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Abstract 

 

This work develops a comprehensive theoretical model for a semiconductor laser, which 

exploits tunneling-injection of electrons and holes into quantum dots (QDs) from two separate 

quantum wells (QWs). The potential of such a tunneling-injection QD laser for temperature-

stable and high-power operation is studied under the realistic conditions of out-tunneling leakage 

of carriers from QDs (and hence parasitic recombination outside QDs) and the presence of the 

wetting layer (WL). The following topics are included in the dissertation: 

 

1) Characteristic temperature of a tunneling-injection QD laser 

The threshold current density jth and the characteristic temperature T0 are mainly controlled 

by the recombination in the QWs. Even in the presence of out-tunneling from QDs and 

recombination outside QDs, the tunneling-injection laser shows the potential for significant 

improvement of temperature stability of jth — the characteristic temperature T0 remains very high 

(above 300 K at room temperature) and not significantly affected by the QD size fluctuations. 

 

2) Output power of a tunneling-injection QD laser 

Closed-form expressions for the light-current characteristic (LCC) and carrier population 

across the layered structure are derived. Even in the presence of out-tunneling leakage from QDs, 

the intensity of parasitic recombination outside QDs is shown to remain restricted with 

increasing injection current. As a consequence, the LCC of a tunneling-injection QD laser 

exhibits a remarkable feature — it becomes increasingly linear, and the slope efficiency grows 

closer to unity at high injection currents. The linearity is due to the fact that the current paths 

connecting the opposite sides of the structure lie entirely within QDs — in view of the three-

dimensional confinement in QDs, the out-tunneling fluxes of carriers from dots are limited. 



iii 

3) Effect of the WL on the output power of a tunneling-injection QD laser 

In the Stranski-Krastanow self-assembling growth mode, a two-dimensional WL is initially 

grown followed by the formation of QDs. Due to thermal escape of carriers from QDs, there will 

be bipolar population and hence electron-hole recombination in the WL, even in a tunneling-

injection structure. Since the opposite sides of a tunneling-injection structure are only connected 

by the current paths through QDs, and the WL is located in the n-side of the structure, the only 

source of holes for the WL is provided by QDs. It is shown that, due to the zero-dimensional 

nature of QDs, the rate of the hole supply to the WL remains limited with increasing injection 

current. For this reason, as in the other parts of the structure outside QDs (QWs and optical 

confinement layer), the parasitic electron-hole recombination remains restricted in the WL. As a 

result, even in the presence of the WL, the LCC of a tunneling-injection QD laser becomes 

increasingly linear at high injection currents, which is a further demonstration of the potential of 

such a laser for high-power operation. 
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CHAPTER 1 

Introduction 

1.1. Lasing in semiconductors 

The term laser is an acronym for “light amplification by stimulated emission of radiation”. 

In semiconductor lasers, the photons are emitted through the transitions of carriers in a 

semiconductor material. Fig. 1.1 shows schematically the stimulated emission of photons in a 

semiconductor. When a photon is incident on a semiconductor, it is absorbed thus creating an 

electron-hole pair (i.e., an electron is excited from the valence band into the conduction band) 

[Fig. 1.1(a)]. If such an excited electron interacts with an incident photon, an electron-hole pair 

recombines creating one more photon, which has the same wavelength as an incident photon 

[Fig. 1.1(b)]. In a system of many electrons under thermal equilibrium, the electron energy 

distribution follows the Fermi-Dirac statistics, and hence the population of a higher-energy state 

in the conduction band is smaller than that of a lower-energy state in the valence band. Hence, 

the incident photons are substantially absorbed and correspondingly many electrons are excited 

into the conduction band. If the condition of population inversion is satisfied, i.e., the population 

of a higher-energy state in the conduction band becomes larger than that of a lower-energy state 

in the valence band, the stimulated emission of photons overcomes the absorption of photons, 

and finally the optical amplification is achieved. In a semiconductor material, the population 

inversion can be realized by creating a large number of electron-hole pairs through the excitation 

of electrons from the valence band into the conduction band. Electrons can be excited from the 

valence band into the conduction band by light irradiation or electron-beam irradiation. However, 

the most effective way is to form a p-n junction in semiconductor materials and then inject 

forward currents, which provide high-energy carriers in the p-n junction. Such semiconductor 

lasers, wherein the population inversion is created by the current injection, are called as injection 

lasers or laser diodes. 
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Fig. 1.1. Schematic illustration of (a) excitation of an electron from the valence band to 
the conduction band and (b) stimulated emission by an incoming photon in a 
semiconductor. 

1.2. Homojunction lasers 

There have been initial studies on the use of semiconductors for lasing in the late 1950s 

and early 1960s [1]-[3]. In 1962, narrowing of the electroluminescence spectrum has been 

observed in a GaAs diode at 77 K [4]. In the same year, Hall et al. [5] demonstrated the coherent 

light emission in the pulse mode using a GaAs p-n junction at 77 K; the lasing wavelength was 

842 nm with a spectral width of 1.5 nm. Several other groups also observed the coherent 

emission in semiconductors in the infrared and visible light range [6]-[8]. At this early stage, the 

same semiconductor material was used to form a p-n junction, and the homojunction lasers 

suffered from high threshold current densities (more than 104 A/cm2) at room temperature. As a 

result, continuous wave (CW) lasing operation was only possible at cryogenic temperature. 

1.3. Heterostructure lasers 

The possibility of the use of semiconductor lasers for lightwave communications 

motivated a further research to secure room temperature operation, low threshold current density, 

and reliability. After much effort, the use of heterostructures in semiconductor lasers was 

proposed to overcome the difficulties of lasing operation in a p-n homojunction laser, followed 

by the development of the crystal growth and epitaxial technologies. 
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1.3.1. Double heterostructure lasers 

The advent of semiconductor heterostructures brought significant changes to electron 

devices in many areas. In 1963, the concept of double heterostructure (DHS) lasers was proposed 

by Alferov and Kazarinov [9] and Kroemer [10]. They proposed attaining a high density of 

injected carriers and population inversion in a DHS – a structure in which a layer of a narrower 

band gap material is sandwiched between the layers of a wider band gap material (Fig. 1.2). In a 

DHS, the carriers and the emitted light are efficiently confined in a middle (narrower band gap) 

layer. In 1970, room temperature CW operation with the threshold current density well below 

10 kA/cm2 was demonstrated in DHS lasers [11, 12]. In terms of the carrier confinement, DHS 

lasers have become the groundwork for a more advanced type of lasers – quantum well (QW) 

lasers. 

1.3.2. Quantum well lasers 

In 1974, Dingle et al. [13] observed the manifestations of quantum confinement in the 

optical spectra of AlGaAs-GaAs-AlGaAs semiconductor heterostructures with an ultrathin GaAs 

layer. In their patent [14], Dingle and Henry suggested to exploit quantum effects in 

semiconductor heterostructure lasers. The idea was that the use of quantum effects in 

semiconductor heterostructures can provide the wavelength tunability by changing the thickness 

of the active region and can result in a lower lasing threshold due to the change in the density of 

states, which came from the reduced number of the degrees of freedom for the carriers confined 

in the active region. In 1975, Van Der Ziel et al. [15] observed the lasing operation in a QW 

structure consisting of alternating layers of Al0.2Ga0.8As and a very thin GaAs (50 – 500 Å), but 

the lasing performance fell short of that of DHS lasers. 

 In 1978, Dupuis et al. [16] reported for the first time on a Ga1-xAlxAs-GaAs QW laser 

with the performance comparable to DHS lasers. They used the term “quantum well” for the first 

time. Since the first observation of lasing in QW structures, the crystal growth techniques have 

been continuously evolving, thus allowing to grow thin films of good quality. 

In 1982, through major improvements in the MBE growth technology (such as reducing 

the doping of the layers around the active region) and using a graded index separate confinement 

heterostructure, Tsang [17] achieved the threshold current density as low as 160 A/cm2 for 

broad-area Fabry-Perot lasers with the cavity length of 1125 µm. By bounding the QW by a 
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short-period variable-step superlattice, Alferov et al. [18] demonstrated the GaAs-AlGaAs 

double-heterostructure separate-confinement QW lasers with jth of about 52 A/cm2 and, at 

optimized conditions, 40 A/cm2 – the lowest value for semiconductor lasers until the late 1990s. 

There have also been other approaches using the QW heterostructures. One of them was 

to generate the stimulated emission in semiconductor superlattices. This original concept was 

proposed by Kazarinov and Suris in 1971 [19]-[21] and experimentally realized by Faist and 

Capasso et al. in 1994 [22, 23]. Such a laser is called as a quantum cascade laser and is based on 

the electron resonant tunneling and optical transition between the quantized states in the 

conduction band. The quantum cascade lasers are unipolar lasers emitting in mid- to far-infrared 

range. 

Evolution of the threshold current density, which should be as low as possible for a stable 

lasing action, reflects the history of semiconductor lasers (Fig. 1.3) [24]. As seen from the figure, 

there are four milestones in lowering the threshold current density related to the advent of a DHS 

laser, QW laser, short-period QW superlattices laser, and quantum dot (QD) laser.  

1.3.3. Quantum wire and quantum dot lasers 

The rapid development and various applications of QW lasers, in which the quantum-

confinement of carriers occurs in one direction, stimulated the interest to further reducing the 

dimensionality of the active region. Thus, quantum wire (QWR) and QD heterostructures 

emerged, wherein carriers are spatially localized in two and three directions, respectively.  

Fig. 1.4 shows the density of states in a bulk semiconductor, QW, QWR, and QD. The 

density of states in a bulk, QW, and QWR is continuous [Fig. 1.4(a)-(c)]. A true discrete energy 

spectrum and delta-function density of states can be realized in zero-dimensional structures, i.e., 

QDs only [Fig. 1.4(d)]. Due to the spatial confinement of carriers in all the three directions, QDs 

exhibit an electron structure similar to atoms. That is why they can be considered as ‘man-made 

atoms’ or ‘artificial atoms’. Structures with QDs became promising for lasing due to the 

expectations of low threshold current density and high temperature stability. 
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Fig. 1.2. Energy band diagram of a double heterostructure laser. 

 
Fig. 1.3. Evolution of the threshold current density of 

semiconductor lasers. (Reprinted with permission from Fig. 9 of 

[24]. Copyright (2001) by the American Physical Society.) 
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Fig. 1.4. Density of states in (a) bulk semiconductor (3D), (b) quantum well (2D), (c) quantum 
wire (1D), and (d) quantum dot (0D). 

In 1982, Arakawa and Sakaki [25] proposed the use of QWRs and QDs for lasing. They 

predicted a much weaker temperature-sensitivity of the threshold current for a QWR laser 

compared to that of a QW laser. For an idealized QD laser, they predicted a temperature 

insensitive threshold current. To experimentally simulate a QWR laser, they placed a bulk (DHS) 

laser in a strong magnetic field and indeed observed an improvement in the temperature stability 

of the threshold current. 

There have been much experimental efforts to realize QD lasers. Initially, the QD 

structures suffered from high density of defects and variance in quantum confinement energy 

levels due to nonuniformity in QD size and shape. The use of self-organization growth technique 
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for QD structures opened the door to the practical realization of QD lasers. As shown in Fig 1.5, 

there are three well-known growth modes for semiconductor materials – Frank van der Merwe, 

Volmer-Weber, and Stranski-Krastanow (SK) modes. It was the self-organized SK growth mode 

that allowed to grow uniform enough, dense, and defect-free QDs. In the Stranski-Krastanow 

growth mode, several monolayers of one material are grown first on a crystal surface of another 

material (substrate) having a different lattice constant. Beyond a critical thickness of the 

deposited layer, three-dimensional (3-D) islands (QDs) start forming from two-dimensional (2-

D) monolayers thus partially relaxing the strain and reducing the elastic energy The initially 

grown monolayers are called as the wetting layer (WL). Hence, the 2-D WL is inherently present 

in self-assembled Stranski-Krastanow grown QD structures [26]-[29]. 

In the early stage of QD lasers, molecular beam epitaxy (MBE) was mainly used for self-

organized QDs growth, which was later followed by metalorganic chemical vapor deposition 

(MOCVD) (Fig. 1.6) [30]. In 1994, Ledentsov et al. [31] demonstrated for the first time the 

optically-pumped lasing action in an InAs-GaAs QD structure grown by MBE. In the same year, 

Kirstädter et al. [32] reported for the first time on the QD laser diode operating at room 

temperature with jth = 950 A/cm2 (see also Egorov et al. [33]). 

In 1996, Alferov et al. [34] used MOCVD for the fabrication of a low-threshold (jth = 

150 A/cm2) QD laser. In the same year, for a QD size dispersion of 10% and other practical 

structure parameters, Asryan and Suris [35] predicted threshold current densities below 10 A/cm2 

at room temperature in properly optimized QD lasers. 

In 1997, Ustinov et al. [36] demonstrated a laser based on vertically-coupled QDs with 

low jth at the room temperature. Fig. 1.7 shows jth versus the number of layers with vertically-

coupled QDs [37]; with increasing number of layers, the threshold current density decreases 

down to 90 A/cm2. In 1998, Zhukov et al. [38] reported on a QD laser with the threshold current 

density of 63 A/cm2. 

In 2000, the lasing with the threshold current density of 10 A/cm2 was achieved by Park 

et al. [39] in a QD structure. 

