficient data or distorted data. 
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 There are two major learning types: supervised learning and unsupervised learning. In 

supervised learning, there is a given set of example pairs (teacher or training) and the aim is to 

find a function that matches the examples. In fact, it is accomplished by presenting a sequence of 

training vectors to the network with corresponding known target vectors. A commonly used cost 

function is the mean-squared error which tries to minimize the average error between the 

network’s output and the target (desired) value over all the example pairs. Thus, supervised 

learning is considered to be useful for pattern recognition, classification and regression. On the 

other hand, in unsupervised learning, the cost function to be minimized can be any function of 

the data and the network’s output. In other words, there are no such training or target vectors 

required and similar input vectors are assigned to the same output cluster. Therefore, 

unsupervised learning is practical for general estimation problems including clustering, the 

estimation of statistical distributions, compression and filtering.  

The simplest neural network model is a single-layer perceptron network which consists of an 

input vector, a set of synaptic weights (w), an activation (transfer) function in a hidden layer and 

an output vector (Figure 2.5). 
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Figure 2. 5. A feed-forward single layer perceptron network. 
 

The 4 most commonly used activation (transfer) functions are : 1) a Heaviside, 2) a piecewise 

linear, 3) a sigmoid and 4) a low-gain saturation function (Lynch 2004).  
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Perceptrons can be trained by a simple learning algorithm that is usually called the delta 

rule or least mean square rule which calculates the errors between current calculated output and 

target value, and uses these errors to adjust the weights (Figure 2.6), thus implementing a form of 
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gradient descent. In this study, this kind of simple neural network will be used to classify 

unloaded and loaded walking with several lower body kinematic variables as an input vector. 

 

Figure 2. 6. A simple learning algorithm for perceptron. 
 

 A multi-layer perceptron, however, consists of multiple layers of computational units in 

interconnected hidden layers.  Although multi-layer networks use a variety of learning 

techniques, the most popular one is back-propagation, which means that the output values are 

compared with the correct answer by some predefined error-function. Then, the algorithm adjusts 

the weights of each connection using the results from this error fuction. 

 

2.6. Principal Component Analysis (PCA)  

 

PCA is mathematically defined as an orthogonal linear transformation that transforms the 

data to a new coordination by principal components (Daffertshofer, Lamoth et al. 2004). PCA 

has found application in fields such as face recognition (Oravec and Pavlovicova 2004) and 

image compression (Meyer-Baese 2000), and is a common technique for finding patterns in data 

of high dimension (Daffertshofer, Lamoth et al. 2004). In other words, it is a way of identifying 

patterns in data, and expressing the data in such a way as to highlight their similarities and 

Adjust weights 

target 

output input 

neuron 
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differences. Another main advantage of PCA is that once we have found these patterns in the 

data, and we can compress the data (reducing the number of dimensions) without much loss of 

information (Sadeghi, Allard et al. 2002). PCA is to compute the most meaningful basis to re-

express a noisy data set. This new basis will filter out the noise and reveal hidden structure.  

PCA can be also used for dimensionality reduction in a data set by retaining those 

characteristics of the data set that contribute most to its variance, by keeping lower-order 

principal components and ignoring higher-order ones. Such low-order components often contain 

the "most important" aspects of the data (Daffertshofer, Lamoth et al. 2004). The results of a 

PCA are usually discussed in terms of component scores and loading vectors. 

 

 Mathematical Background 

Covariance is useful to find out how much the dimensions vary from the mean with 

respect to each other (Figure 2.7). Covariance is always measured between 2 dimensions unlike 

1-dimensional standard deviation and variance. It can be calculated by Equation 2.7. 
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                                                                    Equation 2.7 
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Figure 2. 7. Examples of Negative Covariance (left) and Positive Covariance (right). 
  

Properties of the covariance are: 

1. If the value is positive, both dimensions increase together.  

2. If the value is negative, then as one dimension increases, the other decreases. 

3. If the covariance is zero, it indicates that the two dimensions are independent of each 

other. 

 

In PCA, Eigenvectors of a covariance matrix indicate the directions of the matrix. All the 

eigenvectors of a matrix are perpendicular (orthogonal) no matter how many dimensions are 

(Johnson and Wichern 1998). Also, Eigenvalues indicate the lengths of the corresponding 

direction (eigenvector).  

 

Here are brief steps to do PCA. First, subtract the mean from original data (Figure 2.8). This is to 

make a data set whose mean is zero.  
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Figure 2. 8. An example of original data for PCA. 
 

Then the covariance matrix, and its eigenvectors and eigenvalues are calculated. First 

eigenvector, u1, (corresponding to largest eigenvalues) shows how data sets are related along 

that line. In other words, it accounts for the largest proportion of the data variance (Daffertshofer, 

Lamoth et al. 2004). The second eigenvector, u2, gives us the other, less important, pattern in the 

data (Figure 2.9). However, it must also be uncorrelated (orthogonal) with the first. In fact, 

singular value decomposition (SVD) is widely used for the diagonalisation of eigenvalues 

because of its numerical stability (Jolliffe 2002). Principal components are chosen to reduce 

dimensionality of data. The eigenvector with the largest eignevalue is the principle component of 

the data set (n), which is the most significant relationship between the data dimensions. 

Therefore, we should order eigenvectors by eigenvalue, largest to smallest. This gives the 

components in order of significance. Then, the components (k) of lesser significance can be 
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ignored. This is how the dimension reduction works with a minimum loss of information (Jolliffe 

2002). In order to choose k, Equation 2.8 can be used: 

 

eigenvalueiswhereorThreshold in
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i
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             Equation 2.8 
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Figure 2. 9. The first (u1) and second (u2) principal components after PCA. 
 

Transformation into a new coordination is performed to represent the original data solely 

in terms of the components selected above (Figure 2.10). It is one of PCA advantages because it 

makes the selected components are always perpendicular to each other. 
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Figure 2. 10. Transformed data after PCA. 
 

In short, PCA is the formation of new variables that are linear combinations of the original 

variables. Basically, it projects the data along the directions where the data varies the most. 

These directions are determined by the eigenvectors of the covariance matrix corresponding to 

the largest eigenvalues. For gait analysis, PCA can be done for comparison of PCs between 

normal weight subjects and overweight subjects or between unloaded and loaded walking in this 

study.  
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Chapter 3 - Preliminary Results 

 

 
3.1. Front loading classification using LDA 

 

We have used linear discriminant analysis (LDA) to classify unloaded and loaded 

walking for 51 indoor, even terrain walking in 4 healthy volunteers with various external load 

conditions. Subjects walked while holding a box of 5, 10 and 15 kg (loaded walking) and without 

any external load (unloaded walking). There are two more psychological loading conditions: 1) 

to pretend carrying a loaded box when it was actually empty and 2) to pretend carrying an empty 

box when it was actually loaded with 15 kg load. 19 reflective markers were placed on the 

subjects’ anatomical landmarks and 2 markers on the carried box. Measurements were repeated 

up to 4 times in each load condition to reduce the random errors. Linear discriminant analysis 

(LDA) was used to find the linear combination of features that best separate the two or more 

classes of motion, unloaded and loaded walking. LDA attempts to express one dependent 

variable as a linear combination of other features of measurements. Based on LDA, detection of 

two different walking patterns was performed with 4 variables, cross-correlations from 

continuous relative phase (CRP) between right and left legs (XCorrHip-Knee, XCorrKnee-Ankle) and 

path lengths from phase portraits (PLHip and PLKnee). Detailed information on these variables is 

shown in Chapter 4. As shown in Table 3.1, a 90.2% detection rate (46 out of 51) is determined 

and the false alarm rate, which is the rate that detects unloaded walking as a loaded one, is 13.3% 

(2 out of 15).  
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Table 3. 1. Detection Rate based on the linear discriminant analysis. 
 

Load condition # of false Detection rate (%) 

NB 1/8 87.5 

0 kg 1/7 85.7 

5 kg 1/5 80.0 

10 kg 0/8 100.0 

15 kg 0/8 100.0 

15 kg � 0 kg 0/8 100.0 

0 kg � 15 kg 2/7 71.4 

Total 5/51 90.2 

NB indicates no box held. “15 kg � 0 kg” indicates that we asked subjects to pretend carrying a 
loaded box when it was actually empty. “0 kg � 15 kg” indicates that we asked subjects to 
pretend carrying an empty box when it was actually loaded with 15 kg load. 

 

Cross-correlations of CRP and path lengths are reliable metrics for the detection of 

external loads. There are decreasing XCorr values with external loads. This indicates inter-limb 

CRPs are less similar in loaded walking than unloaded walking, which suggests more asymmetry 

and/or longer delay in lower body relative movements between left and right leg due to external 

loads. In addition, the results for hip path length show that external loads cause rapid changes in 

hip motion and more changes in the vertical direction.  This implies a shorter single phase 

duration. This agrees with previous studies that show increased double stance but decreased 

single stance duration when carrying loads. Slower changes of knee motions may help absorb a 

sudden shock due to additional loads. A lower detection rate in the “0 kg � 15 kg” loading 

condition (Table 3.1) implies that it is easier to pretend that a box is heavy than vice versa.  

 

3.2. Double-pack classification using ANNs 

 

We have also tested for 101 indoor treadmill data sets with two external load conditions, 

unloaded and loaded, for 19 subjects (Figure 3.1).  
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(A)                                         (B) 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1. Subject with reflective markers (A) unloaded walking and (B) loaded walking. 
 

Artificial neural networks (ANNs) classification achieved an 86.1% detection rate (87 out 

of 101), which mean that 86.1% of the unknown load conditions were assigned into the right 

category (Figure 3.2). The false alarm rate, which is the rate that detects unloaded walking as 

loaded one, is 16.7% (8 out of 48).  
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(A)               

 

(A) 

 

Figure 3. 2. Scatter plots of load classification after artificial neural network. (A) hip path length 
vs. knee path length and (B) hip path length vs. knee path length for each trial. True is the correct 
decision and false is the incorrect decision after artificial neural network classification. It 
indicates that any linear classifier or statistical methods are difficult or unable to classify loaded 
and unloaded working with the high probability of detection.  
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Table 3. 2. ANOVA table for 5 measurements between loaded and unloaded walking. 
 

Var Unloaded Loaded p-value 

XCorrHip-Knee 590554 ± 28733 572603 ± 42128 0.134 

XCorrKnee-Ankle 590499 ± 28669 572601 ± 42111 0.134 

PLHip 1.377 ± 0.147 1.456 ± 0.101 0.061 

PLKnee 2.583 ± 0.292 2.570 ± 0.261 0.886 

PLAnkle 0.689 ± 0.073 0.728 ± 0.050 0.061 

 

Our results confirm that external loads on a person can be classified by analysis of gait 

kinematics using ANNs. The method presented in this study combines the benefits of both 

quantitative analyses and advanced classifiers. Various points of the body were tracked using a 

3-D motion capture system, then this data was used to quantify the lower body kinematics and 

ANNs were utilized to yield an accurate detection of the external load carriage. 

