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Chapter 3 - Data Processing Algorithms

3.1 Processing algorithms for evaluating PERES data

Bridge inspectors will need a quick, accurate analysis method to evaluate data

collected from concrete bridge decks using the PERES GPR system. Developing this

methodology is a difficult task due to the large amounts of data that are generated, (10

megabytes/m2 of bridge deck coverage), by the system and the difficulties involved in

consistently interpreting the data. Algorithms that use statistical pattern recognition and

image processing techniques provide the means to analyze PERES data with these

practical realities in mind. A method that incorporates both of these techniques has been

developed to perform two primary tasks. First, the reinforcing steel in the concrete

bridge decks is detected using an image processing algorithm that can also be labeled as a

syntactic pattern recognition algorithm. Second, the locations of potential flaws and

sound concrete are detected using a statistical pattern recognition algorithm. The results

of both of these algorithms are combined to provide an image of high likelihood distress

locations.

3.1.1 Expert knowledge for processing algorithm development

A significant prerequisite for developing image processing and statistical pattern

recognition algorithms is expert knowledge about features of interest in data. For PERES

data from aging concrete bridge decks these features include responses to distress, (such

as delaminations), and reinforcing steel. Based on repeated observations, feature

characteristics can be determined that distinguish a feature from its background. These

feature characteristics are called “measurements.” Measurements provide input to image

processing and pattern recognition algorithms that classify data, (section 1.1.5). The

error rates of these techniques depend on how well measurements separate data into
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distinct, correct classes in spite of noise and clutter in the data. Selection of appropriate

measurements prepares the way for effective pattern recognition techniques. The

measurements used for analysis of PERES data are described in Sections 3.3.1 and 3.3.2.

3.2 Pattern recognition and image processing algorithm implementation fundamentals

Developing pattern recognition and image processing algorithms tailored to

PERES GPR data analysis required methods developed in the literature and original

methods that had not been used before. Template matching and quadratic discriminant

analysis were two of the key methods used. Fundamental concepts of these two methods,

as they relate to algorithm implementation, are provided in Sections 3.2.1 through 3.2.3.

Details of how these methods are used to analyze GPR data are in Section 3.3.

3.2.1 Image processing

Image processing techniques provide important tools that prepare images for

effective pattern recognition processing. In some cases the lines between image

processing and pattern recognition processing are blurred. For this study, the approach to

locating reinforcing steel in PERES bridge deck data could be categorized as image

processing or a simple form of syntactic pattern recognition. The approach involves a

two dimensional convolution of the image with a template and a subsequent search for

local maxima in the resulting image (Section 3.3.1). Local maxima are generated for

long, linear features with a particular orientation, which is indicative of a response to

reinforcing steel in the PERES data. The template matching concept this technique relies

on, (which the pattern recognition measurements for detecting distress locations also

depend on), is described in the following section.

3.2.2 Template matching

To effectively locate objects and classify features in image data, a frequent

approach has been to use template matching. This approach defines a template which is
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representative of the object in the image that needs to be located. This template is

compared to candidate objects in the data using a match measure. Objects that closely

match the template produce a high value for the match measure, while objects that differ

significantly have a low match measure. In one dimension the equations for template

matching are provided in equation 3.1 (Jain, 1995).

(3.1)

Here Cfg is the cross-correlation between a template,g, and a signal,f. The match

measureM is calculated by normalizing the cross-correlation using signal values. A

simple one-dimensional example of template matching can be demonstrated with the

following signals, (Figure 3.1):
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Signal 1

Signal 2

Signal 3

Figure 3.1 Template matching example signals.

Signal 1 displays an abrupt spike at time=4, and has a value of zero everywhere else. The

similarity of signals 2 and 3 to signal 1 can be calculated using a match measure. First,M

is calculated for signal 1 itself, which produces a value ofM=2.0. Signals 2 and 3

produce valuesM=1.0 andM=1.79 respectively, when match measures are computed.
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Signal 3, which has a match measure that is close to 2.0, is similar to signal 1 because it

has an abrupt spike near time=4. The similarity between the two signals is reflected in

the close match measures. Signal 2 is a poor match to signal 1, with high magnitude

values that form a plateau rather than a spike. This is indicated by a low match measure.