Since the beginning of the 1990s, the fabrication techniques for QD lasers have been 

continuously progressing. In view of the needs for telecommunication systems, many studies 

have been focused on QD lasers emitting at the wavelengths of 1.3 and 1.55 µm. 
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 (a)         (b)            (c) 

Fig. 1.5. Schematic diagrams of three possible modes for the heteroepitaxial growth: (a) 
Frank-van der Merwe (FM), (b) Volmer-Weber (VW), and (c) Stranski-Krastanow (SK). 

 

 

 

Fig. 1.6. High resolution TEM image of a single self-organized QD 
grown by deposition of 16 periods of 0.25 ML InAs/0.25ML GaAs 
separated by 5s pauses. (Reprinted from Fig. 1 of ref. [30], Copyright 
(2001), with permission from Elsevier.) 
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Fig. 1.7. Threshold current density (at 300 K) versus the number of 
layers with QDs for structures with vertically-coupled QDs. 
(Reprinted with permission from Fig. 6(b) of [37]. Copyright (1996) 
by the American Physical Society.) 

In 2000, Lott et al. [40] reported on a QD vertical-cavity surface-emitting laser (VCSEL) 

on the GaAs substrate emitting at 1.3 µm. In [41], Homeyer et al. reported on an InAs/InP QD 

laser emitting near 1.55 µm with jth = 170 A/cm2. 

1.4. Tunneling-injection heterostructure lasers  

 Even though the fast progress on QD lasers has been made, there are still several 

problems to overcome, such as temperature sensitivity of the threshold current density due to the 

parasitic recombination outside QDs [42] and the sublinearity of the light-current characteristic 

(LCC) [43]. Several approaches have been recently proposed to improve the characteristics of 
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QD lasers. Among them are p-type modulation doping of the active region [44, 45] and tunneling 

injection of carriers into QDs [46]-[48]. 

In 1996, tunneling-injection of electrons was proposed in single and multiple QW lasers 

(Fig. 1.8) [49] to alleviate hot carrier effects, which otherwise reduce the gain and increase the 

Auger recombination [50, 51]. Electrons injected from the cladding layer are first thermalized in 

a wide three dimension (bulk) region and become cold. Cold electrons then tunnel into the QW 

through thin barriers. Tunneling-injection QW lasers emitting at 0.98 µm showed higher 

modulation bandwidth, lower chirp, and weaker temperature dependence of the threshold current 

density. 

To address the same problems in QD lasers, tunneling-injection of electrons from the QW 

into QDs was proposed [51]-[53]. Such a tunneling-injection QD laser did showed an enhanced 

small-signal modulation bandwidth and reduced temperature sensitivity of the threshold current 

density. However, in the structures of [51]-[53], bipolar carrier density and hence parasitic 

recombination still remain on the hole-injecting side. 

In [54], tunneling-injection of electrons into QDs was reported for an InAs QD laser 

based on the InP substrate. 

In [55], resonant tunneling was proposed from the bulk region into the QD excited-state 

separated from the QD ground-state by the energy of the longitudinal optical phonon. 

In [46]-[48], to suppress the recombination outside QDs and thus to significantly improve 

the temperature-stability of the laser, tunneling-injection of both electrons and holes into QDs 

was proposed from two separate QWs [Fig. 1.9(a)]. In [46], the complete suppression of the 

parasitic recombination outside QDs was shown to lead to the characteristic temperature value 

above 1500 K [Fig. 1.9(b)]. 

There has been experimental work [56]-[59] related to the concept [46]-[48] of tunneling 

injection of both electrons and holes into QDs. Compared to a conventional QD laser, tunneling-

injection can efficiently improve the uniformity of QDs by selecting the QDs of the ‘right’ size, 

and the carrier collection in QDs can also be improved [56]. Using tunneling-injection of both 

electrons and holes, the highest ground-state gain for a single-layer InAs QD laser was reported, 

thus allowing for ground-state lasing in short-cavity devices [57]. A more symmetrical gain 

shape and a smaller refractive index change at the peak gain wavelength were reported for a 

tunneling-injection QD laser [59]. 
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Fig. 1.8. Energy band diagram of a tunneling injection QW laser of [49]. (Fig. 1(b) of 
ref. [49], reprinted with kind permission of Springer Science and Business Media.) 

1.5. Objectives, structure, and main results of the dissertation 

In [46]-[48], tunneling-injection of both electrons and holes into QDs was proposed from 

two separate QWs. In the case of no out-tunneling from QDs into the foreign QWs, the 

characteristic temperature of the laser was shown to be above 1000 K, which means virtually 

temperature-insensitive threshold current density. 

The main objective of this dissertation is the study of the potential of the laser, which 

exploits tunneling-injection of both electrons and holes into QDs, for temperature-stable and 

high-power operation under the realistic conditions of out-tunneling leakage of carriers from 

QDs into the foreign QWs and the presence of the wetting layer (WL). The structure of the 

dissertation, the topics of the research, and the main results are: 
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(a) 

 

(b) 

Fig. 1.9. (a) Energy band diagram of a tunneling-injection QD laser of 
[46]-[48] and (b) characteristic temperature against the QD fraction of 
threshold current density at room temperature. The dotted line depicts 1/T0 
in the absence of inhomogeneous line broadening ( ∞=QD

0T ). The T0 
values are indicated on the right axis. (Reprinted from Figs. 3 and 4(b) of 
ref. [47], Copyright (2003), with permission from Elsevier.) 
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1) Characteristic temperature of a tunneling-injection QD laser (chapter 2) 

A laser structure is studied, which exploits tunneling-injection of electrons and holes into 

QDs from two separate QWs. An extended theoretical model is developed allowing for out-

tunneling leakage of carriers from QDs into the opposite-to-injection-side QWs (electrons into 

the p-side QW and holes into the n-side QW). Due to out-tunneling leakage, parasitic 

recombination of electron-hole pairs occurs outside QDs – in the QWs and optical confinement 

layer. The threshold current density jth and the characteristic temperature T0 are shown to be 

mainly controlled by the recombination in the QWs [A1, A2]. Even in the presence of out-

tunneling from QDs and recombination outside QDs, a tunneling-injection laser shows potential 

for significant improvement of temperature stability of jth — the characteristic temperature T0 

remains very high (above 300 K at room temperature) and not significantly affected by the QD 

size fluctuations. 

2) Output power of a tunneling-injection QD laser (chapter 3) 

A comprehensive theoretical model for a tunneling-injection QD laser is developed [A3]-

[A5]. Both electrons and holes are injected into QDs by tunneling from two separate QWs. 

Ideally, out-tunneling of each type of carriers from QDs into the opposite-to-injection-side QW 

should be completely blocked; as a result, the parasitic electron-hole recombination outside QDs 

will be suppressed and the light-current characteristic (LCC) of a laser will be strictly linear. To 

scrutinize the potential of a tunneling-injection QD laser for high-power operation and the 

robustness of an actual device, the model includes out-tunneling leakage of carriers from QDs. 

The numerical calculations are complemented by an analytical model and closed-form 

expressions for the LCC and carrier population across the layered structure are derived. Even in 

the presence of out-tunnelling leakage, the intensity of parasitic recombination outside QDs is 

shown to remain restricted with increasing injection current. As a consequence, the LCC exhibits 

a remarkable feature distinguishing the tunneling-injection QD laser from other types of injection 

lasers — it becomes increasingly linear, and the slope efficiency grows closer to unity at high 

injection currents. The linearity is due to the fact that the current paths connecting the opposite 

sides of the structure lie entirely within QDs — in view of the three-dimensional confinement in 

QDs, the out-tunneling fluxes of carriers from dots are limited. 
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3) Effect of the wetting layer on the output power of a tunneling-injection QD laser 

    (chapter 4) 

To suppress bipolar population and hence electron-hole recombination outside QDs, 

tunneling-injection of electrons and holes into QDs from two separate QWs was proposed earlier. 

Close-to-ideal operating characteristics were predicted for such a tunneling-injection laser. In the 

Stranski-Krastanow growth mode, a two-dimensional wetting layer (WL) is initially grown 

followed by the formation of QDs. Due to thermal escape of carriers from QDs, there will be 

bipolar population and hence electron-hole recombination in the WL, even in a tunneling-

injection structure. Here, the light-current characteristic (LCC) of a tunneling-injection QD laser 

is studied in the presence of the WL [A6, A7]. Since (i) the opposite sides of a tunneling-

injection structure are only connected by the current paths through QDs and (ii) the WL is 

located in the n-side of the structure, the only source of holes for the WL is provided by QDs. It 

is shown that, due to the zero-dimensional nature of QDs, the rate of the hole supply to the WL 

remains limited with increasing injection current. For this reason, as in the other parts of the 

structure outside QDs (quantum wells and optical confinement layer), the parasitic electron-hole 

recombination remains restricted in the WL. As a result, even in the presence of the WL, the 

LCC of a tunneling-injection QD laser becomes increasingly linear at high injection currents, 

which is a further demonstration of the potential of such a laser for high-power operation. 
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Chapter 2 

Characteristic Temperature of a Tunneling-Injection 

Quantum Dot Laser 

Summary 

A laser structure is studied, which exploits tunneling-injection of electrons and holes into 

quantum dots (QDs) from two separate quantum wells (QWs). An extended theoretical model is 

developed allowing for out-tunneling leakage of carriers from QDs into the opposite-to-

injection-side QWs (electrons into the p-side QW and holes into the n-side QW). Due to out-

tunneling leakage, parasitic recombination of electron-hole pairs occurs outside QDs – in the 

QWs and optical confinement layer. The threshold current density jth and the characteristic 

temperature T0 are shown to be mainly controlled by the recombination in the QWs. Even in the 

presence of out-tunneling from QDs and recombination outside QDs, the tunneling-injection 

laser shows the potential for significant improvement of temperature stability of jth — the 

characteristic temperature T0 remains very high (above 300 K at room temperature) and not 

significantly affected by the QD size fluctuations. 

2.1. Introduction 

High temperature stability of threshold current has been predicted for semiconductor 

quantum dot (QD) lasers [1]. An ideal situation would be temperature-insensitive threshold 

current density jth, i.e., the characteristic temperature (a widely-accepted figure of merit of any 

diode laser from the viewpoint of temperature-stability of jth [2]) defined as 

1

th
0

ln
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

T
jT         (2.1) 

would be infinitely high. In actuality, however, not all injected carriers appear in QDs — a 

fraction of them recombines outside QDs. The recombination current outside QDs depends 

strongly on T and causes such dependence of jth; hence, T0 becomes finite (Fig. 2.1) [3]. 
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To suppress the recombination outside QDs, tunneling-injection of both electrons and 

holes into QDs was proposed in [4, 5]. (In [6]-[9], to minimize hot-carrier effects, tunneling-

injection of only electrons into respectively the quantum well (QW) and QDs was proposed. In 

[10], to avoid a possible phonon bottleneck problem, resonant tunneling was proposed from the 

bulk optical confinement layer (OCL) into the QD-excited-state separated from the QD-ground-

state by the energy of the longitudinal optical phonon.) A complete suppression of the 

recombination outside QDs will result in T0 above 1000 K [4, 5], which corresponds to a 

virtually temperature-insensitive jth. 

Here we study the effect of out-tunneling leakage of carriers from QDs (shown by 

inclined arrows ⑤ in Fig. 2.2) and hence recombination outside QDs (vertical arrows ⑥ and ⑧ 

in Fig. 2.2) on the T-dependence of jth [A1, A2]*). We show that, even in the presence of such 

leakage, T0 remains very high. We analyze T0 versus the temperature and parameters of a 

GaInAsP/InP heterostructure lasing near 1.55 µm. 

2.2. Laser structure 

The energy band diagram of the structure is shown in Fig. 2.2. The electrons (holes) are 

injected from the n- (p-) cladding layer into the OCL, captured in the corresponding QW, and 

finally tunnel into QDs (Fig. 2.2). The basic concept is that the QWs are not connected by a 

current path that bypasses QDs. To realize this concept, (i) the barriers separating QDs from the 

QWs should be high enough to suppress the thermal escape (leakage) of carriers from the QWs, 

and (ii) the material separating QDs from each other in the QD layer should have a wide enough 

bandgap to suppress all tunneling other than via the QD levels (this material may be the same as 

that of the barrier layers). 

The probability of direct tunneling is higher than that of indirect tunneling. Hence, due to 

QD size fluctuations, which are always present in QD ensembles [11, 12], the tunneling will be 

most efficient within a certain range of QD sizes. To maximize the tunneling-injection rate and 

hence the number of active (pumped) QDs, the material and thickness of the injecting QW 

should be chosen so that the lowest subband edge in the QW matches the quantized energy level 

for the corresponding type of carrier in the average-sized (most represented) QD. Such an 

                                                 
 
*) “A” in the reference number indicates the publications of the author of this dissertation. 
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optimum situation is shown in Fig. 2.2 [the QWs may (as shown in the figure) or may not be of 

the same material as QDs]. 

