DURABILITY OF POLYMER MATRIX COMPOSITES FOR INFRASTRUCTURE: THE ROLE OF THE INTERPHASE

Kandathil Nikhil Eapen Verghese

(ABSTRACT)

As fiber reinforced polymer matrix composites find greater use in markets such as civil infrastructure and ground transportation, the expectations placed on these materials are ever increasing. The overall cost and reliability have become the drivers of these high performance materials and have led to the disappearance of resins such as bismaleimides (BMI), cyanate esters and other high performance polyimides and epoxys. In their place polymers, such polyester and vinylester have arisen. The reinforcing fiber scenario has also undergone changes from the high quality and performance assured IM7 and AS4 to cheaper and hybrid systems consisting of both glass and low cost carbon. Manufacturing processes have had their share of changes too with processes such as pultrusion and other mass production techniques replacing hand lay-up and resin transfer molding. All of this has however come with little or no concession on material performance.

The motivation of the present research has therefore been to try to improve the properties of these low cost composites by better understanding the constituent materials (fiber and matrix) and the region that lies in-between them namely the interphase.

In order to achieve this, working with controls is necessary and the present discourse therefore deals with the AS4 fiber system from Hexcel Corporation and the vinyl ester resin, Derakane 441-400 from The Dow Chemical Company. The following eight chapters sum up the work done thus far on composites made with sized fibers and the above mentioned resin and fiber systems. They are in the form of publications that have either been accepted, submitted or going to be submitted to various peer reviewed journals. The sizings used have been poly(vinylpyrrolidone) PVP and Polyhydroxyether (Phenoxy) thermoplastic polymers and G' an industrial sizing material supplied by Hexcel. A number of issues have been addressed ranging from viscoelastic relaxation to enviro-mechanical durability.

Chapter 1 deals with the influence of the sizing material on the fatigue response of cross ply composites made with the help of resin infusion molding. Chapter 2 describes the effects of a controlled set of interphase polymers that have the same chemical structure but differ from each other in polarity. The importance of the atomic force microscope (AFM) to view and perform nano-indentations on the interphase regions has been demonstrated. Finally, it attempts to tie everything together with the help of the fatigue response of the different composites. Chapter 3 deals only with the vinyl ester resin and examines the influence of network structure on the molecular relaxation behavior (cooperativity) of the glassy polymer. It also tries to make connections between structural features of the glass and fracture toughness as measured in it's glassy state. Chapter 4 extends the results obtained in chapter 3 to examine the cooperativity of pultruded composites made with the different sizings. A correlation between strength and cooperativity is found to exist, with systems having greater cooperativity being stronger. Chapter 5 moves into the area of hygrothermal aging of Derakane 441-400 resin. It looks specifically at identifying a mechanism for the unusual moisture uptake behavior of the polymer subjected to a thermal-spiking environment. This it does by identifying the presence of hydrogen bonding in the resin. Finally, chapters 6 to 8 present experimental and analytical results obtained on PVP K90, Phenoxy and G' sized, AS4/Derakane 411-350 LI vinyl ester composites that were pultruded at Strongwell Inc., on their lab-scale pultruder in Bristol, Virginia.

Dedicated to my parents Kandathil and Mary Verghese, brother Lalith Verghese & wife Nayantara Elizabeth Verghese for their everlasting support and encouragement — Nikhil Eapen Verghese "The search for truth is in one way hard and in another easy. For it is evident that no one can master it fully nor miss it wholly. But, each adds a little to our knowledge of nature and from all the facts assembled, there arises a certain grandeur."