The path length shows that it is difficult to linearly separate the two load conditions. The 

observed differences between load conditions are found to be smaller than the standard deviation 

of each condition. This suggests that it is difficult to detect evenly-distributed load carriage as 

compared to one-sided (only front or back) loading conditions. Therefore, the use of ANNs is 

necessary to provide acceptable classification results.  

The analysis of lower body joints is significant because their movement patterns are 

closely related to gait efficiency and smoothness of locomotion (Stokes, Andersson et al. 1989). 

A previous study (Wittman, Ward et al. 2005) reported the knee movement is one of the most 

significant variables in the analysis of load carriage. In this study, knee path length during one 

stride tends to decrease in loaded walking (Table 3.2). Also, we found XCorr tends to decrease in 

loaded walking. This decreased XCorr indicates CRPs between inter-legs may be less similar in 

loaded walking than unloaded walking. A possible reason for this is that there is more 
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asymmetry and/or longer delay in lower body relative movements between left and right leg due 

to external loads. As presented in (Sadeghi, Allard et al. 2000; Chow, Kwok et al. 2005), this 

asymmetry is related to the contribution of each limb to propulsion and control tasks rather than 

abnormality.  

In this work, we cannot find any statistically significant difference between 

measurements on unloaded and loaded walking (Table 3.2). One possible reason is that we used 

the same treadmill speed, set as the normal walking, for both load conditions. Thus we can 

ensure that cases we have are as hard to detect as possible, since both walking with each 

condition is close to identical in terms of spatio-temporal measurements, i.e. nearly constant 

stride frequency and leg swing time at a given speed. Further study would be necessary to find 

the statistical significance of walking speed by having each subject walking at a normal walking 

speed for each load condition or on the over ground. However, if we have a sufficient number of 

training set data, then we would be able to apply this method to the detection of any unknown 

person carrying a hidden external load. Also, whole joint trajectories rather than computed 

values can be used as inputs for ANNs similar to pattern or sequence recognition, or it is possible 

to use unsupervised ANNs, so learning is accomplished by the input data itself unlike the 

supervised ANNs in this study. In other words, with unsupervised ANNs, there is no need for 

training data sets (Begg and Palaniswami 2006). 

 

3.3. A mathematical gait model 

 

A linear inverted double pendulum model has been used to describe the biped locomotion.  

This model can walk down an inclined plane with a steady gait (Mochon and McMahon 1980).  
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McGeer experimentally studied a simple unpowered walking machine which is well known as 

passive dynamic walking (McGeer 1990).  After MaGeer’s work, Goswami (Goswami, Espiau et 

al. 1996) considered its limit cycles and stability in a passive bipedal gait.  This passive walker 

generated its steady walking pattern without control forces, so the gait was energy-effective. On 

the other hand, this model did not have a knee joint which makes the motion dissimilar to human 

walking.   In this section, a simple mathematical model for a passive walking with knee is 

developed to 1) compare its joint angles with experimental data and 2) investigate the load 

effects.  

     

 

Figure 3. 3. A mathematical model of a passive walker with knee (left) and its inverted 
pendulum model (right). 

 

A three segments (one straight leg and one leg with knee) model is constructed to 

simulate biped walking (Figure 3.3).  This model has leg mass, m1-3, for each segment and HAT 

(head, Arms, and trunk) mass, M, at the joint of two legs (Table 3.3).  Three time-dependent 

angles determine the equations of motion, which are the stance leg, hip, and knee angles.  The 
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governing equations of motion are derived from the Lagrange’s equation (McGeer 1990). The 

equations are given by Equation 3.5: 

 

( ) ( ) ( ) 02 =++ θθθθθ GCI &&                                                                                 Equation 3.5 
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Table 3. 3. Notations and numerical settings. 
 

Var Description value unit 

M HAT mass 50, 70, 100 kg 

m1 leg mass 2 kg 

m2 lower part of the leg 1 kg 

m3 upper part of the leg 1 m 

L1 leg length 1 m 

L2 lower part of the leg 0.5 m 

L3 upper part of the leg 0.5 m 

s1 Vector from ground to m1 0.5 m 

s2 Vector from ground to M 1 m 

s3 Vector from ground to m2 1.25 m 

s4 Vector from ground to m3 1.75 m 

c1 Vector to m1 0.5 m 

c2 Vector from M to m2 0.25 m 

c3 Vector from knee to m3 0.25 m 

R rotation matrix   
 

Constraint 

Constraint equation ( 332211 sRsRsR ++ =constant) is added to Equation 3.5. 

This will yield: 
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This constraint equation restricts the movement of the foot. Therefore, it will represent the 

double stance during walking. 
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Figure 3. 4. Joint angles: (A) hip angle from experimental data, (B) hip angle from the 
mathematical model, (C) knee angle from experimental data, (D) knee angle from the 
mathematical model, (E) ankle angle from experimental data, (F) ankle angle from the 
mathematical model.  
 

Results from a mathematical model have similar trends compared to joint angles from 

experimental data when considering it is a simplified model (Figure 3.4). Therefore, it can be 

used to simulate various load conditions. For this matter, the torso mass, M, is changed as to 

represent different load carriage which is 50, 70, and 100kg. Then, the vertical locations of joints 

including hip, knee and ankle are compared with real human joint movements. Specifically, 

standard deviations of joint vertical positions are shown in Figure 3.5 since the experimental data 

shows a consistent trend with external loads. However, the standard deviation for the hip joint is 

quite different. The reason may be that the hip joint in the mathematical model does not include 

all the upper body motion as in human walking. The results indicate that there are less joint 

vertical movements when carrying a heavier load compared to unloaded or light loads. It 

suggests there are energy-efficient mechanisms in humans which suppress vertical motion when 

carrying a heavy external load, particularly in the mathematical model. 
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(A) 

 

(B) 

 

 

Figure 3. 5. Comparison of the standard deviations from experimental data (A) and the 
mathematical model (B). 
 

The mathematical model in this section shows a potential to investigate the effects of external 

loads. For more realistic results, it would be necessary to develop the model with a foot and an 

active controller to generate torque in the ankle joint.    
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4.1. Abstract 

  

The work performed in this manuscript has two main goals: first, to quantify the 

reliability of lower body phase angles and continuous relative phase (CRP) measurements in gait 

analysis and second, to determine the number of required trials to achieve statistical reliability of 

these measurements. A difficult gait classification test case (unloaded vs. loaded walking with 

evenly distributed front-back loading) is used to illustrate the reliability analysis. Three treadmill 

trials in each load condition (unloaded or 12.5kg loaded) from 16 healthy subjects were analyzed.  

The lower body movement was quantified by path length of phase angles and cross-

correlation from a continuous relative phase (CRP). Then, Intra-class correlation coefficients, 

ICC(2, 1), were calculated for each load condition. The ICC(2, 1) values showed moderate 

reliability that varied between 0.61 to 0.82.  The reliability decrement for the loaded walking 

condition indicates that stability was compromised when carrying a load. The results suggest that 

3 trials are sufficient to determine lower body kinematics under two external load conditions. 
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4.2. Introduction 

 

The nature of gait and the effects of various factors on gait have been investigated in 

many previous studies (Kinoshita 1985; Hong and Brueggemann 2000; Chow, Kwok et al. 2005). 

These studies have mostly analyzed linear spatial-temporal measurements such as stance 

duration, stride/step length, joint angles and trunk inclination. Recently, Haddad et al. (Haddad, 

van Emmerik et al. 2006) examined the intralimb and interlimb adaptations with a unilateral leg 

load. Continuous relative phase (CRP) analysis was used to evaluate how lower body movements 

were coordinated. The advantage of using relative phase analysis is that it converts four variables 

(two positions and two velocities) into one measurement. This makes the relative phase very 

useful for investigating human movement and its complexity using a reduced set of metrics. The 

path length of the phase portrait can be used to determine the effectiveness of the postural system 

in controlling the lower body stability and steadiness similar to distance measures of the whole 

body center-of-pressure (COP) in sway balance control tests (Prieto, Myklebust et al. 1996).  

However, we are not aware of any reports to characterize how reliable these kinematic quantities 

are or the required number of trials for assessments of reliable gait characterization. 

The goal of this study was 1) To determine the reliability of measurements from phase 

portraits and CRP, and 2) To calculate the number of repeated trials required to obtain a 

statistically reliable measure of lower body kinematic quantities. Intra-class correlation (ICC) 

measures are reported during walking with two external load conditions: unloaded and moderate 

loaded (12.5kg). It was hypothesized that lower body kinematics can be reliably quantified using 

path lengths from phase portraits and cross-correlations from CRP analysis. 

 

 



38 
 

4.3. Methods 

 

4.3.1. Subjects and experimental setup 

Sixteen subjects, 12 male and 4 female, (mean age = 22.94 ± 3.84 years) participated in 

the study. All subjects gave their informed consent prior to participation as defined by the 

Committee for Participants of Investigative Projects at the Virginia Tech. The subject mean body 

heights and weights were 177.38 ± 7.01 cm and 75.39 ± 17.07 kg. To determine a subject’s 

normal walking speed, the treadmill was started and the velocity gradually increased so as to 

achieve a subject’s most comfortable walking speed. This walking speed was used for the two 

loading conditions on the treadmill.  

A total of 23 reflective markers (Lockhart, Woldstad et al. 2003; Chow, Kwok et al. 

2005) were attached to the subjects’ anatomical landmarks (top of the head, base of second toe, 

malleolus, epicondyle, greater trochanter, clavicle, styloid process of ulna, lateral epicondyle of 

humerus, greater tubercle, acromion, anterior portion of temporal bone, and center of the 

calcaneus) to capture subjects’ 3D motion using a ProReflex system (Qualisys, Gothenburg, 

Sweden) at the sampling rate of 120 Hz. However, only lower body markers’ data were analyzed 

to focus on changes of lower body kinematics. Treadmill walking was performed for 30 s 

sessions with subjects wearing a 12.5 kg vest type mass (evenly distributed front and back) and 

without any external load (unloaded walking). The vest was attached to the subjects’ body using 

two shoulder straps and three side straps so that it did not obstruct any upper or lower body 

movements. Five trials were repeated in each load condition. However, the first 2 trials were 

considered as practical sets to attain a physiological steady state and the rest of 3 trials were only 



39 
 

analyzed. Also, the order of external load conditions in each subject was completely randomized 

to reduce any order effects 

. 

4.3.2. Analysis 

Consecutive left heel contacts determined the period of one stride in this study. Thus, one 

stride includes both a left and a right step. Left heel contacts were determined using the vertical 

velocity changes of heel markers to identify gait periods (Mickelborough, van der Linden et al. 