 
(a) 

 
(b) 

Fig. 2.1. (a) Threshold current density and its components, and (b) 
characteristic temperature versus temperature. Inset in (a) shows 
jQD and jOCL on enlarged (along the vertical axis) scale at T = Td = 
344 K, jOCL = jQD. The dotted line of (a) and dashed line of (b) 
represents the current density jQD and T0,neutral calculated on the 
assumption of neutrality in QDs, respectively. (Figs. 16 and 17(c) 
of ref. [3], reprinted with kind permission of Springer Science and 
Business Media.) 
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Fig. 2.2. Energy band diagram of a tunneling-injection QD laser and the 
main processes: ① injection from the cladding layers to the OCL, ② 
majority carrier capture from the OCL to the QW and thermal escape from 
the QW to the OCL, ③ tunneling-injection from the QW into a QD, ④ 
spontaneous and stimulated recombination in a QD, ⑤ out-tunneling from 
a QD into the “foreign” QW, ⑥ spontaneous recombination in the QWs, 
⑦ minority carrier thermal escape from the QW to the OCL and capture 
from the OCL to the QW, and ⑧ spontaneous recombination in the OCL. 
(Reprinted from Fig. 1 of ref. [A1], Copyright (2008), with permission 
from Elsevier.) 
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Under certain conditions, which are described in [4, 5], there will be no second step of 

tunneling of electrons (holes) from QDs to the p- (n-) side QW (we refer to this second step of 

tunneling as out-tunneling); there will be no electrons (holes) as minority carriers in the p- (n-) 

side OCL and QW and hence the electron-hole recombination will be completely suppressed 

there. 

Here, we allow for out-tunneling leakage of electrons from QDs to the right-hand-side 

QW and holes from QDs to the left-hand-side QW [processes ⑤ in Fig. 2.2]. Hence, electrons as 

minority carriers will recombine with holes as majority carriers in the right-hand-side QW and 

OCL [processes ⑥ and ⑧ in Fig. 2.2]. Similarly, holes as minority carriers will recombine with 

electrons as majority carriers in the left-hand-side QW and OCL. 

2.3. Rate equations 

 The following set of rate equations is used: 

for free electrons and holes in the left-hand side of the OCL, 

    LLL
L

L

L
L pBnbnv

n
e
j

t
nb 1captn,

escn,

QW
1 −−+=

∂
∂

τ
,       (2.2) 

    LLL
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L
L pBnbpv

p
t

pb 1captp,
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1 −−=

∂
∂

τ
,        (2.3) 

for free holes and electrons in the right-hand side of the OCL, 

    RRR
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R
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p
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nb 2captn,
escn,

QW
2 −−=

∂
∂

τ
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for electrons and holes in the electron-injecting (left-hand-side) QW, 
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for holes and electrons in the hole-injecting (right-hand-side) QW, 
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for electrons and holes confined in QDs, 
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and for photons, 

NcNffgc
t
N

gg

β
∈

−−+
∈

=
∂
∂ )1( pn

max .      (2.12) 

The fluxes and physical quantities entering into (2.2)–(2.12) are presented in Tables 2.1 and 2.2, 

respectively. 



28 

Table 2.1. Fluxes of different processes in eqs. (2.2)–(2.12) 

e
j  Injection from the cladding layers to the OCL 

RL

RLn
,
escn,

,
QW

τ
, RL

RLp
,
escp,

,
QW

τ
 Thermal escape of electrons and holes from the QWs to the OCL 

RL
RL nv ,

,
captn, , RL

RL nv ,
,
captp,  Capture of electrons and holes from the OCL to the QWs 

LL pBnb1 , RR pBnb2  Spontaneous radiative recombination in the left- and right-hand sides of 
the OCL 

L
S

L nfNw QWn tunnn, )1( − , 
R

S
R pfNw QWp tunnp, )1( −  

Tunneling-injection of electrons and holes into the QD ensemble 
(processes ③ in Fig. 2.2) 

n
QW,

1tunnn, fNnw S
LL , 

p
QW,

1tunnp, fNpw S
RR  

Electron and hole backward tunneling from the QD ensemble to the 
injector-QWs (processes reverse to ③ in Fig. 2.2) 

p
QW ,

1tunnp, fNpw S
LL , 

n
QW ,

1tunnn, fNnw S
RR  

Hole and electron out-tunneling from the QD ensemble to the foreign 
(electron- and hole-injecting, respectively) QWs (processes ⑤ in 
Fig. 2.2) 

L
S

L pfNw QWptunnp, )1( − ,
R

S
R nfNw QWptunnn, )1( −  

Hole and electron backward tunneling from the foreign QWs into the 
QD ensemble (processes reverse to ⑤ in Fig. 2.2) 

LL pnB QWQW2D ,
RR pnB QWQW2D  

Spontaneous radiative recombination in the left- and right-hand-side 
QWs 

QD

pn

τ
ff

NS  Spontaneous radiative recombination in QDs 

Nff
S

gc

g

)1( pn

max

−+
∈

 Stimulated radiative recombination flux 
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Table 2.2. Physical quantities in eqs. (2.2)–(2.12) 

 fn,p Electron- and hole-level occupancies in QDs 

τQD Spontaneous radiative lifetime in a QD 
RLn ,

QW , RLp ,
QW  2-D electron and hole densities in the QWs 

RLn , , RLp ,  Free-electron and -hole densities in the left- and right-hand side of the OCL 

QW , ,
1

RLn , QW , ,
1

RLp  
Quantities (measured in units of cm-2) in the electron and hole tunneling 
fluxes from the QD ensemble to the QWs 

RLw ,
 tunnp,n,  Tunneling coefficients (measured in units of cm2/s) for electron and hole 

tunneling between the QD ensemble and the QWs 

1b , 2b  Thicknesses of the left- and right-hand side of the OCL [separation between 
the n- (p-) cladding layer and the left- (right-) hand-side barrier] 

NS Surface density of QDs 

S=WL Cross-section of the junction 

W Lateral size of the device 

L Cavity length 

gmax Maximum value of the modal gain [12, 13] 

N Number of photons in the lasing mode 

c Light velocity in vacuum 

B, B2D 
Spontaneous radiative recombination constants for the bulk (OCL) and 2-D 
region (QWs) 

g∈  Group index of the dispersive OCL material 

 R Facet reflectivity  

 j Injection current density 

β = (1/L)ln(1/R)  Mirror loss coefficient 
RLv ,

captp, n,  Capture velocity of electrons and holes from the OCL to the QWs 
RL,
escp,n,τ  Thermal escape times of electrons and holes from the QWs to the OCL 
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2.4. Threshold current density 

We consider a continuous-wave operation of the laser and correspondingly use the 

steady-state rate equations 

( ) 0,,,,,,,,,, pnQWQWQWQW2211 =
∂
∂ NfNfNpnpnpbnbpbnb
t SS

RRLL
RRLL .   (2.13) 

Below the lasing threshold, the stimulated recombination term vanishes in (2.10)-(2.12) 

(since N = 0). 

Above the lasing threshold, the number of stimulated photons is nonvanishing ( 0≠N ). 

To satisfy (2.12) at the steady-state and at nonvanishing N, the following lasing condition should 

hold 

     ( ) β=−+ 1max
pn ffg        (2.14) 

which is the condition of equality of the modal gain to the mirror loss at and above the lasing 

threshold (the internal optical loss is not considered here). 

 The threshold current density jth is defined as the lowest injection current density at 

which (2.14) satisfies. At j = jth, the number of photons is still zero; for j immediately above jth, N 

starts to build up. From the steady-state rate equations at N = 0, the threshold current density can 

be presented as the sum of the spontaneous recombination current densities in QDs, QWs, and 

OCL, 

RRLL
RRLL

S pBnebpBnebpneBpneB
ff

eNj 21QWQW2DQWQW2D
QD

pn
th ++++=

τ
   (2.15) 

where the electron and hole level occupancies in QDs, pn,f , and densities in the QWs and OCL, 

L,RnQW , L,RpQW , and L,Rn , L,Rp , should be found from the solution of the rate equations at the lasing 

threshold [i.e., when N = 0 and simultaneously eq. (2.14) satisfies]. 

 As seen from (2.2)-(2.9), the rate equations for the carrier densities in the right-hand-side 

QW and OCL are similar to those in the left-hand side. For this reason, we will analyze these 

equations for the left-hand side only. 

 Using the rate equations (2.3) and (2.7) at the steady-state, the recombination flux outside 

QDs can be presented as follows: 
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L
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LL pfNwfNpwpBnbpnB QWptunnp,p
QW,

1tunnp,1QWQW2D )1( −−=+    (2.16) 

and similarly for the right-hand side of the structure. In (2.16), p
QW,

1tunnp, fNpw S
LL  is the hole out-

tunneling flux from the QD ensemble to the left-hand-side QW, and L
S

L pfNw QWptunnp, )1( −  is the 

flux of backward tunneling of holes from the left-hand-side QW to the QD ensemble. 

 Eq. (2.16) simply states that the net out-tunneling flux of minority carriers from QDs 

goes into the recombination in the corresponding side of the structure. With (2.16) and a similar 

equation for the right-hand side of the structure, jth can be written as follows: 
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 If the charge neutrality holds in QDs (fn = fp) [13, 14], then using (2.14) we immediately 

obtain that the level occupancies in QDs are temperature-insensitive at and above the lasing 

threshold, 

    )(const1
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maxpn T
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⎝

⎛
+==

β .      (2.18) 

Consequently, the current density associated with recombination in QDs [the first term in the 

right-hand side of (2.15) and (2.17)] will be temperature-insensitive. If in this case out-tunneling 

of carriers from QDs is completely blocked, then ( ) )(constQDpnth TffeNj S == τ  and ∞=0T . 

 In the presence of out-tunneling, assuming again charge neutrality in QDs, the 

temperature dependence of jth will be due to such dependence of the recombination currents 

outside QDs. The characteristic temperature can be presented as 

                 OCL
0th

OCL
QW

0th

QW

0

111
Tj

j
Tj

j
T

+=       (2.19) 

where QWj  is the sum of the second and third terms in the right-hand side of (2.15), OCLj  is the 

sum of the last two terms, and QW
0T  and OCL

0T  are defined similarly to T0 but for QWj  and OCLj . 
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2.5. Results and discussion 

 Continuous wave room-temperature operation of a GaInAsP/InP heterostructure lasing 

near 1.55 µm is considered here. To calculate jth and T0, we solved the steady-state rate equations 

for free carriers in the OCL, carriers in the QWs, and carriers confined in QDs. 

Fig. 2.3 shows the temperature dependence of the threshold current density and its 

components. As seen from the figure, jth is practically controlled by the recombination in the 

QWs — the contribution of the recombination in QDs and the OCL is negligible. The 

recombination current density jQW is directly proportional to T, which stems from such 

dependence of both the electron and hole densities in each of the QWs — Fig. 2.4 shows the T-

dependence of the 2-D electron and hole densities in the left-hand-side QW. Indeed, since the 

spontaneous radiative recombination constant in the 2-D region (QW) is inversely proportional 

to the temperature [15], 

      
T

B 1
2D ∝        (2.20) 

then 

TTT
T

pnB L,RL,R =⋅∝
1

QWQW2D .      (2.21) 

The fact that L,RnQW  and L,RpQW  are proportional to T in its turn simply means that the 

temperature-dependences of L,RnQW  and L,RpQW  are mainly controlled by those of the 2-D effective 

densities of states in the conduction and valence bands in the QWs, 

2

QW
vc,2D

vc,
hπ

Tkm
N B=        (2.22) 

where QW
vc,m  are the electron and hole effective masses in the QWs and Bk  is the Boltzmann’s 

constant. 

Since Tj ∝QW , it is clear from the definition ( ) 1
QW

QW
0 ln −∂∂= TjT  that QW

0T  is simply 

equal to the temperature (the dotted line in Fig. 2.5) 
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Fig. 2.3. Temperature-dependence of the threshold current density and its 
components. In Figs. 2.3-2.10, the structure parameters and the tunneling 
coefficients are as follows unless otherwise specified: NS = 6.1 × 1010 cm-2, δ 
= 0.05, and L = 1139 µm; Lw tunnn, = 16.2 cm2/s, Lw tunnp, = 0.015 cm2/s, Rw tunnn, = 

0.016 cm2/s,  and Rw tunnp, = 1.48 cm2/s. (Reprinted from Fig. 2 of ref. [A1], 
Copyright (2008), with permission from Elsevier.) 

             TT =QW
0 .     (2.23) 

Not only the contribution of the recombination in the OCL to the threshold current is 

negligible ( 1/ thOCL <<jj ), but also the temperature dependence of OCLj  is weaker than that of 

QWj , i.e., QW
0

OCL
0 TT > . Hence the second term in the right-hand side of (2.19) can be safely 

neglected to yield for the characteristic temperature (the solid line in Fig. 2.5) 

TT
j

jj
T

j
jT

j
jT >⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+==≈

QW

OCLQD

QW

thQW
0

QW

th
0 1 .    (2.24) 

A slight excess of T0 over T is due to the factor ( ) QWOCLQDQWth 1 jjjjj ++= , which is slightly 

larger than unity. 
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Fig. 2.4. Temperature-dependence of the 2-D electron and hole densities 
in the left-hand-side QW at the lasing threshold. (Reprinted from Fig. 3 of 
ref. [A1], Copyright (2008), with permission from Elsevier.) 

Under the condition of charge neutrality in QDs [when fn,p are given by (2.18)] and using 

the expression for the maximum value of the modal gain gmax [12, 13], the level occupancies in 

QDs are presented as follows in terms of the structure parameters (surface density of QDs NS, 

root mean square of relative QD size fluctuations δ, and cavity length L) [12]: 
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δ     (2.25) 

where min
SN , maxδ , and minL  are the critical tolerable values of SN , δ , and L , respectively. 