—Aristotle

ACKNOWLEDGEMENTS

The author would like to thank the following people without whom this would not be possible

- Nayantara Elizabeth Verghese, my wife and dearest friend whose patience and support has seen this journey to its end. Her company, advice and strength are only a few of her virtues that have kept me motivated and focussed during my studies. This would have been impossible without you.
- My parents and brother for making sacrifices that I cannot even begin to explain. This piece of work sums up their dreams and faith in me from the day I left home. The past six years have been long and sometimes very difficult, not having them near me, but I know that their love and prayers have been an important part of this. I will always remain grateful.
- My grandparents whose affection, farsightedness and blessings have always stayed beside me. They are the angels who opened the right doors at just the right times and gave me the strength to walk through them. This is for you.
- Dr. J. J. Lesko for being my advisor. I believe that a great teacher is one who leaves a lasting impression on his/her students. Theirs is a legacy that only the ones who have experienced first hand, can even begin to explain. Dr. J. J. Lesko, you are a wonderful guide, teacher and friend. I have had the privilege of spending time with you educating myself. You have always encouraged me to do the things that I expressed an interest in even though it might have meant my veering from the main path. I will always be appreciative. On a personal note, Tara and I have enjoyed every bit of our time spent with Holly, Sam, Tieg and Shirley. Yours has been our family away from home.
- Dr. J. S. Riffle and Dr. R. M. Davis for guiding me through this effort. I have had the privilege that only a few could have dreamed of, working with a highly interdisciplinary team, the Designed Interphase Group (DIG). It has helped me grow both academically as well as personally. Your continued assistance and encouragement is deeply appreciated.

- Dr. K. L. Reifsnider for serving on my committee and for guiding me. Your vision, reputation and knowledge are only surpassed by your generous personality. Being a member of the Materials Response Group (MRG) has meant a lot to me.
- Dr. Thomas. C. Ward for serving on my committee and teaching me an extremely important and inspiring course on Polymer Viscoelasticity. Your class motivated me to attempt areas of research that I had never explored before. Few classes have given me as much motivation as yours.
- Dr. Scott Case for his help and guidance throughout this work. His brilliance continues to amaze and motivate me. When a person has that and altruism you have a great human being. Those who have had the privilege of interacting with him will agree that that is who he is.
- Norman Broyles and Dr. Anand Rau for their guidance, timely advise and wonderful friendship. Time spent with you and your respective families has been invaluable to me.
- The entire MRG and DIG both past and present for their support, guidance and great comraderie
- The staff of the MRG and DIG, Beverly Williams, Shelia Collins and Angie Flynn for making sure that everything stayed in order and for being wonderful friends
- Mr. Mac McCord for his patience and support. His timely help and ability to do just about anything asked of him is an asset to our group.
- Mr. Bill Shaver in the machine shop for tolerating me with all my requests and for being my friend.
- Mr. Robert Simonds and George Lough for helping me with time on the Instron test machines.
- My collaborators, Dr. Malcolm Robertson, Mrs. Maggie Bump, Ms. Ellen Burts, Mr. Mark Flynn, Mr. Michael Hayes, Mr. Kyle Garcia, Dr. Rob Jensen, Dr. Christopher Robertson and Ms. Lu Shan. All of you are wonderful researchers and human beings.
- The Alexanders and Perumprals for giving me the opportunity to attend Virginia Tech and for loving and looking after me like their own child.
- Last, but not the least, the Lord Almighty, whose blessings have always supported and nurtured my goals and principles in life.

Table of Contents

Introduction	ii
Dedication	iv
Quote	v
Acknowledgements	vi
Table of Contents	viii
List of Figures	xv
List of Tables	xxv

Chapter 1

"Fatigue Performance of Carbon Fiber-Vinyl Ester Composites: The	
Effect of Two Dissimilar Polymeric Sizing Agents"	1
INTRODUCTION	
EXPERIMENTAL SECTION	3
Materials	3
Materials Characterization	5
Materials Preparation	9
RESULTS AND DISCUSSION	15
Sizing of Carbon Fibers	15
Composite Panel Production	18
Mechanical Testing	18
CONCLUSIONS	26

"Designed Interphase Regions in Carbon Fiber Reinforced	Vinyl Ester Matrix
Composites"	28
INTRODUCTION	28
EXPERIMENTAL	29

Materials	29
Composite characteristics	32
Atomic Force Microscopy (AFM) and Nano-indentation	34
Mechanical Testing: Quasi-static Compression and	
Fatigue Tests	35
X-ray Photoelectron Spectroscopy (XPS)	36
RESULTS AND DISCUSSION	36
Interphase Property Variations	40
Interfacial Shear Strength	46
Composite Characterization	49
CONCLUSIONS	51

