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(ABSTRACT)

As fiber reinforced polymer matrix composites find greater use in markets such as civil

infrastructure and ground transportation, the expectations placed on these materials are

ever increasing.  The overall cost and reliability have become the drivers of these high

performance materials and have led to the disappearance of resins such as bismaleimides

(BMI), cyanate esters and other high performance polyimides and epoxys.  In their place

polymers, such polyester and vinylester have arisen.  The reinforcing fiber scenario has

also undergone changes from the high quality and performance assured IM7 and AS4 to

cheaper and hybrid systems consisting of both glass and low cost carbon.  Manufacturing

processes have had their share of changes too with processes such as pultrusion and other

mass production techniques replacing hand lay-up and resin transfer molding.  All of this

has however come with little or no concession on material performance.

The motivation of the present research has therefore been to try to improve the properties

of these low cost composites by better understanding the constituent materials (fiber and

matrix) and the region that lies in-between them namely the interphase.

In order to achieve this, working with controls is necessary and the present discourse

therefore deals with the AS4 fiber system from Hexcel Corporation and the vinyl ester

resin, Derakane 441-400 from The Dow Chemical Company.  The following eight

chapters sum up the work done thus far on composites made with sized fibers and the

above mentioned resin and fiber systems.  They are in the form of publications that have

either been accepted, submitted or going to be submitted to various peer reviewed

journals.  The sizings used have been poly(vinylpyrrolidone) PVP and Polyhydroxyether

(Phenoxy) thermoplastic polymers and G’ an industrial sizing material supplied by

Hexcel.  A number of issues have been addressed ranging from viscoelastic relaxation to

enviro-mechanical durability.



Chapter 1 deals with the influence of the sizing material on the fatigue response of cross

ply composites made with the help of resin infusion molding.  Chapter 2 describes the

effects of a controlled set of interphase polymers that have the same chemical structure

but differ from each other in polarity.  The importance of the atomic force microscope

(AFM) to view and perform nano-indentations on the interphase regions has been

demonstrated.  Finally, it attempts to tie everything together with the help of the fatigue

response of the different composites.  Chapter 3 deals only with the vinyl ester resin and

examines the influence of network structure on the molecular relaxation behavior

(cooperativity) of the glassy polymer.  It also tries to make connections between

structural features of the glass and fracture toughness as measured in it’s glassy state.

Chapter 4 extends the results obtained in chapter 3 to examine the cooperativity of

pultruded composites made with the different sizings.  A correlation between strength

and cooperativity is found to exist, with systems having greater cooperativity being

stronger.  Chapter 5 moves into the area of hygrothermal aging of Derakane 441-400

resin.  It looks specifically at identifying a mechanism for the unusual moisture uptake

behavior of the polymer subjected to a thermal-spiking environment.  This it does by

identifying the presence of hydrogen bonding in the resin.  Finally, chapters 6 to 8

present experimental and analytical results obtained on PVP K90, Phenoxy and G’ sized,

AS4/Derakane 411-350 LI vinyl ester composites that were pultruded at Strongwell Inc.,

on their lab-scale pultruder in Bristol, Virginia.
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