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Accuracy of Computer Generated Approximations to Julia Sets

John W. Hoggard

(ABSTRACT)

A Julia set for a complex function f is the set of all points in the complex plane where
the iterates of f do not form a normal family. A picture of the Julia set for a function can
be generated with a computer by coloring pixels (which we consider to be small squares)
based on the behavior of the point at the center of each pixel. We consider the accuracy
of computer generated pictures of Julia sets. Such a picture is said to be accurate if each
colored pixel actually contains some point in the Julia set. We extend previous work to show
that the pictures generated by an algorithm for the family λez are accurate, for appropriate
choices of parameters in the algorithm. We observe that the Julia set for meromorphic
functions with polynomial Schwarzian derivative is the closure of those points which go to
infinity under iteration, and use this as a basis for an algorithm to generate pictures for such
functions. A pixel in our algorithm will be colored if the center point becomes larger than
some specified bound upon iteration. We show that using our algorithm, the pictures of Julia
sets generated for the family λ tan(z) for positive real λ are also accurate. We conclude with
a cautionary example of a Julia set whose picture will be inaccurate for some apparently
reasonable choices of parameters, demonstrating that some care must be exercised in using
such algorithms. In general, more information about the nature of the function may be
needed.
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Chapter 1

Introduction and Review of Literature

We say a family of functions F is normal on a given set if every sequence of functions in F
has a subsequence which converges locally uniformly in that set. It is useful to note that by
the Arzelà-Ascoli Theorem, being normal in a subset of the Riemann sphere is equivalent to
the family being equicontinuous on that subset.

We will consider iterates of functions f on the Riemann sphere. (In other words, the complex
plane together with the point at infinity.) For such a function f(z), we will say that fn(z) =
f(fn−1(z)), with f 1(z) = f(z). So fn(z) is the composition of f with itself n times, i.e.,
fn(z) = f ◦ f ◦ . . . ◦ f(z). We will be interested in the family {fn(z)}∞n=1 of all iterates of f .

If all the iterates of a function f are defined and form a normal family in some neighborhood
of a point z, then we say z belongs to the Fatou set for f , which we will denote by F (f). If
not, and consequently either the family {fn(z)} is not defined or is not a normal family in
any neighborhood of z, then we say z is part of the Julia set for f , which we will denote by
J(f).

We see immediately from the definitions of the Fatou and Julia sets that the Fatou set must
be open and the Julia set (as its complement) must be closed. We also see that the Fatou
set of a function is completely invariant; that is, z ∈ F (f) if and only if f(z) ∈ F (f). The
Julia set is backward invariant: if f(z) ∈ J(f), then z ∈ J(f). If we also have the functions
defined at all points on the Riemann sphere, then the Julia set is also forward invariant: if
z ∈ J(f), then f(z) ∈ J(f).

The following theorem is of great use in determining whether or not the iterates of f form
a normal family.

Theorem 1 (Montel’s Theorem) If a family of functions meromorphic on a domain
omits at least three values from the Riemann sphere, then the family is normal on that
domain.

1
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A proof can be found in [22]. As a special case, we have that if the family of functions is in
fact analytic in the region, then the family is normal if at least two different points of the
Riemann sphere are omitted, since this family already misses infinity.

We also note that if we conjugate a function f by a Möbius transformation M , we do
not change the dynamics in any significant way. (Although we do note that a general
meromorphic function may no longer be meromorphic when conjugated, as an essential
singularity at infinity may now be moved to a finite point in the complex plane.) Conjugation
respects iteration: (M−1 ◦ f ◦ M)n(z) = M−1 ◦ fn ◦ M(z). By appealing to equicontinuity
on the Riemann sphere, we can see that conjugation by a Möbius transformation does not
change normality, in the sense that fn is normal in a neighborhood of z if and only if
M ◦ fn ◦ M−1 is normal in a neighborhood of M(z).

We will be interested in algorithms for generating representations of Julia sets using a com-
puter. Such algorithms have enjoyed great popularity, and we consider the accuracy of the
representations generated. In this, we will follow up on the work of Durkin [13] for the family
λez, which we will discuss and expand upon in Chapter 2. Then we will consider the family
λ tan(z) in a similar way, showing accuracy in Chapter 3 for an algorithm we will develop.
Finally, we will consider an example in Chapter 4 of a function for which our algorithm will
produce an inaccurate representation of the Julia set, and we summarize some conclusions
in Chapter 5.

We now proceed to discuss some results which are known for rational functions, entire func-
tions, and meromorphic functions, and specifically for meromorphic functions with polyno-
mial Schwarzian derivatives. It is the last class of functions with which we will be primarily
concerned, so we will focus on properties that generalize to this class. We will end with
a theorem about functions with polynomial Schwarzian derivatives which we will used to
generate computer pictures of their Julia sets. For general discussions of the properties of
the Fatou and Julia sets for rational functions, see either [7] or [23]; for a discussion of entire
and meromorphic functions, see [8].

1.1 Rational Functions

For a rational function f , the family of functions {fn(z)} is defined at all points on the
sphere. Therefore, the Julia set consists only of those points z where the family is not
normal in any neighborhood of z. We will assume throughout that the rational functions we
work with will be of degree two or greater.

The Fatou sets for rational functions are strongly related to the types of fixed and periodic
points the function has. We call z0 a fixed point for a function f if f(z0) = z0. We call a
sequence of points z0, z1, . . . , zn = z0 a cycle of order n if f(zi) = zi+1 and n is the smallest
integer such that fn(z0) = z0. The zi are referred to as periodic points, and we note that
zi is a fixed point for the function fn. We can classify a fixed point z0 for the function f
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follows:

• If 0 < |f ′(z0)| < 1, we call z0 an attracting fixed point.

• If f ′(z0) = 0, we call z0 superattracting.

• If |f ′(z0)| > 1, we call z0 a repelling fixed point.

• If |f ′(z0)| = 1, we call z0 an indifferent fixed point. If z0 is indifferent, we write
f ′(z0) = e2πiθ and further characterize such a fixed point as rationally indifferent if θ
is rational and as irrationally indifferent if θ is irrational.

The quantity f ′(z0) is sometimes referred to as the multiplier or the eigenvalue for the fixed
point z0.

We can characterize a cycle of order n similarly, based on the value of the derivative of fn

at some point in the cycle. First we note that

(fn)′(z0) = f ′(fn−1(z0))f
′(fn−2(z0)) · · · f ′(z0)

= f ′(zn−1)f
′(zn−2) · · · f ′(z0)

Thus, we get the same value for the derivative of fn at any point in the cycle, and we can
characterize a cycle (and the periodic points in the cycle) as repelling, attracting, superat-
tracting, rationally indifferent, or irrationally indifferent according to the nature of the fixed
point z0 for the map fn.

All attracting and superattracting fixed points and cycles are a part of the Fatou set. This
follows because in a small neighborhood around an attracting (superattracting) fixed point,
the map f(z) is a contraction. Therefore the family of functions fn(z) map this neighborhood
into itself, and all points external to this neighborhood are missed by the family. Similarly the
function fm is a contraction around each point in a cycle of order m. This and the fact that
normality for the family (fm)n implies normality for the family fn shows that all attracting
and superattracting cycles are in the Fatou set. It is worth noting that superattracting fixed
points are different from attracting fixed points in that they are also critical values.

Conversely, all repelling fixed points are in the Julia set. Indeed, conjugating by a suitable
Möbius transformation, we may assume that the fixed point is at the origin. Then if we have
|f ′(0)| > 1, we see that if a sequence of iterates converged uniformly in a neighborhood to
some function φ, it would be necessary for φ(0) = 0, so φ would be analytic in a neighborhood
of 0, and thus φ′(0) must be finite. However, we also see that (fn)′(0) = (f ′(0))n goes to
infinity as n does, so it is impossible for the iterates to be normal in a neighborhood of a
repelling fixed point. Further, the repelling periodic points are dense in the Julia set. (See
for example [7, §6.9].)

Components of the Fatou set may also be invariant (or periodic) in the sense that for some
component U we have f(U) = U (or fn(U) = U). We may identify five different types of
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such components which appear in the Fatou sets of rational functions. For each type listed
below, we also describe the behavior of f on the region:

• An attracting domain. An attracting domain contains an attracting fixed point (cycle).
On iteration, f (or fn) tends toward this fixed point (cycle). Attracting domains are
sometimes called Schröder domains.

• A superattracting domain. Superattracting domains are the same as attracting do-
mains, except they contain a superattracting fixed point (cycle). Superattracting do-
mains are sometimes called Böttcher domains.

• A Parabolic Domain. A parabolic domain has a rationally indifferent fixed point on
the boundary of the domain, and points in the domain move toward the fixed point
under iteration. Parabolic domains are also known as Leau domains.

• A Siegel Disk. A Siegel disk is a Fatou component for which the action of f on U is
conformally conjugate to a rotation of a disk about the origin. It is necessary for the
rotation to be by an irrational root of unity, as otherwise we would have for some n
that fn(z) = z for all z ∈ U , which would imply that the rational function f is degree
one.

• A Herman Ring. A Herman ring is conformally conjugate to the rotation of an annulus
centered at the origin. Again, it is necessary for the rotation to be irrational.

Determining that these are the only possibilities for a cyclic component requires determining
what sort of functions the family {fn} may converge to in U . If all convergent subsequences
of the family approach only constant functions, then we must have a fixed point, and we get
one of the first three situations. If some subfamily approaches other, non-constant functions,
it has been shown that either a Siegel Disk or a Herman ring results. (For details, see [7,
§7.4].)

An important theorem proved by Sullivan in 1985 [24] states that all Fatou components for
a rational function are eventually periodic. That is, for any component U of the Fatou set
F (f), there exists some m such that fm(U) is a periodic component. A component U such
that fn(U) 6⊆ fm(U) for any integers m 6= n, is called a wandering domain. Thus, Sullivan’s
result says that rational functions do not have wandering domains.

For polynomials, ∞ is a superattracting fixed point. The multiplier at infinity is defined as
the multiplier for 1/f(1/z) at the origin, and we see that for a polynomial of degree at least
two, this quantity is zero. So in fact, there is a superattracting component of the Fatou set
containing infinity for polynomials. Using this fact, the filled in Julia set is sometimes defined
to be the complement of I(f) = {z : fn(z) → ∞} in the complex plane. Most computer
algorithms for generating pictures of Julia sets for polynomials rely on testing points to
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see whether or not fn(z) becomes large, and coloring those points which stay within some
specified bound.

It may be harder to generate computer pictures of the Julia set of a general rational function
f . One approach involves iterating the inverse of the function and following the preimage
of selected points. It is a consequence of Montel’s theorem that if p is any point in the
Julia set of a function f , and U is any neighborhood of p, then the union ∪fn(U) misses at
most two points. In fact, the two points are independent of p, and we define these points
to be the exceptional points of f . We denote the (possibly empty) set of exceptional points
E(f). For rational functions, it is possible to show that E(f) is contained in the Fatou
set, although this need not be true for general meromorphic functions. (For example, if z
is a pole which is also an omitted value, then z ∈ E(f), but we will see that z is also in
the Julia set.) It can now be seen that if we take any point z 6∈ E(f), then the preimages
∪f−n(z) of z must accumulate around J(f), since they must appear in any neighborhood of
any point of J(f). (This set of all preimages of z ∪f−n(z) is called the backwards orbit of
z, and denoted O−(z).) Consequently, we can say that J(f) ⊂ O−(z), so long as z 6∈ E(f).
As a consequence of invariance, we have the yet better result that if we choose z ∈ J , then
J(f) = O−(z). (See [9, §4] for further details. We note that if f is a more general function
for which E may include points in J(f), the proof is still valid as long as we pick z ∈ J\E.)

Therefore, we can take any point (except for the two exceptional points) and find a set
of preimages for the point under the functions fn. These preimages will converge under
iteration to the Julia set. If we can determine a point in the Julia set to begin with (such as
a repelling fixed point, for example), we can compute the preimages of this point and know
that we are in the Julia set. We would expect such algorithms for numerically approximating
the Julia set to be relatively stable, since any point other than an exceptional point will have
preimages which converge to the Julia set, so any errors in our initial approximation or any
subsequent roundoff errors should tend to be wiped out in each iteration.

Computationally, the back iteration technique has three drawbacks. First, we must compute
an inverse, which may be difficult or costly. Second, the number of preimages found at each
backwards iteration grows exponentially, and it is possible to find multiple preimages within
a single pixel, which wastes resources. Thirdly, we have the problem that while the preimages
of a non-exceptional point come arbitrarily close to each point in the Julia set, they need
not visit each point equally often. Thus, some regions can be filled in more completely than
others. A paper by Saupé [21] and a chapter by Peitgen [20] discuss some of these problems
and ways to implement computer algorithms which help overcome them.

1.2 Entire Functions

We now turn briefly to functions which are analytic in the complex plane. These functions
have some similarity with rational functions, and some notable differences.
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First we note that infinity is an essential singularity for transcendental entire functions.
(Infinity is in fact in the Julia set for such a function, as it has no forward orbit. However,
infinity is also an omitted value for entire functions, so we may think of them as maps
from the complex plane to itself.) The singularity at infinity suggests the possibility that
points which tend to infinity may be in the Julia set. Eremenko proved [14] that in fact for
transcendental entire functions, the set I(f) of points z such that fn(z) → ∞ is nonempty,
and that the boundary of I(f) is equal to the Julia set. There may however be points in
I(f) which are in the Fatou set; an example of such points is given by functions with Baker
domains, as we will describe.