If appropriate templates can be defined as expected signals, this example illustrates that

match measures can provide a means of determining the similarity of an unknown signal

to a reference template. This template matching operation can be performed on two

dimensional images in a similar way to this one dimensional example. The one

dimensional equations are used to calculate measurements for input to the pattern

recognition algorithm that determines distress locations (Section 3.3.2), while the two

dimensional equations are used for locating the reinforcing steel (Section 3.3.1).

3.2.3 Quadratic discriminant analysis

Quadratic discriminant analysis is a pattern recognition technique which classifies

data based on statistical distributions of measurement data. Ideally, the technique is used

on measurement data that is normally distributed, (which makes it the minimum error rate

classifier), but it can also be used on data that approximates a normal distribution. The

effectiveness of the method depends on the distribution of the data relative to the normal

model and the distances between the means of class measurements. The quadratic

discriminant analysis classifier calculates the locations of decision boundaries in

measurement space based on the locations of distribution intersections in the

measurement data, (using a normal model). The locations of these intersections can be

defined using the following equation (Duda, 1973):
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Herex is the vector of measurement values,µµµµ is the mean value of thei th measurement

class, P(ωωωωi) is the a priori probability of that nature is in the stateωωωωi andΣΣΣΣ is defined as

the matrix of standard deviations with elements defined by the expected value of the class

measurement values and class means as follows:
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         σij=E[(xi-µι) (xj-µj)]           (3.3)

The decision surfaces defined in equation 3.2 are hyperquadrics, which can take the form

of hyperplanes, hyperspheres, hyperellipsoids, hyperparabaloids and hyperhyperbaloids

(Duda, 1973). A representative example of a hyperelliptical decision surface for the

Figure 3.2 Elliptical decision boundary, (blue), for the bivariate normal case.

bivariate normal case is shown as a projection in Figure 3.2. In this figure, the green and

red hyperellipsoids are contours of constant probability density for each of two classes,

shown from above. The hyperelliptical decision surface, (shown in blue), indicates the

location of the intersection of the two probability densities. The diagonal line fill inside

the blue hyperellipsoid is on one side of the decision surface and signifies one decision

region, while the dot filled area is on the other side of the decision surface signifies the

second decision region. Other hyperquadric decision surfaces can be similarly

represented.

For many pattern recognition classification problems, quadratic discriminant

analysis parameterizes decision boundaries that are highly effective. In some cases,

however, the distribution of the data does not fit the normal model. In these cases the

optimum decision surface can be more complicated than a hyperquadric. Neural network

methods and other sophisticated techniques can sometimes be used to parameterize these

more complicated decision surfaces.
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3.3 Algorithm description and implementation

The implementation of a processing method for analysis of PERES data from

concrete bridge decks was accomplished using a collection of algorithms written in C,

MatLab and the Partek software package. This collection of algorithms was designed to

determine the locations of distress, reinforcing steel and sound concrete in the data. The

C algorithms were primarily used to prepare data for analysis in MatLab and Partek.

Partek was used to implement a quadratic discriminant analysis of the data, which

determined high likelihood locations of distress in the data. Matlab was used to

implement an image processing technique for detecting locations of reinforcing steel in

the data and to subsequently integrate and display the distress and reinforcing steel

detection results.

3.3.1 Reinforcing steel detection algorithm

The motivation for detecting and locating reinforcing steel, (particularly by

automated means), in bridge decks is well established for condition assessment purposes,

(Section 1.1.1). Corrosion damage initiates at the reinforcing steel and frequently results

in delamination cracking. Reinforcing steel is therefore an important feature of most

concrete bridge decks and knowledge about its location is useful.

PERES is capable of detecting reinforcing steel in many concrete bridge decks

due to the differences in dielectric properties between concrete and steel (Section 1.3.1).

For these bridge decks, PERES data can be used to produce images of the reinforcing

steel locations inside the concrete deck. Automating the classification of PERES

responses to reinforcing steel in concrete is desirable for distinguishing between

responses to distress, reinforcing steel and sound concrete.

A series of processing steps is used to accomplish the classification of responses

to reinforcing steel in PERES data collected from bridge decks. The first two steps locate

the depth of the dominant responses to reinforcing steel in the three-dimensional

tomographic data. The third step analyzes two-dimensional images to determine the

location and orientation of the reinforcing steel in the PERES data. Data from bridge
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deck R7 will be presented along with the description of the algorithm to illustrate the

results that the technique produces.

The first step in locating reinforcing steel in the radar data measures the contrast

in all of the plan view layers of tomographic data from PERES. A three-dimensional

illustration of a section of PERES data collected from bridge deck R7 is presented in

Figure 3.3 Three-dimensional image of tomographic radar data.

