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Theoretical and Applied Essays on the Instrumental Variable Method

Davood Souri

(Abstract)

This dissertation is intended to provide a statistical foundation for the IV models
and shed lights on a number of issues related to the IV method. The first chapter
shows that the theoretical Instrumental Variable model can be derived by reparame-
terization of a well-specified statistical model defined on the joint distribution of the
involved random variables as the actual (local) data generation process. This reveals
the covariance structure of the error terms of the usual theory-driven instrumental
variable model. The revealed covariance structure of the IV model have important
implications, particularly, for designing simulation studies.

Monte Carlo simulations are used to reexamine the Nelson and Startz (1990a)
findings regarding the performance of IV estimators when the instruments are weak.
The results from the simulation exercises indicate that the sampling distribution of
β̂IV is concentrated around β̂OLS.

The second chapter considers the underlying joint distribution function of the
instrumental variable (IV) model and presents an alternative definition for the ex-
ogenous and relevant instruments. The paper extracts a system of independent and
orthogonal equations that covers up a non-orthogonal structural model and argues
that the estimated IV regression is well-specified if the underlying system of equa-
tions is well-specified. It proposes a new instrument relevancy measure that does not
suffer from the first-stage R2 deficiencies.

Third chapter argues the application of the IV method in estimation of models
with omitted variable. The paper considers the implicit parametrization of statistical
models and presents five conditions for an appropriate instruments. Two of them are
empirically measurable and can be tested. This improves the literature by adding
one more objective criterion for the selection of instruments. This chapter applies
the IV method to estimate the rate of return to education in Iran. It argues that
the education of two cohorts of Iranians was delayed or cut short by the Cultural
Revolution. Therefore, the Cultural Revolution, as an exogenous shock to the supply
of education, establishes the year of birth as the exogenous and relevant instrument
for education. Using the standard Mincerian earnings function with control for ex-
perience, ethnicity, location of residence and sector of employment, the instrumental
variable estimate of the return to schooling is equal to 5.6%. The estimation results
indicate that the Iranian labor market values degrees more than years of schooling.
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Chapter 1

The Statistical Parametrization of

the Instrumental Variable Model:

More on the Small Sample Properties of the Instrumental Variable Estimators
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1.1 Introduction

Instrumental Variable Method (IV) was initially proposed by Philips G Wright in

1928 to deal with the problems arising from using endogenous regressors (See Stock

and Trebbi (2003)). The frequent use of endogenous regressors in economic models,

brought the IV method in to the heart of econometric techniques. However, despite

its increasing importance, the existing literature of the IV method is still deeply

rooted in traditional econometrics where econometrics is seen as the empirical esti-

mation of the models used in economic theory. The IV method can be summarized

by using the following linear structural model

yi = β′Xi + εi (1.1)

Xi = B′Zi + ui


 εi

ui


 ∼ N





0

0


 ,


σεε σεu

σuε Σuu





 i ∈ N

i)
X ′Z
N

p−→ Σ23 6= 0 ii)
Z ′y
N

p−→ σ31 6= 0

iii)
Z ′Z
N

p−→ Σ33 > 0 iv)E(Z ′ε) = 0

v)E(Z ′u) = 0

where yi refers to ith observation of outcome variable of interest and Xi denote

the k × 1 vector of ith observation of explanatory variables. Let Zi denote the

p× 1 vector of ith observation of instrumental variables (p ≥ k) that, for theoretical

reason, are not allowed to be used as explanatory variables for the outcome variable of
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interest, yi. Also let y = (y1, y2, ..., yN)′, X = (X1, X2, ..., XN)′, Z = (Z1, Z2, ..., ZN)′,
y′y
N

p−→ σ11,
X′y
N

p−→ σ21, and X′X
N

p−→ Σ22. Clearly, if σεu = 0 (⇒ E(X ′ε) = 0), the

Least Square method (LS) will provide the most efficient and unbiased estimators for

the parameters of interest (β, σ2
ε ) using the sample counterparts : βLS = Σ−1

22 σ21 and

σ2
LS = σ11 − σ12Σ

−1
22 σ21. The instrumental variable (IV) method is the appropriate

estimation method if σεu 6= 0 (⇒ E(X ′ε) 6= 0), in which case it is well known that

the least square estimators are biased and inconsistent. The key idea of the IV

method is that, even though X and ε are correlated, Z–as characterized by 1.1[i] to

1.1[v]– can be used as an instrumental variable to estimate β and σ2 consistently1.

The consistent IV estimators of β and σ2
IV are defined by

β̂IV = (X ′PZX)−1X ′PZy

where PZ = Z(Z ′Z)−1Z ′, and

σ̂2
IV =

1

N − k
(y −Xβ̂IV )′(y −Xβ̂IV )

Moreover, if N−1/2Z ′ε
p−→ N(0, σ2Σ33) then,

N1/2(β̂IV − β) ∼ N(0, σ2(Σ23Σ
−1
33 Σ32)

−1)

(see Bowden and Turkington (1984) for more details)

Model (1.1) is by far the most widely used model in analysis of the instrumental

variable method. It has been used for different purposes including: investigation

of the finite sample properties of the IV estimators (see Blomquist and Dahlberg

1IV estimators can be used to estimate parameters of interest consistently even if E(X ′ε) = 0,
the resulting estimators are, however, less efficient than the least square estimators.
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(1999)), analysis of the power of instrument relevancy measures (see Flores-Lagunes

(2000)), and to study the behavior of the IV estimators with weak instruments (see

Staiger and Stock (1997) and Stock, Wright, and Yogo (2002) among others).

Model (1.1) assumes the process of data generation (DGP) consists of two in-

dependent parts: deterministic and stochastic. It treats the endogenous variables

(y, X) as being “caused” by the un-modelled variables Z: Zs is taken to cause X,

which, in turn, causes y. The error terms (ε, u) are the only sources of the stochastic

behavior of the model that, additively, with deterministic part constitute the variable

of interest y. This notion is consistent with the experimental data where output yi

is “caused” by the inputs Xi.

yi = f(Xi) + ui

In this view, f(Xi) generates the left-hand side such that repeating the experiment

with the given Xi produces the same outputs except for some small experimental

errors ui. In a similar manner, in observational data, any observed variable can be

decomposed into two components: explained h(Xi) and error εi

yi = h(Xi) + εi

However, such a decomposition is possible even if yi does not depend on h(Xi) (see

Hendry (2000)). Therefore, in contrast with the experimental data, the error term is,

indeed, a by-product of the modeler’s choice of Xi not an ‘autonomous input’ that,

additively, with h(Xi) constitute the observed output variable yi. In this regard, the

structural model (1.1) bears little resemblance to the actual DGP that gives rise to

the economic observations (yi, Xi, Zi). In reality, however, model (1.1) is specified

only to represent a theoretical view on how the observed variables (yi, Xi, Zi) are

4



interrelated; it is highly unlikely to coincide with the actual DGP that gave rise to

the observed variables.

Spanos (1986) advocates a modeling strategy where the actual DGP is more

general than the theoretical model. This strategy considers the observed economic

data Wi = (yi, Xi, Zi) as a realization of a vector of stochastic processes {Wi, i ∈
N} and specifies the joint distribution of {Wi, i ∈ N} as the actual DGP of the

observed data. The joint distribution of {Wi, i ∈ N} will be simplified by imposing

probabilistic assumption from three broad categories: Distribution, Dependance and

Heterogeneity to form statistical models. In this view, the theoretical model is a

reparametrization/restriction of a well-defined statistical model intending to provide

a consistent framework to understand some observable phenomenon of interest within

the scope of the actual DGP.

In an attempt to illustrate the above procedure let Wi = (yi, Xi) and assume

{Wi, i ∈ N} is an iid normal stochastic process with a distribution indicated by,

Wi ≡

 yi

Xi


 ∼ N





µ1

µ2


 ,


σ11 σ12

σ21 Σ22





 , i ∈ N

The probabilistic assumptions of Normality, Independence and Identical Distribution

for Wi help us to concentrate exclusively on the conditional process {(yi|Xi), i ∈ N},
which can be modeled by

yi = α + X ′
iβ + ui, E(X ′

iui) = 0

The model parameters ϕ = (α, β, σ2) are defined in terms of the distribution param-

5



eters of Wi = (yi, Xi) by

α = µ1 − µ′
2β β = Σ−1

22 σ21 σ2
u = σ11 − σ12Σ

−1
22 σ21

In practice, the model parameters ϕ could have direct economic interpretation, or

some functions of them, f(ϕ), coincide with the economic parameters (see Spanos

(1986) for more details). A distinctive aspect of this approach is the definite relation

between the estimable model and the distribution of the observable random vari-

ables. Moreover, the model parameters are interrelated through the variances and

covariances of the model’s random variables.

The goal of this paper is to provide a consistent statistical foundation for the

structural model (1.1) in terms of the observable random variables (y, X, Z). In

section (2), the joint distribution of (yi, Xi, Zi) will be considered as the actual DGP

that gave rise to the observed variables. Section (2) will show that how the structural

model (1.1) constitutes a reparameterized form of a statistical model defined on

the joint distribution of (yi, Xi, Zi). This section uncovers the relation between the

parameters of the distribution of
[
εi ui

]′
and the regression parameters β, B in

(1.1). Section (3) applies the findings of the paper to reexamine the Shea (1997) and

Nelson and Startz (1990a) results regarding weak instruments. Concluding remarks

are provided in the last section of the paper.

1.2 The implicit statistical parameterization of the

IV model

Consider Wi = (yi, X
′
i, Z

′
i)
′ as an iid vector of observable stochastic processes defined

on the probability space (S,=, P (.)) where yi is a scalar, Xi and Zi are k×1 and p×1

6



(p ≥ k) vectors of observed values at i = (1, ..., N). Assume Wi has a distribution of

the form: Wi ∼ N(0, Σ), det(Σ) > 0, where




yi

Xi

Zi


 ∼ N







0

0

0


 ,




σ11 σ12 σ13

σ21 Σ22 Σ23

σ31 Σ32 Σ33





 , i ∈ N (1.2)

Spanos (1986) showed that this distribution can be considered as the underlying

distribution of the following multivariate regression model where y and X are treated

as endogenous variables.

yi = β′1Zi + u1i (1.3)

Xi = B′Zi + ui


u1i

ui


 ∼ N(0, Ω), Ω =


ω11 ω12

ω21 Ω22


 i ∈ N

where, by definition, E(Z ′
iu1i) = 0, E(Z ′

iui) = 0. The parameters of the statistical

model (1.3) are related to the distribution primary parameters via

β1 = Σ−1
33 σ31 B = Σ−1

33 Σ32

ω11 = σ11 − σ13Σ
−1
33 σ31, Ω22 = Σ22 − Σ23Σ

−1
33 Σ32

ω21 = σ21 − Σ23Σ
−1
33 σ31

7



Assume β1 6= 0, B 6= 0 and multiply (1.3) by a non-singular matrix M1 =


1 −ω12Ω

−1
22

0 Ik




to reparametrize2 the first equation of (1.3) as

yi = β′0Xi + γ′0Zi + u0i (1.4)

Xi = B′Zi + ui


u0i

ui


 ∼ N(0, Ψ), Ψ =


v11 0

0 Ω22


 i ∈ N

where

β0 = Ω−1
22 ω21 γ0 = β1 −BΩ−1

22 ω21

v11 = ω11 − ω12Ω
−1
22 ω21

and E(X ′
iu0i) = E(Z ′

iu0i) = 0. The difference between the statistical model (1.4)

and the structural model (1.1) is in their first equations where β0 6= β, γ0 6= 0

and, therefore, u0i 6= ε. In order to accommodate the structural model (1.1), the

statistical model (1.4) must be reparameterized such that the resulting statistical

model preserves all properties of the structural model (1.1), including E(X ′ε) 6= 0,

E(Z ′ε) = 0, and the absence of Z from the first equation.

Theorem 1. In the context of the structural model (1.1), the conditional covariance

of Z and y given X is not zero.

Proof : Let σ31.2 = σ31 − Σ32Σ
−1
22 σ21 be the conditional covariance of Z and y

given X. Considering (1.1[i]-1.1[ii]), σ31.2 can be zero only if σ31 = Σ32Σ
−1
22 σ21 that is

2See Spanos (1986) ch 24-25.
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in contradiction with the assumptions of E(X ′ε) 6= 0, E(Z ′ε) = 0. The contradiction

comes from the facts that

E(X ′ε) = E(X ′[y −Xβ]) = E(X ′y)− E(X ′Xβ) = 0 ⇔ β = Σ−1
22 σ21

E(Z ′ε) = E(Z ′[y−Xβ]) = E(Z ′y)−E(Z ′Xβ) = 0 ⇔ β = (Σ23Σ
−1
33 Σ32)

−1Σ23Σ
−1
33 σ31

and the fact that if σ31 = Σ32Σ
−1
22 σ21 then

Σ−1
22 σ21 = (Σ23Σ

−1
33 Σ32)

−1Σ23Σ
−1
33 σ31

Q.E.D

Theorem (1) says that one can not drop Zi from the first equation of the statistical

model (1.4) simply by imposing the restriction γ0 = 0 3, because

γ0 = β1 −BΩ−1
22 ω21 = (Σ33 − Σ32Σ

−1
22 Σ23)

−1(σ31 − Σ32Σ
−1
22 σ21) 6= 0

Theorem (2) will provide the necessary reparameterization in the statistical model

(1.4) to make it similar to the structural model (1.1).

Theorem 2. The structural parameters (βIV , σ2
IV ) are related to the parameters of

the statistical model (1.4) via:

i)βIV = (Σ23Σ
−1
33 Σ32)

−1Σ23Σ
−1
33 σ31 = β0 + B−γ0

ii) If E(u2
0i) = v11IN and E(u′iui) = Ω22⊗IN then σ2

IV = v11+(βIV −β0)
′Ω22(βIV −β0)

Proof : let 
β0

γ0


 =


Σ22 Σ23

Σ32 Σ33



−1 

σ21

σ31




3See Spanos (1986) pp: 637-644 and Spanos (2000).

9



and 
Σ22 Σ23

Σ32 Σ33



−1

=


 D −DΣ23Σ

−1
33

−Σ−1
33 Σ32D Σ−1

33 − Σ−1
33 Σ32DΣ23Σ

−1
33




where D = (Σ22 − Σ23Σ
−1
33 Σ32)

−1 then

β0 + (Σ23Σ
−1
33 Σ32)

−1Σ23γ0 = Dσ21 −DΣ23Σ
−1
33 σ31 − (Σ23Σ

−1
33 Σ32)

−1Σ23Σ
−1
33 Σ32

Dσ21 + (Σ23Σ
−1
33 Σ32)

−1Σ23Σ
−1
33 σ31 + (Σ23Σ

−1
33 Σ32)

−1Σ23Σ
−1
33 Σ32DΣ23Σ

−1
33 σ31 =

(Σ23Σ
−1
33 Σ32)

−1Σ23Σ
−1
33 σ31 = βIV

Using β0 = βIV − B−γ0 from (i), the error term of the first equation of (1.4) will

change to εIV = u0i−uiB
−γ0 with variance equal to σ2

IV = v11+(βIV −β0)
′Ω22(βIV −

β0).