2000). Two consecutive left strides were averaged for the analysis. Then, the kinematic data 

were filtered using a low pass, fourth-order Butterworth filter with 7 Hz cutoff frequency, and 

normalized by subjects’ height. All following angles were measured in sagittal plane. Hip angles 

were defined from horizontal to the thigh segment. Knee angles were determined between the 

thigh segment and the shank segment, and ankle angles were between the shank segment and the 

foot (Harman, Han et al. 2000).  Segmental angular velocities were calculated from the sagittal 

plane angles using a first central difference method (Haddad, van Emmerik et al. 2006). These 

angular positions and velocities were then used to compute continuous relative phase from the 

position-velocity phase portrait.  

 

4.3.3. Continuous Relative Phase (CRP) 

CRP was assessed over two interlimb couplings, CRPH-K and CRPK-A which indicate 

CRP between hip and knee (subscript H-K) angles and CRP between knee and ankle (subscript 

K-A) angles, respectively. The phase angles used in this study were determined from the angular 

position ( )(tθ ) vs. angular velocity ( )(tθ& ) on the phase portrait (Figure 4.1). From the resulting 
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phase-planes, the phase angle at each time was calculated relative to the right horizontal using 

Equation 4.1 (Kurz and Stergiou 2002). 
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(E)                                                                            (F) 
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Figure 4. 1. Phase Portraits of hip, knee, and ankle angles from one typical subject (A) hip phase 
in unloaded walking condition, (B) hip phase in loaded, (C) knee phase in unloaded walking, (D) 
knee phase in loaded, (E) ankle phase in unloaded walking, and (F) ankle phase in loaded.  
 

CRP was computed using the differences between the phase angle of hip-knee and knee-

ankle using Equation 4.2. More detailed information about phase angle and CRP can be found in 

(Burgess-Limerick, Abernethy et al. 1991; Burgess-Limerick, Abernethy et al. 1993; Hamill, 

Haddad et al. 2000; Kurz and Stergiou 2002). 
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where subscripts indicate the phase angles of each joint. 

 

Cross-correlations were calculated for cross-body CRPs using Equation 4.3. These cross-

correlation values show the similarity of relative movements between left and right legs. 

Therefore, smaller values indicate less similar movements between inter-leg dynamics. 
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where subscripts R and L indicate the right and left sides’ values, respectively. 

 

4.3.4. Path length (PL) of Phase Portrait 

From the phase-planes, path length (Equation 4.4) is estimated as the sum of the straight 

line distances between consecutive points for hip, knee and ankle joints (PLHip, PLKnee and 

PLAnkle). These values were used to quantify the magnitude and velocity of joint angular 

movement as function of time over a gait cycle. 
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4.3.5. Intra-session reliability 

Intra-class correlation coefficients with two-way random effect, ICC(2,1), were computed 

using the three trials from 16 subjects by Equation 4.5 (Shrout and Fleiss 1979): 
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In this equation, BMS is the between-targets (subjects) mean square, EMS is the error mean 

square, JMS is the between-judges mean square, k is the number of trials (judges) and n is the 
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number of targets. More information about ICC(2,1) can be found in (Landis and Koch 1977; 

Shrout and Fleiss 1979). Furthermore, Landis and Koch (Landis and Koch 1977) have 

characterized values of reliability coefficients as follows: slight (0-0.20), fair (0.21-0.40), 

moderate (0.41-0.60), substantial (0.61-0.80) and almost perfect (0.81-1.00). The number of 

trials (k) was calculated by the Spearman-Brown formula (Shrout and Fleiss 1979; Corriveau, 

Hebert et al. 2000) in Equation 4.6; 
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Where *ρ =0.81 in this study is set up for the desired reliability coefficient and ρ  is the ICC 

values from the current study. Statistical analyses were performed using SPSS (v.13, SPSS Inc., 

Chicago, IL). 
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4.4. Results 

 

All ICC values for loaded and unloaded conditions showed at least moderate reliability 

(Table 4.1). Also, unloaded walking was found to have greater ICC values. This indicates that 

the measurements taken in the unloaded condition are more reliable than for loaded walking for 

an equal number of trials. 

 

Table 4. 1. Reliability ICC(2,1) coefficients for the gait kinematics in unloaded and loaded 
walking. Bolded values indicate “substantial” reliable category and * indicates “almost perfect” 
reliable category. CI indicates the confidence interval. 
 

Unloaded Loaded 
Variable 

Mean ( ±SD) ICC 95% CI of ICC Mean ( ±SD) ICC 95% CI of ICC 
p-value 

XCorrH-K 590554 ± 28733 0.764 0.554~0.901 572603 ± 42128 0.744 0.518~0.892 < 0.05 

XCorrK-A 590499 ± 28669 0.768 0.560~0.902 572601 ± 42111 0.747 0.522~0.893 < 0.05 

PLHip 0.4459 ± 0.0820 0.689 0.441~0.864 0.4800 ± 0.0624 0.605 0.330~0.820 < 0.01 

PLKnee 2.5828 ± 0.2919 0.819* 0.641~0.926 2.5698 ± 0.2607 0.606 0.324~0.822 0.69 

PLAnkle 0.6885 ± 0.7033 0.689 0.441~0.864 0.7280 ± 0.0503 0.605 0.330~0.820 < 0.01 

 

 

 The number of recommended trials to obtain almost perfect reliability (ICC=0.81) are 

summarized in Table 4.2. All measurements required at most 3 trials to have almost perfect 

reliability. 
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Table 4. 2. Number of recommended trials per load condition to achieve almost perfect 
(ICC=0.81) assessment. Results are based on the Spearman-Brown prophecy formula sufficient. 
 

 XCorrH-K XCorrK-A PLHip PLKnee PLAnkle 

Loaded 2 2 3 3 3 

Unloaded 2 2 2 1 2 

 

 

4.5. Discussion 

 

The main objective of this study was to determine reliability of path length from phase 

portraits and cross-correlation from CRP and how many trials are necessary to obtain a reliable 

measure for lower body kinematics. Previous studies indicate that ICC values above 0.61 are the 

indication of substantial reliability (Landis and Koch 1977). The results in the current study 

showed that lower body kinematic quantities under loaded and unloaded walking conditions 

were within this range.  This is comparable to previous studies (Wall and Crosbie 1996; Stolze, 

Kuhtz-Buschbeck et al. 1998; Maynard, Bakheit et al. 2003; Kang and Dingwell 2006). Thus, 

path length of phase portrait and cross-correlation of CRP can be used as reliable metrics to 

quantify lower body joint movements. In addition, the ICC values in loaded walking condition 

were lower than in unloaded walking condition implying that measurements were less reliable 

and needed more trials to obtain good reliability. All subjects stated that they were comfortable 

with the external load. However, it is possible that being unaccustomed to the load caused less 

balance stability due to an increased body weight (Hue, Simoneau et al. 2007). This may cause 

more variability across trials as subjects modify or adapt their gait patterns to the loaded 

condition (Kinoshita 1985).  

Significantly smaller cross-correlation values in loaded walking condition may indicate 

that this condition is more asymmetry in lower body relative movements between left and right 
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legs than unloaded walking condition (Table 4.1). As presented in (Sadeghi, Allard et al. 2000; 

Chow, Kwok et al. 2005), this asymmetry is related to the contribution of each limb to 

propulsion and control tasks rather than abnormality, which probably causing greater energy 

costs (Reisman, Block et al. 2005). In addition, path lengths of ankle and hip joints are 

significantly greater in loaded walking condition than unloaded walking condition. The possible 

reason is that the additional mass causes more angular changes of each joint including angular 

velocity changes to produce more power during gait cycles that costs more energy due to 

external loads. 

 The number of trials necessary to obtain almost perfect reliability varied from 1 for 

PLKnee in unloaded walking up to 3 for PL values in either loading conditions. Therefore, 3 trials 

for each load condition are sufficient for the lower body kinematic quantities such as path length 

from phase portraits and cross-correlation from CRP with two load conditions including 12.5kg 

loaded walking as reliable measurements. It may be possible to obtain more reliable 

measurements with additional trials, which are time-consuming. However, at least 3 trials can 

ensure that kinematic quantities are reliable. 

In this study, the same self-selected walking speed was used for both unloaded and 

loaded walking on the treadmill. This may cause atypical walking in the loaded condition. 

Therefore, future work will assess to use two self-selected walking speed for each load condition 

to determine the changes of the ICC values with respect to the walking speed.  
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5.1. Abstract 

  

There are many instances where it is desirable to determine, at a distance, whether a 

subject is carrying a hidden load. Automated detection systems based on gait analysis have been 

proposed to detect subjects that carry hidden loads. However, very little baseline gait kinematic 

analysis has been performed to determine the load carriage effect while ambulating with an 

evenly distributed (front to back) loads on human gait. The work in this paper establishes, via 

high resolution motion capture trials, the baseline separability of load carriage conditions into 

loaded and unloaded categories using several standard lower body kinematic parameters. A total 

of 23 subjects (19 for training and 4 for testing) were studied. Satisfactory classification of 

subjects into the correct loading condition was achieved in this paper by resorting to linear 

discriminant analysis (LDA). Six lower body kinematics including ranges of motion and path 

lengths from the phase portraits were used to train the LDA which can discriminate loaded and 

unloaded walking conditions. This baseline performance from 4 subjects who were not included 

in training data sets shows that the use of LDA provides an 88.9% correct classification over two 

loaded and unloaded walking conditions. The results suggest that there are gait pattern changes 

due to external loads, and LDA could be applied successfully to classify the gait patterns with an 

unknown load condition.  
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5.2. Introduction 

 

There are many instances where it is desirable to determine, at a distance, whether a 

subject is carrying a hidden load. Several sensor modalities (e.g. imaging and radar) have been 

considered for this application. Many of these proposed methods rely on the assumption that a 

subject’s gait is altered in a detectable way due to the load. The work in this paper establishes, 

via high resolution motion capture trials with 19 subjects for training and 4 subjects to validate 

the absolute baseline separability of subjects into loaded and unloaded categories utilizing 

several common lower body kinematic quantities. Any practical hidden load detection system 

based on gait analysis, such as video, will have performance poorer than that established in this 

paper because any “real world” system will extract noisier kinematic measurements than motion 

capture systems. Even using motion capture, it is difficult to correctly classify loading condition 

based on lower body kinematics when the load is distributed evenly from front to back. However, 

satisfactory classification of subjects into the correct loading condition was achieved in this 

paper by resorting to linear discriminant analysis (LDA). Many researchers have widely used 

discriminant analysis for image-processing (Han and Bhanu 2006; Boulgouris and Chi 2007) and 

face recognition (Yu and Yang 2001). In this paper, we explore the applicability of LDA to gait 

pattern classification. The LDA classifier developed in this paper establishes an 88.9% correct 

classification (loaded vs. unloaded) baseline performance for any detection system that uses the 

same kinematic quantities as those used in this paper.  