When any of the structure parameters is equal to its critical value, QDs become fully occupied 

( 1pn, =f ). For SN  < min
SN , or δ  > maxδ , or L  < minL , the lasing condition (equality of the gain 

to the loss) can not be satisfied and no lasing can be attained in a QD structure [12]. 
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Fig. 2.5. Temperature-dependence of the characteristic temperature. The dotted 
line shows the characteristic temperature QW

0T  for the threshold current density 
component QWj  associated with the recombination in the QWs. Since Tj ∝QW , 

TT =QW
0 . (Reprinted from Fig. 4 of ref. [A1], Copyright (2008), with 

permission from Elsevier.) 

Figs. 2.6–2.8 show thj  and T0 versus the QD structure parameters normalized to their 

critical tolerable values. In contrast to a ‘conventional’ (not tunneling-injection) QD laser, in 

which ∞→thj  as any of the structure parameters approaches its critical value [12], here thj  

remains finite at 1pn, =f , i.e., when min
SS NN = [Fig. 2.6(a)], or δ  = maxδ [Fig. 2.7(a)], or 

L  = minL [Fig. 2.8(a)]. As 1pn, →f  in a conventional QD laser, both the free electron and hole 

densities in the OCL increase infinitely and hence so does the threshold current density 

component OCLj  associated with the recombination in the OCL. In a tunneling-injection structure 

with out-tunneling leakage of carriers from QDs, as already discussed above (Fig. 2.3) and also 

clear from Fig. 2.6(a), thj  is controlled by the recombination current density QWj  in the QWs 

(the dashed curve in the figure). When 1pn, →f  (i.e., min
SS NN → , or maxδδ → , or minLL → ), 
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QWj  remains finite. The point is that the 2-D majority and minority carrier densities in the QW 

behave oppositely when the parameter of the structure tends to its critical tolerable value. This is 

shown in Fig. 2.9 by the example of the dependence on NS. While the majority carrier density 

(the dashed curve) increases infinitely as min
SS NN → , the minority carrier density (the solid 

curve) goes to zero so that their product defining QWj  [the dashed curve in Fig. 2.6(a)] remains 

finite. 

Using eq. (2.17), we can easily derive the expression for the threshold current density at 

the critical value of the parameter. Indeed, when 1pn, →f , not only ( ) 01 pn, →− f  but also the 

minority carrier densities in the left- and right-hand-side QWs, LpQW  and RnQW , tend to zero. 

Hence the current densities of backward tunneling of minority carriers from the QWs to QDs, 
L

S
L pfNew QWptunnp, )1( −  and R

S
R nfNew QWntunnn, )1( − , vanish as 1pn, →f ; the maximum values (those 

at 1pn, =f ) of the current densities of out-tunneling from QDs, S
LL Npew QW,
1tunnp,  and 

S
RR Nnew QW,
1tunnn, , will only remain in (2.17) together with the spontaneous recombination current 

density in QDs. Thus we obtain 

S
RR

S
LL

QD

S
f NnewNpeweNj QW,

1tunnn,
QW,

1tunnp,1th p n,
++=→ τ

.    (2.26) 

In a particular case when 1pn, →f  by virtue of min
SS NN → , min

SN  should enter into (2.26) 

instead of SN . 

Hence, as any of the structure parameters approaches its critical tolerable value and QDs 

become fully occupied, no portion of out-tunneling fluxes of minority carries returns back to 

QDs — these fluxes are entirely consumed via the recombination processes outside QDs 

(primarily in the QWs). 

As a function of the QD size dispersion or the cavity length, thj  is at its maximum at 

maxδδ =  or minLL =  and decreases monotonically with decreasing δ  or increasing L  

[Fig. 2.7(a) and Fig. 2.8(a), respectively]. 
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Fig. 2.6. (a) Threshold current density and (b) characteristic temperature 
versus normalized surface density of QDs. In Figs. 2.6-2.10, the temperature 
T = 300 K. The dashed curve in (a) shows the threshold current density 
component jQW associated with the recombination in the QWs. (Reprinted 
from Fig. 5 of ref. [A1], Copyright (2008), with permission from Elsevier.) 
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Fig. 2.7. (a) Threshold current density and (b) characteristic temperature 
versus normalized root mean square of relative QD size fluctuations. 
(Reprinted from Fig. 6 of ref. [A1], Copyright (2008), with permission from 
Elsevier.) 
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Fig. 2.8. (a) Threshold current density and (b) characteristic temperature 
versus normalized cavity length. (Reprinted from Fig. 7 of ref. [A1], 
Copyright (2008), with permission from Elsevier.) 
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Fig. 2.9. 2-D electron and hole densities in the left-hand-side QW versus 
normalized surface density of QDs. (Reprinted from Fig. 8 of ref. [A1], 
Copyright (2008), with permission from Elsevier.) 

As a function of the surface density of QDs, thj  is non-monotonic [Fig. 2.6(a)] — thj  

increases rapidly with SN  and approaches its maximum at the SN  value slightly higher than 

min
SN . On further increasing SN , thj  decreases over a wide range of SN  values and then again 

starts to slowly increase [Fig. 2.6(a)]. 

As seen from Figs. 2.6-2.8, T0 is very high throughout the entire range of the parameters 

shown. As each of the parameters is changed toward its critical tolerable value, T0 decreases. 

This decrease is however small, particularly with changing δ  and L [Fig. 2.7(b) and Fig. 2.8(b)].  

There is a peculiarity in the dependence of T0 on each of the structure parameters — the point of 

minimum of this dependence is slightly shifted from the critical point. Notice that even the 

lowest value of T0 is above 300 K, i.e. well above (by a factor of more than three) the 

characteristic temperature of commercial telecommunication QW lasers [16]. At the same time, 

if the structure parameters are reasonably far from their critical values, the threshold current 

densities [Figs. 2.3, 2.6(a), 2.7(a), and 2.8(a)] are well below those of telecommunication lasers. 
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Fig. 2.10. Characteristic temperature versus tunneling coefficients for 
minority carriers Lw tunnp,  and Rw tunnn, . The tunneling coefficients for majority 

carriers are as follows: Lw tunnn, = 16.2 cm2/s and Rw tunnp, = 1.48 cm2/s. 
(Reprinted from Fig. 9 of ref. [A1], Copyright (2008), with permission 
from Elsevier.) 

Shown in Fig. 2.10 is T0 versus the tunneling coefficients Lw tunnp,  and Rw tunnn,  for minority 

carriers. As Lw tunnp,  and Rw tunnn,  → 0, the characteristic temperature increases infinitely, T0 → ∞. 

Indeed, in such situation, there is no out-tunneling of minority carriers from QDs and hence the 

recombination outside QDs is totally suppressed. The only remaining component of jth is the 

recombination current density in QDs, jQD [the first term in the right-hand side of (2.15) and 

(2.17)]. Under the condition of charge neutrality in QDs [ fn = fp = const (T) – see (2.25)], this 

component is temperature-independent and hence so is jth. 

The tunneling coefficients are strongly controlled by the thicknesses of barriers 

separating QDs from the QWs as well as the QD and QW parameters. Using the universal 
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dependence of the characteristic temperature on Lw tunnp,  and Rw tunnn,  shown in Fig. 2.10, the 

dependences on each of the parameters controlling the tunneling coefficients can be obtained. 

In commercial InP-based telecommunication lasers, the temperature-sensitivity of the 

threshold current can also be affected by the thermal leakage of minority carriers over the 

heterobarriers between the OCL and cladding layers and recombination in the latter [17]. As seen 

from Fig. 2.3 and discussed above, the role of recombination in the OCL is negligible compared 

to that in the QWs. In other words, the out-tunneling flux of minority carriers from QDs is 

mainly consumed by the recombination in the QWs — this flux practically does not appear in the 

OCL. For this reason, the recombination in the cladding layers, which could only be fed by the 

thermal leakage of minority carriers from the OCL, can be safely neglected in a tunneling-

injection QD laser. 

2.6. Conclusion 

We studied the threshold characteristics of a laser, in which electrons and holes are 

injected into QDs by tunneling from two separate QWs. We developed an extended theoretical 

model allowing for out-tunneling leakage of carriers from QDs and hence recombination outside 

QDs. The carrier densities, threshold current density jth, and characteristic temperature T0 have 

been calculated as functions of temperature and structure parameters. The recombination in the 

QWs has been shown to control jth and T0. Even in the presence of out-tunneling from QDs and 

recombination outside QDs, T0 has been shown to remain very high (above 300 K at room 

temperature) and not significantly affected by the QD size fluctuations, which is a clear 

manifestation of robustness of the tunneling-injection QD laser. 
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Chapter 3 

Output Power of a Tunneling-Injection 

Quantum Dot Laser 

Summary 

A comprehensive theoretical model for a tunneling-injection quantum dot (QD) laser is 

developed. Both electrons and holes are injected into QDs by tunneling from two separate 

quantum wells (QWs). Ideally, out-tunneling of each type of carriers from QDs into the opposite-

to-injection-side QW should be completely blocked; as a result, the parasitic electron-hole 

recombination outside QDs will be suppressed and the light-current characteristic (LCC) of a 

laser will be strictly linear. To scrutinize the potential of a tunneling-injection QD laser for high-

power operation and the robustness of an actual device, our model includes out-tunneling 

leakage of carriers from QDs. The numerical calculations are complimented by an analytical 

model and closed-form expressions for the LCC and carrier population across the layered 

structure are derived. Even in the presence of out-tunneling leakage, the intensity of parasitic 

recombination outside QDs is shown to remain restricted with increasing injection current. As a 

consequence, the LCC of a tunneling-injection QD laser exhibits a remarkable feature — it 

becomes increasingly linear, and the slope efficiency grows closer to unity at high injection 

currents. The linearity is due to the fact that the current paths connecting the opposite sides of the 

structure lie entirely within QDs — in view of the three-dimensional confinement in QDs, the 

out-tunneling fluxes of carriers from dots are limited. 

3.1. Introduction 

A semiconductor quantum dot (QD) is a zero-dimensional (0-D) heterostructure formed 

by growth of an island of a lower band-gap material within a wider band-gap matrix. Due to 

quantum-confinement in all three directions, the energy spectrum of electrons and holes is 

discrete in a QD. There has been much effort to use QDs as an active region in diode lasers. In 

the ‘conventional’ design of QD lasers, the carriers are first injected from the cladding layers into 
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a bulk reservoir, which also serves as the optical confinement layer (OCL) and includes a two-

dimensional (2-D) wetting layer, and then captured into QDs. Fig. 3.1 shows the energy band 

diagram of a conventional QD laser and the main processes. Due to bipolar (i.e., both electron 

and hole) population in the reservoir, a certain fraction of the injection current goes into the 

electron-hole recombination there (vertical arrows ② in Fig. 3.1). The parasitic recombination 

outside QDs is a major source of temperature-dependence of the threshold current. In addition, 

the carrier capture from the reservoir into QDs is not instantaneous. For this reason, the carrier 

density in the reservoir and hence the parasitic recombination rate rise, even above the lasing 

threshold, with injection current. This leads to sublinearity of the light-current characteristic 

(LCC) and limits the output power (Fig. 3.2), especially at high pump currents [1]-[3]. Hence, 

suppression of this parasitic recombination would be expected to significantly enhance the 

temperature stability and the output optical power of a laser. 

In [4]–[6], to suppress the recombination outside QDs and thus to significantly improve 

the temperature-stability of the laser, tunneling-injection of both electrons and holes into QDs 

was proposed from two separate QWs. 

In this chapter, we develop a comprehensive theoretical model for the optical power of a 

tunneling-injection QD laser [A1]-[A3]*). 

3.2. Theoretical model 

The energy band diagram of the structure is shown in Fig. 2.2 in chapter 2. A single layer 

with QDs, located in the central part of the OCL, is clad on each side by a thin barrier and a QW. 

Electrons (holes) are injected into QDs by tunneling from the left- (right-) hand-side QW. The 

key idea of the device is that the QWs are not connected by a current path that bypasses QDs, 

which in particular assumes that (i) there is no thermal escape of carriers from the QWs over the 

barriers separating them from the QD layer, and (ii) there is no tunneling between the QWs 

through the material separating QDs in the QD layer. To realize this idea, certain conditions must 

be met, which were described in [4]–[6]. We discuss in this section the details of our extended 

model for a tunneling-injection QD laser. 

                                                 
 
*) “A” in the reference number indicates the publications of the author of this dissertation. 
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Fig. 3.1. Energy band diagram of a conventional QD laser and the main 
processes: ① injection from the cladding layers to the OCL, ② spontaneous 
recombination in the OCL, ③ carrier capture from the OCL into a QD, ④ 
carrier thermal escape from a QD to the OCL, and ⑤ spontaneous and 
stimulated recombination in a QD. 

 

Fig. 3.2. LCC of a conventional QD laser. (Reprinted from Fig. 15 of ref. [3], 
Copyright (2000), with permission from Elsevier.) 



48 

3.2.1. Main assumptions 

1) Fig. 2.2 shows the most optimum situation [4]–[6], when the lowest subband edge for 

majority carriers in the QW is in resonance with the energy level for the corresponding 

type of carriers in the average-sized QD, and hence the tunneling-injection rate is at its 

maximum. To also account for other possible situations, our model includes both direct 

and indirect tunneling — the effective tunneling rate from the entire QW-subband into 

the QD ensemble is used (see below). 