Q.E.D

By Theorem (2), one can show that the structural model (1.1) constitutes a repa-

rameterization of the statistical model (1.4)

yi = β′IV Xi + εi (1.5)

Xi = B′Zi + ui

where εi = u0i − γ′0B
′−ui and


 εi

ui


 ∼ N





0

0


 ,


v11 + γ′0B

′−Ω22B
−γ0 −γ′0B

′−Ω22

−Ω22B
−γ0 Ω22





 i ∈ N

βIV = B−β1, B− = (Σ23Σ
−1
33 Σ32)

−1Σ23, σεε = v11 +γ′0B
′−Ω22B

−γ0, σεu = γ′0B
′−Ω22,

and Σuu = Ω22. To reach the structural/statistical model (1.5) one must multiply

10



(1.4) by a non-singular matrix M2 =


1 −γ′0B

′−

0 Ik


 or multiply (1.3) by a non-

singular matrix MIV = M1 ∗M2 =


1 −β′1B

′−

0 Ik


. The structural/statistical model

(1.5) preserves all properties of the structural model (1.1)

E(X ′
iεi) = E(X ′

i[ui0 − γ′0B
′−ui]) 6= 0

E(Z ′
iεi) = E(Z ′

i[ui0 − γ′0B
′−ui]) = 0

β1 6= 0 ⇒ σ31 6= 0

B 6= 0 ⇒ Σ32 6= 0

det(Σ) > 0 ⇒ Σ33 > 0

and provides a sound statistical foundation with direct connection with the distribu-

tion of the observed variables. The parametrization of model (1.5) should come as no

surprise because under conditions 1[i]-1[iii], the IV estimators converge in probability

to βIV and σIV , i.e.

β̂IV = (X ′PZX)−1X ′PZ
P→ (Σ23Σ

−1
33 Σ32)

−1Σ23Σ
−1
33 σ31

σ̂2
IV =

1

N − k
(y −Xβ̂IV )′(y −Xβ̂IV )

P→ v11 + γ′0B
′−Ω22B

−γ0

Numerical Example: Consider wi = (yi, xi, zi)
′, which is a normally distributed

11



vector of random variables with mean zero and covariance matrix Σ, where

Σ =




4.61 2.71 1

2.71 1.81 1

1 1 2




Assume y and x are endogenous variables. The goal is to estimate the causal effect of

x on y. According to (1.3), the joint distribution of wi implies the following statistical

model, in which, y and x are treated as endogenous variables.

yi = 0.5zi + u1i

Xi = 0.5zi + ui


u1i

ui


 ∼ N(0, Ω), Ω =


4.11 2.21

2.21 1.31


 i ∈ N

In order to get the endogenous variable x into the first equation, purporting to

explain y, the statistical model can be reparameterized to

yi = 1.687xi − 0.343zi + u0i

xi = 0.5zi + ui


u0i

ui


 ∼ N(0, Ψ), Ψ =


0.381 0

0 1.31


 i ∈ N

This model can be reparameterized more to get the structural model, where x is the

12



only determinant of y

yi = xi + εi

xi = 0.5zi + ui


εi

ui


 ∼ N





0

0


 ,


 1 0.9

0.9 1.31





 i ∈ N

To investigate the consistency of the IV estimators, a thousand samples of 100

observations of wi = (yi, xi, zi)
′ were generated by the joint distribution of wi, and,

for each sample yi = βxi +εi was estimated by the IV method using zi as instrument.

The empirical distribution of the IV estimators are presented4 in table 1. Table 1.1

shows that the empirical distributions of β̂IV and σ̂2
IV are concentrated on population

values of β and σ2. It is also clear that the concentration point of β̂OLS is far away

from the true value of β.

2

Model (1.5) reveals some hidden aspects of the structural model (1.1). It specifies

that, in general, variances of the error terms, (εi, ui), are not equal. The conventional

wisdom in econometrics studies is to normalize σ2
IV and Ω22 to the same values (see,

for example, Hahn and Hausman (2003)). However, the covariance matrix of model

(1.5) shows, explicitly, that the elements of the covariance matrix of εi and ui are

interrelated. Therefore, normalization without considering these interrelations could

impose unwanted restrictions on the data generating process. In fact, in some cases,

this restriction could be highly unrealistic. For example, appendix 3 finds out an

implicit restriction in the Maddala and Jeong (1992)’s DGP, which is inconsistent

4The program was written in STATA . It is available in appendix 1.
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with their goal to argufy the Nelson and Startz (1990a) findings.

The other common practice in the IV literature is to investigate the small sample

properties of the IV estimators or instrument relevancy measures by Monte-Carlo

simulations. For the Monte-Carlo simulations of the structural model (1.1), one has

to assign some values to the unknown parameters (β, B, σεε, σεu, Σuu) as population

parameters. Model (1.5) displays the implicit relationship between the population

parameters, which are, usually, ignored in simulation studies. For instance, keep-

ing B constant while increasing σεu or leaving σεu unchanged while reducing B to

investigate weak instrument models are unjustified practices. As an example, the

population r-square between x and z in the above numerical example is

R2
xz = 1− σxx − σxzσ

−1
zz σzx

σxx

= 0.276

To have a DGP with lower population R2
xz, say 0.10, the appropriate covariance

matrix for w = (y, x, z)′ would be

Σ∗ =




5 3 0.5

3 2 0.5

0.5 0.5 1.25




that is consistent with

yi = xi + εi

xi = 0.4zi + ui

14




εi

ui


 ∼ N





0

0


 ,


1 1

1 1.8





 i ∈ N

as the structural model. Note that to the simultaneous changes in B and the covari-

ance matrix of the error terms.

1.3 Weak Instruments and statistical parametriza-

tion of the IV model

This section presents two example from the IV literature to demonstrate the impor-

tance of the implicit relationships between parameters of the IV model in properly

designing simulation studies.

1- Shea (1997) relevancy measure: Shea (1997) has proposed a measure for the

relevance of instruments that considers the possible correlation among the instru-

ments. Godfrey (1999) in a clarification note on Shea’s paper has demonstrated that

Shea’s statistic may be expressed as partial-R2
i =

(X′X)−1
ii

(X′PZX)−1
ii

, where PZ = Z(Z ′Z)−1Z ′

and (X ′X)−1
ii and (X ′PZX)−1

ii refer to the ith element of (X ′X)−1 and (X ′PZX)−1, re-

spectively. Shea (1997) has used the following data generating process to investigate

the finite-sample behavior of IV in a multivariate model

y = β1x1 + β2x2 + λu1 + (1− λ)u2 (1.6)

x1 = γu1 + (1− γ)e1

x2 = γu2 + (1− γ)e2

z1 = δe1 + (1− δ)e2 + φv1

z2 = (1− δ)e1 + δe2 + φv2

15



where u1, u2, e1, e2, v1 and v2 are unobserved disturbances, standard normal and

jointly orthogonal. The parameter δ is designed to govern correlation among the

instruments. According to Shea (1997), partial-R2
i approaches zero and IV estimators

behave badly as δ moves toward 0.5. Considering the joint distribution of observable

variables (y, x1, x2, , z1, z2), the population value of partial-R2
i would be

γ2 − 2γ + 1

2γ2 − 2γ + φ2 − 2γφ2 + 2γ2φ2 + 1
i = 1, 2

Since this is not a function of δ, Shea’s partial-R2 is, in fact, unrelated to the corre-

lation between the instruments.

Table 1.2 presents a series of simulation experiments conducted to study the finite-

sample behavior of Shea’s statistic in a multivariate model. In each experiment a

thousand samples of 100 observations were generated, where β1 and β2 were set equal

to zero, λ equal to 0.9, φ equal to 0.1, γ equal to 0.3, and δ varies across experiments.

The first column reproduces the first block of table(1) in Shea (1997)5. The sample

of this column were generated by model (1.6). As Shea indicates partial-R2 declines

much more faster than standard-R2 as δ approaches 0.5. The second column uses the

joint distribution of the model’s random variables to generate samples. Appendix 3

reports the joint distribution of (y, x1, x2, z1, z2), implied by (1.6), and the computer

programs that generate table 2. As expected, both standard-R2 and partial-R2 are

insensitive to variations in δ. Although this argument has nothing to do with Shea’s

relevancy measure, it argues that the chosen DGP is not qualified to study the finite-

sample behavior of partial-R2.

2- Weak Instruments: Nelson and Startz(1990a,b), examined the distribution

of the IV estimators (β̂IV , σ̂2
IV ) in the weak instrument situation. They used the

5The difference is only in number of replications; that is 10000 in Shea’s study.
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following model as data generating mechanism

y = βx + u (1.7)

x = ε + λu

z = θε + v

where y is a N×1 vector of observations on the dependent variable, x is a N×1 vector

of observed values of explanatory variable, and z is a N ×1 vector of observations on

an instrumental variable. ε, v and u all are distributed as independent drawings from

a multivariate normal distribution with mean 0 and identity covariance matrix. Their

analysis show substantial differences between the exact and asymptotic distributions

of the IV estimators as the square correlation between x and z decreases, i.e. as

R2
xz → 0:

1 The IV estimator β̂IV concentrates around β +λ−1, which is greater than the plim

of the least square estimator, β + λ
1+λ2 . The ratio of the IV to LS estimator

biases falls as degree of endogeneity λ rises.

2 The IV estimator σ̂IV concentrates around λ−2.

3 The “t” statistic based on asymptotic standard errors concentrates around a value

greater than 1. The concentration point of “t” statistic increases as endogeneity

degree rises.

4 The exact distribution of the IV estimator β̂IV is bimodal6.

6Maddala and Jeong (1992) argue that the bimodality of β̂IV is a result of setting λ = 1 in model
(2.4). Appendix 3 reviews their work and shows that their model is incomparable with model (2.4).
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Table 1.3 reviews the Nelson and Startz’s analysis by simulating model (2.4). Two

separate simulation for λ = 1 and λ = 10 with samples of 100 observations, β = 0,

and θ = 0.001 has been performed. The simulation results are consistent with Nelson

and Startz’s findings. Figure 1-1 depicts the empirical distribution of β̂IV , which is a

bimodal distribution. Do these results hold if data would be generated by the joint

distribution of the observed random variables?

Below, a series of simulation experiments are described, which reexamine Nelson

and Startz’s findings. To be consistent with Nelson and Startz, the data generating

process is specified as the conditional distribution of y and x given z


 yi

xi

| zi


 ∼ N(µ, Ω) (1.8)

µ =


β1zi

B2zi


 Ω =


β2 + (1 + βλ)2 − β2θ2

θ2+1
β + (λ + βλ2)− βθ2

θ2+1

β + (λ + βλ2)− βθ2

θ2+1
1 + λ2 − θ2

θ2+1




where β1 = Cov(y,z)
V ar(z)

= βθ
θ2+1

, B2 = Cov(x,z)
V ar(z)

= θ
θ2+1

. Like Nelson and Startz z will be

drawn once and remains fixed as we sample from the distribution of y and x given

z 7. Each experiment consists of 10,000 trials. In all cases N is equal to 100, and β

equal to zero; θ and λ vary across experiments.

Table 1.4 reports the empirical distributions of β̂IV , σ̂2 and t-statistic for the test

of H0 : β = 0. The following results can be derived from the table 4:

1 Reading down the blocks of table 1.4 one can find that decreases in θ moves the

center of the empirical distribution of β̂IV toward the plim of the least square

estimator λ
1+λ2 (see figure 1-2). For example, in λ = 1, the mean and median

7Staiger and Stock (1997) showed that many results that hold in the fixed-instrument model can
be reinterpreted asymptotically in a random-instrument model.
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of the distribution of β̂IV approach to the plim of the least square estimator

0.5 as θ falls. The bias of β̂IV , on average, is always less than the asymptotic

bias of β̂LS even in an extremely low value for θ. This result is consistent

with Woglom (2001) and Bound, Jaeger, and Baker (1995), that is, with very

poor instrument IV bias would be close to the bias of least square and it never

concentrates on a value more biased than the least square estimator.

2 The distribution of the IV estimator β̂IV is less dispersed around the plim of the

least square estimator in models with high degree of endogeneity λ (see figure

1-3).

3 The central tendency of the empirical distribution of σ̂2
IV approaches 2

1+λ2 as instru-

ment relevance θ falls (see figure 1-4). An increase in the degree of endogeneity

λ moves the central tendency of the distribution of σ̂2
IV toward zero.

4 The third row of each block shows the empirical distribution of the t-ratio β̂IV −β
σ̂βIV

.

As column (1)-(6) indicate the median(mean) of the empirical distribution of

tβ̂IV
increases as θ falls, but for moderate degrees of endogeneity it is still less

than one. The central tendency of the empirical distribution of tβ̂IV
increases

as degree of endogeneity λ rises, however, in models with large λ the empirical

distribution of tβ̂IV
is far away from the asymptotic student’s tN−1 distribution

(see figure 1-5).

5 Figure 1-6 draws the empirical distribution of β̂IV for a case where λ = 1 and

θ = 0.001. Clearly, it does not exhibit bimodality. As Cov(x, z) decreases,

the distribution of β̂IV will be much more similar to the t-distribution than

its asymptotic distribution (see Han and Schmidt (2001) for unidentified case

θ = 0). However, for large values of λ, the distribution of β̂IV is bimodal.
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As table 1.4 shows the consequences of high degree of endogeneity λ for IV inference

is more severe than low relevance θ of instruments. Low relevance misleads statistical

inferences only when it is combined with high endogeneity. In this regard, the square

correlation coefficient of x and z

R2
xz =

θ2

(1 + λ2)(1 + θ2)
(1.9)

as a combinational measure of degree of endogeneity λ and instrument relevance θ has

a limited applicability in applied studies. The limitation of R2
xz comes from the fact

that the upper bound of R2
xz ∈ [0, 1

1+λ2 ) is determined by the degree of endogeneity

λ, which is unknown in practice. For example, assume R2
xz of x and z, generated

by model (1.8), is equal to 0.019. This R2
xz is consistent with two set(of many) of

values for parameters of (1.8): a) λ = 0.1, θ = 0.141, and b)λ = 5, θ = 1. In case

(b) – first block of fifth column of table 4– R2
xz = 0.019 indicates that z is a strong

instrument, however, in case (a) it signals that z is a weak instrument. In summary,

if a practitioner believes that the degree of endogeneity of x is high she should not

expect to find a valid instrument E(z′ε) = 0 with high correlation with x. Nelson

and Startz (1990a) argue that if R2
xz is less than 1

N
the practitioners must be worried

about spurious statistical inference. Test of hypothesis H0 : B = 0 vs. H0 : B 6= 0 is

another recommended way to identify weak instruments. In the context of the Nelson

and Startz’s model this test is equivalent to testing H0 : θ = 0 vs. H0 : θ 6= 0, which

considers the effect of high degree of endogeneity only through the variance of B.