There are many previous studies that characterize the nature of gait and the effects of 

various factors (such as loading condition) on gait patterns. One such study showed that the 

duration of the double stance increased as loads were heavier, but single stance duration 
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decreased in 10 healthy males (Kinoshita 1985) and in 15 boys (Hong and Brueggemann 2000). 

Also, it was shown that the normal walking pattern was significantly modified by external load 

conditions: backpack or double-pack (Kinoshita 1985). Backpack loading has a more significant 

effect on gait pattern than doublepack loading. For example, forward leaning of the trunk is a 

natural behavior to help keep the whole body center-of-mass (COM) over the feet with 

backpacking (Knapik, Harman et al. 1996; Harman, Han et al. 2000; Hong and Brueggemann 

2000). There is, however, no forward leaning when ambulating with an evenly distributed front-

to-back load carriage system (Kinoshita 1985). It was found that forward inclination 

considerably increased as weight increased in order to minimize energy cost (Inman, Ralston et 

al. 1981)(Inman et al., 1981; (Luttgens and Wells 1982). This minimized energy expenditure 

resulted in the decrease of vertical positions at the knee and ankle with added weight (Wittman, 

Ward et al. 2005). Several published studies indicated that ankle rotation increased in the sagittal 

plane under loaded conditions (Kinoshita 1985; Knapik, Harman et al. 1996). These studies also 

showed that knee flexion after impact was greater when carrying loads in order to absorb 

increased impact forces.  

The previous studies, however, analyzed mostly linear spatial-temporal measurements 

such as stride length, stance duration, etc. Recently, Haddad et al. (Haddad, van Emmerik et al. 

2006) examined the intralimb and interlimb adaptations with a unilateral leg load. Relative phase 

plot was used to evaluate how lower body movements were coordinated. The advantage of using 

relative phase analysis is that it can convert four variables (two positions and two velocities) into 

one measurement. This makes the relative phase plot very useful for investigating human 

movement and its complexity using a reduced set of measurements or metrics. The path length of 

the phase portrait can be used to determine the effectiveness of the postural system in controlling 
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the lower body stability and steadiness similar to distance measures of center-of-pressure (COP) 

in sway balance control tests (Prieto, Myklebust et al. 1996). Previous studies neither analyzed 

these quantities for walkers with and without an evenly distributed load nor do they establish the 

baseline performance of classification methods for determining loaded vs. unloaded walking. 

The only previous work to differentiate between loaded vs. unloaded subjects (BenAbdelkader 

and Davis 2002) used video as a sensing modality. This work used metrics that measured 

swinging periodicity of legs and arms. Another metric to differentiate carrying vs. not carrying 

an object were the medians of the time series for lower parts of body. The study used a simple 

“and” type classifier that classifies as natural-walking if all criteria were met. If any of the 

criteria was violated, then the state was classified as loaded walking. A significant difference 

between the work in BenAbdelkader and Davis and work in this study is that the type of loading 

in BenAbdelkader and Davis study was not evenly distributed loads. 

Although much has been learned over the last few decades about external load effects on 

gait patterns, development of discriminant techniques to classify evenly distributed external 

loads is lacking. As such, the two primary goals of this study were: 1) To establish the upper 

bound on performance of classification of loading condition using LDA. 2) Provide pre and post 

loading analysis of several common gait kinematic discriminants that also serve as inputs to the 

LDA classifier. It was hypothesized that there will be significant differences in lower body joint 

kinenmatic quantities while carrying an evenly distributed load, and classification of unknown 

subject’s loading condition would be possible based on the these quantities. 
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5.3. Methods 

 

5.3.1. Subjects and experimental setup 

Twenty three subjects, 14 male and 9 female, (mean age = 22.52 ± 3.84 years) 

participated in the study. They were randomly grouped to 19 (12 male and 7 female) subjects for 

training and 4 (2 male and 2 female) subjects for testing. All subjects gave their informed 

consent prior to participation as defined by the Committee for Participants of Investigative 

Projects at the Virginia Tech. The subject mean body heights and weights were 175.16 ± 8.51 cm, 

73.31 ± 16.56 kg for the training group, and 174.43 ± 7.94 cm, 73.04 ± 15.40 kg for the testing 

group, respectively. To determine a subject’s normal walking speed, the treadmill was started 

and the velocity gradually increased so as to achieve a subject’s most comfortable walking speed. 

This walking speed was used for the two loading conditions on the treadmill.  

  A total of 23 reflective markers (Lockhart, Woldstad et al. 2003; Chow, Kwok et al. 

2005) were attached to the subjects’ anatomical landmarks (top of the head, base of second toe, 

malleolus, epicondyle, greater trochanter, clavicle, styloid process of ulna, lateral epicondyle of 

humerus, greater tubercle, acromion, anterior portion of temporal bone, and center of the 

calcaneus) to capture subjects’ 3D motion using a ProReflex system (Qualisys, Gothenburg, 

Sweden) at the sampling rate of 120 Hz. However, only lower body markers’ data were analyzed 

to focus on changes of lower body kinematics. Treadmill walking was performed for 30 s 

sessions with subjects wearing a 12.5 kg vest type mass (evenly distributed front and back) and 

without any external load (unloaded walking). The vest was attached to the subjects’ body using 

two shoulder straps and three side straps so that it did not obstruct any upper or lower body 
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movements. Five trials were repeated in each load condition and the order of external load 

conditions in each subject was completely randomized to reduce any order effects. 

                              

5.3.2. Analysis 

Consecutive left heel contacts determined the period of one stride in this study. Thus, one 

stride included both a left and a right step. Left heel contacts were determined using the vertical 

velocity changes of heel markers to identify gait periods (Mickelborough, van der Linden et al. 

2000). Two consecutive left strides were averaged for the analysis. Then, the kinematic data 

were filtered using a low pass, fourth-order Butterworth filter with 7 Hz cutoff frequency and 

normalized by subjects’ height. All following angles were measured in sagittal plane. Hip angles 

were defined from horizontal to the thigh segment. Knee angles were determined between the 

thigh segment and the shank segment, and ankle angles were between the shank segment and the 

foot (Harman, Han et al. 2000). Then, sagittal plane joint ranges of motion (ROM) were 

calculated as the difference between peak flexion and peak extension (LaFiandra, Holt et al. 

2002) at hip, knee and ankle joints (Hip ROM, Knee ROM and Ankle ROM). These values were 

used to quantify the magnitude of joint angular movement over gait cycle. 

 

5.3.3. Phase Portrait Path length (PL) 

The phase portrait (Figure 5.1) used in this study were determined from the angular 

position ( )(tθ ) vs. angular velocity ( )(tθ& ). Segmental angular velocities were calculated from 

the sagittal plane angles utilizing a first central difference method (Haddad, van Emmerik et al. 

2006). From the resulting phase-planes, path length (Equation 5.1) is estimated as the sum of the 

straight line distances between consecutive points for hip, knee and ankle phases (PLHip, PLKnee 
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and PLAnkle). These values were used to quantify the magnitude and velocity of joint angular 

movement as function of time over a gait cycle. 
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(E)                                                                            (F) 
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Figure 5. 1. Phase Portraits of hip, knee, and ankle angles from one typical subject (A) hip phase 
in unloaded walking condition, (B) hip phase in loaded, (C) knee phase in unloaded walking, (D) 
knee phase in loaded, (E) ankle phase in unloaded walking, and (F) ankle phase in loaded.  

 

 

5.3.4. Statistics and Linear Discriminant Analysis (LDA) 

 Analysis of Variance (ANOVA) was used to test for the main effects of load condition (2 

levels) on the dependent variables (Hip ROM, Knee ROM, Ankle ROM, PLHip, PLKnee, and 

PLAnkle). A p-value less than 0.05 indicates a statistically significant difference between loaded 

and unloaded walking for a given variable. Results showed that three variables (Hip ROM, PLHip, 

and PLAnkle) indicated statistically significant differences between unloaded and loaded walking 

(Table 1). Therefore, only these variables were used as inputs to the LDA classifier, and the 

other three variables (Knee ROM, Ankle ROM, and PLKnee) were not used. 
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Table 5. 1. The averages and S.D. of joint ranges of motion in the sagittal plane and path lengths 
under two loading conditions (unloaded and 12.5kg loaded) from 19 training subjects. * indicate 
a statistically significant load effect – ANOVA. 
 

Variable Unloaded Loaded p-values 

Hip ROM (°) 38.491 ± 3.833 41.731 ± 3.285 0.008* 

Knee ROM (°) 59.432 ± 5.529 56.826 ± 7.537 0.232 

Ankle ROM (°) 28.298 ± 3.384 29.767 ± 4.275 0.248 

PLHip 1.362 ± 0.130 1.466 ± 0.105 0.010* 

PLKnee 2.564 ± 0.265 2.553 ± 0.220 0.699 

PLAnkle 0.681 ± 0.065 0.733 ± 0.053 0.010* 

 

 

For this study, linear discriminant analysis (LDA) was implemented to find a 

classification boundary between loaded and unloaded conditions using three kinematic variables 

(or calculated from the measurements). LDA is closely related to ANOVA and regression 

analysis. These methods also attempt to express a dependent variable as a linear combination of 

other measured features (Sharma 1996). More information on LDA and its application can be 

found in (Yu and Yang 2001; Boulgouris and Chi 2007). For the classification, LDA is trained 

using 19 subjects’ experimental data. The effectiveness of this analysis is then determined using 

the untrained trials from the sequestered 4 subjects. The overall processing flow is shown in 

Figure 5.2. 

 

  



60 
 

 

Figure 5. 2. A summarized processing flow to classify loaded or unloaded walking conditions. 
 

 

 

5.4. Results 

 

There were statistically significant differences on Hip ROM, PLHip, and PLAnkle; the other 

dependent variables did not show significant differences. Carrying an evenly distributed load 

resulted in increased hip ROM and path lengths of hip and ankle (Table 1). The LDA classifier 

was trained using 19 subjects. The performance of the classifier was tested using 36 trials from 4 

subjects that were not used for training. The LDA classifier achieved an 88.9% correct 

classification rate (32 out of 36), which means that 88.9% of the unknown load conditions were 

assigned to the correct category (Figure 5.3). The false alarm rate, which is the rate that classifies 

unloaded walking as loaded one, is 8.3% (3 out of 36). 
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Figure 5. 3. Scatter plots of load classification after linear discriminant analysis (LDA). An 
88.9% (32 out of 36) correct classification rate was achieved when using three variables. True is 
the correct and false is the incorrect classification after linear discriminant analysis.  
 

5.5. Discussion 

 

We present classification results (loaded/unloaded) with simple linear discriminant 

analysis classifier that analyzes the motion capture data as training data sets from 19 subjects. 

