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(ABSTRACT)

This dissertation is primarily concerned with studying the invariant subspaces of
left-invertible, weighted shifts, with generalizations to left-invertible operators where
applicable. The two main problems that are researched can be stated together as
When does a weighted shift have the one-dimensional wandering subspace property
for all of its closed, invariant subspaces? This can fail either by having a subspace
that is not generated by its wandering subspace, or by having a subspace with an
index greater than one. For the former we show that every left-invertible, weighted
shift is similar to another weighted shift with a residual space, with respect to being
generated by the wandering subspace, of dimension 𝑛, where 𝑛 is any finite number.
For the latter we derive necessary and sufficient conditions for a pure, left-invertible
operator with an index of one to have a closed, invariant subspace with an index
greater than one. We use these conditions to show that if a closed, invariant subspace
for an operator in a class of weighted shifts has a vector in 𝑙1, then it must have an
index equal to one, and to produce closed, invariant subspaces with an index of two
for operators in another class of weighted shifts.



Praise

To God, for:

It is the glory of God to conceal a thing: but the honour of kings is to search out a
matter.

–Proverbs 25:2 KJV

And especially for:

If any of you lack wisdom, let him ask of God, that giveth to all men liberally, and
upbraideth not; and it shall be given him.

–James 1:5 KJV

iii



Dedication

To those that I have loved, especially Diddy and Golnar

iv



Contents

1 Introduction 1
1.1 History of Weighted Shifts . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two Problems and Current Results . . . . . . . . . . . . . . . . . . . 4
1.3 Remaining Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Left-Invertible Operators and Wandering Subspaces 8
2.1 Left-Invertible Operators . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Wandering Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Set-Theoretic Conditions for the Wandering Subspace Property . . . . 15
2.5 Conditions for the Wandering Subspace

Property Based on the Norm . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Introduction to Invariant Subspaces . . . . . . . . . . . . . . . . . . . 22

3 Weighted Shifts and Wandering Subspaces 25
3.1 Weighted Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 The Wandering Subspace Problem . . . . . . . . . . . . . . . . . . . 27
3.3 The Structure of the Invariant Subspaces of 𝑆 . . . . . . . . . . . . . 37
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Chapter 1

Introduction

The purpose of this dissertation is to help better understand the structure of the
invariant subspaces of weighted shifts. To motivate the importance of studying
weighted shifts we provide a brief overview of their history. Then we discuss the two
main problems considered in this dissertation and the results in the literature that
are related to them. Finally we give an outline of the remainder of the dissertation.

1.1 History of Weighted Shifts

The Hilbert space 𝑙2 is the space of sequences that are square-summable, that is

𝑙2 = {{𝑙𝑖}∞𝑖=1, 𝑙𝑖 ∈ ℂ :
∞∑
𝑖=1

∣𝑙𝑖∣2 < ∞}.

Its vectors can be represented as 𝑙 = (𝑙1, 𝑙2, 𝑙3, . . .). The shift operator is the operator
defined by the mapping

𝑆 : (𝑙1, 𝑙2, 𝑙3, . . .) → (0, 𝑙1, 𝑙2, 𝑙3, . . .). (1.1)

The shift operator has long been used in examples and counterexamples due to its
unique behavior and how easily the rule by which it maps can be understood. One
of its first uses was in the theory of operators, which has its roots in extending
the analysis of matrices to operators with domains that have an infinite number
of dimensions, in integral equations, and in quantum mechanics. One of the first
achievements of the theory of operators was the spectral theorem, first for self-
adjoint and then for normal operators. The spectral theorem in essence showed that
normal operators could be viewed as the continuous, direct sum of scalar operators,
each of which acted on an invariant subspace for the normal operator (an invariant
subspace ℳ for an operator 𝑇 is a subspace that satisfies the relation 𝑇ℳ ⊂ ℳ).
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Daniel Sutton Chapter 1. Introduction 2

Moreover, the invariant subspaces were actually eigenspaces where the operator
acted as a scalar multiple of the identity. The next step towards an understanding
of all operators was studying the structure of invariant subspaces for nonnormal
operators. One of the first, interesting examples was the shift, which has since,
among other reasons, been studied in the hopes of a fuller understanding of the
invariant subspaces of arbitrary operators. It gained importance after the works of
von Neumann [46] and Wold [47] showed that any isometry on a Hilbert space is
the direct sum of a unitary operator and a generalized shift operator, which shifts
sequences in an arbitrary Hilbert space instead of just sequences in ℂ. Related
to the study of the invariant subspaces of an arbitrary operator was the Invariant
Subspace Problem, which asked: Does every bounded linear operator on a separable,
complex Hilbert space have an invariant subspace other than {0} and ℋ?

The seminal paper of Beurling [9] in a sense completely characterized the closed,
invariant subspaces of the shift operator on 𝑙2. It worked in the Hardy space, which
is the space of functions that are analytic in the unit disk and such that

∥𝑓∥2𝐻2 = sup
0<𝑟<1

∫ 2𝜋

0

∣𝑓(𝑟𝑒𝑖𝜃)∣2 𝑑𝜃
2𝜋

< ∞.

If a function is represented by its Taylor series 𝑓 =
∑

𝑎𝑛𝑧
𝑛, then this is the space

of functions such that
∑∞

𝑛=0 ∣𝑎𝑛∣2 < ∞, and if 𝑓 is viewed as 𝑓 = (𝑎1, 𝑎2, 𝑎3, . . .)
then the shift operator has its standard form as in equation (1.1). Alternatively, the
shift can be viewed as the operator 𝑀𝑧 of multiplication by the complex coordinate
function 𝑧 on the space 𝐻2, that is 𝑀𝑧 : 𝑓 → 𝑧𝑓 , and as this perspective focuses
more on the space than the operator, it is sometimes called the Hardy shift. These
two views yield unitarily equivalent operators, as any concrete 𝑓 can be viewed
abstractly as 𝑓 = (𝑎1, 𝑎2, 𝑎3, . . .) where 𝑎𝑛 = 𝑓(𝑛 − 1) are the Taylor coefficients

of 𝑓 , 𝑓(𝑛) =
∫ 2𝜋

0
𝑓(𝑒𝑖𝜃)𝑒−𝑖𝑛𝜃 𝑑𝜃

2𝜋
, so that if 𝑈 : (𝑎1, 𝑎2, 𝑎3, . . .) →

∑∞
𝑛=1 𝑎𝑛𝑧

𝑛−1, then
𝑆 = 𝑈−1𝑀𝑧𝑈 . The viewpoint of Beurling’s paper was mostly based on the theory of
functions in the Hardy space where it viewed the shift operator as the operation of
multiplication by the complex coordinate function 𝑧. It showed that for any closed,
invariant subspace ℳ of 𝑆, there is a function 𝜙 satisfying the condition of being a
so called inner function such that ℳ = 𝜙ℋ. It also showed that any vector could
be uniquely factored as 𝑓 = 𝜙𝐹 where 𝜙 is an inner function and 𝐹 is an outer
function, that is, it is cyclic for 𝑀𝑧. Lax [32] generalized to shifts that operate on
sequences of vectors in ℂ𝑛 instead of complex numbers and Halmos [24] and Helson
and Lowdenslager [28] generalized to shifts that operate on sequences of sequences.

A weighted shift is any operator defined by the mapping 𝑇 : (𝑙1, 𝑙2, 𝑙3, . . .) →
(0, 𝛼1𝑙1, 𝛼2𝑙2, 𝛼3𝑙3, . . .) where {𝛼𝑖}∞𝑖=1 is a sequence of bounded complex numbers.
The shift operator is seen to be the weighted shift whose weights are all ones, and
thus is usually called the unweighted shift. An operator 𝑇 is called left-invertible
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if there is an operator 𝐿 such that 𝐿𝑇 = 𝐼. Weighted shifts are left-invertible if
and only if inf𝑖 ∣𝛼𝑖∣ > 0. Analogous to the Hardy space are the Dirichlet space 𝐷 of
functions that are analytic in the unit disk and such that

∥𝑓∥𝐷 =

√
∥𝑓∥2𝐻2 +

1

𝜋

∫ 1

0

∫ 2𝜋

0

∣𝑓 ′(𝑟𝑒𝑖𝜃)∣2𝑟𝑑𝑟𝑑𝜃 < ∞

and the Bergman space 𝐿2
𝑎 of functions that are analytic in the unit disk and such

that

∥𝑓∥𝐿2
𝑎
=

(
1

𝜋

∫ 1

0

∫ 2𝜋

0

∣𝑓(𝑟𝑒𝑖𝜃∣2𝑟𝑑𝑟𝑑𝜃
)1/2

< ∞.

Both of these spaces can be viewed abstractly as the space of Taylor coefficients
{𝑎𝑛}∞𝑛=1 for which

∑∞
𝑛=1 𝑤𝑛∣𝑎𝑛∣2 < ∞ where {𝑤𝑛}∞𝑛=1 is a sequence of positive real

numbers (which depends on the space). With this perspective multiplication by the
complex coordinate is a weighted shift, and is called the Dirichlet shift or Bergman
shift, according to the space on which it acts. Beurling’s theorem led to research
into the closed, invariant subspaces of weighted shifts on other spaces such as the
Dirichlet and Bergman spaces, again viewing the shift operator as multiplication by
the complex coordinate, and also produced a search for factorization theorems for
functions in these spaces.

The papers of Julia [31, 29, 30], Halmos [23] and Sz.-Nagy [44] showed that any
contraction can be extended to be the adjoint of an isometry. In this sense isometries
are models for all operators, and in view of the result of von Neumann-Wold that
any isometry splits into the direct sum of a unitary operator and a generalized
unweighted shift, it appeared that understanding well the structure of generalized
unweighted shifts would lead to an understanding of the structure of all operators.
This was actually the approach of the Sz.-Nagy-Foiaş model theory for a contraction
operator [45]. While the approach led to a number of sufficient conditions for an
operator to have a nontrivial, invariant subspace, the problem in full generality
remains open. It was a surprise to many that for any strict contraction 𝐴 there are
two invariant subspaces ℳ and 𝒩 for the Bergman shift, 𝑇 , which is only a regular,
weighted shift on sequences in ℂ, such that 𝒩 ⊂ ℳ and 𝐴 = 𝑃ℳ∩𝒩⊥𝑇 ∣ℳ∩𝒩⊥ . This
was shown by Apostol, Bercovici, Foiaş, and Pearcy [6] and was a surprise to many,
as it showed that the Bergman shift, in a sense has every other operator contained
inside of it. This was drastically different from the Hardy shift, whose behavior was
known to be much nicer, and made the task of characterizing all of the invariant
subspaces of the Bergman shift seem intractable. More generally, for the last result
about ”containing” any strict contraction, the Bergman shift can be replaced by any
weighted shift whose powers converge strongly to zero and has both a spectral radius
and norm equal to one. In this way studying the invariant subspaces of weighted
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shifts will yield information for all operators. This increased the importance of
studying weighted shifts, and both the result from Apostol, et alii, and that of
Sz.-Nagy showed that the Invariant Subspace Problem could be reformulated to
be a problem about just the invariant subspaces of a single weighted shift. Also,
weighted shifts have been generalized in different directions, including to spaces
with an indefinite inner product [8], and to the commuting and noncommuting
multivariable cases [36].

1.2 Two Problems and Current Results

The two main problems of this dissertation find their origins in ongoing research on
spaces of functions including the Hardy and Bergman spaces. A wandering subspace
ℰ for an operator 𝑇 is a subspace such that 𝑇 𝑖ℰ ⊥ ℰ ∀𝑖 ≥ 1. We say that a space
is generated by the subspace 𝑋 for the operator 𝑇 if the linear span of elements
of the form 𝑇 𝑖𝑥 : 𝑥 ∈ 𝑋 𝑖 ≥ 0 is dense in the space. We will simply say that
a space is generated by the subspace 𝑋 if there is no confusion as to the operator
𝑇 . Halmos showed in [24] that if a closed, invariant subspace ℳ is generated by
a wandering subspace ℰ , then it must be that ℰ = ℳ ∩ (𝑇ℳ)⊥. The index of a
closed, invariant subspace ℳ is defined to be the dimension of ℳ∩ (𝑇ℳ)⊥. After
Beurling [9] showed that every closed, invariant subspace of the unweighted shift
has an index of one and the subspace is generated by its wandering vector (that is
ℳ∩ (𝑇ℳ)⊥ always has a dimension of one and this subspace generates ℳ), it was
natural to ask whether this property also holds for other weighted shifts. The first,
main problem is: Is every closed, invariant subspace of an arbitrary, left-invertible,
weighted shift generated by its wandering subspace? This was an open question but
will be shown here to have a negative answer. It is known that in the Dirichlet
and Bergman spaces every closed, invariant subspace is generated by its wandering
subspace [38, 4].

For general operators there are several results that give examples of operators
with closed, invariant subspaces that are generated by their wandering subspaces.
These results can be split into two categories: (i) those that are expressed in terms
of a model from the theory of functions, where the operator is represented as 𝑀𝑧 on
a space of analytic functions, and (ii) those that are expressed directly in terms of a
model on 𝑙2, where the operator is represented as a weighted shift. This dissertation
will focus on the model using weighted shifts. To be closer to completeness we list
some of the results from both categories; as it is often difficult to translate a result
given in the context of a model from the theory of functions to an equivalent form
in a model for a weighted shift, we leave many of the results given below in their
formulation from the theory of functions, and do not define the terminology. Note
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that an operator 𝑇 is pure if
∩∞

𝑖=0 𝑇
𝑖ℋ = {0}. Some closed, invariant subspaces

that are generated by their wandering subspaces are:

1. Multiplier invariant subspaces when the subspace has a Bergman-type repro-
ducing kernel [33].

2. All invariant subspaces if 𝑇 is a pure, left-invertible contraction such that
its left-inverse has a spectral radius of one and there is a family of functions
satisfying other properties; this class of operators includes weighted shifts
with decreasing weights such that the recursive sequence 𝛽1 = 4𝛼2 + 𝛼3 − 𝛼1,

𝛽𝑛+1 = 4𝛼𝑛+2 + 𝛼𝑛+3 − 𝛼𝑛+ 1− 4𝛼2
𝑛+2

𝛽𝑛
is always greater than zero [43].

3. All invariant subspaces if 𝑇 is pure and there exists an infinite matrix 𝐴 =
(𝑎𝑘,𝑙) that satisfies

(𝑖)
∑
𝑙≥0

∣𝑎𝑘,𝑙∣∥𝑇 𝑙𝐿𝑙∥ < ∞ ∀𝑘 ≥ 0,

(𝑖𝑖) lim
𝑘→∞

∑
𝑙≥0

𝑎𝑘,𝑙 = 1 ∀𝑙 ≥ 0,

(𝑖𝑖𝑖) lim
𝑘→∞

𝑎𝑘,𝑙 = 0 ∀𝑙 ≥ 0,

and
(𝑖𝑣) sup

𝑘≥0
∥
∑
𝑙≥0

𝑎𝑘,𝑙𝑇
𝑙𝐿𝑙∥ < ∞.

A sufficient condition for the existence of such an 𝐴 is that 𝛼1 ≤ 2𝛼2 and the
sequence { 1

𝛼𝑖
}∞𝑖=1 is concave or {𝛼𝑖}∞𝑖=1 comes from a logarithmically subhar-

monic weight function (weighted shifts are always pure) [42].

4. All invariant subspaces if 𝑇 is a pure, expansive operator such that

∥𝑇 𝑘𝑥∥2 ≤ 𝑐𝑘(∥𝑇𝑥∥2 − ∥𝑥∥2) + 𝑐∥𝑥∥2

for all 𝑥 ∈ ℋ, 𝑘 ≥ 2, with
∑∞

𝑘=2
1
𝑐𝑘

= ∞ [35]. This condition will be slightly
generalized in the second chapter.

The closest result to showing that there are weighted shifts with closed, invariant
subspaces that are not generated by their wandering subspaces is by Hedenmalm and
Zhu [27] who show that there are zero-set subspaces that do not have the optimal
factorization property. This does not prove that there are subspaces that are not
generated by their wandering subspaces, but suggests it. In this dissertation we will
show that there are weighted shifts that have closed, invariant subspaces that are
not generated by their wandering subspaces.
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The second, main problem is: When does a weighted shift have only closed,
invariant subspaces of index equal to one? It has been known for a while that
there are weighted shifts, including the Bergman shift, that have closed, invariant
subspaces with arbitrary index, finite or infinite, according to the results in [6]. As
this paper showed the existence of such subspaces but did not explicitly construct
them, there have been papers that have produced such subspaces [25, 26, 11], as
well as work in 𝑙𝑝 and other spaces [2, 10]. There are a few results for when the
index is always one [3] based on the division property, as well as criteria for when
the index is or is not equal to one [5], based on the results in [6]. Also, [34] has some
results on when a subnormal operator has only invariant subspaces with an index
of one or has invariant subspaces with an index of any size. Note that a subnormal
operator is one that can be extended to be a normal operator, and for weighted
shifts this necessitates that the weights be nondecreasing. In this dissertation we
derive equivalent conditions for a pure, left-invertible operator whose adjoint has a
kernel of dimension equal to one to have only closed, invariant subspaces with an
index equal to one. These conditions are derived by techniques formulated in the
context of the models for weighted shifts in 𝑙2. Then we demonstrate the usefulness
of the conditions by proving that a class of weighted shifts cannot have any vectors
contained in 𝑙1 in a closed, invariant subspace with an index greater than one, and
by constructing closed, invariant subspaces with an index of two for another class
of weighted shifts. The results for the second class strictly include those of [6], in
regards to their results on when a left-invertible, weighted shift has closed, invariant
subspaces with an index of two.

It has been the opinion of the author while reading many different papers that
problems that are innately based on the theory of operators are being solved using
methods from the theory of spaces of functions. As it appears that the primary goal
is the solution of the problems and moreover, most authors refer to solutions based
on the theory of Hilbert spaces and operators when available (as these are usually
shorter and more elegant), the author suggests that more research be devoted to
solving these problems using the methods of the theory of operators. Of course for
those problems that are innately based on the theory of the underlying spaces of
functions the techniques based on those spaces should be employed.

1.3 Remaining Chapters

The remaining chapters are organized as follows: The second chapter contains the
essential information regarding left-invertible operators and wandering subspaces. It
introduces the Wandering Subspace Property and gives different kinds of conditions
for an operator to possess the Wandering Subspace Property. The main results are
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very slight generalizations of material from [35]. It concludes with basic results on
isometries, with the emphasis on shifts, leading into the introduction of weighted
shifts in the third chapter. The main content of the third chapter is the treatment of
the first, main problem – that of when every closed, invariant subspace is generated
by its wandering subspace. A new proof using only the theory of operators acting on
𝑙2 gives a part of the Carathéodory Interpolation theorem, a result which is usually
proven by using the setting of the theory of functions in 𝐻2. It solves in a certain
sense when a weighted shift that is similar to the unweighted shift does not have the
Wandering Subspace Property. We also show that given any weighted shift, there
is another weighted shift, similar to the first, that has a closed, invariant subspace
with a residual space having any preassigned, finite dimension of 𝑛. As such it is the
first concrete example of a weighted shift that has a closed, invariant subspace that
is not generated by its wandering subspace, and hence is also the first proof that
such weighted shifts exist. The fourth chapter is concerned with the treatment of
the second, main problem – that of when a weighted shift has only closed, invariant
subspaces with indices equal to one. It includes many equivalent conditions for
when this happens that hopefully will help to illuminate the answer to this question
in more generality. It concludes by demonstrating that a certain class of weighted
shifts cannot have any vectors contained in 𝑙1 in a closed, invariant subspace with
an index greater than one, and constructs closed, invariant subspaces with an index
of two for another class of weighted shifts. The fifth and final chapter is mostly a
list of some of the topics that the author would like to see researched in the future.



Chapter 2

Left-Invertible Operators and
Wandering Subspaces

2.1 Left-Invertible Operators

Let ℋ be a (always assumed separable and having an infinite number of dimensions)
Hilbert space over the Complex Field. Let 𝑒𝑖 = (0, 0, ..., 0, 1, 0, 0, ...), where the 1 is
in the 𝑖𝑡ℎ spot; a vector 𝑥 ∈ ℋ can be written in either of the two equivalent forms:
𝑥 = (𝑥1, 𝑥2, 𝑥3, ...) or 𝑥 =

∑∞
𝑖=1 𝑥𝑖𝑒𝑖, where 𝑥𝑖 ∈ ℂ ∀𝑖 ≥ 1.

Let 𝑇 : ℋ → ℋ be an (always assumed bounded and linear) operator.

Definition 2.1.1. For any operator 𝑇 from ℋ to ℋ, the Kernel of 𝑇 , Ker 𝑇 , is the
set {𝑥 ∈ ℋ : 𝑇𝑥 = 0}. The Image of 𝑇 , Im 𝑇 , is the set {𝑦 ∈ ℋ : ∃𝑥 : 𝑇𝑥 = 𝑦}.
For any subspace 𝑋, the dimension of 𝑋, dim 𝑋, is the smallest integer 𝑛 such that
there exists a set {𝑥𝑖}𝑛𝑖=1 such that 𝑋 is the closure of the span of the 𝑥𝑖’s.

Definition 2.1.2. 𝑇 is left-invertible if there exists an operator 𝐿 such that 𝐿𝑇 = 𝐼,
and 𝑇 is right-invertible if there exists an operator 𝑅 such that 𝑇𝑅 = 𝐼.

Theorem 2.1.3. [18, Section A.2.2][7, Section 4.5] The following are equivalent:
(i) 𝑇 is left-invertible
(ii) 𝑇 ∗ is right-invertible
(iii) 𝑇 is one-to-one and Im(𝑇 ) is closed
(iv) ∃𝑐 > 0 such that ∥𝑇𝑥∥ ≥ 𝑐∥𝑥∥ ∀𝑥 ∈ ℋ

So, if 𝑇 is left-invertible then 𝑐2∥𝑥∥2 ≤ ∥𝑇𝑥∥2 = (𝑇𝑥, 𝑇𝑥) = (𝑇 ∗𝑇𝑥, 𝑥) ∀𝑥 ∈ ℋ,
which shows that 𝑇 ∗𝑇 is coercive, and by Corollary A.50 of [18], 𝑇 ∗𝑇 is invertible.
Therefore, 𝐿 = (𝑇 ∗𝑇 )−1𝑇 ∗ is well defined, and 𝐿𝑇 = (𝑇 ∗𝑇 )−1𝑇 ∗𝑇 = 𝐼, so 𝐿 is a
left-inverses for 𝑇 . Since ℋ has an infinite number of dimensions, if 𝑇 is not right-
invertible then the space of left-inverses for 𝑇 has an infinite number of dimensions;

8
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the important fact about 𝐿 is that it is the only left-inverse of 𝑇 with the property
Ker(𝐿) = Ker(𝑇 ∗).

Proposition 2.1.4. [7, Proposition 4.5.4] Let 𝑇 be a left-invertible operator, 𝐿 =
(𝑇 ∗𝑇 )−1𝑇 ∗, and 𝑃𝑇ℋ the orthogonal projection onto the (closed) range of 𝑇 , then
𝐿𝐴 is a left-inverse of 𝑇 if and only if there is an operator 𝐴 such that 𝐿𝐴 =
𝐿+ 𝐴(𝐼 − 𝑃𝑇ℋ)

Note: Since Ker(𝑇 ∗) = (Im𝑇 )⊥ = Im(𝐼 − 𝑃𝑇ℋ), 𝐴 only affects 𝐿𝐴 on Ker(𝑇 ∗),
so 𝐿𝐴1 = 𝐿𝐴2 if 𝐴1∣Ker(𝑇 ∗) = 𝐴2∣Ker(𝑇 ∗), that is, if 𝐴1 and 𝐴2 agree on Ker(𝑇 ∗).

Since every left-invertible operator has a right-invertible adjoint, it will at times
be helpful to have a theorem for right-invertible operators similar to Theorem 2.1.3:

Theorem 2.1.5. [18, Section A.2.2][7, Section 4.6] The following are equivalent:
(i) 𝑇 is right-invertible
(ii) 𝑇 ∗ is left-invertible
(iii) 𝑇 is onto
(iv) ∃𝑐 > 0 such that ∀𝑦 ∈ ℋ, ∃𝑥𝑦 such that 𝑇𝑥𝑦 = 𝑦 and 𝑐∥𝑥𝑦∥ ≤ ∥𝑦∥

Note that any operator 𝑇 with a closed range has a Moore-Penrose pseudoin-
verse 𝑇# defined by the relations 𝑇#𝑇 = 𝑃(Ker𝑇 )⊥ and 𝑇#∣(Ran𝑇 )⊥ = 0. If 𝑇 is

left-invertible then the Moore-Penrose pseudoinverse is equal to (𝑇 ∗𝑇 )−1𝑇 ∗, that
is, it is the unique left-inverse that has the same kernel as that of 𝑇 ∗. In gen-
eral if one starts with an operator 𝑇 that has a closed range, calculates the ad-
joint of its Moore-Penrose pseudoinverse (𝑇#)∗, and then takes the adjoint of this
new operator’s Moore-Penrose pseudoinverse, one will once again have the origi-
nal operator 𝑇 . In the case where 𝑇 is left-invertible, this can be seen from the
following: Since 𝐿𝑇 = 𝐼, by taking adjoints 𝑇 ∗𝐿∗ = 𝐼, so 𝐿∗ = 𝑇 (𝑇 ∗𝑇 )−1 is
left-invertible. This implies that 𝐿∗ = (𝐿𝑇 )

∗ has its own (𝐿𝐿∗)∗ (by definition the
adjoint of the unique left-inverse of 𝐿∗ which has a kernel equal to the kernel of 𝐿∗),
which can be calculated with the same equation for 𝐿∗, or (𝐿𝐿∗)∗ = 𝐿∗(𝐿∗∗𝐿∗)−1 =
𝑇 (𝑇 ∗𝑇 )−1((𝑇 ∗𝑇 )−1𝑇 ∗𝑇 (𝑇 ∗𝑇 )−1)−1 = 𝑇 (𝑇 ∗𝑇 )−1((𝑇 ∗𝑇 )−1)−1 = 𝑇 . It is because of
this that some authors say that there is a duality between the operators 𝑇 and 𝐿∗,
and we will see in the next section that this duality also affects the structure of an
operator’s wandering subspaces.

Theorem 2.1.6. [15, Theorem 8.18] Let 𝑇 be a nonzero operator. Then the follow-
ing are equivalent:
(i) T has a closed range (that is, a closed image)
(ii) There exists a 𝑐 > 0 such that ∥𝑇𝑥∥ ≥ 𝑐∥𝑥∥ ∀𝑥 ∈ (Ker 𝑇 )⊥

(iii) There exists a 𝑐 > 0 such that ∥𝑇𝑥∥ ≥ 𝑐∥𝑃(Ker T)⊥𝑥∥ ∀𝑥 ∈ ℋ
(iv) inf{∥𝑇𝑥∥ : 𝑥 ∈ (Ker 𝑇 )⊥ , ∥𝑥∥ = 1} > 0.
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Definition 2.1.7. Let 𝐴 and 𝐵 be subspaces. 𝐴⊖𝐵 is defined as 𝐴 ∩ (𝐵)⊥.

Notice that if 𝐵 ⊂ 𝐴 and 𝐵 is regarded as a subspace of 𝐴, then 𝐵⊥ = 𝐴⊖𝐵.
Using this definition Ker(𝑇 ∗) = ℋ⊖ 𝑇ℋ.

Proposition 2.1.8. Let 𝑇 be a left-invertible operator on ℋ. Then dim(ℋ⊖𝑇ℋ) =
dim(𝑇 𝑖ℋ⊖ 𝑇 𝑖+1ℋ) ∀𝑖 ≥ 0.

Proof Let {𝑓𝑖}𝑛𝑖=1 be an orthornormal basis of ℋ⊖ 𝑇ℋ where 𝑛 = dim(ℋ⊖ 𝑇ℋ).
Since 𝑇 is left-invertible, 𝑇ℋ is closed. By (𝑖𝑣) of Theorem 2.1.3, there is a 𝑐 > 0
such that ∥𝑇𝑥∥ ≥ 𝑐∥𝑥∥ ∀𝑥 ∈ ℋ, and hence this 𝑐 works for 𝑇 restricted to any of its
closed, invariant subspaces, so 𝑇 restricted to any of its closed, invariant subspaces
is also left-invertible. Since 𝑇 ∣𝑇ℋ is left-invertible, 𝑇 2ℋ is closed. If 𝑃𝑇ℋ⊖𝑇 2ℋ𝑇𝑥 = 0
for some 𝑥 ∈ span{𝑓1, 𝑓2, 𝑓3, . . .}, then 𝑇𝑥 ∈ 𝑇 2ℋ. So 𝑇𝑥 = 𝑇 2𝑦 for some 𝑦 ∈ ℋ, and
applying 𝐿 to both sides of this equality yields 𝑥 = 𝑇𝑦 ∈ 𝑇ℋ, but 𝑥 ∈ ℋ ⊖ 𝑇ℋ, so
that it must be that 𝑥 = 0. Therefore 𝑃𝑇ℋ⊖𝑇 2ℋ𝑇 span{𝑓1, 𝑓2, 𝑓3, . . .} is a subspace
of dimension at least 𝑛 contained in 𝑇ℋ ⊖ 𝑇 2ℋ, and hence dim(𝑇ℋ ⊖ 𝑇 2ℋ) ≥
dim(ℋ⊖ 𝑇ℋ).

To prove the reverse inequality, suppose that 𝑔 ∈ 𝑇ℋ⊖ 𝑇 2ℋ with 𝑔 ∕= 0. Then
𝐿𝑔 ∕∈ 𝑇ℋ, because this would mean that there is some 𝑥 ∈ ℋ such that 𝐿𝑔 = 𝑇𝑥,
or 𝑇𝐿𝑔 = 𝑔 = 𝑇 2𝑥 where 𝑇𝐿𝑔 = 𝑔 because 𝑔 ∈ 𝑇ℋ. This implies that 𝑔 ∈ 𝑇 2ℋ,
but 𝑔 ∈ 𝑇ℋ ⊖ 𝑇 2ℋ is a contradiction to 𝑔 ∕= 0. Therefore 𝐿𝑔 = 𝑓 + 𝑇𝑦 for some
𝑓 ∈ span{𝑓1, 𝑓2, 𝑓3, . . .}, and hence 𝑇𝐿𝑔 = 𝑔 = 𝑇𝑓 + 𝑇 2𝑦 and 𝑃𝑇ℋ⊖𝑇 2ℋ𝑔 = 𝑔 =
𝑃ℋ⊖𝑇 2ℋ𝑇𝑓 , so that 𝑔 ∈ 𝑃𝑇ℋ⊖𝑇 2ℋ𝑇 span{𝑓1, 𝑓2, 𝑓3, . . .}. Since 𝑔 ∈ 𝑇ℋ ⊖ 𝑇 2ℋ was
arbitrary, it follows that dim(𝑇ℋ ⊖ 𝑇 2ℋ) ≥ dim(ℋ ⊖ 𝑇ℋ). Combining this with
the previous paragraph yields dim(𝑇ℋ ⊖ 𝑇 2ℋ) = dim(ℋ ⊖ 𝑇ℋ). Using the fact
that 𝑇 ∣𝑇 𝑖ℋ is left-invertible for every 𝑖 ≥ 0, by induction we obtain dim(ℋ⊖𝑇ℋ) =
dim(𝑇 𝑖ℋ⊖ 𝑇 𝑖+1ℋ) ∀𝑖 ≥ 0.

Corollary 2.1.9. Let 𝑇 be a left-invertible operator such that dim(ℋ ⊖ 𝑇ℋ) = 1,
then there is a sequence of orthogonal wandering vectors {𝑒𝑖}∞𝑖=1 such that ℋ =
(span{𝑒1} ⊕ span{𝑒2} ⊕ span{𝑒3} ⊕ . . .)⊕∩∞

𝑖=0 𝑇
𝑖ℋ.

Proof By Proposition 2.1.8 dim(𝑇 𝑖ℋ ⊖ 𝑇 𝑖+1ℋ) = 1 ∀𝑖 ≥ 0. Let 𝑒𝑖 be a nonzero
vector in 𝑇 𝑖−1ℋ⊖ 𝑇 𝑖ℋ for every 𝑖 ≥ 1. Then since

ℋ =
(
(ℋ⊖ 𝑇ℋ)⊕ (𝑇ℋ⊖ 𝑇 2ℋ)⊕ (𝑇 2ℋ⊖ 𝑇 3ℋ)⊕ . . .

)⊕ ∞∩
𝑖=1

𝑇 𝑖ℋ,

the relation ℋ = (span{𝑒1} ⊕ span{𝑒2} ⊕ span{𝑒3} ⊕ . . .)⊕∩∞
𝑖=0 𝑇

𝑖ℋ follows. Since
𝑇 𝑗𝑒𝑖 ∈ 𝑇 𝑖ℋ ∀𝑗 ≥ 1, 𝑒𝑖 ⊥ 𝑇 𝑗𝑒𝑖 ∀𝑖, 𝑗 ≥ 1, so that 𝑒𝑖 is a wandering vector for every 𝑖.
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2.2 Wandering Subspaces

Definition 2.2.1. A closed subspace ℰ is a wandering subspace for the operator
𝑇 if ℰ ⊥ 𝑇 𝑖ℰ ∀𝑖 ≥ 1. A vector 𝜀 is a wandering vector for the operator 𝑇 if
𝜀 ⊥ 𝑇 𝑖𝜀 ∀𝑖 ≥ 1. As Halmos showed that if ℋ is generated by a wandering subspace
ℰ, then it must be that ℰ = ℋ ⊖ 𝑇ℋ ([24]), we will call ℋ ⊖ 𝑇ℋ THE wandering
subspace for 𝑇 .

Definition 2.2.2. For a set 𝑋 ⊂ ℋ and an operator 𝑇 , the following notation will
be used interchangeably: [𝑋]𝑇 =

⋁∞
𝑖=0 𝑇

𝑖𝑋 = 𝑠𝑝𝑎𝑛{𝑋,𝑇𝑋, 𝑇 2𝑋,𝑇 3𝑋, ...}, for the
closure of finite linear combinations of elements in 𝑇 𝑖𝑋, 𝑖 ∈ ℕ, which is also the
smallest closed, invariant subspace of 𝑇 containing 𝑋.

Note: 𝑥 ∈ ⋁∞
𝑖=0 𝑇

𝑖𝑋 means that for every 𝜖 > 0 ∃{𝑐𝑖, 𝑥𝑖}𝑛𝑖=0 𝑐𝑖 ∈ ℂ 𝑥𝑖 ∈ 𝑋
where 𝑛 is finite such that ∥𝑥 −∑𝑛

𝑖=0 𝑐𝑖𝑇
𝑖𝑥𝑖∥ ≤ 𝜖; however, for a smaller 𝜖1 it

may not be true that 𝑐𝑖𝜖𝑇
𝑖𝜖𝑥𝑖𝜖 = 𝑐𝑖𝜖1𝑇

𝑖𝜖1𝑥𝑖𝜖1
, so there may not exist one sequence

{𝑐𝑖, 𝑥𝑖}∞𝑖=0 such that 𝑥 = lim𝑛→∞
∑𝑛

𝑖=0 𝑐𝑖𝑇
𝑖𝑥𝑖 =

∑∞
𝑖=0 𝑐𝑖𝑇

𝑖𝑥𝑖 and it may not be
true that

⋁∞
𝑖=0 𝑇

𝑖𝑋 =
∑∞

𝑖=0 𝑇
𝑖𝑋 = {𝑦 : ∃{𝑐𝑖}∞𝑖=0, {𝑥𝑖}∞𝑖=0 𝑥𝑖 ∈ 𝑋 ∀𝑖 ≥ 0 : 𝑦 =

lim𝑛→∞
∑𝑛

𝑖=0 𝑐𝑖𝑇
𝑖𝑥𝑖}.

We will be interested in when the whole space is generated by a wandering
subspace for the operator 𝑇 , that is, when ℋ = [ℰ ]𝑇 where ℰ ⊂ ℋ satisfies ℰ ⊥
𝑇 𝑖ℰ ∀𝑖 ≥ 1. Notice that (see [24]) if 𝑦 ∈ 𝑇ℋ, then 𝑦 = 𝑇𝑥 for some 𝑥 ∈ ℋ, and
if 𝑥 ∈ [ℰ ]𝑇 then 𝑦 ∈ 𝑇 [ℰ ]𝑇 ⊂ [𝑇ℰ ]𝑇 ⊥ ℰ where the inclusion follows because 𝑇
is continuous. Hence if ℋ = [ℰ ]𝑇 , then ℰ is perpendicular to the range of 𝑇 , so
ℰ ⊂ (Im𝑇 )⊥ = Ker(𝑇 ∗). Likewise, if ℰ ∕= Ker(𝑇 ∗), then since both ℰ and Ker(𝑇 ∗)
are closed subspaces, there would be a vector 𝑥 ∈ Ker(𝑇 ∗) such that 𝑥 ⊥ ℰ , but
also 𝑥 ⊥ 𝑇 𝑖ℰ ∀𝑖 ≥ 1 since 𝑇 𝑖ℰ ⊂ 𝑇ℋ and 𝑥 ∈ Ker(𝑇 ∗) = (Im𝑇 )⊥, so 𝑥 ⊥ [ℰ ]𝑇 and
[ℰ ]𝑇 ∕= ℋ. This shows that the only wandering subspace that could possibly generate
the whole space is ℰ = Ker(𝑇 ∗) (but there could be infinitely many wandering
subspaces), and an operator with a dense range cannot have a wandering subspace
that generates the whole space (since Ker(𝑇 ∗) = {0}).
Definition 2.2.3. An operator 𝑇 is called pure if

∩∞
𝑖=0 𝑇

𝑖ℋ = {0}.
Theorem 2.2.4. [42, Proposition 2.7] Let 𝑇 be a left-invertible operator, ℰ = ℋ⊖
𝑇ℋ and 𝐿∗ = 𝑇 (𝑇 ∗𝑇 )−1 as defined above, then ℋ =

⋁∞
𝑖=0 𝑇

𝑖ℰ ⊕ ∩∞
𝑗=0 𝐿

∗𝑗ℋ =⋁∞
𝑗=0 𝐿

∗𝑗ℰ ⊕∩∞
𝑖=0 𝑇

𝑖ℋ

Proof Since 𝐿∗ = 𝑇 (𝑇 ∗𝑇 )−1 and (𝑇 ∗𝑇 )−1ℋ = ℋ, 𝑇ℋ = 𝐿∗ℋ, and therefore
ℋ⊖𝐿∗ℋ = ℋ⊖ 𝑇ℋ = ℰ , which justifies having only one ℰ in the above equalities.
The second equality will follow from the first by interchanging the roles of 𝑇 and
𝐿∗ since 𝑇 = (𝐿𝐿∗)∗ as shown at the end of the previous section.
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Suppose that 𝑥 ∈ (
⋁∞

𝑖=0 𝑇
𝑖ℰ)⊥. Since ℰ = ℋ⊖𝐿∗ℋ and 𝐿∗ℋ is a closed subset of

ℋ, ℋ = 𝐿∗ℋ⊕ℰ . Therefore, there are 𝑥1 ∈ 𝐿∗ℋ and 𝑥2 ∈ ℰ such that 𝑥 = 𝑥1 + 𝑥2.
Since 𝑥 ⊥ ⋁∞

𝑖=0 𝑇
𝑖ℰ , 𝑥 ⊥ ℰ , and since 𝑥1 ∈ 𝐿∗ℋ ⊥ ℰ it must be that also 𝑥2 ⊥ ℰ

but since 𝑥2 ∈ ℰ , 𝑥2 = 0, and 𝑥 ∈ 𝐿∗ℋ. Applying 𝐿∗ to both sides of ℋ = 𝐿∗ℋ⊕ℰ
we obtain 𝐿∗ℋ = 𝐿∗2ℋ+̇𝐿∗ℰ because 𝐿∗ is one-to-one, where 𝑌 = 𝐴+̇𝐵 means
that for every 𝑦 ∈ 𝑌 there is a unique pair {𝑎, 𝑏} ∈ 𝐴 × 𝐵 such that 𝑦 = 𝑎 + 𝑏
(this is equivalent to 𝑌 = 𝐴+𝐵 and 𝐴 ∩𝐵 = {0}). So, again there are 𝑥1 ∈ 𝐿∗2ℋ
and 𝑥2 ∈ 𝐿∗ℰ such that 𝑥 = 𝑥1 + 𝑥2. Since (𝑇𝜀, 𝐿∗2𝑦) = (𝐿𝑇𝜀, 𝐿∗𝑦) = (𝜀, 𝐿∗𝑦) =
0 ∀{𝜀, 𝑦} ∈ ℰ × ℋ, 𝐿∗2ℋ ⊥ 𝑇ℰ and 𝑥1 ⊥ 𝑇ℰ . Since 𝑥 ⊥ ⋁∞

𝑖=0 𝑇
𝑖ℰ , 𝑥 ⊥ 𝑇ℰ ,

and it must be that 𝑥2 ⊥ 𝑇ℰ . Since 𝑥2 ∈ 𝐿∗ℰ , ∃𝜀 ∈ ℰ such that 𝑥2 = 𝐿∗𝜀 and
(𝑇𝜀, 𝑥2) = (𝑇𝜀, 𝐿∗𝜀) = (𝐿𝑇𝜀, 𝜀) = (𝜀, 𝜀) = ∥𝜀∥2 = 0 since 𝑥2 ⊥ 𝑇ℰ , so again 𝑥2 = 0
and 𝑥 ∈ 𝐿∗2ℋ. We can continue this inductively by applying 𝐿∗𝑗 to ℋ = 𝐿∗ℋ⊕ ℰ
to obtain 𝐿∗𝑗ℋ = 𝐿∗(𝑗+1)ℋ+̇𝐿∗𝑗ℰ , then show that 𝐿∗(𝑗+1)ℋ ⊥ 𝑇 𝑗ℰ , and finally that
𝑥2 ∈ 𝐿∗𝑗ℰ and 𝑥2 ⊥ 𝑇 𝑗ℰ implies that 𝑥2 = 0, so that 𝑥 ∈ 𝐿∗𝑗ℋ ∀𝑗 ≥ 0 and
𝑥 ∈ ∩∞

𝑗=0 𝐿
∗𝑗ℋ. We have then shown that (

⋁∞
𝑖=0 𝑇

𝑖ℰ)⊥ ⊂ ∩∞
𝑗=0 𝐿

∗𝑗ℋ.

Suppose that 𝑥 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ, then there exists a sequence {𝑥𝑗}∞𝑗=0 such that

𝑥 = 𝐿∗𝑗𝑥𝑗. Let 𝜀 ∈ ℰ , then (𝑇 𝑖𝜀, 𝑥) = (𝑇 𝑖𝜀, 𝐿∗(𝑖+1)𝑥𝑖+1) = (𝐿𝑖𝑇 𝑖𝜀, 𝐿∗𝑥𝑖+1) =
(𝜀, 𝐿∗𝑥𝑖+1) = 0 since 𝐿∗ℋ ⊥ ℰ , and hence 𝑥 ⊥ 𝑇 𝑖ℰ ∀𝑖 ≥ 0, and since

⋁∞
𝑖=0 𝑇

𝑖ℰ
is the closure of all finite linear combinations of elements in 𝑇 𝑖ℰ , it follows that
𝑥 ⊥ ⋁∞

𝑖=0 𝑇
𝑖ℰ , so ∩∞

𝑗=0 𝐿
∗𝑗ℋ ⊂ (

⋁∞
𝑖=0 𝑇

𝑖ℰ)⊥, and combining this with the relation

from above yields
∩∞

𝑗=0 𝐿
∗𝑗ℋ = (

⋁∞
𝑖=0 𝑇

𝑖ℰ)⊥, so that ℋ =
⋁∞

𝑖=0 𝑇
𝑖ℰ ⊕∩∞

𝑗=0 𝐿
∗𝑗ℋ.

Definition 2.2.5. A left-invertible operator 𝑇 is said to have the Wandering Sub-
space Property if ℋ =

⋁∞
𝑖=0 𝑇

𝑖ℰ for ℰ = ℋ⊖ 𝑇ℋ.

From the above theorem we see that an operator 𝑇 is pure if and only if 𝐿∗ has
the Wandering Subspace Property, and 𝑇 has the Wandering Subspace Property if
and only if 𝐿∗ is pure.

2.3 Isometries

Definition 2.3.1. An operator 𝑉 is an isometry if ∥𝑉 𝑥∥ = ∥𝑥∥ ∀𝑥 ∈ ℋ. An
operator 𝑈 is a unitary operator if it is an isometry that is onto ℋ.