Figure 3.3 to clarify the description of the analysis. In the illustration, the three-

dimensional structure of the data can be observed and indications of the reinforcing steel

can be distinguished as predominantly yellow areas. The variance of the magnitude

response in each plan view tomographic layer of the data is calculated, where each layer

is at a given depth as shown in Figure 3.4, (example data layer shown in red). Results

from the variance calculation performed on PERES data from bridge deck R7 are
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Figure 3.4 Representation of example data layer sampled at constant depth (red).

Figure 3.5 Variance values calculated for each 1 mm thick tomographic layer, (concrete

surface at 80 mm).

0 50 100 150 200 250 300
1

2

3

4

5

6

7

8

9

10
x 10

9

Width (cm)Length (cm)

Depth
(cm)

V
ar

ia
nc

e
of

R
es

po
ns

e
M

ag
ni

tu
de



77

presented in Figure 3.5. The three local maxima between layers at 100 mm and 200 mm

correspond to the locations of the dominant responses to rebar. These three local maxima

in the variance plot indicate the high contrast in these image layers relative to

neighboring layers. Of the local maxima in the plot, these three local maxima can be

identified based on phase information in the radar data.

Reconstructed PERES data consists of complex numbers, which carry both

magnitude and phase information. Thus far in the discussion of reconstructed PERES

data, the magnitude information has been used to visualize and describe PERES

responses. The phase of the PERES response is also useful because a phase shift of 180

degrees is observed in the response when a radar pulse is reflected at an interface

Figure 3.6 Hilbert transform image of the phase response at depth=3.9cm in bridge deck
R7 data.

between a dielectric and a metal (Shadowitz, 1975). In bridge decks, these interfaces

occur between concrete, (a dielectric), and the reinforcing steel, (a metal). Figure 3.6

shows a Hilbert transformed image of the phase response at a concrete depth of 3.9 cm,

(corresponding to the first of the three peaks in the variance plot where the responses to

reinforcing steel are dominant). The Hilbert transform converts phase to a binary

quantity, where the result is –1 for phase from 0 toπ and +1 for phase fromπ to 2π. The

white regions in Figure 3.6 correspond to values of -1 and the black regions correspond to
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values of 1. This image and the other phase images selected based on local maxima in

the variance plot can be used to locate the three layers that have dominant responses to

reinforcing steel. These three layers provide representations of reinforcing steel oriented

top to bottom in Figure 3.6, left to right in Figure 3.7, and a combination of the two

orientations corresponding to the third local maximum. All three of these selected local

Figure 3.7 Hilbert transform image of the phase response at depth=7.4cm in bridge deck

R7 data.

maxima are responses to the top mat of reinforcing steel in the deck, which contains

reinforcing steel oriented both parallel and transverse to the direction of traffic flow over

the deck, (Appendix C, Figure 7). The alternating changes of phase in these images are

counted in both the parallel and transverse direction to locate the reinforcing steel layers.

The frequent changes of phase in the layers containing dominant reinforcing steel

responses allow this to be used as a criterion for locating these layers. The three layers

with the largest number of alternations in the parallel and transverse directions

respectively are stored for further analysis.

Next, a template matching operation is performed in two dimensions using

variations on the filter shown in Figure 3.8. This filter was designed by tailoring

parameters of a Gaussian distribution based on observed reinforcing steel responses in

data and subsequent testing of the filter shape on PERES data. The filter mimics the
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profile of the reconstructed magnitude response PERES produces in the plane of the

reinforcing steel. For typical reconstructed data taken with PERES over reinforcing steel

in concrete, a high magnitude response is produced by the reflection from the top surface

Figure 3.8 Filter for reinforcing steel template matching.

of the reinforcing steel. The magnitude of the response tapers where the reconstructed

reflections originate from the oblique surfaces of the reinforcing steel. This profile is

observed along the length of the reinforcing steel, as the filter suggests, but is generally

interrupted by orthogonal crossing reinforcing steel and noise in the actual data. The

characteristic reinforcing steel profile is most clearly represented in the constant depth

tomographic layers of PERES data corresponding to the locations of reinforcing steel.