"Influence of Vinyl Ester / Styrene Network Structure on Thermal and Mechanical Behavior" 52

INTRODUCTION	52
EXPERIMENTAL DETAILS	54
Material Preparation	54
Characterization	54
Dynamic Mechanical Analysis	56
Fracture Toughness Testing	56
RESULTS AND DISCUSSION	57
Glass Transition Behavior Observed by DSC	
and DMA	57
Intermolecular Cooperativity in the Glass Formation	
Region	63
Influence of Network Structure on Fracture	
Toughness	72
CONCLUSIONS	77

"Effects of Molecular Relaxation Behavior on Sized Carbon Fiber/ Vinyl Ester	
82	
82	
87	
87	
91	
91	
92	
97	
97	
102	
106	

Chapter 5

"Influence of Matrix Chemistry on The Short Term, Hydrothermal Aging of Vinyl Ester Matrix and Composites Under both Isothermal and Thermal Spiking Conditions" 108

INTRODUCTION	108
MATERIALS USED AND EXPERIMENTAL PROCEDURE	110
RESULTS AND DISCUSSION	111
Derakane 441-400 Vinyl Ester Resin	113
Isothermal Water Uptake Studies	113
Physical and Chemical Characterization and	
Effects of Thermal Spiking	120
Model CH3 -GMA Resin	128
Vinyl Ester/ glass fiber composite, EXTREN®	133
CONCLUSIONS	133

"Pultruded Hexcel AS-4 Carbon Fiber/Vinyl Ester Composites Processed with G', Phenoxy, and K-90 PVP Sizing Agents Part I: Processing and Static Mechanical Performance" 136

INTRODUCTION	136
EXPERIMENTAL	139
Materials	139
Processing	142
Sizing Solution/Suspension Preparation	142
Sized Fiber Preparation	143
Pultrusion	144
Sized Fiber Characterization	144
Sizing Level Determination	144
Scanning Electron Microscopy (SEM)	145
Composite Characterization	146
Fiber Volume Fraction	146
Visual Inspection of the Cut Composite	147
Optical Microscopy	147
Ultrasonic C-Scan	147
MECHANICAL TESTING	147
Tension Tests	147
Flexure and Short Beam Shear Testing	148
Compression Testing	149
Normalization for Fiber Volume Fraction Variation	150
RESULTS AND DISCUSSION	150
Processing	150
Sized Fiber Preparation	150
Pultrusion	156
Composite Characterization	157
Fiber Volume Fraction	157
Ultrasonic C-Scan	160

Mechanical Properties	160
Tensile Properties	165
Fracture Surface Investigation	165
Longitudinal Flexure Properties	172
Short Beam Shear Properties	174
Compression Properties	174
CONCLUSIONS	179

"Pultruded, Hexcel AS-4 Carbon Fiber/Vinyl Ester Composites Processed with G', Phenoxy, and K-90 Sizing Agents Part II: Enviro-mechanical Durability" 181

INTRODUCTION	181
EXPERIMENTAL	184
Materials	184
Processing and Characterization of Sized Fiber and	
Composites	186
Environmental Aging of the Composites	186
Preparing blends for moisture uptake determination	186
Curing of the blends	187
Glass transition temperature determination of the	
cured blends	188
Environmental Aging of the Blends	188
MECHANICAL TESTING	189
Quasi-static Tension	189
Cyclic Fatigue	189
RESULTS AND DISCUSSION	189
Glass transition temperature determination of the cured	
Blends	189
Moisture Absorption	190

Moisture Uptake of Composites	190
Moisture Uptake of Polymer Blends	193
Mechanical Properties	196
Unaged Material	196
Aged Material	197
CONCLUSIONS	200

"Pultruded, Hexcel AS-4 Carbon Fiber/Vinyl Ester Composites Pre-	ocessed with G',
Phenoxy, and K-90 Sizing Agents Part III: Theoretical Aspects"	203