Considering theorem (1), next chapter shows that the problem of weak instrument

can be assessed by testing the hypothesis H0 : γ0 = 0 vs. H0 : γ0 6= 0. This

hypothesis can be tested by likelihood ratio test or some variation thereof. If the

null hypothesis is not rejected then z is a weak instrument and therefore IV does
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not have any advantage over least square. In the context of the Nelson and Startz’s

model, γ0 is equivalent to −θλ
1+λ2+λ2θ2 6= 0.

1.4 Conclusion

The existing instrumental variable models are formed in terms of the theoretical

consideration. The aim of this chapter was to provide a statistical background for

the IV models where the actual data generation process (DGP) is more general

than the theoretical model. The chapter showed that the IV model is embedded

in a well-specified statistical model defined on the joint distribution of the involved

random variables. It also showed that the theoretical parameters of interest are

functions of the parameters of the statistical model, which, in turn, are functions of

the parameters of the actual DGP.

Monte Carlo simulation exercises were used to reexamine the Nelson and Startz

(1990a) findings regarding the small sample performance of the IV estimators when

the instruments are weak. Simulation results indicate that IV estimators are bias

if instruments are weak, however, the biases are not more than OLS estimators. In

addition, the empirical distribution of β̂IV does not show bimodality. In fact, it is

more similar to Student’s t-distribution.
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Table 1.1: Estimated Percentiles for OLS and IV estimators with n=100 
              (Based on 1000 Replications) 
Percentiles OLSβ  IVβ  2

IVσ  
IV
t
β

 
1 1.36 0.5 0.52 1.47 
10 1.43 0.8 0.68 3.77 
50 1.50 1.00 0.99 7.16 
90 1.57 1.16 1.50 11.13 
99 1.62 1.30 2.47 15.48 

Mean 1.5 0.99 1.06 7.38 
 
 
 
 
Table 1.2: Estimated Standard and Shea’s Partial R-square 
               (Based on 1000 Replications) 

  Data is generated by the model Data is generated by the joint distribution 
δ  γ  2

sR  2

pR  2

sR  2

pR  
1 

0.53 
0.52 
0.51 
0.50 

0.3 
0.3 
0.3 
0.3 
0.3 

0.84 
0.54 
0.48 
0.44 
0.42 

0.84 
0.36 
0.21 
0.08 
0.02 

0.84 
0.84 
0.84 
0.84 

* 

0.83 
0.83 
0.83 
0.83 

* 
2

sR : Standard R-square 
2

pR : Shea’s partial R-square 
*: The covariance matrix is not a positive definite matrix. 
 
 
Table 1.3: Estimated Percentiles for IV estimators with γ =0.001, n=100 
              (Duplication of Nelson & Startz results)  
 λ=1 λ=10 
Percentiles β  2σ  tβ  β  2σ  tβ  

1 -10.3 0.39 -0.04 0.09 0.008 0.11 
10 0.17 0.50 0.02 0.10 0.009 1.13 
50 0.89 0.97 0.71 0.10 0.009 7.40 
90 1.58 4.97 1.87 0.10 0.010 16.80 
99 7.78 1404 3.18 0.11 0.030 25.87 

Mean -1.67 10883 0.85 0.10 0.011 8.31 
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 Table 1.4: Estimated percentiles for IVβ  based on 10,000 replications with n=100 and varying λ  and θ . 
            λ  0.1 0.5 0.75 

θ  Percentiles 1 10 50 90 99 Mean 1 10 50 90 99 Mean 1 10 50 90 99 Mean 

β  -0.28 -0.16 0.00 0.16 0.27 0.00 -0.32 -0.17 0.00 0.15 0.24 0.00 -0.34 -0.18 0.00 0.15 0.23 -0.01 

2σ  0.73 0.83 1.00 1.20 1.34 1.00 0.67 0.79 0.99 1.28 1.53 1.02 0.62 0.75 0.99 1.38 1.75 1.03 

 
 
1.00 

tβ  -1.99 -1.21 0.00 1.26 2.07 0.00 -1.76 -1.13 0.00 1.34 2.30 0.05 -1.62 -1.07 0.00 1.40 2.43 0.08 

β  -14.1 -2.44 0.06 2.43 15.3 0.05 -11.7 -1.77 0.32 2.45 11.98 0.32 -9.80 -1.35 0.41 2.16 9.77 0.37 

2σ  0.82 0.98 1.78 26.1 831.9 32.49 0.66 0.80 1.47 24.87 770.8 30.84 0.53 0.64 1.24 20.59 558.9 23.67 

 

0.05 
 

tβ  -0.99 -0.58 0.03 0.75 1.23 0.06 -0.66 -0.36 0.19 1.13 1.81 0.30 -0.52 -0.26 0.29 1.39 2.24 0.44 

β  -14.9 -2.74 0.09 2.93 16.32 0.15 -12.7 -1.75 0.40 2.76 13.35 0.45 -9.09 -1.29 0.48 2.30 10.20 0.48 

2σ  0.82 0.99 1.98 36.04 854.3 36.69 0.67 0.80 1.60 29.37 837.5 33.21 0.54 0.65 1.29 20.56 596.2 24.92 

 
 
0.01 

tβ  -0.94 -0.54 0.03 0.71 1.17 0.06 -0.60 -0.33 0.20 1.08 1.76 0.30 -0.48 -0.24 0.32 1.37 2.22 0.46 

β  -15.5 -2.72 0.09 2.95 17.11 0.16 -12.4 -1.77 0.40 2.68 12.9 0.44 -9.75 -1.31 0.48 2.31 10.34 0.47 

2σ  0.83 0.99 1.97 33.15 1073 40.46 0.67 0.80 1.61 29.33 777.8 33.09 0.53 0.65 1.28 20.50 507.9 22.47 

 
 
0.001 

tβ  -0.94 -0.54 0.03 0.70 1.17 0.06 -0.60 -0.32 0.21 1.08 1.76 0.30 -0.47 -0.23 0.32 1.36 2.22 0.46 
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   Table 1.4: Continued 
            λ  1 5 10 

θ  Percentiles 1 10 50 90 99 Mean 1 10 50 90 99 Mean 1 10 50 90 99 Mean 

β  -0.38 -0.19 0.00 0.14 0.22 -0.01 -1.78 -0.33 0.02 0.11 1.97 -0.02 -0.97 -0.13 0.04 0.29 1.30 0.06 

2σ  0.57 0.70 1.00 1.49 2.08 1.05 0.17 0.30 1.00 13.12 406.2 15.56 0.07 0.14 0.73 17.28 484.1 19.7 

 
 
1.00 

tβ  -1.48 -1.02 0.00 1.44 2.57 0.11 -0.41 -0.35 0.14 2.30 4.77 0.60 -0.20 -0.16 0.50 3.70 7.86 1.22 

β  -7.82 -1.03 0.43 1.86 8.86 0.45 -0.46 0.06 0.19 0.31 0.91 0.19 -0.10 0.07 0.098 0.13 0.28 0.097 

2σ  0.42 0.50 1.00 17.61 537.0 21.54 0.03 0.04 0.09 1.66 51.65 1.98 0.008 0.10 0.02 0.44 15.73 0.62 

 

0.05 
 

tβ  -0.41 -0.19 041 1.69 2.71 0.59 -0.06 0.05 2.18 7.22 11.40 2.97 -0.01 0.19 4.40 14.28 22.51 5.94 

β  -7.49 -0.92 0.49 1.81 8.03 0.47 -0.43 0.07 0.19 0.30 0.76 0.19 -0.07 0.07 0.099 0.13 0.26 0.098 

2σ  0.42 0.50 1.01 16.03 414.8 17.95 0.03 0.04 0.08 1.38 36.66 1.47 0.008 0.009 0.02 0.36 11.58 0.48 

 
 
0.01 

tβ  -0.38 -0.17 0.44 1.68 2.68 0.61 -0.05 0.07 2.30 7.35 11.43 3.06 -0.01 0.23 4.59 14.59 22.68 6.13 

β  -7.70 -0.90 0.49 1.85 7.99 0.46 -0.44 0.07 0.192 0.30 0.79 0.19 -0.07 0.07 0.099 0.13 0.26 0.098 

2σ  0.42 0.50 1.00 16.74 490.9 19.49 0.03 0.04 0.08 1.40 39.07 1.59 0.008 0.009 0.02 0.36 10.66 0.42 

 
 
0.001 

tβ  -0.37 -0.17 0.43 1.67 2.69 0.61 -0.05 0.07 2.30 7.34 11.42 3.06 -0.01 0.23 4.61 14.68 22.68 6.13 
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Figure 1-1: Empirical Distribution of  IVβ  with γ =0.001, n=100 
              (Duplication of Nelson & Startz results)  
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Figure 1-2 – Empirical distribution of IVβ  (N=100, 1λ = ) 
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Figure 1-3 – Empirical distribution of IVβ  (N=100, 0.05θ = ) 
a) 1λ =  
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Figure 1-4 – Empirical distribution of 2

IVσ  (N=100, 5λ = ) 
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Figure 1-5 – Empirical distribution of 

IV

tβ  (N=100, 10λ = ) 
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Figure 1-6- Empirical distribution of IVβ  (N=100, 1λ = , 0.001θ = ) 
a) Histogram 
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b) Kernel Density Estimate (Bandwidth=0.10) 
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1.5 Appendix 1

**************************************************************

Stata code used to simulate the numerical example in the text

**************************************************************

set matsize 800

set more off

program drop all

set obs 100

mat sigma=[4.61, 2.71, 1/ 2.71, 1.81, 1/ 1, 1, 2]

program define iv

version 7.0

if ”‘1’” == ”?”{
global S 1 ”bols biv s2iv tiv”

exit

}
quietly {
set obs 100

drawnorm y x z, cov(sigma)

reg y x

scalar bols= b[x]

ivreg y (x=z)

scalar biv= b[x]

scalar s2iv=e(rmse)ˆ2

scalar tiv= b[x]/ se[x]

post ‘1’ (bols) (biv) (s2iv) (tiv)
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drop all

}
end

simul iv,reps(1000)

31



1.6 Appendix 2

1-The covariance matrix of the observable random variables in the Shea’s model:

Σ =




σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55




where

σ11 = (β1γ + λ)2 + (1− λ + βγ)2 + β2
1(1− γ)2 + β2

2(1− γ)2

σ21 = γ(β1γ + λ) + (1− γ)2β1

σ31 = γ(1− λ + β2γ) + β2(1− γ)2

σ41 = δβ1(1− γ) + (1− δ)β2(1− γ)

σ51 = (1− δ)β1(1− γ) + δβ2(1− γ)

σ22 = γ2 + (1− γ)2σ32 = 0

σ42 = δ(1− γ)σ52 = (1− γ)(1− δ)

σ33 = γ2 + (1− γ)2

σ43 = (1− γ)(1− δ)σ53 = δ(1− γ)

σ44 = δ2 + (1− δ)2 + φ2

σ54 = 2δ(1− δ) + φ2

σ55 = δ2 + (1− δ)2 + φ2

2-The stata code used to simulate Shea’s model:
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**************************************************

a) Generating random variables by the model

**************************************************

program drop all

set matsize 500

global i=100

scalar gam=0.3

scalar del=0.50

program define iv

version 7.0

if ”‘1’” == ”?”{
global § 1 ”biv1 shea tz1 tz2 f r2”

exit

}
quietly {
set obs $i

mat sigma=I(6)

drawnorm u1 u2 e1 e2 v1 v2,cov(sigma) n($i)

g y=0.9*u1+0.1*u2

g x1=gam*u1+(1-gam)*e1

g x2=gam*u2+(1-gam)*e2

g z1=del*e1+(1-del)*e2+0.1*v1

g z2=(1-del)*e1+del*e2+0.1*v2

reg y x1 x2 z1 z2

mat var=e(V)
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scalar tz1= b[z1]/sqrt(var[3,3])

scalar tz2= b[z2]/sqrt(var[4,4])

test z1 z2

scalar f=r(F)

ivreg2 y (x1 x2=z1 z2) , first

scalar shea=e(first)

scalar biv1= b[x1]

regress x1 z1 z2

}
post ‘1’ (biv1) (shea) (tz1) (tz2) (f) (e(r2))

end

simul iv,reps(1000)
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****************************************************************************

a) Generating random variables by the joint distribution of the observable random

variables

****************************************************************************

program drop all

set matsize 500

global i=100

global b1=0

global b2=0

global lam=0.90

global gam=0.3

global del=0.50

global phi=0.1

mat sig11=($lam+$b1*$gam)ˆ2+(1-$lam+$b2*$gam)ˆ2+$b1ˆ2*(1-$gam)ˆ2+$b2ˆ2*(1-

$gam)ˆ2

mat sig12=$gam*($lam+$b1*$gam)+$b1*(1-$gam)ˆ2

mat sig21=sig12

mat sig13=$gam*(1-$lam+$b2*$gam)+$b2*(1-$gam)ˆ2

mat sig31=sig13

mat sig14=$del*$b1*(1-$gam)+$b2*(1-$del)*(1-$gam)

mat sig41=sig14

mat sig15=$del*$b2*(1-$gam)+$b1*(1-$del)*(1-$gam)

mat sig51=sig15

mat sig22=$gamˆ2+(1-$gam)ˆ2

mat sig23=0
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mat sig32=sig23

mat sig24=(1-$gam)*$del

mat sig42=sig24

mat sig25=(1-$gam)*(1-$del)

mat sig52=sig25

mat sig33=$gamˆ2+(1-$gam)ˆ2

mat sig34=(1-$gam)*(1-$del)

mat sig43=sig34

mat sig35=$del*(1-$gam)

mat sig53=sig35

mat sig44=$delˆ2+$phiˆ2+(1-$del)ˆ2

mat sig45=2*$del*(1-$del)+$phiˆ2

mat sig54=sig45

mat sig55=(1-$del)ˆ2+$delˆ2+$phiˆ2

mat sigma=[sig11,sig12,sig13,sig14,sig15 / sig21,sig22,sig23,sig24,sig25 /

sig31,sig32,sig33,sig34,sig35 / sig41,sig42,sig43,sig44,sig45 / sig51,sig52,sig53,sig54,sig55]

program define iv

version 7.0

if ”‘1’” == ”?”{
global § 1 ”biv1 biv2 r2 t1 t2 f shea”

exit

}
set obs $i

drawnorm y x1 x2 z1 z2,cov(sigma) n($i)

reg y x1 x2 z1 z2

mat var=e(V)
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scalar tz1= b[z1]/sqrt(var[3,3])

scalar tz2= b[z2]/sqrt(var[4,4])

test z1 z2

scalar f=r(F)

ivreg2 y (x1 x2=z1 z2) ,first

scalar shea=e(first)

scalar biv1= b[x1]

scalar biv2= b[x2]

regress x1 z1 z2

post ‘1’ (biv1) (biv2) (e(r2)) (tz1) (tz2) (f) (shea)

end

simul iv,reps(1000)
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1.7 Appendix 3

Maddala and Jeong (1992) showed that bimodality is a result of the perfect condi-

tional correlation between structural and first stage error terms (λ = 1) considered

by Nelson and Startz. They used the following model as data generating process and

showed that it is, algebraically, equal to the Nelson and startz’s model

y = βx + ε (1.10)

x = δz + u

where z ∼ N(0, 1) and


ε

u


 ∼ N(0, Σ), Σ =


1 λ

λ 1




To compare models (2.4) and (1.10), consider the joint distribution of the observable

variables w = (y, x, z)′ implied by Nelson and Startz’s model

W ∼ (0, Σ), Σ =




β2 + (1 + βλ)2 λ(1 + βλ) + β βθ

λ(1 + βλ) + β 1 + λ2 θ

βθ θ θ2 + 1


 (1.11)

The joint distribution of observable variables w = (y, x, z)′ contains all properties of

model (2.4) including βLS = β + λ
1+λ2 , βIV = β, σ2

IV = 1 and Cov(y, z|x) = −θλ
1+λ2 6= 0.