Theorem 2.3.2. The following are equivalent:
(i) 𝑉 is an isometry
(ii) (𝑉 𝑥, 𝑉 𝑦) = (𝑥, 𝑦) ∀{𝑥, 𝑦} ∈ ℋ ×ℋ
(iii) 𝑉 ∗𝑉 = 𝐼
(iv) 𝑉 𝑉 ∗ is an orthogonal projection onto Im(𝑉 ) and Ker(𝑉 ) = {0}.
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Proof (i)⇒(ii): Since 𝑉 is an isometry, (𝑉 ∗𝑉 𝑥, 𝑥) = (𝑉 𝑥, 𝑉 𝑥) = ∥𝑉 𝑥∥2 = ∥𝑥∥2 =
(𝑥, 𝑥) ∀𝑥 ∈ ℋ, which implies that 𝑉 ∗𝑉 = 𝐼, so that (𝑉 𝑥, 𝑉 𝑦) = (𝑉 ∗𝑉 𝑥, 𝑦) =
(𝑥, 𝑦) ∀{𝑥, 𝑦} ∈ ℋ ×ℋ.
(ii)⇒(iii): Since (𝑉 𝑥, 𝑉 𝑦) = (𝑉 ∗𝑉 𝑥, 𝑦) = (𝑥, 𝑦) ∀{𝑥, 𝑦} ∈ ℋ ×ℋ, 𝑉 ∗𝑉 = 𝐼.
(iii)⇒(iv): (𝑉 𝑉 ∗)2 = 𝑉 𝑉 ∗𝑉 𝑉 ∗ = 𝑉 (𝑉 ∗𝑉 )𝑉 ∗ = 𝑉 𝑉 ∗, and since 𝑉 𝑉 ∗ is self-
adjoint, 𝑉 𝑉 ∗ is an orthogonal projection. If 𝑥 ∈ Im(𝑉 ), then 𝑥 = 𝑉 𝑦 and
𝑉 𝑉 ∗𝑥 = 𝑉 𝑉 ∗𝑉 𝑦 = 𝑉 𝑦 = 𝑥 since 𝑉 ∗𝑉 = 𝐼, and if 𝑥 ⊥ Im(𝑉 ) then 𝑥 ∈ Ker(𝑉 ∗)
and 𝑉 𝑉 ∗𝑥 = 0, so 𝑉 𝑉 ∗ is the orthogonal projection onto Im(𝑉 ). Also, 𝑉 ∗𝑉 = 𝐼
implies that Ker(𝑉 ) = {0}.
(iv)⇒(i): If 𝑥 ∈ Ker(𝑉 𝑉 ∗) then ∥𝑉 ∗𝑥∥2 = (𝑉 ∗𝑥, 𝑉 ∗𝑥) = (𝑉 𝑉 ∗𝑥, 𝑥) = 0 so that
𝑥 ∈ Ker(𝑉 ∗). If 𝑥 ⊥ Ker(𝑉 𝑉 ∗), then ∥𝑉 ∗𝑥∥2 = (𝑉 ∗𝑥, 𝑉 ∗𝑥) = (𝑉 𝑉 ∗𝑥, 𝑥) = (𝑥, 𝑥) =
∥𝑥∥2 since 𝑉 𝑉 ∗ is an orthogonal projection onto (Ker(𝑉 𝑉 ∗))⊥, so Ker(𝑉 ∗) =
Ker(𝑉 𝑉 ∗) and 𝑉 ∗ is an isometry on (Ker(𝑉 𝑉 ∗))⊥ = (Ker(𝑉 ∗))⊥ = Im(𝑉 ) since
𝑉 ∗ has a closed image and hence so does 𝑉 (see Theorem 4.4.1 in [7]) and therefore
𝑉 𝑉 ∗ is the identity on Im(𝑉 ). Therefore, (𝑉 ∗𝑉 )2 = 𝑉 ∗𝑉 𝑉 ∗𝑉 = 𝑉 ∗(𝑉 𝑉 ∗)𝑉 = 𝑉 ∗𝑉
and 𝑉 ∗𝑉 is an orthogonal projection onto (Ker(𝑉 ∗𝑉 ))⊥ = (Ker(𝑉 ))⊥ = ℋ, so that
∥𝑉 𝑥∥2 = (𝑉 𝑥, 𝑉 𝑥) = (𝑉 ∗𝑉 𝑥, 𝑥) = (𝑥, 𝑥) = ∥𝑥∥2, and 𝑉 is an isometry.

We shall need a more general version of (𝑖𝑖) of Theorem 2.3.2:

Proposition 2.3.3. Suppose that span{𝑒1, 𝑒2, 𝑒3, . . .} is dense in ℋ and {𝑓𝑖}∞𝑖=1 is
a collection of vectors in ℋ such that (𝑓𝑖, 𝑓𝑗) = (𝑒𝑖, 𝑒𝑗) ∀𝑖, 𝑗 ≥ 1. Then the formula
𝑉 𝑒𝑖 = 𝑓𝑖 ∀𝑖 ≥ 1 extends by linearity and continuity to define a uniquely determined
isometry (also called 𝑉 ) from ℋ into ℋ.

Proof Define 𝑉 on the dense set span{𝑒1, 𝑒2, 𝑒3, . . .} by 𝑉 (
∑𝑛

𝑖=1 𝑐𝑖𝑒𝑖) =
∑𝑛

𝑖=1 𝑐𝑖𝑓𝑖,
where 𝑉 is well defined because

∥
𝑛∑

𝑖=1

𝑐𝑖𝑒𝑖∥2 = (
𝑛∑

𝑖=1

𝑐𝑖𝑒𝑖,

𝑛∑
𝑖=1

𝑐𝑖𝑒𝑖) =
𝑛∑

𝑖,𝑗=1

(𝑐𝑖𝑒𝑖, 𝑐𝑗𝑒𝑗) =
𝑛∑

𝑖,𝑗=1

(𝑐𝑖𝑓𝑖, 𝑐𝑗𝑓𝑗)

= (
𝑛∑

𝑖=1

𝑐𝑖𝑓𝑖,

𝑛∑
𝑖=1

𝑐𝑖𝑓𝑖) = ∥
𝑛∑

𝑖=1

𝑐𝑖𝑓𝑖∥2

so that
∑𝑛

𝑖=1 𝑐𝑖𝑒𝑖 = 0 ⇒ ∑𝑛
𝑖=1 𝑐𝑖𝑓𝑖 = 0. Since ∥∑𝑛

𝑖=1 𝑐𝑖𝑒𝑖∥2 = ∥∑𝑛
𝑖=1 𝑐𝑖𝑓𝑖∥2 and

𝑉 (
∑𝑛

𝑖=1 𝑐𝑖𝑒𝑖) =
∑𝑛

𝑖=1 𝑐𝑖𝑓𝑖, 𝑉 satisfies ∥𝑉 𝑥∥ = ∥𝑥∥ on a dense set. If we extend 𝑉
by continuity to the whole space, then this extension is unique, and it can be seen
that ∥𝑉 𝑥∥ = ∥𝑥∥ will hold for all 𝑥 ∈ ℋ, so that 𝑉 is an isometry.

Theorem 2.3.4. The von Neumann-Wold Decomposition[24][14, Theorem 23.7][40,
Pages 15-16][19, Section 1][20, Theorems 1-3]
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Let 𝑉 be an isometry, then ℋ = ℋ0 ⊕ℋ1, where both ℋ0 and ℋ1 are reducing
for 𝑉 , 𝑉 restricted to ℋ0 is unitary, and ℋ1 = [ℰ ]𝑉 . Furthermore, ℋ0 =

∩∞
𝑖=0 𝑉

𝑖ℋ
and every subspace on which 𝑉 is unitary is contained in ℋ0.

Proof Let 𝑉 be an isometry, then 𝑉 is left-invertible with left-inverse (𝑉 ∗𝑉 )−1𝑉 ∗ =
(𝐼)−1𝑉 ∗ = 𝑉 ∗. As was shown in Proposition 2.5.5, any left-invertible operator 𝑇
restricted to

∩∞
𝑖=0 𝑇

𝑖ℋ is invertible with inverse 𝐿, so 𝑉 is invertible on ℋ0 with
inverse 𝐿 = 𝑉 ∗. Therefore 𝑉 is onto ℋ0 so it is unitary there, and 𝑉 and 𝑉 ∗ map
ℋ0 onto ℋ0, so ℋ0 and hence (ℋ0)

⊥ = ℋ1 are reducing for 𝑉 . Suppose that 𝑉 is
unitary on ℋ2, then 𝑉ℋ2 = ℋ2 so that 𝑉 𝑖ℋ2 = ℋ2, and hence ℋ2 =

∩∞
𝑖=0 𝑉

𝑖ℋ2 ⊂∩∞
𝑖=0 𝑉

𝑖ℋ ⊂ ℋ0, so that every subspace on which 𝑉 is unitary is contained in ℋ0.

From the decomposition given in Theorem 2.2.4, ℋ1 = (ℋ0)
⊥ = (

∩∞
𝑖=0 𝑉

𝑖ℋ)
⊥

=⋁∞
𝑗=0 𝐿

∗𝑗ℰ , but since 𝐿 = 𝑉 ∗, 𝐿∗ = 𝑉 , and hence ℋ1 =
⋁∞

𝑗=0 𝑉
𝑗ℰ = [ℰ ]𝑉 .

The proof above uses previous results for left-invertible operators, and since an
isometry has much more structure than an arbitrary left-invertible operator, it will
be instructive to give an alternative proof of the second part of the above proof that
depends only on the structure of isometries.

Definition 2.3.5. An operator 𝑆 is a shift (also called a unilateral shift or forward
shift) of multiplicity 𝛼 if there exists a subspace ℋ1 with dim(ℋ1) = 𝛼 and a sequence
of subspaces {ℋ𝑖}∞𝑖=2 such that the ℋ𝑖 are pairwise orthogonal (ℋ𝑖 ⊥ ℋ𝑗 ∀𝑖 ∕= 𝑗),
ℋ = ℋ1 ⊕ℋ2 ⊕ℋ3 ⊕ . . . and 𝑆 maps ℋ𝑖 isometrically onto ℋ𝑖+1 for all 𝑖 ≥ 1.

Note that because the ℋ𝑖’s are mapped isometrically onto each other, it follows
that they all must have the same dimension.

Theorem 2.3.6. See [24]. Let 𝑆 be a pure isometry. Then 𝑆 is a shift of multiplicity
𝛼 where 𝛼 is given by dim(Ker(𝑆∗)) = dim(ℰ) with ℋ1 = ℰ and ℋ𝑖 = 𝑆𝑖−1ℰ ∀𝑖 ≥ 1.

Proof Letℋ1 = ℰ = ℋ⊖𝑆ℋ andℋ𝑖 = 𝑆𝑖−1ℰ ∀𝑖 ≥ 2, then 𝑆 mapsℋ𝑖 isometrically
onto ℋ𝑖+1 for all 𝑖 ≥ 1 by the definition of the spaces, and ℋ1 ⊥ 𝑆𝑖ℋ1 ∀𝑖 ≥ 1 (it
is a wandering subspace). Therefore, (𝜀1, 𝑆

𝑖𝜀2) = 0 ∀𝑖 ≥ 1, {𝜀1, 𝜀2} ∈ ℰ × ℰ ,
and since (𝑆𝑥, 𝑆𝑦) = (𝑥, 𝑦), and hence (𝑆𝑗𝑥, 𝑆𝑗𝑦) = (𝑥, 𝑦) ∀𝑗 ≥ 0, it follows that
(𝑆𝑗𝜀1, 𝑆

𝑗𝑆𝑖𝜀2) = 0 ∀𝑖 ≥ 1, 𝑗 ≥ 0, {𝜀1, 𝜀2} ∈ ℰ × ℰ so that 𝑆𝑖ℰ ⊥ 𝑆𝑗ℰ ∀𝑖 ∕= 𝑗 and
hence ℋ𝑖 ⊥ ℋ𝑗 ∀𝑖 ∕= 𝑗. Similar to the preceding computation, if ℳ1 ⊥ ℳ2, then
𝑆𝑗ℳ1 ⊥ 𝑆𝑗ℳ2 ∀𝑗 ≥ 0. Since ℋ = ℰ ⊕ 𝑆ℋ, applying 𝑆 to both sides yields 𝑆ℋ =
𝑆ℰ ⊕𝑆2ℋ, which when plugged into the equation before yields ℋ = ℰ ⊕𝑆ℰ ⊕𝑆2ℋ.
Applying 𝑆2 to this yields 𝑆2ℋ = 𝑆2ℰ ⊕ 𝑆3ℰ ⊕ 𝑆4ℋ, which when plugged into the
equation before yields ℋ = ℰ⊕𝑆ℰ⊕𝑆2ℰ⊕𝑆3ℰ⊕𝑆4ℋ. Continuing in this manner it
can be shown inductively that ℋ = ℰ ⊕𝑆ℰ ⊕𝑆2ℰ ⊕𝑆3ℰ ⊕ . . .⊕𝑆𝑖−1ℰ ⊕𝑆𝑖ℋ ∀𝑖 ≥ 1.
Therefore if 𝑥 ∈ ℋ is perpendicular to ℋ𝑖 = 𝑆𝑖−1ℰ ∀𝑖 ≥ 1, then 𝑥 ∈ 𝑆𝑖ℋ ∀𝑖 ≥ 0,
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so 𝑥 ∈ ∩∞
𝑖=0 𝑆

𝑖ℋ = {0} since 𝑆 is pure, so ℋ = ℋ1 ⊕ ℋ2 ⊕ ℋ3 ⊕ . . . = ℰ ⊕ 𝑆ℰ ⊕
𝑆2ℰ ⊕ 𝑆3ℰ ⊕ . . ., and 𝑆 is a shift of multiplicity 𝛼 = dim(ℋ1) = dim(ℰ).

Note that since in the definition of a shift ℋ𝑖 ⊂ 𝑆ℋ ∀𝑖 ≥ 2, it must be that
ℰ ⊂ ℋ1, and since ℋ = ℋ1 ⊕ ℋ2 ⊕ ℋ3 ⊕ . . ., 𝑆ℋ = 𝑆ℋ1 ⊕ 𝑆ℋ2 ⊕ 𝑆ℋ3 ⊕ . . . =
ℋ2 ⊕ ℋ3 ⊕ ℋ4 ⊕ . . ., so that ℋ1 ⊂ ℰ . Therefore for any shift it must be that
ℋ𝑖 = 𝑆𝑖−1ℰ ∀𝑖 ≥ 1.

Definition 2.3.7. An operator 𝑆 and an operator 𝑇 are said to be unitarily equiv-
alent if there exists a unitary operator 𝑈 such that 𝑆 = 𝑈𝑇𝑈−1.

Proposition 2.3.8. A shift 𝑆1 and a shift 𝑆2 are unitarily equivalent if and only if
they have the same multiplicity.

Proof Suppose that the shifts 𝑆1 and 𝑆2 are unitarily equivalent and 𝑈 is such that
𝑆2 = 𝑈𝑆1𝑈

−1. Let 𝑒 ∈ ℋ ⊖ 𝑆1ℋ, then (𝑈𝑒, 𝑆2𝑥) = (𝑆∗
2𝑈𝑒, 𝑥) = (𝑈−∗𝑆∗

1𝑈
∗𝑈𝑒, 𝑥) =

(𝑈𝑆∗
1𝑒, 𝑥) = (𝑒, 𝑆1𝑈

∗𝑥) = 0 ∀𝑥 ∈ ℋ, so that 𝑈𝑒 ∈ ℋ⊖𝑆2ℋ and 𝑈(ℋ⊖𝑆1ℋ) ⊂ (ℋ⊖
𝑆2ℋ). Since 𝑆1 = 𝑈−1𝑆2𝑈 and 𝑈−1 is also a unitary operator, reversing the roles of
𝑆1 and 𝑆2 yields (ℋ⊖𝑆2ℋ) ⊂ 𝑈(ℋ⊖𝑆1ℋ) and 𝑈(ℋ⊖𝑆1ℋ) = (ℋ⊖𝑆2ℋ). Since 𝑈
is invertible it must be that dim(ℋ⊖ 𝑆1ℋ) = dim(𝑈(ℋ⊖ 𝑆1ℋ)) = dim(ℋ⊖ 𝑆2ℋ)
and 𝑆1 and 𝑆2 have the same multiplicity.

Conversely, suppose that 𝑆1 and 𝑆2 have the same multiplicity equal to 𝛼. Let
{𝑒1𝑖}𝛼𝑖=1 be an orthonormal set in ℋ ⊖ 𝑆1ℋ and {𝑒2𝑖}𝛼𝑖=1 an orthonormal set in
ℋ⊖ 𝑆2ℋ, then defining 𝑈𝑆𝑗

1𝑒1𝑖 = 𝑆𝑗
2𝑒2𝑖 ∀𝑗 ≥ 0, 1 ≤ 𝑖 ≤ 𝛼, 𝑈 is a unitary operator

and 𝑈𝑆1𝑈
−1𝑆𝑗

2𝑒2𝑖 = 𝑈𝑆1𝑆
𝑗
1𝑒1𝑖 = 𝑈𝑆

(𝑗+1)
1 𝑒1𝑖 = 𝑆

(𝑗+1)
2 𝑒2𝑖 = 𝑆2𝑆

𝑗
2𝑒2𝑖 ∀𝑗 ≥ 0, 1 ≤ 𝑖 ≤

𝛼, and since the 𝑆𝑗
2𝑒2𝑖 ∀𝑗 ≥ 0, 1 ≤ 𝑖 ≤ 𝛼 span a dense set, 𝑈𝑆1𝑈

−1 = 𝑆2 and 𝑆1

and 𝑆2 are unitarily equivalent.

Theorem 2.3.9. [14, Proposition 23.15][19, Page 17][24, Lemma4] Let 𝑆 be a shift
of multiplicity 𝛼, then for every closed, invariant subspace ℳ of 𝑆, 𝑆 restricted to
ℳ is a shift of multiplicity 𝛽 ≤ 𝛼.

2.4 Set-Theoretic Conditions for the Wandering

Subspace Property

Theorem 2.4.1. Let 𝑇 be left-invertible with ℰ = ℋ ⊖ 𝑇ℋ. The following are
equivalent (ℳ, 𝒜, and ℬ are closed subspaces):
(i)
⋁∞

𝑖=0 𝑇
𝑖ℰ ∕= ℋ

(ii)
∩∞

𝑗=0 𝐿
∗𝑗ℋ ∕= {0}
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(iii)∃ℳ ∕= {0} such that 𝐿∗ℳ ⊃ ℳ
(iv) ∃ℳ ⊂ 𝑇ℋ, ℳ ∕= {0}, such that 𝑇 ∗ℳ ⊂ ℳ
(v) ∃ℳ ⊃ ℰ, ℳ ∕= ℋ, such that 𝑇ℳ ⊂ ℳ
(vi) ∃ℳ ⊃ ℰ, ℳ ∕= ℋ, such that 𝐿ℳ ⊃ ℳ
(vii) ∃𝒜,ℬ ∕= {0} such that 𝑇𝒜 ⊂ 𝒜, 𝐿𝒜 ⊂ 𝒜 ⊕ ℰ, 𝑃ℬ𝑇ℬ = ℬ and 𝑇ℋ = 𝒜 ⊕ ℬ
(𝑃ℬ is the orthogonal projection onto ℬ)

Proof The equivalence of (i) and (ii) is the statement of Theorem 2.2.4.

(ii)⇒(iii): Let ℳ =
∩∞

𝑗=0 𝐿
∗𝑗ℋ, then ℳ ∕= {0}. Let 𝑥 ∈ ∩∞

𝑗=0 𝐿
∗𝑗ℋ, then

there exists a sequence {𝑥𝑗}∞𝑗=0 such that 𝑥 = 𝐿∗𝑗𝑥𝑗, and since 𝑇 ∗𝐿∗ = 𝐼, 𝑦 =

𝑇 ∗𝑥 = 𝐿∗(𝑗−1)𝑥𝑗 ∀𝑗 ≥ 1, so that 𝑦 ∈ 𝐿∗𝑗ℋ ∀𝑗 ≥ 0 and 𝑦 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ. Since

𝐿∗𝑦 = 𝐿∗𝑇 ∗𝑥 = 𝑥, we have that 𝑥 ∈ 𝐿∗∩∞
𝑗=0 𝐿

∗𝑗ℋ. Since 𝑥 was arbitrary,
𝐿∗ℳ ⊃ ℳ.

(ii)⇒(iv): Again, let ℳ =
∩∞

𝑗=0 𝐿
∗𝑗ℋ, then ℳ ∕= {0} and ℳ ⊂ 𝐿∗ℋ = 𝑇ℋ. Let

𝑥 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ. As was shown above, 𝑦 = 𝑇 ∗𝑥 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ, so that 𝑇 ∗ℳ ⊂ ℳ.
The condition ℳ ⊂ 𝑇ℋ is necessary because otherwise one could choose ℳ = ℰ ,
and since ℰ = Ker(𝑇 ∗), 𝑇 ∗ℳ = {0} ⊂ ℳ, so the condition would be satisfied for
any left-invertible operator which is not invertible.

(i)⇒(v): Let ℳ =
⋁∞

𝑖=0 𝑇
𝑖ℰ , then ℰ ⊂ ℳ ∕= ℋ, and 𝑇ℳ = 𝑇

⋁∞
𝑖=0 𝑇

𝑖ℰ ⊂⋁∞
𝑖=1 𝑇

𝑖ℰ ⊂ ⋁∞
𝑖=0 𝑇

𝑖ℰ = ℳ, where the first inclusion follows because 𝑇 is con-
tinuous. The condition ℰ ⊂ ℳ is necessary because for any left-invertible operator
which is not invertible, 𝑇ℋ ∕= ℋ and 𝑇𝑇ℋ = 𝑇 2ℋ ⊂ 𝑇ℋ.

(i)⇒(vi): Again, let ℳ =
⋁∞

𝑖=0 𝑇
𝑖ℰ , then ℰ ⊂ ℳ ∕= ℋ. Let 𝑥 ∈ ⋁∞

𝑖=0 𝑇
𝑖ℰ , then

as above 𝑦 = 𝑇𝑥 ∈ ⋁∞
𝑖=0 𝑇

𝑖ℰ , so that 𝐿𝑦 = 𝐿𝑇𝑥 = 𝑥 ∈ 𝐿
⋁∞

𝑖=0 𝑇
𝑖ℰ , and since 𝑥

was arbitrary, 𝐿ℳ ⊃ ℳ. As above the condition ℰ ⊂ ℳ is necessary because
𝑇ℋ ⊂ ℋ = 𝐿𝑇ℋ.

(i) and (ii)⇒(vii): Let 𝒜 =
⋁∞

𝑖=1 𝑇
𝑖ℰ and ℬ =

∩∞
𝑗=0 𝐿

∗𝑗ℋ, then 𝒜 ⊥ ℬ by Theo-

rem 2.2.4, and since Im(𝑇 ) is closed Im(𝑇 ) = ℰ⊥ =
(⋁∞

𝑖=0 𝑇
𝑖ℰ ⊕∩∞

𝑗=0 𝐿
∗𝑗ℋ
)
⊖ℰ =⋁∞

𝑖=1 𝑇
𝑖ℰ⊕∩∞

𝑗=0 𝐿
∗𝑗ℋ = 𝒜⊕ℬ by Theorem 2.2.4 and the conditions ℰ ⊥ 𝑇 𝑖ℰ ∀𝑖 ≥ 1

and ℰ ⊥ 𝐿∗ℋ = 𝑇ℋ (so that 𝑇ℋ = 𝒜 ⊕ ℬ). By (i) and (ii) 𝒜,ℬ ∕= {0}. 𝑇𝒜 =
𝑇
⋁∞

𝑖=1 𝑇
𝑖ℰ ⊂ ⋁∞

𝑖=2 𝑇
𝑖ℰ ⊂ ⋁∞

𝑖=1 𝑇
𝑖ℰ = 𝒜 where the first inclusion follows because 𝑇

is continuous. Since ℰ ⊥ 𝑇 𝑖ℰ ∀𝑖 ≥ 1, 𝒜⊕ℰ =
⋁∞

𝑖=1 𝑇
𝑖ℰ ⊕ℰ =

⋁∞
𝑖=0 𝑇

𝑖ℰ , so that by

Theorem 2.2.4, (𝒜⊕ ℰ)⊥ =
∩∞

𝑗=0 𝐿
∗𝑗ℋ. If 𝑥 ∈ ∩∞

𝑗=0 𝐿
∗𝑗ℋ, then 𝑥 ∈ 𝐿∗𝑖ℋ ∀𝑖 ≥ 0

so that 𝐿∗𝑥 ∈ 𝐿∗𝑖ℋ ∀𝑖 ≥ 1, and 𝐿∗𝑥 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ, so that 𝐿∗
(∩∞

𝑗=0 𝐿
∗𝑗ℋ
)

⊂∩∞
𝑗=0 𝐿

∗𝑗ℋ. This implies that 𝐿
(∩∞

𝑗=0 𝐿
∗𝑗ℋ
)⊥

⊂
(∩∞

𝑗=0 𝐿
∗𝑗ℋ
)⊥

or that 𝐿(𝒜⊕ℰ) ⊂
𝒜⊕ ℰ , which implies that 𝐿𝒜 ⊂ 𝒜⊕ ℰ .
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Note that we used the fact that for a closed subspace ℳ and an operator 𝑇 ,
𝑇ℳ ⊂ ℳ if and only if 𝑇 ∗ℳ⊥ ⊂ ℳ⊥ (see Proposition 4.42 in [16]).

Since 𝑃ℬ maps into ℬ, 𝑃ℬ𝑇ℬ ⊂ ℬ. Let 𝑥 ∈ ℬ =
∩∞

𝑗=0 𝐿
∗𝑗ℋ ⊂ 𝐿∗ℋ = 𝑇ℋ,

then there is a 𝑦 ∈ ℋ such that 𝑥 = 𝑇𝑦, where 𝑦 = 𝑦1 + 𝑦2 with 𝑦1 ∈
⋁∞

𝑖=0 𝑇
𝑖ℰ and

𝑦2 ∈
∩∞

𝑗=0 𝐿
∗𝑗ℋ = ℬ. Since 𝑇𝑦1 ∈

⋁∞
𝑖=0 𝑇

𝑖ℰ ⊥ ℬ, 𝑥 = 𝑃ℬ𝑥 = 𝑃ℬ𝑇 (𝑦1+𝑦2) = 𝑃ℬ𝑇𝑦2.
As 𝑦2 ∈ ℬ, 𝑥 ∈ 𝑃ℬ𝑇ℬ, and since 𝑥 ∈ ℬ was arbitrary, it follows that 𝑃ℬ𝑇ℬ = ℬ.

(iii)⇒(ii): Applying 𝐿∗𝑗 to the relation ℳ ⊂ 𝐿∗ℳ we obtain 𝐿∗𝑗ℳ ⊂ 𝐿∗(𝑗+1)ℳ
for all 𝑗 greater than or equal to zero, which when strung together implies that
ℳ ⊂ 𝐿∗𝑗ℳ ∀𝑗 ≥ 0 so that ℳ ⊂ ∩∞

𝑗=0 𝐿
∗𝑗ℳ ⊂ ∩∞

𝑗=0 𝐿
∗𝑗ℋ and since ℳ ∕= {0}, it

must be that
∩∞

𝑗=0 𝐿
∗𝑗ℋ ∕= {0}.

(iv)⇒(iii): If 𝑥 ∈ 𝑇ℋ, then 𝑥 = 𝑇𝑦 for some 𝑦 ∈ ℋ so that 𝑇𝐿𝑥 = 𝑇𝐿𝑇𝑦 = 𝑇𝑦 = 𝑥,
and if 𝑥 ⊥ Im(𝑇 ) then 𝑥 ∈ Ker(𝑇 ∗) = Ker(𝐿) so that 𝑇𝐿𝑥 = 0, and 𝑇𝐿 must be
the orthogonal projection onto Im(𝑇 ). Since orthogonal projections are self-adjoint,
(𝑇𝐿)∗ = 𝐿∗𝑇 ∗ is also the orthogonal projection onto Im(𝑇 ), so if 𝑥 ∈ 𝑇ℋ, then
𝐿∗𝑇 ∗𝑥 = 𝑥. Since ℳ ⊂ 𝑇ℋ, 𝐿∗𝑇 ∗ℳ = ℳ and applying 𝐿∗ to the relation
𝑇 ∗ℳ ⊂ ℳ we obtain 𝐿∗𝑇 ∗ℳ = ℳ ⊂ 𝐿∗ℳ, where by (iv) we assumed that
ℳ ∕= {0}.
(v)⇒(iv): Since ℰ ⊂ ℳ ∕= ℋ, {0} ∕= ℳ⊥ ⊂ 𝑇ℋ, and 𝑇ℳ ⊂ ℳ implies
𝑇 ∗ℳ⊥ ⊂ ℳ⊥, so (iv) is satisfied with the closed subspace ℳ⊥.

(vi)⇒(iii): Since ℰ ⊂ ℳ ∕= ℋ, {0} ∕= ℳ⊥ ⊂ 𝑇ℋ. Let 𝑥 ∈ ℳ⊥ ⊂ 𝑇ℋ = 𝐿∗ℋ,
then there exists a 𝑦 ∈ ℋ such that 𝑥 = 𝐿∗𝑦 and 𝑦 = 𝑚1 +𝑚2 where 𝑚1 ∈ ℳ and
𝑚2 ∈ ℳ⊥. Suppose that 𝑚1 ∕= 0, then (𝑥,𝑚) = (𝐿∗𝑦,𝑚) = (𝐿∗(𝑚1 + 𝑚2),𝑚) =
0 ∀𝑚 ∈ ℳ since 𝑥 ∈ ℳ⊥, which implies that (𝑚1+𝑚2, 𝐿𝑚) = 0 ∀𝑚 ∈ ℳ so that
𝑚1 + 𝑚2 ∈ (𝐿ℳ)⊥ ⊂ ℳ⊥ because ℳ ⊂ 𝐿ℳ, but (𝑚1 + 𝑚2,𝑚1) = (𝑚1,𝑚1) =
∥𝑚1∥2 ∕= 0, which contradicts the fact that 𝑚1 + 𝑚2 ∈ ℳ⊥, so it must be that
𝑚1 = 0, and 𝑥 = 𝐿∗𝑚2, and since 𝑥 was arbitrary, ℳ⊥ ⊂ 𝐿∗ℳ⊥, so (iii) is satisfied
with the closed subspace ℳ⊥.

(vii)⇒(v): Let 𝜀 ∈ ℰ , then 𝑇𝜀 ∈ 𝑇ℋ so there exists a pair {𝑎, 𝑏} ∈ 𝒜 × ℬ such
that 𝑇𝜀 = 𝑎 + 𝑏. Since 𝑃ℬ𝑇ℬ = ℬ, ∃𝑏1 ∈ ℬ such that 𝑃ℬ𝑇𝑏1 = 𝑏, or 𝑇𝑏1 = 𝑎2 + 𝑏
where 𝑎2 ∈ 𝒜. Let 𝑎1 = 𝑎 − 𝑎2 ∈ 𝒜, then 𝑇𝜀 = 𝑎 + 𝑏 = 𝑎 + 𝑇𝑏1 − 𝑎2 = 𝑎1 + 𝑇𝑏1,
and 𝜀 = 𝐿𝑎1 + 𝑏1. Since 𝐿𝑎1 ∈ 𝐿𝒜 ⊂ 𝒜 ⊕ ℰ = ℬ⊥ and 𝜀 ∈ ℰ ⊂ ℬ⊥, it must be
that 𝑏1 ∈ ℬ⊥, which implies that 𝑏1 = 0 and 𝑃ℬ𝑇𝑏1 = 𝑏 = 0, so 𝑇𝜀 = 𝑎 ∈ 𝒜, and
since 𝜀 was arbitrary, 𝑇ℰ ⊂ 𝒜. Since also 𝑇𝒜 ⊂ 𝒜, 𝑇 (𝒜⊕ ℰ) ⊂ 𝒜 ⊂ 𝒜 ⊕ ℰ , so if
ℳ = 𝒜⊕ ℰ , then 𝑇ℳ ⊂ ℳ and ℰ ⊂ ℳ ∕= ℋ since ℳ ⊥ ℬ ∕= {0}.



Daniel Sutton Chapter 2. Left-Invertible Operators & Wandering Subspaces 18

2.5 Conditions for the Wandering Subspace

Property Based on the Norm

Theorem 2.5.1. Let 𝑇 be a left-invertible operator with ℰ = ℋ⊖𝑇ℋ. The following
are equivalent:
(i)
⋁∞

𝑖=0 𝑇
𝑖ℰ = ℋ

(ii)
∩∞

𝑗=0 𝐿
∗𝑗ℋ = {0}

(iii) 𝑋1 = {𝑥 ∈ ℋ : ∃𝑖 such that 𝐿𝑖𝑥 = 0} =
∪∞

𝑖=0 Ker𝐿𝑖 is dense in ℋ
(iv) 𝑋2 = {𝑥 ∈ ℋ : lim sup𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0} is dense in ℋ
(v) 𝑋3 = {𝑥 ∈ ℋ : lim inf𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0} is dense in ℋ
(vi) ∃𝑐 < 1 such that 𝑋𝑐 = {𝑥 ∈ ℋ : lim inf𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ ≤ 𝑐∥𝑥∥} is dense in ℋ.

Proof The equivalence of (i) and (ii) is the statement of Theorem 2.2.4.

(i)⇒(iii): Since Ker(𝐿) = ℰ and 𝐿𝑇 = 𝐼, Ker(𝐿𝑖) = span{ℰ , 𝑇ℰ , 𝑇 2ℰ , ..., 𝑇 (𝑖−1)ℰ},
so that 𝑋1 = ∪∞

𝑖=1Ker(𝐿𝑖) is dense in ℋ since ℋ =
⋁∞

𝑖=0 𝑇
𝑖ℰ is the closure of finite

linear combinations of elements in 𝑇 𝑖ℰ , 𝑖 ∈ ℕ

(iii)⇒(iv): If 𝑥 ∈ 𝑋1, then there is an 𝑖 such that 𝐿𝑖𝑥 = 0 so that ∥𝑇 𝑗𝐿𝑗𝑥∥ = 0 ∀𝑗 ≥
𝑖, and lim𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0 and hence lim sup𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0 so that 𝑥 ∈ 𝑋2. This
implies that 𝑋1 ⊂ 𝑋2, and since 𝑋1 was assumed dense, so is 𝑋2.

(iv)⇒(v): If 𝑥 ∈ 𝑋2, then lim sup𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0, and since ∥𝑇 𝑖𝐿𝑖𝑥∥ ≥ 0 ∀𝑖 and
lim inf𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ ≤ lim sup𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥, it must be that lim inf𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0,
so that 𝑥 ∈ 𝑋3. This implies that 𝑋2 ⊂ 𝑋3, and since 𝑋2 was assumed dense, so is
𝑋3.

(v)⇒(vi): If 𝑥 ∈ 𝑋3, then lim inf𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0 < 𝑐, so 𝑥 ∈ 𝑋𝑐, 0 < 𝑐 < 1. This
implies that 𝑋3 ⊂ 𝑋𝑐, and since 𝑋3 was assumed dense, so is 𝑋𝑐, 0 < 𝑐 < 1.

(vi)⇒(ii) (Proof by contradiction): Let 𝑥 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ ∕= {0}, then there exists a

sequence {𝑥𝑗}∞𝑗=0 such that 𝑥 = 𝐿∗𝑗𝑥𝑗, and hence 𝐿∗𝑖𝑇 ∗𝑖𝑥 = 𝐿∗𝑖𝑇 ∗𝑖𝐿∗𝑖𝑥𝑖 = 𝐿∗𝑖𝑥𝑖 =
𝑥, so that 𝐿∗𝑖𝑇 ∗𝑖 is the identity on

∩∞
𝑗=0 𝐿

∗𝑗ℋ for every 𝑖, and (𝑇 𝑖𝐿𝑖𝑥 − 𝑥, 𝑦) =

(𝑥, 𝐿∗𝑖𝑇 ∗𝑖𝑦)−(𝑥, 𝑦) = (𝑥, 𝑦)−(𝑥, 𝑦) = 0 ∀𝑦 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ, so that 𝑃∩∞
𝑗=0 𝐿

∗𝑗ℋ𝑇 𝑖𝐿𝑖𝑥 =

𝑥. Since 𝑥 was arbitrary, ∀𝑥 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ ∀𝑖 ≥ 0 𝑇 𝑖𝐿𝑖𝑥 = 𝑥 + 𝑧 where 𝑧 ∈(∩∞
𝑗=0 𝐿

∗𝑗ℋ
)⊥

=
⋁∞

𝑖=0 𝑇
𝑖ℰ . Suppose that for some 0 < 𝑐 < 1, 𝑋𝑐 is dense and pick

an arbitrary 𝑙 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ with ∥𝑙∥ = 1. Let 𝑥 ∈ 𝑋𝑐 be such that ∥𝑙 − 𝑥∥ ≤ 1−𝑐
2+2𝑐

,

then ∥𝑥∥ ≤ 3+𝑐
2+2𝑐

. Write 𝑥 = 𝑦 + 𝑤 where 𝑦 ∈ ∩∞
𝑗=0 𝐿

∗𝑗ℋ and 𝑤 ∈ ⋁∞
𝑖=0 𝑇

𝑖ℰ , then
∥𝑙 − 𝑥∥2 = ∥𝑙 − 𝑦 − 𝑤∥2 = ∥𝑙 − 𝑦∥2 + ∥𝑤∥2, so that ∥𝑙 − 𝑦∥ ≤ 1−𝑐

2+2𝑐
and ∥𝑦∥ ≥ 1+3𝑐

2+2𝑐
.

Since from above 𝑃∩∞
𝑗=0 𝐿

∗𝑗ℋ𝑇 𝑖𝐿𝑖𝑦 = 𝑦 ∀𝑖 ≥ 0, ∃{𝑤𝑖}∞𝑖=1 with 𝑤𝑖 ∈
⋁∞

𝑗=0 𝑇
𝑗ℰ ∀𝑖 ≥ 1

such that 𝑇 𝑖𝐿𝑖𝑦 = 𝑦 + 𝑤𝑖. Since 𝐿∗
(∩∞

𝑗=0 𝐿
∗𝑗ℋ
)

⊂ ∩∞
𝑗=1 𝐿

∗𝑗ℋ ⊂ ∩∞
𝑗=0 𝐿

∗𝑗ℋ,
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we have that 𝐿
⋁∞

𝑖=0 𝑇
𝑖ℰ ⊂ ⋁∞

𝑖=0 𝑇
𝑖ℰ since

(∩∞
𝑗=0 𝐿

∗𝑗ℋ
)⊥

=
⋁∞

𝑖=0 𝑇
𝑖ℰ . Since also

𝑇
⋁∞

𝑖=0 𝑇
𝑖ℰ ⊂ ⋁∞

𝑖=0 𝑇
𝑖ℰ , 𝑇 𝑖𝐿𝑖𝑤 ∈ ⋁∞

𝑖=0 𝑇
𝑖ℰ ∀𝑖 ≥ 0. Therefore ∥𝑇 𝑖𝐿𝑖𝑥∥2 = ∥𝑦 +

𝑤𝑖 + 𝑇 𝑖𝐿𝑖𝑤∥2 = ∥𝑦∥2 + ∥𝑤𝑖 + 𝑇 𝑖𝐿𝑖𝑤∥2 ≥ ∥𝑦∥2 ≥ (1+3𝑐)2

(2+2𝑐)2
> 𝑐2 (3+𝑐)2

(2+2𝑐)2
≥ 𝑐2∥𝑥∥2, which

contradicts the fact that lim inf𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ ≤ 𝑐∥𝑥∥, so 𝑋𝑐 is not dense for any 𝑐
such that 0 < 𝑐 < 1.

Note: There is another way to see (v)⇒(i) by decomposing the space based on
the action of the powers of 𝑇 on ℰ = ℋ⊖𝑇ℋ. By definition, ℋ = ℰ⊕𝑇ℋ. Applying
𝑇 to this yields 𝑇ℋ = 𝑇ℰ+̇𝑇 2ℋ, where 𝑇ℰ ∩ 𝑇 2ℋ = {0} because ℰ ∩ 𝑇ℋ = {0}
and 𝑇 is one-to-one. Plugging this into ℋ = ℰ ⊕ 𝑇ℋ yields ℋ = ℰ ⊕ (𝑇ℰ+̇𝑇 2ℋ).
Applying 𝑇 to this yields 𝑇ℋ = 𝑇ℰ+̇𝑇 2ℰ+̇𝑇 3ℋ so that ℋ = ℰ ⊕ (𝑇ℰ+̇𝑇 2ℰ+̇𝑇 3ℋ).
Continuing in this way we obtain

ℋ = ℰ ⊕ (𝑇ℰ+̇𝑇 2ℰ+̇𝑇 3ℰ+̇ . . . +̇𝑇 𝑖−1ℰ+̇𝑇 𝑖ℋ) ∀𝑖 ≥ 1.

Due to the definition of 𝐿, we also have the facts that 𝑇 𝑗𝐿𝑗𝑇 𝑖ℰ = {0} ∀𝑗 > 𝑖 and
𝑇 𝑗𝐿𝑗∣𝑇 𝑖ℋ = 𝐼 ∀𝑗 ≤ 𝑖. So for any 𝑥 ∈ ℋ, 𝑇 𝑖𝐿𝑖𝑥 is the element in 𝑇 𝑖ℋ from the
decomposition above, and ∥𝑇 𝑖𝐿𝑖𝑥∥ = ∥𝑥− 𝑦∥, where 𝑦 is the rest of the decompo-
sition and is contained in

⋁𝑖−1
𝑗=0 𝑇

𝑗ℰ . Therefore lim inf𝑖→∞ ∥𝑇 𝑖𝐿𝑖𝑥∥ = 0 implies the

existence of {𝑖𝑘}∞𝑘=1 such that 𝑥−𝑇 𝑖𝑘𝐿𝑖𝑘𝑥 ∈ ⋁∞
𝑗=0 𝑇

𝑗ℰ and ∥𝑥− (𝑥−𝑇 𝑖𝑘𝐿𝑖𝑘𝑥)∥ → 0,

so that 𝑥 ∈ ⋁∞
𝑗=0 𝑇

𝑗ℰ , and ⋁∞
𝑗=0 𝑇

𝑗ℰ is dense in ℋ and hence must be all of ℋ.

Included for later reference we state the following proposition, proven above,
which can also be seen from equation (2.2) in [42].

Proposition 2.5.2. For a left-invertible operator 𝑇 , arbitrary 𝑥 ∈ ℋ and 𝑖, 𝑥 −
𝑇 𝑖𝐿𝑖𝑥 ∈ ⋁𝑖−1

𝑗=0 𝑇
𝑗ℰ.

Lemma 2.5.3. Let 𝑇 be an expansive operator (∥𝑇𝑥∥ ≥ ∥𝑥∥ ∀𝑥 ∈ ℋ), then

∥𝑥∥2 =
𝑛−1∑
𝑖=0

∥(𝐼 − 𝑇𝐿)𝐿𝑖𝑥∥2 + ∥𝐿𝑛𝑥∥2 +
𝑛∑

𝑖=1

∥𝐷𝐿𝑖𝑥∥2 ∀𝑥 ∈ ℋ, (2.1)

where 𝐷 is the positive square root of (𝑇 ∗𝑇 − 𝐼).

Proof First note that ((𝑇 ∗𝑇 −𝐼)𝑥, 𝑥) = (𝑇𝑥, 𝑇𝑥)−(𝑥, 𝑥) = ∥𝑇𝑥∥2−∥𝑥∥2 ≥ 0 since
𝑇 is expansive, which shows that 𝑇 ∗𝑇 − 𝐼 is a positive operator so that it has a
positive square root. Also, since ∥𝐷𝑥∥2 = (𝐷𝑥,𝐷𝑥) = (𝐷2𝑥, 𝑥) = ((𝑇 ∗𝑇 − 𝐼)𝑥, 𝑥),
it follows that ∥𝐷𝑥∥2 = ∥𝑇𝑥∥2 − ∥𝑥∥2 ∀𝑥 ∈ ℋ. Plugging 𝐿𝑖𝑥 into this equation for
𝑥 yields

∥𝐷𝐿𝑖𝑥∥2 = ∥𝑇𝐿𝑖𝑥∥2 − ∥𝐿𝑖𝑥∥2 = ∥𝑇𝐿𝐿𝑖−1𝑥∥2 − ∥𝐿𝑖𝑥∥2
= ∥(𝐼 − (𝐼 − 𝑇𝐿))𝐿𝑖−1𝑥∥2 − ∥𝐿𝑖𝑥∥2
= ∥𝐿𝑖−1𝑥∥2 − ∥(𝐼 − 𝑇𝐿)𝐿𝑖−1𝑥∥2 − ∥𝐿𝑖𝑥∥2 ∀𝑖 ≥ 1,
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since in general ∥(𝐼−(𝐼−𝑇𝐿))𝑥∥2 = ∥𝑥∥2−∥(𝐼−𝑇𝐿)𝑥∥2 ∀𝑥 ∈ ℋ because 𝑇𝐿 is the
orthogonal projection onto Im(𝑇 ) (see the proof of (iv)⇒(iii) in Theorem 2.4.1) so
that (𝐼−𝑇𝐿) is also an orthogonal projection (onto Ker(𝑇 ∗)). Summing this equality
over 𝑖 from 1 to 𝑛 yields

∑𝑛
𝑖=1 ∥𝐷𝐿𝑖𝑥∥2 = ∥𝑥∥2 −∑𝑛−1

𝑖=0 ∥(𝐼 − 𝑇𝐿)𝐿𝑖𝑥∥2 − ∥𝐿𝑛𝑥∥2.
Since 𝑥 was arbitrary, equation (2.1) holds for all 𝑥 in ℋ.

The following are slight generalizations of Theorem 2.1, Proposition 2.2 and
Corollary 2.1, respectively, in [35], which did not incorporate the lower bound of
𝑚 into the next three results. Note that if 𝑇 satisfies the hypotheses of these
statements, then 𝑇 restricted to any of its closed, invariant subspaces also satisfies
the hypotheses. Therefore if the hypotheses of Theorem 2.5.4 are satisfied, then 𝑇
restricted to any of its closed, invariant subspaces satisfies the Wandering Subspace
Property.

Theorem 2.5.4. Let 𝑇 be a pure, expansive operator with ∥𝑇𝑥∥ ≥ 𝑚∥𝑥∥, 𝑚 ≥ 1
such that

∥𝑇 𝑖𝑥∥2 ≤ 𝑐𝑖(∥𝑇𝑥∥2 − ∥𝑥∥2) + 𝑐𝑚2𝑖∥𝑥∥2 ∀𝑥 ∈ ℋ, 𝑖 ≥ 2, (2.2)

for some positive constants {𝑐𝑖}∞𝑖=2 and 𝑐 such that
∑∞

𝑖=2
1
𝑐𝑖
= ∞, then ℋ = [ℰ ]𝑇 .