In addition to the five types of invariant regions described for rational functions, we also have
so-called Baker domains. A Baker domain is a component of the Fatou set with infinity as a
boundary point, and for which fn(z) → ∞ uniformly on the domain. (See for example [8].)
Essentially, a Baker domain is like a parabolic domain, except that the point on the boundary
to which the Fatou component converges is not periodic, and indeed has no forward orbit.
It is also possible to have an invariant or periodic domain with infinity on the boundary
which is (super) attractive, parabolic, or a Siegel disk. Baker and Domı́nguez [3] discuss
such components.

Attracting and superattracting fixed points (cycles) continue to be in the Fatou set for the
same reasons as before, and repelling fixed points (cycles) are still in the Julia set. In fact,
the repelling periodic points are still dense in the Julia set for entire functions, as Baker
proved [1].

Critical points continue to be of significance, but we now find that each Fatou component
is associated with either a critical point or an asymptotic value. Call the closure of all
asymptotic and critical values for a function f the singular values for f . Then all attractive
and parabolic periodic domains for f contain a singular value, and the boundary of any cycle
of Siegel disks or Herman rings attracts the infinite forward orbit of a singular value. (See
[8]. The proof is an extension of Fatou’s proof [16] for rational functions.)

Unfortunately, for entire functions it may be possible to have wandering domains, so not
all domains of the Fatou set are pre-periodic. The existence of wandering domains was first
shown by Baker [2] in 1976. Other examples can be found in [15].

1.3 Meromorphic Functions

When we have a transcendental meromorphic function with at least one pole, we no longer
have a dynamical system. Any preimage of a pole has a finite forward orbit, because infinity
is an essential singularity and there is no way to define f(∞). As a result, all preimages of
poles are in the Julia set for such functions.

General meromorphic functions can still have the same types of invariant Fatou components
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as entire functions, including Baker domains. (See [6] for details.) Of course, entire functions
are meromorphic, but have no poles.

Asymptotic values and critical values still determine the Fatou components. In general, there
are still wandering domains. (See [4] for examples of a variety of different types of wandering
domains a general meromorphic function may have.)

We consider next the more restricted class of transcendental meromorphic functions with at
least one distinct pole that is not an omitted value. (Functions with only one distinct pole
which is omitted are of the form α + (z − α)−k exp(g(z)) where g is a non-constant entire
function. Such functions are special in that they are analytic self-maps of the punctured
plane.) Again denote the set of exceptional values by E(f). We have [5] that E(f) contains
only two points, and for any q in the Julia set and any p not in E(f), q is an accumulation
point of O−(p). Thus, the inverse iterates of f converge to the Julia set for any point except
for at most two exceptional points, as in the rational case. The set O−(∞) is infinite for
such functions, and this set is dense in the Julia set [5]. Thus, we may characterize the Julia
sets of such functions as the closure of the set of preimages of poles of all orders.

Domı́nguez proved [12] that for transcendental meromorphic functions, the set of points I(f)
which go to infinity under iteration is nonempty and the boundary of this set is the Julia
set for the function, as Eremenko showed for entire transcendental functions. (In general,
there may also be points in the Fatou set which go to infinity; this is possible either through
Baker domains or wandering domains.)

1.4 Functions with Polynomial Schwarzian Derivatives

We finally consider the subset of meromorphic functions which have polynomial Schwarzian
derivative. The Schwarzian derivative S(f) for a function is defined as follows:

S(f)(z) = −2
(f ′(z)−1/2)′′

f ′(z)−1/2
=

f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

Since functions with one distinct pole which is also an omitted value cannot have polyno-
mial Schwarzian derivative [11], we note that all the results about meromorphic functions
mentioned before still hold. In particular, the repelling periodic points are still dense in the
Julia set, the same possibilities for invariant or cyclic components occur as before, and the
Julia set is the closure of O−(∞).

For our purposes, the significant fact about a function having a polynomial Schwarzian
derivative comes from the second theorem of Nevanlinna (see [18] for example), which implies
that such a function will have finitely many asymptotic values. In fact, a function whose
Schwarzian derivative is a polynomial of order p has exactly p − 2 asymptotic values, and
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such functions have no critical values [11]. These properties limit significantly the behavior
of the Fatou components.

First, we note that a proof by Devaney and Keen [11] indicates that meromorphic functions
with polynomial Schwarzian derivatives have no wandering domains; i.e., every Fatou com-
ponent is pre-periodic. In addition, Devaney and Keen also show that such functions do not
have Baker domains. (They show in fact that any forward invariant set sufficiently close
to infinity is in fact in the Julia set.) It was brought to the author’s attention by Aimo
Hinkkanen that these are the only ways for a point in the Fatou set to approach infinity, so
these results allow us to conclude that any point in I(f) must lie in the Julia set. Combining
this fact with Domı́nguez’ result [12] that the boundary of I(f) is equal to the Julia set, we
have shown the following for functions with polynomial Schwarzian derivative:

Theorem 2 For transcendental meromorphic functions with polynomial Schwarzian deriva-
tive, the Julia set is equal to the closure of I(f) = {z : fn(z) → ∞}.

This will provide us with an algorithm for generating computer pictures of Julia sets for such
functions, which we will show is sometimes reliable and sometimes not.



Chapter 2

The Family λez

We consider the family Eλ(z) = λez. Durkin [13] discussed the accuracy of computer repre-
sentations of these Julia sets for specific values of λ in the following manner: Select a window
W in the complex plane, a real bound B, a bound on iterations N , and a pixel width d. We
then compute an approximation to the Julia set of Eλ by dividing W into squares of width
d (which we will refer to as pixels), and selecting a point z0 in the center of a given pixel.
We then iterate the function Eλ at the point z0. If for some n ≤ N , the nth iterate has a
real part greater than B, then we color the pixel. Otherwise, we leave the pixel uncolored.
This algorithm is based on the fact (proven by Devaney and Durkin [10]) that for the family
λez, the Julia set consists of the closure of all points z such that Re En

λ (z) → ∞.

We call this approximation the computed Julia set and denote it Jc(Eλ). We say that Jc(Eλ)
is accurate if for every pixel which is colored, there is some z∗ inside the pixel such that z∗

is actually in the Julia set. We note that in general z∗ need not be the same as the point z0

we iterated; it need only be in the same pixel. In other words, each pixel which is colored
under the algorithm in fact contains some point in the Julia set.

Durkin established the accuracy of the computed Julia set for the function 0.3 ez with B = 50,
N = 25, and W = {z : 1 ≤ Re z ≤ 5, |Im z| ≤ 2}, and the accuracy of ez with the same B,
N , and W . (We note however that the case where λ = 1 is of less immediate interest, as for
any λ > 1/e the Julia set for λ ez is the entire complex plane; see [10].) We will extend her
methods to show that, using the same B, N , and W , the Julia sets for λ ez are accurate for
all values of λ less than 1/e; i.e., we establish accuracy for all values of λ for which the Julia
set J(Eλ) is not the whole complex plane.

The choice of W for λ < 1/e is worth considering. Restrictions on the imaginary part need
not cause concern, as the function is 2πi-periodic. In fact, we could proceed with the same
proof if we only restricted ourselves to |Im z| < π, which would show us the entire picture.
However, we will see when we discuss the structure of the Julia set that it is in fact restricted
to the strip |Im z| < π/2 and the 2πi-translates, so the given W will show us a complete

9
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picture. The restrictions on the real part of the window are similarly designed to show us
the “interesting” part of the Julia set. We note that Re Eλ(z) = λeRe z cos(Im z), and so for
λ < 1/e and Re z < 1, we have immediately that ReEλ(z) < 1

e
e1 = 1. Thus, the region with

Re z < 1 always maps to itself, and is consequently in the Fatou set. We additionally see
that any pixel which has a center z0 with Re z0 < 1 will never be colored by our algorithm.
The choice of 5 as the upper bound on the real part is arbitrary.

The general method of our proof that the computed Julia set Jc(Eλ) is accurate is based
on Durkin’s proof for λ = 0.3 and proceeds as follows. We first determine a set of curves S
which we show to be in the Julia set. We then demonstrate that the ball Br(z) of radius r
about z will have non-empty intersection with the set S, provided Re z and r are sufficiently
large. Finally, we demonstrate that if a point z0 in the center of a pixel is mapped under
iteration by Eλ to a point zn with real part larger than B, then a neighborhood of z0 within
the pixel is expanded enough under iteration by Eλ to contain a ball Br(zn) which has large
enough Re zn and r to intersect S ⊂ J(Eλ). Since the Julia set is backward invariant, the
original pixel contained a point in J(Eλ).

2.1 The Structure of the Julia set for Eλ(z)

We begin by determining a sequence of curves which lie in J(Eλ). We consider the function
λ ex on the real axis, and see that it has, for 0 < λ < 1/e, two fixed points. The left most
fixed point, which we will call qλ, will be attracting (as the derivative is clearly smaller than
one) and the right most, which we will denote pλ, will be repelling. (See figure 2.1.) We note

λ λ

Figure 2.1: Fixed points for ex: qλ must be attracting and pλ must be repelling.

that [pλ,∞) will be in the Julia set for Eλ. Indeed, pλ is a repelling fixed point and therefore
in J(Eλ), and for any real x greater than the fixed point pλ we can see that En

λ (x) → ∞ as
n → ∞, so x is in J(Eλ). Of course since Eλ is 2πi-periodic, we also have [pλ,∞)± 2nπi in
J(Eλ). Conversely, if z has real part less than pλ, z is in the Fatou set. This follows from
the fact that if x < pλ, then Re λ ex+iy = λex cos(y) < λpλ < pλ, since λ < 1/e < 1. Thus,
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the region {z : Re z < pλ} maps to itself, and by Montel, the family {En
λ} is normal in this

region. With these facts in mind, we let γ be a preimage of Re z = pλ, and let cn be the
preimages of [pλ,∞) ± 2nπi. (Without loss of generality, we will usually assume that the
preimages cn are those in the strip of width 2π centered on the real axis.) Then the cn are
curves in J(Eλ), and J(Eλ) is restricted to the region in the right half-plane bounded by γ
and its πi translates. (See figure 2.2.)

2

2
γ

c1

c-1

Figure 2.2: The curve γ (preimage of Re z = pλ) and a few of the cn (preimages of [pλ,∞) +
2nπ)

2.2 Preliminary Results

We will need the following theorem, proved by Devaney and Durkin [10]:

Theorem 3 (Expansion Theorem) Suppose |E ′
λ(z)| > µ for all z ∈ Bδ(z0) where δ < π.

Then there is an open set U ⊆ Bδ(z0) such that Eλ : U → Bµδ[Eλ(z0)] is a homeomorphism.

In considering the proof of the expansion theorem, we find that the restriction on δ is needed
only to be sure that Eλ is one-to-one. A modified version of the expansion theorem will hold
for any function that is one-to-one within the ball Bδ(z0).

We will also use the following lemma, which is a modification of Lemma 2.2 in Durkin’s
paper. (Durkin uses a ball of radius two, and λ of 0.3.) We follow the structure of her proof
except where we need additional estimates to deal with our more general λ.

Lemma 1 Let S be the set consisting of the curves cn (n an integer), the line segment
[pλ,∞), and all 2πi-translates. If Re z > 120 and e−4 ≤ λ ≤ e−1, then

B1.6(z) ∩ S 6= ∅
where B1.6(z) denotes the ball of radius 1.6 about z.
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Proof: We will begin by finding the location of the points of intersection of γ and the cn.
Without loss of generality, we will work in the strip with imaginary part between −π and π.
To find a representation for γ, we solve for the preimage of Re z = pλ, and we see that γ is
given by

y = ± arccos
pλ

λex

(We therefore additionally see that we have γ with imaginary part between −π/2 and π/2,
as shown in figure 2.2.)

The equation of each cn is

y = arcsin
2nπ

λex

Solving these equations simultaneously leads to a set of points xn which are the points at
which γ and cn intersect. We will need the location of these points. The xn are given by

xn =
1

2
ln(p2

λ + 4n2π2) − ln λ

Additionally, we will need to know how close together these points are. We call ∆xn the
distance between xn and xn+1, and by subtracting and simplifying we find that

∆xn = xn+1 − xn =
1

2
ln

(
p2

λ + 4(n + 1)2π2

p2
λ + 4n2π2

)

We will require estimates of the pλ to estimate both xn and ∆xn. We note that x = pλ is
where λex − x = 0. Expanding the Taylor series for λex, we find that λex − x > λ + (λ −
1)x + λ

2
x2. Solving this quadratic for the rightmost solution yields a point

1 − λ +
√

1 − λ(2 − λ)

λ

which is greater than pλ. (See figure 2.3.) Since we are assuming λ < 1/e, we can see that

0.2 0.4 0.6 0.8 1 1.2 1.4

0.55

0.6

0.65

0.7

λ

λ λ λ

Figure 2.3: An upper bound on pλ, using the root of a Taylor polynomial
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λ(2 − λ) < (1/e)(2 − 1/e), which in turn is less than (1/2.7)(2 − 1/2.8) < .61, and so our
solution to the quadratic is ultimately less than (1.7/λ) − 1. So we have

pλ <
1.7

λ
− 1

For λ ≥ e−4 (as we are assuming), pλ is therefore less than 1.7e4 − 1 < 1.7(2.8)4 < 104. In
the other direction, we note that λex ≥ λ for x ≥ 0, so pλ ≥ λ ≥ e−4 > 1/2.84 > .016.
Therefore we have that .016 ≤ pλ ≤ 104.