2) Ideally, there should be no second tunneling step, i.e., out-tunneling from QDs into the 

‘foreign’ QWs (electron-injecting QW for holes, and hole-injecting QW for electrons). 

As a result, there will be no electrons (holes) in the hole- (electron-) injecting side of the 

structure. As shown below, the total suppression of bipolar population and, consequently, 

of recombination outside QDs leads to an ideal LCC (i.e., a linear LCC with the slope 

efficiency equal to unity). 

Out-tunneling into the foreign QWs cannot be completely blocked in actual devices. 

Fig. 2.2 shows an optimized structure, in which the lowest subband edge for minority 

carriers in the QW is misaligned from the energy level for the corresponding type of 

carriers in the average-sized QD. Even in such a structure, there will be an indirect out-

tunneling (shown by the inclined arrows in Fig. 2.2 in chapter 2) — electrons (holes) as 

minority carriers will appear in the hole- (electron-) injecting QW. Then they will 

thermally escape to the right- (left-) hand side of the OCL where holes (electrons) are the 

majority carriers. As a result, a bipolar population will establish outside QDs, and 

parasitic recombination will occur. Our model includes these processes and addresses 

their effect on the device characteristics. 

3) We reasonably assume that the conduction (valence) band offset at the heteroboundary 

between the p- (n-) cladding and the OCL is large enough to block the further thermal 

escape of electrons (holes) to the p- (n-) cladding layer. In such a typical situation, the 

current in the p- (n-) cladding (including the boundary with the OCL) is purely hole 

(electron) current. Hence, the total injection current density j will enter into the rate 

equation for free electrons (holes) in the left- (right-) hand side of the OCL [see equations 

(2.2) and (2.4) in chapter 2]. 

4) The internal optical loss, αint, is set zero here. 
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3.2.2. Rate equations and main notations 

Our model is based on rate equations, which include the main processes in the layered 

structure. With the above assumptions, we have the set of equations (2.2)–(2.12) in chapter 2. 
The fluxes and physical quantities entering into (2.2)–(2.12) are presented in Tables 2.1 and 2.2, 

respectively. 
We denoted the thermal escape times of electrons and holes from the QWs to the OCL by 

RL,
escp,n,τ  and the capture velocities from the OCL to the QWs by RLv ,

capt p,n, . These quantities are 

related to each other. It is the capture velocity that describes the carrier capture to a QW [7, 8]. 

The general expression relating escp,n,τ  and capt p,n,v  is derived in Appendix I using the detailed 

balance condition. For undoped OCL and QW, the relation reads as follows: 

 
1

2D
c

captn,
escn,

1
n

N
v

=τ ,  
1

2D
v

captp,
escp,

1
p

N
v

=τ ,       (3.1) 

where ( )2QW
vc,

2D
vc, hπTmN =  are the 2-D effective densities of states in the conduction and 

valence bands in the QWs, QW
vc,m  are the electron and hole effective masses in the QWs, and the 

temperature T is measured in units of energy. 

The quantities n1 and p1 are 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

T
ENn

QW
nc3D

c1
∆exp ε ,  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

T
E

Np
QW
pv3D

v1

∆
exp

ε
,     (3.2) 

where ( )[ ] 2/32OCL
vc,

3D
vc, 22 hπTmN =  are the three-dimensional (3-D) effective densities of states in 

the conduction and valence bands in the OCL, OCL
vc,m  are the electron and hole effective masses in 

the OCL, vc,∆E  are the conduction and valence band offsets between the OCL and the QW 

(Fig. 3.3), and QW
pn,ε  are the energies of the lowest electron- and hole-subband edges in the QW 

(Fig. 3.3). 

We exploit four tunneling coefficients, RLw ,
 tunnp,n,  (measured in units of cm2/s), for electron 

and hole tunneling between the QD ensemble and the QWs. These tunneling coefficients are 

primarily controlled by the thicknesses and material parameters of the barriers, and by the QD 
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and QW parameters as well. In a properly designed structure, Lw  tunnn,  and Rw  tunnp,  should be large, 

and Lw  tunnp,  and Rw  tunnn,  small.  

The quantities QW , ,
1

RLn  and QW , ,
1

RLp  entering into the electron and hole tunneling fluxes 

from the QD ensemble to the QWs [see (2.6)–(2.11)] are measured in units of cm-2. The general 

expressions for QW
1n  and QW

1p  are derived in Appendix II. In the case of an undoped QW and a 

resonance between the energy level in a QD and the lowest subband edge in a QW, 

2D
c

QW,
1 NnL = ,  2D

v
QW,

1 NpR = .        (3.3) 

As seen from (2.2)–(2.9), the equations for the carrier densities in the right-hand-side QW 

and OCL are similar to those in the left-hand side. For this reason, we will analyze the rate 

equations and their solutions for the carrier densities in the left-hand side only. The solutions in 

the right-hand side are easily obtained from those in the left-hand side by an exchange between 

the electron and hole densities “n” and “p” and the left- and right-hand-side indices “L” and “R”. 

To optimize the device, it is desirable to maximize the net in-tunneling flux of electrons, 

n
QW,

1tunnn,QWntunnn, )1( fNnwnfNw S
LLL

S
L −− , from the electron-injecting QW into QDs in (2.6) and 

(2.10) and minimize the net out-tunneling flux of holes, L
S

L
S

LL pfNwfNpw QWptunnp,p
QW ,

1tunnp, )1( −− , 

from QDs to the electron-injecting QW in (2.7) and (2.11). 

The flux of electron (and similarly hole) tunneling from a QD ensemble to a QW can be 

written as 

QWQD
tunnn,

n
n

QW
1tunnn, →=

τ
fNfNnw SS ,        (3.4) 

where 

 QW
1tunnn,

QWQD
tunnn,

1
nw

=→τ          (3.5) 

can be viewed as the tunneling time from a QD to a QW. 

The flux of electron tunneling from a QW to a QD ensemble can be written as 

 ( ) QDsQW
tunnn,

QW
QWntunnn, 1 →=−

τ
n

nfNw S ,        (3.6) 

where 
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n

QDsQW
tunn,0n,QDsQW

tunnn, 1 f−
=

→
→ τ

τ          (3.7) 

can be considered as the tunneling time from a QW to a QD ensemble, and 

 
SNw tunnn,

QDsQW
tunn,0n,

1
=→τ          (3.8) 

can be correspondingly considered as the tunneling time into an unoccupied QD ensemble (when 

fn = 0). 

As seen from (3.5) and (3.8), the tunneling times QWQD
tunnn,

→τ  and QDsQW
tunn,0n,

→τ  are not the same. 

In contrast to QWQD
tunnn,

→τ , which describes tunneling from an individual QD to a QW, QDsQW
tunn,0n,

→τ  

describes tunneling from a QW to the entire QD ensemble — the surface density of QDs, NS, i.e., 

a characteristic of the entire QD ensemble, enters into eq. (3.8) for QDsQW
tunnn,

→τ . Both QWQD
tunnn,

→τ  and 

QDsQW
tunn,0n,

→τ  are expressed in terms of a single coefficient tunnn,w . For these reasons and to avoid 

possible confusion, we will not use here two separate times QWQD
tunnn,

→τ  and QDsQW
tunnn,

→τ  for tunneling 

between a QD ensemble and a QW. Instead, we use a single parameter – the tunneling 

coefficient tunnn,w . 

3.3. Results and discussion 

We consider a continuous-wave operation of the laser and correspondingly use the 

steady-state rate equations in chapter 2 

( ) 0,,,,,,,,,, pnQWQWQWQW2211 =
∂
∂ NfNfNpnpnpbnbpbnb
t SS

RRLL
RRLL ,     (3.9) 

which are eleven equations in total. These equations do not, however, constitute a complete set 

for finding eleven unknowns ( Ln , Lp , Rn , Rp , LnQW , LpQW , RnQW , RpQW , nf , pf , and N ). It is 

easily shown that only nine out of ten equations (2.2)–(2.11) are independent at the steady-state, 

which is to say that the set should be complemented by one more equation. The equation is 

provided by the condition of charge neutrality in QDs (see below). 
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Fig. 3.3. Conduction band diagram in the left-hand (electron-injecting) side of the 
structure. The Fermi level eqµ  is shown solely as an illustration to the derivations of 
Appendixes I and II for the equilibrium case. No equilibrium is assumed under lasing 
conditions. 

Above the lasing threshold, the number of stimulated photons is nonvanishing ( 0≠N ). 

To satisfy eq. (2.12) at the steady-state at nonvanishing N, the following lasing condition should 

hold: 

( ) β=−+ 1pn
max ffg ,       (3.10) 

which is the condition of equality of the modal gain to the mirror loss at and above the lasing 

threshold (the internal optical loss is not considered here — see assumption  # 4). 

Using the steady-state rate equations and introducing the photon lifetime in the cavity, 

            
β

τ 1g
ph c

∈
= ,       (3.11) 

the following expression is obtained for the number of photons N and output power P: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−−−== RRLL

RRLL
S pBnebpBnebpneBpneB

ff
eNjS

e
NP 21QWQW2DQWQW2D

QD

pn

ph τ
ω

τ
ω h
h ,   (3.12) 
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where ћω is the photon energy. Expression (3.12) is general and holds no matter what a specific 

model is for the carrier capture from the OCL to QWs, escape from QWs to the OCL, and 

tunneling between QWs and QDs. What it means is that the stimulated emission is produced by 

an excess of the injection current density j over the current densities of spontaneous 

recombination in QDs (second term in the brackets), QWs (third and fourth terms), and OCL 

(last two terms). 

The confined-carrier level occupancies in QDs, 2D-carrier densities in the QWs, and free-

carrier densities in the OCL depend on the pump current density j. To calculate the LCC [i.e., P 

versus j given by (3.12)], these dependences should be found from the solution of the rate 

equations. We start with an ideal structure and next consider a structure with out-tunneling 

leakage from QDs. 

3.3.1. Ideal structure: no out-tunneling from QDs, no recombination outside 

QDs 

If out-tunneling from QDs into the foreign QWs is completely blocked [ Lw tunnp,  and Rw tunnn,  

are set zero in the rate equations (2.2)–(2.12)], there will be no minority carriers outside QDs 

( Lp , LpQW , RnQW , Rn  = 0). The injection current will entirely go into the spontaneous and 

stimulated recombination in QDs. Eq. (3.12) will read as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

QD

pn

τ
ω ff

eNjS
e

P S
h .      (3.13) 

In general, the level occupancies pn,f , and hence the spontaneous recombination current 

density in QDs, ( )QDpn τffeNS , can depend on the injection current density j. Whatever the 

dependence is, pn,f  cannot exceed unity; consequently, ( )QDpn τffeNS  cannot exceed QD/τSeN . 

For typical values of the surface density of QDs NS (below 1011 cm-2) and spontaneous radiative 

recombination time in QDs QDτ  (around 1 ns), QD/τSeN  is less than 20 A/cm2. This means that 

for j > 100 A/cm2, the spontaneous recombination term can be safely neglected compared to j in 

(3.13). Hence, the LCC of an ideal tunneling-injection QD laser, in which out-tunneling from 

QDs is completely blocked, is virtually linear and the slope efficiency is unity. The reason is that 
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the only remaining channel of nonstimulated recombination in this case is the spontaneous 

recombination in QDs, which is weak. 

Let us show that the initial portion of the LCC [for which the term ( )QDpn τffeNS  cannot 

be neglected in (3.13)] is also linear. If charge neutrality holds in QDs ( pn ff = ), we immediately 

obtain from (3.10) that the level occupancies are pinned at their threshold value and do not 

depend on the injection current, 

)(const1
2
1

maxpn j
g

ff =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+==

β .     (3.14) 

In this case, ( ) )const(QDpn jffeNS =τ . As discussed in [2] in the context of conventional QD 

lasers, violation of charge neutrality ( pn ff ≠ ) can disrupt pinning the level occupancies and lead 

to their dependence on the pump current (just as it leads to the temperature-dependence [9, 10]). 

Denoting ∆ = fp – fn , we have from (3.10) 

)(∆
2
11

2
1)( maxpn, j

g
jf m⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

β ,      (3.15) 

where “−” and “+” correspond to “n” and “p” subscripts, respectively. With (3.13) and (3.15), 

the output power can be written as 
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j
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eNjS
e

jP S β
τ

ωh .     (3.16) 

Since fp and fn are less than unity, so is their difference ∆ . As seen from (3.16), violation of 

charge neutrality in QDs appears as a second-order effect ( 2∆ ) in the expression for the LCC. 

Hence, in both cases of neutral and charged QDs, the LCC of an ideal tunneling-injection QD 

laser is also linear at low j. 

3.3.2. Structure with out-tunneling leakage from QDs and recombination 

outside QDs 

In an actual structure, there can be out-tunneling into the foreign QWs (Fig. 2.2 in 

chapter 2). For this reason, the electron-hole recombination outside QDs cannot be completely 
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suppressed. Hence, the rate equations (2.2)–(2.12) should be solved in the general case of 

nonvanishing tunneling coefficients Lw tunnp,  and Rw tunnn, . 