Proof Let 𝑥 ∈ ℋ be arbitrary. Plugging 𝐿𝑖𝑥 into equation (2.2) yields

∥𝑇 𝑖𝐿𝑖𝑥∥2 − 𝑐𝑚2𝑖∥𝐿𝑖𝑥∥2 ≤ 𝑐𝑖(∥𝑇𝐿𝑖𝑥∥2 − ∥𝐿𝑖𝑥∥2) = 𝑐𝑖∥𝐷𝐿𝑖𝑥∥2.
Therefore,

min
𝑚≤𝑖≤𝑛

{∥𝑇 𝑖𝐿𝑖𝑥∥2 − 𝑐𝑚2𝑖∥𝐿𝑖𝑥∥2}
𝑛∑

𝑖=𝑚

1

𝑐𝑖
≤

𝑛∑
𝑖=𝑚

1

𝑐𝑖
{∥𝑇 𝑖𝐿𝑖𝑥∥2 − 𝑐𝑚2𝑖∥𝐿𝑖𝑥∥2}

≤
𝑛∑

𝑖=𝑚

∥𝐷𝐿𝑖𝑥∥2 ≤ ∥𝑥∥2,

where the last inequality comes from equation (2.1). Since
∑∞

𝑖=2
1
𝑐𝑖
= ∞,

min
𝑚≤𝑖≤𝑛

{∥𝑇 𝑖𝐿𝑖𝑥∥2 − 𝑐𝑚2𝑖∥𝐿𝑖𝑥∥2}

must shrink to zero as 𝑛 → ∞, and hence lim inf𝑖→∞{∥𝑇 𝑖𝐿𝑖𝑥∥2 − 𝑐𝑚2𝑖∥𝐿𝑖𝑥∥2} ≤ 0.
Since 𝐿𝑇 = 𝐼, 𝑚𝐿 1

𝑚
𝑇 = 𝐼, and 𝑚𝐿 is the left-inverse for 1

𝑚
𝑇 with Ker(𝑚𝐿) =

Ker(𝐿) = Ker(𝑇 ∗) = Ker( 1
𝑚
𝑇 ∗). Since ∥𝑇𝑥∥ ≥ 𝑚∥𝑥∥ ∀𝑥 ∈ ℋ, 1

𝑚
𝑇 is still expansive,

and for any expansive operator 𝑇 , ∥�̃�𝑇𝑥∥ = ∥𝑥∥ ≤ ∥𝑇𝑥∥ so that �̃� is contractive
on Im(𝑇 ). Since �̃� is zero on the orthogonal complement of Im(𝑇 ), it follows that
�̃� is a contractive operator. Therefore 𝑚𝐿 is a contractive operator, and since

lim inf
𝑖→∞

{∥𝑇 𝑖𝐿𝑖𝑥∥2 − 𝑐∥(𝑚𝐿)𝑖𝑥∥2} ≤ 0,
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it must be that {𝑇 𝑖𝐿𝑖𝑥}∞𝑖=0 has a bounded subsequence {𝑇 𝑖𝑗𝐿𝑖𝑗𝑥}∞𝑗=0. By taking a
subsubsequence we can assume that the sequence {𝑇 𝑖𝑗𝐿𝑖𝑗𝑥}∞𝑗=0 is weakly convergent
to some 𝑦 ∈ ℋ. Since {𝑇 𝑖𝑗𝐿𝑖𝑗𝑥}∞𝑗=𝑘 also converges to 𝑦, and 𝑇 𝑖𝑘ℋ is weakly closed,
it follows that 𝑦 ∈ 𝑇 𝑖𝑘ℋ ∀𝑘 ≥ 0, so that, since 𝑖𝑘 → ∞, 𝑦 ∈ 𝑇 𝑖ℋ ∀𝑖 ≥ 0 and
hence 𝑦 ∈ ∩∞

𝑖=0 𝑇
𝑖ℋ = {0}. Therefore 𝑥 − 𝑇 𝑖𝑘𝐿𝑖𝑘𝑥 converges weakly to 𝑥. Since

𝑥− 𝑇 𝑖𝑘𝐿𝑖𝑘𝑥 ∈ ⋁∞
𝑖=0 𝑇

𝑖ℰ from Proposition 2.5.2 and
⋁∞

𝑖=0 𝑇
𝑖ℰ is weakly sequentially

closed, 𝑥 ∈ ⋁∞
𝑖=0 𝑇

𝑖ℰ = [ℰ ]𝑇 . As 𝑥 was arbitrary, ℋ = [ℰ ]𝑇 . □

Proposition 2.5.5. Let 𝑇 satisfy ∥𝑇𝑥∥ ≥ 𝑚∥𝑥∥ ∀𝑥 ∈ ℋ for some 𝑚 ≥ 1 and
be such that equation (2.2) holds with 𝑐 = 1 and

∑∞
𝑖=2

1
𝑐𝑖

= ∞, then
∩∞

𝑖=0 𝑇
𝑖ℋ is

reducing for 𝑇 , and 𝑇 restricted to this subspace is 𝑚 times a unitary operator.

Proof Let ℋ0 =
∩∞

𝑖=0 𝑇
𝑖ℋ. Since 𝑇𝑇 𝑖ℋ ⊂ 𝑇 𝑖+1ℋ, ℋ0 is invariant for 𝑇 . Since

𝑥 ∈ ℋ0 implies that there is a sequence {𝑦𝑖}∞𝑖=0 such that 𝑥 = 𝑇 𝑖𝑦𝑖, 𝐿𝑥 = 𝐿𝑇 𝑖𝑦𝑖 =
𝑇 𝑖−1𝑦𝑖, so that 𝐿𝑥 ∈ 𝑇 𝑖−1ℋ ∀𝑖 ≥ 1, and hence 𝐿𝑥 ∈ ℋ0, so ℋ0 is also invariant for
𝐿. Also 𝑇𝐿𝑥 = 𝑥 since 𝑥 ∈ 𝑇ℋ, so 𝑇 maps ℋ0 onto ℋ0. Since the restriction of
any left-invertible operator to one of its invariant subspaces is also left-invertible (as
can be seen from (iv) of Theorem 2.1.3), and 𝑇 restricted to ℋ0 is onto and hence
right-invertible, it follows that 𝐿 must be not only the left-inverse of 𝑇 on ℋ0, but
also the inverse. Let 𝑥 ∈ ℋ0 be arbitrary. Plugging 𝐿𝑖𝑥 into inequality (2.2) yields
∥𝑥∥2 −𝑚2𝑖∥𝐿𝑖𝑥∥2 ≤ 𝑐𝑖∥𝐷𝐿𝑖𝑥∥2. Proceeding as in the last theorem we have

min
𝑚≤𝑖≤𝑛

{∥𝑥∥2−𝑚2𝑖∥𝐿𝑖𝑥∥2}
𝑛∑

𝑖=𝑚

1

𝑐𝑖
≤

𝑛∑
𝑖=𝑚

1

𝑐𝑖
{∥𝑥∥2−𝑚2𝑖∥𝐿𝑖𝑥∥2} ≤

𝑛∑
𝑖=𝑚

∥𝐷𝐿𝑖𝑥∥2 ≤ ∥𝑥∥2,

so that as before we conclude that lim inf𝑖→∞{∥𝑥∥2 − ∥(𝑚𝐿)𝑖𝑥∥2} ≤ 0 and ∥𝑥∥2 ≤
lim𝑖→∞ ∥(𝑚𝐿)𝑖𝑥∥2 ∀𝑥 ∈ ℋ0 where the limit exists because 𝑚𝐿 is a contraction.
Plugging 𝑇𝑥 into the last inequality yields ∥𝑇𝑥∥2 ≤ lim𝑖→∞ ∥𝑚(𝑚𝐿)𝑖−1𝑥∥2 =
𝑚2 lim𝑖→∞ ∥(𝑚𝐿)𝑖𝑥∥2 ≤ 𝑚2∥𝑥∥, and since ∥𝑇𝑥∥ ≥ 𝑚∥𝑥∥, it must be that ∥𝑇𝑥∥ =
𝑚∥𝑥∥ ∀𝑥 ∈ ℋ0. Therefore 𝑇 is 𝑚 times an isometry on ℋ0, and since 𝑇 is onto,
it must also be 𝑚 times a unitary operator. Let 𝐷 𝑇

𝑚
= (𝑇

∗
𝑚

𝑇
𝑚
− 𝐼)1/2 be the pos-

itive square root, which exists because ∥ 𝑇
𝑚
𝑥∥ ≥ ∥𝑥∥ ∀𝑥 ∈ ℋ, then ∥𝐷 𝑇

𝑚
𝑥∥2 =

∥ 𝑇
𝑚
𝑥∥2 − ∥𝑥∥2 = 0 ∀𝑥 ∈ ℋ0, so that ℋ0 ⊂ Ker(𝐷 𝑇

𝑚
) ⊂ Ker(𝐷2

𝑇
𝑚

) and therefore
𝑇 ∗
𝑚

𝑇
𝑚
𝑥 = 𝑥 ∀𝑥 ∈ ℋ0. Let 𝑥 ∈ ℋ0, then 𝑇 ∗𝑥 = 𝑇 ∗𝑇𝐿𝑥 = 𝑚2𝐿𝑥 ∈ ℋ0, which shows

that 𝑇 ∗ℋ0 ⊂ ℋ0, and hence ℋ0 is reducing for 𝑇 . □

Corollary 2.5.6. Let 𝑇 satisfy the hypotheses of Proposition 2.5.5, then the space
ℋ has the following decomposition into orthogonal sums:

ℋ =
∞∩
𝑖=0

𝑇 𝑖ℋ⊕ [ℰ ]𝑇 . (2.3)
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Proof Let ℋ1 = ℋ⊥
0 , where ℋ0 =

∩∞
𝑖=0 𝑇

𝑖ℋ as in the previous proposition. Then
ℋ0 is reducing so that ℋ1 is an invariant subspace which is pure (since

∩∞
𝑖=0 𝑇

𝑖ℋ1 ⊂∩∞
𝑖=0 𝑇

𝑖ℋ = ℋ0, so 𝑥 ∈ ∩∞
𝑖=0 𝑇

𝑖ℋ1 implies 𝑥 ∈ ℋ1 and 𝑥 ∈ ℋ0 so that 𝑥 = 0).
Applying Theorem 2.5.4 to ℋ1 yields that ℋ1 = [ℋ1 ⊖ 𝑇ℋ1]𝑇 . Since 𝑇ℋ0 = ℋ0,
ℰ ⊥ ℋ0, and hence ℰ ⊂ ℋ1. Since ℰ ⊥ 𝑇ℋ1, ℰ ⊂ ℋ1⊖𝑇ℋ1. Since 𝑇ℋ = 𝑇ℋ1⊕ℋ0

and ℋ0 ⊥ ℋ1, (ℋ1 ⊖ 𝑇ℋ1) ⊥ 𝑇ℋ, so that ℋ1⊖𝑇ℋ1 ⊂ ℰ , and hence ℰ = ℋ1⊖𝑇ℋ1.
We conclude that ℋ = ℋ0 ⊕ℋ1 =

∩∞
𝑖=0 𝑇

𝑖ℋ⊕ [ℋ1 ⊖ 𝑇ℋ1]𝑇 =
∩∞

𝑖=0 𝑇
𝑖ℋ⊕ [ℰ ]𝑇 . □

Remark 2.5.1. Combining Proposition 2.5.5 and Corollary 2.5.6 we have another
proof of the von Neumann-Wold Decomposition Theorem 2.3.4, as any isometry
satisfies ∥𝑇 𝑖𝑥∥2 ≤ ∥𝑥∥2 ∀𝑥 ∈ ℋ, so that one can choose 𝑐𝑖 = 1, 𝑐 = 1, and 𝑚 = 1
and have

∑∞
𝑖=2

1
𝑐𝑖
= ∞.

Examples of operators that satisfy the hypotheses of Proposition 2.5.5 are the
operators 𝑇𝛽 for 0 ≤ 𝛽 ≤ 1 (see Remark 4.3.1) [38]

The problem with using equation (2.2) is as follows. If equation (2.2) is satis-
fied for an operator 𝑇 , then the conclusions of Theorem 2.5.4 are also satisfied by
𝑚𝑇 ∀𝑚 ≥ 1, but it is not clear how to change the 𝑐𝑖’s so that equation (2.2) with∑∞

𝑖=2
1
𝑐𝑖
= ∞ is still satisfied for 𝑚𝑇 .

2.6 Introduction to Invariant Subspaces

As we will be studying the restriction of certain operators to their closed, invariant
subspaces in the next chapters, we will need to know how the attributes of an
operator are passed to its restriction. First we would like to know how the operators
that are related to 𝑇 change when 𝑇 is restricted.

Proposition 2.6.1. Let 𝑇 be a left-invertible operator with a closed, invariant sub-
space ℳ, then (𝑇 ∣ℳ)∗ = 𝑃ℳ𝑇 ∗∣ℳ, 𝐿𝑇 ∣ℳ = 𝐿𝑃𝑇ℳ∣ℳ, and (𝐿𝑇 ∣ℳ)∗ = 𝑃𝑇ℳ𝐿∗∣ℳ.

Proof (𝑇 ∣ℳ)∗ = 𝑃ℳ𝑇 ∗∣ℳ since ((𝑇 ∣ℳ)∗𝑥, 𝑦) = (𝑥, 𝑇 ∣ℳ𝑦) = (𝑥, 𝑇𝑦) = (𝑇 ∗𝑥, 𝑦) =
(𝑃ℳ𝑇 ∗𝑥, 𝑦) ∀{𝑥, 𝑦} ∈ ℳ×ℳ and 𝑃ℳ𝑇 ∗∣ℳ maps ℳ to ℳ.
𝐿𝑇 ∣ℳ = 𝐿𝑃𝑇ℳ∣ℳ since 𝐿𝑃𝑇ℳ∣ℳ𝑇𝑥 = 𝐿𝑃𝑇ℳ𝑇𝑥 = 𝐿𝑇𝑥 = 𝑥 ∀𝑥 ∈ ℳ and
𝐿𝑃𝑇ℳ∣ℳℰℳ = 𝐿𝑃𝑇ℳℰℳ = {0} and 𝐿𝑃𝑇ℳ∣ℳ maps ℳ to ℳ.
(𝐿𝑇 ∣ℳ)∗ = 𝑃𝑇ℳ𝐿∗∣ℳ since (𝑃𝑇ℳ𝐿∗∣ℳ𝑥, 𝑦) = (𝑃𝑇ℳ𝐿∗𝑥, 𝑦) = (𝑥, 𝐿𝑃𝑇ℳ𝑦) =
(𝑥, 𝐿𝑃𝑇ℳ∣ℳ𝑦) = (𝑥, 𝐿𝑇 ∣ℳ𝑦) ∀{𝑥, 𝑦} ∈ ℳ×ℳ and 𝑃𝑇ℳ𝐿∗∣ℳ maps ℳ to ℳ.

So if 𝑇 is restricted to one of its invariant subspaces, then 𝑇 ∗, 𝐿 and 𝐿∗ are
changed by composition with a projection onto an invariant subspace of 𝑇 .

As we will be working with operators with a closed range and would like to know
when their restrictions are left-invertible, by (𝑖𝑖𝑖) of Theorem 2.1.3 we need to know
when the restrictions have a closed range. Before proving a more general theorem,
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we state what will be necessary for our purposes as two corollaries of what will come
next.

Corollary 2.6.2. Let 𝑇 be an operator with a closed range. If ℳ is a closed,

invariant subspace of 𝑇 with dim
(
Ker T ∩ (ℳ∩Ker 𝑇 )⊥

)
< ∞, then 𝑇 ∣ℳ has a

closed range.

Corollary 2.6.3. Let 𝑇 be an operator with a closed range such that dim(Ker 𝑇 ) <
∞. Then 𝑇 ∣ℳ has a closed range for any closed, invariant subspace ℳ of 𝑇 .

Definition 2.6.4. [15, Definition 9.4] The angle between two subspaces ℳ and
𝒩 is the angle 𝜃(ℳ,𝒩 ) between 0 and 𝜋

2
whose cosine, 𝑐(ℳ,𝒩 ) = cos 𝜃(ℳ,𝒩 )

is defined by 𝑐(ℳ,𝒩 ) = sup{∣(𝑥, 𝑦)∣ : 𝑥 ∈ ℳ ∩ (ℳ∩𝒩 )⊥ , ∥𝑥∥ = 1, 𝑦 ∈
𝒩 ∩ (ℳ∩𝒩 )⊥ , ∥𝑦∣∣ = 1}.
Lemma 2.6.5. [15, Lemma 9.5 (6)] Let ℳ and 𝒩 be closed subspaces. Then
∣(𝑥, 𝑦)∣ ≤ 𝑐(ℳ,𝒩 )∥𝑥∥∥𝑦∥ whenever 𝑥 ∈ ℳ, 𝑦 ∈ 𝒩 , and at least one of 𝑥 or 𝑦 is
in (ℳ∩𝒩 )⊥.

Proposition 2.6.6. [15, Lemma 9.36] Let ℳ be a closed subspace and 𝒩 a subspace
with a finite dimension. Then ℳ+𝒩 is a closed subspace.

Theorem 2.6.7. [15, Theorem 9.35] Let ℳ and 𝒩 be closed subspaces. Then the
following are equivalent:
(i) 𝑐(ℳ,𝒩 ) < 1
(ii) ℳ+𝒩 is closed
(iii) ℳ⊥ +𝒩⊥ is closed

Theorem 2.6.8. Let ℳ be a closed, invariant subspace for the operator 𝑇 which has
a closed range. Then 𝑇 ∣ℳ has a closed range if and only if 𝑐 = 𝑐(ℳ,Ker 𝑇 ) < 1.

Proof Suppose that ℳ is a closed, invariant subspace for 𝑇 , where 𝑇 has a closed
range and 𝑐 = 𝑐(ℳ,Ker 𝑇 ) < 1. As 𝑇 has a closed range, from Theorem 2.1.6
we know that there is a 𝑑 > 0 such that ∥𝑇𝑥∥ ≥ 𝑑∥𝑥∥ ∀𝑥 ∈ (Ker 𝑇 )⊥. Let 𝑦 ∈
(Ker 𝑇 ∣ℳ)⊥ = ℳ∩(ℳ∩Ker 𝑇 )⊥, then from Lemma 2.6.5 ∣(𝑦, 𝑘)∣ ≤ 𝑐∥𝑦∥ for every
𝑘 ∈ Ker 𝑇 with ∥𝑘∥ = 1. Therefore ∥𝑃Ker 𝑇𝑦∥ ≤ 𝑐∥𝑦∥, and hence 𝑦 = 𝑦1 + 𝑦2 with
𝑦1 ∈ (Ker 𝑇 )⊥, 𝑦2 ∈ Ker 𝑇 and ∥𝑦2∥ ≤ 𝑐∥𝑦∥, and hence ∥𝑦1∥ ≥ √

1− 𝑐2∥𝑦∥. This
yields ∥𝑇𝑦∥ = ∥𝑇 (𝑦1+𝑦2)∥ = ∥𝑇𝑦1∥ ≥ 𝑑∥𝑦1∥ ≥ 𝑑

√
1− 𝑐2∥𝑦∥. Since 𝑦 ∈ (Ker 𝑇 ∣ℳ)⊥

was arbitrary, we have ∥𝑇𝑥∥ ≥ 𝑑
√
1− 𝑐2∥𝑥∥ ∀𝑥 ∈ (Ker 𝑇 ∣ℳ)⊥, so that by Theorem

2.1.6, 𝑇 ∣ℳ has a closed range.
Conversely, suppose that ℳ is a closed, invariant subspace for 𝑇 with 𝑐 =

𝑐(ℳ,Ker 𝑇 ) = 1. Then there are two sequences {𝑚𝑖}∞𝑖=1 and {𝑘𝑖}∞𝑖=1 with𝑚𝑖 ∈ ℳ∩
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(ℳ∩Ker 𝑇 )⊥ ∀𝑖 ≥ 1, 𝑘𝑖 ∈ Ker 𝑇 ∩ (ℳ∩Ker 𝑇 )⊥ ∀𝑖 ≥ 1, ∥𝑚𝑖∥ = ∥𝑘𝑖∥ = 1 ∀𝑖 ≥
1, and lim𝑖(𝑚𝑖, 𝑘𝑖) = 1. Then ∥𝑚𝑖 − 𝑘𝑖∥2 = ∥𝑚𝑖∥2 − 2Re(𝑚𝑖, 𝑘𝑖) + ∥𝑘𝑖∥2, so that
lim𝑖 ∥𝑚𝑖−𝑘𝑖∥ = 0 and hence lim𝑖 ∥𝑇 (𝑚𝑖−𝑘𝑖)∥ = 0. Since 𝑘𝑖 ∈ Ker 𝑇 , 𝑇 (𝑚𝑖−𝑘𝑖) =
𝑇𝑚𝑖 so that also lim𝑖 ∥𝑇𝑚𝑖∥ = 0. But ∥𝑃(Ker 𝑇 ∣ℳ)⊥𝑚𝑖∥ = ∥𝑃ℳ∩(ℳ∩Ker 𝑇 )⊥𝑚𝑖∥ =

∥𝑚𝑖∥ = 1. Combining this with lim𝑖 ∥𝑇𝑚𝑖∥ = 0 yields that there is no 𝑑 > 0 such
that ∥𝑇𝑚∥ ≥ 𝑑∥𝑃(Ker 𝑇 ∣ℳ)⊥𝑚∥ ∀𝑚 ∈ ℳ so that by (𝑖𝑖𝑖) of Theorem 2.1.6, 𝑇 ∣ℳ
does not have a closed range.

Note that Corollary 2.6.2 follows from Theorem 2.6.8 since ℳ + Ker 𝑇 =
ℳ + Ker T ∩ (ℳ∩Ker 𝑇 )⊥, so that by Proposition 2.6.6 and Theorem 2.6.7,
𝑐(ℳ,Ker 𝑇 ) < 1. Also, Corollary 2.6.3 follows from Corollary 2.6.2 since

dim
(
Ker T ∩ (ℳ∩Ker 𝑇 )⊥

)
≤ dim (Ker 𝑇 ) < ∞.



Chapter 3

Weighted Shifts and Wandering
Subspaces

3.1 Weighted Shifts

Let 𝑆 be the unilateral shift of multiplicity one, then by Definition 2.3.5 and Theorem
2.3.6, 𝐻𝑖 = 𝑆(𝑖−1)ℰ where ℰ = ℋ⊖ 𝑆ℋ and each 𝐻𝑖 has a dimension equal to one.
Since 𝑆𝐻𝑖 = 𝐻𝑖+1 and 𝐻𝑖 ⊥ 𝐻𝑗 𝑖 ∕= 𝑗, 𝑆 can be viewed as an operator that shifts
the complex number (since the dimension is one) in 𝐻𝑖 to 𝐻𝑖+1, so if ℰ = span{𝑒}
and 𝑥 =

∑∞
𝑖=1 𝑐𝑖𝑆

(𝑖−1)𝑒 where each 𝑐𝑖 is a complex number, one can write 𝐻 as
ℂ ⊕ ℂ ⊕ ℂ ⊕ . . . and 𝑥 as (𝑐1, 𝑐2, 𝑐3, . . .) and 𝑆 will simply shift the components of
𝑥, so that 𝑆𝑥 = (0, 𝑐1, 𝑐2, 𝑐3, . . . ). This motivates the following:

Definition 3.1.1. Let {𝛼𝑖}∞𝑖=1 be a sequence of complex numbers, then the operator
𝑇 which maps 𝑥 = (𝑥1, 𝑥2, 𝑥3, . . . ) to 𝑇𝑥 = (0, 𝛼1𝑥1, 𝛼2𝑥2, 𝛼3𝑥3, . . .) is a weighted
shift with the sequence of weights {𝛼𝑖}∞𝑖=1. Alternatively, an operator 𝑇 is a weighted
shift if there exist subspaces ℋ𝑖, each with dimension equal to one, such that the ℋ𝑖

are pairwise orthogonal (ℋ𝑖 ⊥ ℋ𝑗 ∀𝑖 ∕= 𝑗), ℋ = ℋ1 ⊕ ℋ2 ⊕ ℋ3 ⊕ . . . and 𝑇 maps
ℋ𝑖 to ℋ𝑖+1 for all 𝑖 ≥ 1.

Proposition 3.1.2. Let 𝑇 be a weighted shift with the sequence of weights {𝛼𝑖}∞𝑖=1,
then ∥𝑇∥ = sup𝑖 ∣𝛼𝑖∣ and ∥𝑇𝑥∥ ≥ 𝑐∥𝑥∥ ∀𝑥 ∈ ℋ where 𝑐 = inf𝑖 ∣𝛼𝑖∣ is the largest
value for which this inequality holds for the whole space.

25
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Proof Let 𝑥 = (𝑥1, 𝑥2, 𝑥3, . . .), then

∥𝑇𝑥∥2 = ∥(0, 𝛼1𝑥1, 𝛼2𝑥2, 𝛼3𝑥3, . . .)∥2 =
∞∑
𝑖=1

∣𝛼𝑖𝑥𝑖∣2

≤
∞∑
𝑖=1

(sup
𝑖

∣𝛼𝑖∣)2∣𝑥𝑖∣2 = (sup
𝑖

∣𝛼𝑖∣)2∥𝑥∥2,

so that ∥𝑇∥ ≤ sup𝑖 ∣𝛼𝑖∣. Let 𝜖 > 0 be arbitrary and 𝑗 be such that ∣𝛼𝑗∣ > sup𝑖 ∣𝛼𝑖∣−𝜖,
then 𝑇𝑒𝑗 = 𝛼𝑗𝑒𝑗+1 so that ∥𝑇𝑒𝑗∥ > sup𝑖 ∣𝛼𝑖∣ − 𝜖 and ∥𝑇∥ = sup𝑖 ∣𝛼𝑖∣. Also, ∥𝑇𝑥∥2 =
∥(0, 𝛼1𝑥1, 𝛼2𝑥2, 𝛼3𝑥3, . . .)∥2 =

∑∞
𝑖=1 ∣𝛼𝑖𝑥𝑖∣2 ≥ ∑∞

𝑖=1(inf𝑖 ∣𝛼𝑖∣)2∣𝑥𝑖∣2 = (inf𝑖 ∣𝛼𝑖∣)2∥𝑥∥2
and if 𝑐 > inf𝑖 ∣𝛼𝑖∣ then there is a 𝑗 such that ∣𝛼𝑗∣ < 𝑐 and ∥𝑇𝑒𝑗∥ = ∣𝛼𝑗∣ < 𝑐 and
∥𝑇𝑥∥ ≥ 𝑐∥𝑥∥ does not hold for all 𝑥 in ℋ.

Definition 3.1.3. Let {𝛼𝑖}∞𝑖=1 be a sequence of complex numbers, then the operator
𝑇 which maps 𝑥 = (𝑥1, 𝑥2, 𝑥3, . . . ) to 𝑇𝑥 = (𝛼1𝑥2, 𝛼3𝑥2, 𝛼4𝑥3, . . .) is a backward,
weighted shift with the sequence of weights {𝛼𝑖}∞𝑖=1.

Proposition 3.1.4. Let 𝑇 be a left-invertible, weighted shift with the sequence of
weights {𝛼𝑖}∞𝑖=1, then 𝑇 ∗ is a backward, weighted shift with the sequence of weights
{�̄�𝑖}∞𝑖=1, 𝐿 is a backward, weighted shift with the sequence of weights { 1

𝛼𝑖
}∞𝑖=1 and 𝐿∗

is a weighted shift with the sequence of weights { 1
�̄�𝑖
}∞𝑖=1.

Proof This follows from the facts that (𝑇 ∗𝑒𝑖, 𝑒𝑗) = (𝑒𝑖, 𝑇 𝑒𝑗) = (𝑒𝑖, 𝛼𝑗𝑒𝑗+1) =
�̄�𝑗(𝑒𝑖, 𝑒𝑗+1), and (𝑒𝑖, 𝑒𝑗) = (𝐿𝑇𝑒𝑖, 𝑒𝑗) = (𝐿𝛼𝑖𝑒𝑖+1, 𝑒𝑗) = 𝛼𝑖(𝐿𝑒𝑖+1, 𝑒𝑗) and 𝑒1 ⊥ 𝑇ℋ =

span{𝑒2, 𝑒3, 𝑒4, . . .}.

Note that we will only be concerned with left-invertible, weighted shifts. Since
𝐿∗ is a weighted shift if and only if 𝑇 is, and every weighted shift is pure, by Theorem
2.2.4 every weighted shift satisfies the Wandering Subspace Property.

Theorem 3.1.5. [41, Theorems 1,2] Let 𝑇 be a weighted shift with the sequence of
weights {𝛼𝑖}∞𝑖=1 and 𝑆 a weighted shift with the sequence of weights {𝛽𝑖}∞𝑖=1, then 𝑇
and 𝑆 are unitarily equivalent if and only if ∣𝛼𝑖∣ = ∣𝛽𝑖∣ ∀𝑖 ≥ 1 and similar if and

only if 0 < inf𝑖
∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ ≤ sup𝑖

∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ < ∞.

The following corollary can be seen by picking 𝛽𝑖 = 𝑢𝑖𝛼𝑖 where ∣𝑢𝑖∣ = 1 ∀𝑖 ≥ 1
where the 𝑢𝑖’s are suitably chosen.

Corollary 3.1.6. [41, Corollary 1] Let 𝑇 be a weighted shift with the sequence
of weights {𝛼𝑖}∞𝑖=1. Then 𝑇 is unitarily equivalent to the weighted shift with the
sequence of weights {∣𝛼𝑖∣}∞𝑖=1.
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From Theorem 3.1.5 we know that a weighted shift is similar to 𝑚 times the
unweighted shift if and only if 0 < inf𝑖

∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝑚∣𝑖 ≤ sup𝑖

∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝑚𝑖∣ < ∞. One would

hope that for every weighted shift there would be an 𝑚 such that the weighted shift
were similar to 𝑚 times the unweighted shift since these are the simplest kind of
weighted shift, and have as much structure as an isometry. However, this is not the
case as can be seen by considering the weighted shift with the sequence of weights
of one 𝑚 followed by two 1

𝑚
’s followed by three 𝑚’s followed by four 1

𝑚
’s et cetera

for any 𝑚 with modulus not equal to one. So every weighted shift is not similar
to a weighted shift whose weights only have one value, but according to the next
theorem every weighted shift which is bounded below is similar to a weighted shift
whose weights only have two values:

Proposition 3.1.7. Let 𝑇 be a weighted shift with the sequence of weights{𝛼𝑖}∞𝑖=1

and 𝑀 = max{sup𝑖 ∣𝛼𝑖∣, 1
inf𝑖 ∣𝛼𝑖∣} < ∞, then 𝑇 is similar to a weighted shift whose

weights are either 𝑀 or 1
𝑀
.

Proof According to the definition of 𝑀 , 0 < 𝑐1 =
inf𝑖 ∣𝛼𝑖∣

𝑀
≤ ∣𝛼𝑖∣

𝑀
≤ 1 and 1 ≤ ∣𝛼𝑖∣

1
𝑀

≤
𝑀 sup𝑖 ∣𝛼𝑖∣ = 𝑐2 < ∞ for every 𝑖. We will now construct a nonunique, weighted
shift 𝑆 with the sequence of weights {𝛽𝑖}∞𝑖=1 such that 𝛽𝑖 is 𝑀 or 1

𝑀
for every 𝑖 and

𝑇 and 𝑆 are similar. Let 𝑣𝑖 =
∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ and 𝛽1 = 𝑀 so that 𝑐1 ≤ 𝑣1 ≤ 1. For

each 𝑖 ≥ 2, if 𝑣𝑖−1𝑀 ∣𝛼𝑖∣ ≤ 1 let 𝛽𝑖 =
1
𝑀
, else let 𝛽𝑖 = 𝑀 . Since ∣𝛼𝑖∣

𝑀
≤ 1 ∀𝑖 ≥ 1 and

𝛽𝑖 is
1
𝑀

only when 𝑣𝑖−1𝑀 ∣𝛼𝑖∣ ≤ 1 so that 𝑣𝑖 ≤ 1 it must be that 𝑣𝑖 ≤ 1 ∀𝑖. Since

𝛽𝑖 is 𝑀 only when 𝑣𝑖−1 > 1
𝑀 ∣𝛼𝑖∣ and 1 ≤ ∣𝛼𝑖∣

1
𝑀

, 𝑣𝑖 ≤ 𝑣𝑖−1 only if 𝑣𝑖−1 > 1
𝑀 ∣𝛼𝑖∣ so that

𝑣𝑖 ≥ 1
𝑀2 sup𝑖 ∣𝛼𝑖∣ ∀𝑖 and hence 𝑇 and 𝑆 are similar.

The author hopes that the previous result can be used to better classify weighted
shifts into appropriate groups. It has served usefully in deriving counterexamples
as one knows as long as at least two weights are considered, all weighted shifts are
considered, at least to equivalence by similarity.

3.2 The Wandering Subspace Problem

Note that 𝑆 will always mean an unweighted shift (of multiplicity equal to one).
Two important questions for 𝑆 have already been answered in Theorems 2.3.4 and
2.3.9: Is the Wandering Subspace Property satisfied for 𝑆 restricted to an arbitrary,
closed, invariant subspace? (Yes) and: What values can the index of a closed,
invariant subspace (index(ℳ)=dim(ℳ⊖𝑆ℳ)) of 𝑆 be? (The index is always one)
This follows from the fact that 𝑆 restricted to any of its closed, invariant subspaces
is unitarily equivalent to 𝑆 (Proposition 2.3.8 and Theorem 2.3.9).
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In this section we will study whether an arbitrary, left-invertible, weighted shift
also satisfies the Wandering Subspace Property when it is restricted to any of its
closed, invariant subspaces. From Proposition 2.6.1 we know that if 𝑇 is restricted
to one of its invariant subspaces, then 𝑇 ∗, 𝐿 and 𝐿∗ are changed by composition
with a projection onto an invariant subspace of 𝑇 . This means that 𝐿∗ when 𝑇 is
restricted may no longer be a weighted shift and may not even be pure, and hence
𝑇 may no longer be a weighted shift or satisfy the Wandering Subspace Property
when restricted.

Since we are interested in when a closed, invariant subspace is generated by
its wandering subspace, it would be useful to know how the wandering subspace
changes when an operator is restricted. Although this is complicated in general,
there is one simple result that is always true.

Proposition 3.2.1. Let 𝑇 be left-invertible and ℳ be a closed, invariant subspace
of 𝑇 . If 𝑒 ∈ ℋ ⊖ 𝑇ℋ = Ker𝑇 ∗, then 𝜀 = 𝑃ℳ𝑒 ∈ ℳ⊖ 𝑇ℳ.

Proof Since 𝜀 is the projection of 𝑒 onto ℳ, 𝜀 ∈ ℳ. We must show that 𝜀 ⊥ 𝑇ℳ.
Let 𝑚 be an arbitrary vector in ℳ, then (𝜀, 𝑇𝑚) = (𝑃ℳ𝑒, 𝑇𝑚) = (𝑒, 𝑃ℳ𝑇𝑚) =
(𝑒, 𝑇𝑚) = (𝑇 ∗𝑒,𝑚) = 0, so that 𝜀 ∈ ℳ⊖ 𝑇ℳ.

If 𝑇 is similar to 𝑊 then 𝑊 = 𝑄𝑇𝑄−1 where 𝑄 is an invertible operator (we
will write 𝑄−∗ for (𝑄−1)∗ = (𝑄∗)−1). If ℳ is a closed, invariant subspace for
𝑇 , then since 𝑊𝑄ℳ = 𝑄𝑇𝑄−1𝑄ℳ = 𝑄𝑇ℳ ⊂ 𝑄ℳ, 𝑄ℳ is a closed, invari-
ant subspace for 𝑊 . Suppose that 𝜀 ∈ ℳ ⊖ 𝑇ℳ so that (𝜀, 𝑇𝑚) = 0 ∀𝑚 ∈
ℳ, then (𝑃𝑄ℳ𝑄−∗𝜀,𝑊𝑄𝑚) = (𝑃𝑄ℳ𝑄−∗𝜀,𝑄𝑇𝑄−1𝑄𝑚) = (𝑃𝑄ℳ𝑄−∗𝜀,𝑄𝑇𝑚) =
(𝑄−∗𝜀,𝑄𝑇𝑚) = (𝑄∗𝑄−∗𝜀, 𝑇𝑚) = 0 ∀𝑚 ∈ ℳ so that we have 𝑃𝑄ℳ𝑄−∗𝜀 ∈ 𝑄ℳ⊖
𝑊𝑄ℳ. Therefore 𝑃𝑄ℳ𝑄−∗ (ℳ⊖ 𝑇ℳ) ⊂ 𝑄ℳ⊖𝑊𝑄ℳ, and since 𝑊 = 𝑄𝑇𝑄−1

and ℳ = 𝑄−1𝑄ℳ, it follows that we can reverse the roles of 𝑇 and 𝑊 and obtain
𝑃ℳ𝑄∗ (𝑄ℳ⊖𝑊𝑄ℳ) ⊂ ℳ ⊖ 𝑇ℳ. Since (𝑄𝑚,𝑄−∗𝑥) = (𝑄−1𝑄𝑚, 𝑥) = (𝑚,𝑥),
𝑃𝑄ℳ𝑄−∗𝑥 = 0 ∀𝑥 ∈ ℳ⊥, so that combining the inclusions we obtain

𝑃𝑄ℳ𝑄−∗𝑃ℳ𝑄∗ (𝑄ℳ⊖𝑊𝑄ℳ) = 𝑃𝑄ℳ𝑄−∗(𝐼 − 𝑃ℳ⊥)𝑄∗ (𝑄ℳ⊖𝑊𝑄ℳ)

=𝑄ℳ⊖𝑊𝑄ℳ ⊂ 𝑃𝑄ℳ𝑄−∗ (ℳ⊖ 𝑇ℳ) ⊂ 𝑄ℳ⊖𝑊𝑄ℳ.

Therefore there must be equality throughout the inclusions, and we obtain 𝑄ℳ⊖
𝑊𝑄ℳ = 𝑃𝑄ℳ𝑄−∗ (ℳ⊖ 𝑇ℳ) for any similar, left-invertible operators 𝑇 and 𝑊
with closed, invariant subspaces related by the transformation of similarity 𝑄. We
also conclude that

dim (ℳ⊖ 𝑇ℳ) = dim (𝑄ℳ⊖𝑊𝑄ℳ) , (3.1)

so that two left-invertible operators that are similar must have the same set of
possible values for the indices of their closed, invariant subspaces.
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From this it follows that any weighted shift 𝑇 which is similar to 𝑚𝑆 can only
have invariant subspaces of index equal to one. Let ℰℳ = ℳ ⊖ 𝑇ℳ, then the
question about the Wandering Subspace Property for a closed, invariant subspace
ℳ is equivalent to whether or not ℳ ⊖ [ℰℳ]𝑇 = {0}. If this subspace is not the
zero space then the next simplest case would be when it has a dimension equal to
one. From Theorem 2.2.4 we know that ℳ⊖ [ℰℳ]𝑇 =

∩∞
𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ, which is an

invariant subspace for (𝑇 ∣ℳ)∗ on which it is invertible. So if
∩∞

𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ has
dimension equal to one, then (𝑇 ∣ℳ)∗∣∩∞

𝑖=0(𝐿𝑇 ∣ℳ )∗𝑖ℳ = 𝑃ℳ𝑇 ∗∣∩∞
𝑖=0(𝐿𝑇 ∣ℳ )∗𝑖ℳ must be

a nonzero scalar times the identity, or more generally speaking, an operator with a
nonzero eigenvalue. The same way that the wandering subspace for the whole space
can be defined as 𝜀 ∈ ℰ = Ker(𝑇 ∗) which implies that 𝜀 ⊥ 𝑇 𝑖𝜀 ∀𝑖 ≥ 1 or (𝜀, 𝑇 𝑖𝜀) =
0 ∀𝑖 ≥ 1, which can then be used as the definition to find wandering subspaces
inside of invariant subspaces; the definition of an eigenvector as 𝑥𝜆 ∈ Ker(𝑇 ∗ − 𝜆)
implies that (𝑥𝜆, 𝑇

𝑖𝑥𝜆) = (𝑇 ∗𝑖𝑥𝜆, 𝑥𝜆) = 𝜆𝑖∥𝑥𝜆∥2 ∀𝑖 ≥ 0 which can be used to look
for invariant subspaces on which the restriction of 𝑇 does not satisfy the Wandering
Subspace Property.

Theorem 3.2.2. For a closed, invariant subspace ℳ of 𝑇 , (𝑇 ∣ℳ)∗ has an invariant
subspace of span{𝑓} contained in

∩∞
𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ only if 𝑓 ∈ 𝑇ℳ and (𝑇 𝑖𝑓, 𝑓) =

𝜆𝑖∥𝑓∥2 ∀𝑖 ≥ 0 and (𝐿𝑓, 𝑓) = 1
𝜆
∥𝑓∥2 for some 𝜆 ∕= 0. Conversely, if 𝑓 ∈ 𝑇ℋ and

(𝑇 𝑖𝑓, 𝑓) = 𝜆𝑖∥𝑓∥2 ∀𝑖 ≥ 0 and (𝐿𝑓, 𝑓) = 1
𝜆
∥𝑓∥2, then there is a closed, invariant

subspace ℳ of 𝑇 such that 𝑓 ∈ ∩∞
𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ and (𝑇 ∣ℳ)∗span{𝑓} = span{𝑓}.

Proof Suppose that span{𝑓} ⊂ ∩∞
𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ is an invariant subspace of (𝑇 ∣ℳ)∗,

then since
∩∞

𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ ⊂ (𝐿𝑇 ∣ℳ)∗ℳ = 𝑇ℳ it must be that 𝑓 ∈ 𝑇ℳ. Since
(𝑇 ∣ℳ)∗ is invertible on

∩∞
𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ and maps span{𝑓} to itself, it must be that

(𝑇 ∣ℳ)∗𝑓 = �̄�𝑓 for some 𝜆 ∕= 0. So (𝑇 𝑖𝑓, 𝑓) = ((𝑇 ∣ℳ)𝑖𝑓, 𝑓) = (𝑓, (𝑇 ∣ℳ)∗𝑖𝑓) =
(𝑓, �̄�𝑖𝑓) = 𝜆𝑖∥𝑓∥2 ∀𝑖 ≥ 0. Since (𝐿𝑇 ∣ℳ)∗𝑓 = (𝐿𝑇 ∣ℳ)∗ 1

�̄�
(𝑇 ∣ℳ)∗𝑓 = 1

�̄�
𝑓 because

(𝐿𝑇 ∣ℳ)∗(𝑇 ∣ℳ)∗ is the identity on
∩∞

𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ, it follows that

(𝐿𝑓, 𝑓) = (𝐿𝑃𝑇ℳ𝑓, 𝑓) = (𝑓, 𝑃𝑇ℳ𝐿∗𝑓) = (𝑓, (𝐿𝑇 ∣ℳ)∗𝑓) = (𝑓,
1

�̄�
𝑓) =

1

𝜆
∥𝑓∥2.

Conversely, let ℳ = [𝐿𝑓 ]𝑇 , then since 𝑓 ∈ 𝑇ℋ, 𝑇𝐿𝑓 = 𝑓 and 𝑓 ∈ 𝑇ℳ.
Let 𝑥 =

∑𝑛
𝑖=0 𝑐𝑖𝑇

𝑖𝐿𝑓 , then since (𝑇 𝑖𝐿𝑓, 𝑓) = 𝜆(𝑇 (𝑖−1)𝐿𝑓, 𝑓) ∀𝑖 ≥ 1, (𝑇𝑥, 𝑓) =
(
∑𝑛

𝑖=0 𝑐𝑖𝑇
𝑖𝑓, 𝑓) =

∑𝑛
𝑖=0 𝑐𝑖(𝑇

𝑖𝑓, 𝑓) =
∑𝑛

𝑖=0 𝜆𝑐𝑖(𝑇
𝑖𝐿𝑓, 𝑓) = 𝜆(

∑𝑛
𝑖=0 𝑐𝑖𝑇

𝑖𝐿𝑓, 𝑓) =
𝜆(𝑥, 𝑓). Since 𝑥’s of this form are dense in ℳ, it must be that (𝑇𝑚, 𝑓) = 𝜆(𝑚, 𝑓) for
every 𝑚 ∈ ℳ. Let 𝜀 ∈ ℰℳ = ℳ⊖ 𝑇ℳ, then since 𝑓 ∈ 𝑇ℳ, (𝜀, 𝑓) = 0 and hence
(𝑇 𝑖𝜀, 𝑓) = 𝜆𝑖(𝜀, 𝑓) = 0 ∀𝑖 ≥ 0, so 𝑓 ⊥ ⋁∞

𝑖=0 𝑇
𝑖ℰℳ, and hence 𝑓 ∈ ∩∞

𝑖=0(𝐿𝑇 ∣ℳ)∗𝑖ℳ.
Since (𝑇 ∣ℳ)∗ = 𝑃ℳ𝑇 ∗ and (𝑃ℳ𝑇 ∗𝑓− �̄�𝑓, 𝑇 𝑖𝐿𝑓) = (𝑓, 𝑇𝑇 𝑖𝐿𝑓)− �̄�(𝑓, 𝑇 𝑖𝐿𝑓) = 0 and
ℳ = [𝐿𝑓 ]𝑇 , it must be that (𝑇 ∣ℳ)∗𝑓 = �̄�𝑓 and (𝑇 ∣ℳ)∗span{𝑓} = span{𝑓}.
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Let 𝑥𝜆 be an eigenvector for 𝑆∗ with eigenvalue 𝜆 ∕= 0, then the equation
𝑆∗𝑥𝜆 = 𝜆𝑥𝜆 is equivalent to (𝑥2, 𝑥3, 𝑥4, . . .) = 𝜆(𝑥1, 𝑥2, 𝑥3, . . .) or equivalently 𝑥𝑖+1 =
𝜆𝑥𝑖 ∀𝑖 ≥ 1. Thus if 𝑥1 = 0 then 𝑥 = 0, so normalizing so that 𝑥1 = 1 yields that
the only eigenvector for 𝑆∗ with eigenvalue 𝜆 is (1, 𝜆, 𝜆2, 𝜆3, . . .), which is contained
in ℋ if and only if

∑∞
𝑖=0 ∣𝜆∣2𝑖 < ∞ or if and only if ∣𝜆∣ < 1 (see Theorem 8 of [41]).