The points xn at the intersection of cn and γ will be the points which we show to be in the
ball given in Lemma 1. Since we will be looking at a ball of radius 1.6 and centered at a
point with real part greater than 120, we will be working with n large enough that xn is at
least 118. We want to determine how close together the xn need be if the xn are this large.
Using our estimates for pλ we get

∆xn <
1

2
ln

(
1042 + 4(n + 1)2(3.2)2

(.016)2 + 4n2(3.1)2

)
=

1

2
ln

(
40.96n2 + 81.92n + 10, 856.96

38.44n2 + .000256

)

We note ∆xn is a decreasing function of n and the xn are increasing. Since we can easily
determine that xn < 118 if n > 212 (for λ ∈ [e−4, e−1]), we know that the n we will work
with must be larger than this. Therefore, we know that by the time we have reached a ball
of radius 1.6 about a point z with real part greater than 120, the spacing between the xn

must be less than ∆x(212), which means that

∆xn <
1

2
ln(1.067) < .033

(We note that 1
2
ln(1.067) < .033 because ln(1.067) < .066, where the latter can be confirmed

by expanding a Taylor series for ex about the origin: e.066 > 1+ .066+ (.066)2/2 = 1.06818.)

Therefore we can conclude that if we have a ball B1.6(z) of radius 1.6 centered at z with
Re z ≥ 120, and that ball intersects the curve γ over a set of x values longer than .033, we
are guaranteed that the region will intersect the end point of one of the cn.

Now we consider B1.6(z) with Re z > 120, and we will show that this ball must intersect
γ over such a range of x values. (In other words, the projection onto the real axis of the
portion of the curve inside the ball is longer than .033.) We see for any R that if |Im z| < R,
then BR(z) will cross [pλ,∞), which is in S. We will therefore assume R ≤ |Im z| ≤ π. We
will continue to work (without loss of generality) with a circle centered at a point z in the
strip of width 2π about the real axis. We see that our worst case scenario is where the point
z is as far as possible from both γ and its next 2πi-translate. Therefore, we will assume
that |Im z| = π. Working with our specified R = 1.6, we have that the boundary of B1.6(z)
intersects γ where

(x − Re z)2 +
(
arccos

(
pλ

λex

)
− Im z

)2

= 1.62
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which after using the assumption that Im z = π and simplifying somewhat becomes

(x − Re z)2 +
(

π

2
+ arcsin

(
pλ

λex

))2

= 1.62

We note that there will be at most two intersection points; all the points between the
intersections of γ and the boundary of B1.6(z) are inside of B1.6(z).

Next, we need to find an upper bound for arcsin (pλ/(λex)). We already know that pλ <
(1.7/λ) − 1. Noting that arcsin(θ) < 2θ for 0 < θ < 1/2, and that our x is assumed to be
greater than 120, we have that

arcsin
(

pλ

λex

)
< 2

1.7 − λ

λ2e120

Given our restriction that e−4 ≤ λ < e−1, we can further say that

arcsin
(

pλ

λex

)
< 2

1.7 − λ

λ2e120
<

1.7 − 0

e−8e119
<

1.7

e111
< e−111

and expanding e111 in a Taylor expansion we can determine that this is easily less than .001.

We now return to where our disk intersects γ, and we determine that if we have

(x − Re z)2 +
(

π

2
+ arcsin

pλ

λex

)2

> 1.62

i.e., if a point lies outside the disk of radius 1.6, then we must have

(x − Re z)2 > 1.62 −
(

π

2
+ .001

)2

> .089 > (.033)2

So we see that the disk must intersect γ in a segment at least .033 long in the x direction,
which is long enough (assuming x > 120) to guarantee the existence of some xn inside the
curve. Thus, the disk B1.6(z) must intersect S if Re z > 120, just as we wanted, and the
lemma is proved.

2.3 Accuracy of Eλ(z) for λ < 1/e

We are now ready to show:

Theorem 4 The Julia sets computed for Eλ(z), λ < 1/e, using B = 120, N = 25, d = .01,
and W = {z : 1 ≤ Re z ≤ 5, |Im z| ≤ 2} are accurate.
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Proof: We begin with the observation that if λ < e−4, the picture generated is trivially
accurate. This follows because ReEλ(z) = λeRe z cos(Im z) < eRe z−4, and within W , we have
Re z ≤ 5. So we note that the region Re z ≤ 5 is mapped to a region with Re z ≤ e < 5,
and thus it will be impossible for any point in W to be iterated outside of this region (where
Re z > 120), so no pixel will be colored under our algorithm. Therefore, in a vacuous sense,
the picture is accurate. (Note that the above also implies that the W we have chosen lies
entirely in the Fatou set. If we wanted pictures which contained part of the Julia set for
these small values of λ, we would need to change our choice of W .)

We now deal with the case of λ ∈ [e−4, e−1). In this case, it will be sufficient by Lemma 1 to
show that if a pixel is colored, i.e., if there is some n ≤ N such that Re En

λ (z) > B = 120,
then the pixel is expanded to cover a ball of radius 1.6 about z. Therefore by Lemma 1 the
pixel would have contained some point in the Julia set of Eλ.

We work in cases, considering how many of our N = 25 iterations were necessary before
Re En

λ (z) > 120.

Case 1: n = 1 Suppose we have z0 ∈ W and Re Eλ(z0) > 120. (In other words, we took
only one iteration to escape.) We have then that λex0 cos(y0) > 120, where z0 = x0 + iy0.
But then ex0 > 120/λ, and x0 > ln 120 − ln λ. Since λ < e−1, we must have x > ln 120 + 1.
But since ln 120 > 4.7, this would mean that the real part of z0 was bigger than 5.7, which
is not possible for x ∈ W . Therefore, no pixel is colored in the first iteration.

Case 2: n = 2 Suppose we have a point z0 ∈ W , with z1 = Eλ(z0), and z2 = E2
λ(z0), such

that Re z2 > 120. Working as in Case 1, we can establish that Re z1 > 4.7 − ln λ, which
means in turn that Re z0 > ln(4.7 − ln λ) − ln λ.

We then consider the neighborhood B.005(z0) under the map Eλ. We note that E ′
λ(z) =

Eλ(z), and that for z ∈ B.005(z0), Re z > ln(4.7 − ln λ) − .005. We therefore have that
|E ′

λ(z)| > (4.7 − ln λ)e−.005. Letting µ0 = (4.7 − ln λ)e−.005, we have by the expansion
theorem that there is a neighborhood U1 of z1 which contains B.005µ0(z1) such that Eλ(z) :
B.005(z0) → U1 is a homeomorphism.

Now we have a disk of radius .005µ0 around z1, and since Re z1 > 4.7− ln λ, we have Re z >
4.7 − ln λ − .005µ0 for z in this disk, so the derivative is now greater than λe4.7−ln λ−.005µ0 .
By applying the expansion theorem again, we now have a disk of radius .005µ0µ1, or
.005µ0λe4.7−ln λ−µ0 = .005µ0e

4.7−µ0 about z2. Our task will be to show that .005µ0µ1 > 1.6,
so that we may conclude that some point of J(Eλ) is in this disk, and therefore its preimage
is within .005 of the original z0.

We begin with .005µ0µ1 fully expanded:

.005µ0µ1 = .005µ0e
4.7−µ0 = .005(4.7 − ln λ)e−.005e4.7−.005(4.7−ln λ) exp(−.005)

Then by noting −4 ≤ ln λ ≤ −1, we can see that

.005µ0µ1 ≥ .005(4.7 + 1)e4.695−.005(4.7+4) exp(−.005)
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= .0285e4.695−.0435/ exp(.005)

> .0285e4.6515−.0435

> .0285e4.6515

and by expanding e4.65 in an order five Taylor series, we can now calculate that that
.005µ0µ1 > 1.9, so we are done.

Case 3: n ≥ 3 In the case when it takes more than two iterations before a pixel is
colored, we wish to demonstrate that before the last two iterations, we must in fact have a
neighborhood of radius r = .005 about the point zn which is contained in the image of the
original pixel.

Let zn = En
λ (z0). We begin by noting that if Re zn ≤ 1, we would have Re zn+1 = Re λezn ≤

λeRe z, and as λ ≤ e−1, we would necessarily have Re zn+1 ≤ 1 as well. Therefore, if we ever
enter the half plane {z : Re z ≤ 1}, all future iterates remain there. This not only implies
that the set of all z with Re z < 1 is in the Fatou set, but that we will not color any point
after its orbit has entered the left half plane. Therefore, we assume that zn = λezn−1 has real
part greater than one.

We consider how large the derivative must be within a distance of r = .005 of the point zn.
This will allow us to determine the degree of contraction or expansion taking place around
the point zn using the expansion theorem. We note that E ′

λ(z) = λeRe z, so making use of
our assumption that Reλez > 1 and therefore λeRe z ≥ Re λez > 1, we have on the ball Br(z)
that

|E ′
λ(z)| ≥ λeRe z−r =

λeRe z

er
> e−r

Then since e−.005 > .99, we see that at each iteration the ball about zn may only shrink by
a factor of .99.

Next, we must consider how much this neighborhood is expanded again after the point begins
to move away from the boundary where Re z = 1. After all, if we are more than distance
r = .005 away from the boundary, we see that our derivative must be greater than one on the
entire neighborhood and we will expand again. (This follows from noting that E ′

λ(z) = Eλ(z),
and that |Eλ(z)| ≥ 1 if Re z ≥ 1.) We use the result from case two above, in which we showed
that if zn+2 had real part greater than 120, then Re zn > ln(ln 120 − ln λ) − ln λ. Extending
the argument from that case once again, we see that, for z within r = .005 of zn−1, where
Re zn+2 > 120, we must have

|E ′
λ(z)| ≥ λ exp (ln [ln(ln 120 − ln λ) − ln λ] − ln λ − r) =

ln(ln 120 − ln λ) − ln λ

er

Using the fact that λ < e−1 and that e−r = e−.005 > .995, we have that the derivative around
this third to last point is greater than 2.6. Since we have had at most 23 iterations up to this
point, each of which has contracted the neighborhood of .005 about the point by less than
.99, the total contraction is less than .9923 > .7, so we still have a neighborhood of radius
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greater than (.7)(.005) = .0035 about the point which is from the original pixel. In the third
to last iteration then, we expand this neighborhood by at least 2.6, and get a neighborhood
of at least .0091 > .005. Therefore, we have a neighborhood B.005(zn) which comes from the
original pixel, and the argument for case two goes through as before.



Chapter 3

The Family λ tan(z)

We will consider the computation of the Julia set for the family of functions Tλ(z) = λ tan(z)
in the complex plane.

Obviously the definition of normality is not useful for computing a Julia set, so we again
employ an alternate method. In the case of Tλ(z), there are two other ways to represent the
Julia set which may be helpful. As Tλ is a transcendental meromorphic function with poles
which are not omitted values, J(Tλ) is the closure of the set of all preimages of poles of all
orders. We will need to make some use of this fact. More significantly, Tλ has polynomial
Schwarzian derivative: S(Tλ)(z) = 2. Therefore, by Theorem 2, J(Tλ) is also the closure
of the set of all points z such that |T n

λ (z)| → ∞ as n → ∞. We will use this fact in an
algorithm for computing an approximation to the Julia set of Tλ.

In computing a Julia set numerically, we proceed as before: we pick a window W , a real
bound B, a pixel width d, and a bound on iterations N . We divide the region W into pixels
of width d. For the midpoint z0 of each square we compute fn(z0) for 1 ≤ n ≤ N , now
checking at each stage to see if |T n

λ (z0)| > B. If |T n
λ (z0)| > B for some n ≤ N , we conclude

that this point is indeed tending toward infinity under iteration and consider the pixel to be
in the Julia set J(Tλ). We then color the entire pixel and move on to the next pixel. If there
is no n ≤ N such that |T n

λ (z0)| > B, we conclude that the pixel is in the complement of
the Julia set (the Fatou set), and we do not color the pixel. The set of colored pixels again
forms what we will call the computed Julia set Jc(Tλ).

It should be clear that the Julia set and the computed Julia set for Tλ will be different. (Of
course, one obvious difference is that the Julia set is defined in terms of points rather than
pixels.) As before, we wish to consider whether the computed Julia set is accurate; i.e., for
any pixel which we have colored, must there be a point in the pixel which is in J(Tλ)? As
before, it is also possible that we have not colored some pixels which contain parts of the
Julia set. It could be, for example, that the point we are iterating is not moving toward
infinity fast enough to pass our bound in only N iterations, or that we have chosen a point

18



John W. Hoggard Chapter 3. The Family λ tan(z) 19

(such as a repelling fixed point) in J(Tλ) which does not tend to infinity.

We will show that Jc(Tλ) is accurate for positive real λ for some reasonable choices of N ,
B, and d. The proofs we use would however generalize easily to the case of negative real λ,
allowing us to conclude that the computed Julia sets will be accurate for all real λ.

3.1 Mapping Properties of λ tan(z)

We will require some description of how λ tan(z) maps the complex plane. We begin by
noting that we can write Tλ(z) = λ tan(z) as follows:

λ tan(z) =
λ

i

eiz − e−iz

eiz + e−iz
= −iλ

e2iz − 1

e2iz + 1

Therefore, we can represent Tλ(z) as the composition −iλL(exp(2iz)) where L(z) is the
Möbius transformation

L(z) =
z − 1

z + 1

We consider the mapping of vertical and horizontal lines and strips under the map tan(z) =
−iL(exp(2iz)). We will return to the general case for λ tan(z) after we have first discussed
the specific case where λ = 1, noting that the only difference will be in a dilation and rotation
after the mapping resulting from tan(z). If we start with a horizontal line z = x + iy0 with
imaginary part y0, then under the map exp(2iz) we get exp(2i(x + iy0)) = exp(−2y0 +
2ix) = exp(−2y0)[cos(x) + i sin(x)], so this horizontal line is mapped to a circle Ca of
radius a = exp(−2y0) centered at the origin. The circle Ca is then mapped by the Möbius
transformation −iL(z) to some circle (or line). We can specify the Möbius transformation
by its behavior at three points. Under the map −iL(z) the points a, −a, and ai on Ca are
mapped as follows:

−iL(a) = i
1 − a

1 + a
(3.1)

−iL(−a) = i
1 + a

1 − a
(3.2)

−iL(ai) = i
1 − ai

1 + ai
(3.3)

(We note that for a 6= 1, points (3.1) and (3.2) above are strictly imaginary.) If we consider
the horizontal line that is the real axis (where y0 = 0), then we have that a = 1, so these
points map to 0, 1, and ∞. Thus, (not surprisingly) the real axis maps onto itself under
tan(z). We note that in general −iL(aeiθ) = ∞ only if |a| = 1, so for y0 6= 0, infinity is not
a point on the image curve. Thus the horizontal line with imaginary part y0 mapped to a
circle if y0 6= 0. Then we note that iL(z) = iL(z), so by symmetry we must have a circle
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centered on the imaginary axis. As a result, the purely imaginary points (3.1) and (3.2)
must be the top and bottom points of the circle; that is, the points with the maximum and
minimum imaginary parts. Since the real axis maps to itself, horizontal lines with imaginary
part y0 6= 0 map to circles centered on the imaginary axis and lying either entirely above or
entirely below the real axis. (See figure 3.1.)