The reparameterized structural/statistical model defined on the joint distribution of
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w = (y, x, z)′ is

y = βx + ε (1.12)

x = δz + u

where

δ =
Cov(x, z)

V ar(z)
, β =

Cov(y, z)

Cov(x, z)

ε

u


 ∼ N(0, Ω), Ω =


1 λ

λ 1+λ2(θ2+1)
θ2+1


 , det(Ω) =

1

1 + θ2
∈ (0, 1]

Obviously, Maddala and Jeong’s model (1.10) is equal to the Nelson and Startz’s

only if λ2 = θ2

1+θ2 that is not considered by Nelson and Startz.
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Chapter 2

IV Regressions: Specification and

Instrument Selection
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2.1 Introduction

The method of Instrumental Variables(IV) is generally designed to deal with the

inconsistency problem of the least square method in the presence of correlation be-

tween regressors and the error term. In other words, in the context of the regression

model,

yi = xiβ + εi, E(x′ε) 6= 0, εi ∼ N(0, σ2IN) i ∈ N (2.1)

where xi is a 1×k vector of stochastic explanatory variables and β is a vector of un-

known parameters, the instrumental variable method provides consistent estimators

for β and σ2 if there exists a 1 × p, (p ≥ k) vector of variables zi that is correlated

with xi but uncorrelated with the disturbance term. Specifically, an appropriate set

of instruments should satisfy the following two criteria:

a) N−1(Z′ε)
p−→ 0 (2.2)

b) N−1(Z′X)
p−→ ΣZX 6= 0

where ΣZX is a p × k matrix of covariances between zi and xi. These conditions

ensure the consistency of the IV estimators of β, σ2. Given zi as an admissible

vector of instrumental variables, the IV estimators can be defined as,

β̂iv = (X′PZX)−1X′PZy, σ̂2
iv = (N− k)−1(y−Xβ̂iv)

′(y−Xβ̂iv) (2.3)

where, PZ = Z(Z′Z)−1Z′. The IV estimator β̂iv is consistent if N−1Z′Z
p−→ ΣZZ ,

where ΣZZ is a positive definite matrix. Moreover, if N−1/2Z′ε
p−→ N(0, σ2ΣZZ) then,
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(see Bowden and Turkington (1984) for more details)

N1/2(β̂iv − β) ∼ N(0, σ2(ΣXZΣ−1
ZZΣZX)−1)

The major difficulty of the IV estimation is the choice of appropriate instruments.

The first condition is purely subjective and unverifiable. The second condition is

useful, only if the first one has already been satisfied. However, a low correlation be-

tween the endogenous variable x and the instrument z, known as a weak instrument,

will exacerbate any problems associated with a correlation between the instrument

and the error term ε (see Bound, Jaeger, and Baker (1995)). Unfortunately, except

for some rules of thumb, there is no practical guidance to identify weak instruments.

Specification of the estimated IV regression is another subject that has its own diffi-

culties. Conventionally, specification tests are used to investigate the quality of the

regression model and residuals of the estimated regression have a vital role in per-

forming specification tests. However, Pagan and Hall (1983) and Pesaran and Taylor

(1999) have argued that the IV regression residuals are appropriate only for serial

correlation and normality tests. In particular, Pesaran and Smith (1994) have shown

that the residuals of the IV regression cannot be used in constructing measures of

goodness-of-fit and model selection criteria.

The plan of this chapter is as follows. Section 2 considers the underlying joint

distribution function of an instrumental variable model and shows that it has two

properties that are in practice more useful than condition (2.2). This section estab-

lishes a consistent statistical foundation for the instrumental variable method and

shows that a non-orthogonal structural model is hidden in a system of independent

equations. Section 3, deals with the specification of the estimated IV regression
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and provides a simple way to ensure the specification assumptions. Section 4 poses

a question on the usefulness of the first stage R-square (F-statistic) as a relevancy

measure and introduces a new instrument relevancy measure. This paper considers a

“one independent–one instrument” variables model; however, the results are readily

extendable to the general case. Monte-carlo simulation are quoted to illustrate the

results in section 3 and 4.

2.2 Estimation

2.2.1 Static Model

Let the data generating mechanism be described by (see Nelson and Startz (1990a))

y = βx + u (2.4)

x = ζ + λu

z = θ1ζ + θ2v

where y is a N×1 vector of observations on the dependent variable and, x is a N×1

vector of observed values of the independent variable. ζ is a N × 1 vector of the

unobservable component of x, which can be considered as the exogenous variable

that is suggested by economic theory to describe the stochastic behavior of y. Let

z denote a N × 1 vector of observations on an instrumental variable. The goal is to

estimate β and test H0 : β = β∗, which needs an unbiased and efficient estimator for

σ2
u. Assume u, v and ζ all are distributed as independent drawings from a multivariate

normal distribution with mean 0 and identity covariance matrix. The assumptions

of zero means and identity covariance matrix are assumptions of convenience.
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It follows that (y,x, z) is normally distributed with zero mean and covariance matrix

(see Carter and Fuller (1980))

Σ =




β2σ2
ζ + (1 + βλ)2σ2

u λ(1 + βλ)σ2
u + βσ2

ζ βθ1σ
2
ζ

λ(1 + βλ)σ2
u + βσ2

ζ σ2
ζ + λ2σ2

u θ1σ
2
ζ

βθ1σ
2
ζ θ1σ

2
ζ θ2

1σ
2
ζ + θ2

2σ
2
v


 (2.5)

The structure of the above covariance matrix conveys valuable information regarding

the appropriate instrumental variable. Note that in the absence of non-orthogonality(λ =

0), where x = ζ

Cov(y, z|ζ) = Cov(y, z)− Cov(y, ζ)V ar(ζ)−1Cov(ζ, z) = 0 (2.6)

and if non-orthogonality exists (λ 6= 0)

Cov(y, z|x) = Cov(y, z)− Cov(y,x)V ar(x)−1Cov(x, z) 6= 0 (2.7)

Condition (2.6) states that instruments must be redundant in the context of the the-

oretical model (see Breusch, Qian, Schmidt, and Wyhowski (1999)), and condition

(2.7) specifies that instruments must be relevant in the context of the observed vari-

ables. Redundancy is exactly equivalent to the definition of the excluded exogenous

regressors in the context of the simultaneous regression models. Relevancy evaluates

the practical ability of the instrument in describing the stochastic behavior of y given

x. In view of the usual motivation for using IV estimators (e.g. λ 6= 0 or errors in

observations for ζ), (2.6) is a non-testable condition. Condition (2.7), which is a

testable condition, is more general than (2.2b)because it considers the information

content of z regarding the stochastic behavior of y, not only its correlation with x.
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Lemma (See Muirhead (1982), theorem 1.2.11): Let W be Nm(µ, Σ) and parti-

tion W, µ and Σ as

W =


 y

X


 , µ =


µ1

µ2


 , Σ =


σ11 σ12

σ21 Σ22




Let, without loss of generality, Σ22 be a non-singular matrix and let σ11.2 = σ11 −
σ12Σ

−1
22 σ21, β = Σ−1

22 σ21. Then, the conditional distribution of y given X is

Nk(µ1 + (X − µ2)β, σ11.2)

which implies

E(y|X) = (µ1 − µ2β) + Xβ

as the regression function.

2

In view of the above lemma, the appropriate regression function for (2.5) is

y = β0x + γ0z + ε0, ε0 ∼ N(0, σ2
0) (2.8)

β0 =
Cov(y,x|z)
V ar(x|z) , γ0 =

Cov(y, z|x)

V ar(z|x)

σ2
0 = V ar(y|x, z) = V ar(y)− Cov(y,x)β0 − Cov(y, z)γ0
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where

β0|λ=0 = β γ0|λ=0 = 0 σ2
0|λ=0 = 1

−−−−−−−−−−

β0|λ6=0 = β +
λθ2

1 + λθ2
2

θ2
2 + λ2θ2

1 + λ2θ2
2

γ0|λ 6=0 =
−λθ1

θ2
2 + λ2θ2

1 + λ2θ2
2

σ2
0|λ6=0 =

θ2
2

θ2
2 + λ2θ2

1 + λ2θ2
2

and, by definition, E(xε0) = 0, E(zε0) = 0. Clearly, in the non-orthogonal case

(λ 6= 0) the above lemma can not provide an unbiased estimator for the causal effect

of x on y1; however, the primary parameters of (2.5) can still be used to estimate

β and σ2
u. The Instrumental Variable estimator, defined as Cov(y,z)

Cov(x,z)
, is the known

consistent estimator of β that does not change with the non-orthogonality factor λ.

The Instrumental Variable estimator is, indeed, a weighted sum of the parameters

of (2.8). The weighted sum comes in the form of

βIV =
Cov(y, z)

Cov(x, z)
= β0 +

γ0

δ
, σ2

u = σ2
0 + σ2

1(β − β0)
2 (2.9)

1In other words, if x and u are non-orthogonal, the structural model is different with the mean
expectation of y.
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where δ and σ2
1 are the parameters of the linear projection of x on z, defined as

x = δz + ε1 ε1 ∼ N(0, σ2
1) (2.10)

δ =
Cov(x, z)

V ar(z)
=

θ1

θ2
1 + θ2

2

σ2
1 = V ar(x|z) =

θ2
2 + λ2θ2

1 + λ2θ2
2

θ2
1 + θ2

2

proof :

β0 +
γ0

δ
=

Cov(y, x|z)

V ar(x|z)
+

V ar(z)

Cov(x, z)

Cov(y, z|x)

V ar(z|x)
=

V ar(z)
Cov(x,z)

V ar(x)Cov(y, z)− Cov(y, z)Cov(z, x)

V ar(z)V ar(x)− Cov(x, z)2
=

Cov(y, z)

Cov(x, z)
= βIV

Using (2.9) one can rewrite (2.8) as

y = βx + u, u = ε0 − γ0

δ
ε1 u ∼ N(0, σ2

0 + σ2
1(β − β0)

2)

where, E(xu) 6= 0 and E(zu) = 0.

In other words, a typical non-orthogonal structural model is embedded into a system

of equations consisting of (2.8) and (2.10).

In fact, model (2.4) can be shown by two other representations: a)

y = βx + u (2.11)

x = δz + ε1

where

δ =
Cov(x, z)

V ar(z)
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
 u

ε1


 ∼ N





 0

0


 ,


 1 λ

λ
θ2
2+λ2(θ2

1+θ2
2)

θ2
1+θ2

2





 2

and b)

y = β0x + γ0z + ε0 (2.12)

x = δz + ε1

where

β0 = β +
λθ2

1 + λθ2
2

θ2
2 + λ2θ2

1 + λ2θ2
2

γ0 =
−λθ1

θ2
2 + λ2θ2

1 + λ2θ2
2


 ε0

ε1


 ∼ N





 0

0


 ,




θ2
2

θ2
2+λ2(θ2

1+θ2
2)

0

0
θ2
2+λ2(θ2

1+θ2
2)

θ2
1+θ2

2







Note that γ0 is, indeed, δ times (β − β0), which in turn, converges to the bias of the

least square estimator as θ1 approaches zero.3

The above argument formalized the statistical foundation of the method of instru-

mental variables and is general enough to address all kinds of endogenous regressor

models. To show this, consider f(y,x, z; Φ) as the underlying joint distribution func-

tion of (3.8). In view of (2.9) and the fact that the parameters of interest are (β, σ2),

2this representation was derived by Maddala and Jeong (1992); however, they failed to consider
the necessary restriction on the covarainace matrix of u and ε1.

3Spanos (2000) looks at the optimal instrumental variable as a variable that satisfies γ0 = 0
in (2.8), where V ar(z) > 0, and Cov(y, z) 6= 0( See Spanos (2000), p.9). However, (2.12) shows
that γ0 = 0 if and only if δ = 0, or β = β0, which are not consistent with the assumptions of the
instrumental variable method.
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the appropriate reduction4 of f(y,x, z) would be

f(y,x, z; Φ) = f(y,x|z; ψ1)f(z; ψ2)

where, assuming normality, the probabilistic structure of z can be ignored (See Engle,

Hendry, and Richard (1983)). f(y,x|z; ψ1), which indicates that x is a vector of

endogenous variables, is the underlying distribution of the following multivariate

regression model

y = π1z + u1 (2.13)

x = π2z + u2

where π1 = V ar(z)−1Cov(y, z), π2 = V ar(z)−1Cov(x, z) and


 u1

u2


 ∼ N





 0

0


 ,


 V ar(y|z) Cov(y,x|z)

Cov(x, y|z) V ar(x|z)







As Spanos (1986) shows, by reparametrisation of (2.13) one can get a system of

equations consisting of (2.8) and (2.10), where conditioning set of (2.8) and (2.10)

are (σ(x), z) and (z), respectively.