The filter in Figure 3.8 is first used to select the best two candidate layers in the

data for further analysis. One layer is selected for locating reinforcing steel in the traffic

direction and the other layer is selected for locating reinforcing steel in the transverse

direction. These layers are selected by calculating the responses to the full width filter in

each of the two directions, (traffic direction and transverse), using template matching in

two dimensions. The width of the filter is the same as the width dimension of the data

when the filter is used to detect reinforcing steel in the traffic direction. The width of the

filter is identical to the length dimension of the data when the filter is used to detect

reinforcing steel in the transverse direction. The tomographic layers filtered using this
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process are the three candidate layers previously selected using phase information. The

images that produce the largest average amplitude in this filtering process are selected for

locating reinforcing steel in the traffic direction and the transverse direction.

The appropriate constant depth layers have been selected for use in calculating

reinforcing steel locations in PERES data, based on the procedure that has been described

thus far. The final step required to parameterize the location of the reinforcing steel uses

the template matching filter from Figure 3.8 again. A description of the calculations for

locating reinforcing steel in the traffic direction follows.

First, a template matching filter with half the width of the complete image is

convolved, from left to right across the top half of the image. Results from this

convolution are normalized based on the template matching formulation, (Equation 3.1),

and local maxima in the result correspond to template matches, (Figure 3.9). An

Figure 3.9 Template matching result from the top half of the image.
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Figure 3.11 Detected reinforcing steel locations shown in red, (traffic direction).
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Figure 3.10 Template matching result from the bottom half of the image.
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identical operation is performed on the lower half of the image, which produces the result

in Figure 3.10. The local maxima from the upper and lower filters are computed, which

provides two points along the line each piece of reinforcing steel lies on. The points that

are nearest neighbors in the corresponding filters are assigned to identify each piece of

reinforcing steel. Detected reinforcing steel locations can then be plotted (Figure 3.11).

In Figure 3.11, the locations of detected reinforcing steel are plotted as red lines over an

original image of the layer located at 3.9 cm in depth, (beneath the concrete surface),

from reconstructed PERES data collected over bridge deck R7. The color scaling in the

figure ranges from black for small magnitude responses and ranges up in gray scale

values to white for large magnitude responses.

A similar procedure is repeated to detect reinforcing steel in the transverse

direction, but this time the filter is convolved with an image from top to bottom. The

layer 7.4 cm below the concrete surface was selected from the reconstructed PERES data

collected over bridge deck R7 based on the procedure previously described. The

results in Figure 3.12 are obtained. The performance of the reinforcing steel detection

algorithm is quite good, based on these two example illustrations. All of the reinforcing

steel in the top mat, (in both the traffic and transverse directions) are accounted for based

on the detection algorithm. The orientation of two pieces of reinforcing steel are
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Figure 3.12 Detected reinforcing steel locations shown in red, (transverse direction).



83

incorrect in the traffic direction (as observed in Figure 3.11), but this is due to

ambiguities in the reconstructed data. Two of the detected pieces of reinforcing steel in

Figure 3.12 are false detections. One of these false dections is entirely incorrect, (the

third red line from the top), but the second is due to artifacts in the data introduced by

metal supports for a wooden structure used to position PERES over the bridge deck,

(bottom red line). The performance of the reinforcing steel detection algorithm will be

discussed in more depth in the following sections and in Chapter 4, Results.

3.3.2 Distress detection algorithm

Bridge inspectors need accurate, efficient methods for evaluating PERES data

from bridge decks. In particular, a fast way of locating indications of distress in the data

makes it much more usable. Developing an algorithm to perform this task requires a

combination of knowledge about bridge deck distress modes, the expected responses to

the distress modes in the PERES data and a method for selectively classifying these

responses. A pattern recognition classifier designed to address these issues for this study

is described in this section. A discussion of error rates for the classifier and the types of

data the classifier can process is included in Chapter 4.

A crucial step toward developing a pattern recognition classifier for detecting

distress in PERES data collected from concrete bridge decks is to gain and use expert

knowledge about how the distress modes initiate and propagate. Delamination cracking

due to corrosion of reinforcing steel is the dominant distress mode in bridge decks

(Section 1.1.1). This damage initiates at the corroding reinforcing steel and propagates

through the concrete preferentially in the plane of the reinforcing steel mesh, below the

concrete surface. This is valuable information because it provides a linkage between the

location of distress damage and a consistent feature, (almost all concrete bridge decks are

designed and built with reinforcing steel), in PERES data. Furthermore, reflections from

reinforcing steel in concrete are generally very strong in PERES data due to the interface

between a dielectric and a metal at the concrete, reinforcing steel interface (Section