Since 𝑆∗𝑥𝜆 = 𝜆𝑥𝜆, (𝑆
𝑖𝑥𝜆, 𝑥𝜆) = (𝑥𝜆, 𝑆

∗𝑖𝑥𝜆) = �̄�𝑖∥𝑥𝜆∥2. However, 𝑥𝜆 ∕∈ 𝑆ℋ and
(𝐿𝑥𝜆, 𝑥𝜆) = �̄�∥𝑥𝜆∥2 ∕= 1

�̄�
∥𝑥𝜆∥2. Similarly if 𝑦𝜆 is an eigenvector for the adjoint of a

weighted shift 𝑇 , then (𝑇 𝑖𝑦𝜆, 𝑦𝜆) = �̄�𝑖∥𝑦𝜆∥2 but it can be shown that 𝑦𝜆 ∕∈ 𝑇ℋ. The
question arises as to whether 𝑥𝜆 or more generally 𝑦𝜆 could be modified in some way
so that an operator similar to 𝑆 or some 𝑇 would have a closed, invariant subspace
on which its restriction does not satisfy that Wandering Subspace Property (from
above we know that 𝑆 satisfies the Wandering Subspace Property on all of its closed,
invariant subspaces).

This will be done by modifying the inner product on ℋ, which will change the
geometry but not the topology of the space. As it will not change the correspondence
between vectors and their images under an operator, it will not change the invariant
subspaces of an operator. As it does not change the topology, it will not change
the closed, invariant subspaces of an operator. But as it does change the geometry,
it will change which vectors are orthogonal to the image of an operator, so that it
will change the wandering subspaces. Therefore one could hope that by changing
the wandering subspaces of an operator there may be a closed, invariant subspace
which is not generated by its wandering subspace.

Definition 3.2.3. Two inner products (⋅, ⋅)1 and (⋅, ⋅)2 are equivalent if there are
constants 𝑚 > 0 and 𝑀 < ∞ such that 𝑚(𝑥, 𝑥)2 ≤ (𝑥, 𝑥)1 ≤ 𝑀(𝑥, 𝑥)2 ∀𝑥 ∈ ℋ, or
equivalently if they have the same convergent sequences.

Theorem 3.2.4. Let 𝑇 be a left-invertible operator and 𝐷 be an invertible operator.
Then 𝐷𝑇𝐷−1 has a closed, invariant subspace on which the restriction of 𝐷𝑇𝐷−1

does not satisfy the Wandering Subspace Property if and only if 𝑇 has a closed, in-
variant subspace ℳ such that 𝑇 ∣ℳ does not satisfy the Wandering Subspace Prop-
erty when ℋ is endowed with the equivalent inner product (⋅, ⋅)2 = (𝐷⋅, 𝐷⋅).

Proof Since 𝐷−1(𝐷𝑇𝐷−1)𝐷 = 𝑇 and (𝐷−1𝐷⋅, 𝐷−1𝐷⋅) = (⋅, ⋅), the proof of one
direction will follow from the other. Let ℳ be a closed, invariant subspace of
𝑇 = 𝐷𝑇𝐷−1 and ℰℳ = ℳ⊖1 𝑇ℳ where the ⊖1 means that one orthogonally re-
moves using the inner product (⋅, ⋅)1 = (⋅, ⋅) (the original one). Suppose that ℳ⊖1

[ℰℳ]𝑇 ∕= {0} so that 𝑇 restricted to ℳ does not satisfy the Wandering Subspace
Property. This happens if and only if there is an 𝑓 ∕= 0 such that 𝑓 ⊥1 𝑇

𝑖ℰℳ ∀𝑖 ≥ 0.
Since 𝑇𝐷−1ℳ = 𝐷−1𝑇𝐷𝐷−1ℳ = 𝐷−1𝑇ℳ ⊂ 𝐷−1ℳ, 𝐷−1ℳ is an invariant sub-
space for 𝑇 . Let 𝜀 ∈ ℰℳ, then since (𝐷−1𝜀, 𝑇𝐷−1𝑚)2 = (𝐷𝐷−1𝜀,𝐷𝑇𝐷−1𝑚)1 =
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(𝜀, 𝑇𝑚)1 = 0 ∀𝑚 ∈ ℳ, it must be that 𝐷−1𝜀 ∈ ℰ𝐷−1ℳ = 𝐷−1ℳ ⊖2 𝑇𝐷
−1ℳ,

and reversing the roles of 𝑇 and 𝑇 yields 𝐷−1ℰℳ = 𝐷−1ℳ ⊖2 𝑇𝐷−1ℳ (com-
pare this with the case discussed after Proposition 2.6.1 where the inner prod-
uct is not changed). Since 𝑓 ⊥1 𝑇 𝑖ℰℳ ∀𝑖 ≥ 0, (𝑓, 𝑇 𝑖𝜀)1 = (𝑓, (𝐷𝑇𝐷−1)𝑖𝜀)1 =
(𝑓,𝐷𝑇 𝑖𝐷−1𝜀)1 = (𝐷𝐷−1𝑓,𝐷𝑇 𝑖𝐷−1𝜀)1 = (𝐷−1𝑓, 𝑇 𝑖𝐷−1𝜀)2 = 0 ∀𝑖 ≥ 0, 𝜀 ∈ ℰℳ.
So 𝐷−1𝑓 ⊥2 𝑇 𝑖ℰ𝐷−1ℳ ∀𝑖 ≥ 0 and since 𝐷−1𝑓 ∈ 𝐷−1ℳ, 𝐷−1𝑓 ∈ 𝐷−1ℳ ⊖2

[ℰ𝐷−1ℳ]𝑇 ∕= {0} and 𝑇 does not satisfy the Wandering Subspace Property when re-
stricted to its invariant subspace 𝐷−1ℳ under the inner product (⋅, ⋅)2 = (𝐷⋅, 𝐷⋅).

Note that included in the proof was the fact that 𝐷−1ℳ⊖2 [ℰ𝐷−1ℳ]𝑇 is equal
to 𝐷−1 (ℳ⊖1 [ℰℳ]𝑇 ).

Corollary 3.2.5. For any closed, invariant subspace ℳ of the left-invertible oper-
ator 𝑇 and invertible operator 𝐷, dim(ℳ⊖ [ℳ⊖2 𝑇ℳ]𝑇 ) = dim(𝐷ℳ⊖ [𝐷ℳ⊖
𝐷𝑇𝐷−1𝐷ℳ]𝐷𝑇𝐷−1).

Definition 3.2.6. The residual space (with respect to being generated by the wander-
ing subspace) for a left-invertible operator is the space ℋ⊖ [ℋ⊖𝑇ℋ]𝑇 =

∩∞
𝑖=0 𝐿

∗𝑖ℋ.

Remark 3.2.1. Since dim(ℳ ⊖1 [ℳ ⊖1 𝑇ℳ]𝑇 ) ∕= dim(ℳ ⊖2 [ℳ ⊖2 𝑇ℳ]𝑇 ) for
two equivalent, inner products, we see that unlike the index, the dimension of the
residual space of a closed, invariant subspace is not preserved under transformations
of similarity. Also, the property of having only closed, invariant subspaces that are
generated by their wandering subspaces is not preserved under transformations of
similarity.

Thus the next question is: For which invertible operators 𝐷 such that 𝐷𝑆𝐷−1 is
a weighted shift does 𝑆 have a closed, invariant subspace which does not satisfy the
Wandering Subspace Property when ℋ is endowed with the (𝐷⋅, 𝐷⋅) inner product?
Let 𝑇 be a weighted shift with the sequence of weights {𝛼𝑖}∞𝑖=1 and 𝐷 the diagonal
operator that maps 𝑥 = (𝑥1, 𝑥2, 𝑥3, . . .) to (𝑑1𝑥1, 𝑑2𝑥2, 𝑑3𝑥3, . . .). 𝐷 is bounded
if and only if sup𝑖 ∣𝑑𝑖∣ < ∞ and also invertible if and only if inf𝑖 ∣𝑑𝑖∣ > 0. In
this case 𝐷𝑇𝐷−1 is a weighted shift that is similar to 𝑇 and has the sequence
of weights {𝛽𝑖}∞𝑖=1 with 𝛽𝑖 = 𝑑𝑖+1𝛼𝑖

𝑑𝑖
and as must be true by Theorem 3.1.5, 0 <

inf𝑖
∣𝑑1∣

∣𝑑𝑖+1∣ = inf𝑖
∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ ≤ sup𝑖

∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ = sup𝑖

∣𝑑1∣
∣𝑑𝑖+1∣ < ∞. Conversely, if 𝑇

and 𝑊 are weighted shifts where 𝑊 has the sequence of weights {𝛽𝑖}∞𝑖=1 and 0 <

inf𝑖
∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ ≤ sup𝑖

∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ < ∞, then defining 𝑑1 = 1 and 𝑑𝑖+1 =

𝛽𝑖

𝛼𝑖
𝑑𝑖 ∀𝑖 ≥ 1,

𝑑𝑖 =
𝛽1𝛽2𝛽2⋅⋅⋅𝛽𝑖−1

𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖−1
so that inf𝑖 ∣𝑑𝑖∣ > 0 and sup𝑖 ∣𝑑𝑖∣ < ∞ and 𝐷𝑇𝐷−1, although not

necessarily equal to 𝑊 , is a weighted shift with the same sequence of weights. So if
we assume that 𝑊 is a weighted shift that is similar to 𝑇 and also shifts the same
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basis as 𝑇 , then there exists a diagonal operator 𝐷 such that 𝑊 = 𝐷𝑇𝐷−1. Since
given any two weighted shifts 𝑇 and 𝑊 , there is a unitary operator such that 𝑇 and
𝑈𝑊𝑈−1 shift the same basis, and according to Theorem 3.1.5 𝑇 and 𝑊 are similar
if and only if 0 < inf𝑖

∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ ≤ sup𝑖

∣𝛼1𝛼2𝛼3⋅⋅⋅𝛼𝑖∣
∣𝛽1𝛽2𝛽3⋅⋅⋅𝛽𝑖∣ < ∞, from now onward when

𝐷𝑇𝐷−1 is a weighted shift similar to the weighted shift 𝑇 , we will assume that 𝐷
is a diagonal operator as above.

According to Theorem 3.2.4, we want to know if and when 𝑓 ⊥2 𝑇
𝑖ℰℳ,2 ∀𝑖 ≥ 0

with 𝑓 ∕= 0 and 𝑓 ∈ ℳ where ℰℳ,2 = ℳ ⊖2 𝑇ℳ. We next need to calculate
ℳ⊖2 𝑇ℳ; note that in the case after Proposition 2.6.1 the operator was changed
but not the inner product, in the case in Theorem 3.2.4 both the operator and the
inner product were changed, and this time the inner product is being changed but not
the operator. Since ∥𝑚∥22 = (𝐷𝑚,𝐷𝑚) = (𝐷∗𝐷𝑚,𝑚) = (𝑃ℳ𝐷∗𝐷𝑚,𝑚) ∀𝑚 ∈ ℳ
(𝑃ℳ is defined using the original inner product) and 𝑃ℳ𝐷∗𝐷∣ℳ is self-adjoint, it is
invertible. Let 𝜀 ∈ ℰℳ = ℳ⊖1 𝑇ℳ, then

((𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀, 𝑇𝑚)2 = (𝐷(𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀,𝐷𝑇𝑚)

= (𝐷∗𝐷(𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀, 𝑃ℳ𝑇𝑚) = (𝜀, 𝑇𝑚) = 0 ∀𝑚 ∈ ℳ,

and since (𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀 ∈ ℳ, (𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀 ∈ ℳ ⊖2 𝑇ℳ, and since the
preceding can be reversed,

(𝑃ℳ𝐷∗𝐷∣ℳ)−1 (ℳ⊖1 𝑇ℳ) = ℳ⊖2 𝑇ℳ. (3.2)

Therefore 𝑓 ⊥2 𝑇
𝑖ℰℳ,2 ∀𝑖 ≥ 0 if and only if

(𝐷𝑇 𝑖(𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀,𝐷𝑓) = (𝐷∗𝐷𝑇 𝑖𝜀𝐷, 𝑓)

= (𝑃ℳ𝐷∗𝐷𝑇 𝑖𝜀𝐷, 𝑓) = 0 ∀𝑖 ≥ 0, ∀𝜀 ∈ ℰ

where 𝜀𝐷 = (𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀. This can be rewritten as 𝑓 ⊥ 𝑃ℳ𝐷∗𝐷𝑇 𝑖 (ℳ⊖2 𝑇ℳ)
and since 𝑃ℳ𝐷∗𝐷∣ℳ is invertible there is a vector 𝑓 ∕= 0 which satisfies this if and
only if ℳ ∕= ⋁∞

𝑖=0 𝑇
𝑖 (ℳ⊖2 𝑇ℳ) (since (⋅, ⋅) and (⋅, ⋅)2 are equivalent, it does not

matter which inner product is used to take the closure in the
⋁
).

From Theorem 2.2.4 we know that ℋ is generated by the wandering subspace
of 𝑇 if and only if

∩∞
𝑖=0 𝐿

∗𝑖ℋ = {0}. Theorem 3.2.4 shows that if we are interested
in when operators that are similar to the left-invertible operator 𝑇 have closed, in-
variant subspaces on which their restrictions do not satisfy the Wandering Subspace
Property, then we can examine the behavior under 𝑇 of the wandering subspaces for
𝑇 when ℋ is endowed with a different norm. If we are considering a left-invertible,
weighted shift, the operator 𝐷 that is used to change the norm may not produce a
weighted shift when 𝑇 is changed to the similar operator 𝐷𝑇𝐷−1. The next theo-
rem shows that if 𝑇 is any left-invertible weighted shift, then we can find a 𝐷 such
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that 𝐷𝑇𝐷−1 is still a weighted shift and this new operator has a closed, invariant
subspace whose residual space has a dimension of any finite, prescribed integer.

It is interesting to note that there are weighted shifts such that no invertible
operator 𝐷 (diagonal or not) can be used to produce a 𝐷𝑇𝐷−1 which has a closed,
invariant subspace on which its restriction does not satisfy the Wandering Subspace
Property ; by the next theorem such a weighted shift must not be left-invertible.
If an operator 𝑇 is one-to-one but not left-invertible, one can still consider closed,
invariant subspaces ℳ such that ℳ ∕= 𝑇ℳ and ask whether ℳ = [ℳ⊖ 𝑇ℳ]𝑇 .
Theorem 3.2.4 can still be used to show that𝐷𝑇𝐷−1 has a closed, invariant subspace
𝐷ℳ such that 𝐷ℳ ∕= 𝐷𝑇𝐷−1𝐷ℳ and 𝐷ℳ ∕= [𝐷ℳ ⊖ 𝐷𝑇𝐷−1𝐷ℳ]𝑇 if and
only if the closed, invariant subspace ℳ for 𝑇 is such that ℳ ∕= 𝑇ℳ and ℳ ∕=
[ℳ⊖ 𝑇ℳ]𝑇 .

As an example consider a unicellular, weighted shift 𝑇 , that is, a weighted shift
whose only closed, invariant subspaces are 𝑆𝑖ℋ 𝑖 ≥ 0, where 𝑆 is the unweighted
shift. A sufficient condition for a weighted shift to be unicellular is that the 𝛼𝑖’s
are decreasing in moduli and contained in 𝑙𝑝 for some 𝑝 < ∞ [41, First Corollary
to Proposition 38]. Since the 𝛼𝑖’s are contained in 𝑙𝑝, lim𝑖→∞ ∣𝛼𝑖∣ = 0 so that
the weighted shift is not left-invertible. Suppose that there were a 𝐷 such that
𝐷𝑇𝐷−1 had a closed, invariant subspace on which its restriction did not satisfy the
Wandering Subspace Property. Then this would imply by Theorem 3.2.4 that for
some 𝑗, 𝑇 restricted to 𝑆𝑗ℋ does not satisfy the Wandering Subspace Property when
ℋ is endowed with the inner product corresponding to 𝐷. Since 𝑇 is unicellular, the
subspace generated by the wandering subspace for 𝑇 under the new inner product
must be of the form 𝑆𝑘ℋ for some 𝑘 > 𝑗, since changing to an equivalent inner
product does not change the closed, invariant subspaces. Since 𝑘 > 𝑗, the vectors
𝑒𝑗+1, 𝑒𝑗+2, . . . , 𝑒𝑘 are contained in the residual space of 𝑇 when restricted to 𝑇 𝑗ℋ
for the new inner product, where the residual space is defined as 𝑆𝑗ℋ ⊖2 [𝑆

𝑗ℋ ⊖2

𝑇𝑆𝑗ℋ]𝑇 , where the ⊖2 is from the new inner product corresponding to 𝐷. This is
a contradiction as span{𝜀𝐷} = 𝑆𝑗ℋ ⊖2 𝑇𝑆

𝑗ℋ so that 𝑒𝑗+1 being orthogonal to 𝜀𝐷
(as it must be since the residual space is orthogonal to the subspace generated by
the wandering subspace) implies that 𝑒𝑗+1 ∈ 𝑇𝑆𝑗ℋ, which is a contradiction.

We will have need of the following lemma in the next theorem. It was proven
in Proposition 1 of [22] based on the properties of a quotient space. We include it
here for completeness.

Lemma 3.2.7. Let 𝑇 be a left-invertible, weighted shift and ℳ a closed, invariant
subspace for 𝑇 . Then ℳ has a finite codimension if and only if ℳ = [𝑥]𝑇 where 𝑥 =∑𝑛

𝑖=0 𝑐𝑖𝑇
𝑖𝑒1 for some nonzero vector {𝑐𝑖}𝑛𝑖=0 ∈ ℂ𝑛+1, that is, ℳ = (

∏𝑛
𝑖=1(𝑇 − 𝜆𝑖))ℋ

for some finite set of 𝜆𝑖’s, 𝜆𝑖 ∈ ℂ 1 ≤ 𝑖 ≤ 𝑛

Proof Note that the 𝑛 from the 𝑐𝑖’s or the 𝜆𝑖’s does not have to be the same as
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the codimension of ℳ. First notice that 𝑥 =
∑𝑛

𝑖=0 𝑐𝑖𝑇
𝑖𝑒1 with 𝑐𝑛 ∕= 0 if and only

if 𝑥 = 𝜆0 (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖)) 𝑒1 for some suitable set of 𝜆𝑖’s with 𝜆0 ∕= 0, and 𝑇 𝑗𝑥 =
𝜆0 (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))𝑇
𝑗𝑒1 = 𝜆0 (

∏𝑛
𝑖=1(𝑇 − 𝜆𝑖))𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗𝑒𝑗+1. Since [𝑥]𝑇 =

⋁∞
𝑗=0 𝑇

𝑗𝑥

and {𝑒𝑗}∞𝑗=1 is a complete set, the equivalence of [𝑥]𝑇 and 𝜆0 (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))ℋ =

(
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))ℋ follows. Suppose that ℳ = (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))ℋ, then ℳ⊥ =
Ker

∏𝑛
𝑖=1(𝑇

∗ − �̄�𝑖), and since for any 𝜆, Ker(𝑇 ∗ − 𝜆) is either the zero space or
a space of dimension equal to one, it follows that ℳ⊥ has a finite dimension, so
that ℳ has a finite codimension.

Conversely, suppose that ℳ is closed with a finite codimension of 𝑛. If ℳ =
ℋ then simply choose 𝑥 = 𝑒1. Else 𝑃ℳ⊥𝑒1 ∕= 0 since 𝑒1 is cyclic for 𝑇 . Let
𝛿𝑖 = 𝑃ℳ⊥𝑒𝑖 𝑖 ≥ 1, then for any 𝑥 ∈ ℳ⊥, (𝑃ℳ⊥𝑇𝛿𝑖, 𝑥) = (𝛿𝑖, 𝑇

∗𝑥) = (𝑒𝑖, 𝑇
∗𝑥) =

(𝑇𝑒𝑖, 𝑥) = 𝛼𝑖(𝑒𝑖+1, 𝑥) = 𝛼𝑖(𝛿𝑖+1, 𝑥) so that 𝑃ℳ⊥𝑇𝛿𝑖 = 𝛼𝑖𝛿𝑖+1. Since {𝑒𝑖}∞𝑖=1 is a
complete set for ℋ, {𝛿𝑖}∞𝑖=1 is a complete set for ℳ⊥. If {𝛿𝑖}𝑛𝑖=1 were not linearly
independent then there would be constants such that

∑𝑘
𝑖=1 𝑐𝑖𝛿𝑖 = 0, where 𝑘 ≤ 𝑛

and we assume that 𝑐𝑘 ∕= 0; this implies that 𝛿𝑘 can be written in terms of 𝛿𝑗 1 ≤
𝑗 ≤ 𝑘− 1. Applying 𝑃ℳ⊥𝑇 to this relation yields

∑𝑘
𝑖=1 𝑐𝑖𝛼𝑖𝛿𝑖+1, or that 𝛿𝑘+1 can be

written in terms of 𝛿𝑗 1 ≤ 𝑗 ≤ 𝑘−1. Applying 𝑃ℳ⊥𝑇 again we see that 𝛿𝑘+2 can be
written in terms of 𝛿𝑗 1 ≤ 𝑗 ≤ 𝑘−1. By iteration we see that all 𝛿𝑗’s with 𝑗 ≥ 𝑘 can
be written in terms of this set. Since {𝛿𝑖}∞𝑖=1 is a complete set for ℳ⊥, this implies
that ℳ⊥ has a dimension of 𝑘 − 1 ≤ 𝑛 − 1 which is a contradiction. Therefore
{𝛿𝑖}𝑛𝑖=1 is linearly independent and hence a basis for ℳ⊥. Therefore 𝛿𝑛+1 can be
written in terms of 𝛿𝑖 1 ≤ 𝑖 ≤ 𝑛, and since 𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑖𝛿𝑖+1 = 𝑃ℳ⊥𝑇 𝑖𝛿1, there is a
set of 𝜆𝑖’s such that 𝑃ℳ⊥ (

∏𝑛
𝑖=1(𝑇 − 𝜆𝑖)) 𝛿1 = 0, so that 𝑃ℳ⊥ (

∏𝑛
𝑖=1(𝑇 − 𝜆𝑖)) 𝛿𝑗 =

𝑃ℳ⊥ (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))
𝑃ℳ⊥𝑇 𝑗−1

𝛼1𝛼2⋅⋅⋅𝛼𝑗−1
𝛿1 =

𝑃ℳ⊥𝑇 𝑗−1

𝛼1𝛼2⋅⋅⋅𝛼𝑗−1
𝑃ℳ⊥ (

∏𝑛
𝑖=1(𝑇 − 𝜆𝑖)) 𝛿1 = 0 𝑗 ≥ 1 and

𝑃ℳ⊥ (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))ℋ = {0}, and (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))ℋ ⊂ ℳ. Since (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))ℋ
has a codimension of at most 𝑛 (because (𝑇 −𝜆)ℋ has a codimension of either zero

or one for any 𝜆), it follows that ℳ = (
∏𝑛

𝑖=1(𝑇 − 𝜆𝑖))ℋ.

Theorem 3.2.8. Let 𝑇 be a left-invertible, weighted shift and 𝑛 be a finite integer.
Then there is an operator 𝑇 that is similar to 𝑇 and also a weighted shift, and a
closed, invariant subspace ℳ̃ for 𝑇 such that the residual space of 𝑇 restricted to
ℳ̃ has a dimension of at least 𝑛.

Proof Since we are only proving something about an operator that is similar to 𝑇 ,
by Corollary 3.1.6 we can assume that 𝑇 has positive weights. In order to prove
the theorem according to Theorem 3.2.4 we must show that there is some diagonal
operator 𝐷, closed, invariant subspace ℳ for 𝑇 , and 𝑛 linearly independent vectors
{𝜈𝑖}𝑛𝑖=1 such that the vectors are orthogonal to 𝑇 𝑖 (ℳ⊖2 𝑇ℳ) ∀𝑖 ≥ 0 in the inner
product corresponding to 𝐷 (so that they are contained in the residual space of 𝑇
restricted to ℳ with the new inner product). Note that if the 𝜈𝑖’s are chosen to be
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eigenvectors for the adjoint of 𝑇 restricted to ℳ with respect to the new inner prod-
uct, then this will follow from 𝜈𝑖 ⊥2 ℳ⊖2𝑇ℳ. If 𝑓 is an eigenvector with eigenvalue
𝜆 for 𝑇 ∗, then ((𝑃ℳ𝐷∗𝐷∣ℳ)−1𝑓, (𝑇 − �̄�)𝑚)2 = ((𝑃ℳ𝐷∗𝐷∣ℳ)−1𝑓,𝐷∗𝐷(𝑇 − �̄�)𝑚) =
((𝑃ℳ𝐷∗𝐷∣ℳ)−1𝑓, 𝑃ℳ𝐷∗𝐷(𝑇 − �̄�)𝑚) = (𝑓, (𝑇 − �̄�)𝑚) = ((𝑇 ∗ − 𝜆)𝑓,𝑚) = 0 ∀𝑚 ∈
ℳ. Thus (𝑃ℳ𝐷∗𝐷∣ℳ)−1𝑓 is an eigenvector with eigenvalue 𝜆 for the adjoint
of 𝑇 restricted to ℳ with respect to the new inner product. Since these steps
can be reversed, 𝑃ℳ𝐷∗𝐷𝜈𝑖 is an eigenvector for the adjoint of 𝑇 restricted to
ℳ with respect to the original inner product. Thus 𝜈𝑖 ⊥2 ℳ ⊖2 𝑇ℳ is equiv-
alent to (𝐷𝜈𝑖, 𝐷𝜀𝐷) = (𝑃ℳ𝐷∗𝐷𝜈𝑖, 𝜀𝐷) = (𝜇𝑖, 𝜀𝐷) = 0 ∀𝜀𝐷 ∈ ℳ ⊖2 𝑇ℳ where
𝜇𝑖 = 𝑃ℳ𝐷∗𝐷𝜈𝑖 1 ≤ 𝑖 ≤ 𝑛 are eigenvectors for the adjoint of 𝑇 restricted to ℳ in
the original inner product. Putting all of the above together, it is sufficient to show
that for some closed, invariant subspace ℳ of 𝑇 there are 𝑛 linearly independent
vectors {𝜇𝑖}𝑛𝑖=1 that are eigenvectors for the adjoint of 𝑇 restricted to ℳ such that
𝜇𝑖 ⊥ ℳ⊖2 𝑇ℳ 1 ≤ 𝑖 ≤ 𝑛.

Note that for a weighted shift with positive weights all of the eigenvectors for 𝑇 ∗

are of the form 𝑣𝜆 = (1, 𝜆
𝛼1
, 𝜆2

𝛼1𝛼2
, 𝜆3

𝛼1𝛼2𝛼3
, . . .) where ∣𝜆∣ ≤ lim inf𝑛(𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑛)

1/𝑛 and
if 𝜆 satisfies the inequality strictly then the corresponding vector is an eigenvector
and the only one with eigenvalue 𝜆. Let ℳ = (span{𝑣𝜆})⊥ where 𝜆 will be chosen to
be something positive later. Note that if 𝑃ℳ𝑣𝜇 is nonzero then it is an eigenvector
for the adjoint of 𝑇 restricted to ℳ with the same eigenvalue, and it is orthogonal
to ℳ ⊖2 𝑇ℳ if and only if 𝑣𝜇 is. Since ℳ has a finite codimension, by Lemma
3.2.7 it is generated by a single vector so that it has an index of one. Since 𝑃ℳ𝑒1 is
always contained in ℳ⊖ 𝑇ℳ and is nonzero since 𝑒1 ∕∈ span{𝑣𝜆} = ℳ⊥, it must

span this space. Since ℳ⊥ is the span of 𝑣𝜆, 𝑃ℳ𝑒1 is 𝑒1 −
(
𝑒1,

𝑣𝜆
∥𝑣𝜆∥

)
𝑣𝜆

∥𝑣𝜆∥ which is a

constant (namely − 1
∥𝑣𝜆∥2 ) times

𝜀 =

(
−

∞∑
𝑖=1

(
𝜆𝑖

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑖

)2

,
𝜆

𝛼1

,
𝜆2

𝛼1𝛼2

,
𝜆3

𝛼1𝛼2𝛼3

, . . .

)
.

Since dim(ℳ⊖ 𝑇ℳ) = dim(ℳ⊖2 𝑇ℳ), 𝜀𝐷 = (𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀 spans ℳ⊖2 𝑇ℳ.
Suppose that 𝐷∗𝐷 were such that (𝐷∗𝐷)−1𝜀 ∈ ℳ, then 𝑃ℳ𝐷∗𝐷(𝐷∗𝐷)−1𝜀 = 𝜀
so that (𝐷∗𝐷)−1𝜀 = (𝑃ℳ𝐷∗𝐷)−1𝜀 = 𝜀𝐷. Since 𝑃ℳ𝑣𝜇 is always nonzero if 𝜇 ∕= 𝜆
and a vector is contained in ℳ if and only if it is orthogonal to 𝑣𝜆, we need to
find a 𝐷 and 𝑛 different eigenvectors {𝑣𝜇𝑖

}𝑛𝑖=1 such that ((𝐷∗𝐷)−1𝜀, 𝑣𝜆) = 0 and
((𝐷∗𝐷)−1𝜀, 𝑣𝜇𝑖

) = 0 1 ≤ 𝑖 ≤ 𝑛.

Since the 𝐷 is diagonal on the 𝑒𝑖’s, (𝐷
∗𝐷)−1 maps 𝑒𝑖 to

1
∣𝑑𝑖∣2 𝑒𝑖. Define �̂� so that

it is diagonal on the 𝑒𝑖’s and such that �̂�𝑒𝑖 =
1

∣𝑑𝑖∣2 𝑒𝑖 so that 𝑑𝑖 =
1

∣𝑑𝑖∣2 . To guarantee

that �̂� = (𝐷∗𝐷)−1 for some 𝐷 we only must require that

𝑑𝑖 > 0 ∀𝑖 ≥ 1 and 0 < inf
𝑖
𝑑𝑖 ≤ sup

𝑖
𝑑𝑖 < ∞. (3.3)
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We will now work backwards. Choose 𝑛 distinct, negative 𝜇𝑖’s and 𝜆 positive but
small enough that 𝑞(𝑥) = (𝑥−𝜆)

∏𝑛
𝑖=1(𝑥−𝜇𝑖) =

∑𝑛+1
𝑖=0 𝑐𝑖𝑥

𝑖 satisfies 𝑐𝑖 > 0 1 ≤ 𝑖 ≤ 𝑛
(this is possible since all of the 𝜇𝑖’s are negative so that the (𝑥− 𝜇𝑖)’s have positive
coefficients with

∏𝑛
𝑖=1(𝑥 − 𝜇𝑖) having all coefficients greater than zero so that for

some 𝜆 the condition is satisfied; we can also see this from the equations 𝑐𝑖 =
(−1)𝑛+1−𝑖

∑
1≤𝑘1<𝑘2<...<𝑘𝑛+1−𝑖≤𝑛+1 𝜇𝑘1𝜇𝑘2 . . . 𝜇𝑘𝑛+1−𝑖

where 𝜇𝑛+1 = 𝜆). Notice that 𝑐0
must be negative. Let 𝑝(𝑥) be the unique polynomial of degree 𝑛 such that 𝑝(𝜆2) = 0

and 𝑝(𝜆𝜇𝑖) = −∑∞
𝑗=1

(𝜆𝜇𝑖)
𝑗

(𝛼1𝛼2⋅⋅⋅𝛼𝑗)2
+
∑∞

𝑗=1

(
𝜆𝑗

𝛼1𝛼2⋅⋅⋅𝛼𝑗

)2
1 ≤ 𝑖 ≤ 𝑛. Choose 𝑐 large

enough that 𝑝(𝑥) = 𝑝(𝑥) + 𝑐𝑞(𝑥
𝜆
) =

∑𝑛+1
𝑖=0 𝑐𝑖𝑥

𝑖 also satisfies 𝑐0 < 0 and 𝑐𝑖 > 0 1 ≤
𝑖 ≤ 𝑛 + 1. Set 𝑑1 = 1 − 𝑐0/

∑∞
𝑗=1

(
𝜆𝑗

𝛼1𝛼2⋅⋅⋅𝛼𝑗

)2
, 𝑑𝑖 = 1 + 𝑐𝑖−1(𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑖−1)

2 for 2 ≤
𝑖 ≤ 𝑛 + 2 and 𝑑𝑖 = 1 ∀𝑖 ≥ 𝑛 + 3. Then the sequence {𝑑𝑖}∞𝑖=1 satisfies equation
(3.3) and hence defines a diagonal operator �̂� = (𝐷∗𝐷)−1 on 𝑙2. The equation
(�̂�𝜀, 𝑣𝜆) = 0 yields (using the facts that (𝜀, 𝑣𝜆) = 0 and 𝑑𝑖 = 1 ∀𝑖 ≥ 𝑛+ 3)

− 𝑑1

∞∑
𝑗=1

(
𝜆𝑗

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

)2

+
𝑛+2∑
𝑗=2

𝑑𝑗

(
𝜆𝑗−1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗−1

)2

=

−
∞∑
𝑗=1

(
𝜆𝑗

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

)2

+
𝑛+1∑
𝑗=1

(
𝜆𝑗

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

)2

.

The equations (�̂�𝜀, 𝑣𝜇𝑖
) = 0 yield(

since (𝜀, 𝑣𝜇𝑖
) = −∑∞

𝑗=1

(
𝜆𝑗

𝛼1𝛼2⋅⋅⋅𝛼𝑗

)2
+
∑∞

𝑗=1
(𝜆𝜇𝑖)

𝑗

(𝛼1𝛼2⋅⋅⋅𝛼𝑗)2

)

− 𝑑1

∞∑
𝑗=1

(
𝜆𝑗

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

)2

+
𝑛+2∑
𝑗=2

𝑑𝑗
(𝜆𝜇𝑖)

𝑗−1

(𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗−1)2
=

−
∞∑
𝑗=1

(𝜆𝜇𝑖)
𝑗

(𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗)2
+

𝑛+1∑
𝑗=1

(𝜆𝜇𝑖)
𝑗

(𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗)2
1 ≤ 𝑖 ≤ 𝑛.

Plugging the defining relations 𝑑1 = 1− 𝑐0/
∑∞

𝑗=1

(
𝜆𝑗

𝛼1𝛼2⋅⋅⋅𝛼𝑗

)2
, and

𝑑𝑖 = 1 + 𝑐𝑖−1(𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑖−1)
2 for 2 ≤ 𝑖 ≤ 𝑛+ 2 into these equations yields

𝑐0 +
𝑛+1∑
𝑗=1

𝑐𝑗𝜆
2𝑗 = 0
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and

𝑐0 +
𝑛+1∑
𝑗=1

𝑐𝑗(𝜆𝜇𝑖)
𝑗 = −

∞∑
𝑗=1

(𝜆𝜇𝑖)
𝑗

(𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗)2
+

∞∑
𝑗=1

(
𝜆𝑗

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

)2

1 ≤ 𝑖 ≤ 𝑛.

These are equivalent to the conditions 𝑝(𝜆2) = 0 and 𝑝(𝜆𝜇𝑖) = −∑∞
𝑗=1

(𝜆𝜇𝑖)
𝑗

(𝛼1𝛼2⋅⋅⋅𝛼𝑗)2
+∑∞

𝑗=1

(
𝜆𝑗

𝛼1𝛼2⋅⋅⋅𝛼𝑗

)2
1 ≤ 𝑖 ≤ 𝑛, which are satisfied because they are satisfied by 𝑝(𝑥)

and 𝑞(𝜆
2

𝜆
) = 0 and 𝑞(𝜆𝜇𝑖

𝜆
) = 0 1 ≤ 𝑖 ≤ 𝑛. Therefore we have found a �̂� with 𝑑𝑖

bounded away from zero and bounded, so that (𝐷∗𝐷)−1 = �̂� if we set 𝑑𝑖 =
1√
𝑑𝑖

and ((𝐷∗𝐷)−1𝜀, 𝑣𝜆) = 0 and ((𝐷∗𝐷)−1𝜀, 𝑣𝜇𝑖
) = 0 1 ≤ 𝑖 ≤ 𝑛. This guarantees as

above that (𝐷∗𝐷)−1𝜀 = (𝑃ℳ𝐷∗𝐷∣ℳ)−1𝜀 so that the 𝑃ℳ𝑣𝜇𝑖
’s are eigenvectors for the

adjoint of the restriction of 𝑇 to ℳ with the new inner product which are contained
in the residual space of 𝑇 restricted to ℳ with the new inner product. Also note
that the 𝑃ℳ𝑣𝜇𝑖

’s are linearly independent because the set {𝑣𝜆, 𝑣𝜇1 , 𝑣𝜇2 , . . . , 𝑣𝜇𝑛} is (as
the eigenvalues {𝜆, 𝜇1, 𝜇2, . . . , 𝜇𝑛} were chosen to be distinct) and ℳ⊥ = span{𝑣𝜆}.
Therefore it must be that 𝑇 restricted to ℳ with the inner product defined by 𝐷
has a residual space of dimension at least 𝑛 and by Corollary 3.2.5, 𝐷𝑇𝐷−1 has a
closed, invariant subspace with a residual space of dimension at least 𝑛.

Corollary 3.2.9. Let 𝑇 be a left-invertible, weighted shift. Then there is a weighted
shift 𝑇 with the same weights as 𝑇 with at most three exceptions such that 𝑇 has
a closed, invariant subspace on which its restriction does not satisfy the Wandering
Subspace Property.

In the next section we will see that the unweighted shift only has to have one
weight changed so that it will have an invariant subspace on which its restriction
does not satisfy the Wandering Subspace Property. We have seen that not only are
there weighted shifts with residuals on their invariant subspaces, but these operators
form a large part of the set of all left-invertible, weighted shifts.

3.3 The Structure of the Invariant Subspaces of

𝑆

In this section we will take the theory from the previous section to try to give more
precise results when the operator under consideration is the unweighted shift 𝑆.

Remember what we learned from Theorem 3.2.4: In order for an operator that
is similar to 𝑆 to have a closed, invariant subspace on which its restriction does not
satisfy the Wandering Subspace Property, it necessary and sufficient that there is
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an equivalent inner product and a closed, invariant subspace ℳ for 𝑆 such that the
restriction of 𝑆 to ℳ does not satisfy the property under the new norm. In order
to study the property under the new norm, we must know what the new wandering
subspace is, which according to equation (3.2) is (𝑃ℳ𝐷∗𝐷∣ℳ)−1 (ℳ⊖1 𝑇ℳ).

Since 𝑆 restricted to any of its subspaces is unitarily equivalent to 𝑆, ℳ ⊖
𝑆ℳ always has a dimension of one, and we denote a fixed representative of this
space by 𝜀. We need to change 𝜀 ∈ ℰ to 𝜀𝐷 such that ℳ ∕= ⋁∞

𝑖=0 𝑇
𝑖𝜀𝐷. Since

𝑃ℳ𝐷∗𝐷𝜀𝐷 = 𝜀, (𝐷∗𝐷𝜀𝐷 − 𝜀,𝑚) = 0 ∀𝑚 ∈ ℳ. Suppose that (𝜀, 𝑒1) ∕= 0 and 𝐷∗𝐷
has (𝑑1, 1, 1, 1, . . .) on the diagonal where it must be that 𝑑1 > 0 and suppose that
𝜀𝐷 =

∑∞
𝑖=0 𝑐𝑖𝑆

𝑖𝜀, then (𝐷∗𝐷𝜀𝐷, 𝜀) = 𝑐0(∥𝜀∥2 + (𝑑1 − 1)∣(𝜀, 𝑒1)∣) = (𝜀, 𝜀) = ∥𝜀∥2 and
(𝐷∗𝐷𝜀𝐷, 𝑆

𝑖𝜀) = 𝑐𝑖∥𝑆𝑖𝜀∥2 = (𝜀, 𝑆𝑖𝜀) = 0 ∀𝑖 ≥ 1, therefore 𝜀𝐷 is a constant times 𝜀,
so that 𝐷𝑆𝐷−1 must always possess the Wandering Subspace Property on all of its
invariant subspaces just as 𝑆 does.

Now suppose that 𝐷∗𝐷 has (1, 𝑑2, 1, 1, 1, . . .) on the diagonal where it must be
that 𝑑2 > 0. Then (𝐷∗𝐷𝜀𝐷, 𝜀) = 𝑐0(∥𝜀∥2+(𝑑2−1)∣(𝜀, 𝑒2)∣2)+𝑐1(𝑑2−1)(𝑆𝜀, 𝑒2)(𝑒2, 𝜀) =
∥𝜀∥2, (𝐷∗𝐷𝜀𝐷, 𝑆𝜀) = 𝑐0(𝑑2 − 1)(𝜀, 𝑒2)(𝑒2, 𝑆𝜀) + 𝑐1(∥𝑆𝜀∥2 + (𝑑2 − 1)∣(𝑆𝜀, 𝑒2)∣2) = 0
and 𝑐𝑖∥𝑆𝑖𝜀∥2 = 0 ∀𝑖 ≥ 2. Thus 𝜀𝐷 = 𝑐0𝜀 + 𝑐1𝑆𝜀, with the solution being unique
because 𝑃ℳ𝐷∗𝐷∣ℳ is invertible, and if 𝜀𝐷 is normalized so that 𝑐0 = 1, then

𝜀𝐷 = 𝜀 + (1−𝑑2)(𝜀,𝑒2)(𝑒1,𝜀)
∥𝜀∥2+(𝑑2−1)∣(𝜀,𝑒1)∣2𝑆𝜀. Since [𝑒1 + 𝛽𝑒2]𝑆 ∕= ℋ if ∣𝛽∣ > 1 as shown in the

remark below, and 𝑆 and 𝑆 restricted to one of its invariant subspaces are unitarily
equivalent, if ∣𝑐1∣ > 1 then [𝜀 + 𝑐1𝑆𝜀]𝑆 ∕= ℳ so that 𝑃ℳ𝐷∗𝐷[𝜀 + 𝑐1𝑆𝜀]𝑆 ∕= ℳ so
there is an 𝑓 ∕= 0 such that 𝑓 ⊥ 𝑃ℳ𝐷∗𝐷𝑇 𝑖 (ℳ⊖2 𝑇ℳ), and hence 𝐷𝑓 ∈ 𝐷ℳ but
𝐷𝑓 ∕∈ ⋁∞

𝑖=0(𝐷𝑇𝐷−1)𝑖 (𝐷ℳ⊖𝐷𝑇𝐷−1𝐷ℳ). Note that multiple 𝐷’s can be chosen
with the same 𝐷∗𝐷, but for any 𝐷1 and 𝐷2 with 𝐷∗

1𝐷1 = 𝐷∗
2𝐷2, 𝐷1𝑇𝐷

−1
1 and

𝐷2𝑇𝐷
−1
2 are unitarily equivalent. Thus the question is: For which 𝑑2 is there a 𝜀

such that
∣∣∣ (1−𝑑2)(𝜀,𝑒2)(𝑒1,𝜀)
∥𝜀∥2+(𝑑2−1)∣(𝜀,𝑒1)∣2

∣∣∣ > 1? In order to answer this we will need to know more

about the structure of the invariant subspaces of 𝑆.

Remark Let 𝑥𝛽 = (1, 𝛽, 0, 0, 0, . . .). Then [𝑥𝛽]𝑆 is the closure of the ranges of all
polynomials in 𝑆 applied to 𝑥𝛽. For any polynomial in 𝑆, 𝑝 =

∑𝑛
𝑖=0 𝑐𝑖𝑆

𝑖, 𝑝𝑥𝛽 =
𝑝(1, 𝛽, 0, 0, 0, . . .) = 𝑝(𝑒1 + 𝛽𝑆𝑒1) = 𝑝(𝐼 + 𝛽𝑆)𝑒1 = (𝐼 + 𝛽𝑆)𝑝𝑒1. Since the set of 𝑝𝑒1
is dense in ℋ and all steps can be reversed, the question of whether [𝑥𝛽]𝑆 is all of
ℋ is the same as whether 𝐼 + 𝛽𝑆 has a dense range. 𝐼 + 𝛽𝑆 has a dense range if
and only if 𝐼 + 𝛽𝑆∗ is one-to-one or if 1

𝛽
𝐼 + 𝑆∗ does not have a nonzero kernel. As

shown after Theorem 3.2.2, 1
𝛽
𝐼 + 𝑆∗ has an eigenvalue equal to zero if and only if∣∣∣ 1𝛽 ∣∣∣ < 1 or ∣𝛽∣ > 1, so 𝐼 + 𝛽𝑆 does not have a dense range and hence [𝑥𝛽]𝑆 is not all

of ℋ if and only if ∣𝛽∣ > 1.
In general, if 𝑥 =

∑𝑛
𝑖=0 𝑐𝑖𝑒𝑖+1 =

∑𝑛
𝑖=0 𝑐𝑖𝑆

𝑖𝑒1, then the question of whether [𝑥]𝑆 is
all of ℋ is the same as whether

∑𝑛
𝑖=0 𝑐𝑖𝑆

𝑖 has a dense range, or whether
∑𝑛

𝑖=0 𝑐𝑖𝑆
∗𝑖
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has a nontrivial kernel.