We assume charge neutrality in QDs and use (3.14) for the level occupancies. The 

derivations lead to a quartic equation in LnQW , solution of which provides us LnQW  as a function of 

j. The other carrier densities in the left-hand side of the structure ( LpQW , Ln , and Lp ) are 

expressed in terms of LnQW . Similarly, the carrier densities in the right-hand side are expressed in 

terms of RpQW . Finally, the number of photons and output power are found from (3.12) as 

functions of j. 

Under the conditions of negligible recombination in the OCL (up to high injection current 

densities – see Appendix III), solving the rate equations simplifies considerably — closed-form 

expressions are obtained for the carrier densities and output power as functions of j 

(Appendix IV). 

Several general conclusions can be easily made from the analysis of the rate equations. 

At the steady-state, eq. (2.3) for free holes in the left-hand side of the OCL can be written 

as follows: 

LLL
L

L

pBnbpv
p

1captp,
escp,

QW +=
τ

.      (3.17) 

Substituting LLL
LL pBnbpvp 1captp,escp,QW/ =−τ  in (2.7), we have 

L
S

L
S

LL
LL

LL pfNwfNpwpBnbpnB QWptunnp,p
QW,

1tunnp,1QWQW2D )1( −−=+ .    (3.18) 

As seen from (3.18), bimolecular recombination in the left-hand-side QW and OCL is entirely 

due to the net out-tunneling of holes from QDs to the QW. 

Substituting LL
L

L
L pBnbejnnv 1escn,QWcaptn, // −=− τ  [see (2.2)] in (2.6), we have 

[ ]n
QW,

1tunnn,QWn tunnn,1QWQW2D )1( fNnwnfNw
e
jpBnbpnB S

LLL
S

L
LL

LL −−−=+ .   (3.19) 

As seen from (3.19), the flux of bimolecular recombination in the left-hand-side QW and OCL 

can alternatively be presented as the difference of the electron injection flux ej  and the net in-
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tunneling flux of electrons from the QW to QDs. In other words, the electron flux, which does 

not enter QDs, can only be consumed via recombination with holes outside QDs. 

 By dropping in (3.18) the flux L
S

L pfNw QWptunnp, )1( −  of backward tunneling of holes from 

the electron-injecting QW to QDs, we get the upper limit for the parasitic recombination flux in 

the left-hand side of the structure. Since 1pn, ≤f , this limit, which presents the out-tunneling flux 

p
QW,

1tunnp, fNpw S
LL  of holes from QDs to the foreign (electron-injecting) QW, is itself restricted 

and cannot exceed S
LL Npw QW,
1tunnp,  at any j (under the condition of charge neutrality [see (3.14)], 

p
QW,

1tunnp, fNpw S
LL  is pinned and does not change with j). Consequently, the recombination flux in 

the left-hand-side QW and OCL is limited by S
LL Npw QW,
1tunnp, , 

constQW,
1tunnp,p

QW,
1tunnp,1QWQW2D =<<+ S

LL
S

LL
LL

LL NpwfNpwpBnbpnB .   (3.20) 

 The parasitic recombination current density [the sum of the last four terms in the 

brackets in (3.12)] and the out-tunneling current density, 

n
QW,

1tunnn,p
QW,

1tunnp,tunnout fNnewfNpewj S
RR

S
LL +=− ,     (3.21) 

are shown in Fig. 3.4 versus the excess injection current density j – jth (solid curve and horizontal 

dashed line, respectively). 

The fact that the parasitic recombination flux outside QDs remains limited with increasing j 

is due to a 0-D nature of QDs — QDs constrain the carrier transfer between the opposite sides of 

the structure. If a QW or quantum wires would be used instead of QDs, the out-tunneling fluxes 

would be controlled by the 2-D or 1-D carrier densities, which, unlike fn,p, would not be limited; 

accordingly, the parasitic recombination flux would not be limited. 

With (3.18) and a similar equation for the right-hand side of the structure, eq. (3.12) can be 

rewritten as follows: 
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Fig. 3.4. Parasitic recombination current density in the QWs and OCL (solid 
curve) and current density of out-tunneling from QDs to the foreign QWs 
(horizontal dashed line) against excess injection current density. A GaInAsP 
heterostructure lasing near the telecommunication wavelength 1.55 µm  is 
considered here. Room-temperature operation is assumed (T = 300 K). The 
parameters of the structure are as follows: δ = 0.05 (10% QD size 
fluctuations), NS = 6.11 × 1010 cm-2, L = 1.139 mm, R = 0.32, β = 10 cm-1, W 
= 2 µm, τQD = 0.71 × 10-9 s, gmax = 29.52 cm-1, b1 = b2 = 0.14 µm, RLv ,

captp,n,  = 
3 × 105 cm/s, λ = 1.58 µm, B = 1.27 × 10-10 cm3/s, and B2D = 2.8 × 10-
4 cm2/s. In Figs. 2.3-10, the tunneling coefficients are as follows unless 
otherwise specified: Lw tunnn,  = 0.073 cm2/s, Lw tunnp,  = 0.04 cm2/s, Rw tunnn,  = 

0.013 cm2/s, and Rw tunnp,  = 0.058 cm2/s. The threshold current density is  jth = 
389 A/cm2. (Reprinted with permission from Fig. 2 of ref. [A1]. Copyright 
[2008], American Institute of Physics.) 
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 Whatever the dependences of LpQW  and RnQW  on  j, it is clear from (3.22) that by dropping 

the last two terms in the brackets (the current densities of backward tunneling of minority 

carriers from the foreign QWs to QDs) we will obtain the lower limit for the output power, 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−= n

QW,
1tunnn,p

QW,
1tunnp,

QD

pnlowest fNnewfNpew
ff

eNjS
e

P S
RR

S
LL

S τ
ωh .   (3.23) 

Since fn,p ≤ 1, the last three terms in the brackets in (3.23) remain restricted with increasing  

j. Under the condition of charge neutrality in QDs, they are constant and, as clear from (3.22) 

and (3.23), their sum presents the upper limit for the threshold current density, 

n
QW,

1tunnn,p
QW,

1tunnp,
QD

pnhighest
th fNnewfNpew

ff
eNj S

RR
S

LL
S ++=

τ
.    (3.24) 

With (3.24), eq. (3.23) reads as 

     ( )highest
th

lowest jjS
e

P −=
ωh .      (3.25)  

The upper limit for the output power is obtained in an ideal structure discussed above and is 

given by (3.13), which we rewrite as follows: 

( )lowest
th

highest jjS
e

P −=
ωh ,      (3.26) 

where 

       
QD

pnlowest
th τ

ff
eNj S=        (3.27) 

is the lower limit for the threshold current density. 

As seen from (3.25), the lower limit for the LCC is linear (dash-dotted line in Fig. 3.5) 

and its slope efficiency is unity. It is parallel to the upper limit [given by (3.26) and shown by the 

dashed line in Fig. 3.5] and shifted from the latter by the amount of the out-tunneling current 

density, tunnout −j . 
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Fig. 3.5. Light-current characteristic of a tunneling-injection QD laser (solid curve) 
at different values of the out-tunneling coefficient Lw tunnp, : (a) 0.04, (b) 0.1, and (c) 
0.16 cm2/s. The threshold current density is jth = 389, 457, and 479 A/cm2 in (a), (b), 
and (c), respectively. The dashed line is the LCC of an ideal structure given by 
(3.26); lowest

thj  = 6.21 A/cm2 [see (3.27)]. The dash-dotted line is the asymptote 
given by (3.25); highest

thj  [see (3.24)] is 1323, 3242, and 5161 A/cm2 in (a), (b), and 
(c), respectively. (Reprinted with permission from Fig. 2 of ref. [A1]. Copyright 
[2008], American Institute of Physics.) 
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Hence, the actual LCC (obtained from the solution of the rate equations and shown by the 

solid curve in Fig. 3.5) is confined between the two parallel lines given by (3.25) and (3.26) 

(dash-dotted and dashed lines in Fig. 3.5). As seen from the figure and analysis below, the lower 

limit (3.25) presents the asymptote of the actual LCC at high injection currents. 

From (3.22), we have for the slope efficiency (external differential efficiency) 
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ntunnn,
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ωη
h

.   (3.28) 

Since ηext should not be higher than unity, the derivatives of LpQW  and RnQW  with respect to j 

should be negative — the minority carrier density in each of the two QWs decreases with j 

(Fig. 3.6). Hence, the last two terms in the brackets in eq. (3.22) decrease with increasing j and 

the LCC asymptotically approaches the straight line given by (3.25) (Fig. 3.5). 

The output power can be written as 

)()()()( intthstim jjjS
e

jjS
e

jP ηωω
−==

hh ,     (3.29) 

where 

        
ph

stim τ
N

S
ej =        (3.30) 

is the stimulated recombination current density and 

        
th

stim
int jj

j
−

=η        (3.31) 

is the internal differential quantum efficiency. Since the parasitic recombination current density 

remains restricted [see (3.20) and Fig. 3.4], ηint, which presents the fraction of the excess 

injection current density j – jth that goes into the stimulated emission, should rise with j (dashed 

curve in Fig. 3.7). As a result, the LCC should become increasingly linear (Fig. 3.5). 

With (3.29), the slope efficiency ηext is expressed in terms of ηint , 

j
jj

∂
∂

−+= int
thintext )( ηηη .      (3.32) 
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Fig. 3.6. Minority carrier density in the left-hand-side QW (left axis) and 
OCL (right axis) against excess injection current density. In view of a linear-
proportionality relationship (A24), the same curve depicts LpQW  and Lp . 
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Fig. 3.7. Internal quantum efficiency (dashed curve) and slope efficiency 
(solid curve) against excess injection current density. (Reprinted with 
permission from Fig. 3 of ref. [A1]. Copyright [2008], American Institute 
of Physics.) 
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Fig. 3.8. Majority carrier density in the left-hand-side QW (solid curve, left 
axis) and OCL (dashed curve, right axis) against excess injection current 
density. 

Since ηint increases with j, ηext (solid curve in Fig. 3.7) also increases and is higher than ηint as is 

clear from (3.32). We did not consider the internal optical loss αint; the inclusion of αint will 

reduce the optical efficiency of the cavity, β/(β + αint), and hence ηext. 

The density of minority carriers in the left-hand-side QW and OCL is shown in Fig. 3.6. 

As discussed above, the minority carrier density in the QW (holes in the left-hand side) decreases 

with j. The minority carrier density in the OCL is directly related to that in the QW [see eq. 

(A24) in Appendix IV] and hence also decreases. 

The density of majority carriers in the left-hand-side QW and OCL is shown in Fig. 3.8. 

Since majority carriers (electrons in the left-hand side) are supplied by injection, their density in 

the OCL and QW increases with pump current. 

Auger recombination of electrons with holes in the OCL and QWs can be easily included 

in our model. In that case, the total parasitic recombination flux (the sum of the fluxes of 

bimolecular radiative recombination and trimolecular nonradiative Auger recombination) will 

enter into the left-hand side in (3.18) and will be equal to the net out-tunneling flux of minority 

carriers from QDs. Hence, the total parasitic recombination flux will remain limited with 

increasing  j and all our conclusions about the LCC of a tunneling-injection QD laser will hold in 
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the presence of Auger recombination. In particular, the lower limit for the LCC and the upper 

limit for the threshold current density will be given by eqs. (3.23) and (3.24), respectively. 

3.3.2.1. Laser characteristics versus tunneling coefficients 

As discussed above, due to the fact that QDs are 0-D regions with a limited population 

( 1pn, ≤f ), the out-tunneling fluxes of minority carriers from QDs into the foreign QWs 

( p
QW,

1tunnp, fNpw S
LL  and n

QW,
1tunnn, fNnw S
RR ) are also limited [see (3.20)]. Although the level 

occupancies fn,p depend on the cavity length and other parameters of the structure, they can only 

change from 1/2 to 1 in the case of neutral QDs [see (3.14)]. The surface density of QDs can also 

be varied within a limited range (typically, from several 1010 to 1011 cm-2). In contrast to fn,p and 

SN , the tunneling coefficients Lw tunnp,  and Rw tunnn,  depend strongly on the barrier thicknesses and 

can be easily varied within a wide range. Hence, for a given choice of materials for QDs, barriers, 

and QWs, the out-tunneling fluxes of minority carriers are mainly controlled by Lw tunnp,  and 

Rw tunnn, . 

As shown in Appendix III, up to high injection current densities, the recombination in the 

OCL is negligible. What this means is that the out-tunneling fluxes of minority carriers from 

QDs are mainly consumed by the recombination in the QWs. Fig. 3.9 shows LnQW  and LpQW  and 

the recombination current density in the QW, LLL pneBj QWQW2DQW = , versus the tunneling 

coefficient Lw tunnp, . The hole density in the left-hand-side QW, which is entirely due to out-

tunneling, increases considerably with Lw tunnp,  [Fig. 3.9(b)]. The recombination in the QW should 

become more intense with increasing Lw tunnp, . For this reason, the electron density decreases with 

increasing Lw tunnp,  [Fig. 3.9(a)]; the decrease is however negligible since electrons are majority 

carriers in the left-hand-side QW. Both LnQW  and LpQW  saturate as ∞→Lw tunnp, . The barriers 

separating the QD layer from the QWs should block out-tunneling of minority carriers from QDs  

yet allowing for in-tunneling of majority carriers into QDs. It is therefore clear that, in the 

limiting case of infinitely large tunneling coefficients Lw tunnp,  and Rw tunnn,  for minority carriers, the 

tunneling coefficients Lw tunnn,  and Rw tunnp,  for majority carriers will also be infinitely large. The 
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expressions for the saturation values of LnQW  and LpQW  [obtained from (A28) and (A29)] are as 

follows: 

n

nQW,
1QW 1tunnp,n, f

fnn L

w
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,      (3.33) 
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L
L −

=
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.      (3.34) 

The horizontal dashed lines in Fig. 3.9(a) and (b) show these saturation values. 