Figure 3.1: Horizontal lines map to circles centered on the imaginary axis, and on the same
side of the real axis.

The radius ρ of the image circle −iL(Ca) can now be calculated. It is one half the distance
between the two points (3.1) and (3.2):

ρ =
1

2

(
1 + a

1 − a
− 1 − a

1 + a

)
=

2a

1 − a2
=

2e−2y

1 − e−4y
(3.4)

(The above assumes that point (3.1) is closer to the origin than point (3.2), i.e., that y > 0.
If y < 0, the radius is the negative of this quantity.) The center of the circle is at a point ic
halfway in between (3.1) and (3.2):

ic =
1

2
[L(a) + L(−a)] = i

a2 + 1

a2 − 1
= i

e−4y + 1

e−4y − 1
(3.5)

If y0 > 0, then exp(2iz) maps the horizontal line with fixed imaginary part y0 to a circle
Ca of radius a = exp(−2y0) < 1. This intermediate circle is then mapped by −iL(z) to a
circle above the real axis, which intersects the imaginary axis at points above and below i.
(Consider the location of points (3.1), (3.2), and (3.3) above. All are above the real axis, and
(3.1) and (3.2) are above and below i respectively.) Conversely, if y0 < 0, the intermediate
circle has radius a ≥ 1, and the image of x + iy0 under tan z is a circle below the real axis
and which contains −i. As y0 → ∞, the image circles contract about i, and as y0 → −∞,
the image circles contract about −i.

Therefore, horizontal strips can map to three different types of regions. If the strip lies
entirely above the real axis, then it maps to the region between two nested, non-intersecting
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circles containing i in the upper half-plane, and similarly containing −i in the lower half-
plane if the strip is entirely below the real axis. The circles are not centered on the same
point, and thus form an off-center annulus. (See figure 3.2.) If the strip goes from the real

Figure 3.2: Horizontal strips map to off-center annuli.

axis to part of the upper or lower half planes, then it maps to the same half plane less a
disk about the point i or −i. (See figure 3.3.) Finally, if the strip crosses the real axis, it

Figure 3.3: Horizontal strips including the real axis map to the half-plane less a disk.

maps to the entire complex plane less two disks, one containing i and one containing −i.
(See figure 3.4.) In the case where the horizontal strip is the entire complex plane, the strip
is mapped to the entire complex plane less the points ±i, which are the only omitted values
for tan(z).

Next, we consider vertical lines, which are of the form z = x0 + iy with x0 fixed. These
lines are mapped by exp(2iz) to rays from 0 to ∞ which make an angle of 2x0 with the
real axis. (See figure 3.5.) As y → ∞, the ray approaches 0, and as y → −∞ the ray
approaches ∞. Pretend for a moment that this ray is an entire line; we can describe the
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Figure 3.4: Horizontal strips across the real axis map to the plane less two disks.

z = x0 + i y

2 x0

Figure 3.5: Vertical lines z = x0 + iy map under exp(2iz) to a ray which makes an angle 2x0

with the real axis.

Möbius transformation −iL(z) by considering its action on the three points 0, ∞, and
exp(2ix0). These points are mapped to the points i, −i, and tan(x0), respectively. (The
point x + 0i is mapped to exp(2ix), but tan(x + 0 i) = tan(x).) These three points form a
straight line rather than a circle in only two cases: if tan(x) = 0, which means that x = nπ,
or if tan(x) = ∞, which means that x = (2n + 1)π/2. In the other cases, since we have only
the ray from 0 (as y → ∞) to ∞ (as y → ∞) mapped under L(z), the arc of the image
circle stretches from i (as y → ∞), through tan(x), and approaching −i (as y → −∞). (See
figure 3.6.) When x = nπ, the point tan(x) = 0 forms the third point on the image line and
we get the line segment between i and −i on the imaginary axis. When x = (2n + 1)π/2,
we have tan(x) = ∞, so the third point is at ∞ and we get the line segment joining i to −i
by passing through ∞ on the imaginary axis.

Therefore there are four types of regions that an infinite vertical strip can map to. Vertical
strips that do not include a real value of (2n + 1)π/2 or nπ (n an integer) are mapped to
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π/2

Figure 3.6: Vertical lines map to arcs of circles between ±i.

crescents stretching from i to −i. (See figure 3.7.) Vertical strips which cross a multiple

π/2

Figure 3.7: Vertical strips with real part not including a multiple of π/2 map to crescents
connecting −i to i.

of π map to the interior of a region bounded by parts of two circles to the left and right
of the imaginary axis which meet at ±i. (See figure 3.8.) Vertical strips which include a
real number of the form (2n + 1)π/2 are mapped to the exterior of two such circles. (See
figure 3.9.) Strips which cover both kinds of real values are mapped onto the entire complex
plane less the points ±i. (The function tan(z) is π-periodic, so if we have a vertical strip
wider than π, then we have hit everything except for the omitted values.)

Finally, if we consider rectangular regions of the plane, we have the intersection of a horizontal
and vertical strip. The pixels we are interested in are such rectangular regions. We get
different types of image shapes for a box under the map tan(z) depending on whether or not
the box crosses a vertical line of the form Re z = nπ, a line of the form Re z = (2n + 1)π/2,
or the real axis. Figures 3.10, 3.11, 3.12 and 3.13 show some of the possibilities.

When we deal with the function Tλ(z) with λ 6= 1, we have to include a dilation and rotation
as well. Under these circumstances, we get the following results:

A horizontal line with imaginary part y0 is mapped to a circle with center and radius given
by

λic = λi
1 + e−4y0

1 − e−4y0
, λρ =

2λe−2y0

1 − e−4y0
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π/2

Figure 3.8: Vertical strips crossing a real multiple of π map to a region bounded by two
circles meeting at ±i.

π/2

Figure 3.9: Vertical strips crossing a pole map to the exterior of a region bounded by two
circles meeting at ±i.

respectively. (Again, the radius may need to be adjusted for sign.)

A vertical line with real part x0 goes to a piece of a circle symmetric with respect to the
real axis connecting ±λ i and going through λ tan(x0). Of course, when λ = 1, the above
correspond to our previous results.

3.2 Julia sets for λtan(z)

We now discuss a few properties of the Julia sets for the family λ tan(z), focusing primarily
on the case where λ is real.

First note that if λ is real and positive, the mapping properties of the previous section show
that the upper half plane maps to the upper half plane, and the lower half plane to the lower
half plane. Therefore we see by Montel’s theorem that the family T n

λ is normal in these
regions. If λ < 0, the upper and lower half-planes map to each other, but both still miss the
real axis, and therefore by Montel’s theorem are in the Fatou set. Therefore, for real λ, the
Julia set must be contained in the real line. We will not in general give further consideration
to the case where λ < 0, and assume we are working with positive λ.
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Figure 3.10: A pixel which contains a pole.

π/2

Figure 3.11: A pixel crossing the real axis.

If λ > 1, then we see that T ′
λ(x) = λ sec2(x) ≥ λ > 1 for all real x. So for λ > 1, we

can assure that the derivative of Tλ(z) will be strictly greater than one for z real. At each
iteration, the interval therefore expands by a given amount. Eventually, an interval of any
size will therefore be expanded to a length greater than π, which implies that the interval
is now covering a pole. Therefore we have shown that if λ > 1, we have the preimage of a
pole in every neighborhood of any real point. Since the preimages of the poles are in the
Julia set, we have shown that every real point is in the closure of the Julia set, and hence,
that the entire real line is contained in J(Tλ). The same argument holds when λ = 1, with
the exception that we may need to excise a small region surrounding any multiple of π that
the image of the pixel may include; at this point, the derivative is only 1. So for λ ≥ 1, the
Julia set is the real line.

For |λ| < 1, the Julia set is less simple. We note that 0 is now an attracting fixed point,
and hence a neighborhood about 0 is contained in the Fatou set. Similarly, a neighborhood
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π/2

Figure 3.12: A pixel off the real axis and with real parts away from poles and multiples of π.

π/2

Figure 3.13: A pixel containing the origin.

around all multiples of π must be in F (Tλ). By invariance, we must also include all preimages
of these neighborhoods in the Fatou set. This recursive excising of intervals is reminiscent
of the construction of a Cantor set. In fact, Devaney and Keen showed [11] that the Julia
set for Tλ where λ < 1 is a Cantor set in the real line, and that iteration of Tλ is equivalent
to a shift map on infinitely many symbols.

The asymptotic values of Tλ play a role in determining the Fatou set. An asymptotic value
for a function f is a value v for which there exists a path σ(t), t ∈ [0, 1), with σ(t) → ∞ as
t → 1, such that f(σ(t)) → v as t → 1. (In other words, f(z) approaches v as z tends to
infinity along σ.) From our mapping properties, we see immediately that ±λ i are asymptotic
values for Tλ, and that they are in fact the only asymptotic values. Alternatively, we could
note that the omitted values of meromorphic functions are also asymptotic values. (See
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for example [17, p. 199].) Then from the theorem of Nevanlinna mentioned earlier, since
Tλ has constant Schwarzian derivative, there are exactly two asymptotic values. So these
asymptotic values are the only ones.

There are no wandering domains and no Baker domains for this family (as it has polynomial
Schwarzian derivative). Since there are no critical values, each component of the Fatou set
of Tλ must either contain an asymptotic value or attract the infinite forward orbit of such
a value. Keen and Kotus observed [19] that this implies that if the asymptotic values are
also preimages of poles, the Julia set must be the entire plane. (If the asymptotic values are
preimages of poles, they are in the Julia set and have a finite forward orbit.) This cannot
happen to Tλ for real λ, as ±λi are the asymptotic values and all preimages of the poles
of λ tan(z) are real if λ is. However, we do note that both the upper and lower half plane
contain an asymptotic value for real λ.

3.3 Accuracy of Computed Julia Sets for tan(z)

We now consider the accuracy of the computed Julia set of Tλ(z) for λ = 1. We will show
that if the Julia set is computed using N = 50, B = 210, and d = .01, then the Julia set is
accurate. (We will often refer to the radius r = .005 of the pixels of width d = .01.) The
values of N and d were chosen somewhat arbitrarily, but are of reasonable magnitude. The
value of our bound B was chosen large enough to make the analysis which follows work,
although it too is within the realm of “reasonable” choices. However, we will also see that
with a modified algorithm, we can establish accuracy with a bound of only 110. We will
not need to actually give thought to our window W with the family Tλ, so long as we do
not check for |z| > B until after we have performed one iteration. (If we check the modulus
before one iteration, we will of course have to restrict W to lie entirely within a radius of 210
from the origin.) In the imaginary direction, it is clear that any point with large imaginary
part is mapped close to one of the asymptotic values, and so will not be colored. In the
discussion of accuracy, we will see that there are no restrictions on W required. Of course
tan(z) is periodic, so a window of width π will show all the same dynamics that a larger
window would show. In our analysis, then, we will usually restrict ourselves to considering
the region with real part between 0 and π for simplicity.

We first develop bounds on the real and imaginary part of a point in order for it to be
mapped under Tλ to a point with modulus greater than B = 210. Vertical lines with fixed
real part x0 we already know are mapped to arcs of circles symmetric with respect to the real
axis and passing through tan(x0). Therefore, | tan(x0)| is an upper bound for | tan(x0 + iy)|,
so long as | tan(x0)| > 1. (See figure 3.14.) If | tan(x0)| < 1, then it is clear that this edge of
the circle is closer to the origin than are the asymptotic values ±i. However, in this case it
is also clear that | tan(x0 + iy)| < 210.

Now we know that tangent has a pole at the point π/2 ≈ 1.5708, and on the real axis



John W. Hoggard Chapter 3. The Family λ tan(z) 28

Figure 3.14: | tan(x0)| ≥ | tan(x0 + iy)|, if | tan(x0)| ≥ 1.

| tan(x)| is increasing for points near but to the left of π/2 and decreasing for points near
but to the right of π/2. (Note that tan(x) is always increasing, but that tan(x) is negative
on (π/2, π), so | tan(x)| is decreasing here.) Since we can compute that | tan(1.576)| < 210
and | tan(1.566)| < 210, we have that | tan(x + iy)| > 210 implies 1.566 < x < 1.576, or in a
similar interval of the same size about another pole.