This classifier gives a baseline performance of 88.9% correct classification from 4 untrained 

subjects of loaded vs. unloaded walking conditions when load is evenly distributed on the upper 

body. Our results confirm that a measurable difference exists between loaded and unloaded 

walking conditions using the gait kinematics. It is important to note that any real world systems 

that non-invasively measures the same variables used in this paper should have poorer 
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performance than our results. It may not even be practical to obtain these types of measurements 

in the real world settings such as utilizing video capture systems. 

The kinematic variables in Figure 5.3 illustrate the possibility of gait pattern separation 

for subjects not included in the training data sets. The differences between unloaded and loaded 

walking are noticeable, which indicates that these three variables would be sufficient to classify 

the conditions on a statistical basis. Thus, the results suggest that the use of these variables (if at 

all possible) in a video camera system may also lead to the advanced real-time classification. 

Three of the 4 incorrect classifications are caused by points appearing at the boundary between 

the two conditions.  

All joint ranges of motions were similar to previous studies (Kerrigan, Todd et al. 1998; 

Harman, Han et al. 2000; LaFiandra, Holt et al. 2002; Chow, Kwok et al. 2005). It was found 

that the gait adaptation of external loads would result in the angular changes of hip joint (Table 

1). Several studies (Harman, Han et al. 2000; LaFiandra, Holt et al. 2002; Chow, Kwok et al. 

2005) also reported that increased hip ROM was to generate and absorb the power when carrying 

a load. No significant changes in knee and ankle kinematics were found up to 15% of body 

weight, but there was a load effect of ankle with 15 to 20% of body weight (Chow, Kwok et al. 

2005) which had similar values in this study. This implies that external loads may require more 

angular momentum or power for propulsion. It was also found that the increased path lengths of 

hip and ankle joints (Table 1) would indicate that more angular velocity changes (the vertical 

direction in Figure 5.1) due to external loads.  It may support the shorter single stance time 

(Kinoshita 1985; Hong and Brueggemann 2000; Wang, Pascoe et al. 2001; Chow, Kwok et al. 

2005) and the faster cadence in previous studies (Harman, Han et al. 2000; LaFiandra, Wagenaar 
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et al. 2003). This results in decreased transversal pelvic rotation (LaFiandra, Wagenaar et al. 

2003). However, this study is limited to an investigation of sagittal plane kinematics. 

In this study, the same treadmill speed was used (set for each subject’s normal walking 

speed) for both loaded and unloaded conditions. This ensures that both walking conditions were 

close to identical in terms of spatio-temporal measurements, i.e. nearly constant stride frequency 

at a given speed. Further study would be necessary to find the effects of walking speed by having 

each subject walk at a normal walking speed for each load condition over ground vs. treadmill 

walking. Another important result found in this study is that it is not required to have a priori 

knowledge of individual’s gait kinematics to correctly classify loaded vs. unloaded walking 

conditions assuming the “real world” system can extract the kinematic quantities with high 

enough fidelity and enough training data exists.   
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6.1. Abstract 

  

The carrying of extra weight can cause significant injuries. This extra weight can be in 

the form of an external load carried by an individual or excessive body weight carried by an 

overweight individual. This study attempts to define the differences in lower body gait patterns 

caused by either external load carriage, excessive body weight, or a combination of both.  

Twenty three subjects generated one hundred fifteen trials of motion capture data for 

each loading condition. Path lengths of the phase portrait and the ranges of joint motions (hip, 

knee and ankle) were used to quantify subgroup differences.  

The study found significant gait differences due to external load carriage and excessive 

body weight. Within each class of normal weight and overweight subjects, differences were 

found in the hip and ankle path lengths when a subject carried an evenly distributed external load. 

This implies that these joints may be more prone to injury due to external load carriage.  
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6.2. Introduction 

 Load carrying is a common cause of injuries including knee and lower back (Dalen A, 

Nilsson J et al. 1978; Knapik, Reynolds et al. 1992). This has motivated previous studies that 

characterize the human effects of load carrying including the effect on gait patterns. According 

to these studies, the duration of the double stance increased with increased loads, while the single 

stance duration decreased (in 10 healthy males (Kinoshita 1985) and in 15 boys (Hong and 

Brueggemann 2000)). Significant gait differences were observed between loaded and unloaded 

walking. The nature of the changes depended on whether the load was backpack or double-pack. 

For example, with backpacking, forward leaning of the trunk is a natural behavior to help keep 

the center of mass over the feet. It was found that the forward inclination considerably increased 

with load weight to minimize energy cost (Knapik, Harman et al. 1996). The goal of minimized 

energy expenditure resulted in the decrease of vertical positions at the knee and ankle with the 

added weight (Wittman, Ward et al. 2005). Several published studies indicated that pelvic 

rotation reduced and ankle rotation increased in the sagittal plane under loaded conditions 

(Kinoshita 1985; Knapik, Harman et al. 1996). These studies also showed that knee flexion after 

impact was greater when carrying loads in order to absorb increased impact forces.  

Excessive body weight has also been linked to large number of health problems such as 

cardiovascular disease, stroke, hypertension, and diabetes as well as numerous gait related 

injuries (Must and Strauss 1999). A limited amount of work has been done to investigate the 

injury related gait kinematics of overweight individuals. The kinematic deviations include slower 

velocity, shorter step length, increased double support time, decreased knee range of motion, and 

larger ground reaction forces compared to normal weight individuals (Hills and Parker 1991; 
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Messier 1994; Stephen P. Messier, Walter H. Ettinger et al. 1996; McGraw, McClenaghan et al. 

2000).  

Body mass index (BMI) is a standard measure of obesity level. It is a measure of body fat 

based on height and weight that applies to both adult men and women (Hall and Cole 2006). In 

this work BMI is used to separate subjects into normal weight and overweight categories. This 

follows the standard convention (BMI > 25 kg/m2 overweight, BMI<25 kg/m2 normal weight).  

Little work has been done to study the effects of external load carriage and excessive 

body weight. The previous studies focus on external load carriage by normal weight individuals 

using mostly linear spatial-temporal measurements. Recently, Haddad and Emmerik (Haddad, 

van Emmerik et al. 2006) examined the intralimb and interlimb adaptations with a unilateral leg 

load. Continuous relative phase (CRP) analysis was used to evaluate limb coordination. The 

advantage of using phase analysis is that it can convert four variables (two positions and two 

velocities) into one measurement. This makes phase analysis very useful for investigating human 

movement and its complexity using a reduced set of measurements or metrics. The path length of 

the phase portrait has been used to determine the effectiveness of the postural control system in 

controlling the lower body stability and steadiness similar to distance measures of center of 

pressure (COP) in sway balance control tests (Prieto, Myklebust et al. 1996). To the best of our 

knowledge, gait adaptations due to external loads have not been compared using measures 

extracted from phase portraits in normal weight vs. overweight subjects in order to quantify gait 

differences within these groups. 

 The present study investigated kinematic gait measures to quantify gait adaptations due to 

external loads for overweight and normal weight groups. Our primary hypothesis was that 

external loads will affect the lower body movements of the two groups differently. Establishing 
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gait differences between BMI classes due to external loads can be useful for determining 

maximum acceptable occupational load conditions as function of BMI.  

 

6.3. Methods 

 

6.3.1. Subjects and experimental setup 

Twenty three subjects, 16 normal weight (BMI < 24.99 kg/m2) and 7 overweight (BMI > 

25 kg/m2), generated a total of 115 treadmill trials for each loading condition. All subjects gave 

their informed consent prior to participation as defined by the Committee for Participants of 

Investigative Projects at the Virginia Tech. The only statistically significant difference between 

two groups is weight related variables, i.e. weight, the weight of the load as a percentage of the 

subject body mass (% BM), and BMI. The subject demographics are summarized in Table 6.1. 

To determine a subject’s normal walking speed, the treadmill was started and the velocity 

gradually increased so as to achieve a subject’s most comfortable walking speed. This walking 

speed was used for the two loading conditions.  

Table 6. 1. A total of twenty three subjects demographics (mean ± SD). Bolded values indicate 
statistically significant difference (p < 0.05) between normal weight and overweight groups. 
 

Variable Normal weight (n = 16) Overweight (n = 7) p-value 

Age (yrs) 21.59 ± 3.14 25.17 ± 4.67 0.12 

Height (m) 1.74 ± 0.08 1.75 ± 0.08 0.94 

Weight (kg) 67.08 ± 8.50 89.95 ± 18.68 0.02 

% BM 18.62 ± 2.05 15.67 ± 4.08 0.01 

BMI (kg/m2) 22.04 ± 2.10 29.20 ± 3.42 0.01 

n: number of subjects 
% BM: the weight of the load as a percentage of the subject body mass 
Normal weight: BMI < 24.99 kg/m2,    Overweight:   BMI > 25.00 kg/m2 
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 A total of 23 reflective markers (Lockhart, Woldstad et al. 2003; Chow, Kwok et al. 

2005) were attached to the subjects’ anatomical landmarks (top of the head, base of second toe, 

malleolus, epicondyle, greater trochanter, clavicle, styloid process of ulna, lateral epicondyle of 

humerus, greater tubercle, acromion, anterior portion of temporal bone, and center of the 

calcaneus) to capture subjects’ 3D motion using a ProReflex system (Qualisys, Gothenburg, 

Sweden) at the sampling rate of 120 Hz. However, in this study only lower body data were 

analyzed to focus on changes in lower body kinematics. Treadmill walking was performed for 30 

s sessions with subjects wearing a 12.5 kg vest type mass (evenly distributed front and back) and 

without any external load (unloaded walking). The vest was attached to the subjects’ body using 

two shoulder straps and three side straps so that it did not obstruct any upper or lower body 

movements. Five trials were repeated in each load condition and the order of external load 

conditions in each subject was completely randomized to reduce any order effects. 

 

6.3.2. Analysis 

Consecutive left heel contacts determined the period of one stride in this study. Thus, one 

stride includes both a left and a right step. Left heel contacts were determined using the vertical 

velocity changes of heel markers to identify gait periods (Mickelborough, van der Linden et al. 