INTRODUCTION	203
EXPERIMENTAL	204
Materials	204
Fabrication of laminates for Shear Testing	204
Preparing blends for tensile testing	206
Density determination of the un-cured blends	207
Curing of the blends	207
Density determination of the cured blends	208
Shrinkage of blends upon cure	208
Misalignment angle assessment	209
Mechanical testing	215
RESULTS AND DISCUSSION	216
Density determination of the un-cured blends	216
Density determination of the cured blends	217
Shrinkage of Blends upon Cure	217
Tensile Strength Model	217
±45° Laminate Shear Data	223
Compression Strength Models	227
Tensile properties of the cured blends	237
CONCLUSIONS	240

Chapter 9	
Future Work	242
REFERENCES	245
Vita	

List of Figures

Chapter 1

Figure 1: Chemical Structures of Charged Derakane Resin (a) vinyl ester	
resin (b) styrene (c) benzoyl peroxide and (d) t-butylperoxybenzoate.	4
Figure 2: Chemical Structures of (a) polyhydroxyether (PHENOXY)	
(b) and poly(vinylpyrrolidone) (K-17 PVP).	6
Figure 3: Custom Small-Scale Sizing Line.	10
Figure 4: Resin Film Infusion Mold.	12
Figure 5: Schematic of the short beam shear and transverse flexure test	
Specimens	14
Figure 6: SEM micrographs of (a) sized AS-4 12K with 0.7 wt%	
poly(vinylpyrrolidone) (b) sized AS-4 12K with 0.6 wt% polyhydroxyether.	17
Figure 7: SEM micrograph of representative cut and polished composite	
structure.	19
Figure 8: Apparent shear strength comparison plot for various sizing	
materials. The numbers represent one standard deviation.	20
Figure 9: Flexure (a) strength and (b) modulus plot for various sizing	
materials.	21
Figure 10: Micrograph of (a) unsized and (b) poly(vinylpyrrolidone)	
sized fracture surfaces.	23
Figure 11: Fatigue Limit 'S-N' Curve for various sizing materials.	24
Figure 12: Quasi-static Compressive Strength for various sizing materials.	25

Figure 1: Dimethacrylate ("vinyl ester") - styrene matrix components.	30
Figure 2: Thermoplastic sizing materials for carbon fiber reinforced vinyl	
ester matrix composites.	31
Figure 3: Sample preparation of sizing-matrix bilayer cross-sections.	33
Figure 4: Atomic force microscopy images (tapping mode, phase image)	

of sizing-matrix bilayer cross-sections illustrating relative interdiffusion	
of sizing with matrix: (A) Unmodified poly(hydroxyether), (B) Carboxy	
modified poly(hydroxyether) sizing, and (C) Poly(hydroxyether ethanolamine)	
sizing.	38
Figure 5: Atomic force microscopy image (tapping mode, height image) of	
indentations across an interphase region of a vinyl ester - carboxy modified	
poly(hydroxyether) bilayer.	41
Figure 6: Force curves for a) Vinyl ester matrix and b) Carboxy modified	
poly(hydroxyether).	42
Figure 7: (Plastic and o Elastic components of the indents produced across	
an interphase region of a vinyl ester - carboxy modified poly(hydroxyether)	
bilayer. Dotted lines represent the average depth of indents (solid boundary	
lines represent 2 standard deviations) in vinyl ester and carboxy modified	
poly(hydroxyether) respectively.	44
Figure 8: (Plastic and o elastic components of the indents produced across	
an interphase region of a vinyl ester - poly(hydroxyether-ethanolamine)	
bilayer. Dotted lines represent the average depth of indents in vinyl ester and	
poly(hydroxyether-ethanolamine) respectively. Solid boundary lines represent	
2 standard deviations.	45
Figure 9: Atomic force microscopy image of a composite cross-section where	
the sizing material is the carboxy modified poly(hydroxyether).	47
Figure 10: Atomic force microscopy image of a single fiber composite	
cross-section where the fiber was unsized.	48
Figure 11: Fatigue durability of carbon fiber reinforced vinyl ester matrix	
composites as a function of sizing chemical structure.	50
Chapter 3	