Next we attempt to bound the imaginary part of z. As we have seen, horizontal lines with
imaginary part y > 0 map to circles above the real axis and centered on the imaginary axis.
Therefore | tan(z)| = | tan(x + i y)| < ρ + c, where ρ and ic are the radius and center of the
circles, as was given in equations (3.4) and (3.5) from section 3.1. Therefore, if we assume that
the imaginary part of some point z0 is greater than .005 in magnitude, then by the mapping
properties of tangent which were developed earlier, tan(z0) is contained in a disk of radius
2e(−2)(.005)/(1 − e(−4)(.005)), or 2e.01/(e.02 − 1) < 105, and centered at (1 + e−.02)/(1 − e−.02),
which is less than 105. (The estimates can be obtained by using a Taylor series for ex; we
can compute using only the first two terms of the series that 1.0094 ≤ e.01 ≤ 1.0106 and
1.0194 ≤ e.02 ≤ 1.0206.) In the first iteration, a point with imaginary part more than .005
away from the real axis is mapped within this circle, and the modulus of the point is less
than 210.

Therefore, we can conclude that the only points which can be mapped into the region where
|z| > 210 in one iteration are those points inside a square with side of length .01 centered on
the real axis and containing a pole of tan(z). This is fine so far, because we know that the
entire real line is the Julia set for tan(z), and no point in this box is any further away from
the real axis than .005. Therefore any pixel of radius r = .005 whose center is mapped to a
point with real part greater than 210 must have that center in the interior of one of these
boxes, and therefore the pixel must contain a point of the real axis. This point is of course
in the Julia set. Now we need only determine that anything which maps into this box in
the remaining 49 iterations is within .005 of a point in the Julia set. (In other words, it is
within .005 of the real axis.)
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We use the following lemma for the more general function λ tan(z), where λ > 0:

Lemma 2 Given λ > 0 and a region R = {z : x0 ≤ Re z ≤ x1, |Im z| ≤ y0} in the complex
plane, we wish to choose x′

0, x
′
1, and y′

0 so that λ tan(z) maps the region [x′
0, x

′
1] × [−y′

0, y
′
0]

onto R. This can be done if x′
0, x

′
1, and y′

0 are chosen as follows:

x′
0 = arctan(x0/λ) (3.6)

x′
1 = arctan


x2

1 + y2
0 − λ2 +

√
4λ2x2

1 + (x2
1 + y2

0 − λ2)
2

2x1


 (3.7)

y′
0 =

1

4
ln

(
λ2 + x2

0 + 2λ y0 + y2
0

λ2 + x2
0 − 2λ y0 + y2

0

)
(3.8)

Proof: We know that a vertical line with real part x′
0 will be mapped to the arc of a

circle connecting ±λ i through the point λ tan(x′
0). Since |λ tan(x′

0)| is an upper bound for
|Re (λ tan(x′

0 + iy))| (see figure 3.14 again), we get that arctan(x0/λ) will suffice for x′
0.

Getting x′
1 is more difficult. We note that we need to enclose an entire box, but that the

vertical line with real part x′
1 is mapped to a circle with center c and radius r which reaches

out to λ tan(x′
1) at its furthest. Thus, we need to determine how far out λ tan(x′

1) needs to
be in order for the resulting circle to completely enclose the box. We will call this point d
and refer to figure 3.15. (Our concern here is to avoid clipping off the corners of the box.)

λ

−λ

Figure 3.15: The outer circle used in covering a given box

We note that
x1 = c +

√
r2 − y2

0
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and so

d = c + r

=
(
x1 −

√
r2 − y2

0

)
+ r (3.9)

We now need to determine the center c and radius r of the circle. The circle goes through
the three points (d, 0), (0,±λ) in the Cartesian plane. To determine the center, we will find
the point where the perpendicular bisectors of two chords meet. The two points ±λ i give a
chord on the imaginary axis, so one perpendicular bisector is the real axis. Another is found
by looking at the chord from λi to d. Working in the real cartesian plane, these are the
points (0, λ) and (d, 0), so we see that the chord has slope −λ/d and midpoint (d/2, λ/2).
Therefore the perpendicular bisector is y = (d/λ)x − d2/(2λ) + λ/2. So the center of the
circle is where this line and the line y = 0 (the real axis) cross, which is

c =
d

2
− λ2

2d

The radius can be obtained by subtracting the center point from d:

r = d −
(

d

2
− λ2

2d

)
=

d

2
+

λ2

2d

So in the end, by plugging into equation (3.9) above, we have

d = x1 +
d

2
+

λ2

2d
−

√√√√(
d

2
+

λ2

2d

)2

− y2
0

and solving for d yields

d =
x2

1 + y2
0 − λ2 +

√
4λ2x2

1 + (x2
1 + y2

0 − λ2)
2

2x1

This leads to a choice of x′
1 as given in the lemma.

Finally we wish to know how small the imaginary part needs to be in order to hit the given
region. We know that a horizontal line with imaginary part y > 0 goes to a circle centered on
the imaginary axis and above the real axis, and that smaller values of y result in larger circles.
Therefore we want to find y′

0 such that the circle given by λ tan(x + y′
0) for −π

2
≤ x ≤ π

2
just

touches the upper left hand corner of the rectangle. We want the distance from the center of
the circle (at (0, c)) to the corner of the rectangle (at (x0, y0)) to be the radius of the circle.
Using the values we have for the point c and for the radius ρ of this circle from equations
(3.5) and (3.4) from section 3.1, we must therefore solve

ρ =
2λe−2y

1 − e−4y
=

√
x2

0 + (c − y0)2 =

√√√√x2
0 +

(
λ

1 + e−4y

1 − e−4y
− y0

)
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for y. Doing so we obtain

y =
1

4
ln

(
λ2 + x2

0 + 2λ y0 + y2
0

λ2 + x2
0 − 2λ y0 + y2

0

)

This yields the choice of y′
1 as given in the lemma.

We apply the lemma repeatedly. We start with the box about π/2. At each stage, we will
find a rectangular box which will map onto the current box under the map tan(z). We note
that the formulas for x′

0 and x′
1 are decreasing, always positive (for positive values of x0 and

x1), and x′
0 < x′

1. So the box moves backwards towards zero along the real axis. Similarly,
we also have boxes that move toward the origin if we start with the box about −π/2. If we
start with a box around a pole of greater magnitude, we see that in the first preimage, we
get a box in the interval (−π/2, π/2) and with a real part slightly larger in magnitude than
if we had started with the box around ±π/2. Thus in all cases, we will be moving towards
the origin in the interval (−π/2, π/2) when back iterating.

The derivative of y′
0 with respect to x is

−2 x y(
x2 + (−1 + y)2

) (
x2 + (1 + y)2

)

and the derivative of y′
0 with respect to y is

1 + x2 − y2(
x2 + (−1 + y)2

) (
x2 + (1 + y)2

)

The first is negative and the second is positive if we assume x and y are positive, and that
y < 1. We will show that in the region (.17, 1.57) × (0, .005), the y value stays less than
.005. We use .17 for the left hand limit because the arctangent iterated on the point 1.56
fifty times is greater than .17, hence in fifty iterations, the x coordinate of our box cannot
have moved past this point. (See Appendix A.) From the derivatives, we see that the largest
value we could obtain for y′

0 in equation (3.8) above using x and y within such a box occurs
at the upper left hand corner, and at this point, y′

0 ≈ 0.00486, which is less than .005. We
see that choices of x and y coordinates in this box result in another y coordinate within this
box. Therefore as we back iterate, each box that we have is symmetric about the real axis
and the edge of the box is less than r = .005 away from the real axis. Therefore every pixel
which has a center sent into the boxes about the poles of tan(z) in fifty or fewer iterations is
within .005 of the real axis, and therefore contains a part of the Julia set. We have proved
the following:

Theorem 5 The computed Julia set for tan(z) with pixel radius r = .005, bound B = 210,
and maximum iterations N = 50 is accurate.
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We will make one further observation: Given that points with moderately large imaginary
part are mapped to a small circle enclosing one of ±i, it is clear that points which go to
infinity must do so by having the real part become large. In other words, we could adjust
our algorithm to look for points z such that the real part of their nth image under tan(z)
becomes large, i.e., that |Re zn| > B. (In fact, we shall devote some time in the case where
λ < 1 to showing that any colored pixel in fact has a point which goes toward infinity in
the real direction.) Using such a modified algorithm, we can in fact show that a bound of
B = 110 will give an accurate representation. We will give only a brief summary of how the
above work would need to be altered for this algorithm.

Since | tan(x)| ≥ |Re tan(x + iy)|, then | tan(x)| could still be used as bound to control
|Re tan(x + iy)|. Now we see that the real part of point x such that |Re tan(x + iy)| > 110
must be between 1.56 and 1.58. For the restriction on the imaginary part, note that again
the line x + i y0 is mapped to a circle of radius ρ and center c as given before. The radius of
such a circle is an upper bound on its real part, so we have that if y ≥ y0 > 0, then

|Re tan(x + iy)| ≤ 2e−2y0

1 − e−4y0

If we are looking in general for where |Re tan(z)| = B, we can solve this to find e−2y =
1+

√
1 + B2, or y = −1

2
ln(

√
1 + B2 −1)− ln(B). So we know that if |Re tan(z0)| ≥ B, then

|Im (z0)| ≤ −1

2

[
ln

(√
1 + B2 − 1

)
− ln(B)

]

With B = 110, this becomes

|Im (z0)| ≤ −1

2

[
ln

(√
1 + 1102 − 1

)
− ln(110)

]
≈ .0045 < .005

Thus, we have as before that the imaginary part must be no further than r = .005 away
from the real axis for the point to be mapped to a point with real part greater than 110.
The rest of the proof proceeds as before, finding all the preimages of boxes that map into
the rectangle [1.56, 1.58] × [−.005, .005].

We shall not deal with this modified algorithm again, although it would simplify some of
our later work.

3.4 Accuracy of Julia Sets for λ > 1

We will use the same analysis as used in the case where λ = 1 above. We will keep r = .005
and N = 50, but we will now use B = 210λ. Such a choice allows us to use an almost
identical analysis as we used when discussing tan(z): we have the same bounds as before for
a point z0 to be mapped to z1 = λ tan(z) with |z1| > B, namely that 1.566 < Re z0 < 1.576
and |Im z0| < .005, or z is in a similar box around any pole of tan(z).
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In addition, if we continued to work with the fixed B = 210, then it is clear that for larger
values of λ that Jc(Tλ) would not be accurate. For example, if we consider λ > 210, we
see that the region where tan(z) is sufficiently close to 1 (which includes any point with
sufficiently large imaginary part) would be found to be in the Julia set, even though such
points are clearly not going to infinity. We might therefore reasonably be inclined to scale the
bound for large λ when computing Julia sets even if we were not establishing the accuracy of
the representation, since we are trying to measure whether or not a point is tending toward
infinity. If we are judging whether a point is tending to infinity by how large it becomes,
“large” is clearly a relative term.

We can now proceed as in the case where λ = 1, by finding a sequence of boxes which map
into the region [1.566, 1.576] × [−.005, .005] under λ tan(z) in somewhere between one and
forty-nine iterations. As we back iterate, we can again use the formulas in Lemma 2 to
determine the boxes which are ultimately mapped to a z where |Re z| > B.

As before, the real bounds x′
0 and x′

1 are moving towards the origin. (In fact it is clear that
| arctan(x/λ)| < | arctan(x)| if λ > 1.) However, the fiftieth preimage of x = 1.566 is now
more difficult to determine. In fact, as λ → ∞, T−50

λ (1.56) → 0.

We do know that as before our function determining the height of the box is increasing in y
and decreasing in x. Also, the derivative of our expression for y′

0 with respect to λ is

y0 (−λ2 + x0
2 + y0

2)(
x0

2 + (λ − y0)
2
) (

x0
2 + (λ + y0)

2
)

and for small values of x and y this is negative, so the function is decreasing in λ. Therefore,
(so long as x2

0 + y2
0 < λ2), we should choose the smallest value of λ to find the largest value

of y′
0.

The best we can do in choosing a small value of x is to let x = 0. If we start with the
assumption y0 < .005 however, with x = 0 and λ = 1, we get a y′

0-value of .0050000417,
which is larger than .005. Therefore we cannot conclude that the y coordinate of the boxes
are all less than or equal to .005. However, if we restrict λ to be at least as large as 1.00001,
it turns out that then if we start with y0 ≤ .005 and x0 ≥ 0, then y′

0 ≤ .005 as desired. Thus
we have shown accuracy for λ > 1.00001.

Next we deal with the case where 1 < λ ≤ 1.00001. For any fixed λ, the largest value of y′
0

still occurs at the largest value of y0 and smallest value of x0. Now however we can restrict
the smallest x0: given that λ ≤ 1.00001, we can conclude that T−50

λ (1.566) > .17. (See
Appendix A.)

Then again using our formula for y′
0, we can conclude that if x0 ≥ .17, y0 ≤ .01, and λ ≥ 1,

we must have

y′
0 ≤

1

4
ln

(
1 + .172 + 2(.005) + .0052

1 + .172 − 2(.005) + .0052

)
=

1

4
ln

(
1.03892

1.01892

)
<

.0195

4
< .005
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Therefore, points inside the block (.17, 1.56) × (−.005, .005) stay within that block for fifty
iterations. We can conclude that the Julia set is accurate for λ > 1:

Theorem 6 The computed Julia set for λ tan(z) with pixel radius r = .005, bound B = 210λ,
and maximum iterations N = 50 is accurate for all λ > 1.

3.5 Accuracy of Julia Sets for 0 < λ < 1

The case where λ ≥ 1 is in some sense uninteresting, since it is easy to show that the Julia
set is the entire real line. Thus, computed pictures have limited usefulness. More interesting
is the case where λ < 1, when the Julia set is a Cantor set on the real axis. In this case,
locating points in the Julia set as we have before is more challenging. However, we do know
that all poles are in the Julia set, and therefore, all preimages of poles. We will show that
if a pixel crossing the real axis is mapped past a large bound, that the pixel in fact contains
the preimage of a pole. We will also see that pixels not intersecting the real axis will not be
mapped past the bound, and so will not be colored. As in the case where λ ≥ 1, we will not
need any restrictions on the window W so long as we perform one iteration before checking
to see if a point has become large.