Due to the saturation of LnQW  and LpQW , the recombination current density in the QW, 

LLL pneBj QWQW2DQW = , also saturates with increasing Lw tunnp,  [Fig. 3.9(c)]. 

With the equilibrium level occupancies in a QD, 
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where QD
pn,ε  are the energy levels of an electron and a hole in a QD and pn,µ  are the quasi-Fermi 

levels of electrons and holes, we would obtain from (3.33) and (3.34) the equilibrium densities in 

the QW, 
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,   (3.36) 

where QW
pn,ε  are the energies of the electron- and hole-subband edges in the QW (the quantities 

for electrons, QD
nε , QW

nε , and nµ , are shown in Fig. 3.3). Hence, expressions (3.33) and (3.34) 

present the quasi-equilibrium relation between the carrier densities in the QW and level-

occupancies in a QD; this is easily understood — the limiting case of ∞→RLw ,
tunnp,n,  describes an 

instant carrier exchange between the QWs and QDs. 

Eq. (3.34) can also be readily obtained from (A30) by neglecting at large Lw tunnp,  the 

recombination flux in the QW, LL pnB QWQW2D , compared to the fluxes of out-tunneling from QDs, 

p
QW,

1tunnp, fNpw S
LL , and backward-tunneling into QDs, L

S
L pfNw QWptunnp, )1( − . The balance between 

the two tunneling fluxes yields the quasi-equilibrium relation (3.34). 



65 

0.0 0.2 0.4
0.90055

0.90060

0.90065

w  L
p, tunn (cm2/s)

El
ec

tr
on

 d
en

si
ty

 in
 th

e
 Q

W
, n

L Q
W

 (
×

 10
12

 c
m

-2
)

(a)

   

     

0.0 0.2 0.4
0

5

10

w  L
p, tunn (cm2/s)

H
ol

e 
de

ns
ity

 in
 th

e
 Q

W
, p

L Q
W

 (
×

 10
12

 c
m

-2
)

(b)

 

     

0.0 0.2 0.4
0

200

400

R
ec

om
bi

na
tio

n 
cu

rr
en

t 
de

ns
ity

 in
 th

e 
Q

W
,  

j L Q
W

 (
A

/c
m

2 )

w  L
p, tunn (cm2/s)

(c)

 

Fig. 3.9. 2-D density of electrons (a) and holes (b) and recombination 
current density (c) in the left-hand-side QW against out-tunneling 
coefficient at an infinitely large in-tunneling coefficient ( ∞→Lw tunnn, ). The 
injection current density is j = 10 kA/cm2. The horizontal dashed lines in 
(a) and (b) show the saturation values of LnQW  and LpQW  given by (3.33) 
and (3.34), respectively. The horizontal dashed line in (c) shows the 
saturation value of LLL pneBj QWQW2DQW = . 
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Fig. 3.10. Threshold current density against out-tunneling coefficients at 
infinitely large in-tunneling coefficients ( ∞→RL ww tunnp,tunnn, , ). The jth 

value at 0, tunnn,tunnp, =RL ww  (the ideal case) is given by (3.27) and is 
6.21 A/cm2. The saturation value of jth is given by (3.37). 

Since the recombination current density outside QDs [the sum of the last four terms in the 

brackets in (3.12)] increases and saturates with increasing Lw tunnp,  and Rw tunnn, , so does the 

threshold current density (Fig. 3.10). As a result, the output power (at a given injection current) 

decreases and also saturates (Fig. 3.11). The expression for the saturation value of jth can be 

obtained by assuming that, in addition to instant exchange between the QWs and QDs, the carrier 

exchange between the OCL and QWs is also instantaneous ( L,Rv captp,n, → ∞ or, equivalently, L,R
escp,n,τ  

→ 0). In such a case, quasi-equilibrium distributions will establish for electrons and holes 

throughout the structure and the threshold current density will be given by 
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Fig. 3.11. Optical power against out-tunneling coefficients at 
infinitely large in-tunneling coefficients ( ∞→RL ww tunnp,tunnn, , ). The 
injection current density is j = 10 kA/cm2. The P value at 

0, tunnn,tunnp, =RL ww  (the ideal case) is given by (3.26) and is 
179 mW. The saturation value of P is given by (3.38). 

where the terms in the brackets are the equilibrium carrier densities in the corresponding parts of 

the structure. In Fig. 3.10, 
∞→L,RL,Rw

j
captp,n,tunnp,n, ,th ν

= 806 A/cm2. 

The equilibrium carrier densities will not change with increasing injection current above 

the lasing threshold. Hence, the spontaneous recombination fluxes will be pinned and the excess 

of the injection current over the threshold current will entirely go into the stimulated 

recombination — the internal quantum efficiency will be unity. The output power will be given 

by 

   ( )
∞→∞→

−= L,RL,RL,RL,R ww
jjS

e
P

captp,n,tunnp,n,captp,n,tunnp,n, ,th, νν

ωh .     (3.38) 

In Fig. 3.11, 165
captp,n,tunnp,n, , =

∞→L,RL,RwP
ν

 mW at j = 10 kA/cm2. 

It should be emphasized that the carrier exchange between the QWs and QDs and 

between the OCL and QWs cannot be instantaneous in an actual structure — the conditions 
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∞→RLw ,
tunnp,n,  and L,Rv captp,n, → ∞ were just used to derive expressions (48) and (49) for the 

saturation values of jth and P. For the same reason, the limiting case of ∞→RLw ,
tunnp,n,  does not 

describe a structure without the barriers — as discussed in the Introduction and in [1, 2], the 

carrier capture from the reservoir (be it OCL or QW) into QDs cannot be instantaneous. 

3.4. Conclusion 

Theory of optical power of a tunneling-injection QD laser has been developed. We have 

shown that tunneling-injection of electrons and holes into QDs from two separate QWs 

practically eliminates the adverse effect of the recombination outside QDs on the output power 

of such a laser. In an ideal device, out-tunneling of each type of carriers from QDs into the 

opposite-to-injection-side QW should be completely blocked; as a result, the parasitic 

recombination outside QDs will be suppressed and the LCC will be strictly linear. To scrutinize 

the potential of a tunneling-injection QD laser for high-power operation and the robustness of an 

actual device, we allowed for out-tunneling leakage of carriers from QDs. We have 

complemented our calculations by an analytical model and derived closed-form expressions for 

the LCC and carrier population in the OCL, QWs, and QDs. We have shown that, even in the 

presence of out-tunneling leakage in an actual device, the intensity of parasitic recombination 

outside QDs remains restricted with increasing injection current. Consequently, the LCC 

becomes increasingly linear, and the slope efficiency grows closer to unity at high injection 

currents. The linearity is due to the fact that the current paths connecting the opposite sides of the 

structure lie entirely within QDs — in view of the 3-D confinement in QDs, the out-tunneling 

fluxes of carriers from dots are limited. 
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Appendix I 

Relationship between the carrier escape time from a QW to a bulk region 

and the capture velocity from a bulk region to a QW 

For definiteness, we consider here electrons. The derivation and expressions for holes are 

similar. Under thermal equilibrium (no external voltage is applied to the structure and hence no 

current is injected), the flux eq
n,captnv  of electron capture from a bulk region (OCL) to a QW is 

equal to the flux n,esc
eq
QW τn  of the reverse process, i.e., of thermal escape from a QW to a bulk 

region, to give: 

captn,eq
QW

eq

escn,

1 v
n
n

=
τ

.        (A1) 

The equilibrium carrier density in a bulk region is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

T
EFNn c

eq

21
3D
c

eq ∆µ ,        (A2) 

where 3D
cN  is the 3-D effective density of states in the conduction band [see the expression for 

3D
cN  in the text after (3.2)], 21F  is the Fermi-Dirac integral of order one-half, eqµ  is the 

equilibrium Fermi level (measured from the conduction band edge in a QW), and cE∆  is the 

conduction band offset between the OCL and a QW (Fig. 3.3). 

The closed-form expression for the 2-D equilibrium carrier density in a QW is (see, e.g., 

[11]) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

T
Nn

QW
n

eq
2D
c

eq
QW exp1ln εµ ,       (A3) 

where 2D
cN  is the 2-D effective density of states in a QW [see the expression for 2D

cN  in the text 

after (3.1)] and QW
nε  is the energy of the lowest subband edge in a QW (Fig. 3.3). 

With (A2) and (A3), (A1) becomes 
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Neglecting the difference between the effective masses in a bulk region and a QW, the 

ratio of the 3-D to 2-D effective density of states can be written as 

TdB,
2D
c

3D
c

λ
π

=
N
N ,         (A5) 

where 

Tmc
TdB, 2

2 hπλ =          (A6) 

is the thermal de Broglie wavelength, i.e., the de Broglie wavelength of an electron having 

energy equal to the thermal energy T (alternatively, in an infinitely deep square QW of thickness 

2TdB,λ , the energy of the lowest quantized level is T). 

We can now write (A4) as 
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Eq. (A4) [or (A7)] presents the general relationship between the escape time and capture 

velocity. If both bulk and QW materials are nondegenerate (the Fermi level eqµ  is below QW
nε  by 

several T), which is the case of undoped OCL and QW considered here, then 
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With (A8) and (A9), eq. (3.1) is obtained from (A4), which can also be written in the form of eq. 

(1.3) of [7]. 
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Appendix II 

Quantities QW
1n  and QW

1p  in the tunneling 

fluxes of electrons and holes from QDs to a QW 

As in Appendix I, we use the detailed balance condition under thermal equilibrium – here, 

for the fluxes of carrier tunneling from a QW to QDs, eq
QW

eq
ntunnn, )1( nfNw S − , and from QDs to a 

QW, eq
n

QW
1tunnn, fNnw S . Thus we obtain 
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n
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QW 1 f
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−
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where eq
QWn  is given by (A3) and 
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is the equilibrium occupancy of the energy level QD
nε  in a QD (Fig. 3.3). 

With (A3), (A10), and (A11), we have for QW
1n  
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If a QW material is nondegenerate (which is the case of an undoped QW considered here), 

we have from (A9) and (A12) 
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QW
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The quantity QW
1n  (measured in units of cm-2) is a 2-D analog of 1n  (measured in units of 

cm-3) — while 1n  characterizes the electron excitation from a QW to a bulk region [and thus 
QW
nc∆ ε−E  and 3D

cN  enter into (3.2)], QW
1n  characterizes excitation from a QD to a QW [which is 

why QD
n

QW
n εε −  and 2D

cN  enter into (A13)]. 

If the energy level in a QD is in resonance with the subband edge in a QW ( QW
n

QD
n εε = ), 

eq. (3.3) is obtained from (A13). 
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Appendix III 

Criterion for neglecting the recombination in the OCL 

We derive here the criterion for neglecting the recombination flux in the left-hand side of 

the OCL compared to the hole capture flux from the OCL to the QW [in view of (3.17), also 

compared to the hole escape flux from the QW to the OCL, LLp escp,QW/τ ], i.e., the criterion for 

holding the inequality 

L
L

LL pvpBnb captp,1 << ,       (A14) 

or, equivalently, 

  L
L vBnb captp,1 << .       (A15) 

From (2.6) at the steady-state, we have 
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Since the left-hand side in (3.19) is positive, the right-hand side should also be positive to give: 
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Substituting the expression in the right-hand side of (A17) for LnQW  in the first two terms in the 

right-hand side in (A16), we obtain the following inequality: 
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Substituting p
QW,

1tunnp, fNpw S
LL  for LL pnB QWQW2D  [see (3.20)] in (A18), a stronger inequality is 

obtained, 
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or, by multiplying both sides of (A19) by b1B, 
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Table 3.1. Highest injection current densities (second and third columns) 
satisfying the criteria for neglecting recombination in, respectively, the left- 
and right-hand sides of the OCL [see (A21) for the left-hand side] at different 
values of the capture velocity from the OCL to the QWs. 

RLv ,
captp,n, (cm/s) j (A/cm2) j (A/cm2) 

3 × 105 7.3 × 106 7.8 × 106 

3 × 104 7.9 × 104 8.0 × 104 

1 × 104 8.3 × 103 8.9 × 103 

   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+⎥
⎦

⎤
⎢
⎣

⎡

−
+< p

QW,
1tunnp,

n

nQW,
1

escn,ntunnn,escn,captn,

1
1 1

1
)1(

111 fNpw
f

fn
e
j

fNwv
BbBnb S

LLL
L

S
LLLL ττ

.   (A20) 

As seen from (A20), a sufficient condition for holding (A15) is the condition that the 

right-hand side of (A20) is less than Lv captp, . Thus we arrive at the following criterion: 
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The capture velocities to QWs are typically on the order of 105 cm/s [7, 12, 13]. The 

second column in Table I shows the highest injection current density j satisfying (A21) at 

different values of Lv captp,n, . Even for a low capture velocity of 104 cm/s, (A21) satisfies up to j = 

8.3 kA/cm2. Hence, criterion (A21) for neglecting the parasitic recombination in the left-hand 

side of the OCL holds up to very high j; that is to say that the out-tunneling flux of minority 

carriers from QDs is mainly consumed by the recombination in the QW — this flux practically 

does not reach the OCL. 