Figure 1: Diagram illustrating the network synthesis for the vinyl ester/ styrene materials.55Figure 2: DSC glass transition responses for the network materials.For each material, the upper data curve represents the first heating scan

and the second scan is given by the lower curve.	59
Figure 3: Dynamic mechanical tand data in the glass transition	
(α -relaxation) temperature region obtained during heating at 0.2°C/min	
using a testing frequency of 10 Hz.	60
Figure 4: Glass transition temperature versus $1/M_C$. Indicated are T_g results	
obtained from DSC at 10°C/min and from the location of the tan δ maximum	
for DMA data obtained at a frequency of 10 Hz using a heating rate of	
0.2°C/min. The lines represent linear fits to the data.	61
Figure 5: Glass transition damping characteristics for the networks as a	
function of 1/M _C .	62
Figure 6: Glass transition breadth plotted as a function of $1/M_{\rm C}$.	64
Figure 7: (a) Loss modulus data as a function of frequency temperatures	
in the glass formation temperature region for the 690-20% material; and	
(b) Master curve generated via time-temperature superposition (symbols) as	
well as the KWW fit (line). The caption given in (b) applies to both plots.	67
Figure 8: Cooperativity plots for the network materials (symbols).	
The sold lines represent the fits to the WLF equation.	69
Figure 9: Variation of the cooperativity parameter with composition	
and $1/M_c$. The arrows indicate increases in the molecular weight of	
the vinyl ester oligomer at constant styrene composition.	70
Figure 10: Fracture toughness versus $1/M_C$. The arrows indicate	
increases in the molecular weight of the vinyl ester oligomer at	
constant styrene composition.	73
Figure 11: Dynamic mechanical tan δ data in the secondary relaxation	
temperature region obtained during heating at 2°C/min using a testing	
frequency of 10 Hz.	74
Figure 12: Glassy density as a function of $1 / M_C$ for the vinyl ester / styrene	
Networks.	76
Figure 13: Glassy density versus z_g . The arrows indicate increases in	
the molecular weight of the vinyl ester oligomer at constant styrene composition.	78
Figure 14: Attempt to correlate fracture toughness with the cooperative	

domain size at T _g .	79
Figure 15: Apparent correlation between fracture toughness and the	
normalized cooperativity index. The N parameter is the crosslink density	
given by $N = \rho / M_C$.	80

Figure 1: Pultrudable vinyl-ester resin matrix used in graphite composites.	88
Figure 2: Sizings used to pretreat the graphite fibers.	89
Figure 3: Storage modulus curves for graphite composite samples	
as well as non-reinforced matrix versus temperature obtained from DMA (1 Hz).	93
Figure 4: Normalized tan δ curves obtained from DMA measurements (1 Hz).	94
Figure 5: Normalized loss modulus curves obtained from DMA	
measurements (1 Hz).	96
Figure 6: Normalized storage modulus master curves.	98
Figure 7: Cooperativity plots at temperatures above and below T_g .	99
Figure 8: Cooperativity plots at $T > T_g$ with best fit approximations of <i>n</i>	
using equation 2.	101
Figure 9: Tensile strength of unidirectional carbon fiber/ vinyl ester	
composites with different sizings.	103
Figure 10: Tensile modulus of unidirectional carbon fiber/ vinyl ester	
composites with different sizings.	104
Figure 11: Apparent shear strength of unidirectional carbon fiber/ vinyl	
ester composites with different sizings.	105