We will show:

Theorem 7 For 0 < λ < 1, the computed Julia set for λ tan(z) with pixel radius r = .005,
bound B = 210, and N = 50 is accurate.

Proof: We will proceed as follows: We will consider a point z0 at the center of an arbitrary
pixel of radius r = .005. First, we will demonstrate that if the pixel does not intersect the
real axis, then |T n

λ (z0)| ≤ 210 for all n ≤ 50. Hence, if the pixel does not intersect the
real axis, it will not be colored by our algorithm. Next, we will consider the case where the
pixel does intersect the real axis, and the point z0 escapes our bound in a single iteration,
i.e., |Tλ(z0)| > 210. Then letting x0 = Re z0, we will see that the segment [x0 − r, x0 + r]
contained in the pixel about z0 is expanded to a length of greater than π under the map
Tλ, and therefore its image must intersect a pole of Tλ. Finally, we will deal with the case
where z0 requires more than one iteration to escape, so |Tλ(z0)| ≤ 210 but |T n

λ (z0)| > 210
for 1 < n ≤ 50. This case is somewhat more complicated, but ultimately we will show that
the segment [x0 − r, x0 + r] does in fact contain a point in J(Tλ) (where x0 = Re z0). We
will show that the interval contains a point of the Julia set in two steps. First, we will show
that if |T n

λ (x0)| is large, then the image of [x0 − r, x0 + r] is expanded under the maps Tm
λ ,

m ≤ n. (In other words, the image of the interval intersecting the real axis gets larger at
the mth stage.) This will allow us to revert to the case where z0 escapes in a single iteration,
if we can show that |T n

λ (z0)| being large implies |T n
λ (x0)| is also large. Second, we will show

that for m ≤ n that Re Tm−1
λ (z0) ∈ [Tm−1

λ (x0 − r), Tm−1
λ (x0 + r)]. This fact will allow us to
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conclude that |T n
λ (x0)| is large if |T n

λ (z0)| is large. The proof that the interval expands at
each stage will require us to find two repelling fixed points for Tλ; these fixed points are on
the boundary of the attracting basin for the origin.

We begin by considering the case where the pixel of radius r = .005 does not intersect the
real axis. We know then that |Im z0| > .005. Then by following the same argument as we
used in section 3.3 for the case where λ = 1, we see that we are mapped inside a circle
centered at λci with radius λρ as given in equations (3.5) and (3.4) from section 3.1, so using
the fact that λ < 1, we once again see that |Tλ(z0)| < 210.

We next concern ourselves with the portion of this circle which is below the line ` given by
Im z = .005, since the portion above this line is mapped once again inside the same circle.
We will first determine the points where ` intersects its image Tλ(`). To do this, we find
the distance dλ such that the imaginary part of Tλ(dλ + .005i) is .005. (By symmetry, we
know that Tλ(−dλ + .005i) also has imaginary part .005.) Using the fact that we have the
line ` mapped to a circle of radius λρ and centered at λci on the imaginary axis, we form a
triangle with the points dλ + .005i, .005i, and λci. (See figure 3.16.) We can then determine

that dλ =
√

ρ2λ2 − (cλ − .005)2.

λ

ρ

Figure 3.16: Finding the distance dλ by forming a triangle.

We will show that if we start with real part between ±dλ, we cannot in fifty iterations escape
past a modulus of 210. We do not need to worry about the possibility that the point escapes
in the imaginary direction, because once the image of the point has imaginary part greater
than .005, we know that it will be mapped inside the circle Tλ(`), and the process will start
again. Thus, if we escape, we do so by staying below Im z = .005 and moving to the right
(or left) across the plane. We wish to determine how far to the right (or left) the point can
move in the remaining forty-nine iterations if we start with real part between ±dλ. Since
|Re λ tan(Re z)| ≥ |Re λ tan(z)|, we will assume we have a real x between ±dλ, and show
that this cannot move past B = 210 in fifty or fewer iterations.
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By maximizing the quantity inside the square root for dλ, we find that dλ is largest when

λ =
.005c

c2 − ρ2

(which is slightly larger than .5), and at this point, dλ = .005ρ (c2−ρ2)−1/2 (which is slightly
smaller than .5). Therefore, for any λ, we must have dλ < .5.

Suppose then we have a real x between ±dλ. We note that |.5 tan(x)| < |x| for |x| ≤ .5.
This means that for λ ≤ .5, |λ tan(x)| < |x| if |x| ≤ .5. (In other words, if we start with x
within .5 of the origin and λ < .5, x only moves closer to the origin.) But dλ < .5, so this
says that |λ tan(x)| ≤ |x| if x starts within the interval [−dλ, dλ] and λ ≤ .5. Therefore we
cannot escape past |Re z| > 210 in 50 iterations (or in fact at all). We are done with λ < .5.

We then note that d(.5) ≈ .499992 and d(.75) is slightly larger than .433, so the minimum
value for dλ on the interval [.5, .75] occurs at λ = .75. So we know .433 < dλ < .5 for λ in
[.5, .75]. Therefore for λ in the interval, we have |λ tan(dλ)| ≤ dλ because of the following:

.75 tan(.5) ≈ .410 < .433 < d(.75)

(Here, we are using .5 in the argument to tan(z) on the left hand side because dλ < .5.)
Hence, for λ in this interval, if |x| < dλ, then |λ tan(x)| < dλ, so such points will remain
trapped.

We can then proceed in a similar fashion, noting that for λ > .51, we have dλ decreasing in
λ. We therefore know that for .51 ≤ a ≤ λ ≤ b ≤ 1 we will have |λ tan(dλ)| ≤ dλ so long as
b tan(da) ≤ db. Using this, we see that we must have λ tan(dλ) < dλ for λ ∈ [.75, .8], since

.8 tan(d(.75)) ≈ .3698 < .4000 ≈ d(.8)

We can then deal with λ in the intervals [.8, .9], [.9, .95], [.95, .98], and [.98, .99] in the same
way. Thus we can now assume that if a point manages to escape from the interval [−dλ, dλ]
in fifty or fewer iterations, we must have λ > .99, which means in turn that dλ < .1. But
the fastest growth of |T n

λ (x)| would be when λ = 1, and iterating tan(z) forty-nine times at
.1 gets only as large as approximately .122, so we cannot escape in this case either. (See
Appendix A.) Thus we have shown that we cannot escape from the region with real part
within [−dλ, dλ] in fifty or fewer iterations. So combining this with our previous result that
if |Re z| > dλ and |Im z| > .005 then z cannot escape, we see that a point cannot in fact
escape to where |z| ≥ 210 in fifty iterations unless it started out within .005 of the real axis.
This concludes the first part of the proof.

We next consider the case where the pixel of radius r surrounding z0 intersects the real axis,
and |Tλ(z0)| > 210. (In other words, z0 escapes in a single iteration.) Let z0 = x0 + iy. We
will first show that |Tλ(z0)| > 210 implies that |Tλ(x0)| > 210. We begin by noting that

|λ tan(x0 + iy)|2 = λ2 1 + e4 y − 2 e2 y cos(2x0)

1 + e4 y + 2 e2 y cos(2x0)
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We can solve for cos(2x0) and find that if |λ tan(z0)| > 2102, then

cos(2x0) <

(
1 + e4y

2e2y

)
λ2 − 2102

λ2 + 2102
= K

λ2 − 2102

λ2 + 2102
(3.10)

by making the definition

K =

(
1 + e4y

2e2y

)

to simplify the calculations which follow. Since we know |y| < .005, we have that 1 ≤ K <
1.000051. We see that cos(2x0) must be negative and close to −1 for | tan(x0 + iy)| to be
greater than 210. This suggests that | tan(x0)| will also be large, as for cos(2x0) to be close
to −1, we should have x0 close to some multiple of π/2. Indeed this is the case, and we can
describe how large tan(x0) must be if |y| < .005 in order for | tan(x0 + iy)| to be greater than
210. Using double angle identities for cosine, we obtain

| tan(x0)| =

√√√√1 − cos(2x0)

1 + cos(2x0)
=

√
−1 +

2

1 + cos(2x0)

Then using the fact that cos(2x0) is close to −1 and restricted by equation (3.10) above, we
can find that

| tan(x0)| >

√
44100 + 44100K + λ2 − K λ2

44100 − 44100K + λ2 + K λ2

Using the fact that 1 ≤ K < 1.000051, we can then find that | tan(x0)| > 210|λ|−1. Thus, for
all values of λ < 1, we see that if |λ tan(x0 + iy)| > 210 and |y| < .005, then |λ tan(x0)| > 210
also.

Now we focus on the segment [x0 − r, x0 + r] on the real axis. (Recall that x0 = Re z0.)
We will show that if |Tλ(x0)| > 205, then the interval is mapped under Tλ to an interval of
length greater than four. Such an interval must contain a pole, and thus the original pixel
contained a part of J(Tλ). (We note of course that we actually know that |Tλ(x0)| > 210,
but the weaker assumption that |Tλ(x0)| > 205 will be used in the final case.)

We consider the width of the image of [x0 − r, x0 + r] under Tλ, which is given by |λ tan(x0 +
r) − λ tan(x0 − r)|, or the following:

∣∣∣∣∣λ
(

tan(r) − tan(x0)

1 − tan(r) tan(x0)
+

tan(r) − tan(x0)

1 + tan(r) tan(x0)

)∣∣∣∣∣ =

∣∣∣∣∣λ 2 sin(2r)

cos(2r) + cos(2x0)

∣∣∣∣∣
Then we note that, as cos(2r) is close to 1, while cos(2x0) is close to −1, we must have

∣∣∣∣∣ 2λ sin(2r)

cos(2r) + cos(2x0)

∣∣∣∣∣ >

∣∣∣∣∣2λ sin(2r)

cos(2x0)

∣∣∣∣∣
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Finally, if we know that |λ tan(x0)| > 205, we know that |λ/ cos(x0)| > 205/| sin(x0)|. Using
this estimate allows us finally to get

|λ tan(x0 + r) − λ tan(x0 − r)| >

∣∣∣∣∣2λ sin(2r)

cos(2x0)

∣∣∣∣∣ ≥
∣∣∣∣∣410 sin(2r)

sin(x0)

∣∣∣∣∣ ≥ 410 sin(2r) > 4

Hence, the interval [x0−r, x0 +r] must be stretched to a length greater than π, and therefore
it contains a pole of Tλ. This will suffice if the point z0 escapes in a single iteration.

Lastly, we will consider the case where the pixel of radius r about z0 intersects the real axis
along [x0 − r, x0 + r], and |Tλ(z0)| < 210, but |T n

λ (z0)| > 210 for some 1 < n ≤ N . We
will show that in fact such a pixel contains a point in the Julia set. We will do this in
two stages. First, we will show that if we have |T n

λ (x0)| > 205, then either [x0 − r, x0 + r]
contains a point in J(Tλ), or each of the intervals [x0 − r, x0] and [x0, x0 + r] expands under
each iteration of Tλ. We assume that there is no point of J(Tλ) contained in [x0 − r, x0 + r],
for if there is, we are done. We can now conclude that after n − 1 mappings, we had an
interval of width at least 2r centered at T n−1

λ (x0), so we have reverted to the case where z0

escapes in a single iteration and we are done. Second, we will show that if |T n
λ (z0)| > 210,

then for m ≤ n ≤ N = 50, we must have the real part of Tm
λ (z0) trapped in the interval

[Tm
λ (x0 − r), Tm

λ (x0 + r)]. This will allow us to conclude that if |T n
λ (z0)| > 210, we must have

either that |T n
λ (x0)| > 205, or that the interval [T n

λ (x0 − r), T n
λ (x0 + r)] has length greater

than five. If |T n
λ (x0)| > 205, then we will know that the interval [x0−r, x0 +r] has expanded,

and we can revert to the case where z0 escaped in a single iteration. In the second case, the
interval [x0−r, x0 +r] has expanded to a length greater than five, and thus has encompassed
a pole. In either case, we are done.

We will be able to assume throughout that the images T n
λ (z0) have imaginary part between

±.005. If we have an image zm = Tm
λ (z0) with |Im zm| ≥ .005, we would have the future

images of z0 trapped as before, and we could not have colored the pixel about z0.

To carry out the proofs outlined above, we need to observe for 0 < λ < 1 that λ tan(z) = z
has two fixed points between −π/2 and π/2. Call these fixed points ±zλ. The segment
(−zλ, zλ) of the real axis between these two fixed points is in the attracting basin for the
origin and maps into itself. (See figure 3.17.) Thus, if the entire interval [x0 − r, x0 + r] is
ever mapped into the segment [−zλ, zλ] (or any π-translate), it will remain in this segment
on future iterations.

The points ±zλ are in fact repelling fixed points, and therefore in the Julia set J(Tλ).
We will show that zλ is repelling, noting that a similar argument holds for −zλ. Since
T ′

λ(x) = λ sec2(x) is increasing for 0 < x < π/2, we know that if T ′(zλ) ≤ 1 then T ′
λ(x) < 1

for 0 < x < zλ. But if T ′
λ(x) < 1 on [0, zλ], then we have that Tλ(zλ) =

∫ zλ
0 T ′

λ(x) dx <∫ zλ
0 1 dx = zλ. However, Tλ(zλ) = zλ. Therefore, we see that we must have T ′

λ(zλ) > 1, and
so zλ is a repelling fixed point of Tλ.