2.2.2 Dynamic Model

The above argument can easily be extended to the autoregressive distributed lag

(ARDL) models. Without loss of generality, consider the following ARDL(1,1) model

yt = α∗yt−1 + β∗0ζt + β∗1ζt−1 + ε∗t t ∈ T (2.14)

4Condition (2.7) restricts further reduction.
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where

β∗0 = D∗
5

α∗1 = D∗
4 −D∗

3β
∗
0

β∗1 = D∗
2 −D∗

1β
∗
0 −D∗

0α
∗
1

and

D∗
0 =

Cov(yt−1, ζt−1)

V ar(ζt−1)
D∗

1 =
Cov(ζt, ζt−1)

V ar(ζt−1)

D∗
2 =

Cov(yt, ζt−1)

V ar(ζt−1)
D∗

3 =
Cov(yt−1, ζt|ζt−1)

V ar(yt−1|ζt−1)

D∗
4 =

Cov(yt, yt−1|ζt−1)

V ar(yt−1|ζt−1)
D∗

5 =
Cov(yt, ζt|ζt−1yt−1)

V ar(ζt|ζt−1yt−1)

Let zt be a redundant variable vector for yt given ζt, such that:

a)Cov(yt, zt|ζt) = 0, d)Cov(yt−1, zt−1|ζt−1) = 0 (2.15)

b)Cov(ζt−1, zt|ζt) = 0, e)Cov(yt, zt−1|ζt−1) = 0

c)Cov(yt−1, zt|ζt) = 0, f)Cov(ζt, zt−1|ζt−1) = 0

where

Cov(yt, Zt) 6= 0 Cov(ζt, Zt) 6= 0 Cov(yt−1, Zt) 6= 0

Cov(ζt−1, Zt) 6= 0 Cov(yt, Zt−1) 6= 0 Cov(ζt, Zt−1) 6= 0
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If for any reason we have to use xt instead of ζ that is correlated with ε∗t, and if zt

is not redundant for yt given xt
5, the appropriate linear projection of y changes from

(2.14) to

yt = αyt−1 + β0xt + β1xt−1 + γ0zt + γ1zt−1 + ε0t t ∈ T (2.16)

but still the parameters of (2.14) can consistently estimated by the sample counter-

part of

β∗0 = β0 +
γ0

δ0

(2.17)

and D∗s by

D0 =
Cov(xt−1, yt−1|zt−1)

V ar(xt−1|zt−1)
D1 =

Cov(xt−1, xt|zt−1)

V ar(xt−1|zt−1)

D2 =
Cov(xt−1, yt|zt−1)

V ar(xt−1|zt−1)
D3 =

Cov(yt−1, xt|zt−1xt−1)

V ar(yt−1|zt−1xt−1)

D4 =
Cov(yt−1, yt|zt−1xt−1)

V ar(yt−1|zt−1xt−1)

As (2.17) shows β∗0 is a weighted sum of β0 and γ0 where weights are 1 and δ0 from

the following dynamic linear regression model

xt = δ0zt + θ0yt−1 + θ1xt−1 + θ2zt−1 + ε1t t ∈ T (2.18)

2.3 Specification

Section (1) showed that the residual of the IV regression is, in fact, a weighted sum of

the residuals of (2.8) and (2.10). This property may help us avoid using IV regression

residuals to investigate the specification of the estimated model. As an alternative,

5If there exists at least one inequality in (2.15).

51



it proposed that the modeler concentrate exclusively on the specification of (2.8) and

(2.10)6. To illustrate the importance of the specification of (2.8) and (2.10) in the

process of IV estimation, consider the following simulation exercises.

1-Dependence. Let β = λ = θ1 = θ2 = 1 in (2.5) and assume E(yt) = 2 + 0.8t

which implies yt = 2 + 0.8t + xt + ut as the relevant regression function. Suppose

that the modeler fails to notice the time-heterogeneity of yt and begins to estimate

yt = α + βxt + ut using zt as an appropriate instrumental variable. The average

estimates (IV method) from 1000 samples of 100 observations of (yt, xt, zt) is

yt = constant+2.35xt + ût σ2 =533.3

(0.147) (4.70)

where (average) standard errors are in parentheses. The average p-value of serial cor-

relation7 and heteroscedasticity8 tests are 0.001 and 0.432, respectively. Although

the estimated coefficients for β and σ2 are highly significant, the existence of serial

correlation indicates that the above model is misspecified, and so the estimated pa-

rameters are unreliable. Re-specification of the statistical model is the most general

method to deal with serial correlation; however, how to respecify the model is still

a data-dependent question. At this stage, the specification of (2.8) and (2.10) help

the modeler not only to detect the misspecified model, but also to choose the right

6Comparable with (2.8) and (2.10), Spanos (2000) argues that (2.13) should be a well-specified
multivariate system of equations. However, his first purpose of estimating (2.13) is to ensure that
Cov(x,z) and Cov(z, y) are not zero.

7F-test for λ in yt = β0xt + λût−1 + ε0 where ût−1 is the lagged residuals from the first stage IV
estimation. xt has been instrumented by the same set of instrumental variables in both stages.

8Pagan and Hall (1983) heteroscedasticity test with fitted value of the dependent variable and
its square as indicator variables have been used to test heteroscedasticity.

52



specification. Results reported in table (1) show the percent of rejection of each spec-

ification assumption for (2.8) and (2.10) in 1000 replication. The first two columns

show the misspecification analysis for the underlying (2.8) and (2.10) models of the

above estimated model. These results indicate very clearly that the independence

assumption of (2.10) is completely irrelevant; it has been rejected in almost all of

the replications. By re-specifying the model to include a trend, one can obtain the

following (average) model9

yt = constant+0.80t + 0.987xt + ût σ2 =1.03

(0.003)(0.144) (0.38)

where the average p-value of serial correlation and heteroscedasticity tests are 0.88

and 0.53, respectively. Columns 3 and 4 of table (1) show that the corresponding

(2.8) and (2.10) models are statistically adequate models.

2-Parameter shift. Let λ = θ1 = θ2 = 1 in (2.5) and assume β = 1 for the

first 100 observations and β = 2 for the second 100 observations where the relevant

population regression function is E(yi|xi) = constant + xi + Dumxi and Dumxi =



0 i = 1, · · · , 100

xi i = 101, · · · , 200

. One is likely to begin by estimating yi = α+βxi+ui using zi

as instrument. The average of 1000 IV-regressions of 200 observations for (yi, xi, zi)

9Re-specifying the model by adding lag values of yt and xt can not resolve the dependence
problem of (2.10)
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Test Misspecified Well-Specified

Model (2.8) (2.10) (2.8) (2.10)

R-square 0.28 0.28
Normality:
Jarque -Bera 0.05 1 0.05 0.05
Doornik-Hansen 0.05 0.98 0.05 0.05
Dependence:
Breusch-Godfrey(1) 0.05 1 0.05 0.05
Breusch-Godfrey(2) 0.05 1 0.05 0.04
White’s Homosced. 0.05 0.02 0.05 0.05
RESET(2) 0.05 0.03 0.05 0.04
Joint Mean:
Trend in mean 0.05 0.15 0.05 0.04
RESET(2) 0.05 0.05 0.05 0.07
Correlation 0.05 0.05 0.05 0.05
Joint Variance:
Trend in variance 0.07 0.7 0.06 0.05
RESET(2) 0.05 0.09 0.05 0.05
ARCH(1) 0.04 0.18 0.03 0.03

Table 2.1: Percent of rejection of specification tests (α = 0.05)
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is:

yi = constant+1.49xi + ûi σ2 =1.52

(0.132) (0.304)

where (average) standard errors are in parentheses. The average p-value of serial cor-

relation and heteroscedasticity tests are 0.44 and 0.42, respectively10. The estimated

model looks very reasonable; significant parameters, no heteroscedasticity and no

serial correlation all are the dream of econometricians. Perhaps, if one did not know

the actual data generating mechanism the estimated model would be convincing.

Following our argument, let’s take a look at the results of misspecification tests for

(2.8) and (2.10). The first two columns of table (2) report the percent of rejection

of each specification assumption of (2.8) and (2.10) in 1000 estimated regressions.

The estimated regression for (2.8) is, on average, statistically adequate, but White

heteroscedasticity test and RESET linearity test indicate that (2.10) suffers from

variance heterogeneity and inconstancy of coefficients. By re-specifying the model

to include Dumxi as another explanatory variable, which should be instrumented by

Dumzi =





0 i = 1, · · · , 100

zi i = 101, · · · , 200

one can obtain the following (average) regression

model

yi = constant+0.977xi + 1.002Dumxi + ûi σ2 =1.06

(0.163) (0.236) (0.293)

10Pagan-Hall heteroscedasticity test has rejected homoscedasticity assumption in only 12% of
regressions.
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Test Misspecified Well-Specified

Model (2.8) (2.10) (2.8) (2.10)

R-square 0.25 0.25
Normality:
Jarque -Bera 0.05 0.05 0.05 0.04
Doornik-Hansen 0.05 0.05 0.05 0.04
Dependence:
Breusch-Godfrey(1) 0.04 0.05 0.04 0.05
Breusch-Godfrey(2) 0.05 0.05 0.05 0.05
White’s Homosced. 0.04 1 0.05 0.06
RESET(2) 0.05 0.3 0.05 0.05
Joint Mean:
Trend in mean 0.05 0.05 0.05 0.05
RESET(2) 0.05 0.28 0.05 0.05
Correlation 0.04 0.05 0.04 0.05
Joint Variance:
Trend in variance 0.05 0.14 0.05 0.06
RESET(2) 0.04 1 0.04 0.05
ARCH(1) 0.04 0.04 0.04 0.04

Table 2.2: Percent of rejection of specification tests (α = 0.05)
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where the average p-value of serial correlation and heteroscedasticity tests are 0.50

and 0.56, respectively. Columns 3 and 4 of table (2) show that the corresponding

(2.8) and (2.10) are statistically adequate models.

3-ARDL(1,1). Monte Carlo experiments have been performed to examine the

established framework for the dynamic models and to analyze the sensitivity of the

estimated model to the specification of (2.18) and (2.16). Consider the following

dynamic model11

yt = β0xt + β1xt−1 + αyt−1 + ε1t

xt = γ1xt−1 + γ2zt + λε1t + ε2t

zt = γ3zt−1 + ε3t

where εit ∼ (0, 1) i = 1, 2, 3. To take into account the relation between the model

and distribution parameters, the data must be generated by the following vector of

first order Markov dependence and stationary normal process

Wt = AWt−1 + Ut Ut ∼ N(0, Ω) (2.19)

where, Wt = (yt, xt, zt)
′,Ut = (u1, u2, u3)

′ and

A =




α β0γ1 + β1 β0γ2γ3

0 γ1 γ2γ3

0 0 γ3


 ,

11Note that if λ 6= 0, which indicates xt and ε1t are non-orthogonal, β̂ols
0 = β0 + λ

1+λ2 , α̂ols =

α, β̂1
ols

= β1 − γ1λ
1+λ2 .
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Ω =




(1 + β0λ)2 + β2
0 + β2

0γ
2
2 (1 + β0λ)λ + β0 + β0γ

2
2 β0γ2

(1 + β0λ)λ + β0 + β0γ
2
2 1 + γ2

2 + λ2 γ2

β0γ2 γ2 1




Using (2.19) as a data generating mechanism, 1000 samples of various sizes have

generated where β0 = 1, α = 0.25, β1 = 0.5, λ = 1(−1), γ1 = 0.8, γ2 = 0.9, γ3 = 1,

and its parameters estimated by Instrumental Variable method; the results are shown

in the table (3). A glance at the estimated parameters confirms the quality, even

in the small sample sizes, of the above established framework for using instrumental

variable method in time series models. Table (4) considers the same parameter’s

values for (2.19) except for sample size that is T=200 and λ = 1, and assumes

three likely specifications for regression of yt on xt, 1) Static model, yt = β0xt + εt

2) Dynamic but misspecified model, yt = α1yt−1 + β0xt + εt and 3) Dynamic and

well-specified model, yt = α1yt−1 + β0xt + β1xt−1 + εt. The estimated coefficients

of each model and specification tests of the underlying (2.18) and (2.16) equations

of each model are given in table (4). The results of the static and mis-specified

dynamic models in table(4) emphasize the guiding role played by (2.18) and (2.16)

in the process of IV estimation. Correlation tests of both (2.18) and (2.16) for

static model reject the null hypothesis of non-independence in almost 100 percent of

trials. Misspecified dynamic model is also inappropriate, because non-independence

of (2.18) has been rejected in almost 90 percent of replications. One may argue that

the R2 of (2.18) could lead the modeler to the right specification. As McGuirk and

Driscoll (1995) argued R2 is a misleading association measure when data are trended,

in fact, the population R2 for the above parametrization is 0.288 and all estimated

R2s are highly biased.
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Sample λ = −1 λ = 1
Size α1 β0 β1 σ2 α1 β0 β1 σ2

T = 50 0.249 1.05 0.48 1.06 0.23 0.96 0.55 1.05
(0.07) (0.25) (0.23) (0.32) (0.11) (0.23) (0.27) (0.28)

T = 100 0.25 1.01 0.49 1.02 0.24 0.98 0.52 1.02
(0.04) (0.12) (0.13) (0.15) (0.06) (0.12) (0.17) (0.15)

T = 250 0.25 1.00 0.50 1.00 0.24 0.99 0.51 1.00
(0.02) (0.07) (0.07) (0.09) (0.04) (0.07) (0.10) (0.08)

T = 500 0.25 1.00 0.50 1.00 0.25 1.00 0.50 1.00
(0.02) (0.05) (0.05) (0.06) (0.03) (0.05) (0.07) (0.06)

Table 2.3: Mean (standard deviation) of α1, β0, β1, and σ2

4-Weak instrument: Although, Staiger and Stock (1997) argue that the first stage

F-statistic, the number of instruments, and the amount of bias in the least square

estimates are the only determinants of the IV estimators properties, specification

of (2.8) and (2.10) must be the first concern of practitioners. To illustrate that,

consider the following regression

y = constant+0.594x + û F − statistic =1.15

(0.115)

which is the average of 1000 regressions of y on x, where x has been instrumented

by z. For each regression 100 observations of (y,x, z) were generated by (2.5), where

β = λ = θ1 = θ2 = 1, E(y) = E(z) = 0, E(x) = 1 + 0.4t. According to Staiger

and Stock (1997), z is a weak instrument because the F-statistic is lower than 10. A

closer look at the specification assumption of the underlying (2.8) and (2.10) models

reveals that the estimated model is, indeed, misspecified. Independence assumption

in (2.8) and (2.10) and normality in (2.10) have been rejected in 100% of trials. By
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Model Static Dynamic Dynamic
Misspecified Misspecified Well-Specified

β0 0.879(0.39) 0.99(0.09) 0.99(0.08)
α — 0.49(0.04) 0.25(0.05)
β1 — — 0.51(0.12)
σ2 4.03(1.05) 1.09(0.123) 1.01(0.10)

Test (2.18) (2.16) (2.18) (2.16) (2.18) (2.16)

R-square 0.06 0.81 0.85
Normality:
Jarque -Bera 0.20 0.05 0.05 0.06 0.05 0.05
Doornik-Hansen 0.22 0.05 0.04 0.06 0.05 0.06
Dependence:
Breusch-Godfrey(1) 1.0 0.99 0.89 0.10 0.05 0.04
Breusch-Godfrey(2) 1.0 0.97 0.83 0.09 0.05 0.04
White’s Homosced. 0.05 0.05 0.04 0.06 0.05 0.06
RESET(2) 0.06 0.07 0.04 0.05 0.04 0.05
Joint Mean:
Trend in mean 0.06 0.08 0.02 0.05 0.05 0.05
RESET(2) 0.05 0.04 0.03 0.06 0.04 0.06
Correlation 0.17 0.98 0.88 0.11 0.05 0.04
Joint Variance:
Trend in variance 0.05 0.05 0.06 0.05 0.06 0.05
RESET(2) 0.04 0.04 0.05 0.04 0.05 0.04
ARCH(1) 0.98 0.09 0.08 0.04 0.04 0.04

Table 2.4: Estimated model and the % of rejection of their specification tests (α =
0.05)
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re-specifying the model to include a trend, one can obtain the following (average)

model:

y = constant+0.987x− 0.395t + û F − statistic =4587

(0.144) (0.05)

which does not suffer from the so-called weak instrumental variable bias.