2000). Two consecutive left strides were averaged for the analysis. Then, the kinematic data 

were filtered using a low pass, fourth-order Butterworth filter with 7 Hz cutoff frequency and 

normalized by subjects’ height. All angles were measured in the sagittal plane. Hip angles were 

defined from horizontal to the thigh segment. Knee angles were determined between the thigh 

segment and the shank segment, and ankle angles were between the shank segment and the foot 

(Harman, Han et al. 2000).  Sagittal plane joint ranges of motion (ROM) were calculated as the 
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difference between peak flexion and peak extension (LaFiandra, Holt et al. 2002) at hip, knee 

and ankle joints (Hip ROM, Knee ROM and Ankle ROM). Segmental angular velocities were 

calculated from the sagittal plane angles using a first central difference method (Haddad, van 

Emmerik et al. 2006). These angular positions and velocities were then used to compute 

continuous relative phase from the position-velocity phase portrait. From the resulting phase-

planes, the phase angle at each time was calculated relative to the right horizontal using Equation 

6.1 (Kurz and Stergiou 2002). 
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6.3.3. Path length (PL) of Phase Portrait 

From the resulting phase-planes, path length (Equation 6.2) is estimated as the sum of the 

straight line distances between consecutive points for hip, knee and ankle phases (PLHip, PLKnee 

and PLAnkle). These values were used to quantify the magnitude and velocity of joint angular 

movement as function of time over a gait cycle, i.e. large values of PL suggest more joint angular 

movements. 
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6.3.4. Statistical Analysis 
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Two-way analysis of variance (BMI by load) was used and results were considered to be 

significant at the p < 0.05 level of confidence. Statistical analyses were completed using the 

SPSS statistical package (v.13, SPSS Inc., Chicago, IL).  

 

6.4. Results 

Two-way analysis of variance (BMI by load) indicated no significant (p>0.05) two-way 

interaction for lower body movements, implying that the overall trend in these responses was 

similar in normal weight vs. overweight individuals. No significant effect of load was found in 

the knee path length, and knee and ankle ROMs (Table 6.2). However, there were statistically 

significant increased path lengths of ankle and hip joints (p<0.001), and hip ROM (p<0.05) in 

the loaded walking condition for all subjects.   

Table 6. 2. ANOVA results (mean ± SD) from pooled loading conditions between unloaded and 
loaded walking conditions for all subjects. Bolded values indicate statistically significant 
difference (p < 0.05) between unloaded and loaded walking conditions. 
 

Variable Unloaded Loaded p-value 

PLAnkle 0.6856 ± 0.0642 0.7515 ± 0.0593 0.001 

PLHip 1.3713 ± 0.1283 1.5031 ± 0.1185 0.001 

PLKnee 2.5602 ± 0.2131 2.6418 ± 0.2234 0.211 

Hip ROM (°) 38.6058 ± 3.5124 41.8693 ± 3.0355 0.019 

Knee ROM (°) 60.3562 ± 5.0004 57.9842 ± 6.4828 0.172 

Ankle ROM (°) 28.5638 ± 4.0134 29.9843 ± 5.0475 0.297 

 

Figure 6.1 illustrates the overall experiment, broken down into the specific groups and 

loading conditions studied. Each of the statistical tests conducted between the groups and loading 

conditions is labeled as A-F. Individual results for each comparison in Figure 6.1 are; 
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A: Comparison between two BMI groups over all external loading conditions found a 

statistically significant difference in hip ROM (Table 6.3). 

B: Comparison between two BMI groups for the unloaded walking condition found no 

statistically significant difference (p>0.05) in gait variables. 

C: Comparison between two BMI groups for the loaded walking condition found no 

statistically significant difference (p>0.05) in gait variables. 

D: Comparison between the loaded normal weight subjects and unloaded overweight 

subjects found no statistically significant difference in gait variables. 

E: Comparison between two loading conditions for the normal weight group found a 

statistically significant difference (p>0.05) in the hip and ankle path lengths (also in 

Figure 6.2). 

F: Comparison between two loading conditions for the overweight group found a 

statistically significant difference in the hip and ankle path lengths (also in Figure 6.2). 

Table 6. 3. ANOVA results (mean ± SD) from pooled loading conditions between normal 
weight and overweight subjects. Bolded values indicates statistically significant difference (p < 
0.05) between normal weight and overweight groups. 
 

Variable Normal weight Overweight p-value 

PLAnkle 0.7076 ± 0.0758 0.7437 ± 0.0453 0.106 

PLHip 1.4152 ± 0.1517 1.4874 ± 0.0907 0.106 

PLKnee 2.5932 ± 0.2418 2.6189 ± 0.1655 0.720 

Hip ROM (°) 39.5170 ± 3.9068 41.8845 ± 2.3013 0.041 

Knee ROM (°) 59.6105 ± 4.1115 58.1638 ± 3.7484 0.446 

Ankle ROM (°) 29.5389 ± 4.6397 28.6686 ± 4.5010 0.558 
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Figure 6. 1. A summary of group differences in terms of path length (PL) and joint range of 
motion (ROM) variables. 
A:  a statistically significant difference (p < 0.05) in hip ROM between two groups over two 

loading conditions (solid).  

B and C:  no significant differences (p>0.05) in gait variables between BMI groups within each 

loading condition (dashed).  

D:  no significant difference (p>0.05) in gait variables between loaded normal weight subjects 

and unloaded overweight subjects (dashed).  

E and F:  statistically significant differences (p<0.05) in PL of ankle and hip within each BMI 

group (solid).  
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Figure 6. 2. Kinematic changes due to loading conditions in normal weight and overweight 
subjects. (A) path length of ankle and (B) path length of hip.  a indicates a statistically significant 
difference in normal weight subjects between unloaded and loaded walking conditions (p<0.05). 
b indicates a statistically significant difference in overweight subject between unloaded and 
loaded walking conditions (p<0.05). 
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6.5. Discussion 

The purpose of this study was to compare lower extremity kinematics between BMI 

classes (normal weight vs. overweight) during unloaded and loaded walking conditions. The 

hypothesis was that evenly distributed external loads will affect the lower body movements of 

each group differently. The main conclusion of the study is that there are significant differences 

in path lengths of hip and ankle joints between loading conditions within each subgroup, normal 

weight and overweight.   

Hip ROM, ankle path length, and hip path length are significantly greater in loaded 

walking than unloaded walking (Table 6.2) for all subjects. However, no knee and ankle ROM 

differences are found. A similar result has been reported in (Harman, Han et al. 2000) including 

the significantly greater hip ROM as an external load increases. External load carriage obviously 

requires more energy expenditure (Griffin, Roberts et al. 2003).  Our study indicates that ankle 

and hip joints are the focus of the energy expenditure due to greater path lengths under the 

loaded condition. In addition, this trend is same for both overweight and normal weight subjects.  

Different movement patterns between normal weight and overweight subjects are 

observed in only hip ROM (Table 6.3). The increased hip ROM in overweight subjects leads to 

greater vertical movement of the hip (Whittle 2007). This may indicate that there is greater 

energy expenditure at preferred walking speed in overweight subjects as shown in (Foster, 

Wadden et al. 1995; Stefano, Yves et al. 2003; Browning, Modica et al. 2007). A previous study 

(Berrigan, Simoneau et al. 2006) reported that controlling balance reduced the efficiency of 

overweight subjects. Although the ROM difference between two groups is statistically 

significant, it is very small (less than 3°). Moreover, there is no significant difference in other 

variables between normal weight and overweight groups. It has been shown that obese subjects 
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adapt certain neuromuscular functions to produce a gait pattern with less load in lower body 

joints (Spyropoulos, Pisciotta et al. 1991). Spyropoulos et al. (Spyropoulos, Pisciotta et al. 1991) 

also reported that obese gait is characterized by a normal pattern of sagittal and transverse plane 

movement.  More importantly, external loads are different from additional body weight. It is 

shown that external loads affect both groups’ (normal weight and overweight) lower body 

movements in ankle and hip as shown in Figure 6.2.  However, no path length differences exist 

between the two groups in either load condition as shown in Figure 6.1-D. In other words, if 

additional bodyweight and external loads were to have similar effects on gait, then the 

differences between loading conditions would be the same as differences between normal weight 

and overweight groups. This proved not to be the case.  

In conclusion, statistically significant differences were found in hip and ankle path 

lengths when a subject carried an evenly distributed external load. These differences were found 

regardless of the subjects’ BMI. The hip and ankle likely pay for the increased energy cost to 

carry the load via increased path lengths. This implies that these joints may be more prone to 

injury due to external load carriage.  
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7.1. Abstract 

  

Load carriage is a very common daily activity at home and in the workplace. Generally, 

the load is in the form of an external load carried by an individual, it could also be the excessive 

body mass carried by an overweight individual.  To quantify the effects of carrying extra weight, 

whether in the form of an external load or excess body mass, motion capture data was generated 

for a diverse subject set. This consisted of twenty three subjects generating one hundred fifteen 

trials for each loading condition. This study applied Principal Component Analysis (PCA) to 

motion capture data in order to analyze the lower body gait patterns for four loading conditions: 

normal weight unloaded, normal weight loaded, overweight unloaded and overweight loaded.  

PCA has been shown to be a powerful tool for analyzing complex gait data. In this 

analysis, it is shown that in order to quantify the effects of external loads for both normal weight 

and overweight subjects, only two principal components (PCs) are needed. For the work in this 

paper, PCs were generated from lower body joint angle data. The PC1 of the hip angle and PC2 

of the knee angle are shown to be an indicator of external load effects on temporal gait data.  



84 
 

7.2. Introduction 

 

Load carriage is one of the most common tasks in daily activities as well as in the 

workplace. There are many previous studies that characterize the effects of load carrying on gait. 

These showed that the duration of the double stance increased with heavier backpack loading, 

but single stance duration decreased (in 10 healthy males (Kinoshita 1985) and in 15 boys (Hong 

and Brueggemann 2000)). An evenly distributed external load, i.e. double-packing, has a reduced 

effect on human movements including less trunk inclination (Kinoshita 1985) and energy 

expenditure than front or backpack loading (Ramanthan 1972). Most gait studies for load 

carriage rely on direct statistical analysis of measures such as muscle activation, metabolic cost, 

kinematics and kinetics of the human body (Harman, Han et al. 1992; Harman, Han et al. 2000; 

Hsiang 2002; Griffin, Roberts et al. 2003). However, subspace analysis techniques, such as 

Principal Component Analysis (PCA), can also be brought to bear to better understand the nature 

of load induced changes in gait. 

PCA is a useful technique that has found application in fields such as face recognition 

(Oravec and Pavlovicova 2004) and image compression (Meyer-Baese 2000). It is as a common 

technique for finding patterns in data of high dimension (Daffertshofer, Lamoth et al. 2004). 

PCA finds the greatest sources of variation in the data and allows the effects of these variations 

to be isolated. PCA can also be used to remove unwanted sources of data variation and provide 

information that may greatly increase classification accuracy (Deluzio and Astephen 2007). 

PCA has previously been used in Biomechanics. According to Wrigley et al. (Wrigley, Albert et 

al. 2006), PCA was used to quantify clinically relevant differences in kinetic lifting waveforms. 