Now we are ready to show that if |T n
λ (x0)| > 205, then either [x0 − r, x0 + r] contains a point

in J(Tλ), or each of the intervals [x0 − r, x0] and [x0, x0 + r] expands under each iteration
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λλ

Figure 3.17: The fixed points ±zλ for Tλ, and the attracting basin of the origin.

of Tλ. The segment [x0 − r, x0 + r] may be in several locations in the interval [−π/2, π/2],
modulo π. First, it may be that the segment lies within the attracting basin (−zλ, zλ). If it
does, then all future iterates of x0 will lie in this basin, contradicting our assumption that
|T n

λ (x0)| > 205. It may alternatively be that a portion of the interval overlaps one of the
points ±π/2, but these points are in the Julia set as they are poles for Tλ, so that would
mean that there was indeed a point of the Julia set in the interval. Similarly, if the interval
overlaps one of the ±zλ, it also contains a point in the Julia set. Therefore we may assume
that the interval lies entirely inside one of (−π/2,−zλ) or (zλ, π/2), modulo π. But we see
by our analysis above of the fixed points zλ that |T ′

λ(x)| > 1 in these intervals, so the interval
will expand when mapped by Tλ.

After the mth iteration, if we do not have |Tm
λ (x0)| > 205, the image of the interval has

exactly the same options: either to overlap one of ±zλ or ±π/2 (modulo π) and therefore to
contain a point of the Julia set; to become trapped in the attracting basin of the origin, and
therefore never to have |T n

λ (x0)| > 205; or to expand on the next iteration. Thus we have
shown that if |T n

λ (x0)| > 205, then either [x0 − r, x0 + r] contains a point of J(Tλ) or each of
the intervals [x0 − r, x0] and [x0, x0 + r] expands under each iteration of Tλ.

To complete our proof for the case where z0 takes more than one iteration to escape, all we
need to do is to show that if we in fact have |T n

λ (z0)| > 210, we must have |T n
λ (x0)| > 205.

To do this, we will show that Re Tm
λ (z0) stays within the interval [Tm

λ (x0 − r), Tm
λ (x0 + r)].

We will not have to worry if the image of [x0−r, x0 +r] overlaps a pole of Tλ or a π-translate
of the ±zλ; in this case the original pixel already contains a point in J(Tλ) and we are done.
Therefore we will assume that the images of the real interval [x0 − r, x0 + r] never cross a
pole or one of the repelling fixed points.

If it happens that the entire image of the real interval lands within the attracting basin
(−zλ, zλ), we know that the image of x0 can never pass our bound. We need to consider
however whether T n

λ (z0) can still escape. Using an inductive argument, we assume that for
m < n, we have thus far kept the real part of Tm

λ (z0) within [Tm
λ (x0−r), Tm

λ (x0 +r)], and we
now have Re T n−1

λ (z0) within the attracting basin, modulo π. We observe that the vertical
line with real part xn−1 = Re T n−1

λ (z0) will map under Tλ to a circle stretching between ±λi



John W. Hoggard Chapter 3. The Family λ tan(z) 40

and extending out to a real part no larger than Tλ(xn−1) (see figure 3.6 in section 3.1). Since
|Tλ(x)| < |x| if |x| < zλ, we see that the image T n

λ (z0) will have real part between ±zλ also.
Thus, if the real interval [x0 − r, x0 + r] gets mapped into the attracting basin, the image of
z0 also gets trapped, so we will not color the pixel.

So the only chance that the real part of the image of z0 has of escaping from the image of
the interval [x0 − r, x0 + r] is to do so during a mapping from a π-translate of the intervals
(−π/2,−zλ) or (zλ, π/2). We consider the mapping of Tm−1

λ (x0−r), Tm−1
λ (z0), and Tm−1

λ (x0+
r) in the next iteration, using our assumption that there are no poles or repelling fixed points
between the images. We can assume without loss of generality that we are working with
real part between ±π/2. We then note by the mapping properties already discussed for
vertical lines that in the next iteration the distance between the real part of the image
of z0 and the endpoint farther from the origin will increase. (Consider for example, three
points 0 < a < b < c < π/2; then Re Tλ(b + iy) < Tλ(b) < Tλ(c); see figure 3.18.) So

λ λ λ

λ

Figure 3.18: With three points 0 < a < b < c < π/2, we have Re Tλ(b + iy) < Tλ(b) < Tλ(c).
(The real part of the image of b + iy moves back from the image of b if we include any
imaginary part.)

this endpoint does not occasion concern. However, it does appear that the distance between
the real part of the image of z0 and the smaller of the two endpoints could decrease. In
fact it seems conceivable that we could end up with the real part of the next image of z0

actually closer to the origin than the image of this smaller endpoint; in this case, ReT n
λ (z0) 6∈

[T n
λ (x0 − r), T n

λ (x0 + r)], which we wish to prevent. (Considering our three points a, b, and
c again, it is clear that Tλ(a) < Tλ(b), but it is also clear that ReTλ(b + iy) < Tλ(b), and it
may be that Re Tλ(b + iy) < Tλ(a). See figure 3.19.)

We are however protected by the fact that all images of z0 must have an imaginary part
less than .005. This will restrict how far back ReTλ(x + iy) may be from Tλ(x). We note
that the difference |Tλ(x)− Tλ(x + iy)| is greatest when the image Tλ(x + iy) has imaginary
part as large as possible. In our situation, this means that the imaginary part of the image
is .005. It is also clear that for the largest change in real part, we want the vertical line
through our point to map to a circle with the largest possible curvature; that is, the circle
with the smallest radius. At first, this appears to be a problem, since the smallest radius
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λ λ

λ

Figure 3.19: For 0 < a < b < π/2, it could be that Re Tλ(b + iy) < Tλ(a).

circle resulting from a vertical line under the map Tλ has a radius of λ. (The smallest radius
circle corresponds to a half-circle passing through ±λi and λ. See figure 3.20.) Since λ can
have any value greater than 0, we can have arbitrarily large curvature, which could make it
difficult to determine how far back Tλ(x + iy) may have moved from Tλ(x).

λ

λ

Figure 3.20: For a fixed λ, the greatest backward movement in the real part of Tλ(x + iy)
results from the half-circle of radius λ. We need only compute how far back we may take
the real part by adding an imaginary part of .005.

It turns out that we do not have to worry about small λ. When λ is small, the fixed point
zλ is large. As a result, for small values of λ, the image of Re z = x under Tλ will have
maximum curvature only when we have an x which is inside the attracting basin for the
origin. We have already dealt with this case and shown that the image of z0 will then never
map past our real bound. Therefore, we need only deal with values of λ larger than that
required for the fixed point zλ to be at least as large as λ.

When λ = .7, we can compute that z(.7) > .92. (We can tell this because .7 tan(.92) ≈
.919284 < .92.) Therefore, the curvature corresponding to a circle of radius .7 is greater
than the largest curvature we will have to consider. In the case where λ = .7, the image of
z0 moves up along a circle of radius .7 about the origin, so we see that we can move at most
a distance .7 −√

.72 − .0052 < .00002 closer to the origin. (See figure 3.20.) We know from
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our previous argument that the interval we are working on is expanding, so our endpoints
have not gotten closer to the image of the real part in the previous iteration. Therefore, the
real part of the image of z0 can move no more than .00002 closer to either endpoint of the
image of [x0 − r, x0 + r] at each stage. After fifty iterations, we must therefore still have
T 50

λ (z0) a distance of at least .001 from the endpoints of the image of [x0 − r, x0 + r].

So we are back to our first case, because we have now an interval [T n
λ (x0) − r, T n

λ (x0) + r]
which is in the image of the original pixel. Since |T n

λ (z0)| > 210, and ReT n
λ (z0) ∈ [T n

λ (x0 −
r), T n

λ (x0 + r)], we know that either |T n
λ (x0)| > 205, in which case we know that the interval

[T n
λ (x0)− r, T n

λ (x0)+ r] will expand to include a pole, or the interval [T n
λ (x0 − r), T n

λ (x0 + r)]
has length greater than five, and hence contains a pole. Either way, there is a part of J(Tλ)
in the original pixel.

Thus we have completed the proof, and we see that Jc(Tλ) is accurate.



Chapter 4

An Inaccurate Representation of a
Julia Set

We consider the family given by

Gλ(z) =
λez

ez − e−z

for λ > 0. The algorithm we used for the family λ tan(z) will produce incorrect results
for this family with some reasonable choices of parameters. We note that the Schwarzian
derivative of Gλ is −2, so Theorem 2 does apply.

4.1 Mapping Properties

As in the case for tangent, we rewrite the function as a composition of an exponential map
with a Möbius transformation to discuss the mapping properties. In this case, we have
Gλ(z) = λL(e−2z) where

L(z) =
1

1 − z

We can now determine the mapping properties of Gλ(z), as we did with Tλ.

We start with a point z = x + iy in the complex plane. We see that e−2z = e−2(x+iy) =
e−2x [cos(−2y) + i sin(−2y)]. Letting r = e−2x and θ = −2y, we plug into λL(z) and simplify,
finding the real and imaginary parts of the image as follows:

λ

1 − r cos(θ) − ir sin(θ)
= λ

1 − r cos(θ)

1 + r2 − 2r cos(θ)
+ i λ

r sin(θ)

1 + r2 − 2r cos(θ)
(4.1)

Next consider a horizontal line x + iy0 with imaginary part y0. These are mapped by e−2z

to rays extending from the origin which make an angle −2y0 with the real axis. Then we

43
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consider the action of the Möbius transformation λL(z) on the three points 0, ∞, and eiθ,
where θ = −2y. We have λL(0) = λ and λL(∞) = 0. Using the real and imaginary parts
from equation (4.1) above with r = 1, we see that

λL(eiθ) = λ
1 − cos(θ)

2 − 2 cos(θ)
+ λ i

sin(θ)

2 − 2 cos(θ)

We see then that the real part is always λ/2, and that the imaginary part is nonzero so long
as sin(θ) 6= 0. Thus, we have the horizontal line x+ iy0 mapping to a circular arc connecting
λ and 0, so long as θ is not a multiple of π. If θ is a multiple of π, then the imaginary part
is zero and we have only a line segment. The arc lies above or below the axis according the
whether sin(−2y) is positive or negative.

We can now see the two asymptotic values for Gλ. If we allow Re z to go towards infinity in
the positive direction, then we see the real part in (4.1) goes to λ while the imaginary part
goes to zero. If instead we allow Re z to go towards infinity in the negative direction, then
the real and imaginary parts of Gλ(z) both go to zero. Thus, 0 and λ are both asymptotic
values for Gλ(z). Since the family Gλ(z) has a constant Schwarzian derivative, there are
exactly 2 asymptotic values, so we have found them all.

4.2 The Fatou and Julia Sets

We are now able to sketch out a few properties of the Fatou and Julia sets for the family
Gλ. We will however not develop very precise descriptions of either.

If we start with a vertical line x0 + iy with x0 > 0, then this maps under e−2z to circle with
radius r < 1. This means that when we plug into the real part of equation (4.1) above, we
get numbers which are strictly positive. Therefore we see that the right half plane maps
into the right half plane. We therefore have a family of meromorphic functions which miss
more than three points, and so by Montel the right half plane is in the Fatou set for Gλ. In
fact, Devaney and Keen [11] noted that there is a real attracting fixed point q in the right
half plane, and by applying the Schwarz Lemma, we can see that Gn

λ(z) → q as n → ∞.
Devaney and Keen also showed that the negative real axis is in the Julia set. The origin can
be easily shown to be in the Julia set as 0 is a pole of Gλ(z). (We noted above that 0 was
also an asymptotic value. Some of the unusual behavior of this function is a result of this
fact, as we will discuss later.)

So we know by invariance that if a point passes into the right half plane, this point is in
the Fatou set. We will therefore consider what points from the left half plane map into the
right-half plane in the first iteration. If we again let r = e−2x and θ = −2y, then we have

Re Gλ(x + iy) = λ
1 − r cos(θ)

1 − 2r cos(θ) + r2
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and this crosses the imaginary axis into the left half plane only when θ = 2nπ or y = nπ
(which corresponds to the origin), and also when r = sec(θ). We think again of horizontal
lines mapping to arcs between 0 and λ. If the arc has radius smaller than λ/2, then the arc
lies entirely in the right half plane. If the radius is greater than λ/2, then the leftmost section
of the arc lies in the left half plane. Noting that θ = −2y, we have curves e−2x = sec(θ) which
bound the Julia set in the left half plane, since past this point, horizontal lines are being
mapped to arcs in the right half plane. Because e−2x ≥ 0, we know that these curves are
restricted to the region where −π/4 ≤ y ≤ π/4 (modulo π). In particular, the region from
π/4 ≤ y ≤ 3π/4 must be contained in the Fatou set. Figure 4.1 illustrates the situation. We
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Figure 4.1: The Julia set for G1 must be contained inside curves in the left half plane such
as the ones shown here.

note that our regions do include the negative real axis.

4.3 An Inaccurate Representation

Finally we wish to consider the accuracy of computed Julia sets for this function. Since it
is meromorphic function with polynomial Schwarzian derivative, we could use Theorem 2 as
we have before to design our algorithm. Again we would select a window, a pixel width, a
maximum number of iterations N , and a bound B, iterating the point z0 in the center of a
pixel and coloring the pixel only if |Gn

λ(z0)| > B for n ≤ N . Since we already know that the
right half plane is entirely contained in the Fatou set, it makes sense to only look at a window
W which covers a region in the left half plane. In the imaginary direction, we might include
a region such {z : |Im z| < π} since the function is clearly 2πi periodic. Let us suppose then
we wish to look at a window that covers the region {x + iy : −10 ≤ x ≤ 0, |y| < π}.
If we consider the line Im z = π/2, we know from the previous section that this must be
contained within the Fatou set, and that the closest any part of the Julia set may be to the
line is π/4. Thus any pixels centered on this line with radius less than π/4 ≈ 0.7854 will
be entirely in F (Gλ). However, we may compute approximate values to the first and second
iterates for some points along the line Im z = π/2 as follows:
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z Gλ(z) G2
λ(z)

−3. + 1.5708i .002473 + 1.812 × 10−8i 202.7 − .001482i
−5 + 1.5708i .00004540 + 3.335 × 10−10i 1.101 × 105 − .08091i
−7 + 1.5708i 8.315 × 10−7 + 6.109 × 10−12i 6.013 × 106 − 4.417i
−10 + 1.5708i 2.061 × 10−9 + 1.514 × 10−14i 2.426 × 108 − 1.782 × 104i

It becomes apparent that the modulus of the second iterate is growing large very quickly as
we move in the negative direction. If we have pixels centered at z with real parts less than
−3, we would need a bound of greater than 203 to avoid coloring pixels with imaginary part
1.5708; by the time the real part is as small as −10, we need a bound larger than 108, which
is quite large. These values are likely larger than we would intuitively select for B.