In general, one can consider a diagonal operator 𝐷 that eventually has only ones
on the diagonal. Again 𝜀𝐷 can be represented as

∑∞
𝑖=0 𝑐𝑖𝑆

𝑖𝜀 because the unweighted
shift satisfies the Wandering Subspace Property when restricted to any of its closed,
invariant subspaces and because it is an isometry it satisfies the stronger condition
that 𝑆𝑖𝜀 ⊥ 𝑆𝑗𝜀 𝑖 ∕= 𝑗. The equations to solve for 𝜀𝐷 based on (𝐷∗𝐷𝜀𝐷 − 𝜀, 𝑆𝑖𝜀) =
0 ∀𝑖 ≥ 0 will be finite since the 𝐷 operator eventually only has ones on the diagonal.
This leads to a system of equations that must be solved to find the 𝑐𝑖’s. Once one
has the solution, 𝜀𝐷 will be of the form

∑𝑘
𝑖=0 𝑐𝑖𝑆

𝑖𝜀 for some 𝑘 depending on how
many 𝑑𝑖’s there are until they are all one, and 𝑐𝑖’s depending on the 𝑑𝑖’s and the
values of (𝜀, 𝑒𝑖) 1 ≤ 𝑖 ≤ 𝑘 and ∥𝜀∥2.

As shown in Lemma 3.2.7, since 𝜀𝐷 has a finite representation in terms of the
𝑆𝑖𝜀’s and the restriction of 𝑆 to any of its closed, invariant subspaces is again an
unweighted shift, the residual space must be finite dimensional, so that it only
consists of eigenvectors for the adjoint of the restriction. As shown in Theorem
3.2.8, in this case we only need to solve for when there is an eigenvector 𝑣𝜆 for the
adjoint of the restriction such that (𝜀𝐷, 𝑣𝜆) = 0. Since all eigenvectors of the adjoint
of the restriction are of the form

∑∞
𝑖=0 𝜆

𝑖𝑆𝑖𝜀 with ∣𝜆∣ < 1, this leads to
∑𝑘

𝑖=0 𝑐𝑖�̄�
𝑖 = 0

where the 𝑐𝑖’s are from 𝜀𝐷 =
∑𝑘

𝑖=0 𝑐𝑖𝑆
𝑖𝜀.

Putting all of this together, we need to know for which 𝑑𝑖’s that are eventu-
ally all ones is there a wandering vector 𝜀 such that the solution to the equa-
tions (𝐷∗𝐷

∑𝑘
𝑖=0 𝑐𝑖𝑆

𝑖𝜀 − 𝜀, 𝑆𝑗𝜀) = 0 for 0 ≤ 𝑗 ≤ 𝑘 is orthogonal to the vector
(1, 𝜆, 𝜆2, 𝜆3, . . .) for some 𝜆 whose modulus is less than one. In order to do this we
have the Carathéodory Interpolation Theorem at our disposal [12, 13, 39, 21].

Theorem 3.3.1. Let 𝑝 = (𝑐1, 𝑐2, . . . , 𝑐𝑛, 0, 0, 0, . . .) be arbitrary. Then for any 𝑀 ≥
sup{∥(𝐼 −𝑃𝑆𝑛ℋ)𝑝 ∗ 𝑓∥ : 𝑓 ∈ ℋ, ∥𝑓∥ = 1} where 𝑝 ∗ 𝑓 is defined by the coefficients
of 𝑝(𝑥)𝑓(𝑥) where 𝑝(𝑥) =

∑𝑛
𝑖=1 𝑐𝑖𝑥

𝑖−1 and 𝑓(𝑥) =
∑∞

𝑖=1 𝑓𝑖𝑥
𝑖−1, there is a wandering

vector 𝜀 for 𝑆 such that (𝜀, 𝑒𝑖) = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛 and ∥𝜀∥ = 𝑀 .

In the general case we can use Theorem 3.3.1 to know that no matter what
values of (𝜀, 𝑒𝑖) we pick in the equations for 𝜀𝐷, there is a wandering vector 𝜀 that
produces those values. The only other unknown in the equations for 𝜀𝐷 is ∥𝜀∥,
and the theorem states that we can choose any value greater than or equal to the
𝑀 from the theorem. So given a 𝐷 that is eventually ones on the diagonal, we
would have to compute what the possible values of 𝜀𝐷 can be as 𝜀 ranges over all
wandering vectors (but this is a space whose dimension is finite since there are only
𝑘 + 1 variables) and see if any 𝜀𝐷’s are orthogonal to any 𝑣𝜆’s.

We now demonstrate by returning to the case where 𝑑2 is the only coefficient

that is not one. We need to know when
∣∣∣ (1−𝑑2)(𝜀,𝑒2)(𝑒1,𝜀)
∥𝜀∥2+(𝑑2−1)∣(𝜀,𝑒1)∣2

∣∣∣ is greater than one. Note
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that another way to look at it that is consistent with the previous paragraph is
that 𝜀𝐷 = 𝜀+ 𝑐𝑆𝜀 where 𝑐 is the quantity that we want to know when its modulus
is greater than one. In order for (1, 𝑐, 0, 0, 0, . . .) to be orthogonal to some 𝑣𝜆, it
is necessary and sufficient that ∣𝑐∣ > 1, as the unique eigenvector that would be
orthogonal to (1, 𝑐, 0, 0, 0, . . .) must have 𝜆 = −1

𝑐
. Since ∣𝜆∣ must be less than one,

we need ∣𝑐∣ to be greater than one.
To simplify the notation let 𝜀1 = (𝜀, 𝑒1) and 𝜀2 = (𝜀, 𝑒2). Since ∥𝜀∥2 is always

greater than or equal to ∣𝜀1∣2, we would want to use Theorem 3.3.1 with the smallest
possible value of 𝑀2, which is (see Appendix A)

∣𝜀1∣2 + 1

2
(
√
4∣𝜀1∣2 + ∣𝜀2∣2∣𝜀2∣+ ∣𝜀2∣2). (3.4)

This leads to the equation

∣1− 𝑑2∣∣𝜀2∣∣𝜀1∣ > 1

2
(
√

4∣𝜀1∣2 + ∣𝜀2∣2∣𝜀2∣+ ∣𝜀2∣2) + 𝑑2∣𝜀1∣2,

which implies that 𝑑2 > 1. Therefore we must have

𝑑2(∣𝜀2∣∣𝜀1∣ − ∣𝜀1∣2) > 1

2
(
√
4∣𝜀1∣2 + ∣𝜀2∣2∣𝜀2∣+ ∣𝜀2∣2) + ∣𝜀1∣∣𝜀2∣.

So that 𝑑2 > 0 we must have ∣𝜀2∣ > ∣𝜀1∣. Rewriting the inequality we obtain

𝑑2(
∣𝜀2∣
∣𝜀1∣ − 1) >

∣𝜀2∣
∣𝜀1∣ +

1

2
(

√
4 +

( ∣𝜀2∣
∣𝜀1∣
)2 ∣𝜀2∣

∣𝜀1∣ +
( ∣𝜀2∣
∣𝜀1∣
)2

).

And finally

𝑑2 >

∣𝜀2∣
∣𝜀1∣ +

1
2
(

√
4 +

(
∣𝜀2∣
∣𝜀1∣

)2 ∣𝜀2∣
∣𝜀1∣ +

(
∣𝜀2∣
∣𝜀1∣

)2
)

∣𝜀2∣
∣𝜀1∣ − 1

.

The right-hand side of this expression has a minimum of 32
5

on the domain ∣𝜀2∣
∣𝜀1∣ ∈

[1,∞), so that according to what was shown above, if 𝑑2 ≤ 32
5

then there are no
wandering vectors that work, so that every closed, invariant subspace of 𝐷𝑆𝐷−1 is
generated by its wandering subspace, and if 𝑑2 >

32
5
, then there is at least one closed,

invariant subspace of 𝐷𝑆𝐷−1 which is not generated by its wandering subspace.

3.3.1 The Carathéodory Interpolation Theorem

In this subsection we offer a new proof of the Carathéodory Interpolation Theorem
based on the theory of operators, by building an extension of the unweighted shift
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that is again an unweighted shift such that certain properties are satisfied. In order
to know how to build an extension, we must first know the structure of a closed,
invariant subspace in relation to the whole space.

Proposition 3.3.2. Let 𝑇 be a pure, left-invertible operator such that ℋ ⊖ 𝑇ℋ =
span{𝑒1}, and ℳ be a closed, invariant subspace of 𝑇 such that 𝑃ℳ𝑒1 ∕= 0. Then the
vectors 𝜀𝑇 𝑖 = 𝑃ℳ∩𝑇 𝑖ℋ𝑒𝑖+1 𝑖 ≥ 0 are mutually orthogonal, wandering vectors (with
𝜀𝑇 𝑖 never zero) such that ℳ = span{𝜀} ⊕ span{𝜀𝑇} ⊕ span{𝜀𝑇 2} ⊕ . . .. Also, there
are mutually orthogonal vectors 𝜀𝑇 𝑖 𝑖 ≥ 0 (with 𝜀𝑇 𝑖 allowed to be zero) such that
ℳ⊥ = span{𝜀}⊕span{𝜀𝑇}⊕span{𝜀𝑇 2}⊕. . . and 𝑒𝑖 =

∑𝑖−1
𝑗=0(𝑐𝑖,𝜀𝑇𝑗

𝜀𝑇 𝑗+𝑐𝑖,𝜀
𝑇𝑗
𝜀𝑇 𝑗) ∀𝑖 ≥

1 for some constants 𝑐𝑖,𝜀
𝑇𝑗

and 𝑐𝑖,𝜀
𝑇𝑗

for 0 ≤ 𝑗 ≤ 𝑖 − 1 ∀𝑖 ≥ 1. Moreover, if
dim(ℳ⊖ 𝑇ℳ) = 1, then 𝜀𝑇 𝑖 = 𝑃𝑇 𝑖ℳ𝑒𝑖+1 ∈ 𝑇 𝑖ℳ⊖ 𝑇 𝑖+1ℳ.

Proof Let ℳ be a closed, invariant subspace of the pure, left-invertible operator
𝑇 such that ℋ ⊖ 𝑇ℋ = span{𝑒1} and ℳ ∕⊂ 𝑇ℋ. As already shown in Proposition
3.2.1, 𝑃ℳ𝑒1 = 𝜀 ∈ ℳ⊖𝑇ℳ (note that usually we only assume that 𝜀 ∈ ℳ⊖𝑇ℳ,
but now we are assuming that 𝜀 is the unique 𝑃ℳ𝑒1). Since (𝑒1,𝑚) = (𝑒1, 𝑃ℳ𝑚) =
(𝜀,𝑚) ∀𝑚 ∈ ℳ, a vector 𝑚 ∈ ℳ is orthogonal to 𝜀 if and only if 𝑚 ∈ 𝑇ℋ (this
also shows that (𝜀, 𝑒1) = (𝜀, 𝑃ℳ𝑒1) = (𝜀, 𝜀) = ∥𝜀∥2). Thus ℳ⊖span{𝜀} = ℳ∩𝑇ℋ.
Since 𝜀 = 𝑃ℳ𝑒1, 𝑒1 can be written as 𝑒1 = 𝜀+ 𝜀 where 𝜀 = 𝑃ℋ⊖ℳ𝑒1 so that 𝜀 ⊥ ℳ.
Since 𝜀 ∈ ℳ⊖ 𝑇ℳ, if dim(ℳ⊖ 𝑇ℳ) = 1, then ℳ⊖ span{𝜀} = 𝑇ℳ.

Since (𝜀, 𝑒1) ∕= 0, 𝜀 ∕∈ 𝑇ℋ, so 𝑇𝜀 ∈ 𝑇ℋ but 𝑇𝜀 ∕∈ 𝑇 2ℋ (since else there is a
𝑦 ∈ ℋ such that 𝑇𝜀 = 𝑇 2𝑦 and then 𝜀 = 𝐿𝑇𝜀 = 𝐿𝑇 2𝑦 = 𝑇𝑦 ∈ 𝑇ℋ) and hence
(𝑇𝜀, 𝑒2) ∕= 0. Since 𝑇𝜀 ∈ 𝑇ℋ, 𝜀𝑇 = 𝑃ℳ∩𝑇ℋ𝑒2 ∕= 0 and the same as above a vector
𝑚 ∈ ℳ ∩ 𝑇ℋ is orthogonal to 𝜀𝑇 if and only if 𝑚 ∈ 𝑇 2ℋ, (𝜀𝑇 , 𝑒2) = ∥𝜀𝑇∥2, and
ℳ∩𝑇ℋ⊖span{𝜀𝑇} = ℳ⊖span{𝜀}⊖span{𝜀𝑇} = ℳ∩𝑇 2ℋ. Since ℳ∩𝑇ℋ ⊂ 𝑇ℋ
and span{𝑒2} = 𝑇ℋ⊖ 𝑇 2ℋ, as in Proposition 3.2.1, 𝜀𝑇 ∈ (ℳ∩ 𝑇ℋ)⊖ 𝑇 (ℳ∩ 𝑇ℋ)
so that 𝜀𝑇 is a wandering vector. If dim(ℳ ⊖ 𝑇ℳ) = 1 then since ℳ ∩ 𝑇ℋ =
ℳ⊖span{𝜀} = 𝑇ℳ, then 𝜀𝑇 ∈ 𝑇ℳ⊖𝑇 2ℳ. Also, since then dim(𝑇ℳ⊖𝑇 2ℳ) = 1,
ℳ⊖ span{𝜀} ⊖ span{𝜀𝑇} = 𝑇 2ℳ.

Also, 𝑒2 = 𝜀𝑇 + 𝑃ℋ⊖(ℳ∩𝑇ℋ)𝑒2 where 𝑃ℋ⊖(ℳ∩𝑇ℋ)𝑒2 = (𝑃𝜀 + 𝑃𝜀 + (𝐼 − 𝑃𝜀 −
𝑃𝜀))𝑃ℋ⊖(ℳ∩𝑇ℋ)𝑒2, so that 𝜀𝑇 = (𝐼 − 𝑃𝜀 − 𝑃𝜀)𝑃ℋ⊖(ℳ∩𝑇ℋ)𝑒2 is contained in ℋ ⊖
(span{𝜀} ⊕ span{𝜀} ⊕ span{𝜀𝑇} ⊕ (ℳ∩ 𝑇 2ℋ)) and 𝑒2 = 𝑐2,𝜀𝜀+𝑐2,𝜀𝜀+𝜀𝑇+𝜀𝑇 where
𝜀, 𝜀, 𝜀𝑇 , and 𝜀𝑇 are mutually orthogonal, 𝜀, 𝜀𝑇 ∈ ℋ ⊖ ℳ, 𝜀 ∈ ℳ ⊖ 𝑇ℳ, and
𝜀𝑇 ∈ (ℳ∩ 𝑇ℋ)⊖ (ℳ∩ 𝑇 2ℋ).

Continuing in this fashion we can define 𝜀𝑇 𝑖 = 𝑃ℳ∩𝑇 𝑖ℋ𝑒𝑖+1 ∕= 0 and 𝜀𝑇 𝑖 = (𝐼 −∑𝑖−1
𝑗=0

(
𝑃𝜀

𝑇𝑗
+ 𝑃𝜀

𝑇𝑗

)
)𝑃ℋ⊖(ℳ∩𝑇 𝑖ℋ)𝑒𝑖+1 where the 𝜀𝑇 𝑖 and 𝜀𝑇 𝑖 are mutually orthogonal

and the 𝜀𝑇 𝑖 are wandering vectors, 𝜀𝑇 𝑖 ∈ ℋ⊖ℳ ∀𝑖 ≥ 0, 𝜀𝑇 𝑖 ∈ (ℳ∩ 𝑇 𝑖ℋ)⊖ (ℳ∩
𝑇 𝑖+1ℋ) ∀𝑖 ≥ 0 and 𝑒𝑖 can be written as a linear combination of 𝜀𝑇 𝑗 and 𝜀𝑇 𝑗 with
𝑗 ≤ 𝑖−1. If dim(ℳ⊖𝑇ℳ) = 1 then ℳ⊖span{𝜀}⊖span{𝜀𝑇}⊖ . . .⊖span{𝜀𝑇 𝑖−1} =
𝑇 𝑖ℳ so that 𝜀𝑇 𝑖 ∈ 𝑇 𝑖ℳ⊖ 𝑇 𝑖+1ℳ and 𝑇 𝑖ℳ⊖ span{𝜀𝑇 𝑖} = 𝑇 𝑖+1ℳ.
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Since 𝑒1 = 𝜀+𝜀, any 𝑥 ∈ ℋ which is orthogonal to both 𝜀 and 𝜀must be contained
in 𝑇ℋ, and since 𝑒2 = 𝑐2,𝜀𝜀+ 𝑐2,𝜀𝜀+ 𝜀𝑇 + 𝜀𝑇 , any 𝑥 ∈ ℋ which is orthogonal to 𝜀, 𝜀,
𝜀𝑇 , and 𝜀𝑇 must be contained in 𝑇 2ℋ, and since each 𝑒𝑖 can be written as a finite
linear combination of 𝜀𝑇 𝑗 and 𝜀𝑇 𝑗 , any vector which is orthogonal to all 𝜀𝑇 𝑗 ’s and
𝜀𝑇 𝑗 ’s must be contained in 𝑇 𝑖ℋ for all 𝑖, and since 𝑇 is pure, this implies that 𝑥 = 0.
Therefore ℋ = span{𝜀}⊕ span{𝜀}⊕ span{𝜀𝑇}⊕ span{𝜀𝑇}⊕ . . .. Since 𝜀𝑇 𝑖 ∈ ℳ and
𝜀𝑇 𝑖 ∈ ℳ⊥ ∀𝑖 ≥ 0, it must be that ℳ = span{𝜀}⊕ span{𝜀𝑇}⊕ span{𝜀𝑇 2}⊕ . . . and
ℳ⊥ = span{𝜀} ⊕ span{𝜀𝑇} ⊕ span{𝜀𝑇 2} ⊕ . . ..

There is one special property in the above for weighted shifts. It is possible that
one or more of the 𝜀𝑇 𝑗 ’s are zero; for a weighted shift, if 𝜀𝑇 𝑖 = 0 for some 𝑖 then 𝜀𝑇 𝑗 =
0 ∀𝑗 ≥ 𝑖. To see this, note that 𝑇𝜀 = 𝑇 (𝑒1 − 𝜀) = (𝛼1𝑒2 − 𝑇𝜀) ∈ ℳ⊕ span{𝜀} ⊕
span{𝜀𝑇} and 𝑇𝜀𝑇 = 𝑇 (𝑒2 − 𝑐2,𝜀𝜀 − 𝑐2,𝜀𝜀 − 𝜀𝑇 ) = (𝛼2𝑒3 − 𝑇 (𝑐2,𝜀𝜀+ 𝑐2,𝜀𝜀+ 𝜀𝑇 )) ∈
ℳ ⊕ span{𝜀} ⊕ span{𝜀𝑇} ⊕ span{𝜀𝑇 2} and in general 𝑇𝜀𝑇 𝑖 ∈ ℳ ⊕ span{𝜀} ⊕
span{𝜀𝑇} ⊕ span{𝜀𝑇 2} ⊕ . . . ⊕ span{𝜀𝑇 𝑖+1}. Suppose that 𝜀𝑇 𝑖 = 0, then since 𝑒𝑖+1

can be written as a combination of 𝜀𝑇 𝑗 𝑗 ≤ 𝑖 and 𝜀𝑇 𝑗 𝑗 ≤ 𝑖 − 1, 𝑒𝑖+2 = 1
𝛼𝑖+1

𝑇𝑒𝑖+1

can be written as a combination of 𝜀𝑇 𝑗 𝑗 ≤ 𝑖 + 1 and 𝜀𝑇 𝑗 𝑗 ≤ 𝑖, and since 𝜀𝑇 𝑖+1 =
(𝐼−∑𝑖

𝑗=0

(
𝑃𝜀

𝑇𝑗
+ 𝑃𝜀

𝑇𝑗

)
)𝑃ℋ⊖(ℳ∩𝑇 𝑖+1ℳ)𝑒𝑖+2 = (𝐼−∑𝑖

𝑗=0

(
𝑃𝜀

𝑇𝑗
+ 𝑃𝜀

𝑇𝑗

)−𝑃𝜀𝑇𝑖+1
)𝑒𝑖+2,

it follows that 𝜀𝑇 𝑖+1 = 0, and continuing in this fashion 𝜀𝑇 𝑗 = 0 ∀𝑗 ≥ 𝑖.

Theorem 3.3.3. Let 𝑆 be the unweighted shift on the space 𝒦 which shifts the basis
{𝑒1, 𝑒2, 𝑒3 . . .}. Let {𝑐𝑖}𝑛𝑖=1 be a nonzero, finite vector of complex numbers. Then
there is a 𝜀 ∈ 𝒦 such that 𝜀 ⊥ 𝑆𝑖𝜀 ∀𝑖 ≥ 1, (𝜀, 𝑒𝑖) = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛 and [𝜀]𝑆 has a
codimension of 𝑛.

Proof If 𝑐1 = 0 then let 𝑐𝑗 be the first nonzero 𝑐𝑖, and since 𝑆∣𝑆𝑗−1ℋ is unitarily

equivalent to 𝑆 we can construct 𝜀 as below using {𝑐𝑖}𝑛𝑖=𝑗 and then append 𝑗−1 zeros
to the front of 𝜀, so we can assume that 𝑐1 ∕= 0. We will construct the required 𝜀 by
starting with a restriction of 𝑆, which we will call 𝑆, to a closed, invariant subspace
ℋ and extending it to be 𝑆 such that the 𝜀 = ℋ⊖𝑆ℋ = ℋ⊖𝑆ℋ from the restriction
has the required properties. Define 𝒦 = span{𝜀} ⊕ span{𝜀𝑆} ⊕ . . .⊕ span{𝜀𝑆𝑛−1} ⊕
span{𝜀}⊕span{𝜀𝑆}⊕span{𝜀𝑆2}⊕. . . for two mutually orthogonal sets of orthonormal
vectors {𝜀𝑆𝑖}𝑘−1

𝑖=0 and {𝜀𝑆𝑖}∞𝑖=0. Define ℋ = span{𝜀} ⊕ span{𝜀𝑆} ⊕ span{𝜀𝑆2} ⊕ . . .
and 𝑆𝜀𝑆𝑖 = 𝜀𝑆𝑖+1 so that 𝑆∣ℋ = 𝑆 is an unweighted shift. Therefore 𝜀 ∈ ℋ ⊖ 𝑆ℋ
with ∥𝜀∥ = 1 and 𝜀𝑆𝑖 = 𝑆𝑖𝜀 ∀𝑖 ≥ 1. Note that the 𝜀𝑆𝑖 ’s will become the ones from
Proposition 3.3.2. We will use the notation 𝑒𝑖 for what will become a vector in
𝑆𝑖−1𝒦 ⊖ 𝑆𝑖𝒦 with ∥𝑒𝑖∥ = 1 and 𝑒𝑖 = 𝑆𝑖−1𝑒1 ∀𝑖 ≥ 2. According to what was shown
above, we need to construct each 𝑒𝑖 as a linear combination of 𝜀𝑆𝑗 ’s and 𝜀𝑆𝑗 ’s with
0 ≤ 𝑗 ≤ 𝑖 − 1 (with other requirements) so that (𝜀, 𝑒𝑖) = 𝑐𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛 for some
𝑐 > 0. Unlike above, we will assume that ∣𝜀𝑆𝑖∣ = ∣𝜀𝑆𝑖∣ = 1 ∀𝑖 ≥ 0.
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Since 𝑆𝜀𝑆𝑖 = 𝜀𝑆𝑖+1 ∀𝑖 ≥ 0 and 𝑆∣ℋ = 𝑆, it remains to define 𝑆 for each
𝜀𝑆𝑖 for 0 ≤ 𝑖 ≤ 𝑛 − 1. If ∣𝑐1∣ ≥ 1, pick 𝑐 > 0 so that ∣𝑐𝑐1∣ < 1. Define
𝑒1 = 𝑐1,𝜀𝜀+ 𝑐1,𝜀𝜀 where 𝑐1,𝜀 = 𝑐𝑐1 and 𝑐1,𝜀 is any constant so that ∣𝑐1,𝜀∣2 + ∣𝑐1,𝜀∣2 = 1

(possible since ∣𝑐𝑐1∣ < 1), then ∥𝑒1∥ = 1. We will define 𝑒2 and then set 𝑆𝜀 so
that 𝑆𝑒1 = 𝑒2. Define 𝑒2 = 𝑐2,𝜀𝜀 + 𝑐2,𝜀𝜀 + 𝑐2,𝜀𝑆𝜀𝑆 + 𝑐2,𝜀𝑆𝜀𝑆 with 𝑐2,𝜀𝑆 = 𝑐1,𝜀. Set
𝑐2,𝜀 = 𝑐𝑐2 and define 𝑐2,𝜀 so that (𝑒2, 𝑒1) = ∣𝑐∣2𝑐2𝑐1 + 𝑐2,𝜀𝑐1,𝜀 = 0. Pick 𝑐2,𝜀𝑆 ∕= 0
so that ∣𝑐2,𝜀∣2 + ∣𝑐2,𝜀∣2 + ∣𝑐2,𝜀𝑆 ∣2 + ∣𝑐2,𝜀𝑆 ∣2 = 1. If this is not possible then pick a
new 𝑐 which is smaller, then since any smaller 𝑐 will work in the definition of 𝑒1,

𝑐2,𝜀𝑆 = 𝑐𝑐1, 𝑐2,𝜀 = 𝑐𝑐2 and 𝑐2,𝜀 =
−∣𝑐∣2𝑐2𝑐1

𝑐1,𝜀
all go to zero as 𝑐 does (𝑐1,𝜀 goes to one in

modulus as 𝑐 goes to zero), there must be a smaller 𝑐 which works. Notice that we
have (𝑆𝑒1, 𝑆𝑒1) = (𝑒2, 𝑒2) = (𝑒1, 𝑒1) as required for 𝑆 to be isometric. Also, since
𝑒2 = 𝑆𝑒1 and 𝑆𝜀 = 𝜀𝑆 are orthogonal to 𝑒1 and 𝑒1 = 𝑐1,𝜀𝜀 + 𝑐1,𝜀𝜀, it must be that

𝑆𝜀 is orthogonal to 𝑒1.
Define 𝑒3 = 𝑐3,𝜀𝜀+𝑐3,𝜀𝜀+𝑐3,𝜀𝑆𝜀𝑆+𝑐3,𝜀𝑆𝜀𝑆+𝑐3,𝜀𝑆2𝜀𝑆2+𝑐3,𝜀𝑆2𝜀𝑆2 with 𝑐3,𝜀𝑆2 = 𝑐2,𝜀𝑆 =

𝑐1,𝜀 and 𝑐3,𝜀𝑆 = 𝑐2,𝜀. Set 𝑐3,𝜀 = 𝑐𝑐3 and define 𝑐3,𝜀 so that (𝑒3, 𝑒1) = ∣𝑐∣2𝑐3𝑐1+𝑐3,𝜀𝑐1,𝜀 =
0 and define 𝑐3,𝜀𝑆 so that (𝑒3, 𝑒2) = ∣𝑐∣2𝑐3𝑐2 + ∣𝑐∣2𝑐2𝑐1 + 𝑐3,𝜀𝑐2,𝜀 + 𝑐3,𝜀𝑆𝑐2,𝜀𝑆 = 0. Pick
𝑐3,𝜀𝑆2 ∕= 0 so that ∣𝑐3,𝜀∣2+∣𝑐3,𝜀∣2+∣𝑐3,𝜀𝑆 ∣2+∣𝑐3,𝜀𝑆 ∣2+∣𝑐3,𝜀𝑆2 ∣2+∣𝑐3,𝜀𝑆2 ∣2 = 1. If this is not
possible then pick a new 𝑐 which is smaller, and as before since 𝑐3,𝜀𝑆𝑖

= 𝑐𝑐3−𝑖, they
all go to zero as 𝑐 goes to zero and due to the equations for the 𝑒𝑖’s to be orthogonal
the 𝑐3,𝜀𝑆𝑖

’s all go to zero if 𝑖 ∕= 2 and the 𝑐𝑖,𝜀𝑆𝑖−1
𝑖 = 1, 2 go to one in modulus,

so there must be a smaller 𝑐 that works (for 𝑒1, 𝑒2 and 𝑒3). Notice that we have
(𝑆𝑒2, 𝑆𝑒2) = (𝑒3, 𝑒3) = (𝑒2, 𝑒2) and (𝑆𝑒2, 𝑆𝑒1) = (𝑒3, 𝑒2) = (𝑒2, 𝑒1) as required for 𝑆
to be isometric on span{𝑒1, 𝑒2}. Also, since 𝑒3 = 𝑆𝑒2 and 𝑆𝜀𝑆 = 𝜀𝑆2 are orthogonal
to 𝑒1 and 𝑒2 = 𝑐2,𝜀𝜀 + 𝑐2,𝜀𝜀 + 𝑐2,𝜀𝑆𝜀𝑆 + 𝑐2,𝜀𝑆𝜀𝑆, it must be that 𝑆𝜀𝑆 is orthogonal to
𝑒1.

Continuing in this fashion, 𝑒𝑖 can be defined as
∑𝑖−1

𝑗=0

(
𝑐𝑖,𝜀

𝑆𝑗
𝜀𝑆𝑗 + 𝑐𝑖,𝜀

𝑆𝑗
𝜀𝑆𝑗

)
with

𝑐𝑖,𝜀
𝑆𝑗

= 𝑐𝑖−1,𝜀
𝑆𝑗−1

1 ≤ 𝑗 ≤ 𝑖 − 2 and 𝑐𝑖,𝜀 = 𝑐𝑐𝑖. Then define the other constants so
that (𝑒𝑖, 𝑒𝑗) = 0 ∀𝑗 < 𝑖 and ∥𝑒𝑖∥2 = 1 with 𝑐𝑖,𝜀𝑆𝑖−1

∕= 0, which is always possible
for some 𝑐 since 𝑐𝑖,𝜀

𝑆𝑗
= 𝑐𝑐𝑖−𝑗 so that they all go to zero as 𝑐 goes to zero and due

to the equations for the 𝑒𝑖’s to be orthogonal the 𝑐𝑖,𝜀
𝑆𝑗
’s all go to zero if 𝑗 ∕= 𝑖 − 1

and the 𝑐𝑗,𝜀
𝑆𝑗−1

1 ≤ 𝑗 ≤ 𝑖 − 1 go to one in modulus. As before the 𝑆𝜀𝑆𝑖−1 ’s will
be orthogonal to 𝑒1. Do this until 𝑒𝑛 is defined. Since there are no more 𝑐𝑖’s to
constrain the 𝑒𝑖’s, we are free to choose the remaining 𝑐𝑖,𝜀

𝑆𝑗
’s and 𝑐𝑖,𝜀

𝑆𝑗
’s.

Define 𝑆𝜀𝑆𝑛−1 = 𝑐𝑛+1,𝜀𝜀+𝑐𝑛+1,𝜀𝜀+𝑐𝑛+1,𝜀𝑆𝜀𝑆+𝑐𝑛+1,𝜀𝑆2𝜀𝑆2 + . . .+𝑐𝑛+1,𝜀𝑆𝑛−1𝜀𝑆𝑛−1 +
𝑐𝑛+1,𝜀𝑆𝑛𝜀𝑆𝑛 (notice that we are extending the shift in a different way than be-

fore and that the constants are now associated with the definition of the 𝑆𝜀𝑆𝑖 ’s
instead of the 𝑆𝑒𝑖’s). Set 𝑐𝑛+1,𝜀 equal to one for now, and pick 𝑐𝑛+1,𝜀 so that

𝑆𝜀𝑆𝑛−1 is orthogonal to 𝑒1 (possible since 𝑐1,𝜀 ∕= 0), then pick 𝑐𝑛+1,𝜀𝑆 indepen-

dently of the chosen values of the other 𝑐𝑛+1,𝜀𝑆𝑖
’s so that 𝑆𝜀𝑆𝑛−1 is orthogonal to
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𝑆𝜀 (possible since (𝑒2, 𝜀𝑆) = 𝑑(𝑆𝜀, 𝜀𝑆) for some nonzero 𝑑 and 𝑐2,𝜀𝑆 ∕= 0), then pick

𝑐𝑛+1,𝜀𝑆2 (again independently) so that 𝑆𝜀𝑆𝑛−1 is orthogonal to 𝑆𝜀𝑆 (possible since

(𝑒3, 𝜀𝑆2) = 𝑑(𝑆𝜀𝑆, 𝜀𝑆2) for some nonzero 𝑑 and 𝑐3,𝜀𝑆2 ∕= 0), and continue in this

fashion until all of the constants are chosen and 𝑆𝜀𝑆𝑛−1 is orthogonal to 𝑆𝜀𝑆𝑖 for
𝑖 ≤ 𝑛− 2. Now scale the constants so that 𝑆𝜀𝑆𝑛−1 will have a norm of one, this will
force what would have been 𝑐𝑛+1,𝜀𝑆𝑛 to be zero, and since we are only scaling, 𝑆𝜀𝑆𝑛−1

will still be orthogonal to the vectors from before. We have now defined 𝑆 on all
of 𝒦 = span{𝑒1, 𝑒2, . . . , 𝑒𝑛−1, 𝜀𝑆𝑛−1 , 𝜀, 𝜀𝑆, 𝜀𝑆2 , . . .}. Since (𝑆𝑒𝑖, 𝑆𝑒𝑗) = (𝑒𝑖, 𝑒𝑗) ∀𝑖, 𝑗 ≤
𝑛 − 1, (𝑆𝑒𝑗, 𝑆𝜀𝑆𝑖) = (𝑒𝑗, 𝜀𝑆𝑖) 𝑖 ≥ 0, 𝑗 ≤ 𝑛 − 1, (𝑆𝜀𝑆𝑗 , 𝑆𝜀𝑆𝑖) = (𝜀𝑆𝑗 , 𝜀𝑆𝑖) ∀𝑖, 𝑗 ≥
0, and 𝜀𝑆𝑖 ∈ span{𝑒1, 𝑒2, . . . , 𝑒𝑛−1, 𝜀, 𝜀𝑆, 𝜀𝑆2 , . . .} for 0 ≤ 𝑖 ≤ 𝑛 − 2, it must be
that (𝑆𝜀𝑆𝑖 , 𝑆𝜀𝑆𝑗) = (𝜀𝑆𝑖 , 𝜀𝑆𝑗) ∀𝑖, 𝑗 ≤ 𝑛 − 2 and (𝑆𝜀𝑆𝑗 , 𝑆𝜀𝑆𝑖) = (𝜀𝑆𝑗 , 𝜀𝑆𝑖) ∀𝑖 ≥
0, 𝑗 ≤ 𝑛 − 2. Since we defined 𝑆𝜀𝑆𝑛−1 so that (𝑆𝜀𝑆𝑛−1 , 𝑆𝜀𝑆𝑛−1) = (𝜀𝑆𝑛−1 , 𝜀𝑆𝑛−1) =
1, (𝑆𝜀𝑆𝑛−1 , 𝑆𝜀𝑆𝑗) = (𝜀𝑆𝑛−1 , 𝜀𝑆𝑗) = 0 for 0 ≤ 𝑗 ≤ 𝑛 − 2 and (𝑆𝜀𝑆𝑛−1 , 𝑆𝜀𝑆𝑖) =
(𝜀𝑆𝑛−1 , 𝜀𝑆𝑖) = 0 ∀𝑖 ≥ 0 and 𝒦 is spanned by {𝜀𝑆𝑖}∞𝑖=0 and {𝜀𝑆𝑗}𝑛−1

𝑗=0 , according to

Proposition 2.3.3, 𝑆 is an isometry on 𝒦. Note that (1
𝑐
𝜀, 𝑒𝑖) =

1
𝑐
𝑐𝑐𝑖 = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛

due to the way that the 𝑒𝑖’s were constructed, so
1
𝑐
𝜀 works as the desired wandering

vector. Also, [𝜀]𝑆 will have a codimension of 𝑛 since ([𝜀]𝑆)
⊥ = span{𝜀, 𝜀𝑆, . . . , 𝜀𝑆𝑛−1}.

We still must show that 𝑆 has a multiplicity of one and that it is pure so that it is
a shift with a multiplicity of one.

Since the 𝑆𝜀𝑆𝑖 ’s and 𝑆𝜀𝑆𝑗 ’s are orthogonal to 𝑒1, 𝑒1 ∈ 𝒦 ⊖ 𝑆𝒦. Suppose that
𝑥 ∈ 𝒦 ⊖ 𝑆𝒦 is a vector not in the span of 𝑒1; we can assume that 𝑒1 and 𝑥 are
orthogonal since 𝒦 ⊖ 𝑆𝒦 is a subspace. Since 𝑆𝜀𝑆𝑖 = 𝜀𝑆𝑖+1 ∀𝑖 ≥ 0, 𝑥 must be
orthogonal to 𝜀𝑆𝑖 ∀𝑖 ≥ 1 and hence 𝑥 ∈ 𝒩 = span{𝜀} ⊕ span{𝜀} ⊕ span{𝜀𝑆} ⊕
span{𝜀𝑆2} ⊕ . . . ⊕ span{𝜀𝑆𝑛−1}, but 𝑒1 and 𝑆𝜀𝑆𝑖 0 ≤ 𝑖 ≤ 𝑛 − 1 are orthogonal and
in the subspace 𝒩 , and since their number is the same as the dimension of 𝒩 , 𝑥
must be the zero vector. Therefore 𝑆 has multiplicity (at least its shift part) equal
to one.

We will now show that 𝑆 is pure, or that no vector can be orthogonal to 𝑆𝑖𝑒1 ∀𝑖 ≥
0. First notice that 𝑆 does not have any eigenvectors. If 𝑥 ∕= 0 were an eigenvector,
then since 𝑆 is an isometry it must be an eigenvector with eigenvalue of modulus one.
If (𝑥, 𝜀𝑆𝑖) = 𝑑 ∕= 0 for some 𝑖, then since 𝑆𝑥 = 𝜆𝑥 with ∣𝜆∣ = 1 and 𝑆∗𝑆 = 𝐼 since
𝑆 is an isometry, 𝑑 = (𝑥, 𝜀𝑆𝑖) = (𝑆∗𝑗𝑆𝑗𝑥, 𝜀𝑆𝑖) = (𝜆𝑗𝑥, 𝑆𝑗𝜀𝑆𝑖) = 𝜆𝑗(𝑥, 𝜀𝑆𝑖+𝑗) ∀𝑗 ≥ 0

so that ∥𝑥∥2 ≥ ∑∞
𝑗=𝑖 ∣(𝑥, 𝜀𝑆𝑗)∣2 =

∑∞
𝑗=𝑖

∣𝑑∣2
∣𝜆∣2𝑗 =

∑∞
𝑗=𝑖 ∣𝑑∣2 = ∞, so it must be that

𝑥 is contained in the span of the 𝜀𝑆𝑗 ’s. Also, 𝑥 = 𝑆∗𝑆𝑥 = 𝜆𝑆∗𝑥 so that 𝑥 is an
eigenvector with eigenvalue of modulus one for 𝑆∗. Since 𝑆𝑆∗ is the projection onto
the range of 𝑆, 𝑥 must be orthogonal to 𝑒1, and likewise 𝑆∗𝑗𝑥 must be orthogonal to
𝑒1 for every 𝑗 so that 𝑥 must be orthogonal to 𝑆𝑗𝑒1 for every 𝑗. Since 𝑥 is orthogonal
to both 𝑒1 and 𝜀, it must be orthogonal to 𝜀. Since 𝑥 is orthogonal to 𝑒2, 𝜀, 𝜀 and 𝜀𝑆,
it must be orthogonal to 𝜀𝑆. Likewise for analogous reasons 𝑥 must be orthogonal
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to all 𝜀𝑆𝑗 ’s, and hence 𝑥 must be zero. We conclude that 𝑆 has no eigenvectors as
asserted.

Suppose that 0 ∕= 𝑓 ∈ ∩∞
𝑖=0𝑆

𝑖𝒦. Then 𝑆∗𝑗𝑓 ∈ ∩∞
𝑖=0𝑆

𝑖𝒦 ∀𝑗 ≥ 0 and 𝑆∗𝑗𝑓 ⊥
𝑒1 ∀𝑗 ≥ 0. If the set {𝑆∗𝑗𝑓}𝑛+1

𝑗=0 were not linearly independent, then there would

be some constants such that
∑𝑛+1

𝑗=0 𝑑𝑗𝑆
∗𝑗𝑓 = 0. Applying 𝑆𝑛+1 to this relation and

using the fact that 𝑆𝑆∗ is the projection onto the range of 𝑆 and 𝑆∗𝑗𝑓 ⊥ 𝑒1 ∀𝑗 ≥ 0,
we obtain

∑𝑛+1
𝑗=0 𝑑𝑗𝑆

𝑛+1−𝑗𝑓 = 0, which cannot happen because 𝑆 does not have

any eigenvectors. Since span{𝑓, 𝑆∗𝑓, 𝑆∗2𝑓, . . . , 𝑆∗(𝑛+1)𝑓} has a dimension of 𝑛 + 2,
there must be a nonzero 𝑔 contained in this subspace which is orthogonal to all
𝜀𝑆𝑗 0 ≤ 𝑗 ≤ 𝑛 so that 𝑔 ∈ ℋ. Since 𝑔 ∈ ∩∞

𝑖=0𝑆
𝑖𝒦, by Theorem 2.3.4 𝑆∗𝑗𝑔 must be

orthogonal to 𝑒1 for every 𝑗 ≥ 0 but since 𝑔 is contained in the span of the 𝜀𝑆𝑗 ’s, this
means that 𝑆∗𝑗𝑔 must be orthogonal to 𝜀 for every 𝑗 ≥ 0 or 𝑔 must be orthogonal
to 𝑆𝑗𝜀 = 𝑆𝑗𝜀 for every 𝑗 ≥ 0, and hence 𝑔 ⊥ ℋ, which contradicts the fact that 𝑔
was assumed to be nonzero. Therefore ∩∞

𝑖=0𝑆
𝑖𝒦 = {0}, and again by Theorem 2.3.4

𝑆 is pure.

Remark 3.3.1. The proof above involves choosing the parameter 𝑐 > 0 smaller
and smaller. The largest such 𝑐 > 0 that can be used is 1

𝑀
where 𝑀 = inf{∥𝜀∥ :

(𝜀, 𝑒𝑖) = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛, 𝜀 is wandering}. From the Theory of Interpolation (see for
example [21]) it is known that

𝑀 = ∥(𝐼 − 𝑃𝑆𝑛ℋ)𝑝(𝑆)∣ℋ⊖𝑆𝑛ℋ∥ =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

⎡⎢⎢⎢⎣
𝑐1 0 0 0

𝑐2
. . . 0 0

...
. . . . . .

...
𝑐𝑛 ⋅ ⋅ ⋅ 𝑐2 𝑐1

⎤⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ .
We will use the next general proposition in the following theorem:

Proposition 3.3.4. Given vectors {𝑤𝑖}𝑛𝑖=1 and {𝑣𝑖}𝑛𝑖=1 and constants {𝑐𝑖}𝑛𝑖=1, there
is a unique 𝑉 ∈ span{𝑤1, 𝑤2, . . . , 𝑤𝑛} such that (𝑉, 𝑣𝑖) = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛 if and only if
the matrix

𝐴 =

⎡⎢⎢⎢⎣
(𝑤1, 𝑣1) (𝑤2, 𝑣1) ⋅ ⋅ ⋅ (𝑤𝑛, 𝑣1)
(𝑤1, 𝑣2) (𝑤2, 𝑣2) ⋅ ⋅ ⋅ (𝑤𝑛, 𝑣2)

...
...

...
(𝑤1, 𝑣𝑛) (𝑤2, 𝑣𝑛) ⋅ ⋅ ⋅ (𝑤𝑛, 𝑣𝑛)

⎤⎥⎥⎥⎦
is invertible.

Theorem 3.3.5. Let 𝑆 be the unweighted shift on the space 𝒦. Let {𝑐𝑖}𝑛𝑖=1 be a
nonzero, finite vector of complex numbers, then there is a 𝜀 ∈ 𝒦 such that 𝜀 ⊥
𝑆𝑖𝜀 ∀𝑖 ≥ 1, (𝜀, 𝑒𝑖) = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛 and [𝜀]𝑆 has a codimension of 𝑘, where 𝑘 is any
integer such that 𝑘 ≥ 𝑛 or 𝑘 = ∞.
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Proof If 𝑘 ≥ 𝑛 is finite, then append 𝑛− 𝑘 zeros to {𝑐𝑖}𝑛𝑖=1 and apply the previous
theorem.