1.3.1). The proximity and orientation of delamination cracking relative to reinforcing

steel in concrete forms the basis for the design of the pattern recognition algorithm for

distress detection used in this study.
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An algorithm for determining the location of reinforcing steel in PERES data has

been developed, (Section 3.3.1) which can provide significant information to a

distress detection algorithm, because a relationship between reinforcing steel and a

common distress mode, (corrosion-induced delamination) has been established. This

relationship can be utilized by examining the individual waveforms that make up

reconstructed PERES data. Waveforms that pass through a significant feature, such as

delamination distress or reinforcing steel display a strong response in the reconstructed

Figure 3.13 Averaged responses to simulated distress and sound concrete. Depth is
measured from the PERES antenna, where the antenna is 8cm above the concrete

surface.

data (Figure 3.13). The distress waveform in Figure 3.13 was obtained from

reconstructed PERES data by averaging one hundred individual waveforms that passed

through a simulated delamination distress, (the simulated distress was a 2.54 cm thick

foam insert in bridge deck R13). Indications of the distress in the waveform include the

strong peak at approximately 12 cm, (6 cm below the concrete surface), and a second

peak at approximately 23 cm. The first peak corresponds to the location of the distress

itself, while the second peak is clutter that results from internal reflections between the

simulated distress and the surface of the bridge deck. A representative response to sound
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concrete was also produced by averaging one hundred waveforms from deck locations

corresponding to sound concrete in the reconstructed PERES data, (Figure 3.13). Very

small variations in the sound concrete response are observed relative to the response to

distress. These results indicate that a clear distinction can be made between reconstructed

waveforms corresponding to distress and concrete. Results from other reconstructed

PERES data including a 0.6 cm thick synthetic distress and a delamination, (confirmed

using the chain drag test for bridge deck R12), show that similar responses are obtained.

For each response a high magnitude peak, (that corresponds to the distress), is followed

by a second peak that is caused by reflections of the radar pulse, (between the distress

and the antenna). These results were all obtained for concrete decks without an asphalt

overlay. Comparable results have been obtained in reconstructed GPR data by Mast

(1993).

The consistency of the PERES responses to distress, along with data collected by

Mast (1993), suggests that a method which detects key features from these responses will

have potential. Based on the relationship between the location of reinforcing steel in

bridge decks and delamination distress, the PERES response to distress can be predicted

qualitatively. A template has been developed which matches the profile of an expected

response to distress in reconstructed data (Figure 3.14). In practice, the location of the
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Figure 3.14 Distress detection template, (depth measured from PERES antenna).

first peak response, (going from shallow to deeper depths), in the template is adjusted

based on the position of the top mat of reinforcing steel in the data, as determined by the

reinforcing steel detection algorithm. The second peak, corresponding to ringing

between the antenna and distress in the deck, is positioned at twice the depth of the first

peak. The sound concrete template is defined by a constant magnitude of 5 for all depths.

The magnitudes of template values are selected based on average responses to simulated

distress and sound concrete in bridge deck R13, and are tuned based on pattern

recognition results from bridge deck R13. Relative magnitudes of template values

determine the response to the template.

Two match measurements are calculated for each waveform in a PERES data set

using Equation 3.1. These two match measurements are based on the distress and sound

concrete templates, respectively. Match measurements are used as input to a statistical

pattern recognition algorithm. This algorithm is implemented in the Partek software

package and uses a quadratic discriminant analysis classifier to categorize input data.

Training data for the classifier was obtained from bridge deck R13. 1826 waveforms

were selected for the training data, where 1029 were known to come from locations

corresponding to sound concrete and 797 were known to come from locations
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corresponding to distress. Figure 3.15 presents a plot of the training data in measurement

space after the classifier was implemented. In the figure, a vector is drawn between each

class mean and the categorized data points. Two distinct clusters can be observed in the

measurement space corresponding to the distress and sound concrete waveforms

respectively. Errors the classifier makes near the boundary of the decision surface are

indicated in blue. A priori probabilities were 0.5 for both classifications. A Summary of

the results from the classifier applied to the training data is presented in Table 3.1.

After training, the classifier can be applied to an entire data set to determine

where probable locations of distress are. These results must be combined with

information from the reinforcing steel detection algorithm to make an effective analysis,

which will be discussed in section 3.3.3. The initial results from the pattern recognition

classifier are presented as an image in Figure 3.16 for bridge deck R13, (as an example).
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Figure 3.15 Training data clusters plotted in measurement space.