Figure 1: Moisture uptake at 66°C for Derakane 441-400 vinyl ester resin.	114
Figure 2: Temperature dependence on moisture absorption in Derakane 441-400.	115
Figure 3: Arrhenius plot of diffusion coefficients for Derakane 441-400	118
Figure 4: Changes in glass transition temperature as a function of moisture	
content.	122
Figure 5: Dynamic mechanical tests indicating change in loss modulus as a	
function of moisture content. Tests were performed at 1Hz fixed frequency	
and a heating rate of 1°C/minute. Samples were aged to different extents in a	
65°C water bath prior to testing.	123
Figure 6: Moisture uptake curves for Derakane 441-400 resin subjected to	
a 65°C-22°C-65°C temperature cycle. Spikes in temperature were made	
only upon saturation at the previous temperature. Inset details the temperature	
history. Resin shows the presence of the reverse thermal effect (RTE) under	
repeated conditions, in this case 2 complete cycles.	124
Figure 7: Fourier Infrared (FTIR) scans on unaged and aged Derakane	
441-400 films	126
Figure 8: Uptake curves for specimens subjected to three different	
temperature spikes.	127
Figure 9: Activation energy plot for the reverse thermal process conducted	
at three different temperatures after pre-saturation of specimens in a water	
bath at 73°C.	129
Figure 10: Comparison of monomer chemical structure between vinyl ester	
and model resin system, CH ₃ -GMA.	130
Figure 11: Fourier Infrared (FTIR) scans on unaged and aged CH ₃ GMA	
films. Aging was performed in a 65°C water bath.	131
Figure 12: Moisture uptake curve for CH ₃ GMA resin, subjected to	
reverse thermal aging conditions. Solid line does not represent a fit and	
is merely a connection between the data points.	132
Figure 13: Plot of moisture uptake in EXTREN [®] as a function of relative	

humidity (RH) of the environment. Plot indicates both a dependence of	
rate of uptake and maximum moisture content on the RH.	134

Figure 1: a). Chemical structure of poly(hydroxyether) sizing material.	
b). Chemical structure of poly(vinylpyrollidone) (PVP) sizing material.	
c). Chemical structure of vinyl-ester. d). Chemical structure of styrene	
monomer.	140
Figure 2: a). Phenoxy particulate sized Hexcel AS-4 12K. Note: Surface	
temperature did not exceed 97°C or Phenoxy's glass transition. b). Phenoxy	
film sized Hexcel AS-4 12K. Note: Surface temperature exceeded 97°C	
or Phenoxy's glass transition.	152
Figure 3: K-90 PVP sized Hexcel AS-4 12K (≈ 1.97 wt%). Note: Surface	
temperature exceeded 200°C. a). 230 X Magnification b). 1540 X	
Magnification.	153
Figure 4: Optical micrographs of cross-sectioned and polished pultruded	
Hexcel AS-4 G' sized carbon fiber/vinyl-ester composite. a). 10 X	
magnification b). 100 X magnification.	161
Figure 5: Optical micrographs of cross-sectioned and polished pultruded	
Hexcel AS-4 low spread Phenoxy sized carbon fiber/vinyl-ester	
composite. a). 10 X magnification b). 100 X magnification.	162
Figure 6: Optical micrographs of cross-sectioned and polished	
pultruded Hexcel AS-4 high-spread Phenoxy sized carbon fiber/	
vinyl-ester composite. a). 10 X magnification b). 100 X magnification.	163
Figure 7: Optical micrographs of cross-sectioned and polished pultruded	
Hexcel AS-4 K-90 PVP sized carbon fiber/vinyl-ester composite. a). 10 X	
magnification b). 100 X magnification.	164
Figure 8: Static tensile strength of pultruded Hexcel carbon fiber/vinyl-ester	
composites with various sizing agents. Mechanical property results	
normalized from the theoretical fiber volume fraction to 65.6% or the	

theoretical fiber volume fraction of the G' sized composite.	166
Figure 9: Static tensile modulus of pultruded Hexcel carbon fiber/vinyl-ester	
composites with various sizing agents. Mechanical property results normalized	
from the theoretical fiber volume fraction to 65.6% or the theoretical fiber	
volume fraction of the G' sized composite. Normalization for differences in	
the inherent fiber properties included also.	167
Figure 10: Static tensile strain to failure of pultruded Hexcel carbon	
fiber/vinyl-ester composites with various sizing agents. Strain-to-	
failure was not normalized for variations in fiber volume fraction and/or	
variations in fiber properties.	168
Figure 11: Optical micrographs of tensile fracture surface for pultruded	
Hexcel AS-4 G' sized carbon fiber/vinyl-ester composite. a). 500 X	
magnification b). 2,500 X magnification.	169
Figure 12: Optical micrographs of tensile fracture surface for pultruded Hexcel	
AS-4 low-spread Phenoxy [™] (LSP) sized carbon fiber/vinyl-ester composite.	
a). 500 X magnification b). 2,500 X magnification.	170
Figure 13: Optical micrographs of tensile fracture surface for pultruded Hexcel	
AS-4 K-90 PVP sized carbon fiber/vinyl-ester composite. a). 500 X	
magnification b). 2,500 X magnification.	171
Figure 14: Static longitudinal flexure strength of pultruded Hexcel carbon	
fiber/vinyl-ester composites with various sizing agents. Mechanical	
property results normalized from the theoretical fiber volume fraction to	
65.6% or the theoretical fiber volume fraction of the G' sized composite.	173
Figure 15: Static longitudinal flexure modulus of pultruded Hexcel carbon	
fiber/vinyl-ester composites with various sizing agents. Mechanical	
property results normalized from the theoretical fiber volume fraction to	
65.6% or the theoretical fiber volume fraction of the G' sized composite.	
Normalization for differences in the inherent fiber properties included also.	175
Figure 16: Short beam shear (SBS) strength of pultruded Hexcel carbon	
fiber/vinyl-ester composites with various sizing agents. Mechanical	
property results normalized from the theoretical fiber volume fraction to	