What is happening here is seen from the first column of the table. It is the fact that 0 is
both an asymptotic value and a pole that is causing the problem. As the real part of our
point moves towards negative infinity, we see that Gλ(z) moves closer to zero. But zero is a
pole, so the closer Gλ(z) is to zero, the larger the image G2

λ(z) must become.

We note however, that all of our computed second iterates remain in the right half plane,
as we know they must. On subsequent iterations, they will in fact approach the attracting
fixed point on the real axis. Thus, no point in the left half plane actually tends to infinity
under iteration, but our algorithm can produce inaccurate results because for any given B,
there exists some point zB in the Fatou set for which |G2

λ(zB)| > B.



Chapter 5

Conclusions

In considering computed Julia sets, we have found in some cases that “reasonable” choices of
parameters for our algorithms result in accurate representations, while in other cases we may
get inaccurate representations. In both cases we are left with the difficulty of determining
what constitutes “reasonable” choices for our parameters. We also face the difficulty of
coming up with an algorithm which could be used to produce pictures of the Julia set.
The back iteration process discussed in section 1.1 is the most general algorithm, but has
drawbacks in implementation. Reasonably simple algorithms exist for some functions, such
as the algorithm used in Chapter 2 to find points in J(Eλ) by looking for those points which
move toward infinity in the real direction. The algorithm based on Theorem 2 which we
used for functions with polynomial Schwarzian derivatives is similar, allowing us to look for
points which move toward infinity. Both are reminiscent of the most common algorithm for
polynomials, in which we find the Julia set by looking at the boundary of those points which
go to infinity under iteration.

5.1 Problems with the Algorithms

We are faced with two different problems in our algorithms. First, we are representing an
entire rectangle or pixel with a single point. We color the rectangle based on the behavior of
this single point. In some sense, we are assuming that the behavior of a set of points close to
each other will be roughly the same under iteration. Of course, the assumption is essentially
that the iterates of the function form a normal family in this region, which is exactly what
is not true if we are working in the Julia set.

Second, we are trying to predict the long term behavior of a point based on a finite number of
iterations. Usually this takes the form of trying to determine whether or not a point will go
to infinity under iteration by looking at the first N iterates and deciding whether or not they
are “large” in some sense. So we find ourselves in the uncomfortable position of guessing the
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limit of a sequence from looking at the first N terms. In the popular case of the iteration
of quadratic polynomials z2 + c, the trick used to overcome this problem is to note that if
|z| > 2, then the iterates zn → ∞. This results in a simple criterion to determine whether
or not a point will go to infinity: color a pixel centered at z0 if the first N iterates of z0

have modulus less than 2. The result also implies that these Julia sets are bounded. In the
general case of functions meromorphic in the complex plane, we have no similar guarantees.
In general, both the Fatou and Julia sets of such functions may be unbounded.

To some degree, the second problem actually offsets the first. If we are only working with
the first N iterates of a function, we then have a finite family of iterates. A finite family
of functions continuous at a point z0 will indeed be equicontinuous at that point. (For any
ε > 0, there exists a δn such that if |z − z0| < δn, |fn(z) − fn(z0)| < ε. Then to have
equicontinuity for the family {fn}, n ≤ N at z0, simply let δ = min{δn}.) Equicontinuity is
only lost when we are dealing with infinitely many iterates. Thus we have somewhat similar
behavior in the first N iterations over a sufficiently small region, even if that region includes
parts of J(f).

The analysis we have carried out in determining whether or not Jc(f) is accurate or not is
an attempt to deal with the first problem. In essence we have said that we have an accurate
representation if the determining point z0 at the center of the pixel behaves like a point in
the Julia set (by becoming large on iteration) only if there is a point in the Julia set nearby.

The problems also affect our choice of parameters. In dealing with the family Eλ(z) = λez,
we found that the choice of both the window W and the bound B affects the picture we get.
In this family, points with real part less than 1 never get mapped past our bound, which
means that the entire region to left of the line Re z = 1 remains uncolored. It also means
that these points are in fact in the Fatou set. In this case, the behavior of the finite family
is essentially the same as the infinite family. Similarly, a small λ could require a larger W
to see any parts of the Julia set. However, we may be concerned if our window W is quite
large, that a small bound may map regions in the Fatou set past our bound.

A similar situation results in the case of Tλ(z). As a trivial example, if our algorithm checks
the modulus of zi = f i(z0) before iterating, we would need to choose W so that we have
|z0| < B for the center z0 of any pixel. This affects our choice of W . (We will likely avoid
this by iterating once first, and only check the modulus of zi for i ≥ 1.) More realistically,
we also discussed in section 3.4 that if we work with large λ, we must increase our bound
B if the computed Julia set is to remain accurate. As we discussed, there is some intuitive
notion that since we are judging whether a point goes to infinity by how large it becomes,
we must consider what we should call “large” for a given function.

We have mostly ignored the fact that pixels containing the Julia set may not be colored; this
criterion was not part of our definition of accuracy. Attempting to include such a criterion is
doomed, since the Julia set in general will include repelling fixed points, and if we happen to
iterate such a point, it will definitely not tend to infinity. (The repelling periodic points are
in fact dense in the Julia sets for all the functions we have considered.) Thus for example,
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if we divide up the window to create a computed Julia set for Tλ in such a way that that
one pixel has center at z0 = 0, we see that this pixel will not be colored: Tλ(0) = 0. So our
computed Julia set would then show a gap in the real axis near the origin. In fact, it will
be possible for other points close to the origin not to be mapped past our real bound within
fifty iterations. Consider for example that we showed T 50

1 (.01) < .07. (See Appendix A.)
Thus again we would clearly have a gap about the origin in our computed Julia set. This
gap is misleading since in fact J(T1) is the entire real axis.

5.2 Problems with Functions

We also have the explicit problem of inaccurate Julia sets such as the one we discussed in
Chapter 4. Here, the problem results from the fact that one asymptotic value is also a
pole. Generally we may in expect problems with the accuracy of computed Julia sets for
transcendental meromorphic functions some of whose asymptotic values are poles, but for
which the Julia set is not the entire plane. At least we would expect problems when there is
a reasonably wide strip in which f(z) approaches the asymptotic value as z goes to infinity.
In this case, we will have a strip with infinity as a boundary point mapped very close to the
asymptotic value in the first iteration. Since this asymptotic value is also a pole, this large
open set is mapped to a region with large modulus in the second iteration. The further out
we go in the asymptotic tract, the closer to the pole the image of the region will be, and
the larger the second iteration will consequently be. We may also expect that at least some
pixels in this set will be entirely in the Fatou set, as was true in our example.

In some sense, this is extremely bad behavior; points are first mapped very close together and
then mapped close to the essential singularity at infinity. In our case, had both asymptotic
values been poles, we would have had that the entire plane is the Julia set [11]. So in some
sense, we might describe the case where one asymptotic value is a pole and the other is not
as being “halfway” to having a Julia set which is the entire plane. In other words, even the
Fatou set is “badly” behaved.

5.3 Suggestions

In general, we find that a straightforward algorithm may not be appropriate for a large classes
of functions. We may need more specific details about the functions. Using an algorithm
such as ours and choosing a “large” value for a bound B, and an appropriate choice for W
and even N may depend on the specifics of the function involved. Simply picking “obvious”
candidates for these values may not work.

In addition, we would need to develop algorithms for general functions. We have developed an
algorithm for functions with polynomial Schwarzian derivatives, but this was dependent on
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several very special features of these functions, such as the fact that they have neither Baker
domains nor wandering domains. (Of course, we also subsequently demonstrated that this
algorithm may not produce accurate pictures.) For a general transcendental meromorphic
function, we do have Domı́nguez’ result [12] that the Julia set is the boundary of points
which go to infinity. Such a criteria has been used commonly with polynomials, producing
pictures of a so-called “filled in” Julia set. We could reasonably do the same for meromorphic
functions.

Alternately, we could use the method of back iteration. There is an inherent sense of stability
in such algorithms from the fact that any non-exceptional point will tend towards the Julia
set under back iteration, so we may expect small errors to be wiped out. Such algorithms
are harder to implement than the algorithms discussed in this paper. For such algorithms,
we must calculate an inverse (which may be difficult), we must keep track of a large number
of points, and we have no guarantees about which parts of the Julia set will be revealed.
Although the backwards orbit will at some point come close to every point in the Julia set,
we have no idea how long it may take, and some regions get visited more often than others.
The last problem is related to one of the problems we have already run into; we are trying
to substitute a finite process for an infinite one.

There is hope for our algorithms. We have shown them to produce accurate pictures in
some cases. We could conceivably reproduce such an argument for whatever function we
are interested in. However, developing an explicit argument may be considerably harder for
other families of functions, so showing accuracy for a given family before generating pictures
may not be feasible. We may do best by being on the lookout for special cases, such as when
an asymptotic value is also a pole, and be aware that for such cases it will be particularly
hard to develop accurate pictures.
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Appendix A

Some Numerical Calculations

The work in this document requires a large number of approximations. Some were straight-
forward, and details were sometimes included. In other cases, standard software could be
used to approximate more complicated quantities. Two approximations in particular caused
problems, however, because they required approximating the value of iteration. Small errors
are not a problem when we do a single calculation, as long as we do not require a large
number of correct digits. However, in an iterative process, small errors may propagate and
cause serious problems in the output.

The approach we take to make these estimates is as follows. We will make an approximation
to the first iterate using built-in functions from the software Matlab. We then add a certain
amount of error in the appropriate direction before computing the second iterate. The error
is added to be sure that any errors in our computations result in a quantity bigger (or
smaller) than the actual quantity, so that our final answer will be guaranteed to be a lower
(upper) bound on the actual value.

We begin with the following estimate, required in 3.5: We will show that the forty-ninth
iterate of tan(z) applied to the point x = .01 does not move past 1.56. We do this by
calculating tan(z) at each stage, and assuming that the answer we get is correct to at least
four digits (for the input we used). We then note that as tan(z) is increasing, adding some
amount to the result will only increase our final answer. Therefore, we add .001 to the result
before calculating the correct iterate. We get a series of approximations x′

0, x
′
1, . . . , x

′
49 to the

actual iterates x0, x1, . . . , x49 with the property that x0 = x′
0 = .01 and xn < x′

n for n > 0.
The code used in Matlab follows:

x(1) = .01;

for i=1:49

x(i+1) = tan(x(i)) + .001;

end

x’
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The output is as follows:

0.0100

0.0110

0.0120

0.0130

0.0140

0.0150

0.0160

0.0170

0.0180

0.0190

0.0200

0.0210

0.0220

0.0230

0.0240

0.0250

0.0260

0.0270

0.0280

0.0291

0.0301

0.0311

0.0321

0.0331

0.0341

0.0351

0.0361

0.0371

0.0382

0.0392

0.0402

0.0412

0.0422

0.0433

0.0443

0.0453

0.0464

0.0474

0.0484

0.0495
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0.0505

0.0516

0.0526

0.0536

0.0547

0.0558

0.0568

0.0579

0.0589

0.0600

Similarly, we need to show that arctan iterated fifty times at the point 1.566 is no smaller
than .17. (This is needed in section 3.3.) We work as before, this time subtracting .0001
from each approximation, and noting that this will only make our final answer smaller. The
code is as follows:

x(1) = 1.566;

for i=1:49

x(i+1) = atan(x(i))-.0001;

end

x’

The output follows:

1.5660

1.0024

0.7865

0.6664

0.5877

0.5312

0.4882

0.4541

0.4261

0.4027

0.3828

0.3655

0.3503

0.3368

0.3248

0.3139

0.3041
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0.2951

0.2869

0.2793

0.2722

0.2657

0.2596

0.2539

0.2485

0.2435

0.2387

0.2343

0.2300

0.2260

0.2221

0.2185

0.2150

0.2117

0.2085

0.2055

0.2025

0.1997

0.1970

0.1945

0.1920

0.1895

0.1872

0.1850

0.1828

0.1807

0.1787

0.1767

0.1748

0.1730

It is therefore clear that the result is in fact larger than .17, and the result is achieved.

We need a somewhat stronger result in section 3.4, namely that T−50
λ (1.566) is greater than

.17 so long as λ < 1.00001, but the modifications are simple to make:

x(1) = 1.566;

for i=1:49

x(i+1) = atan(x(i))/1.00001-.0001;
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end

x’

The results are similar to those before:

1.5660

1.0024

0.7865

0.6663

0.5877

0.5312

0.4882

0.4540

0.4261

0.4027

0.3827

0.3654

0.3503

0.3368

0.3248

0.3139

0.3041

0.2951

0.2868

0.2792

0.2722

0.2657

0.2596

0.2538

0.2485

0.2435

0.2387

0.2342

0.2300

0.2259

0.2221

0.2185

0.2150

0.2117

0.2085

0.2054

0.2025
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0.1997

0.1970

0.1944

0.1919

0.1895

0.1872

0.1849

0.1828

0.1807

0.1786

0.1767

0.1748

0.1729
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