# Per Class # Correct # Error % Correct % Error

Concrete 1029 862 167 83.77 16.23

Distress 797 621 176 77.92 22.08

Total 1826 1483 343 81.22 18.78

Table 3.1 Pattern recognition classification for training data (using full leave one out

method).
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This binary image displays a plan view of deck areas classified as distress in white and

areas classified as sound concrete in black. A significant amount of noise can be

observed in this image, which can be removed using a size filter. This filter removes four

connected (Jain, 1995) regions corresponding to detected distress from the image if they

have fewer than fifteen connected picture elements, (each picture element is 1 cm2).

After removing these noisy areas in the image, Figure 3.17 results.

In this image, the two locations where PERES detected simulated distress

Figure 3.16 Binary image of pattern recognition results from bridge deck R13.
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Figure 3.17 Binary image of filtered pattern recognition results from bridge deck R13.
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(Figure 1.12) each display significant responses based on the pattern recognition

classifier. Other areas in the data which have been initially classified as distress are

actually responses to reinforcing steel, (which will be accounted for in Section 3.3.3

based on the reinforcing steel detection algorithm), noise and clutter. Results from other

bridge deck sections and field data will be presented in Chapter 4. The method for

combining the results of the reinforcing steel detection algorithm and the distress

detection algorithm are discussed in the following section.

3.3.3 Combining results

The results from algorithms for detecting reinforcing steel and distress in bridge

decks are useful individually, but combining the output from both is important for

interpreting the results appropriately. Before describing how the output from these two

algorithms are combined, the reinforcing steel detection results from bridge deck R13 are

presented here in Figure 3.18 and 3.19. Overall, the reinforcing steel detection results are

reasonable and, in particular, all but one piece of reinforcing steel is detected in the traffic

direction. However, there are also falsely detected pieces of reinforcing steel in the
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Figure 3.18 Reinforcing steel detection in the traffic direction.
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traffic direction. This can be attributed in part to noise, but is also influenced by the

distress indications in the data. The reinforcing steel filter is designed to reject these

localized distress indications, but there is an influence on algorithm performance. Similar

results for detecting reinforcing steel in the transverse direction show that the algorithm

performance is effective, but is influenced by noise and distress indications. The effects

of these influences will be discussed in Chapter 4, Results.

The output from the reinforcing steel detection algorithm and the distress

detection algorithm can be assessed together if the influence of the reinforcing steel on

the reconstructed data is recognized. The reinforcing steel in the bridge deck produces a

response in the reconstructed PERES data, which is evident in the location of the

reinforcing steel and a region around it. Based on observations of the response to

reinforcing steel in reconstructed data from bridge decks R7 through R13, the region of

influence was established as 3.5 cm in both plan view directions orthogonal to the length

axis of the reinforcing steel. Beyond this region of influence, average peak amplitudes in

the data are less than 2/5 of the maximum peak amplitude caused by adjacent reinforcing

steel. Inside the region of influence, the average peak amplitudes are above this

threshold. To identify waveforms corresponding to distress accurately, waveforms

360 cmFigure 3.19 Reinforcing steel detection in the transverse direction.
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within the region of influence of the reinforcing steel are excluded from consideration as

areas corresponding to distress. This prevents reinforcing steel, (which can produce

similar responses to distress and simulated distress), from being inappropriately

categorized as distress.

Once these areas have been excluded from consideration as distress, a size filter is

applied to locate the largest areas where distress is detected. The three largest areas

where distress is detected, after areas in the region of influence of the reinforcing steel are

excluded from consideration, are shown in Figure 3.20. Two of these areas correspond to

the location of a simulated distress, (in the red circle), as shown in Figure 1.7. The third

area in Figure 3.20 is a result of noise and clutter in the data. Using a lower threshold on

the size filter, the thirty largest areas in the analyzed R13 data, (shown in Figure 3.21),

include a third response to the simulated distress detected in the left portion of the deck.

Figure 3.21 also includes three areas that correspond to the simulated distress in the lower

middle part of the deck section, circled in red and a single response to the simulated

distress in the upper middle portion of the deck, also circled in red. A discussion of

distress detection and problems associated with noise and clutter in PERES data will be

presented in Chapter 4, Results.
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Figure 3.20 Three largest detected distress areas (deck R13).
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Figure 3.21 Thirty largest detected distress areas (deck R13).
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