65.6% or the theoretical fiber volume fraction of the G' sized composite.
176
Figure 17: Compression strength of pultruded Hexcel carbon fiber/vinyl-ester composites with various sizing agents. Mechanical property results normalized from the theoretical fiber volume fraction to 65.6% or the theoretical fiber volume fraction of the G' sized composite.
176

Figure 18: Compression modulus of pultruded Hexcel carbon fiber/vinyl-ester composites with various sizing agents. Mechanical property results normalized from the theoretical fiber volume fraction to 65.6% or the theoretical fiber volume fraction of the G' sized composite. Normalization for differences in the inherent fiber properties included also.

Chapter 7

Figure 1: a). Chemical structure of poly(vinylpyrollidone) (PVP) sizing	
material. b). Chemical structure of poly(hydroxyether) sizing material.	
c). Chemical structure of vinyl-ester. d). Chemical structure of styrene	
monomer.	185
Figure 2: Glass transition temperature of cured K-90 PVP in	
Derakane [™] 441-400 blends as measured by DSC (10°C/min). a). 1st heat	
b). 2 nd heat (isothermal hold at 250°C for 10 minutes).	191
Figure 3: Moisture uptake curves for the individual unidirectional	
composites aged by immersion in a 65°C water bath. Comparison of data	
with the 1-D Fickian prediction.	192
Figure 4: Moisture uptake plot for the unreinforced PVP K90 sizing/Vinyl Ester	
blends as well as Phenoxy sizing/Vinyl Ester blends.	194
Figure 5: Stress normalized 'S-N' curves for the individual unidirectional	
composites tested in fatigue at 10Hz under an $R = 0.1$ condition. Also	
indicated is a run-out data point from a single Phenoxy sized composite	
specimen that was tested to 5 million cycles.	198
Figure 6: Stiffness reduction curves for the G' sizing and the High Spread	

178

Phenoxy sizing during fatigue at 50% of their respective ultimate tensile	
strengths.	199
Figure 7: Residual tensile strength of sized unidirectional composites that	
were tested wet after saturation.	201

Figure 1: a). Chemical structure of poly(vinylpyrollidone) (PVP) sizing	
material. b). Chemical structure of poly(hydroxyether) sizing material.	
c). Chemical structure of vinyl-ester. d). Chemical structure of styrene	
monomer.	205
Figure 2: Schematic of unidirectional composite specimens used for (a) fiber	
diameter and (b) misalignment calculations. The arrow indicates the direction	
the sample was viewed on the microscope.	210
Figure 3: Optical micrograph of a section of the G' sized composite that was	
cut at an angle of 5° to the direction of the fibers. The magnification as	
measured using a stage micrometer with a least count of 0.01 mm is	
$1 \text{ mm} = 2.4 \mu \text{m}$	211
Figure 4: Misalignment angle distribution for unidirectional PVP K90	
composites. The normal distribution mean is 1.75° with a standard deviation	
of 1.6	212
Figure 5: Misalignment angle distribution for unidirectional Low spread	
Phenoxy composite. The normal distribution mean is 1.15° with a standard	
deviation of 0.75	213
Figure 6: Misalignment angle distribution for unidirectional G' composite.	
The normal distribution mean is 3.03° with a standard deviation of 1.4	214
Figure 7: Density at 25°C for K-90 PVP in Derakane [™] blends.	
a). un-cured b). cured	218
Figure 8: Percentage blend shrinkage as a function of K-90 PVP in	
Derakane™.	219
Figure 9: Schematic of the arrangement of the concentric cylinders of	
- •	