Sadeghi et al. (Sadeghi, Allard et al. 1997; Sadeghi, Prince et al. 2000; Sadeghi, Allard et al. 
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2002) reported that PCA could be used to identify main functional contributions of muscle 

powers and mechanical energies. Also, Olney et al. (Olney, Griffin et al. 1998) successfully 

applied PCA to dimensionally reduced gait data. Deluzio et al. (Delaney, Foroughi et al. 1997; 

Deluzio, Wyss et al. 1999; Deluzio and Astephen 2007) reported that PCA could be used for gait 

data reduction when comparing the gait patterns of normal and osteoarthritis subjects. Temporal 

waveforms such as joint angles, forces and moments were used to determine group differences. 

However, there are no previous studies using PCA to analyze the effect of external loads on 

human gait.  

  The present study investigates gait kinematic adaptations due to evenly distributed 

external load using PCA. The primary hypothesis is that PCA could be used to characterize the 

main features of the evenly distributed external load conditions in gait data. In other words, 

principal components (PCs) were extracted to determine features of variation that could be used 

to quantify differences in gait patterns between unloaded and loaded walking conditions. In 

addition, tests were conducted to investigate whether these changes manifest themselves 

differently between normal weight (BMI < 24 kg/m2) and overweight subjects (BMI > 24 kg/m2). 

Excessive body mass has been linked to kinematic deviations which include slower velocity, 

shorter step length, increased double support time, decreased knee range of motion, and larger 

ground reaction forces compared to normal weight individuals (Hills and Parker 1991; Messier 

1994; Stephen P. Messier, Walter H. Ettinger et al. 1996; McGraw, McClenaghan et al. 2000). 

Establishing gait differences between BMI classes due to external loads will be useful to 

determine whether characteristics of each group’s gait come from the external loads or excessive 

body weight. To explore these hypotheses, data from the sagittal plane were selected because the 

major movements occur in this plane.  
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7.3. Methods 

 

7.3.1. Subjects and experimental setup 

Twenty three subjects, 14 (7 male and 7 female) normal weight (BMI < 24 kg/m2) and 9 

(7 male and 2 female) overweight (BMI > 24 kg/m2), participated in the study. All subjects gave 

their informed consent prior to participation as defined by the Committee for Participants of 

Investigative Projects at the Virginia Tech. The subject demographics are summarized in Table 

7.1.  

 

Table 7. 1. A total of twenty three subjects demographics (mean ± SD). Bolded values indicate 
statistically significant difference (p < 0.05) between normal and overweight groups. 
 

Variable Normal weight (n = 14) Overweight (n = 9) p-value 

Age (yrs) 21.79 ± 3.12 23.67 ± 4.72 0.31 

Height (m) 1.75 ± 0.08 1.73 ± 0.08 0.50 

Weight (kg) 66.29 ± 8.93 83.54 ± 17.87 < 0.05 

% BM 19.16 ± 2.45 15.49 ± 2.83 < 0.05 

BMI (kg/m2) 21.51 ± 1.90 27.65 ± 3.57 < 0.01 

n: number of subjects 
% BM: the weight of the load as a percentage of the subject body mass 
Normal weight: BMI < 24.99 kg/m2 (7 males and 7 females) 
Overweight:   BMI > 25.00 kg/m2 (7 males and 2 females) 
 

 

To determine a subject’s normal walking speed, the treadmill was started and the velocity 

gradually increased so as to achieve a self-selected comfortable walking speed. This walking 

speed was used for the two loading conditions on the treadmill. Note that a treadmill is often 

used in gait research due to its controllability and test repeatability. In addition, it is convenient 

because it requires only a small area to use motion capture equipment while allowing 
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measurement of many gait cycles. However, there may be discrepancies between treadmill and 

overground walking. Treadmill walking has a higher cadence to maintain the same self-selected 

walking speed than overground walking (Strathy, Chao et al. 1983). In this study, the same 

normal walking speed was used for both loading conditions to control any speed-related changes 

such as dynamic stability (England and Granata 2007), metabolic costs (Griffin, Roberts et al. 

2003), and so on. 

  A total of 23 reflective markers (Lockhart, Woldstad et al. 2003; Chow, Kwok et al. 

2005) were attached to the subjects’ anatomical landmarks (top of the head, base of second toe, 

malleolus, epicondyle, greater trochanter, clavicle, styloid process of ulna, lateral epicondyle of 

humerus, greater tubercle, acromion, anterior portion of temporal bone, and center of the 

calcaneus) to capture subjects’ 3D motion using a ProReflex system (Qualisys, Gothenburg, 

Sweden) at the sampling rate of 120 Hz. However, only lower body markers’ data were analyzed 

to focus on changes of lower body kinematics. Treadmill walking was performed for 30 s 

sessions with subjects wearing a 12.5 kg vest type mass (evenly distributed front and back) and 

without any external load (unloaded walking). The vest was attached to the subjects’ body using 

two shoulder straps and three side straps so that it did not obstruct any upper or lower body 

movements. Five trials were repeated in each load condition and the order of external load 

conditions in each subject was completely randomized to reduce any order effects. 

 

7.3.2. Analysis 

Consecutive left heel contacts determined the period of one stride in this study. Thus, one 

stride includes both a left and a right step. Left heel contacts were determined using the vertical 

velocity changes of heel markers to identify gait periods (Mickelborough, van der Linden et al. 
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2000). The kinematic data were filtered using a low pass, fourth-order Butterworth filter with 7 

Hz cutoff frequency. All following angles were measured in sagittal plane. Hip angles were 

defined from horizontal to the thigh segment. Knee flexion angles and ankle angles (between the 

shank segment and the foot) were used.  These three angles are used as the input temporal 

variables. In addition, sagittal plane joint ranges of motion (ROM) were calculated as the 

difference between peak flexion and peak extension at hip, knee and ankle joints. 

 

7.3.3. PCA background   

 PCA is a powerful tool for summarizing high dimensional data via a set of orthogonal 

vectors onto which the data is projected. Mathematically, PCA consists of an orthogonal 

transformation that converts the input variables into the new uncorrelated PCs (Jolliffe 2002). 

The objective of PCA is to reduce the dimensionality (number of variables) of the dataset but 

retain most of the original variability in the data. The first principal component (PC1) accounts 

for as much of the variability in the data as possible, and each succeeding component accounts 

for as much of the remaining variability as possible (Sadeghi, Prince et al. 2000; Daffertshofer, 

Lamoth et al. 2004). A brief mathematical discussion of PCA is given below.  

Consider a m-dimensional random vector X = (X1, X2, ..., Xm). n principal components (n<m) of 

X are n (univariate) random variables Y1, Y2, ..., Yn which are defined by the equation, 

XUY t= (Delaney, Foroughi et al. 1997). The coefficient vectors, U = (U1, U2, …, Un), are the 

eigenvectors of the covariance matrix of X. The data is described by m linear combinations of 

the principal components (Z). Typically, the first few components explain most of the variance in 

the original data. In the current work only the first two PCs are needed. PC1 is the axis with the 
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most variation and PC2 is orthogonal to PC1 and has the second largest variation (Jolliffe 2002). 

The magnitude of the eigenvalues of U is the lengths of the corresponding components.  

In this study, the input variables are lower body joint (hip, knee, and ankle) angles. Ninety 

percent of the data variation is represented by the first two PCs corresponding to the two largest 

eigenvalues. Excellent explanations of PCA applied to gait waveform data can be found in 

(Delaney, Foroughi et al. 1997; Deluzio, Wyss et al. 1999; Sadeghi, Prince et al. 2000; Deluzio 

and Astephen 2007).  

   

7.4. Results 

 

Principal component analysis was conducted for the hip, knee, and ankle angles. PC 

scores were generated for each subject for both loaded and unloaded conditions. In order to 

quantify statistical differences between loading conditions and BMI classes, Student’s t-test was 

applied to joint angle PC scores and actual joint ranges of motion. The p-values of each PC are 

provided in Table 7.3. Figure 7.1 and 7.2 show mean joint angle waveforms, PC loading vectors, 

and waveforms corresponding to the  high and low PC scores. The ankle angle showed no 

significant differences in any groups for either PCA or ROM. Also, no significant effect of load 

was found in the actual knee ROM (Table 7.2). 
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Table 7. 2. A summary of Student’s t-tests results (mean ± SD) between unloaded and loaded 
walking conditions for all subjects. Bolded values indicate statistically significant difference (p < 
0.05) between unloaded and loaded walking conditions. 
 

Variable Unloaded Loaded p-value 

Hip ROM (°) 38.6058 ± 3.5124 41.8693 ± 3.0355 < 0.05 

Knee ROM (°) 60.3562 ± 5.0004 57.9842 ± 6.4828 0.172 

Ankle ROM (°) 28.5638 ± 4.0134 29.9843 ± 5.0475 0.297 
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Figure 7. 1. (A) Mean hip angle waveform data for unloaded (dashed) and loaded walking 
(solid). (B) The loading vectors for the first two principal components, PC1 (solid) and PC2 
(dashed). (C) Hip angle waveforms corresponding to the 5th (dashed) and 95th (solid) percentiles 
of PC1 scores.  
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There were several measures, however, where significant statistical differences between 

groups did exist. The first PC of hip angle showed significant differences between unloaded and 

loaded walking conditions (Table 7.3 and Figure 7.1). The first PC has positive values in late 

stance and large negative values during early stance and swing (Figure 7.1B). Therefore, it is a 

measure of the range of motion of the hip joint (Deluzio and Astephen 2007). Figure 1C shows 

the waveform data according to the high and low PC1 scores. PC1 score statistical analysis 

showed that unloaded walking had, on average, less hip angular motion (p<0.001). The same 

result was found in actual hip ROM as shown in Table 7.2. No significant difference was found 

between unloaded and loaded walking with respect to PC2. 

 

Table 7. 3. A summary of Student’s t-tests results (mean ± SD) comparing the PC scores 
between unloaded and loaded walking conditions. Bolded values indicate statistically significant 
difference (p < 0.05) between the two groups. Only significant contributions were shown. 
 

Angle PC Unloaded Loaded p-value 

Hip PC1 -0.89 ± 0.19 -0.69 ± 0.19 < 0.05 

 PC2 -0.06 ± 0.30 0.06 ± 0.28 0.177 

Knee PC1 0.34 ± 0.32 0.32 ± 0.30 0.835 

 PC2 -0.09 ± 0.30 0.11 ± 0.32 < 0.05 

Normal weight  Unloaded Loaded  

Hip PC1 -0.93 ± 0.22 -0.72 ± 0.22 < 0.05 

Overweight  Unloaded Loaded  

Hip PC1 -0.84 ± 0.14 -0.64 ± 0.12 < 0.01 
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Figure 7. 2. (A) Mean knee angle waveform data for unloaded (dashed) and loaded walking 
(solid). (B) The loading vectors for the first two principal components, PC1 (solid) and PC2 
(dashed). (C) Knee angle waveforms corresponding to the 5th (dashed) and 95th (solid) 
percentiles of PC2 scores. 
 