We now consider the case where 𝑘 = ∞. Define 𝒦 = span{𝜀} ⊕ span{𝜀} ⊕
span{𝜀𝑆}⊕ span{𝜀𝑆}⊕ . . ., for two mutually orthogonal sets of orthonormal vectors
{𝜀𝑆𝑖}∞𝑖=0 and {𝜀𝑆𝑖}∞𝑖=0. Define ℋ = span{𝜀} ⊕ span{𝜀𝑆} ⊕ span{𝜀𝑆2} ⊕ . . . and
𝑆𝜀𝑆𝑖 = 𝜀𝑆𝑖+1 so that 𝑆∣ℋ = 𝑆 is an unweighted shift. We will now continue the
proof as above in the proof of Theorem 3.3.3 where we assume that 𝑐𝑖,𝜀𝑆𝑖−1

is never
zero so that [𝜀]𝑆 will not have a finite codimension. Let 𝑉𝑖 be defined by 𝑉𝑖 ∈
span{𝜀} ⊕ span{𝜀} ⊕ span{𝜀𝑆} ⊕ . . . ⊕ span{𝜀𝑆𝑖}, (𝑉𝑖, 𝜀) = 1, 𝑉𝑖 ⊥ 𝑒1 and 𝑉𝑖 ⊥
𝑆𝜀𝑆𝑗 0 ≤ 𝑗 ≤ 𝑖− 1; this is equivalent to solving 𝐴𝑥 = 𝑏 with

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(𝜀, 𝜀) (𝜀, 𝜀) ⋅ ⋅ ⋅ (𝜀𝑆𝑖 , 𝜀)
(𝜀, 𝑒1) (𝜀, 𝑒1) ⋅ ⋅ ⋅ (𝜀𝑆𝑖 , 𝑒1)

(𝜀, 𝑆𝜀) (𝜀, 𝑆𝜀) ⋅ ⋅ ⋅ (𝜀𝑆𝑖 , 𝑆𝜀)
...

...
...

(𝜀, 𝑆𝜀𝑆𝑖−2) (𝜀, 𝑆𝜀𝑆𝑖−2) ⋅ ⋅ ⋅ (𝜀𝑆𝑖 , 𝑆𝜀𝑆𝑖−2)

(𝜀, 𝑆𝜀𝑆𝑖−1) (𝜀, 𝑆𝜀𝑆𝑖−1) ⋅ ⋅ ⋅ (𝜀𝑆𝑖 , 𝑆𝜀𝑆𝑖−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and 𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then set 𝑉𝑖 = 𝑑𝜀𝜀 + 𝑑𝜀𝜀 + . . . + 𝑑𝜀𝑆𝑖
𝜀𝑆𝑖 where 𝑥 = (𝑑𝜀, 𝑑𝜀, . . . , 𝑑𝜀𝑆𝑖

) is the solution

of 𝐴𝑥 = 𝑏. This is always possible since 𝑆 was constructed so that this matrix
would be lower-triangular, and (𝜀𝑆𝑗+1 , 𝑆𝜀𝑆𝑗) ∕= 0 ∀𝑗 ≥ 0 so that the entries on the
diagonal are all nonzero. Therefore, by Proposition 3.3.4, since 𝐴 is invertible there
is a unique 𝑉𝑖 that satisfies the conditions.

For 𝑖 ≥ 𝑛 define 𝑆𝜀𝑆𝑖−1 = 𝑐𝑖+1,𝑉𝑖−1
𝑉𝑖−1+𝑐𝑖+1,𝜀𝑆𝑖

𝜀𝑆𝑖 where 𝑐𝑖+1,𝑉𝑖−1
and 𝑐𝑖+1,𝜀𝑆𝑖

∕= 0

are any constants so that ∥𝑆𝜀𝑆𝑖−1∥ = 1. As before by Proposition 2.3.3, 𝑆 will be
an isometry on 𝒦 = span{𝜀, 𝜀, 𝜀𝑆, 𝜀𝑆, 𝜀𝑆2 , 𝜀𝑆2 , . . .} since we start with (𝑆𝜀𝑆𝑗 , 𝑆𝜀𝑆𝑖) =
(𝜀𝑆𝑗 , 𝜀𝑆𝑖) ∀𝑖, 𝑗 ≥ 0, (𝑆𝜀𝑆𝑖 , 𝑆𝜀𝑆𝑗) = (𝜀𝑆𝑖 , 𝜀𝑆𝑗) ∀𝑖, 𝑗 ≤ 𝑛 − 2, and (𝑆𝜀𝑆𝑗 , 𝑆𝜀𝑆𝑖) =
(𝜀𝑆𝑗 , 𝜀𝑆𝑖) ∀𝑖 ≥ 0, 𝑗 ≤ 𝑛− 2 and we are defining 𝑆𝜀𝑆𝑗 ∀𝑗 ≥ 𝑛− 1 so that
(𝑆𝜀𝑆𝑗 , 𝑆𝜀𝑆𝑗) = 1 = (𝜀𝑆𝑗 , 𝜀𝑆𝑗) ∀𝑗 ≥ 𝑛− 1,

(𝑆𝜀𝑆𝑖 , 𝑆𝜀𝑆𝑗) = (𝑐𝑖+2,𝑉𝑖
𝑉𝑖 + 𝑐𝑖+2,𝜀𝑆𝑖+1

𝜀𝑆𝑖+1 , 𝑆𝜀𝑆𝑗) = (𝑐𝑖+2,𝜀𝑆𝑖+1
𝜀𝑆𝑖+1 , 𝑆𝜀𝑆𝑗)

= 0 = (𝜀𝑆𝑖 , 𝜀𝑆𝑗) ∀𝑖 > 𝑗 ≥ 𝑛− 1

and (𝑆𝜀𝑆𝑗 , 𝑆𝜀𝑆𝑖) = (𝜀𝑆𝑗 , 𝜀𝑆𝑖) ∀𝑖 ≥ 0, 𝑗 ≥ 𝑛 − 1 and 𝒦 is spanned by {𝜀𝑆𝑖}∞𝑖=0 and
{𝜀𝑆𝑗}∞𝑗=0.

Since 𝑆𝜀𝑆𝑖 and 𝑆𝜀𝑆𝑗 are orthogonal to 𝑒1 for all 𝑖, 𝑗 ≥ 0, 𝑒1 ∈ 𝒦 ⊖ 𝑆𝒦. We
must show that for some choice of constants 𝑐𝑖+1,𝑉𝑖−1

, 𝑐𝑖+1,𝜀𝑆𝑖
𝑖 ≥ 𝑛, 𝒦 ⊂ �̂� =

span{𝑒1} ⊕ span{𝑆𝑒1} ⊕ span{𝑆2𝑒1} ⊕ . . . so that 𝑆 is a shift with a multiplicity of
one. Notice that if 𝜀 ∈ �̂�, then 𝜀𝑆𝑖 ∈ �̂� ∀𝑖 ≥ 0 because �̂� is invariant for 𝑆. Also,
then 𝜀 ∈ �̂� because 𝑒1 and 𝜀 are contained in �̂� and 𝜀 is a linear combination of
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them. Similarly, since 𝜀𝑆 is a linear combination of 𝑒1, 𝑒2, 𝜀 and 𝜀𝑆, and they would
be contained in the space, 𝜀𝑆 would be, and for analogous reasons, 𝜀𝑆𝑖 ∀𝑖 ≥ 0 would
be. We conclude that to show that 𝒦 ⊂ �̂�, it suffices to show that 𝜀 ∈ �̂�.

Since

∥𝑃ℋ𝑆𝑖𝑒1∥2 =
∞∑
𝑗=0

∣(𝑆𝑖𝑒1, 𝜀𝑆𝑗)∣2 =
𝑖∑

𝑗=0

∣(𝑆𝑖𝑒1, 𝜀𝑆𝑗)∣2 =
𝑖∑

𝑗=0

∣(𝑆𝑖−𝑗𝑒1, 𝑆
∗𝑗𝜀𝑆𝑗)∣2

=
𝑖∑

𝑗=0

∣(𝑆𝑖−𝑗𝑒1, 𝜀)∣2 =
𝑖∑

𝑗=0

∣(𝑆𝑗𝑒1, 𝜀)∣2

and ∥𝑃�̃�𝜀∥2 =
∑∞

𝑗=0 ∣(𝑆𝑗𝑒1, 𝜀)∣2, we see that 𝜀 ∈ �̂� if and only if lim𝑖→∞ ∥𝑃ℋ𝑆𝑖𝑒1∥2 =
1.

Let 𝑚 = 𝑛. Since we know that if at any time we pick 𝑆𝜀𝑖 so that 𝑐𝑖+2,𝜀𝑆𝑖+1
= 0

we will have 𝜖 ∈ span{𝑒1} ⊕ span{𝑆𝑒1} ⊕ span{𝑆2𝑒1} ⊕ . . ., we will pick the 𝑐𝑖,𝜀𝑆𝑖
’s

to mimic this behavior. Note that due to the form of 𝑆, ∥𝑃ℋ𝑆𝑖𝑒1∥2 cannot decrease
with 𝑖. Pick a 𝛿 between zero and one. Let 𝑙 be such that ∥𝑃ℋ𝑆𝑚+𝑙𝑒1∥2 > 1 − 𝛿

2

where 𝑆 represents the operator had we set 𝑐𝑚+1,𝜀𝑆𝑚 equal to zero. Note that as

𝑐𝑚+1,𝜀𝑆𝑚 goes to zero, 𝑆𝑚+𝑙𝑒1 converges to 𝑆𝑚+𝑙𝑒1 since 𝑚 + 𝑙 is finite and 𝑆 is

bounded. Therefore there must be a 𝑐𝑚+1,𝜀𝑆𝑚 such that ∥𝑃ℋ𝑆𝑚+𝑙𝑒1∥2 > 1− 𝛿. Pick
such a 𝑐𝑚+1,𝜀𝑆𝑚 and then choose a smaller 𝛿1 and larger 𝑚𝑙 and repeat the above so

that for some 𝑙1 ∥𝑃ℋ𝑆𝑚1+𝑙1𝑒1∥2 > 1− 𝛿1. Continue this process, iteratively picking
smaller 𝛿𝑖’s and larger 𝑚𝑖’s. Then we know that 𝜀 ∈ �̂� so that from above 𝑆 is
a pure shift with a multiplicity of one. As we never change any 𝑐𝑖,𝜀’s once they
are chosen, as before we have (1

𝑐
𝜀, 𝑒𝑖) = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑛, so that 1

𝑐
𝜀 is the desired

wandering vector, and since there are an infinite number of 𝜀𝑆𝑖 ’s, [𝜀]𝑆 has an infinite
codimension.

As an application of Theorem 3.3.3, consider the Hardy Space, that is, the space
of all analytic functions on the unit disk 𝑓 =

∑
𝑎𝑛𝑧

𝑛 such that

sup
0<𝑟<1

∫
∣𝑓(𝑟𝑒𝑖𝜃)∣2 𝑑𝜃

2𝜋
=

∞∑
𝑛=0

∣𝑎𝑛∣2 < ∞.

By means of radial limits, this space can also be identified with the space of all
analytic functions in 𝐿2 on the boundary of the unit disk: ℋ2 = {𝑓 ∈ 𝐿2(∂𝔻) :∫
𝑓𝑧𝑛 ∣𝑑𝑧∣

2𝜋
= 0 ∀𝑛 < 0}. On this space the operator of multiplication by 𝑧 is unitarily

equivalent to the unweighted shift operator of multiplicity one, and a function 𝜙 is
a wandering vector if and only if (𝜙, 𝑧𝑛𝜙) =

∫ ∣𝜙∣2𝑧𝑛𝑑𝑚 = 0 ∀𝑛 ≥ 0, which is
equivalent to ∣𝜙(𝑒𝑖𝜃)∣ being a constant almost everywhere on the boundary of the
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unit circle. In the context of spaces of functions, wandering vectors with a norm of
one are usually called inner functions. We now have the following corollary:

Corollary 3.3.6. Let 𝑝(𝑧) be an arbitrary polynomial of degree 𝑛, then there is an
analytic function 𝑞(𝑧) and a constant 𝑐 > 0 such that 𝜙(𝑧) = 𝑐𝑝(𝑧) + 𝑧𝑛+1𝑞(𝑧) is
an inner function. Moreover, the constant 𝑐 and the function 𝑞(𝑧) can be chosen so
that dim(ℋ2 ⊖ [𝜙]𝑧) is any integer greater than 𝑛 or is equal to infinity.



Chapter 4

The Index of Invariant Subspaces

4.1 Hereditariness of 𝐿∗

Theorem 4.1.1. A weighted shift 𝑇 has an invariant subspace ℳ of index equal to
one such that ℳ ∕⊂ 𝑇ℋ, ℳ ∕= ℋ and

(
𝐿𝑇 ∣ℳ

)∗
= 𝐿∗∣ℳ if and only if 𝑇 has weights

whose moduli are periodic (that is, there is a 𝑘 such that ∣𝛼𝑖∣ = ∣𝛼𝑖+𝑘∣ ∀𝑖 ≥ 1).

Remark Note that the condition ℳ ∕⊂ 𝑇ℋ can be disregarded if we consider
weighted shifts that eventually are periodic (we must then assume that ℳ ∕=
𝑇 𝑖ℋ ∀𝑖 ≥ 0 since these satisfy

(
𝐿𝑇 ∣ℳ

)∗
= 𝐿∗∣ℳ for any weighted shift).

Proof Consider first the case where 𝑇 is a periodic, weighted shift with period 𝑘
whose weights are all positive. Let 𝜀 be a wandering vector for the unweighted
shift such that (𝜀, 𝑒1) ∕= 0 and 𝜀 ∕∈ span{𝑒1}. Form a new 𝜀 by inserting 𝑘 zeros in
between each coefficient of 𝜀 (so 𝜀 will be ((𝜀, 𝑒1), 𝑘 zeros, (𝜀, 𝑒2), 𝑘 zeros, (𝜀, 𝑒3), 𝑘
zeros, et cetera)). Then for any weighted shift (𝜀, 𝑇 𝑖𝜀) = 0 when 𝑖 is not a multiple
of 𝑘, and when 𝑖 is a multiple of 𝑘, because 𝑇 is periodic with period 𝑘, (𝜀, 𝑇𝑚𝑘𝜀) =
(𝜀, (𝛼1𝛼2𝛼3 ⋅ ⋅ ⋅𝛼𝑘)

𝑚𝑆𝑚𝑘𝜀) = 0. Since 𝐿∗𝑇𝑚𝑘+𝑖𝜀 = 1
∣𝛼𝑖+1∣2𝑇

𝑚𝑘+𝑖+1𝜀 ∀𝑚 ≥ 0, 0 ≤ 𝑖 ≤
𝑘 − 1, 𝐿∗ℳ = 𝑇ℳ where ℳ = [𝜀]𝑇 , which must have an index of one since it is
generated by the single vector 𝜀. Therefore 𝐿∗∣ℳ = 𝑃𝑇ℳ𝐿∗∣ℳ =

(
𝐿𝑇 ∣ℳ

)∗
.

Let 𝑇 be an arbitrary weighted shift whose weights have periodic moduli, and let
𝑈 be the diagonal operator such that 𝑈𝑒1 = 𝑒1 and 𝑈𝑒𝑖 =

(𝑈𝑒𝑖−1,𝑒𝑖−1)
∣𝛼𝑖−1∣ 𝛼𝑖−1𝑒𝑖 𝑖 ≥ 2,

then 𝑈 is unitary and 𝑈−1𝑇𝑈 = 𝑇 has periodic weights that are all positive. Let

ℳ be an invariant subspace of 𝑇 constructed as above so that (𝐿𝑇 )
∗ ∣ℳ =

(
𝐿𝑇 ∣ℳ

)∗
.

Then 𝑇𝑈ℳ = 𝑈𝑇𝑈−1𝑈ℳ = 𝑈𝑇ℳ ⊂ 𝑈ℳ so that 𝑈ℳ is an invariant subspace
for 𝑇 , and �̃�∗ = 𝑇 (𝑇 ∗𝑇 )−1 = 𝑈−1𝑇𝑈(𝑈−1𝑇 ∗𝑈𝑈−1𝑇𝑈)−1 = 𝑈−1𝑇 (𝑇 ∗𝑇 )−1𝑈 =
𝑈−1𝐿∗𝑈 , so that 𝐿∗𝑈ℳ = 𝑈�̃�∗𝑈−1𝑈ℳ = 𝑈𝑇ℳ = 𝑈𝑈−1𝑇𝑈ℳ = 𝑇𝑈ℳ and(
𝐿𝑇 ∣𝑈ℳ

)∗
= 𝑃𝑇𝑈ℳ𝐿∗∣𝑈ℳ = 𝐿∗∣𝑈ℳ, and 𝑈ℳ is the desired invariant subspace since

49
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𝑈ℳ ∕⊂ 𝑇ℋ (because 𝑈 maps each 𝑒𝑖 to the span of 𝑒𝑖), 𝑈ℳ ∕= ℋ (because 𝑈 is
one to one and ℳ ∕= ℋ), and 𝑈ℳ must have index equal to one since by equation
(3.1) dim(ℳ⊖ 𝑇ℳ) = dim(𝑈ℳ⊖ 𝑇𝑈ℳ).

Conversely, suppose that ℳ is an invariant subspace of index equal to one for
the weighted shift 𝑇 such ℳ ∕⊂ 𝑇ℋ, ℳ ∕= ℋ and

(
𝐿𝑇 ∣ℳ

)∗
= 𝐿∗∣ℳ. Let 𝜀𝑇 𝑖 =

𝑃𝑇 𝑖ℳ𝑒𝑖+1 ∀𝑖 ≥ 0, then as shown in Proposition 3.3.2, since ℳ ∕⊂ 𝑇ℋ and dim(ℳ⊖
𝑇ℳ) = 1, none of these are zero, they are all wandering vectors, 𝜀𝑇 𝑖 ∈ 𝑇 𝑖ℳ ⊖
𝑇 𝑖+1ℳ, and ℳ = span{𝜀} ⊕ span{𝜀𝑇} ⊕ span{𝜀𝑇 2} ⊕ . . .. For an arbitrary left-
invertible operator on its invariant subspaceℳ, 𝐿∗ mapsℳ⊥ into (𝑇ℳ)⊥, since for
𝑚1 ∈ ℳ⊥ and 𝑚2 ∈ ℳ, (𝐿∗𝑚1, 𝑇𝑚2) = (𝑚1, 𝐿𝑇𝑚2) = (𝑚1,𝑚2) = 0. Since in our
case 𝐿∗ℳ =

(
𝐿𝑇 ∣ℳ

)∗ℳ = 𝑇ℳ, 𝐿∗ℳ ⊂ ℳ so that ℳ is an invariant subspace for

𝐿∗ as well, and since
(
𝐿𝐿∗∣ℳ

)∗
= 𝑃𝐿∗ℳ (𝐿𝐿∗)∗ ∣ℳ = 𝑃𝐿∗ℳ𝑇 ∣ℳ = 𝑃𝑇ℳ𝑇 ∣ℳ = 𝑇 ∣ℳ,

so that according to the above with the roles of 𝑇 and 𝐿∗ reversed, 𝑇 maps ℳ⊥

orthogonally to 𝐿∗ℳ = 𝑇ℳ. Therefore 𝑇𝜀 ⊥ 𝑇ℳ, where 𝜀 = 𝑃ℳ⊥𝑒1.

We will have need of the following relation:

𝛼𝑖∥𝜀𝑇 𝑖−1∥2 = (𝑇𝜀𝑇 𝑖−1 , 𝜀𝑇 𝑖) ∀𝑖 ≥ 1. (4.1)

Since 𝑇𝜀𝑇 𝑖−1 ∈ 𝑇 𝑖ℳ and 𝜀𝑇 𝑖 = 𝑃𝑇 𝑖ℳ𝑒𝑖+1,

(𝑇𝜀𝑇 𝑖−1 , 𝜀𝑇 𝑖) = (𝑇𝜀𝑇 𝑖−1 , 𝑒𝑖+1) = 𝛼𝑖(𝜀𝑇 𝑖−1 , 𝑒𝑖) = 𝛼𝑖(𝜀𝑇 𝑖−1 , 𝜀𝑇 𝑖−1) = 𝛼𝑖∥𝜀𝑇 𝑖−1∥2,
and equation (4.1) follows.

So (𝑇𝑒1, 𝜀𝑇 ) = (𝛼1𝑒2, 𝜀𝑇 ) = 𝛼1(𝑃𝑇ℳ𝑒2, 𝜀𝑇 ) = 𝛼1(𝜀𝑇 , 𝜀𝑇 ) = 𝛼1∥𝜀𝑇∥2. But also
(𝑇𝑒1, 𝜀𝑇 ) = (𝑇𝜀 + 𝑇𝜀, 𝜀𝑇 ) = (𝑇𝜀, 𝜀𝑇 ) = 𝛼1∥𝜀∥2, so that ∥𝜀∥ = ∥𝜀𝑇∥. Doing
the above to 𝜀𝑇 𝑖 𝑖 ≥ 2 instead of 𝜀𝑇 we obtain 0 = 𝛼1(𝜀𝑇 , 𝜀𝑇 𝑖) = (𝛼1𝑒2, 𝜀𝑇 𝑖) =
(𝑇𝑒1, 𝜀𝑇 𝑖) = (𝑇𝜀 + 𝑇𝜀, 𝜀𝑇 𝑖) = (𝑇𝜀, 𝜀𝑇 𝑖) 𝑖 ≥ 2. Since ℳ = span{𝜀} ⊕ span{𝜀𝑇} ⊕
span{𝜀𝑇 2} ⊕ . . ., it must be that 𝑇𝜀 = (𝑇𝜀, 𝜀𝑇

∥𝜀𝑇 ∥2 )𝜀𝑇 = 𝛼1
∥𝜀∥2
∥𝜀𝑇 ∥2 𝜀𝑇 = 𝛼1𝜀𝑇 . Since

𝐿∗𝑇ℳ = 𝐿∗2ℳ = span{𝜀𝐿∗2}⊕ span{𝜀𝐿∗3}⊕ span{𝜀𝐿∗4}⊕ . . . and 𝜀𝐿∗ = 𝑃𝐿∗ℳ𝑒2 =
𝑃𝑇ℳ𝑒2 = 𝜀𝑇 , 𝐿∗2ℳ ⊂ ℳ ⊖ span{𝜀} ⊖ span{𝜀𝑇} = 𝑇 2ℳ so that

(
𝐿𝑇 ∣𝑇ℳ

)∗
=

𝑃𝑇 2ℳ𝐿∗∣𝑇ℳ = 𝐿∗∣𝑇ℳ, and we can do the above to 𝑇ℳ and obtain 𝑇𝜀𝑇 = 𝛼2𝜀𝑇 2

and
(
𝐿𝑇 ∣𝑇2ℳ

)∗
= 𝑃𝑇 3ℳ𝐿∗∣𝑇 2ℳ = 𝐿∗∣𝑇 2ℳ, and by induction we obtain that 𝑇𝜀𝑇 𝑖 =

𝛼𝑖+1𝜀𝑇 𝑖+1 𝑖 ≥ 0 and 𝜀𝑇 𝑖 = 𝜀𝐿∗𝑖 so that reversing the roles of 𝑇 and 𝐿∗ yields that
𝐿∗𝜀𝑇 𝑖 = 1

�̄�𝑖+1
𝜀𝑇 𝑖+1 𝑖 ≥ 0.

Since 𝑇𝜀𝑇 𝑖−1 = 𝛼𝑖𝜀𝑇 𝑖 ,

(𝜀𝑇 𝑖 , 𝑒𝑗+1) = (
1

𝛼𝑖

𝑇𝜀𝑇 𝑖−1 , 𝑒𝑗+1) = (
1

𝛼𝑖

𝜀𝑇 𝑖−1 , �̄�𝑗𝑒𝑗) =
𝛼𝑗

𝛼𝑖

(𝜀𝑇 𝑖−1 , 𝑒𝑗) 𝑖 ≥ 1, 𝑗 ≥ 1 (4.2)

and since 𝐿∗𝜀𝑇 𝑖−1 = 1
�̄�𝑖
𝜀𝑇 𝑖 ,

(𝜀𝑇 𝑖 , 𝑒𝑗+1) = (�̄�𝑖𝐿
∗𝜀𝑇 𝑖−1 , 𝑒𝑗+1) = (�̄�𝑖𝜀𝑇 𝑖−1 ,

1

𝛼𝑗

𝑒𝑗) =
�̄�𝑖

�̄�𝑗

(𝜀𝑇 𝑖−1 , 𝑒𝑗) 𝑖 ≥ 1, 𝑗 ≥ 1. (4.3)
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Combining equations (4.2) and (4.3) yields that ∣𝛼𝑗∣ = ∣𝛼𝑖∣ for every {𝑖, 𝑗} such that
(𝜀𝑇 𝑖−1 , 𝑒𝑗) ∕= 0.

Suppose that (𝜀, 𝑒2) ∕= 0, then ∣𝛼1∣ = ∣𝛼2∣ and

(𝜀𝑇 𝑖 , 𝑒𝑖+2) = (
1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑖−1𝛼𝑖

𝑇 𝑖𝜀, 𝑒𝑖+2) =
𝛼2𝛼3 ⋅ ⋅ ⋅𝛼𝑖𝛼𝑖+1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑖−1𝛼𝑖

(𝜀, 𝑒2)

=
𝛼𝑖+1

𝛼1

(𝜀, 𝑒2) ∕= 0 𝑖 ≥ 0

so that ∣𝛼𝑖+2∣ = ∣𝛼𝑖+1∣ 𝑖 ≥ 0 and hence ∣𝛼𝑖∣ = ∣𝛼1∣ 𝑖 ≥ 1, so 𝑇 has weights which
all have the same moduli, id est, it has a period of 1.

Suppose that (𝜀, 𝑒2) = 0 and let 𝑘 be the first number such that (𝜀, 𝑒𝑘) ∕= 0
(if no such number exists then 𝜀 ∈ span{𝑒1} and hence ℳ = ℋ, which is con-
trary to the assumptions). Then (𝜀𝑇 𝑖−1 , 𝑒𝑖+𝑘−1) = 1

𝛼1𝛼2⋅⋅⋅𝛼𝑖−2𝛼𝑖−1
(𝑇 𝑖−1𝜀, 𝑒𝑖+𝑘−1) =

𝛼𝑘𝛼𝑘+1⋅⋅⋅𝛼𝑖+𝑘−3𝛼𝑖+𝑘−2

𝛼1𝛼2⋅⋅⋅𝛼𝑖−2𝛼𝑖−1
(𝜀, 𝑒𝑘) ∕= 0 so that ∣𝛼𝑖∣ = ∣𝛼𝑖+𝑘−1∣ 𝑖 ≥ 1, so that 𝑇 has weights

whose moduli have a period of 𝑘 − 1 (they could have a shorter period).

4.2 The Index of Invariant Subspaces

In this section we will study the second, main problem, that of when a weighted
shift has only closed, invariant subspaces with indices equal to one. We will start
with a relation showing how the index of a closed, invariant subspace is related to
the index of the whole space.

The following is a generalization of Proposition 1.4 in [2] (although only for
Hilbert spaces).

Theorem 4.2.1. Let ℳ be a closed, invariant subspace for a left-invertible operator
𝑇 on ℋ, then

dim(ℳ⊖ 𝑇ℳ) = dim(𝑃ℳ(ℋ⊖ 𝑇ℋ)) + dim(Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ)) (4.4)

Proof Let ℳ ⊖ 𝑇ℳ = 𝐸 and 𝜀 ∈ ℰ = ℋ ⊖ 𝑇ℋ = Ker(𝑇 ∗), then 𝑇 ∗𝜀 = 0 and
(𝑃ℳ𝜀, 𝑇𝑚) = (𝜀, 𝑇𝑚) = (𝑇 ∗𝜀,𝑚) = 0 ∀𝑚 ∈ ℳ, so that 𝑃ℳ𝜀 ∈ ℳ ⊖ 𝑇ℳ =
Ker(𝑇 ∣ℳ)∗ = 𝐸 and 𝑃ℳℰ ⊂ 𝐸. Let 𝑥 ∈ Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ) with 𝑥 ∕= 0, then
𝑥 ∈ ℋ⊖ℳ and 𝑇𝑥 ∈ ℳ. Since 𝑇 is one-to-one and maps ℳ onto 𝑇ℳ and 𝑥 ∕∈ ℳ,
it must be that 𝑇𝑥 ∕∈ 𝑇ℳ, so that 𝑃ℳ⊖𝑇ℳ𝑇𝑥 ∕= 0. Since 𝑇𝑥 ⊥ ℰ and 𝑇𝑥 ∈ ℳ,
𝑇𝑥 ⊥ 𝑃ℳℰ , and since 𝑃ℳℰ ⊂ 𝐸, 𝑃𝐸𝑇𝑥 ⊥ 𝑃ℳℰ . Therefore we can associate to
each vector 𝑥 ∈ Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ) the vector 𝑃𝐸𝑇𝑥 ∈ 𝐸 ⊖ 𝑃ℳℰ = 𝐸 ⊖ 𝑃𝐸ℰ . If
two different vectors 𝑥1 and 𝑥2 in Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ) are associated with the same
vector, then 𝑃𝐸𝑇 (𝑥1 − 𝑥2) = 0 which implies that 𝑇 (𝑥1 − 𝑥2) ∈ 𝑇ℳ which as
stated before cannot happen since 𝑥1 − 𝑥2 ∕= 0 is in Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ). Suppose
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that 𝑦 ∈ Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ), then 𝑇𝑦 ∈ ℳ and 𝑃𝐸𝑇𝑦 = 𝑇𝑦 + 𝑇𝑧 for some 𝑧 ∈ ℳ.
Let 𝜀 ∈ ℰ = ℋ ⊖ 𝑇ℋ, then 𝑃ℳ𝜀 = 𝜀 + 𝑚⊥ for some 𝑚⊥ ∈ ℳ⊥. Therefore
(𝑃ℳ𝜀, 𝑃𝐸𝑇𝑦) = (𝜀+𝑚⊥, 𝑇 𝑦+𝑇𝑧) = (𝜀, 𝑇 (𝑦+ 𝑧)) = 0 because 𝑇 (𝑦+ 𝑧) ∈ ℳ∩𝑇ℋ,
and hence 𝑃ℳ (ℋ⊖ 𝑇ℋ) ⊥ 𝑃𝐸𝑇Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ).

Since we have associated a unique vector in 𝐸 = ℳ ⊖ 𝑇ℳ to each vec-
tor in 𝑃ℳℰ = 𝑃ℳ(ℋ ⊖ 𝑇ℋ) (the vector 𝑥 = 𝑃ℳ𝑥 for 𝑥 ∈ 𝑃ℳℰ) and to each
vector in Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ) (the vector 𝑃𝐸𝑇𝑥 for 𝑥 ∈ Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ)) and
𝑃ℳ (ℋ⊖ 𝑇ℋ) ∩ 𝑃𝐸𝑇Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ) = {0} since these subspace are orthogonal
to each other, it follows that

dim(ℳ⊖ 𝑇ℳ) ≥ dim(𝑃ℳ(ℋ⊖ 𝑇ℋ)) + dim(Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ)).

We now prove the reverse inequality. Associate to each vector 𝑥 ∈ 𝑃ℳ(ℋ ⊖
𝑇ℋ) ⊂ ℳ ⊖ 𝑇ℳ a vector 𝑦 in ℋ ⊖ 𝑇ℋ such that 𝑥 = 𝑃ℳ𝑦. Then 𝑦1 − 𝑦2 =
0 implies that 𝑃ℳ(𝑦1 − 𝑦2) = 𝑥1 − 𝑥2 = 0, so that this association is unique.
Let 𝑥 ∈ 𝐸 = ℳ ⊖ 𝑇ℳ be such that 𝑥 ⊥ 𝑃ℳℰ = 𝑃ℳ(ℋ ⊖ 𝑇ℋ) and 𝑥 ∕= 0.
Then 𝑥 ⊥ 𝑃ℳℰ + 𝑃ℳ⊥ℰ , so that 𝑥 ⊥ ℰ and hence 𝑥 ∈ 𝑇ℋ. Since 𝑥 ∕∈ 𝑇ℳ,
𝐿𝑥 ∕∈ ℳ and 𝑃(ℋ⊖ℳ)𝐿𝑥 ∕= 0 and 𝐿𝑥 = 𝑥1 + 𝑥2 where 𝑥1 ∕= 0, 𝑥1 ∈ ℋ ⊖ ℳ and
𝑥2 ∈ ℳ. Since 𝑇𝑥1 = 𝑇𝐿𝑥 − 𝑇𝑥2 = 𝑥 − 𝑇𝑥2 ∈ ℳ, 𝑥1 ∈ Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ),
and we can associate to each vector 𝑥 ∈ (ℳ ⊖ 𝑇ℳ) ⊖ 𝑃ℳ(ℋ ⊖ 𝑇ℋ) the vector
𝑃ℋ⊖ℳ𝐿𝑥 ∈ Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ). The association is unique since 𝑃ℋ⊖ℳ𝐿(𝑥1 − 𝑥2) =
0 with 𝑥1 − 𝑥2 ∕= 0 implies that 𝐿(𝑥1 − 𝑥2) ∈ ℳ which is a contradiction to
the above. Suppose that 𝑥 ∈ ℋ ⊖ 𝑇ℋ and 𝑃ℳ𝑥 ∕= 0, then 𝑥 ∕∈ ℋ ⊖ ℳ and
hence 𝑥 ∕∈ Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ). Since we have associated a unique vector in either
{𝑥 : 𝑥 ∈ ℰ , 𝑃ℳ𝑥 ∕= 0} or Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ) (and these two spaces have the zero
space as their intersection) to each vector in ℳ⊖ 𝑇ℳ, it follows that

dim(ℳ⊖ 𝑇ℳ) ≤ dim(𝑃ℳ(ℋ⊖ 𝑇ℋ)) + dim(Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ)).

Combining this with the previous paragraph yields

dim(ℳ⊖ 𝑇ℳ) = dim(𝑃ℳ(ℋ⊖ 𝑇ℋ)) + dim(Ker(𝑃ℋ⊖ℳ𝑇 ∣ℋ⊖ℳ)).

The next theorem is a list of some of the equivalent conditions for a pure, left-
invertible operator with an index of one to have a larger index on a closed, invariant
subspace. Condition (𝑣𝑖𝑖) has proven to be the most useful.

The following notation will be used in the next theorem: Let 𝑀∗
𝑐 denote the set

{𝑥 ∈ ℋ : ∥𝑇 ∗𝑖𝑥∥ ≥ 𝑐∥𝑇 ∗(𝑖−1)𝑥∥ ∀𝑖 ≥ 1}. Note that this is an invariant set for 𝑇 ∗,
but not an invariant subspace for 𝑇 ∗; in fact, for a weighted shift the closure of the
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span of elements in 𝑀∗
𝑐 (that is, the smallest closed space containing 𝑀∗

𝑐 ) is all of
ℋ.

The following theorem gives the equivalence of condition (𝑖), 𝑇 ∣ℳ has an index of
one for every closed, invariant subspace ℳ of 𝑇 , with a number of other conditions,
(𝑖𝑖)–(𝑣𝑖𝑖𝑖). The equivalence of (𝑖) and (𝑖𝑖) is known, with (𝑖𝑖) usually called the
division property (see Lemma 3.1 of [37]). The equivalence of conditions (𝑖) and
(𝑖𝑣) is known and is very close to the definition of the index not being one. All
other results are new, although some of them are innately related to known results
such as: Theorem 2 of [48] alluded to condition (𝑖𝑣); compare condition (𝑣𝑖𝑖) with
Theorem 4.2.1 and Theorem 12 of [48]; compare condition (𝑣𝑖𝑖𝑖) with Lemma 1.2
in [2] and (2) of Proposition 10 of [48].

Theorem 4.2.2. Let 𝑇 be a pure, left-invertible operator such that ℋ ⊖ 𝑇ℋ =
span{𝑒1}, then the following are equivalent:
(i) For every closed, invariant subspace ℳ of 𝑇 , dim(ℳ⊖ 𝑇ℳ) = 1.
(ii) Let 𝑖 be such that ℳ ⊂ 𝑇 𝑖ℋ and ℳ ∕⊂ 𝑇 𝑖+1ℋ, where ℳ is a closed, invariant
subspace for 𝑇 . Then for every 𝑓 such that 𝑇 𝑖+1𝑓 ∈ ℳ, 𝑇 𝑖𝑓 ∈ ℳ.
(iii) For every 𝑓, 𝑔 ∕∈ 𝑇 𝑖ℋ such that 𝑓 + 𝑔 ∈ 𝑇 𝑖ℋ, 𝑓 + 𝑔 ∈ 𝑇 ([𝑓 ] ∨ [𝑔]).
(iv) For every pair of wandering vectors {𝜀, 𝜀}, 𝜀 ∕⊥ [𝜀]𝑇 ∨ [𝜀]𝑇 ∗.
(v) For every pair of wandering vectors {𝜀, 𝜀} such that (𝜀, 𝑒1) ∕= 0, 𝜀 ∕⊥ [𝜀]𝑇 ∗.
(vi) For every wandering vector 𝜀 and 𝑓 ∈ ℋ such that (𝑓, 𝑒1) ∕= 0, 𝑓 ∕⊥ [𝜀]𝑇 ∗.
(vii) For every invariant subspace ℳ of 𝑇 , 𝑇 ∗∣ℳ⊥ being left-invertible implies that
it is right-invertible.
(viii) For every wandering vector 𝜀, [𝜀]𝑇 ∗ ∕⊂ ℳ∗

𝑐 for every 𝑐 > 0.

Proof All proofs will be by contrapositive.

(ii)⇒(i): Suppose that ℳ is a closed, invariant subspace for 𝑇 with dim(ℳ ⊖
𝑇ℳ) > 1. Let 𝑖 be such that ℳ ⊂ 𝑇 𝑖ℋ and ℳ ∕⊂ 𝑇 𝑖+1ℋ. Let ℋ = span{𝑒1} ⊕
span{𝑒2} ⊕ span{𝑒3} ⊕ . . . be the decomposition of ℋ as given in Corollary 2.1.9.

Since ℳ ∕⊂ 𝑇 𝑖+1ℋ but ℳ ⊂ 𝑇 𝑖ℋ, 𝜀 = 𝑃ℳ𝑒𝑖+1 must be nonzero, and since
span{𝑒1} ⊕ span{𝑒2} ⊕ . . .⊕ span{𝑒𝑖} ⊕ span{𝑒𝑖+1} is an invariant subspace for 𝑇 ∗

(since its orthogonal complement is an invariant subspace for 𝑇 ), similar to the proof
of Proposition 3.2.1, 𝜀 is a wandering vector contained in ℳ ⊖ 𝑇ℳ. Let 𝜀 be a
nonzero vector contained in ℳ⊖𝑇ℳ that is orthogonal to 𝜀. Since 𝜀 is orthogonal
to 𝜀 and 𝜀 is the projection of 𝑒𝑖+1 onto ℳ, 𝜀 must be orthogonal to 𝑒𝑖+1 and hence
contained in 𝑇 𝑖+1ℋ (since all of ℳ is orthogonal to 𝑒𝑗 for 𝑗 ≤ 𝑖). Thus there is an 𝑓
such that 𝜀 = 𝑇 𝑖+1𝑓 , but 𝑇 𝑖𝑓 can not be contained in ℳ as this would imply that
𝜀 = 𝑇𝑇 𝑖𝑓 would be contained in 𝑇ℳ, which is a contradiction.

(iii)⇒(ii): Let ℳ be a closed, invariant subspace for 𝑇 such that ℳ ⊂ 𝑇 𝑖ℋ and
ℳ ∕⊂ 𝑇 𝑖+1ℋ, and 𝑓 be such that 𝑇 𝑖+1𝑓 ∈ ℳ, but 𝑇 𝑖𝑓 ∕∈ ℳ. As before set
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𝜀 = 𝑃ℳ𝑒𝑖+1, so that span{𝜀} ⊂ ℳ⊖𝑇ℳ. Then 𝑇 𝑖+1𝑓 is contained in 𝑇ℳ since it
is orthogonal to 𝑒𝑖+1 and hence orthogonal to 𝜀. So 𝑓 = 𝑇 𝑖+1𝑓+𝜀 and 𝑔 = 𝑇 𝑖+1𝑓−𝜀
are both not contained in 𝑇 𝑖+1ℋ but 𝑓 + 𝑔 = 2𝑇 𝑖+1𝑓 is contained in 𝑇 𝑖+1ℋ, and
since 𝑓 + 𝑔 is not in 𝑇ℳ, it must not be in 𝑇 ([𝑓 ] ∨ [𝑔]) ⊂ 𝑇ℳ.

(i)⇒(iii): Let 𝑓 and 𝑔 be not contained in 𝑇 𝑖ℋ but such that 𝑓 + 𝑔 ∈ 𝑇 𝑖ℋ and
𝑓 +𝑔 ∕∈ 𝑇 ([𝑓 ]∨ [𝑔]). Let ℳ = [𝑓 ]∨ [𝑔], then ℳ is a closed, invariant subspace for 𝑇 .
Since 𝑓 ∕∈ 𝑇 𝑖ℋ, 𝑃ℳ𝑒𝑗 must be nonzero for some 𝑗 < 𝑖+1; let 𝜀 = 𝑃ℳ𝑒𝑗 be the first
one that is nonzero, then span{𝜀} ⊂ ℳ ⊖ 𝑇ℳ. Then 𝑃ℳ⊖𝑇ℳ(𝑓 + 𝑔) is nonzero
since 𝑓+𝑔 ∕∈ 𝑇ℳ, and since 𝑓+𝑔 is orthogonal to 𝜀 since it is orthogonal to 𝑒𝑗, and
𝑃ℳ⊖𝑇ℳ(𝑓 + 𝑔) is formed by adding a vector from 𝑇ℳ to 𝑓 + 𝑔, 𝑃ℳ⊖𝑇ℳ(𝑓 + 𝑔) is
orthogonal to 𝜀 and contained in ℳ⊖𝑇ℳ. Thus 𝜀 and 𝑃ℳ⊖𝑇ℳ(𝑓 + 𝑔) are linearly
independent vectors in ℳ⊖ 𝑇ℳ, so dim(ℳ⊖ 𝑇ℳ) ≥ 2.

(iv)⇒(i): Suppose that ℳ is a closed, invariant subspace for 𝑇 with dim(ℳ ⊖
𝑇ℳ) > 1. Let 𝜀 and 𝜀 be two vectors contained in ℳ⊖ 𝑇ℳ that are orthogonal.
Since 𝜀 ⊥ 𝑇ℳ, (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 0, and since 𝜀 ⊥ 𝑇ℳ, (𝜀, 𝑇 ∗𝑖𝜀) = (𝑇 𝑖𝜀, 𝜀) =
0 ∀𝑖 ≥ 0, so that 𝜀 ⊥ [𝜀]𝑇 ∨ [𝜀]𝑇 ∗ .

(v)⇒(iv): Let {𝜀, 𝜀} be a pair of wandering vectors such that 𝜀 ⊥ [𝜀]𝑇 ∨ [𝜀]𝑇 ∗ and
ℳ = [𝜀] ∨ [𝜀]. Then (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 1 and (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 1 since 𝜀 and 𝜀 are
both wandering and (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 0 since 𝜀 ⊥ [𝜀]𝑇 ∗ , and (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 0
since 𝜀 ⊥ [𝜀]𝑇 , so that both 𝜀 and 𝜀 are contained in ℳ⊖ 𝑇ℳ.

If ℳ ⊂ 𝑇ℋ, then 𝐿ℳ is invariant for 𝑇 since 𝑇𝐿𝑚 = 𝑚 = 𝐿𝑇𝑚 ∈ 𝐿ℳ
and 𝐿ℳ is closed since 𝐿 is right-invertible. Also, dim(𝐿ℳ ⊖ 𝑇𝐿ℳ) > 1 since
𝜀1 = 𝑃𝐿ℳ⊖𝑇𝐿ℳ𝐿𝜀 and 𝜀2 = 𝑃𝐿ℳ⊖𝑇𝐿ℳ𝐿𝜀 are both nonzero and linearly independent
since else 𝐿𝜀 = 𝑐1𝜀1 + 𝑚1 and 𝐿𝜀 = 𝑐1𝜀1 + 𝑚2, so that 𝜀 = 𝑐1𝑇𝜀1 + 𝑇𝑚1 and
𝜀 = 𝑐1𝑇𝜀1 + 𝑇𝑚2, so that 𝜀 = 𝑐1𝑃ℳ⊖𝑇ℳ𝑇𝜀1 and 𝜀 = 𝑐1𝑃ℳ⊖𝑇ℳ𝑇𝜀1. Then linear
dependence of {𝜀1, 𝜀2} implies linear dependence of {𝜀, 𝜀} which is a contradiction
since 𝜀 and 𝜀 are nonzero and orthogonal. Since 𝑇 is pure, there must be a 𝑗 such
that ℳ ⊂ 𝑇 𝑗ℋ but ℳ ∕⊂ 𝑇 𝑗+1ℋ, and 𝐿𝑗ℳ ⊂ ℋ but 𝐿𝑗ℳ ∕⊂ 𝑇ℋ, and since each
time that we applied 𝐿 the subspace was still invariant for 𝑇 and had an index
greater than one, we can assume that ℳ is not contained in 𝑇ℋ.

Then 𝑃ℳ𝑒1 is not zero and contained in ℳ⊖ 𝑇ℳ. Let 𝜀 be equal to 𝑃ℳ𝑒1 so
that it is a wandering vector and (𝜀, 𝑒1) ∕= 0. Let 𝜀 be a nonzero vector contained in
ℳ⊖ 𝑇ℳ that is orthogonal to 𝜀, then 𝜀 is a wandering vector and 𝜀 ⊥ [𝜀]𝑇 ∗ since
(𝜀, 𝑇 𝑖𝜀) = (𝑇 ∗𝑖𝜀, 𝜀) = 0 ∀𝑖 ≥ 0.

(vi)⇒(v): If (v) is not satisfied, then set 𝑓 = 𝜀 and (vi) is not satisfied.