2.4 Relevancy

As argued earlier an appropriate instrumental variable must satisfy two properties

of Redundancy and Relevancy. Traditionally, relevancy may be readily tested by

examining the fit of a regression of endogenous regressor on the instrumental vari-

able(s). F-static and R2 are among the most recommended goodness of fit measures

that usually utilize to assess the relevancy of the instruments. The higher R2 or F-

statistic indicates the more relevant instrumental variable(s). Partial R2 suggested

by Bound, Jaeger, and Baker (1995) is a measure that should be used instead, where

along xt there exist other exogenous variables in (3.8). However, all of these mea-

sures are applicable only in the single endogenous regressor models. For models with

multiple endogenous variables, Shea (1997) has proposed a version of partial R2 that

considers the possible correlation among the instruments. Godfrey (1999) in a clarifi-

cation note on Shea’s paper has demonstrated that Shea’s statistic may be expressed

as PR2
i =

(X′X)−1
ii

(X′PZX)−1
ii

, where (X ′X)−1
ii and (X ′PZX)−1

ii refer to the ith element of

(X ′X)−1 and (X ′PZX)−1, respectively. Although, standard R2 is a number between

0 and 1, the upper bound of R2 in (2.10) is an unknown and variable number, yet
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less than one. Specifically, consider the following relation

βLS =
Cov(y, x)

V ar(x)
= β0 +

Cov(x, z)

V ar(x)
γ0 (2.20)

where β0 and γ0 are defined in (2.8).

Proof :

β0 +
Cov(x, z)

V ar(x)
γ0 =

Cov(y, x|z)

V ar(x|z)
+

Cov(x, z)

V ar(x)

Cov(y, z|x)

V ar(z|x)
=

V ar(z)Cov(y, x)− Cov(x,z)2

V ar(x)
Cov(y, x)

V ar(z)V ar(x)− Cov(x, z)2
=

Cov(y, x)

V a(x)
= βLS

Considering R2
xz as Cov(x,z)2

V ar(z)V ar(x)
, the instrumental variable estimator βIV can be

rewritten as

βIV =
Cov(y, z)

Cov(x, z)
= β0 +

Cov(x, z)

V ar(x)

γ0

R2
xz

(2.21)

which implies as R2
xz approaches to one, the instrumental variable estimator moves

toward least square estimator. This outcome virtually never happens; the condition

of positive definite covariance matrix for (y,x, z) does not allow R2
xz to be greater

than q, where 0 < q < 1. For example, in the presented model by (2.5) the upper

limit of R2
xz is q = 1

1+λ2 , which is unknown in practice, and is also independent of the

instruments. The lack of a given upper bound makes it difficult for practitioners to

judge instruments solely in terms of their correlations with endogenous regressors.

Moreover, sample R2 is a biased estimator of its population counterpart, in general.

Given redundancy, condition (2.7) shows a simple way to test relevancy. Relevancy

can be simply tested by testing H0 : γ0 = 0 in y = β0x + γ0z + ε. The other

advantages of this measure over already mentioned measures are its simplicity, and

known sample distribution. In the following a series of experiments were undertaken
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Pop. R2 β̂iv Emp. size of tγ̂0 R2 F-statistic
Model 1:

0.001 0.440(-3.490) 0.08 0.005(0.01) 0.54(1.2)
0.05 0.013( 0.265) 0.65 0.05(0.06) 5.32(6.6)
0.15 0.003(-0.038) 0.99 0.15(0.16) 17.9(19.1)
0.25 -0.006(-0.021) 1.00 0.25(0.25) 33.1(34.8)

Model 2:
0.001 0.360( 0.880) 0.11 0.005(0.01) 0.53(1.24)
0.05 0.007(-0.002) 1.00 0.05(0.06) 5.23(6.61)
0.15 0.006(-0.032) 1.00 0.15(0.15) 17.9(19.3)

Table 2.5: Median (mean) of the estimated β̂iv, sample R2
xz, F-statistic and the

empirical size of the introduced relevancy test (α = 0.05)

to investigate the empirical distribution of β̂iv, t-statistic of γ̂0, and goodness of fit

measures for regression of xi on zi.

Experiment 1 : The data were generated by (2.5). The parameters for model

1 are: λ = 1, β = 0, θ2 = 1, and for model 2: λ = 2, β = 0, θ2 = 1. θ1 varies

across experiments to generate instrument z, with different population correlation

coefficient with the endogenous regressor x. Each experiment consists of 1000 trials,

and in each trial 100 observation were generated. Note that, the maximum possible

R2 for model 1 and model 2 are 0.5 and 0.2, respectively. Table (5) shows that

while an instrument with mild correlation with x (R2 ≈ 0.05, F-statistic around

6) is perfect for model 2, the appropriate instrument in the model 1 must be more

correlated with x (R2 ≈ 0.15, F-statistic around 18). Due to unknown λ in practice,

R2 and F-statistic have limited applicability , but test of H0 : γ0 = 0 can– as shown

by its empirical size– help practitioners to choose instruments carefully.

Experiment 2 : Let λ = β = θ1 = θ2 = 1, but consider another instrument for

x defined as z+ = θ1x + θ2ε1. Clearly, z+ is not uncorrelated with the error term,
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Pop.R2 β̂iv Emp. size of tγ̂0 R2 F-statistic
0.001 1.50(0.329) 0.06 0.005(0.01) 0.50(1.21)
0.20 1.50(1.50) 0.06 0.20(0.20) 25.11(26.56)

Table 2.6: Median(mean) of the estimated β̂iv,sample R2
xz, F-statistic and empirical

size of the introduced relevancy test(α = 0.05).

E(z+u) 6= 0. In the context of the existent literature there is not an objective way

to distinguish between z and z+. Table (6) shows that in 94 percent of trials12 and

regardless of Cov(x, z+) the introduced relevancy measure can readily identify the

invalid instrument, z+.

In this regard the other example would be the rank of x as an instrumental vari-

able that suggested by Sargan(1954) (see Judge, Griffiths, Hill, Lutkepohl, and Lee

(1985)). Because rank of x doesn’t convey any information more than x, it cannot

be used as instrument even though it has good correlation with x. The same may

apply to the study of the rate of return to education by Angrist and Krueger (1991),

where quarter of birth used as an instrumental variable. It seems, given years of

schooling, quarter of birth is not enough informative to describe the stochastic be-

havior of the earnings. This has confirmed by insignificant differences between the IV

and LS estimates of the rate of return to education in all different estimated models.

2.5 Conclusion

The main objective of this chapter has been to study the statistical foundation of the

instrumental variables method. The chapter extracts two properties in the underlying

12The data was generated using the joint distribution of the first two equations of the (2.4) and
z+ as defined in the text. Each trial has performed by 100 observations, and trials repeated 1000
times.
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joint distribution of the instrumental variables model. It shows that behind every

non-orthogonal structural equation, there is a system of independent and orthogonal

equations. Specification of the IV regression depends entirely on the specification of

the underlying system of equations. The chapter uses one of the properties of the

joint distribution function of the IV models to test instruments relevancy.
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Chapter 3

Using the IV method to estimate

omitted variable models:

An application of the IV method to estimate the rate of return to education

in Iran

66



3.1 Introduction

Many economic models are formulated in terms of variables that cannot be observed

or measured directly. The statistical estimation of these models is always a difficult

task for researchers because a statistical model requires the specification of the form

of the relationship between observable variables. In some cases, there exist good

proxy variables that could be replaced with unobservable variables. However, in

many cases researcher has to consider a specification that excludes the unobservable

variable. The primary effect of having omitted variables in a statistical model is bias

and inconsistent statistical inference. The IV method is the widely used method to

estimate models with omitted variables. In the IV literature, usually, instruments

are defined in terms of the model disturbances. Since disturbances are unobservable,

the only practical guidance for selection of a good instrument is a variable that is

highly correlated with the observable variables of the model. Section 2 describes

the IV method. It considers the parametrization of a well-specified three-variable

statistical model and introduces the appropriate instruments that could be used if

a variable of the model is omitted. Two extra conditions for a good instrument are

introduced in section 2. One of them is empirically testable, which could help to

reduce the uncertainty involved in the selection of instruments. Section 3 reviews

the literature of the rate of return to education. The models of returns to education

are a classical example of models with omitted variable. This section surveys the

usual instruments that are used to estimate returns to schooling. Section 4 is an

application of the IV method to estimate the rate of returns to education in Iran.

In search for an appropriate instrument for schooling, this section concludes with

the year of birth of individuals. It argues that the year of birth is correlated with

schooling because of the Cultural Revolution in 1980. The Cultural Revolution, as
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a natural experiment, has affected the education of four identical groups of Iranians

differently. These groups are distinguishable only by their year of birth. Section 4

shows that the year of birth barely satisfies all conditions to be a good instrument.

Section 5 contains the main conclusions.

3.2 Omitted variable models and the IV method

Consider the following regression model

W = βS + γA + e (3.1)

Where S and A are n × 1 vector of observations; β and γ are the parameters to be

estimated. The disturbance term, e, is assumed to be uncorrelated with S and A. If

one has access to the error-free observations for W, S, and A then the estimators for

β and γ can be defined by1

β̂ = Cov(W,S|A)
V ar(S|A)

(3.2)

γ̂ = Cov(W,A|S)
V ar(A|S)

(3.3)

Such that E(β̂) = β and E(γ̂) = γ. Let assume, however, that the researcher lacks

data on the variable A and propose to estimate

W = βS + v (3.4)

1Covariance of A and B given C is defined as

Cov(A,B|C) = Cov(A,B)− Cov(A, C)V ar(C)−1Cov(B,C)

.
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In that case, the estimator of β will be

β̂OLS =
Cov(W,S)

V ar(S)
= β + γ

Cov(S, A)

V ar(S)
+

Cov(S, e)

V ar(S)
(3.5)

Since, in general, γ 6= 0, Cov(S,A) 6= 0, and Cov(S, e) = 0, one has E(β̂OLS) 6= β

which is to say that β̂OLS is a biased estimator.

Instrumental variable(IV) method is, by far, the most widely used statistical

method to deal with the inconsistency problem of least square estimator in the omit-

ted variable models. The IV estimator of β is defined by

β̂IV =
Cov(W,Z)

Cov(S, Z)
(3.6)

where Z as an instrumental variable must have certain properties. As might be

expected, the main object of the instrumental variable method is to estimate β,

consistently. In other words, the selection of instrument is restricted by the following

equality
Cov(W,Z)

Cov(S,Z)
=

Cov(W,S|A)

V ar(S|A)

One can show that the necessary conditions for Z to have a consistent IV estimator

are2:

Cov(W,Z|S, A) = 0 (3.7)

Cov(A,Z) = 0 (3.8)

2See appendix 1 for proof.

69



Moreover, IV estimator is defined only if

Cov(S,Z) 6= 0 (3.9)

In addition to the separate effect of each condition (3.7–3.9) on determining a good

instrument, their combination has also some consequences for instrument selection.

The following implications stem immediately from (3.7–3.9)

Cov(A,Z|S) 6= 0 (3.10)

Cov(W,Z|S) 6= 0 (3.11)

To show them consider (3.10), which is

Cov(A,Z|S) = Cov(A,Z)− Cov(A, S)V ar(S)−1Cov(S, Z) (3.12)

Given (3.8) and (3.9), it is clear that Cov(A,Z|S) can not be zero. Now consider

(3.7)

Cov(W,Z|S, A) = Cov(W,Z|S)− Cov(W,A|S)V ar(A|S)−1Cov(A,Z|S)

= Cov(W,Z|S)− γCov(A,Z|S) = 0

which, given (3.10), implies (3.11) as a necessary condition. The above argument

brought out (3.10) and (3.11) as two implicit conditions of the appropriate instrumen-

tal variable that are not usually taken into account when researchers use instrumental

variable method to resolve omitted variable bias. Condition (3.8) states that the ap-

propriate instrumental variable should not be correlated with the omitted variable

A. However, (3.10) requires non-zero correlation between A and Z given specified
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values for S. Condition (3.11) specifies that when A is omitted from the model the

instrumental variable must convey some information regarding the stochastic behav-

ior of W, yet be uninformative in the presence of A by (3.7). If (3.11) does not hold

IV estimator is a biased estimator, and the bias is in the same direction as the least

square estimator:

Cov(W,Z|S) = 0 =⇒ Cov(W,Z) = Cov(W,S)V ar(S)−1Cov(S, Z)

β̂IV =
Cov(W,Z)

Cov(S, Z)
=

Cov(W,S)V ar(S)−1Cov(S,Z)

Cov(S,Z)
=

Cov(W,S)

V ar(S)
= β̂OLS

Fortunately, this condition can be readily tested by significance of the coefficient of

Z in a regression of W on S and Z.

An explanatory point seems necessary at this point. Condition (3.7) specifies

that the instrument should not have a direct effect on W in the presence of S and A.

In other words, in a theoretical regression of W on S, A, and Z the coefficient of Z

must be zero. The insignificance of Z in the model is conditional to the presence of S

and A and is not general. In the presence of A, the conditional correlation of W and

Z given S will be offset by conditional correlation of A and Z given S adjusted by γ,

such that Z, in the end, remains un-informative for W. Due to indeterminacy of (3.9),

condition (3.11) must be complemented with (3.9) to identify irrelevant instruments.

There exists another possibility for IV and least square estimators to be equal.

Suppose we have a candidate instrument Z with the properties that Cov(W,Z|S, A) =

0, Cov(S,Z) 6= 0 but Cov(A,Z) 6= 0, so Z is an invalid instrument. Then

β̂IV = β + γ
Cov(Z,A)

Cov(Z, S)
(3.13)
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Now, if Cov(A,Z|S) = 0 then

Cov(A,Z) = Cov(A, S)V ar(S)−1Cov(Z, S)

Cov(A,Z)

Cov(Z, S)
=

Cov(A, S)

V ar(S)

which means (3.5) and (3.13) are equal. However, in general, an invalid IV estimator

is not equal to least square estimator.

The above argument has introduced conditions (3.7–3.11) as the necessary con-

ditions for Z to be considered as a valid instrument. Among them, (3.10) and (3.11)

are secondary conditions; that is to say if (3.7-3.9) hold then (3.10) and (3.11) are

true . Since A is not observable, one can not be confident that a given Z satisfies

all the primary conditions (3.7-3.9). The non-verifiability of (3.7) and (3.8) renders

the implementation of the IV method as a central concern of modern applied mi-

croeconomics, because the choice of instruments depends, entirely, on the theoretical

considerations and the modeler’s subjective beliefs. Using secondary conditions could

help a researcher to reduce the risk of employing a bad instrument. Having one more

testable condition will improve the chance of selecting an appropriate instrument.