broken fibers, adjacent fibers and unaffected composite (reference 20)	222
Figure 10: Comparison of shear stress versus strain response for	
composites with different fiber sizings. Data obtained from tensile tests	
performed on [±45] ₆ laminates	224
Figure 11: Comparison of shear strengths for composites with different	
fiber sizings. Data obtained from tensile tests performed on $[\pm 45]_6$	
laminates	225
Figure 12: Comparison of shear modulus for composites with different	
fiber sizings. Data obtained from tensile tests performed on $[\pm 45]_6$ laminates	226
Figure 13: (a) Free body diagram of the element of a micro-buckled	
fiber (reference 27), (b) Schematic of an infinite kink band in a unidirectional	
composites. Fibers within the composite have an initial misalignment	
angle of ϕ_I and (c) a sketch of a typical load versus end shortening curve	
with the locations of key event indicated on the curve (reference 29).	230
Figure 14: Comparison between experimental shear data and recommended	
tengent hyperbolic fit for the G" sized composite. The terminal point marks	
the final stress level at which the code uses the shear stress and strain value	
from the fit. Beyond this point the shear stress is forced to go to zero indicating	
failure. The constants for the fit are $G_L = 4180$ MPa and $T_f = 0.01105$.	234
Figure 15: The effect of changes in composite shear response on	
compression loading response according to Model 3 for the three different	
sizings. A fixed L/a ratio of 18 and initial misalignment angle of 3° was	
chosen for the simulations.	236
Figure 16: The effect of initial misalignment angle on compression loading	
response according to Model 3 for the Phenoxy composite at an L/a ratio of 18.	238
Figure 17: Static tensile properties of K-90 PVP in Derakane [™] blends. a)	
Strength b). Strain-to-failure c). Tensile Modulus.	239

List of Tables

Table 1 : Interfacial shear strengths measured via a microdropletmicro-debond method from (A) a bead of sizing and (B) a bead of resin.	46
Chapter 3	
Table 1: Characteristics of the vinyl ester / styrene networks	58
Table 2 : Parameters describing dynamic mechanical data in the glass	
formation region	71
Chapter 4	
Table 1: Summary of transition temperatures in non-reinforced	
matrix and fiber composite samples.	95
Table 2: Coupling parameters and steepness indexes.	100
Chapter 5	
Table 1: Calculated Diffusion Coefficients for Derakane 441-400	117
Table 2: Calculated Henry's Law Constants for Derakane 441-400	120
Chapter 6	
Table 1: Hexcel AS-4 G' lot # D1383-5K and Hexcel AS-4 unsized	

Table 1: Hexcel AS-4 G ² lot # D1383-5K and Hexcel AS-4 unsized	
lot # D1317-4C carbon fiber mechanical properties.	141
Table 2: Processing parameters used to produce the sized fibers utilized	
in this study. In addition, sizing characterization information also displayed	154
Table 3: ESCA results for Hexcel AS-4 carbon fibers sized with various	
agents. ESCA results for pure sizing materials are also shown	155

Table 1: Equilibrium moisture content and diffusivities for the different	
sized fiber composites. These specimens were aged by immersion in a	
65°C water bath	193
Table 2: Equilibrium moisture content and diffusivities for the different	
blends. These specimens were aged by immersion in a 75°C-water bath	195
Table 3: Tensile properties for the composites before and after moisture aging	196

Table 1: Properties used in the models for the different composite systems	215
Table 2: Comparison of theoretical (Models 1 and 2) and experimental	
compression strengths for the different unidirectional composites	229
Table 3: Comparison of theoretical (Model 3) and experimental compression	
strengths at different L/a ratios for the different unidirectional composites	235