The knee angle also revealed differences between unloaded and loaded walking 

conditions (Table 7.3 and Figure 7.2). No significant difference was found in the PC1 score 

between unloaded and loaded walking. PC2 had large positive values in early stance and large 

negative values during late stance and swing. Unloaded walking was found to have a lower 

magnitude of knee flexion during early stance than loaded walking as shown in PC2 scores (Fig. 

2B and C).  

Above, PCA identified gait differences between loaded and unloaded walking for the 

general population. In this section, the analysis is further refined to include the effects of body 

mass on the gait adaptation due to external loads. This was accomplished by separating subjects 

into two BMI classes (normal weight < 24 kg/m2 < overweight). The hip angle PC1 score for 
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normal weight subjects was found to be statistically different (p<0.05) between loaded and 

unloaded walking. This relates to a reduction in hip angular motion during swing phase when 

unloaded (Table 7.3 and Figure 7.3A). Similarly, the overweight group showed significantly 

(p<0.01) lower hip angle PC1 score in unloaded walking than loaded walking (Table 7.3 and 

Figure 7.3B).  
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Figure 7. 3. (A) Mean hip angle waveform data of normal weight subjects for unloaded (dashed) 
and loaded walking (solid). (B) Mean hip angle waveform data of overweight subjects for 
unloaded (dashed) and loaded walking (solid). Unloaded: unloaded walking, Loaded: loaded 
walking, Norm: normal weight subjects, Over: overweight subject.  
 

7.5. Discussion 

 

The purpose of this study was to compare lower extremity kinematics between unloaded 

and loaded walking conditions using PCA. The hypothesis was that PCA could be used to 

characterize changes due to evenly distributed external loads. These changes are more subtle 

than one-sided loadings and require more sophisticated analysis. The main conclusion of the 

study is that gait data can be reduced into two highly informative PCs. The first PC (PC1) of hip 

angle and the second PC (PC2) of knee angle are the most informative in regard to the effect of 

external loads on lower body kinematics. However, no significant difference was found in the 

ankle angular movements. This indicates that the ankle joint is not sensitive enough to the 12.5kg 
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external load used in this study. Similar results were reported in (Harman, Han et al. 2000) with 

various one sided loading.  

Principal component analysis of the sagittal hip angle revealed a significant PC1 score 

increase for loaded walking compared to unloaded walking. The PC1 score increase is consistent 

with the increase in actual measures of hip ROM as shown in Table 7.2. This indicates more 

angular hip motion when carrying a load. PC2 scores of the knee angle show that there is a 

significant increase in the knee flexion during stance in loaded walking than in unloaded walking. 

An increase in knee joint flexion after heel contact is expected when carrying a load (Chow, 

Kwok et al. 2005). The difference in knee flexion between loaded and unloaded walking is not 

significant during swing. Therefore, knee angular motion during the swing phase is not an 

indicator of load effects.  

Normal weight and overweight subjects show similar external load adaptations. Both 

groups have increased hip ROM in loaded walking than in unloaded walking. The difference 

between unloaded and loaded walking is greatest during peak hip extension. However, a 

significant BMI effect was not found when comparing overweight and normal weight subjects. 

The effects of external loads are more significant than those caused by BMI differences when 

walking.  

 As shown in this study, PCA is an effective way of analyzing subtle changes in lower 

body joint angles caused by evenly distributed external loads. PCA was used to find significant 

differences in the knee joint angle between unloaded and loaded walking even though no 

statistical difference exists in knee ROM. PCA was not able to show a significant difference in 

any joint angles between normal weight and overweight groups. Subjects in this study had a 

relatively a short time to adapt to the external load. Larger kinematic changes may result without 
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a proper amount of adaptation time. The longer term adaptations of overweight subjects to their 

excessive body mass may result in more subtle differences in lower body joint angles. These 

changes cannot be analyzed using PCA because the small variations in joint angles are not 

captured in the first two PCs. Although a higher number of PCs might contain these variations, 

they are often dominated by noise.  

In conclusion, PCA has been shown to be a powerful tool for analyzing complex gait data. 

It is shown that in order to quantify the effects of external loads, only two principal components 

were needed. For the work in this paper, PCs were generated from lower body joint angle data. 

PC1 of hip and PC2 of knee angle were shown to be indicators of external load effects on 

temporal gait data.  
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Chapter 8 - Conclusions 

 

8.1. Research summary 

 Gait analysis to classify unloaded and loaded walking was examined in this study. 

External loads were evenly-distributed with a weight of 12.5kg. Results of this study have 

demonstrated that external loads significantly affect kinematics of lower limbs. It was 

successfully quantified in this study by phase angles, path lengths from phase portraits, and joint 

angle ranges of motion. The actual classification for loading conditions is conducted by artificial 

neural networks (ANNs) and linear discriminant analysis (LDA). Also, principal component 

analysis (PCA) is used to characterize both loading conditions. 

 Reliability analysis was performed 1) to quantify the consistency of lower body 

kinematic measurements during gait, and 2) to determine the number of required trials. Intra-

class correlation coefficients, ICC(2,1), were calculated for each loading condition. Results 

showed moderate reliability from 0.61 to 0.82. Lower ICC values in loaded walking suggest that 

a less reliable measure would be expected for such a loading condition.  

  Next, satisfactory classification of subjects into the correct loading condition was 

achieved by using LDA. LDA could successfully discriminated loaded and unloaded walking 

conditions using six lower body kinematic variables including joint angle ranges of motion and 

path lengths of joint movements. The results showed that external loads affected gait pattern 

changes and with a large amount of training data sets, it would be possible to classify an 

unknown person’s gait patterns. However, another research question was asked: how are the 
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external loads different from the excessive body mass in overweight subjects. Therefore, a 

further study was conducted to define the differences in lower body gait patterns caused by 

external loading condition and excessive body mass. The study found significant gait adaptations 

caused by external load carriage rather than excessive body mass. A subspace analysis technique 

such as PCA was also performed to better understand the nature of load induced changes in gait. 

In this study, PCA was showed to be a powerful tool for analyzing complex gait data. With only 

two principal components, it was successfully characterized the effects of load carriage. 

 Biomechanical understanding of human movements, specifically gait patterns, can be a 

useful tool for the detection of a hidden load, clinical evaluations of patients, as well as 

movement control for bipedal robots.  

 

8.2. Contributions and Future work 

 The new methods and results in this dissertation provide additional tools which may be 

applied for clinical evaluations as well as gait research. Specifically, the analysis from phase 

portraits can be used for an indication of the amount of angular displacement or velocity in 

individuals who have disabilities. It also estimates the stability of human motion and provides an 

analysis of adaptation methods caused by various perturbations. A lower tolerance to 

perturbations may place the person at higher risk of developing gait instabilities.  

 In addition, a simple classification method using linear discriminant analysis may be 

helpful in understanding characteristics of each class (i.e. unloaded and loaded walking in this 

study). It can be further compared with principal component analysis or neural networks to find 

the advantage of each method.  
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 There are some limitations for this study. In the future, it would be essential to use 

various loading conditions, for example 5, 10, 15, and 20 kg, in order to find adaptation trends 

due to the loading conditions. Using this data, motion classifications can be generated for 

randomly selected individuals based on training data from a large number of people. In this 

dissertation, the same preferred walking speed for normal walking was used for both unloaded 

and loaded walking. This may cause atypical walking while carrying a load. Therefore, future 

work should use two different preferred walking speeds for both loading conditions to determine 

the changes of lower body kinematics with respect to the walking speed and external load at the 

same time.  

 Finally, a study will be necessary to relate the risk of injuries to kinematic changes due to 

external loads or excessive body mass. After verification with current experimental data, this can 

be further developed by a mathematical model which may anticipate kinematic changes due to 

severe external conditions. Applying torso and arms movements in the mathematical model will 

lead to much more realistic motion and can be used to find risk factors of those joints which are 

prone to injuries. 
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Appendix II. A consent form 

Informed Consent for Participants of Investigative Projects 
Grado Department of Industrial and Systems Engineering 

Virginia Tech 
 
 
TITLE:  Gait Analysis to Detect Hidden External Loads 
 
PRINCIPAL INVESTIGATOR:  Thurmon E. Lockhart Ph.D. 
 

PURPOSE   

The purpose of this study is to evaluate gait characteristics associated with carrying a hidden 
load.  

 

PROCEDURE 

The test will be performed at Virginia Tech, Locomotion Research Laboratory. You will perform 
walking maneuvers while carrying a load (no-load, 5 kg, 10kg, 15kg, 20kg, and 25kg). While 
walking at natural and fast walking speed (120 steps/min) your gait parameters will be assessed 
utilizing the motion analysis system and video camcorder. Refractive markers will be attached to 
the joint centers and you will be instructed to walk on the treadmill with a safety harness.  While 
walking data will be collected using the motion analysis and video camcorders. The entire 
experiment will take two hours. 
 

RISKS OF PARTICIPATION 

Minor muscle sprain (similar to those encountered in regular daily activities) 
 

BENEFITS  

The proposed research will provide an algorithm to detect hidden loads.  This information can be 
used for security purposes in places such as airports and government buildings.  The benefits to 
the subjects are a better understanding of hidden load detections.   
 

COMPENSATION 

Monetary compensation will be provided ($10.00 per hour). 
 

ANOYNMITY AND CONFIDENTIALITY 

The data from this study will be kept strictly confidential.  No data will be released to anyone but 
the principal investigator and graduate students involved in the project without written consent of 
the subject.  Data will be identified by subject number. 
 

FREEDOM TO WITHDRAW 

You are free to withdraw at any time from the study for any reason.  Circumstances may come 
up that the researcher will determine that you should not continue as a subject in the study.  For 
example, an illness could be a reason to have the researchers stop your participation in the study. 
 

APPROVAL OF RESEARCH 
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This research has been approved, as required, by the Institutional Review Board for Research 
Involving Human Subjects at Virginia Tech, and by the Grado Department of Industrial and 
Systems Engineering.  You will receive a copy of this form to take with you. 
 

SUBJECT PERMISSION 

I have read the informed consent and fully understand the procedures and conditions of the 
project.  I have had all my questions answered, and I hereby give my voluntary consent to be a 
participant in this research study.  I agree to abide by the rules of the project.  I understand that I 
may withdraw from the study at any time. 
 
If I have questions, I will contact: 
 Principal Investigator:  Thurmon E. Lockhart, Assistant Professor, Grado Department of 
Industrial and Systems Engineering, 231-9088. 
 Chairman, Institutional Review Board for Research Involving Human Subjects:  David 
Moore, 231-4991. 
 
 
Signature of Subject  __________________________________________ Date:   
 
Signature of Project Director or his Authorized Representative: 
___________________________________________________________ Date:   
 
Signature of Witness to Oral Presentation: 
___________________________________________________________ Date:   
 
 
 
 
 
  

 