(vii)⇒(vi): Let 𝜀 be a wandering vector and 𝑓 ∈ ℋ such that (𝑓, 𝑒1) ∕= 0 and
𝑓 ⊥ [𝜀]𝑇 ∗ . Set ℳ equal to ([𝜀]𝑇 ∗)⊥, then ℳ is an invariant subspace for 𝑇 since
[𝜀]𝑇 ∗ is an invariant subspace for 𝑇 ∗, and 𝑓 ∈ ℳ since 𝑓 ⊥ [𝜀]𝑇 ∗ . Since (𝑓, 𝑒1) ∕= 0,
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𝑒1 ∕⊥ ℳ and 𝑒1 ∕∈ ℳ⊥, so that 𝑇 ∗∣ℳ⊥ is one-to-one since Ker(𝑇 ∗) = span{𝑒1}.
Since 𝑇 ∗ is right invertible, it has a closed range and since Ker 𝑇 ∗ has a dimension
of one, by Corollary 2.6.3 𝑇 ∗∣ℳ⊥ has a closed range, so that 𝑇 ∗∣ℳ⊥ is left-invertible.
Since (𝑇 ∗𝑖𝜀, 𝜀) = (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 1, 𝜀 ⊥ 𝑇 ∗[𝜀]𝑇 ∗ , so that 𝑇 ∗∣ℳ⊥ is not onto and
hence not right-invertible.

(viii)⇒(vii): Letℳ be an invariant subspace for 𝑇 such that 𝑇 ∗∣ℳ⊥ is left-invertible
but not right-invertible. Since 𝑇 ∗∣ℳ⊥ is left invertible, there exists a 𝑐 > 0 such
that ∥𝑇 ∗𝑥∥ ≥ 𝑐∥𝑥∥ ∀𝑥 ∈ ℳ⊥, and since 𝑇 ∗𝑥 ∈ ℳ⊥ for all 𝑥 ∈ ℳ⊥, ∥𝑇 ∗𝑖𝑥∥ ≥
𝑐∥𝑇 ∗(𝑖−1)𝑥∥ ∀𝑖 ≥ 1, 𝑥 ∈ ℳ⊥, and hence ℳ⊥ ⊂ ℳ∗

𝑐 . Since 𝑇 ∗∣ℳ⊥ is not right-
invertible, there is a 𝜀 ∈ ℳ⊥ such that 𝜀 ∈ ℳ⊥ ⊖ 𝑇 ∗ℳ⊥ and hence (𝜀, 𝑇 ∗𝑖𝜀) =
(𝑇 𝑖𝜀, 𝜀) = 0 ∀𝑖 ≥ 1, and 𝜀 is a wandering vector, and [𝜀]𝑇 ∗ ⊂ ℳ⊥ ⊂ ℳ∗

𝑐 .

(i)⇒(viii): Let 𝜀 be a wandering vector such that [𝜀]𝑇 ∗ ⊂ ℳ∗
𝑐 for some 𝑐 > 0. Since

∥𝑇 ∗𝑥∥ ∕= 0 for all 𝑥 ∈ [𝜀]𝑇 ∗ , 𝑒1 ∕∈ [𝜀]𝑇 ∗ , and since 𝑒1 ⊥ [𝑇𝜀]𝑇 , 𝜀 = 𝑃ℋ⊖([𝜀]𝑇∗⊕[𝑇𝜀]𝑇 )𝑒1 ∕=
0. Again, since 𝑒1 ⊥ [𝑇𝜀]𝑇 , 𝜀 = 𝑃ℋ⊖[𝜀]𝑇∗𝑒1, so that 𝜀 is a wandering vector since
ℋ⊖ [𝜀]𝑇 ∗ is a closed, invariant subspace for 𝑇 . So (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 1 and (𝜀, 𝑇 𝑖𝜀) =
0 ∀𝑖 ≥ 1 since 𝜀 and 𝜀 are wandering vectors, (𝜀, 𝑇 𝑖𝜀) = (𝑇 ∗𝑖𝜀, 𝜀) = 0 ∀𝑖 ≥ 1 since
𝜀 ⊥ [𝜀]𝑇 ∗ , and (𝜀, 𝑇 𝑖𝜀) = 0 ∀𝑖 ≥ 1 since 𝜀 ⊥ [𝑇𝜀]𝑇 . Therefore both 𝜀 and 𝜀 are
contained in ℳ⊖𝑇ℳ when ℳ is [𝜀]∨ [𝜀], and since they are linearly independent,
ℳ is a closed, invariant subspace for 𝑇 such that dim(ℳ⊖ 𝑇ℳ) > 1.

Note that in condition (vii) above we always have that 𝑇 ∗∣ℳ⊥ being right-
invertible implies that it is left-invertible (disregarding the trivial case of ℳ⊥ = ℋ),
since if 𝑇 ∗∣ℳ⊥ is not left-invertible, then it must not be one-to-one (since 𝑇 ∗ be-
ing right-invertible implies that it has a closed range and hence also a closed range
on all of its closed, invariant subspaces), so that 𝑒1 ∈ ℳ⊥ and hence ℳ (take
the closure if necessary) is contained in 𝑇ℋ. Let 𝜀 ∈ ℳ ⊖ 𝑇ℳ be nonzero, then
𝐿𝜀 ∕∈ ℳ (since else 𝜀 ∈ 𝑇ℳ) so that 𝑃ℳ⊥𝐿𝜀 = 𝐿𝜀 + 𝑚 ∕= 0 where 𝑚 ∈ ℳ. So
𝑇𝑃ℳ⊥𝐿𝜀 = 𝑇𝐿𝜀 + 𝑇𝑚 = 𝜀 + 𝑇𝑚 ∈ ℳ and 𝑃ℳ⊥𝑇 = (𝑇 ∗∣ℳ⊥)∗ is not one-to-one,
and hence 𝑇 ∗∣ℳ⊥ is not right-invertible. Therefore (vii) is equivalent to 𝑇 ∗∣ℳ⊥ being
left-invertible if and only if it is right-invertible (for a nontrivial ℳ).

As an application of the above theorem we have the following sufficient condition
for a vector to be cyclic for a backward, weighted shift. This is a generalization of
part (i) of Theorem 2.3 of [1] using different methods; see also Section 5.5 of [17]:

Corollary 4.2.3. Let 𝑇 be a left-invertible, weighted shift and 𝑥 ∈ ℋ be such that
𝑥 ∕∈ ℳ∗

𝑐 for any 𝑐 > 0 and 𝑇 ∗𝑖𝑥 ∕= 0 ∀𝑖 ≥ 0, then 𝑥 is cyclic for 𝑇 ∗ (that is,
[𝑥]𝑇 ∗ = ℋ).

Proof For ease of notation let ℳ∗
0 = {𝑥 ∈ ℋ : ∀𝑐 > 0, 𝑥 ∕∈ ℳ∗

𝑐}. Suppose that
there is some 𝑓 ∈ ℋ such that (𝑓, 𝑒1) ∕= 0 and a 𝑦 ∈ ℋ such that 𝑦 ⊥ [𝑓 ]𝑇 . Then
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since 𝑒1 ∕⊥ [𝑓 ]𝑇 , 𝑒1 ∕∈ ([𝑓 ]𝑇 )
⊥, so that 𝑇 ∗∣([𝑓 ]𝑇 )⊥ is one-to-one and by Corollary 2.6.3

it is left-invertible and hence there is a 𝑐 > 0 such that 𝑦 ∈ ([𝑓 ]𝑇 )
⊥ ⊂ ℳ∗

𝑐 . Therefore
by the contrapositive of the preceding, if 𝑦 ∈ ℳ∗

0 then 𝑦 ∕⊥ [𝑓 ]𝑇 for every 𝑓 ∈ ℋ
such that (𝑓, 𝑒1) ∕= 0 and hence 𝑓 ∕⊥ [𝑥]𝑇 ∗ for every 𝑓 ∈ ℋ such that (𝑓, 𝑒1) ∕= 0. Let
𝑔 be an arbitrary vector in ℋ, and let 𝑖 be the first integer such that (𝑔, 𝑒𝑖+1) ∕= 0.
Note that 𝑃𝑇 𝑖ℋ𝑥 ∕= 0, since this would imply that 𝑥 ∈ Ker(𝑇 ∗𝑖) = ℋ ⊖ 𝑇 𝑖ℋ, but
by the hypotheses 𝑇 ∗𝑖𝑥 ∕= 0 ∀𝑖 ≥ 0. Since 𝑥 ∈ ℳ∗

0, there is a subsequence {𝑛𝑗}∞𝑗=1

such that ∥𝑇 ∗(𝑗𝑛+𝑖+1)𝑥∥2
∥𝑇 ∗(𝑗𝑛+𝑖)𝑥∥2 → 0, and since 𝐿∗𝑖 is left-invertible, there is a 𝑐 > 0 and an

𝑀 < ∞ such that 𝑐∥𝑥∥ ≤ ∥𝐿∗𝑥∥ ≤ 𝑀∥𝑥∥ ∀𝑥 ∈ ℳ, and hence ∥𝐿∗𝑖𝑇 ∗𝑖𝑇 ∗(𝑗𝑛+1)𝑥∥2
∥𝐿∗𝑖𝑇 ∗𝑖𝑇 ∗𝑗𝑛𝑥∥2 =

∥𝐿∗𝑖𝑇 ∗(𝑗𝑛+𝑖+1)𝑥∥2
∥𝐿∗𝑖𝑇 ∗(𝑗𝑛+𝑖)𝑥∥2 → 0, but 𝑃𝑇 𝑖ℋ𝑇 ∗𝑗𝑃𝑇 𝑖ℋ𝑥 = 𝐿∗𝑖𝑇 ∗𝑖𝑇 ∗𝑗𝑃𝑇 𝑖ℋ𝑥 = 𝐿∗𝑖𝑇 ∗(𝑗+𝑖)𝑥 ∀𝑗 ≥ 𝑖

since 𝑇 ∗𝑗𝑥 = 𝑇 ∗𝑗(𝑃𝑇 𝑖ℋ𝑥+𝑃ℋ⊖𝑇 𝑖ℋ𝑥) = 𝑇 ∗𝑗𝑃𝑇 𝑖ℋ𝑥 ∀𝑗 ≥ 𝑖 sinceℋ⊖𝑇 𝑖ℋ ⊂ ℋ⊖𝑇 𝑗ℋ =
Ker(𝑇 ∗𝑗) ∀𝑗 ≥ 𝑖. Therefore, considering ℋ̃ = 𝑇 𝑖ℋ, 𝑇 = 𝑇 ∣𝑇 𝑖ℋ, and �̃� = 𝑃𝑇 𝑖ℋ𝑥, 𝑇 is
a left-invertible, weighted shift on �̃�, and �̃� ∈ ℳ∗

0,�̃�
, so that by the above 𝑔 ∕⊥ [�̃�]𝑇 ∗

(since ℋ̃⊖𝑇 ℋ̃ = span{𝑒𝑖+1}) so that there is a 𝑘 such that (𝑇 𝑘𝑔, �̃�) = (𝑇 𝑘𝑔, 𝑥) ∕= 0,
and hence 𝑔 ∕⊥ [𝑥]𝑇 ∗ . Since 𝑔 was arbitrary, there is no vector that is orthogonal to
[𝑥]𝑇 ∗ and hence [𝑥]𝑇 ∗ = ℋ.

We now state a slightly stronger version of (𝑖) ⇔ (𝑣𝑖𝑖) of Theorem 4.2.2 since
it was stated more weakly there and will be useful later. It is not hard to prove in
the pure case using arguments similar to those used in Theorem 4.2.2, but since it
is actually a corollary of Corollary 2.6.3 and Theorem 4.2.1, we will not prove it.

Corollary 4.2.4. Let 𝑇 be a left-invertible operator such that ℋ⊖ 𝑇ℋ = span{𝑒1}
and ℳ be a closed, invariant subspace for 𝑇 with 𝑃ℳ𝑒1 ∕= 0. Then dim (ℳ⊖ 𝑇ℳ) >
1 if and only if 𝑇 ∗∣ℳ⊥ is left-invertible but not right-invertible.

The following corollary removes the constraint 𝑃ℳ𝑒1 ∕= 0 in Corollary 4.2.4 by
using an appropriate strengthening of the hypothesis that 𝑇 ∗∣ℳ⊥ is left but not
right-invertible.

Corollary 4.2.5. Let 𝑇 be a pure, left-invertible operator such that ℋ ⊖ 𝑇ℋ =
span{𝑒1} and ℳ be a closed, invariant subspace for 𝑇 . Then dim(ℳ⊖ 𝑇ℳ) > 1
if and only if 𝑇 ∗(𝑖+1)ℳ⊥ ∕= 𝑇 ∗𝑖ℳ⊥ ∀𝑖 ≥ 0.

Proof Suppose that ℳ is a closed, invariant subspace for the pure, left-invertible
operator 𝑇 such that dim(ℳ ⊖ 𝑇ℳ) > 1. Suppose that ℳ ⊂ 𝑇ℋ. If 𝑥 ⊥ 𝐿ℳ,
then since 𝑇 ∗ is onto there is a 𝑦 ∈ ℋ such that 𝑇 ∗𝑦 = 𝑥 and (𝑥, 𝐿𝑚) = (𝑇 ∗𝑦, 𝐿𝑚) =
(𝑦, 𝑇𝐿𝑚) = (𝑦,𝑚) = 0 ∀𝑚 ∈ ℳ, so that 𝑦 ∈ ℳ⊥ and 𝑥 ∈ 𝑇 ∗ℳ⊥. Similarly, if
𝑥 ∈ 𝑇 ∗ℳ⊥, then 𝑇 ∗𝑦 = 𝑥 for some 𝑦 ∈ ℳ⊥, and from the above we see that
𝑥 ⊥ 𝐿ℳ; hence 𝑇 ∗ℳ⊥ = (𝐿ℳ)⊥. Since 𝐿ℳ is strictly larger than ℳ, 𝑇 ∗ℳ⊥
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must be strictly smaller than ℳ⊥. Since dim(𝐿ℳ⊖𝑇𝐿ℳ) = dim(ℳ⊖𝑇ℳ) > 1,
if ℳ ⊂ 𝑇ℋ, we can operator by 𝐿 enough times and assume that ℳ ∕⊂ 𝑇ℋ. By
Corollary 4.2.4, 𝑇 ∗∣ℳ⊥ is left-invertible but not right-invertible. Therefore (𝑇 ∗∣ℳ⊥)𝑖

is left-invertible but not right-invertible for every 𝑖 ≥ 0, so that it is never onto for
any power, and hence 𝑇 ∗(𝑖+1)ℳ⊥ is always strictly contained in 𝑇 ∗𝑖ℳ⊥ for every
𝑖 ≥ 0.

Conversely, suppose thatℳ⊥ is such that 𝑇 ∗(𝑖+1)ℳ⊥ is always strictly contained
in 𝑇 ∗𝑖ℳ⊥ for every 𝑖 ≥ 0. As above, since by Proposition 2.1.8 dim(𝑇ℳ⊖𝑇 2ℳ) =
dim(ℳ⊖ 𝑇ℳ) and 𝑇 ∗ℳ⊥ = (𝐿ℳ)⊥ if ℳ ⊂ 𝑇ℋ, we can assume that ℳ ∕⊂ 𝑇ℋ.
Since 𝑒1 ∕∈ ℳ⊥, by Corollary 2.6.3 𝑇 ∗∣ℳ⊥ is one-to-one with a closed range and
hence left-invertible, and since 𝑇 ∗ℳ⊥ is strictly contained in ℳ⊥, 𝑇 ∗∣ℳ⊥ is not
right-invertible, so that by Corollary 4.2.4, ℳ has an index greater than one.

The following proposition shows that there is a large class of vectors by which
one can perturb a vector 𝑓 that will not affect whether or not 𝑇 ∗ is left but not
right-invertible on the closed, invariant subspace for 𝑇 ∗ generated by 𝑓 . It also
shows that the set of vectors which generate closed, invariant subspaces for 𝑇 ∗ on
which the restriction is left but not right-invertible is dense.

Proposition 4.2.6. Let 𝑇 be a left-invertible operator such thatℋ⊖𝑇ℋ = span{𝑒1},
𝑓 be a nonzero vector, 𝑥 =

∑𝑛
𝑖=0 𝑐𝑖𝑇

𝑖𝑒1, ℳ = ([𝑓 ]𝑇 ∗)⊥ and ℳ̃ = ([𝑓 + 𝑥]𝑇 ∗)⊥. Then
𝑇 ∗∣ℳ⊥ is left-invertible but not right-invertible if and only if 𝑇 ∗∣ℳ̃⊥ is.

Proof We will first prove the forward direction assuming that 𝑥 = 𝑐𝑒1. Assume
that 𝑓 ∕= 0 is given and 𝑇 ∗∣ℳ⊥ is left-invertible but not right-invertible. Since
𝑥 = 𝑐𝑒1 ∈ Ker(𝑇 ∗), 𝑇 ∗𝑖𝑓 = 𝑇 ∗𝑖(𝑓 + 𝑥) ∀𝑖 ≥ 1, so that 𝑇 ∗𝑖ℳ⊥ = 𝑇 ∗𝑖ℳ̃⊥ ∀𝑖 ≥ 1.
If 𝑇 ∗∣ℳ̃⊥ were right-invertible, then it would be onto, so that 𝑇 ∗ℳ⊥ = 𝑇 ∗ℳ̃⊥ =
𝑇 ∗2ℳ̃⊥ = 𝑇 ∗2ℳ⊥, but this is a contradiction since if an operator 𝐴 : 𝒳 → 𝒳
is one-to-one, then dim (𝒳 ⊖ 𝐴𝒳 ) = dim (𝐴𝒳 ⊖ 𝐴2𝒳 ), so that 𝑇 ∗ℳ⊥ ⊖ 𝑇 ∗2ℳ⊥

must be nonzero since ℳ⊥ ⊖ 𝑇 ∗ℳ⊥ is (since 𝑇 ∗∣ℳ⊥ is not right-invertible and
hence not onto). If 𝑇 ∗∣ℳ̃⊥ were not left-invertible, then 𝑒1 would be in ℳ̃⊥ =
span{𝑓 + 𝑥}+̇𝑇 ∗ℳ̃⊥ = span{𝑓 + 𝑥}+̇𝑇 ∗ℳ⊥, but since 𝑒1 is not in 𝑇 ∗ℳ⊥ there
must be a nonzero constant 𝑑 and a vector 𝑔 ∈ 𝑇 ∗ℳ⊥ such that 𝑒1 = 𝑑(𝑓+𝑥)+𝑔, but
this implies that 0 = 𝑇 ∗𝑒1 = 𝑑𝑇 ∗𝑓+𝑇 ∗𝑔, or that 𝑇 ∗𝑓 is contained in 𝑇 ∗2ℳ⊥, which
would imply that 𝑇 ∗ℳ⊥ = 𝑇 ∗2ℳ⊥ since 𝑇 ∗ℳ⊥ = [𝑇 ∗𝑓 ]𝑇 ∗ which is a contradiction.
Hence 𝑇 ∗∣ℳ̃⊥ is left-invertible but not right-invertible.

To prove the general case, notice that if 𝑇 ∗∣ℳ⊥ is left-invertible but not right-
invertible, then 𝑇 ∗∣𝑇 ∗ℳ⊥ also is, and 𝑇 ∗ℳ⊥ = [𝑇 ∗𝑓 ]𝑇 ∗ . Similarly, 𝑇 ∗∣[𝐿∗𝑓 ]𝑇∗ cannot
be right-invertible, since this would imply that [𝑓 ]𝑇 ∗ = 𝑇 ∗[𝐿∗𝑓 ]𝑇 ∗ = 𝑇 ∗2[𝐿∗𝑓 ]𝑇 ∗ =
𝑇 ∗[𝑓 ]𝑇 ∗ . And if 𝑇 ∗∣[𝐿∗𝑓 ]𝑇∗ were not left-invertible, then since 𝑒1 is not in [𝑓 ]𝑇 ∗ , as
above there would be a nonzero constant 𝑑 and a vector 𝑔 ∈ 𝑇 ∗[𝐿∗𝑓 ]𝑇 ∗ = [𝑓 ]𝑇 ∗ such
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that 𝑒1 = 𝑑𝐿∗𝑓 + 𝑔, which would imply that 𝑓 is contained in 𝑇 ∗[𝑓 ]𝑇 ∗ which is a
contradiction, so 𝑇 ∗∣[𝐿∗𝑓 ]𝑇∗ is also left-invertible but not right invertible.

Suppose that 𝑓 ∕= 0 and 𝑥 =
∑𝑛

𝑖=0 𝑐𝑖𝑇
𝑖𝑒1 are given, and 𝑇 ∗∣ℳ⊥ is left-invertible

but not right-invertible. Applying inductively the fact that 𝑇 ∗∣[𝑇 ∗𝑓 ]𝑇∗ is left-invertible
but not right-invertible if 𝑇 ∗∣[𝑓 ]𝑇∗ is, we can take 𝑇 ∗ as many times as necessary un-
til 𝑇 ∗𝑘𝑓 = 𝑇 ∗𝑘(𝑓 + 𝑥) (which must happen due to the form of 𝑥) and still have
that 𝑇 ∗

[𝑇 ∗𝑘𝑓 ]𝑇∗ is left-invertible but not right-invertible. Then from above we know

that 𝑇 ∗∣[𝐿∗𝑇 ∗𝑘𝑓 ]𝑇∗ = 𝑇 ∗∣[𝐿∗𝑇 ∗𝑘(𝑓+𝑥)]𝑇∗ is left-invertible but not right-invertible, and

since 𝐿∗𝑇 ∗𝑘(𝑓 + 𝑥) + 𝑐𝑒1 = 𝑇 ∗(𝑘−1)(𝑓 + 𝑥) for some 𝑐, from above we know that
𝑇 ∗∣𝑇 ∗(𝑘−1)(𝑓+𝑥)]𝑇∗ must also be left-invertible but not right-invertible. We can repeat
the last two steps 𝑘 − 1 times, taking 𝐿∗ and then adjusting by 𝑐𝑒1 for a suitable
constant so that 𝐿∗𝑇 ∗𝑗(𝑓+𝑥)+𝑐𝑒1 = 𝑇 ∗(𝑗−1)(𝑓+𝑥), knowing that each time we will
have a space on which the restriction of 𝑇 ∗ is left-invertible but not right-invertible,
so that 𝑇 ∗∣[𝑓+𝑥]𝑇∗ must also be left-invertible but not right-invertible. Finally, since
𝑓 = (𝑓+𝑥)−𝑥, if 𝑇 ∗ restricted to [𝑓+𝑥]𝑇 ∗ is left-invertible but not right-invertible,
then it must also be when restricted to [𝑓 ]∗𝑇 , so that the proof is if and only if.

Proposition 4.2.7. Let 𝑇 be a left-invertible operator such thatℋ⊖𝑇ℋ = span{𝑒1},
and ℳ⊥ = [𝑓 ]𝑇 ∗ be a closed, invariant subspace for 𝑇 ∗. Then one of the five
following conditions holds:
(i) 𝑒1 ∈ [𝑓 ]𝑇 ∗ and [𝑓 ]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗, in which case 𝑒1 ∈ [𝑓 ]𝑇 ∗ = [𝑓 + 𝑐𝑒1]𝑇 ∗ =
[𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ ∀𝑐 ∈ ℂ and ([𝑓 ]𝑇 ∗)⊥ ⊂ ∩∞

𝑖=0 𝑇
𝑖ℋ

(ii) 𝑒1 ∕∈ [𝑓 ]𝑇 ∗ and [𝑓 ]𝑇 ∗ ∕= [𝑇 ∗𝑓 ]𝑇 ∗, in which case 𝑒1 ∕∈ [𝑓 + 𝑐𝑒1]𝑇 ∗ and [𝑓 + 𝑐𝑒1]𝑇 ∗ ∕=
[𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ for every 𝑐 ∈ ℂ
(iii) 𝑒1 ∕∈ [𝑓 ]𝑇 ∗ and [𝑓 ]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗, in which case 𝑒1 ∈ [𝑓 + 𝑐𝑒1]𝑇 ∗ and [𝑓 + 𝑐𝑒1]𝑇 ∗ ∕=
[𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ for every 𝑐 ∈ ℂ ∖ 0
(iv) 𝑒1 ∈ [𝑓 ]𝑇 ∗, [𝑓 ]𝑇 ∗ ∕= [𝑇 ∗𝑓 ]𝑇 ∗, and 𝑒1 ∕∈ [𝑇 ∗𝑓 ]𝑇 ∗, in which case [𝑓 + 𝑐𝑒1]𝑇 ∗ is in
case (iii) for some 𝑐 (and hence exactly one 𝑐)
(v) 𝑒1 ∈ [𝑓 ]𝑇 ∗, [𝑓 ]𝑇 ∗ ∕= [𝑇 ∗𝑓 ]𝑇 ∗, and 𝑒1 ∈ [𝑇 ∗𝑓 ]𝑇 ∗, in which case 𝑒1 ∈ [𝑓 + 𝑐𝑒1]𝑇 ∗ and
[𝑓 + 𝑐𝑒1]𝑇 ∗ ∕= [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ for every 𝑐 ∈ ℂ

Proof Since a vector being contained in a set and two sets being equal are either
true or not true, only these five conditions are possible, so it remains to prove the
implications.

Suppose that case (𝑖) holds. Since 𝑒1 ∈ [𝑓 ]𝑇 ∗ , 𝑓+𝑐𝑒1 ∈ [𝑓 ]𝑇 ∗ , so that [𝑓+𝑐𝑒1]𝑇 ∗ ⊂
[𝑓 ]𝑇 ∗ . Also, [𝑓 ]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗ = [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ ⊂ [𝑓 + 𝑐𝑒1]𝑇 ∗ , so that [𝑓 ]𝑇 ∗ =
[𝑓 + 𝑐𝑒1]𝑇 ∗ ∀𝑐 ∈ ℂ. Therefore 𝑒1 ∈ [𝑓 + 𝑐𝑒1]𝑇 ∗ ∀𝑐 ∈ ℂ and [𝑓 + 𝑐𝑒1]𝑇 ∗ = [𝑓 ]𝑇 ∗ =
[𝑇 ∗𝑓 ]𝑇 ∗ = [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ ∀𝑐 ∈ ℂ. If ([𝑓 ]𝑇 ∗)⊥ were not contained in

∩∞
𝑖=0 𝑇

𝑖ℋ
then there would be a nonzero 𝑥 ∈ ([𝑓 ]𝑇 ∗)⊥ such that 𝑥 ∕∈ ∩∞

𝑖=0 𝑇
𝑖ℋ and hence

(𝐿𝑘𝑥, 𝑒1) ∕= 0 for some 𝑘, which we assume to be the smallest possible. For any
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𝑦 ∈ ([𝑓 ]𝑇 ∗)⊥ since 𝑒1 ∈ [𝑓 ]𝑇 ∗ , (𝑦, 𝑒1) = 0, and hence (𝐿𝑦, 𝑇 ∗𝑖𝑓) = (𝑇𝐿𝑦, 𝑇 ∗(𝑖−1)𝑓) =
(𝑦, 𝑇 ∗(𝑖−1)𝑓) = 0 ∀𝑖 ≥ 1, so that 𝐿𝑦 ⊥ [𝑇 ∗𝑓 ]𝑇 ∗ = [𝑓 ]𝑇 ∗ . That is, ([𝑓 ]𝑇 ∗)⊥ is
invariant under 𝐿. In particular, if 𝑦 ∈ ([𝑓 ]𝑇 ∗)⊥ then 𝐿𝑖𝑦 ∈ ([𝑓 ]𝑇 ∗)⊥ ∀𝑖 ≥ 0. Hence
𝐿𝑘𝑥 ∈ ([𝑓 ]𝑇 ∗)⊥, so that (𝐿𝑘𝑥, 𝑒1) = 0 which is a contradiction, so there must be no
nonzero 𝑥 such that 𝑥 ⊥ [𝑓 ]𝑇 ∗ and 𝑥 ∕∈ ∩∞

𝑖=0 𝑇
𝑖ℋ, and hence ([𝑓 ]𝑇 ∗)⊥ ⊂ ∩∞

𝑖=0 𝑇
𝑖ℋ.

Case (𝑖𝑖) was a part of Proposition 4.2.6.
Suppose that case (𝑖𝑖𝑖) holds. Since 𝑓 ∈ [𝑓 ]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗ = [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ , there

is an 𝑥 ∈ [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ such that 𝑓 = 𝑥, and hence 𝑓 + 𝑐𝑒1 − 𝑓 = 𝑐𝑒1 ∈ span{𝑓 +
𝑐𝑒1}+ [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ = [𝑓 + 𝑐𝑒1]𝑇 ∗ , so that 𝑒1 ∈ [𝑓 + 𝑐𝑒1]𝑇 ∗ if 𝑐 ∕= 0. If [𝑓 + 𝑐𝑒1]𝑇 ∗

were [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ then 𝑓 + 𝑐𝑒1 would be contained in [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗

and hence 𝑓 + 𝑐𝑒1 − 𝑓 = 𝑐𝑒1 would be contained in [𝑓 ]𝑇 ∗ which is a contradiction if
𝑐 ∕= 0, so it must be that [𝑓 + 𝑐𝑒1]𝑇 ∗ ∕= [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ when 𝑐 ∕= 0.

Suppose that case (𝑖𝑣) holds. Since 𝑒1 ∕∈ [𝑇 ∗𝑓 ]𝑇 ∗ but 𝑒1 ∈ [𝑓 ]𝑇 ∗ which is
span{𝑓}+̇[𝑇 ∗𝑓 ]𝑇 ∗ , there must be a nonzero constant 𝑑 such that 𝑒1 = 𝑑𝑓 + 𝑥 where
𝑥 ∈ [𝑇 ∗𝑓 ]𝑇 ∗ . Let 𝑐 = −1

𝑑
, then 𝑓 + 𝑐𝑒1 = 𝑐𝑥 ∈ [𝑇 ∗𝑓 ]𝑇 ∗ = [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ so that

[𝑓+𝑐𝑒1]𝑇 ∗ = [𝑇 ∗(𝑓+𝑐𝑒1)]𝑇 ∗ , and 𝑒1 ∕∈ [𝑓+𝑐𝑒1]𝑇 ∗ , else 𝑓+𝑐𝑒1−𝑐𝑒1 = 𝑓 ∈ [𝑓+𝑐𝑒1]𝑇 ∗ =
[𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗ which is a contradiction, so 𝑓 + 𝑐𝑒1 is contained in case
(𝑖𝑖𝑖).

Suppose that case (𝑣) holds. Since 𝑒1 ∈ [𝑇 ∗𝑓 ]𝑇 ∗ = [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ ⊂ [𝑓 + 𝑐𝑒1]𝑇 ∗ ,
it follows that 𝑒1 ∈ [𝑓 + 𝑐𝑒1]𝑇 ∗ ∀𝑐 ∈ ℂ. According to case (𝑖), if [𝑓 + 𝑐𝑒1]𝑇 ∗ were
[𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ , then [𝑓 ]𝑇 ∗ would be equal to [𝑇 ∗𝑓 ]𝑇 ∗ , but this is a contradiction, so
it must be that [𝑓 + 𝑐𝑒1]𝑇 ∗ ∕= [𝑇 ∗(𝑓 + 𝑐𝑒1)]𝑇 ∗ ∀𝑐 ∈ ℂ.

Corollary 4.2.8. Let 𝑇 be a left-invertible operator such that ℋ⊖𝑇ℋ = span{𝑒1}.
If for a vector 𝑓 there are two constants 𝑐1 ∕= 𝑐2 such that 𝑒1 ∕∈ [𝑓 + 𝑐𝑖𝑒1]𝑇 ∗ 𝑖 = 1, 2,
then 𝑇 ∗∣[𝑓 ]𝑇∗ is left-invertible but not right-invertible, and hence ([𝑓 ]𝑇 ∗)⊥ has an index
of two. If 𝑇 is pure then a vector 𝑓 is cyclic for 𝑇 ∗ if and only if both 𝑒1 and 𝑓 are
contained in [𝑇 ∗𝑓 ]𝑇 ∗ (or equivalently 𝑒1 ∈ [𝑓 ]𝑇 ∗ and [𝑓 ]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗), or if and only
if there are two constants 𝑐1 ∕= 𝑐2 such that [𝑓 + 𝑐𝑖𝑒1]𝑇 ∗ = [𝑇 ∗(𝑓 + 𝑐𝑖𝑒1)]𝑇 ∗ 𝑖 = 1, 2.

Proof Let 𝑓 be a vector such that there are two constants 𝑐1 ∕= 𝑐2 such that
𝑒1 ∕∈ [𝑓 + 𝑐𝑖𝑒1]𝑇 ∗ 𝑖 = 1, 2. Since case (𝑖𝑖) is the only case of Proposition 4.2.7
with this possibility, it must be that [𝑓 ]𝑇 ∗ is in case (𝑖𝑖), and hence 𝑇 ∗∣[𝑓 ]𝑇∗ is left-

invertible but not right-invertible, and by Theorem 4.2.1, ([𝑓 ]𝑇 ∗)⊥ has an index of
two.

If 𝑇 is pure and 𝑓 is cyclic, then ℋ = [𝑓 ]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗ , so that every vector is
contained in [𝑇 ∗𝑓 ]𝑇 ∗ , and hence both 𝑒1 and 𝑓 are.

Conversely, if 𝑓 ∈ [𝑇 ∗𝑓 ]𝑇 ∗ , then [𝑓 ]𝑇 ∗ = span{𝑓}+ [𝑇 ∗𝑓 ]𝑇 ∗ = [𝑇 ∗𝑓 ]𝑇 ∗ , and 𝑒1 ∈
[𝑇 ∗𝑓 ]𝑇 ∗ = [𝑓 ]𝑇 ∗ implies that [𝑓 ]𝑇 ∗ is in case (𝑖). Therefore ([𝑓 ]𝑇 ∗)⊥ ⊂ ∩∞

𝑖=0 𝑇
𝑖ℋ =

{0} since 𝑇 is pure, so that [𝑓 ]𝑇 ∗ = ℋ, and hence 𝑓 is cyclic for 𝑇 ∗.
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Similarly, [𝑓 ]𝑇 ∗ is in case (𝑖) if and only if there are two constants 𝑐1 ∕= 𝑐2 such
that [𝑓 + 𝑐𝑖𝑒1]𝑇 ∗ = [𝑇 ∗(𝑓 + 𝑐𝑖𝑒1)]𝑇 ∗ 𝑖 = 1, 2, so that if 𝑇 is pure, 𝑓 is cyclic for 𝑇 ∗

if and only if this happens.

In Proposition 3.3.2 we saw that for any pure, left-invertible operator 𝑇 and
closed, invariant subspace ℳ of 𝑇 , ℳ has a decomposition into a string of closed,
invariant subspaces. There were mutually orthogonal vectors 𝜀𝑇 𝑖 𝑖 ≥ 0, each wan-
dering, such that if we define ℳ𝑖 = span{𝜀𝑇 𝑖} ⊕ span{𝜀𝑇 𝑖+1} ⊕ span{𝜀𝑇 𝑖+2} ⊕ . . .,
then 𝑇ℳ𝑖 ⊂ ℳ𝑖+1 ∀𝑖 ≥ 0. The following theorem shows that if there is a closed,
invariant subspace ℳ such that the decomposition holds in a bilateral way, then
𝑇 has a closed, invariant subspace with an index greater than one (namely, ℳ𝑖 for
any 𝑖).

Theorem 4.2.9. Let 𝑇 be a pure, left-invertible operator such that ℋ ⊖ 𝑇ℋ =
span{𝑒1}, then there is an invariant subspace for 𝑇 with dim(ℳ⊖ 𝑇ℳ) > 1 if and
only if there is a bilateral sequence of orthogonal vectors {𝜀𝑖}∞𝑖=−∞ such that each 𝜀𝑖
is a wandering vector and 𝑇ℳ𝑖 ⊂ ℳ𝑖+1 ∀𝑖 where ℳ𝑖 = span{𝜀𝑖} ⊕ span{𝜀𝑖+1} ⊕
span{𝜀𝑖+2} ⊕ . . ..

Proof Suppose that there is a bilateral sequence of orthogonal wandering vectors
{𝜀𝑖}∞𝑖=−∞ such that 𝑇ℳ𝑖 ⊂ ℳ𝑖+1 ∀𝑖 ∈ ℤ where ℳ𝑖 is defined as above. Let

ℳ = span{. . . , 𝜀−2, 𝜀−1, 𝜀0, 𝜀1, 𝜀2, . . .}. Since 𝑇 is pure, there must be a 𝑘 ≥ 0 such
that ℳ ∕⊂ 𝑇 𝑘+1ℋ but ℳ ⊂ 𝑇 𝑘ℋ. Since 𝑇 ∣𝑇𝑘ℋ is pure and left-invertible we can
assume that ℳ ∕⊂ 𝑇ℋ so that 𝑃ℳ𝑒1 ∕= 0. Let 𝑗 be such that (𝜀𝑗, 𝑒1) ∕= 0, then
𝑃ℳ𝑗

𝑒1 ∕= 0 so that 𝑒1 ∕∈ ℳ⊥
𝑗 and by Corollary 2.6.3 𝑇 ∗∣ℳ⊥

𝑗
is left-invertible. Also,

since ℳ𝑗−1 = ℳ𝑗 ⊕ span{𝜀𝑗−1}, ℳ⊥
𝑗 = ℳ⊥

𝑗−1 ⊕ span{𝜀𝑗−1}, and since 𝜀𝑗−1 is a
wandering vector, 𝑇 ∗ℳ⊥

𝑗 ⊂ ℳ⊥
𝑗−1 so that 𝜀𝑗−1 is not contained in the range of

𝑇 ∗∣ℳ⊥
𝑗
and hence this operator is left-invertible but not right-invertible, so that by

Theorem 4.2.2 𝑇 ∣𝑇𝑘ℋ and hence also 𝑇 has an invariant subspace with index greater
than one.

Conversely, suppose that 𝑇 has an invariant subspace with index greater than
one. We must produce a bilateral sequence {𝜀}∞𝑖=−∞ of orthogonal wandering vectors
as in the statement of the theorem. By Theorem 4.2.2 there is an invariant subspace
𝒩⊥ for 𝑇 ∗ on which 𝑇 ∗ is left-invertible but not right-invertible. Let 𝑓 be a nonzero
vector in 𝒩⊥ such that 𝑓 ∕∈ 𝑇 ∗𝒩⊥. Then 𝑇 ∗ is also left-invertible but not right-
invertible when restricted to [𝑓 ]𝑇 ∗ (it is left-invertible because it is the restriction
of the left-invertible operator 𝑇 ∗∣𝒩⊥ and it is not right invertible because 𝑇 ∗[𝑓 ]𝑇 ∗ ⊂
𝑇 ∗𝒩⊥ and 𝑓 ∕∈ 𝑇 ∗𝒩⊥ implies that 𝑓 ∕∈ 𝑇 ∗[𝑓 ]𝑇 ∗). Since [𝑓 ]𝑇 ∗ =

⋁∞
𝑖=0 𝑇

∗𝑖𝑓 and 𝑇 ∗𝑖𝑓 ∈
𝑇 ∗[𝑓 ]𝑇 ∗ ∀𝑖 ≥ 1, [𝑓 ]𝑇 ∗ ⊖ 𝑇 ∗[𝑓 ]𝑇 ∗ must have a dimension of one so that by Corollary
2.1.9 [𝑓 ]𝑇 ∗ = (span{𝛿1} ⊕ span{𝛿2} ⊕ span{𝛿3} ⊕ . . .)⊕∩∞

𝑖=0 𝑇
∗𝑖[𝑓 ]𝑇 ∗ where each 𝛿𝑖

is a wandering vector and [𝑓 ]𝑇 ∗⊖(span{𝛿1} ⊕ span{𝛿2} ⊕ . . .⊕ span{𝛿𝑖}) = 𝑇 ∗𝑖[𝑓 ]𝑇 ∗
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is an invariant subspace for 𝑇 ∗ for every 𝑖 ≥ 0. Set 𝜀1−𝑖 = 𝛿𝑖 ∀𝑖 ≥ 1. In this way
we have defined 𝜀𝑖 for every 𝑖 ≤ 0.

It remains to define 𝜀𝑖 for 𝑖 ≥ 1. Note that ℳ1 = [𝑓 ]⊥𝑇 ∗ is an invariant sub-
space for 𝑇 which is not the zero space since this would imply that [𝑓 ]𝑇 ∗ = ℋ,
which contradicts the fact that 𝑇 ∗ is left-invertible on [𝑓 ]𝑇 ∗ . Also, 𝑃ℳ1𝑒1 ∕= 0
since 𝑒1 ∕∈ [𝑓 ]𝑇 ∗ = (ℳ1)

⊥. By Proposition 3.3.2, ℳ1 can be written in the form
ℳ1 = span{𝜀1} ⊕ span{𝜀2} ⊕ span{𝜀3} ⊕ . . . where each 𝜀𝑖 is a wandering vec-
tor and 𝑇ℳ𝑖 ⊂ ℳ𝑖+1 ∀𝑖 ≥ 1. We now have a bilateral sequence of orthogo-
nal wandering vectors {𝜀𝑖}∞𝑖=−∞ since the ones with positive indices are orthog-
onal to the ones with nonpositive indices since the latter are contained in [𝑓 ]𝑇 ∗

and the former are contained in ℳ1 = [𝑓 ]⊥𝑇 ∗ . We already have that 𝑇ℳ𝑖 ⊂
ℳ𝑖+1 ∀𝑖 ≥ 1, and since [𝑓 ]𝑇 ∗ ⊖ span{𝛿1} ⊖ span{𝛿2} ⊖ . . . ⊖ span{𝛿𝑖} is an in-
variant subspace for 𝑇 ∗ for every 𝑖 greater than or equal to zero and [𝑓 ]⊥𝑇 ∗ = ℳ1,
([𝑓 ]𝑇 ∗ ⊖ span{𝛿1} ⊖ span{𝛿2} ⊖ . . .⊖ span{𝛿𝑖})⊥ = span{𝜀1−𝑖}⊕ span{𝜀2−𝑖}⊕ . . .⊕
span{𝜀0} ⊕ ℳ1 = ℳ1−𝑖 is an invariant subspace for 𝑇 , and since each 𝜀𝑖 is a
wandering vector, it follows that 𝑇ℳ𝑖 ⊂ ℳ𝑖+1 ∀𝑖 and the theorem is proved.

The following proposition shows that if a left-invertible operator only has closed,
invariant subspaces of dimension equal to one, then there cannot be large jumps in
how close the subspace is to the vectors {𝑒𝑖}∞𝑖=1.

Proposition 4.2.10. Let 𝑇 be a left-invertible operator such that ℋ ⊖ 𝑇ℋ =
span{𝑒1} and ℳ be a closed, invariant subspace for 𝑇 with 𝜀 = 𝑃ℳ𝑒1 ∕= 0. If
∥𝜀𝑇 ∥
∥𝜀∥ > ∣(𝑇𝑒1,𝑒2)∣

𝑐
where 𝜀𝑇 = 𝑃ℳ∩𝑇ℋ𝑒2 = 𝑃ℳ⊖span{𝜀}𝑒2 and 𝑐 = inf{∥𝑇𝑥∥ : ∥𝑥∥ = 1},

then dim (ℳ⊖ 𝑇ℳ) > 1.

Proof Suppose that ∥𝜀𝑇 ∥
∥𝜀∥ > ∣(𝑇𝑒1,𝑒2)∣

𝑐
. First notice that since 𝜀 is a wandering vector,

(𝑇𝜀, 𝜀) = 0 so that 𝑇𝜀 ∈ ℳ⊖ span{𝜀}. Also, (𝑇𝜀, 𝑒2) ∕= 0 since this would imply
that 𝑇𝜀 ∈ 𝑇ℋ and 𝑇𝜀 ⊥ 𝑇ℋ ⊖ 𝑇 2ℋ so that 𝑇𝜀 ∈ 𝑇 2ℋ. But this implies that
𝜀 ∈ 𝑇 2ℋ and hence (𝜀, 𝑒1) = 0, which contradicts 𝜀 = 𝑃ℳ𝑒1 ∕= 0. Therefore 𝜀𝑇 ∕= 0.
If 𝐿𝜀𝑇 were contained in ℳ, then since 𝜀𝑇 = (𝜀𝑇 , 𝑒2)𝑒2+𝑥 = ∥𝜀𝑇∥2𝑒2+𝑥 where 𝑥 is
contained in 𝑇 2ℋ, (𝐿𝜀𝑇 , 𝜀) = (𝐿𝜀𝑇 , 𝑃ℳ𝑒1) = (∥𝜀𝑇∥2𝐿𝑒2 + 𝐿𝑥, 𝑒1) = (∥𝜀𝑇∥2𝐿𝑒2, 𝑒1).
Also, ∣(𝐿𝜀𝑇 , 𝜀)∣ ≤ ∥𝐿∥∥𝜀𝑇∥∥𝜀∥. Since 1

∥𝐿∥ = 𝑐 = inf{∥𝑇𝑥∥ : ∥𝑥∥ = 1}, combining

these two equations yields ∥𝜀𝑇 ∥
∥𝜀∥ ∣(𝐿𝑒2, 𝑒1)∣ ≤ 1

𝑐
. Since 𝐿𝑒2 can be rewritten as 𝐿𝑒2 =

(𝐿𝑒2, 𝑒1)𝑒1 + 𝑦 where 𝑦 ∈ 𝑇ℋ, rearranging to 𝑒1 = 1
(𝐿𝑒2,𝑒1)

(𝐿𝑒2 − 𝑦) shows that

(𝑇𝑒1, 𝑒2) = ( 1
(𝐿𝑒2,𝑒1)

(𝑇𝐿𝑒2 − 𝑇𝑦), 𝑒2) = 1
(𝐿𝑒2,𝑒1)

(𝑒2, 𝑒2) = 1
(𝐿𝑒2,𝑒1)

. Substituting this

in the above inequality yields ∥𝜀𝑇 ∥
∥𝜀∥ ≤ ∣(𝑇𝑒1,𝑒2)∣

𝑐
. Since we already assumed that this

is not true, it must be that 𝐿𝜀𝑇 is not contained in ℳ. By part (𝑖𝑖) of Theorem
4.2.2 (note that Theorem 4.2.2 requires that 𝑇 be pure, but this was only required
to preclude the case where ℳ ⊂ ∩∞

𝑖=0 𝑇
𝑖ℋ, which cannot happen if we assume that
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𝑃ℳ𝑒1 ∕= 0), since 𝑒1 ∕⊥ ℳ so that ℳ ∕⊂ 𝑇ℋ, if dim (ℳ⊖ 𝑇ℳ) were equal to one,
then since 𝜀𝑇 ∈ 𝑇ℋ, 𝐿𝜀𝑇 would have to be contained in ℳ. Since this is not the
case, it must be that dim (ℳ⊖ 𝑇ℳ) > 1.