Numerical Example: Consider ωi = (Wi, Si, Ai, Zi)
′, which is a normally dis-

tributed vector of random variables with mean zero and covariance matrix Σ, where

Σ =




7.3125 2.65 2.795 0.8

2.65 2 0.7 1

2.795 0.7 1.49 0

0.8 1 0 2




Let Wi be the random variable whose behavior is of interest. The population regres-
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sion function for Wi would be

Wi = 0.8Si + 1.5Ai + ei (3.14)

Assume, for some reason, a researcher has to estimate

Wi = βSi + vi (3.15)

In this context, Z could serve as a valid instrument to estimate β because Z holds

all necessary conditions, (3.7–3.11).

To investigate the consistency of the IV estimators, a thousand samples of 100

observations of ωi = (Wi, Si, Ai, Zi)
′ were generated by the joint distribution of ωi,

and, for each sample Wi = βSi + vi was estimated by the IV method using Zi as

instrument. The empirical distribution of β̂OLS and β̂IV are presented3 in table

3.1. In addition, table 1 reports the empirical distribution of t-statistic of δ̂ from the

estimation of Wi = θSi+δZi+ui. This t-statistic can be used to test condition(3.11).

Table 3.1 shows that the empirical distributions of β̂IV is concentrated around

the population value of β. However, the concentration point of β̂OLS is far away from

the true value of β. The empirical distribution of tδ̂ indicates that Cov(W,Z|S) is

not equal to zero.

Now consider ω∗i = (Wi, Si, Ai, Zi)
′, as a normally distributed vector of random

3The STATA program is available in appendix 2.
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variables with mean zero and covariance matrix Σ∗,

Σ∗ =




7.3125 2.65 2.795 2.65

2.65 2 0.7 2

2.795 0.7 1.49 0.7

2.65 2 0.7 3




The corresponding population regression function of ω∗i is

Wi = 0.8Si + 1.5Ai + ei (3.16)

Obviously Z is not a valid instrument to estimate β. The variable Z satisfies condition

(3.7) and has non-zero correlation with S, but does not hold conditions (3.8), (3.10),

and (3.11). Since, in practice, (3.7) and (3.8) are unverifiable one may be tempted

by

R2
SZ = 1− V ar(S)− Cov((S, Z)V ar(Z)−1Cov(Z, S)

V ar(S)
= 0.66 (3.17)

to employ Z as a valid instrument. Table 3.2 shows the empirical distribution of

β̂OLS and β̂IV from a thousand samples of 100 observations of ω∗i . For each sample

Wi = βSi + vi was estimated by the IV method using Zi as instrument. It is clear

that the concentration point of the empirical distribution of β̂OLS and β̂IV are far

away from the population value of β. In fact the empirical distribution of β̂OLS and

β̂IV are similar. In the context of the primary conditions (3.7–3.9), it is impossible to

identify Z an an invalid instrument. However, the empirical distribution of tδ̂ indicate

that in 95 percent of samples Z is not a good instrument because the coefficient of Z

in a regression of W on S and Z is insignificant.
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3.3 Returns to education: Literature review

This section reviews two general framework to understand distortions in returns to

schooling and reexamines the mostly used instruments to estimate the rate of return

to education. The first model, developed by Card (1999), provides an analytically

tractable framework to analyze the classical model of human capital of Becker (1967).

Card’s model considers an individual who chooses an optimal amount of schooling

S, to maximize her utility function

U(S,W ) = logW − h(S) (3.18)

where h(S) is an increasing convex function and W refer to the level of earning

associated to schooling by W=W(S). The first order condition of the individual’s

optimization problem implies equality between marginal benefit and marginal cost

of schooling
W ′(S)

W (S)
= h′(S) (3.19)

A simple way to appreciate individual heterogeneity is to let

W ′(S)

W (S)
= β (3.20)

h′(S) = ri + kS (3.21)

where ri is a random variable with mean r, and both β and k are constant parameters.

Equation (3.21) is justified by imperfect financial markets or by different tastes for

schooling such that higher ri is associated with individuals with higher difficulties to

finance schooling or with lower preferences for studying.
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Considering equations (3.20) and (3.21), the optimal schooling would be

Si =
β − ri

k
(3.22)

and wage equation can be obtained by integrating equation (3.20)

log(Wi) = αi + βSi (3.23)

where αi is a person-specific constant of integration and refers to the capacity of

individuals to earn different wages at the given level of schooling. Equations (3.22)

and (3.23) constitute a system of equations for determining schooling and earnings

in terms of the underlying random variables αi and ri. Equation (3.23) indicates

that individuals with the same schooling level might have different earnings. This

difference can be modeled by

αi = δ0 + γAi (3.24)

where Ai, “Ability”, is a general index for talent, motivation and any other indi-

vidual’s attribute that might affect wages. Using (3.24), the wage equation can be

rewritten as

log(Wi) = δ0 + βSi + γAi (3.25)

The stochastic form of this equation, known as Mincerian earning function, has

been used extensively by many researchers in the context of human capital theory.

The Mincerian earning function has been derived by Blundell, Dearden, and Sianesi

(2003) in a different fashion. They consider the problem of measuring the impact

of education on earnings in the context of the causal inference literature. In this

framework any given individual faces a finite and exhaustive set of highest attainable
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schooling levels(treatments). Let Sij = 1 to show that the j is the highest schooling

level attained by individual i where j ∈ (0, 1, 2, ..., J), and W j
i as the potential

(log) earning of individual i if Sij = 1.The problem of estimating the rate of return

to education can be summarized as evaluating W j
i − W j−1

i , averaged over some

population of interest. However, the fundamental problem of causal inference (see

Holland (1986)) is the impossibility of observing W j
i and W j−1

i simultaneously. The

observed earning of individual i can be written as

Wi = W 0
i +

J∑
j=1

(W j
i −W 0

i )Sij (3.26)

Let W j
i be, in an additive manner, a function of observable individual’s attributes

Xi, and unobservable factors U j
i , which are specific to the individual and schooling

level

W j
i = mj(Xi) + U j

i (3.27)

where E(W j
i |Xi) = mj(Xi). Assume that an individual’s potential earning and

schooling level are independent from the schooling choices of other individuals in the

population and let

U j
i = αi + εi + bij (3.28)

where αi represents the unobservable individual attributes, εi is the standard error

term, and bij shows the individual-specific unobserved component of earning associ-

ated to the schooling level j. Using equations (3.27) and (3.28) and by normalizing

bi0 to 0, observed earning equation (3.26) becomes

Wi = m0(Xi) +
J∑

j=1

βijSij + αi + εi (3.29)
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with βij = (mj(Xi) −m0(Xi)) + bij. In the homogeneous returns framework where

βij = βj equation (3.29) becomes

Wi = m0(Xi) +
J∑

j=1

βjSij + αi + εi

By assuming that each additional year of schooling has the same marginal return

βij = jβ, one can get

Wi = m0(Xi) + βSi + αi + εi

which is equivalent to equation (3.23).

The empirical estimation of the Mincerian earning function is linked to economet-

rics of the omitted variable model because, in practice, ability is a non-observable

variable and must be omitted from the regression function. As argued in section

1, the IV method is a way to cope with the inconsistency problem of the omitted

variable model. To employ the IV method, one has to find an instrument, Z, cor-

related with S, uncorrelated with A and given A and S uncorrelated with W. The

first condition is the only one that can be analytically argued and practically mea-

sured. Based on Card’s model, correlation between Z and S is possible only through

ri. In other words, an appropriate instrument must be correlated with individual’s

“attitude toward schooling” or individual’s “access to funds” (family wealth). Some

studies use family background information–such as mother’s and father’s education–

as instrumental variable for education. Table 3.3 uses NLSY79-2000 database4 to

investigate the correlation between children’s discount rate (tastes for education) and

their parents education. In a hypothetical question, respondents were asked if they

were ready to accept an offer for a full time job at 2.5, 3.5, and 5 dollar per hour.

4This data set and its documentations are publicly accessible from the web-site of Bureau of
Labor Statistics: http://www.bls.gov/nls/home.htm.
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The job offered was dish washing which, of course, is not an interesting job for youth.

Table 1 considers those who were enrolled in regular schools at 1979 and shows their

(average) education as well as their mother’s and father’s (average) education in

2000. As table 3 indicates, children of higher-educated parents have lower discount

rates and lower marginal dis-utilities of schooling. Therefore, parent’s education are

correlated with schooling of children.

However, there exist some theoretical criticism against using family background

variables as instruments for schooling. According to these studies, given that ability

is partially inheritable and directly affected by family background, children of higher-

educated parents– who presumably have also higher ability and higher income– are

more able than children who grew up in lower-educated families. Plug and Vijverberg

(2003), using an intergenerational sample of families and by comparing biological

and adopted children, conclude that ability is partly responsible for the education

attainment of children, and that the largest part of ability for education is inherited.

Carneiro and Heckman (2002), using AFQT5 as a measure of ability, find that the

correlation between parents education and child ability is significantly greater than

zero (0.31). Surprisingly, parents’ education has the highest correlation with ability

among the instruments considered by Carneiro and Heckman (2002).

Beside the correlation of family background and ability, it is argued that fam-

ily background has direct effect on wages. For instance, Becker and Tomes (1986)

developed a human capital model that specifies a wage function containing family

background variables as regressors. Montgomery (1991), in what he called network-

ing effect, argued that high level families have friends and connections which enable

them to find a good job for their children. Direct relation between wage and family

background variables is in contradiction with (3.7) and does not allow to use family

5Armed Forces Qualification Test
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background variables as instruments for education.

College proximity (see Card (1995)) is another variable that recently used as

instrument for schooling. The idea for using college proximity as instrument comes

from the fact that those who are growing up near a college can be educated much

cheaper than people who are living far away from a school. The lower cost might

comes in the form of saving in transportation cost and living with family. Obviously,

this variable has a good correlation with Becker’s interpretation of ri as a measure of

access to funds necessary to finance schooling. However, there are some convincing

reasons, as mentioned by Card (1995), for the existence of a direct effect of college

proximity on the level of earnings. Direct effect of instrument on wages is not allowed

by (3.7), and disqualifies college proximity as a good instrument.

The recent studies, inspired by the causal inference literature, propose Natural

Experiment as a new resource for the optimal instruments. The basic idea of the

approach is to take advantage of a situation in which two identical groups (or time

periods) are affected differently by a “natural” event that is exogenous to the rela-

tionship between Wi and Si and causes a considerable change in both. In schooling

studies, perhaps, the famous example of natural experiment is Angrist and Krueger

(1991)), where quarter of birth was used as an instrument for education to estimate

the rate or return to education for men. They find significant association between

quarter of birth, schooling and earnings and argue that the observed associations are

generated by compulsory school attendance law. According to compulsory school

attendance law all children must to start the first grade in the fall of the year in

which they turn 6 and to stay in school until their 16th birthday. Therefore, two

boys who were randomly born at the different quarter of a same year may achieve

different levels of schooling and, therefore, different levels of income. They used the

observed association between quarter of birth, schooling and wages to justify quar-
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ter of birth as an appropriate instrument for schooling. They estimated the rate of

return to schooling, using quarter of birth as an instrument, in a sample of 329,500

men born between 1930-1939 from the 1980 census. As an example, in one version

of their model, there are 30 instruments created by interacting quarter and year of

birth. Their IV estimation of schooling coefficient is 0.089, which is not significantly

different from the ordinary least square estimation, 0.071 (see Angrist, Imbens, and

Krueger (1999)). Despite the observed correlation, their study is criticized by Bound,

Jaeger, and Baker (1995) as an application of weak instruments. In fact, the equality

of IV and OLS estimates could be a result of bad instrument or non-existence of omit-

ted variable bias. In this case, condition (3.11) provides another testable condition

to examine quality of quarter of birth as an appropriate instrument. In a regression

of the log of weekly wage on education, year effects and instruments none of the

instruments are significant, which indicates that (3.11) is not satisfied.6 It seems,

given years of schooling, quarter of birth is not enough informative to describe the

stochastic behavior of the earnings.

3.4 Returns to Education in Iran: Using the Cul-

tural Revolution as a Natural Experiment

Despite the importance of the estimates of return to schooling in modern labor

economies, there have been few attempts to estimate the rate of return to education

in the Iranian economy. The available studies are also limited to either geographical

areas or economic sectors. In addition, neither of them has addressed the endogeneity

problem of education in the earning function. Henderson (1983) using data from

6Angrist and Krueger’s data set is available on the data archive of the Journal of Applied
Econometrics.

81



a 1975 socioeconomic survey has estimated the return to education only among

the self-employed workers in Tehran. Sadegi (1999) has estimated the return to

the education of heads of households in Isfahan, and Naderi and Mace (2003) have

estimated the return to education in manufacturing sector. Salehi-Isfahani (2002)

has used a nation-wide data set to estimate the returns of schooling; however, he

has not considered the endogeneity of schooling. This section is intended to estimate

the rate of return to education in Iran by the IV method. It utilizes year of birth

as an appropriate instrument for years of schooling. It is argued that the cultural

Revolution in 1980 generates a reasonable association between individual’s year of

birth and schooling.

3.4.1 Scope and Extent of the Cultural Revolution

In the recent history of Iran, the most important event regarding education is the

Cultural Revolution in late April 1980. Following the overthrow of the Shah in

1979, Iran’s education system underwent a process of Islamization to institutionalize

the values of the leaders of the revolution. In the spring of 1980, Moslem activists

demand’s for a fundamental reorganization of the educational system led to closure of

all higher education institutions for the subsequent 17 months. Ayatollah Khomeini

then appointed the Cultural Revolution Panel (Setad-e Enqelab-e Farhangi), a board

of Islamic educational experts, who were to restructure the educational system. The

panel changed the curricula and student admission procedures and reopened the

universities in October 1981.

As a result of the Cultural Revolution the schooling of two cohorts of Iranian

citizens was delayed or cut short. The first cohort contains those who were in college

when colleges shot down. The second cohort includes those who turned 17-18 years
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old during the Cultural Revolution.

After the Cultural Revolution ended, universities began restricted recruitment.

New students drawn only from those who had Islamic or at least neutral political

attitudes with known family backgrounds. Those who entered the university before

the Cultural Revolution and had not completed their degrees were, partly, allowed to

return and finish their education. However, some of them due to political attitudes

and some due to family responsibilities never got the chance to go back to school.

Figure 3-1 depicts the ratio of individuals with college degree to the total individuals

by age for men and women using 1996 census data. It is readily discernible that

those who were have 30-39 years old in 1996 are, relatively, less college educated

than other age groups. This pattern is observable for both men and women, however

the gender gap is going to turn in favor of women after the Cultural Revolution.

Age

 Men’s College Ratio  Women’s College Ratio

20 30 40 50

.05

.1

.15

Figure 3-1: Percent with college education (census 1996)
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3.4.2 Data and Empirical Results

This section utilizes data from the Iranian Socio-Economic Survey conducted by the

Statistical Center of Iran in 2001. This is the most reliable collection of personal

micro-data representative of the Iranian population. The Socio-Economic Survey

is a longitudinal survey of the Iranian households randomly selected at 2001 and

followed, subsequently, for four years. A total of 6960 households were interviewed,

generating information on 30715 individuals. Among them 3064 individuals are wage

and salary workers with the valid information regarding wage, hours of work, and

education. Some descriptive statistics for the original survey and the sub-sample

used in this study are presented in Table 4.

As is apparent from Table 3.4, the measure of education is not the actual years

spent at school but the highest degree attained by the individual. These degrees

include: Primary school, middle school, High School and College. The statutory

number of years required to obtain a primary and middle school certificate is 5 and

8 years, respectively. For high school diploma, students must spend 4 more years in

school. The statuary number of years required to complete college education varies

with the field of specialization form 4 years in engineering and science to 6 years

for medical studies. Figure 3-2 depicts the distribution of hourly wages (log) by

education categories where the solid line connects the conditional means. Clearly,

after middle school, wage increases linearly as education rises. The lower wage (mean)

for those who did not complete a degree is an indicator for the existence of sheepskin

effect in Iran’s labor market.

To obtain years of education from levels, this study assigns 5 years to primary

school, 8 years to middle school, and 11 and 12 years to high school diploma depend-

ing on the high school type. Finally, college degrees are considered as equivalent
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Figure 3-2: Wage (log) distribution and education categories

to 16 years of education. For those who have dropped out without the degree, the

average statuary years of their lowest and uncompleted degree is considered as the

years of education. It must be emphasized that the statutory number of years can

be different from the actual number of years spent to obtain a degree for some indi-

viduals. Moreover, the lack of detailed data for college graduates does not allow to

distinguish them by their field of specialization and even post graduate degrees.

Table 3.5 reports the OLS estimates of wage equation by four different specifi-

cations. Years of education (S), experience (Exp), Experience square (Expsq), area

of residence (Tehran, Urban), sector of employment (Private) and ethnicity7 are

the explanatory variables used to explain the stochastic behavior of wages. Experi-

ence is measured by age minus age at the first job. In the first specification, only

schooling, experience, experience square and area of residence are included. Second

specification controls for ethnicity of individuals and third specification adds sector

7Iran is a nation of multi-language cultures: Persian, Azari, Kurdish, Lori, Baluchi, Armenian,
and others.
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of employment to the explanatory variables. To test for the existence of “Sheepskin

effect”, fourth specification considers a binary variable (Diploma), which is equal to

one for those who dropped out without a degree: some primary, some intermediate,

some high school and some college. All of the estimates are significant and have

the expected signs. The percentage increase in hourly earning (log) attributed to an

additional year of schooling ranges from 9.3% to 8.2%. The significant and negative

coefficient of Diploma in the fourth specification is an indication of the existence of

“sheepskin” effect in Iran’s labor market. Given schooling and other control vari-

ables, a private sector worker’s wage is less than his/her public sector counterparts.

In fact, this effect is much higher than -8.8%, because public sector workers are

enjoying from variety of non-monetary benefits that do not reflect in their wages.

As discussed earlier, OLS estimate of the returns to education β is not consistent

either because of measurement errors in schooling variable or because of omitted

variable bias. To improve efficiency of the estimates, schooling must be instrumented

by a variable that satisfies conditions 3.7–3.9. The instruments used in this study

are a series of binary variables designed to exploit cohort effects due to the Cultural

Revolution. In regard to the effect of the Cultural Revolution on education four age

cohorts are distinguishable. The first cohort are those who were born before 1959.

This cohort had a chance to graduate from college before the Cultural revolution in

1980. The second group are those who were born in 1959-1962. This group were in

school during the Cultural Revolution. The third group are those who were turned

to college age during the Cultural Revolution. These individuals were born from

1963 to 1965. Finally, the fourth cohort are those who were born after 1965. Like

the first cohort, these individuals had a chance to have a normal education, albeit

with different curricula and quality. Figure 3-3 shows how the education of each
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cohort was affected by the Cultural Revolution.8 According to the figure 3, 32% of

first cohort, 28% of second cohort, 23% of third cohort, and 27% of fourth cohort

had a chance to go to college. Obviously, for no reason than the unlucky time of

birth the education of second and third cohorts is less than other cohorts. The

correlation between year of birth and years of schooling is, indeed, generated by the

Cultural revolution. Since year of birth is a random variable, it, intuitively, could

not be correlated with ability and in a theoretical view it is not also a determinant

of wages. In this view, the year of birth satisfies conditions (3.7–3.9) and, therefore

is appropriate instrument for schooling in a wage function.

Three dummy variables, defined as

Z1 = 1 : 1959 < year of birth ≤ 1962, Z1 = 0 : otherwise

Z2 = 1 : 1963 ≤ year of birth ≤ 1965, Z2 = 0 : otherwise

Z3 = 1 : year of birth > 1966, Z3 = 0 : otherwise

are used as instruments for years of schooling. Table 3.6 presents the IV estimates

of the wage equation. First stage R2, Partial R2 and F-test of excluded instruments

suggested by Bound, Jaeger, and Baker (1995) are reported at the bottom of the

table for each specification. The relatively high first stage R-square and significant

F-statistic are indication of good correlation between year of birth and years of

schooling.

The IV estimates of the return to schooling ranges from 8.2% to 5.6% depending

on the specification. The IV estimate of the “sheepskin effect” is higher and more

significant than OLS estimate. As predicted by (3.5) the IV estimates of the return

8Revolution and war, as other natural events, are additional factors that may have impact on the
education of Iranians. In fact, these factors are another reasons to use year of birth as instrument
for schooling.
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Figure 3-3: Percent with college education (Sample 2001)

to schooling is smaller than the OLS estimates. However, the difference is significant

at α = 0.15 as the level of significance. Similarly, in a test for condition (3.11), the

coefficients of Z1, Z2, and Z3 in a regression of hourly wages on schooling, control

variables and instruments are 0.073(0.065), 0.056(0.08), and 0.10(0.06) respectively.

The numbers inside the parenthesis are the estimated standard errors for the esti-

mated coefficients. The high standard errors are consistent with the weak differences

between the IV and OLS estimates of the rate of return to schooling.

3.5 Conclusion

This chapter argued the estimation of models with omitted variable by the IV

method. The consistent IV estimation is conditioned to using appropriate instru-

ments. Five condition has been derived for an appropriate instrument. This adds

two extra conditions to the usual IV conditions. One of these extra conditions is

empirically testable, which is useful to reduce the uncertainty in selection of instru-
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ments.

The chapter reviews the literature of returns to schooling and estimates the rate

of return to education in Iran. In line with the literature, to estimate the unknown

parameters of the earning function, the endogeneity of schooling is taken into ac-

count by using instrumental variable Method. It has been argued that the Cultural

Revolution, as an exogenous supply shock to the schooling, establishes year of birth

as a determining factor of education. The paper find that the IV estimates of returns

to schooling, 5.6%, is less than OLS estimate 8.2%. However, the difference is barley

significant. In addition, the paper reports evidence of sheepskin effect in Iran’s labor

market.
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Table 3.1: Estimated percentiles for OLS and IV estimators 
                  (good instrument) with  n=100.  

Percentiles 
OLSβ  IVβ  tδ  

1 0.96 -0.15 -4.54 
10 1.14 0.37 -3.52 
50 1.32 0.78 -2.25 
90 1.50 1.13 -1.03 
99 1.65 1.41 -0.11 

Mean 1.32 0.77 -2.22 
 
 
 
 
 
Table 3.2: Estimated percentiles for OLS and IV estimators  
                  (bad instrument) with  n=100. 

             
Percentiles 

OLSβ  IVβ  tδ  

1 0.96 0.95 -2.27 
10 1.13 1.11 -1.22 
50 1.32 1.32 -0.03 
90 1.51 1.54 1.20 
99 1.56 1.72 2.17 

Mean 1.33 1.32 -0.02 
 
 
 
 
 
Table 3.3: Attitudes toward work and parent’s education in NLSY data. 

Minimum acceptable wage Education Mother Education Father Education 

2.5 13.05 9.66 8.51 
3.5 13.64 10.60 9.70 
5.0 14.10 11.00 10.60 
>50 14.55 11.28 11.00 
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Table 3.4- Sample Characteristics for Overall and this paper subset of Socio-Economic Survey of Iran 
2001. 

 Subset  Overall 
Valid education Valid education and wage 

Education (%)    
 Some Primary -- 22.11 7.77 
 Primary -- 14.85 14.56 
 Some Intermediate -- 15.51 10.38 
 Intermediate -- 10.92 14.23 
 Some High School -- 11.94 6.89 
 High School -- 16.85 23.37 
 Some College -- 2.24 7.34 
 College -- 5.58 15.47 
     

   
Gender (%)    
 Male 50.14 53.91 83.58 
 Female 49.86 46.09 16.42 

   
Age Cohort (%)    
 Older than 42 21.43 12.72 20.56 
 39-42 3.44 3.32 7.70 
 36-38 3.74 3.85 7.28 
 Younger than 36 71.40 80.11 64.46 

   
Sector of Employment (%)    
 Public -- -- 44.91 
 Private -- -- 55.09 
    
Live in Tehran Province(%) 17.43 20.39 26.93 
    
Live in urban area (%) 57.61 62.59 75.55 
    
    
Sample Size 30,715 21,867 3,064 
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Table 3.5 – Estimated Regression Models (OLS) for Log Hourly Earnings 

  1 2 3 4 
1- Schooling 0.093 

(24.10) 
0.094 

(24.48) 
0.084 

(19.64) 
0.082 

(18.66) 
2- Experience 0.09 

(22.45) 
0.09 

(22.71) 
0.086 

(21.45) 
0.086 

(21.38) 
3- Experience                        

Square/100 
-0.154 

(-14.09) 
-0.154 

(-14.20) 
-0.148 

(-13.74) 
-0.148 

(-13.71) 
4- Live in Tehran 0.106 

(3.17) 
0.136 
(4.05) 

0.14 
(4.18) 

0.137 
(4.07) 

5- Live in Urban Area 0.095 
(2.59) 

0.08 
(2.21) 

0.076 
(2.08) 

0.077 
(2.13) 

6- Work in Public Sector   -0.088 
(-5.20) 

-0.088 
(-5.24) 

7-  Diploma    -0.062 
(-1.93) 

8- Ethnicity No Yes Yes Yes 
     
R-Square 0.33 0.35 0.36 0.37 
     

 
Table 3.6 – Estimated Regression Models (IV) for Log Hourly Earnings 

  1 2 3 4 
1- Schooling 0.083 

(6.68) 
0.083 
(6.67) 

0.060 
(3.46) 

0.056 
(3.10) 

2- Experience 0.090 
(22.47) 

0.091 
(22.75) 

0.085 
(20.16) 

0.084 
(19.87) 

3- Experience Square/100 -0.156 
(-13.93) 

-0.156 
(-14.06) 

-0.15 
(-13.78) 

-0.15 
(-13.75) 

4- Live in Tehran 0.114 
(3.28) 

0.146 
(4.18) 

0.157 
(4.41) 

0.151 
(4.30) 

5- Live in Urban Area 0.126 
(2.45) 

0.12 
(2.31) 

0.130 
(2.48) 

0.134 
(2.53) 

6- Work in Public Sector   -0.131 
(-3.83) 

-0.133 
(-3.86) 

7-  Diploma    -0.105 
(-2.41) 

8- Ethnicity No Yes Yes Yes 
     
First stage R-Square 0.22 0.24 0.37 0.40 
Partial R-Squared of     0.097 0.097 0.061 0.06 
 Excluded instruments      
Test of Excluded  109.37 109.34 66.71 63.77 
 Instruments     

 



3.6 Appendix 1

To show if Cov(W,Z|A, S) = 0 then Cov(W,S|A)
V ar(S|A)

= Cov(W,S|A,Z)
V ar(S|A,Z)

or

Cov(W,S|A)V ar(S|A,Z) = Cov(W,S|A,Z)V ar(S|A)

Let

Cov(W,S|A,Z) = Cov(W,S|A)− Cov(W,Z|A)V (Z|A)−1Cov(Z, S|A)

V ar(S|A,Z) = V ar(S|A)− Cov(S, Z|A)V (Z|A)−1Cov(Z, S|A)

Therefore,

Cov(W,S|A)V ar(S|A)− Cov(W,S|A)Cov(S, Z|A)V (Z|A)−1Cov(Z, S|A) =

V ar(S|A)Cov(W,S|A)− V ar(S|A)Cov(W,Z|A)V (Z|A)−1Cov(Z, S|A)

Cov(W,S|A)Cov(S, Z|A) = V ar(S|A)Cov(W,Z|A)

Now if Cov(W,Z|A, S) = 0 which implies

Cov(W,Z|A) = Cov(W,S|A)V (S|A)−1Cov(S,Z|A)

The above identity can be written as,

Cov(W,S|A)Cov(S, Z|A) = Cov(W,S|A)Cov(S, Z|A)

So
Cov(W,S|A)

V ar(S|A)
=

Cov(W,S|A,Z)

V ar(S|A,Z)
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.

Now if Cov(A,Z) = 0 then

β =
Cov(W,S|A,Z)

V ar(S|A,Z)
=

Cov(W,S|A) + Cov(W,S|Z)− Cov(W,S)

V ar(S|A) + V ar(S|Z)− V ar(S)

β (V ar(S|A) + V ar(S|Z)− V ar(S)) = (Cov(W,S|A) + Cov(W,S|Z)− Cov(W,S))

Considering

β =
Cov(W,S|A)

V ar(S|A)
→ βV ar(S|A) = Cov(W,S|A)

βV ar(S|A) + βV ar(S|Z)− βV ar(S) = Cov(W,S|A) + Cov(W,S|Z)− Cov(W,S)

Cov(W,S|A) + βV ar(S|Z)− βV ar(S) = Cov(W,S|A) + Cov(W,S|Z)− Cov(W,S)

βV ar(S|Z)− βV ar(S) = Cov(W,S|Z)− Cov(W,S)

β =
Cov(W,S|Z)− Cov(W,S)

V ar(S|Z)− V ar(S)
=

Cov(W,S)− Cov(W,S|Z)

V ar(S)− V ar(S|Z)
=

Cov(W,Z)

Cov(S, Z)
= βIV
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3.7 Appendix 2

The STATA code used to generate Table 3.1 and 3.2.

set matsize 800

set more off

program drop all

set obs 100

*mat sigma=[7.3125,2.65,2.795,0.8/2.65, 2,0.7,1/2.795,0.7,1.49,0/0.8,1,0,2]

mat sigma=[7.3125,2.65,2.795,2.65/2.65, 2,0.7,2/2.795,0.7,1.49,0.7/2.65,2,0.7,3]

program define iv

version 7.0

if ”‘1’” == ”?” {
global S 1 ”bols biv s2iv tz covsz”

exit

}
quietly {
set obs 100

drawnorm w s a z, cov(sigma)

reg w s

scalar bols= b[s]

ivreg w (s=z)

scalar biv= b[s]

scalar s2iv=e(rmse)ˆ2

reg w s z
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scalar tz= b[z]/ se[z]

factor w s a z, pc cov

mat def asd=get(Co)

scalar covsz=asd[2,4]

post ‘1’ (bols) (biv) (s2iv) (tz) (covsz)

drop all

}

end

simul iv,reps(1000)
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