The next proposition is a kind of converse to the former one.

Proposition 4.2.11. Let 𝑇 be a left-invertible operator such that ℋ ⊖ 𝑇ℋ =
span{𝑒1}, with a closed, invariant subspace ℳ of 𝑇 such that 𝑃ℳ𝑒1 ∕= 0 and
dim (ℳ⊖ 𝑇ℳ) > 1. Then for every 𝑐 > 0 there is a closed, invariant subspace

ℳ̃ of 𝑇 such that
∥𝑃ℳ̃𝑒2∥

∥𝜀∥ ≥ ∥𝜀𝑇 ∥
∥𝜀∥ > 𝑐, where 𝜀 = 𝑃ℳ̃𝑒1 and 𝜀𝑇 = 𝑃ℳ̃∩𝑇ℋ𝑒2 =

𝑃ℳ̃⊖span{𝜀}𝑒2.

Proof Note that ∥𝑃ℳ̃𝑒2∥ ≥ ∥𝜀𝑇∥ is a consequence of the fact that ℳ̃ ⊃ ℳ̃ ⊖
span{𝜀}. Since ℳ has 𝑃ℳ𝑒1 ∕= 0 and dim (ℳ⊖ 𝑇ℳ) > 1, by Corollary 4.2.4
𝑇 ∗∣ℳ⊥ is left-invertible but not right-invertible. Let 𝑓 be a nonzero vector contained
in ℳ⊥ ⊖ 𝑇 ∗ℳ⊥, then 𝑇 ∗∣[𝑓 ]𝑇∗ must also be left-invertible but not right-invertible.
By Proposition 4.2.6 𝑇 ∗∣[𝑓+𝑑𝑒1]𝑇∗ is also left-invertible but not right invertible. Let

ℳ𝑑 = ([𝑓 + 𝑑𝑒1]𝑇 ∗)⊥, then 𝜀𝑑 = 𝑃ℳ𝑑
𝑒1 ∕= 0 since 𝑒1 ∕∈ [𝑓+𝑑𝑒1]𝑇 ∗ and lim𝑑→∞ 𝜀𝑑 → 0

since lim𝑑→∞
𝑓+𝑑𝑒1

∥𝑓+𝑑𝑒1∥ = 𝑒1 and 𝑓 + 𝑑𝑒1 ∈ ℳ⊥
𝑑 . Let 𝑥 = 𝑃([𝑓 ]𝑇∗ )⊥∩𝑇ℋ𝑒2 ∕= 0, then

since (𝑥, 𝑒1) = 0, 𝑥 ⊥ [𝑓 + 𝑑𝑒1]𝑇 ∗ ∀𝑑 > 0, so that 𝑥 ∈ ℳ𝑑 ∀𝑑 > 0 and hence
∥𝑃ℳ𝑑∩𝑇ℋ𝑒2∥ ≥ ∥𝑥∥ > 0. Therefore, for any 𝑐 > 0, there must be a 𝑑 such that

ℳ̃ = ℳ𝑑 has ∥𝜀𝑇 ∥
∥𝜀∥ > 𝑐.

4.3 The Index of Invariant Subspaces for

Weighted Shifts

Theorem 4.3.1. Let 𝑇 be a left-invertible, weighted shift, then ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗∥ is uni-

formly bounded in 𝑗 if and only if the sequence of operators 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗 converges

weakly to zero.

Proof Suppose that the ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗∥ are uniformly bounded in 𝑗 but the sequence
1

𝛼1𝛼2⋅⋅⋅𝛼𝑗
𝑇 𝑗 does not converge weakly to zero. Then there is a pair {𝑥, 𝑦} ∈ ℋ × ℋ

such that ( 1
�̄�1�̄�2⋅⋅⋅�̄�𝑗

𝑇 ∗𝑗𝑥, 𝑦) does not converge to zero, and hence there is an 𝛿 >

0 and a subsequence {𝑛𝑗}∞𝑗=1 such that ∣( 1
�̄�1�̄�2⋅⋅⋅�̄�𝑗

𝑇 ∗𝑛𝑗𝑥, 𝑦)∣ ≥ 𝛿 ∀𝑗 ≥ 0. For an

arbitrary 𝑧 ∈ ℋ, ∣( 1
�̄�1�̄�2⋅⋅⋅�̄�𝑗

𝑇 ∗𝑛𝑗𝑥, 𝑧)∣ ≥ ∣( 1
�̄�1�̄�2⋅⋅⋅�̄�𝑗

𝑇 ∗𝑛𝑗𝑥, 𝑦)∣−∣( 1
�̄�1�̄�2⋅⋅⋅�̄�𝑗

𝑇 ∗𝑛𝑗𝑥, 𝑦−𝑧)∣ ≥
∣( 1

�̄�1�̄�2⋅⋅⋅�̄�𝑗
𝑇 ∗𝑛𝑗𝑥, 𝑦)∣ − ∥ 1

�̄�1�̄�2⋅⋅⋅�̄�𝑗
𝑇 ∗𝑛𝑗∥∥𝑥∥∥𝑦 − 𝑧∥ so that if

∥𝑦 − 𝑧∥ sup
𝑗

∥ 1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

𝑇 𝑗∥∥𝑥∥ = ∥𝑦 − 𝑧∥ sup
𝑗

∥ 1

�̄�1�̄�2 ⋅ ⋅ ⋅ �̄�𝑗

𝑇 ∗𝑗∥∥𝑥∥ ≤ 𝛿

2
(4.5)
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then ∣( 1
�̄�1�̄�2⋅⋅⋅�̄�𝑗

𝑇 ∗𝑛𝑗𝑥, 𝑧)∣ ≥ 𝛿
2
. Let 𝑘 be chosen large enough that 𝑧𝑘 = 𝑃ℋ⊖𝑇𝑘ℋ𝑦

satisfies inequality (4.5), and write 𝑧𝑘 as 𝑧𝑘 =
∑𝑘

𝑖=1 𝑐𝑖𝑇
𝑖−1𝑒1, then if we write

𝑦 = (𝑦1, 𝑦2, 𝑦3, . . .) then 𝑐𝑖 = 𝑦𝑖
𝛼1𝛼2⋅⋅⋅𝛼𝑖−1

. So ∥∑𝑘
𝑖=1 𝑐𝑖𝑇

∗(𝑖−1)𝑥∥ is bounded, but

∥∑𝑘
𝑖=1 𝑐𝑖𝑇

∗(𝑖−1)𝑥∥2 =∑∞
𝑗=1 ∣(

∑𝑘
𝑖=1 𝑐𝑖𝑇

∗(𝑖−1)𝑥, 𝑒𝑗)∣2 =∑∞
𝑗=0 ∣(

∑𝑘
𝑖=1 𝑐𝑖𝑇

∗(𝑖−1)𝑥, 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗𝑒1)∣2 =
∑∞

𝑗=0 ∣(𝑥, 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

∑𝑘
𝑖=1 𝑐𝑖𝑇

(𝑖−1)𝑇 𝑗𝑒1)∣2 =∑∞
𝑗=0 ∣( 1

�̄�1�̄�2⋅⋅⋅�̄�𝑗
𝑇 ∗𝑗𝑥,

∑𝑘
𝑖=1 𝑐𝑖𝑇

(𝑖−1)𝑒1)∣2 =
∑∞

𝑗=0 ∣( 1
�̄�1�̄�2⋅⋅⋅�̄�𝑗

𝑇 ∗𝑗𝑥, 𝑧𝑘)∣2 ≥∑∞
𝑗=0 ∣( 1

�̄�1�̄�2⋅⋅⋅�̄�𝑛𝑗
𝑇 ∗𝑛𝑗𝑥, 𝑧𝑘)∣2 ≥

∑∞
𝑗=0

𝛿2

4
= ∞ where Bessel’s inequality was used with

the complete, orthonormal set {𝑒𝑗}∞𝑗=1. Since this is a contradiction it must be that
the sequence 1

𝛼1𝛼2⋅⋅⋅𝛼𝑗
𝑇 𝑗 converges weakly to zero.

Conversely, suppose that ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗∥ is not uniformly bounded in 𝑗. Then by

the Principle of Uniform Boundedness there is an 𝑥 such that ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗𝑥∥ is not

bounded and hence does not converge weakly to zero, so that ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗∥ does not

converge weakly to zero.

Theorem 4.3.2. Let 𝑇 be a left-invertible, weighted shift such that the sequence
of operators { 1

𝛼1𝛼2⋅⋅⋅𝛼𝑗
𝑇 𝑗}∞𝑗=1 is uniformly bounded in norm. If there is a closed,

invariant subspace ℳ for 𝑇 such that dim(ℳ⊖𝑇ℳ) > 1, then ℳ does not contain
any vectors that are in 𝑙1.

Proof As applying 𝐿 to ℳ does not change the index if ℳ ⊂ 𝑇ℋ nor does it
change whether or not ℳ has vectors in 𝑙1, we can assume that ℳ ∕⊂ 𝑇ℋ. Assume
that dim(ℳ⊖𝑇ℳ) > 1 and that there is a nonzero 𝑦 such that 𝑦 ∈ ℳ and 𝑦 ∈ 𝑙1.
By Corollary 4.2.4, 𝑇 ∗∣ℳ⊥ is left-invertible but not right-invertible, so that there is
a vector 𝜀 ∈ ℳ⊥ such that 𝜀 ∕∈ 𝑇 ∗ℳ⊥. Write 𝑦 as 𝑦 = (𝑦1, 𝑦2, 𝑦3, . . .) and let 𝑚
be the first integer such that (𝑦, 𝑒𝑖) ∕= 0. We show that

∑𝑘
𝑖=1

𝑦𝑖
�̄�1�̄�2⋅⋅⋅�̄�𝑖−1

𝑇 ∗(𝑖−1)𝜀 =∑𝑘
𝑖=𝑚

𝑦𝑖
�̄�1�̄�2⋅⋅⋅�̄�𝑖−1

𝑇 ∗(𝑖−1)𝜀 converges weakly to zero as 𝑘 goes to infinity. This implies

that −∑𝑘
𝑖=𝑚+1

𝑦𝑖
�̄�1�̄�2⋅⋅⋅�̄�𝑖−1

𝑇 ∗(𝑖−1)𝜀 converges weakly to 𝑦𝑚
�̄�1�̄�2⋅⋅⋅�̄�𝑚−1

𝑇 ∗(𝑚−1)𝜀 as 𝑘 goes

to infinity, which implies that 𝑇 ∗(𝑚−1)𝜀 is contained in 𝑇 ∗𝑚ℳ⊥ since 𝑇 ∗𝑚ℳ⊥ is a
subspace so that it is weakly closed and 𝑇 ∗𝑗𝜀 ∈ 𝑇 ∗𝑚ℳ⊥ ∀𝑗 ≥ 𝑚. Since 𝑇 ∗∣ℳ⊥ is
left-invertible so that it is one-to-one, this also implies that 𝜀 is contained in 𝑇 ∗ℳ⊥,
which is a contradiction.

As ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑖

𝑇 𝑖∥ = ∥ 1
�̄�1�̄�2⋅⋅⋅�̄�𝑖

𝑇 ∗𝑖∥ is uniformly bounded in 𝑖 and 𝑦 ∈ 𝑙1,

∥
𝑘∑

𝑖=1

𝑦𝑖
�̄�1�̄�2 ⋅ ⋅ ⋅ �̄�𝑖−1

𝑇 ∗(𝑖−1)𝜀∥ ≤
𝑘∑

𝑖=1

∣𝑦𝑖∣∥ 1

�̄�1�̄�2 ⋅ ⋅ ⋅ �̄�𝑖−1

𝑇 ∗(𝑖−1)𝜀∥ ≤ ∥𝑦∥𝑙1𝑀∥𝜀∥, (4.6)

where 𝑀 = sup𝑖 ∥ 1
�̄�1�̄�2⋅⋅⋅�̄�𝑖

𝑇 ∗𝑖∥. Therefore the sequence
∑𝑘

𝑖=1
𝑦𝑖

�̄�1�̄�2⋅⋅⋅�̄�𝑖−1
𝑇 ∗(𝑖−1)𝜀 is
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bounded and hence converges weakly. For each 𝑒𝑗,

(
𝑘∑

𝑖=1

𝑦𝑖
�̄�1�̄�2 ⋅ ⋅ ⋅ �̄�𝑖−1

𝑇 ∗(𝑖−1)𝜀, 𝑒𝑗) = (
𝑘∑

𝑖=1

𝑦𝑖
�̄�1�̄�2 ⋅ ⋅ ⋅ �̄�𝑖−1

𝑇 ∗(𝑖−1)𝜀,
1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗−1

𝑇 𝑗−1𝑒1) =

(
1

�̄�1�̄�2 ⋅ ⋅ ⋅ �̄�𝑗−1

𝑇 ∗(𝑗−1)𝜀,

𝑘∑
𝑖=1

𝑦𝑖
𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑖−1

𝑇 𝑖−1𝑒1) = (
1

�̄�1�̄�2 ⋅ ⋅ ⋅ �̄�𝑗−1

𝑇 ∗(𝑗−1)𝜀,

𝑘∑
𝑖=1

𝑦𝑖𝑒𝑖).

Since
∑𝑘

𝑖=1 𝑦𝑖𝑒𝑖 converges to 𝑦 as 𝑘 goes to infinity and 𝑦 ⊥ [𝜀]𝑇 ∗ , this shows that

𝑥𝑘 =
∑𝑘

𝑖=1
𝑦𝑖

�̄�1�̄�2⋅⋅⋅�̄�𝑖−1
𝑇 ∗(𝑖−1)𝜀 converges coordinatewise to zero. Since the sequence

{𝑥𝑖}∞𝑖=1 is uniformly bounded by inequality (4.6), it must converge weakly to zero,
and completes the proof.

Corollary 4.3.3. Let 𝑇 be a left-invertible, weighted shift such that the sequence of
operators { 1

𝛼1𝛼2⋅⋅⋅𝛼𝑗
𝑇 𝑗}∞𝑗=1 is uniformly bounded in norm and 𝑦 be a nonzero vector

in 𝑙1. Then all closed, invariant subspaces of 𝑇 that contain 𝑦 must have an index
of one.

Remark 4.3.1. For 𝛽 ∈ ℝ let 𝑇𝛽 be the weighted shift with weights 𝛼𝑖 = ( 𝑖+1
𝑖
)𝛽/2.

For 𝛽 equal to -1, 0, and 1 these are the weighted shifts that correspond to multi-
plication by 𝑧 on the Bergman, Hardy and Dirichlet spaces, respectively. For 𝛽 ≥ 0
the weights are monotonically decreasing, so that the ∥ 1

𝛼1𝛼2⋅⋅⋅𝛼𝑗
𝑇 𝑗∥ are uniformly

bounded, and Theorem 4.3.2 yields that 𝑇𝛽 cannot have any invariant subspaces
with an index greater than one if it contains any vectors in 𝑙1. It is known that
𝑇𝛽 does not have any invariant subspaces with an index greater than one when
0 ≤ 𝛽 ≤ 1 (this was shown in Theorem 1 of [38] using a theorem similar to Theorem
2.5.4). For 𝛽 < 0 it can be shown that the 1

𝛼1𝛼2⋅⋅⋅𝛼𝑗
𝑇 𝑗 are not uniformly bounded

and it was shown in [6] that for operators in a class containing these the operators
have invariant subspaces with an index of any finite integer as well as infinity [6].
The following theorem also shows that 𝑇𝛽 has a closed, invariant subspace with an
index greater than one when 𝛽 < 0.

Theorem 4.3.4. Let 𝑇 be a left-invertible, weighted shift. If

lim
𝑗

lim sup
𝑖→∞

∣∣∣∣𝛼𝑖𝛼𝑖+1 ⋅ ⋅ ⋅𝛼𝑖+𝑗−1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

∣∣∣∣ = lim
𝑗

lim sup
𝑖→∞

∥ 1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

𝑇 𝑗∣𝑇 𝑖ℋ∥ = ∞,

then there is a closed, invariant subspace ℳ of 𝑇 such that dim (ℳ⊖ 𝑇ℳ) > 1.

Proof For ease of notation we assume that 𝛼𝑖 > 0 ∀𝑖 ≥ 1, since by Corollary
3.1.6 this is possible by using a similarity transformation, which does not change
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the index of the invariant subspaces. Set 𝑀 = 𝑠𝑢𝑝𝑖𝛼𝑖

inf𝑖 𝛼𝑖
. Let 𝑚 ≥ 2, we will

pick a sequence of integers {𝑛𝑖}∞𝑖=1 that meets certain criteria and define 𝑓 =
( 1
𝑚
, 0, . . . , 0, 1

𝑚2 , 0, . . . , 0,
1
𝑚3 , 0, . . . , 0,

1
𝑚4 , 0, . . .) where there are 𝑛1−2 zeros between

1
𝑚

and 1
𝑚2 , and 𝑛𝑖 − 1 zeros between 1

𝑚𝑖 and 1
𝑚𝑖+1 for 𝑖 ≥ 2. We will then show

that 𝑒1 ∕∈ [𝑓 ]𝑇 ∗ and 𝑒1 ∕∈ [𝑓 + 𝑐𝑒1]𝑇 ∗ for some nonzero 𝑐, so that by Corollary
4.2.8 and Theorem 4.2.1 ([𝑓 ]𝑇 ∗)⊥ has an index of two. We will define the sequence
iteratively, picking 𝑛𝑘 after all 𝑛𝑖’s with 𝑖 < 𝑘 have been chosen. Note that if
𝑛𝑗 >

∑𝑗−1
𝑖=1 𝑛𝑖 ∀𝑗 ≥ 2 then for every pair {𝑖, 𝑗} 𝑖 ∕= 𝑗 there is at most one 𝑘 such

that (𝑇 ∗𝑖𝑓, 𝑒𝑘) ∕= 0 and (𝑇 ∗𝑗𝑓, 𝑒𝑘) ∕= 0, that is, 𝑇 ∗𝑖𝑓 and 𝑇 ∗𝑗𝑓 share at most one
coordinate where they are both nonzero. Since we can always pick larger 𝑛𝑗’s if
necessary by what follows, we will assume that 𝑇 ∗𝑖𝑓 and 𝑇 ∗𝑗𝑓 share at most one
coordinate where they are both nonzero. As we pick the 𝑛𝑖’s, we will define 𝑓𝑖 to
be as above but with only 𝑖 nonzero entries, so that 𝑓 = lim𝑖→∞ 𝑓𝑖. To show that
𝑒1 ∕∈ [𝑓 ]𝑇 ∗ we will recursively define a convergent sequence {𝑥𝑖}∞𝑖=1 so that (𝑥𝑖, 𝑒1) = 1
and 𝑥𝑖 ⊥ 𝑇 ∗𝑗𝑓 ∀𝑗 ≤ 𝑀𝑖 where lim𝑖→∞𝑀𝑖 = ∞. Hence 𝑥 = lim𝑖→∞ 𝑥𝑖 will satisfy
(𝑥, 𝑒1) = 1 and 𝑥 ⊥ [𝑓 ]𝑇 ∗ so that 𝑒1 ∕∈ [𝑓 ]𝑇 ∗ .

So we start with 𝑓1 =
1
𝑚
𝑒1. Let 𝑛1 be such that

lim sup
𝑖→∞

∥ 1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

𝑇 𝑗∣𝑇 𝑖ℋ∥ > 2𝑚 ∀𝑗 ≥ 𝑛1 − 1,

so 𝑓2 = 𝑓1 +
1
𝑚2 𝑒𝑛1 Define 𝑥1 = 𝑒1 −𝑚𝑒𝑛1 so that (𝑥1, 𝑒1) = 1 and 𝑥1 ⊥ 𝑓 . We will

never add anything else to the 𝑥𝑖’s in any of the coordinates where 𝑓 is nonzero,
so 𝑥𝑖 ⊥ 𝑓 ∀𝑖 ≥ 1. Since 𝑛2 will be picked to be large enough, the next 𝑇 ∗𝑖𝑓
that will share a coordinate with the 𝑥𝑖’s will be 𝑇 ∗(𝑛1−1)𝑓 which will be nonzero

in the first coordinate. Let 𝑛2 be such that
∣∣∣𝛼𝑛2+1𝛼𝑛2+2⋅⋅⋅𝛼𝑛1+𝑛2−1

𝛼1𝛼2⋅⋅⋅𝛼𝑛1−1

∣∣∣ > 2𝑚, possible

since lim sup𝑖→∞
∣∣∣𝛼𝑖𝛼𝑖+1⋅⋅⋅𝛼𝑖+𝑗−1

𝛼1𝛼2⋅⋅⋅𝛼𝑗

∣∣∣ = lim sup𝑖→∞ ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗∣𝑇 𝑖ℋ∥ > 2𝑚 ∀𝑗 ≥ 𝑛1 − 1,

and 𝑛2 also be such that lim sup𝑖→∞ ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗∣𝑇 𝑖ℋ∥ > (2𝑚)2𝑀𝑛1−1 ∀𝑗 ≥ 𝑛2 (and

𝑛2 > 𝑛1). Therefore 𝑓3 = 𝑓2 +
1
𝑚3 𝑒𝑛1+𝑛2 . So that 𝑥 ⊥ 𝑇 ∗(𝑛1−1)𝑓 , set 𝑥2 = 𝑥1 −

𝛼1𝛼2⋅⋅⋅𝛼𝑛1−1𝑚

𝛼𝑛2+1𝛼𝑛2+2⋅⋅⋅𝛼𝑛1+𝑛2−1
𝑒𝑛2+1, where we know that the norm of what we added is less than

1
2
. The addition of 1

𝑚3 𝑒𝑛1+𝑛2 to 𝑓2 has now made it so that 𝑇 ∗𝑛2𝑓 and 𝑇 ∗(𝑛1+𝑛2−1)𝑓
may not be orthogonal to 𝑥2. Pick 𝑛3 such that∣∣∣∣𝛼𝑛1+𝑛3𝛼𝑛1+𝑛3+1 ⋅ ⋅ ⋅𝛼𝑛1+𝑛2+𝑛3−1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑛2

∣∣∣∣ > (2𝑚)2 𝑀𝑛1−1

and lim sup𝑖→∞ ∥ 1
𝛼1𝛼2⋅⋅⋅𝛼𝑗

𝑇 𝑗∣𝑇 𝑖ℋ∥ > (2𝑚)3𝑀𝑛1+𝑛2 ∀𝑗 ≥ 𝑛3 (and 𝑛3 > 𝑛1+𝑛2). Note

that we automatically have∣∣∣∣𝛼𝑛1+𝑛3𝛼𝑛1+𝑛3+1 ⋅ ⋅ ⋅𝛼𝑛1+𝑛2+𝑛3−1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑛2

∣∣∣∣ > (2𝑚)2
∣∣∣∣𝛼𝑛2+1𝛼𝑛2+2 ⋅ ⋅ ⋅𝛼𝑛1+𝑛2−1

𝛼𝑛3+1𝛼𝑛3+2 ⋅ ⋅ ⋅𝛼𝑛1+𝑛3−1

∣∣∣∣ .
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So that 𝑥3 ⊥ 𝑇 ∗𝑛2𝑓 , set 𝑥3 = 𝑥2 − 𝛼1𝛼2⋅⋅⋅𝛼𝑛2𝑚
2

𝛼𝑛1+𝑛3𝛼𝑛1+𝑛3+1⋅⋅⋅𝛼𝑛1+𝑛2+𝑛3−1
𝑒𝑛1+𝑛3 , where we know

that the part that we added has norm less than 1
4
. So that 𝑥4 ⊥ 𝑇 ∗(𝑛1+𝑛2−1)𝑓 , set

𝑥4 = 𝑥3 − 𝛼1𝛼2⋅⋅⋅𝛼𝑛1+𝑛2−1𝑚

𝛼𝑛3+1𝛼𝑛3+2⋅⋅⋅𝛼𝑛1+𝑛2+𝑛3−1
𝑒𝑛3+1, where the part that we added has norm less

than 1
4𝑚

.

Continue in this way, picking 𝑛𝑘+1 such that 𝑛𝑘+1 >
∑𝑘

𝑖=1 𝑛𝑖,

lim sup
𝑖→∞

∥ 1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑗

𝑇 𝑗∣𝑇 𝑖ℋ∥ > (2𝑚)𝑘+1 𝑀
∑𝑘

𝑙=1 𝑛𝑙 ∀𝑗 ≥ 𝑛𝑘+1,

and such that∣∣∣∣𝛼(
∑𝑘+1

𝑙=1 𝑛𝑙)−𝑁𝑘
𝛼(

∑𝑘+1
𝑙=1 𝑛𝑙)−𝑁𝑘+1 ⋅ ⋅ ⋅𝛼(

∑𝑘+1
𝑙=1 𝑛𝑙)−1

𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑁𝑘

∣∣∣∣ > (2𝑚)𝑘 𝑀
∑𝑘−1

𝑙=1 𝑛𝑙

where 𝑁𝑘 is the distance from 1
𝑚𝑘+2 (in the vector 𝑓) to the closest coefficient in the

last defined 𝑥𝑗 that has a 𝑇 ∗𝑖𝑓 not orthogonal to it. Set 𝑓𝑘+2 = 𝑓𝑘+1 +
1

𝑚𝑘+1 𝑒∑𝑘+1
𝑙=1 𝑛𝑙

,

then define the next 𝑥𝑖+1’s by 𝑥𝑖+1 = 𝑥𝑖+ 𝑐𝑒∑𝑘+1
𝑙=1 𝑛𝑙−𝑗 for 𝑛𝑘+1 ≤ 𝑖 ≤∑𝑘+1

𝑙=1 𝑛𝑙, where

the 𝑐 is picked so that 𝑥𝑖+1 is orthogonal to 𝑇 ∗𝑗𝑓 ’s, noting that the number of 𝑥𝑖+1’s
for which 𝑐 ∕= 0 for each 𝑘 is the Fibonacci sequence, which never doubles, and each of
the bounds for the increases in the norms of the 𝑥𝑖’s decreases by a factor of

1
𝑚
at each

iteration where𝑚 ≥ 2. Since we are adding to 𝑥𝑖 at coefficients that were zero before,
we are adding orthogonal vectors so that the 𝑥𝑖’s are a Cauchy sequence (since∑∞

𝑖=0

(
2
𝑚

)𝑖 ≤ ∞ if 𝑚 > 2) and hence converge to some 𝑥. Since (𝑥𝑖, 𝑒1) = 1 ∀𝑖 ≥ 1,
(𝑥, 𝑒1) = 1. Since for every 𝑗 there is an 𝑖𝑗 such that 𝑥𝑖 ⊥ 𝑇 ∗𝑗𝑓 ∀𝑖 ≥ 𝑖𝑗, 𝑥 ⊥ [𝑓 ]𝑇 ∗

and hence 𝑒1 ∕∈ [𝑓 ]𝑇 ∗ .
Let 𝑔 = 𝑓 + 1

𝑚
𝑒1, then we can construct a 𝑦 such that 𝑦 ⊥ [𝑔]𝑇 ∗ as before,

starting with 𝑦1 = 𝑒1 − 2𝑚𝑒𝑛1 , then setting 𝑦2 = 𝑦1 − 𝛼1𝛼2⋅⋅⋅𝛼𝑛1−1𝑚

𝛼𝑛2+1𝛼𝑛2+2⋅⋅⋅𝛼𝑛1+𝑛2−1
𝑒𝑛2+1, then

𝑦3 = 𝑦2− 2𝛼1𝛼2⋅⋅⋅𝛼𝑛2𝑚
2

𝛼𝑛1+𝑛3𝛼𝑛1+𝑛3+1⋅⋅⋅𝛼𝑛1+𝑛2+𝑛3−1
𝑒𝑛1+𝑛3 and 𝑦4 = 𝑦3− 𝛼1𝛼2⋅⋅⋅𝛼𝑛1+𝑛2−1𝑚

𝛼𝑛3+1𝛼𝑛3+2⋅⋅⋅𝛼𝑛1+𝑛2+𝑛3−1
𝑒𝑛3+1.

We would continue to define the 𝑦𝑖’s recursively by adding (in the same places as
in 𝑥) the right amount so that 𝑦 ⊥ [𝑔]𝑇 ∗ , where again for the same reasons 𝑦 is
bounded. Therefore 𝑇 ∗ restricted to [𝑓 ]𝑇 ∗ is left-invertible but not right-invertible,
and hence ([𝑓 ]𝑇 ∗)⊥ has an index of two for 𝑇 .

Remark 4.3.2. Theorem 3.6 of [6] shows that If a weighted shift is a contraction
with a spectral radius of one such that lim𝑛→∞

∏𝑛
𝑖=1 𝛼𝑖 = 0 (see the remarks above

Theorem 3.6 of [6] for the equivalence of lim𝑛→∞
∏𝑛

𝑖=1 𝛼𝑖 = 0 and 𝑇 ∈ 𝐶00 for a
weighted shift that is a contraction), then it has closed, invariant subspaces with
an index of any finite number or infinity. We now show how if we specialize this
result to the case where the weighted shift is left-invertible and the conclusion is that
there is a closed, invariant subspace with an index of two, then this is a corollary of
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Theorem 4.3.4. Since the spectral radius is one, ∥𝑇 𝑖∥ must be equal to one for all
𝑖. If there were not a sequence {𝑛𝑗}∞𝑗=1 such that ∣𝛼𝑛𝑗

𝛼𝑛𝑗+1 ⋅ ⋅ ⋅𝛼𝑛𝑗+𝑖−1∣ approached
one, then there would be some 𝑘 and a 0 < 𝛿 < 1 such that ∣𝛼𝑗𝛼𝑗+1 ⋅ ⋅ ⋅𝛼𝑗+𝑖−1∣ <
1 − 𝛿 ∀𝑗 ≥ 𝑘. This implies that if 𝑚𝑖 > 𝑘 then ∥𝑇 2𝑚𝑖∥1/2𝑚𝑖 < (1 − 𝛿)1/2𝑖. Thus
if the spectral radius is one then there is such a sequence, and combining this
with the requirement that lim𝑛→∞

∏𝑛
𝑖=1 𝛼𝑖 = lim𝑛→∞ 𝛼1𝛼2 ⋅ ⋅ ⋅𝛼𝑛 = 0, yields that

lim𝑗 lim sup𝑖→∞
∣∣∣𝛼𝑖𝛼𝑖+1⋅⋅⋅𝛼𝑖+𝑗−1

𝛼1𝛼2⋅⋅⋅𝛼𝑗

∣∣∣ = ∞, so that Theorem 4.3.4 applies.

Remark 4.3.3. Note that Theorem 4.3.4 assumes that 𝑇 is left-invertible, whereas
Theorem 3.6 of [6] does not. Consider the weighted shift 𝑇 with weights 𝛼𝑖 =
1 ∀𝑖 ∕= 2𝑘 and 𝛼𝑖 = 1

𝑘
∀𝑖 = 2𝑘. Then 𝑇 is not left invertible since inf𝑖 ∣𝛼𝑖∣ = 0

so that Theorem 4.3.4 does not apply. Since lim𝑗→∞ 1
1
1
2
1
3
⋅ ⋅ ⋅ 1

𝑗
= 0, 𝑇 satisfies

lim𝑛→∞
∏𝑛

𝑖=1 𝛼𝑖 = 0. Since there are arbitrarily large gaps between 2𝑘 and 2𝑘+1, for
any 𝑗 there is an 𝑛𝑗 such that 𝛼𝑛𝑗

𝛼𝑛𝑗+1 ⋅ ⋅ ⋅𝛼𝑛𝑗+𝑗−1 = 1, so that ∥𝑇 𝑗∥ = 1 and hence
𝑟(𝑇 ) = 1, and in this case Theorem 3.6 of [6] does apply.

Remark 4.3.4. We now show how Theorem 4.3.4 covers examples that do not fit
the hypotheses of Theorem 3.6 of [6]. To see that the hypotheses of Theorem 4.3.4
are weaker, one can take a weighted shift that satisfies the requirements of [6] and
multiply all of the weights except the first one by 𝑐 where 𝑐 < ∣𝛼1∣. Then the
spectral radius is not one, and as one of the requirements is that the weighted shift
be a contraction, the largest factor by which one can multiply the new operator and
have it still be a contraction is 1

∣𝛼∣ , but even then the spectral radius will be less

than one by the requirement that 𝑐 < ∣𝛼1∣. However, since only one weight in the
normalized powers of 𝑇 was changed, Theorem 4.3.4 still applies.

This example demonstrates the limitations of the hypotheses of Theorem 3.6 of
[6], similar to those of Theorem 2.5.4. The main problem is that the two conditions
lim𝑛→∞

∏𝑛
𝑖=1 𝛼𝑖 = 0 and the spectral radius being one are not combined as they are

when one normalizes.

Remark 4.3.5. The previous case is easily recovered, however, if transforming
by similarity first is allowed, since this does not change the indices of the closed,
invariant subspaces. Then one can shrink the first weight by 𝑐 by transforming
by similarity, and then multiply the similar operator by 1

∣𝛼∣ and still have it be a
contraction. Thus the scaled operator is similar to a the original operator after it
is scaled, and does satisfy the hypotheses of Theorem 3.6 of [6], so that the results
can be made to still apply.

To demonstrate something more diabolical which cannot be recovered (at least
the author does not know how), let 𝑇 be the Bergman shift, that is the weighted

shift with weights 𝛼𝑖 =
√

𝑖
𝑖+1

. It can be seen that the Bergman shift satisfies the
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requirements of [6]. Then, as shown above, lim𝑗 lim sup𝑖→∞
∣∣∣𝛼𝑖𝛼𝑖+1⋅⋅⋅𝛼𝑖+𝑗−1

𝛼1𝛼2⋅⋅⋅𝛼𝑗

∣∣∣ = ∞. Let

0 < 𝑐 < 1 be arbitrary, and pick a sequence {𝑛𝑗}∞𝑗=1 by defining 𝑛𝑗 to be the first

integer such that lim sup𝑖→∞
∣∣∣𝛼𝑖𝛼𝑖+1⋅⋅⋅𝛼𝑖+𝑙−1

𝛼1𝛼2⋅⋅⋅𝛼𝑙

∣∣∣ 𝑐𝑗 > 2𝑗 ∀𝑙 ≥ 𝑛𝑗 is true. Let 𝑇 be the

weighted shift whose weights are �̃�𝑖 = 𝛼𝑖 if 𝑖 = 𝑛𝑗 for some 𝑗 and �̃�𝑖 = 𝑐𝛼𝑖 otherwise.

Then lim sup𝑖→∞
∣∣∣ �̃�𝑖�̃�𝑖+1⋅⋅⋅�̃�𝑖+𝑙−1

�̃�1�̃�2⋅⋅⋅�̃�𝑙

∣∣∣ > 2𝑗 ∀𝑗 : 𝑛𝑗 ≤ 𝑙, so that the conditions of Theorem

4.3.4 are still satisfied. Also, lim𝑛→∞
∏𝑛

𝑖=1 �̃�𝑖 = 0 since none of the weights has

grown. As can be seen from the formula for the weights, lim sup𝑖→∞
∣∣∣𝛼𝑖𝛼𝑖+1⋅⋅⋅𝛼𝑖+𝑗−1

𝛼1𝛼2⋅⋅⋅𝛼𝑗

∣∣∣ =
1

𝛼1𝛼2⋅⋅⋅𝛼𝑗
=

√
𝑗 + 1. Since

√
𝑗+1
2𝑗

goes to zero as 𝑗 goes to infinity, there are larger and

larger spaces between the 𝑛𝑗’s so that the spectral radius of 𝑇 is 𝑐.
Therefore the results from [6] do not apply, but there is also no way to trans-

form by similarity, as the spectral radii of similar operators are equal, so that the
requirement that the spectral radius be one means that one must multiply by 1

𝑐
.

Then it will be impossible to transform by similarity and have it be a contraction,
as there are an infinite number of weights that are greater than 1

𝑐
− 𝛿 for any 𝛿 > 0.

Therefore the results from Theorem 4.3.4 are more inclusive than those from [6].



Chapter 5

Conclusions and Future Work

In this dissertation we have studied the invariant subspaces of weighted shifts, in-
cluding more general operators when possible. This has led to results concerning
arbitrary, pure, left-invertible operators, and sometimes simply left-invertible oper-
ators.

We started by observing the conditions that must be satisfied for a left-invertible
operator to satisfy theWandering Subspace Property based on how certain subspaces
are mapped by the operator and its left-inverse (Theorem 2.4.1). We then saw that
it is necessary and sufficient that there be a dense set on which the operators 𝑇 𝑖𝐿𝑖

do not grow too large pointwise (Theorem 2.5.1). We then slightly generalized the
results from [35] to see a sufficient condition for a pure, left-invertible operator based
on how large the powers of 𝑇 grow pointwise, where they must grow, but slowly
enough (Theorem 2.5.4). This led to results about general, left-invertible operators
whose powers grow pointwise slowly enough in a uniform way. It showed that this
is a strong requirement as it yields that the pure part is a unitary operator and is
equal to the pure part of 𝐿∗ (Proposition 2.5.5 and Corollary 2.5.6).

The first, main problem that we have studied was: Is every closed, invariant
subspace of an arbitrary, left-invertible, weighted shift generated by its wandering
subspace? We saw that this is not true in general, and in a sense the class of left-
invertible, weighted shifts that do not satisfy this property is dense in the set of all
left-invertible, weighted shifts (Theorem 3.2.8). This showed that the first, main
problem, which was an open question, had a negative answer. We saw that this
property is not preserved under transformations of similarity, and that studying the
invariant subspaces of all operators that are similar to a given operator is equivalent
to studying that operator under all possible equivalent inner products (Theorem
3.2.4). Then we showed how one can know if a weighted shift that eventually only
has weights that are one can have closed, invariant subspaces on which the restriction
of the operator does not satisfy the Wandering Subspace Property.
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The second, main problem that we studied was: When does a weighted shift have
only closed, invariant subspaces of index equal to one? This was answered by several
equivalent conditions, with the most useful one being that for any closed, invariant
subspace ℳ⊥ of 𝑇 ∗, 𝑇 ∗∣ℳ⊥ being left-invertible implies that it is right-invertible
(Theorem 4.2.2 and Corollary 4.2.4). We then saw that the set of vectors for which
𝑇 ∗ restricted to the smallest closed, invariant subspace of 𝑇 ∗ containing said vector
is left-invertible but not right-invertible is either the zero-set or dense in the whole
space (Proposition 4.2.6). This led to results about how the four different classes
of subspaces of 𝑇 ∗ (based on the different possibilities of being or not being left-
invertible and right-invertible) change if they are cyclic and one perturbs the cyclic
vector (Proposition 4.2.7). We also saw that a pure, left-invertible operator has a
subspace of index greater than one if and only if there exists a bilateral chain of
invariant subspaces shifted by the operator or it satisfies a jump-condition (Theorem
4.2.9 and Proposition 4.2.10). We then used the previous results to show that if the
normalized powers of 𝑇 are bounded then any closed, invariant subspace of 𝑇 which
has an index greater than two cannot contain certain vectors (4.3.2). Finally we
constructed a closed, invariant subspace of 𝑇 which had an index of two if the
normalized powers of 𝑇 were unbounded on smaller and smaller subspaces, which
generalized a result from [6] (Theorem 4.3.4)

5.1 Future Work

The following is a list of some of the problems that the author would like to see
researched. The difficulty of the problems or their usefulness in solving other, current
work is not known (and may be trivial), and it is listed in the order that it appeared
in this work.

An improvement of Theorem 2.5.4, including a better understanding of why it
works, and what the innate limitations of the proof are.

In Corollary 2.5.6, not only is the space on which 𝑇 is pure equal to the space
on which 𝐿∗ is, but they are equal operators there. The author would like to know
in general when the spaces are the same, without the limitation that the operators
be the same.

What are the uses of Proposition 3.1.7 and how does it show that weighted
shifts are different from other operators, or how could it be generalized to arbitrary,
left-invertible operators?

A better understanding of when a left-invertible, weighted shift satisfies the
Wandering Subspace Property when it is restricted to any of its closed, invariant
subspaces and why the property would not be satisfied.

A Theorem of equivalent conditions for an operator to not satisfy the Wandering
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Subspace Property when restricted to one of its closed, invariant subspaces that is
analogous to Theorem 4.2.2.

Can Theorem 3.3.3 be generalized to cover any left-invertible weighted shift?
When can an operator be extended to be a weighted shift?

What does it mean for an operator that is right but not left-invertible to become
left but not right-invertible when restricted to one of its closed, invariant subspaces
(Corollary 4.2.4 for 𝑇 ∗)?

Can the fact that a vector 𝑓 is cyclic for the adjoint of a left-invertible, weighted
shift if and only if [𝑇 ∗𝑓 ]𝑇 ∗ contains 𝑓 and 𝑒1 be used ((𝑖) of Proposition 4.2.7)?

What does it mean to have two vectors that are arbitrarily close to each other
with one cyclic for 𝑇 ∗ and the other generating a closed, invariant subspace on which
𝑇 ∗ is left but not right-invertible (Propositions 4.2.6 and 4.2.7)?

When does a left-invertible, weighted shift have a closed, invariant subspace on
which the restriction can be extended in a nontrivial way to be a bilateral, weighted
shift (Theorem 4.2.9)?

Is it true that lim𝑖→∞ ∥𝑃ℳ𝑒𝑖∥ = 1 for any nontrivial closed, invariant sub-
space if the operator is a left-invertible, weighted shift whose normalized powers
are bounded? When is this true and does it have any relation with the index of a
subspace?

Can Theorem 4.3.2 be strengthened to show that the index of every closed,
invariant subspace is one?

Can Theorem 4.3.4 be strengthened to cover any left-invertible, weighted shift
whose normalized powers are unbounded or at least a larger class of operators?



Appendix A

This appendix shows the calculations that were used to obtain equation (3.4).
We want to calculate sup{∥(𝐼 − 𝑃𝑆𝑛ℋ)𝑝 ∗ 𝑓∥2 : 𝑓 ∈ ℋ, ∥𝑓∥ = 1}, where

𝑝 = (𝜀1, 𝜀2, 0, 0, 0, . . .). For any 𝑓 = (𝑓1, 𝑓2, 𝑓3, . . .), (𝐼 − 𝑃𝑆𝑛ℋ)𝑝 ∗ 𝑓 = (𝜀1𝑓1, 𝜀1𝑓2 +

𝜀2𝑓1, 0, 0, 0, . . .). Therefore we want to maximize

∣∣∣∣∣∣∣∣[𝜀1 0
𝜀2 𝜀1

] [
𝑓1
𝑓2

]∣∣∣∣∣∣∣∣2 :

∣∣∣∣∣∣∣∣[𝑓1𝑓2
]∣∣∣∣∣∣∣∣ = 1.

Since for any matrix 𝐴, (𝐴𝑥,𝐴𝑥) = (𝐴∗𝐴𝑥, 𝑥), and 𝐴∗𝐴 is self-adjoint, this will be
the largest eigenvalue of[

𝜀1 𝜀2
0 𝜀1

] [
𝜀1 0
𝜀2 𝜀1

]
=

[∣𝜀1∣2 + ∣𝜀2∣2 𝜀2𝜀1
𝜀1𝜀2 ∣𝜀1∣2

]
.

Taking the determinant of

[∣𝜀1∣2 + ∣𝜀2∣2 − 𝜆 𝜀2𝜀1
𝜀1𝜀2 ∣𝜀1∣2 − 𝜆

]
we obtain

(∣𝜀1∣2 + ∣𝜀2∣2 − 𝜆)(∣𝜀1∣2 − 𝜆)− ∣𝜀1∣2∣𝜀2∣2 = 𝜆2 − (2∣𝜀1∣2 + ∣𝜀2∣2)𝜆+ ∣𝜀1∣4.

Using the quadratic formula yields

𝜆 =
2∣𝜀1∣2 + ∣𝜀2∣2 ±

√
(2∣𝜀1∣2 + ∣𝜀2∣2)2 − 4∣𝜀1∣4
2

= ∣𝜀1∣2 + 1

2
∣𝜀2∣2 ± 1

2

√
4∣𝜀1∣2∣𝜀2∣2 + ∣𝜀2∣4

= ∣𝜀1∣2 + 1

2
∣𝜀2∣2 ± 1

2
∣𝜀2∣
√

4∣𝜀1∣2 + ∣𝜀2∣2.

It is also possible to show directly that sup{∥(𝐼−𝑃𝑆𝑛ℋ)𝑝 ∗ 𝑓∥2 : 𝑓 ∈ ℋ, ∥𝑓∥ =
1} = ∣𝜀1∣2 + 1

2
∣𝜀2∣2 ± 1

2
∣𝜀2∣
√

4∣𝜀1∣2 + ∣𝜀2∣2 (without using the connection with the
eigenvalues) or by using Mathematica.
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