The criterion for neglecting the recombination throughout the OCL is given by the 

strongest of inequality (A21) and a similar inequality for the right-hand side of the structure (the 

highest j satisfying the inequality for the right-hand side is shown in the third column in 

Table 3.1). 



74 

Appendix IV 

Closed-form solutions of the rate equations 

As shown in Appendix III, the recombination in the OCL can be neglected up to very 

high j. Thus eqs. (2.2) and (2.3) are simplified as follows at the steady-state: 
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From (A23), the minority carrier density in the OCL is expressed in terms of the minority 

carrier density in the QW, 
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From (A22), the majority carrier density in the OCL is expressed in terms of the majority 

carrier density in the QW, 
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Substituting ejnnv LL
L

L =− escn,QWcaptn, /τ  [see (A22)] in eq. (2.6) at the steady-state, we 

obtain the following equation relating the 2-D electron and hole densities in the QW: 
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By using (A23) in eq. (2.7) at the steady-state, we obtain the second [in addition to 

(A26)] equation relating LnQW  and LpQW , 
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From (A26) and (A27), a quadratic equation in LnQW  (or LpQW ) is obtained, solution of 

which gives LnQW  and then LpQW  as functions of the injection current density j, 
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By using (A24), (A25), (A28), (A29), and similar expressions for the carrier densities in the 

right-hand side of the structure, a closed-form expression for the LCC is obtained from (3.12). 

By analyzing eq. (3.28) in the general case, we already showed that the minority carrier 

density in the QW decreases with increasing  j (Fig. 3.6). This result can also be easily obtained 

from (3.18). Neglecting the recombination flux in the OCL in (3.18), we get 

p
QW,

1tunnp,QWQW2DQWptunnp, )1( fNpwpnBpfNw S
LLLLL

S
L =+− .    (A30) 

The right-hand side of (A30) remains limited (constant if charge neutrality holds in QDs) with j. 

Since the majority carrier density ( LnQW ) should increase with j (Fig. 3.8), keeping limited the 

left-hand side of (A30) requires decreasing LpQW . The decrease of LpQW  with  j can also be seen 

from the analytical expression (A29). 
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Chapter 4 

Effect of the Wetting Layer on the Output Power of a 

Tunneling-Injection Quantum Dot Laser 

Summary 

To suppress bipolar population and hence electron-hole recombination outside quantum 

dots (QDs), tunneling-injection of electrons and holes into QDs from two separate quantum wells 

was proposed earlier. Close-to-ideal operating characteristics were predicted for such a 

tunneling-injection laser. In the Stranski-Krastanow growth mode, a two-dimensional wetting 

layer (WL) is initially grown followed by the formation of QDs. Due to thermal escape of 

carriers from QDs, there will be bipolar population and hence electron-hole recombination in the 

WL, even in a tunneling-injection structure. In this chapter, the light-current characteristic (LCC) 

of a tunneling-injection QD laser is studied in the presence of the WL. Since (i) the opposite 

sides of a tunneling-injection structure are only connected by the current paths through QDs and 

(ii) the WL is located in the n-side of the structure, the only source of holes for the WL is 

provided by QDs. It is shown that, due to the zero-dimensional nature of QDs, the rate of the 

hole supply to the WL remains limited with increasing injection current. For this reason, as in the 

other parts of the structure outside QDs (quantum wells and optical confinement layer), the 

parasitic electron-hole recombination remains restricted in the WL. As a result, even in the 

presence of the WL, the LCC of a tunneling-injection QD laser becomes increasingly linear at 

high injection currents, which is a further demonstration of the potential of such a laser for high-

power operation. 

4.1. Introduction 

Semiconductor quantum dots (QDs) can be conveniently used as an active medium for 

stimulated emission in injection lasers [1]-[7]. Conventionally, QDs are grown by a strain-

induced island formation method, which is called as the Stranski-Krastanow growth mode [8]. In 

the Stranski-Krastanow growth mode, several monolayers of one material are grown first on a 
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crystal surface of another material (substrate) having a different lattice constant. Beyond a 

critical thickness of the deposited layer, three-dimensional (3-D) islands (QDs) start forming 

from two-dimensional (2-D) monolayers thus partially relaxing the strain and reducing the elastic 

energy. The initially grown monolayers are called as the wetting layer (WL). Hence, the 2-D WL 

is inherently present in self-assembled Stranski-Krastanow grown QD structures [9]-[13]. 

Fig. 4.1 shows the TEM image of self-assembled Stranski-Krastanow grown QDs and the WL. 

In the conventional design of QD lasers, the carriers are first injected from the cladding 

layers into the optical confinement layer (OCL), and then captured into the WL and QDs 

(Fig. 4.2). A certain fraction of carriers thermally escapes back from QDs to the WL and OCL. 

Due to bipolar (both electron and hole) population in the OCL and WL, parasitic electron-hole 

recombination occurs there [14]–[16] in addition to recombination in QDs. 

To suppress the parasitic recombination outside QDs, tunneling-injection of both 

electrons and holes into QDs was proposed [17]-[19]. As shown in chapter 3, in such a tunneling 

injection QD laser, the parasitic recombination rate remains restricted even if there is out-

tunneling leakage of carriers from QDs [A1]-[A3]*). As a result, the light-current characteristic 

(LCC) of a tunneling-injection QD laser is essentially linear. No WL was assumed in the 

structures of [17]-[19], [A1]-[A3]. If the Stranski-Krastanow mode is used for the growth of QDs, 

the WL should be properly taken into account. As seen from Fig. 4.3, even if there is no 

tunneling between the electron-injecting quantum well (QW) and the WL, there will be bipolar 

population in the WL. This is because (i) there is such population in QDs (which is maintained to 

have stimulated emission) and (ii) the WL is coupled to QDs by the processes of thermal escape 

and capture. Besides, while QDs present the sole source for the hole supply to the WL, electrons 

can directly tunnel to the WL from the electron-injecting QW (Fig. 4.3). Hence, even in an ideal 

case of total suppression of parasitic recombination in the QWs and OCL, such recombination 

will occur in the WL [A4, A5]. 

In this chapter, we develop a theoretical model for the optical power of a tunneling-

injection QD laser, which includes the WL and processes therein. 

                                                 
 
*) “A” in the reference number indicates the publications of the author of this dissertation. 



80 

 

Fig. 4.1. Cross-sectional bright field image of vertically aligned 
InAs/GaAs QD layers with the WLs. (Reprinted from Fig. 5 of 
ref. [13], Copyright (2009), with permission from Elsevier.) 
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Fig. 4.2. Energy band diagram of a conventional QD laser with the WL and the 
main processes: ① carrier injection from the cladding layers to the OCL, ② 
spontaneous recombination in the OCL, ③ carrier capture from the OCL to the 
WL and thermal escape from the WL to the OCL, ④ spontaneous recombination 
in the WL, ⑤ carrier capture from the WL into a QD and thermal escape from a 
QD to the WL, ⑥ spontaneous and stimulated recombination in a QD, ⑦ carrier 
capture from the OCL into a QD and thermal escape from a QD to the OCL. 
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Fig. 4.3. Energy band diagram of a tunneling-injection QD laser with the WL and 
the main processes: ① carrier injection from the cladding layers to the OCL, ② 
majority carrier capture from the OCL to the QW and thermal escape from the QW 
to the OCL, ③ majority carrier tunneling-injection from the QW into a QD, ④ 
electron tunneling from the QW to the WL, ⑤ thermal escape from a QD to the WL 
and capture from the WL into a QD, ⑥ spontaneous and stimulated recombination 
in a QD, ⑦ spontaneous recombination in the WL, ⑧ out-tunneling from a QD into 
the “foreign” QW, ⑨ hole tunneling from the WL into the electron-injecting QW, 
⑩ spontaneous recombination in the QWs, ⑪ minority carrier thermal escape from 
the QW to the OCL and capture from the OCL to the QW, and ⑫ spontaneous 
recombination in the OCL. 
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4.2. Theoretical model 

Fig. 4.3 shows the energy band diagram of a tunneling-injection QD laser with the WL, 

which follows the barrier separating the electron-injecting QW from QDs. As seen from the 

figure, the holes can only be supplied to the WL by thermal escapes from QDs. In contrast, in 

addition to thermal escapes from QDs, electrons can directly tunnel to the WL from the left-

hand-side (electron-injecting) QW. 

We assume that the material separating QDs in the QD layer (it may be the same as the 

material of barriers) has high enough bandgap to suppress all tunneling other than via QDs, in 

particular, tunneling between the QWs, and between the hole-injecting (right-hand side) QW and 

the WL. Hence, the opposite sides of the structure are only connected to each other by the 

current paths through QDs. 

We use the following set of rate equations: 

for free electrons and holes in the left-hand side of the OCL, 
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for free holes and electrons in the right-hand side of the OCL, 
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for electrons and holes in the electron-injecting (left-hand-side) QW, 
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for holes and electrons in the hole-injecting (right-hand-side) QW, 
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for electrons and holes confined in QDs, 
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for electrons and holes in the WL, 
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and for photons, 
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In eqs. (4.1)-(4.13), b1 (b2) is the thickness of the left- (right-) hand side of the OCL [the 

separation between the n- (p-) cladding layer and the left- (right-) hand-side barrier – Fig. 4.3] 

and nL (nR) and pL (pR) are the free-electron and -hole densities there, j is the injection current 

density, e is the electron charge, LnQW  ( RnQW ) and LpQW  ( RpQW ) are the 2-D electron and hole 

densities in the left- (right-) hand-side QW (Fig. 4.3), nWL and pWL are the 2-D electron and hole 

densities in the WL, B and B2D are the spontaneous radiative recombination constants for the 

bulk (OCL) and 2-D regions (QWs and WL) measured in units of cm3/s and cm2/s, respectively, 

SN  is the surface density of QDs, pn,f  are the electron- and hole-level occupancies in QDs, τQD is 

the spontaneous radiative lifetime in QDs, c is the velocity of light in vacuum, g∈  is the group 

index of the dispersive OCL material, gmax is the maximum value of the modal gain [14], S = WL 

is the cross-section of the junction, W is the lateral size of the device, L is the cavity length, β = 

(1/L)ln(1/R) is the mirror loss, R is the facet reflectivity, and N is the number of photons in the 

lasing mode; RL,
escp,n,τ  are the thermal escape times of electrons and holes from the QWs to the 

OCL and RLv ,
capt p,n,  are the capture velocities from the OCL to the QWs. 

We exploit six tunneling coefficients (measured in units of cm2/s) – these are four 

coefficients RLw ,
 tunnp,n,  for electron and hole tunneling between the QD ensemble and the QWs, and 

two coefficients WLQW
 tunnpn,

↔w  for electron and hole tunneling between the WL and the electron-

injecting QW. These tunneling coefficients are primarily controlled by the thicknesses and 

material parameters of the barriers, and by the QD, QW, and WL parameters as well. 

The quantities QW ,,
1

RLn  and QW ,,
1

RLp  entering into the electron and hole tunneling fluxes 

from the QD ensemble to the QWs [see (4.5)-(4.10)] are measured in units of cm-2. In the case of 

an undoped QW and a resonance between the energy level in a QD and the lowest subband edge 

in a QW, 
QW
c,2D

QW,
1 NnL = ,  QW

v,2D
QW,

1 NpR = ,     (4.14) 

where ( )2QW
vc,

QW
v,2Dc, hπTmN =  are the 2-D effective densities of states in the conduction and 

valence bands in the QWs, QW
vc,m  are the electron and hole effective masses in the QWs, and the 

temperature T is measured in units of energy. 
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The terms Lnnw QW
WL

1
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 tunnn,
~↔  and WL

QW
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WLQW
 tunnn, nNw ↔  in the right-hand side in (4.5) and 

(4.11) are the fluxes of electron tunneling from the electron-injecting QW to the WL and 

backward tunneling from the WL to the electron-injecting QW, respectively. The difference 
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~ nNwnnw L ↔↔ −  is the net in-tunneling flux of electrons from the electron-

injecting QW to the WL. 

The quantities WL
1

~n  and WL
1

~p  entering into the electron and hole tunneling fluxes from 

the electron-injecting QW to the WL [see (4.5), (4.6), (4.11), and (4.12)] are measured in units of 

cm-2. The general expressions for WL
1

~n  and WL
1

~p  are derived in Appendix I [see eq. (A3)]. In the 

case of undoped QW and WL considered here, 
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where WL
pn,ε  and QW

pn,ε  are the energies of the lowest electron- and hole-subband edges in the WL 

and QW, respectively, ( )2WL
vc,

WL
v,2Dc, hπTmN =  are the 2-D effective densities of states in the 

conduction and valence bands in the WL, and WL
vc,m  are the electron and hole effective masses in 

the WL. 

The terms n
WL
1captn, fNnw S  and WLncaptn, )1( nfNw S −  in the right-hand side in (4.9) and 

(4.11) are the fluxes of thermal escape of electrons from QDs to the WL and capture from the 

WL into QDs, respectively. The difference WLncaptn,n
WL
1captn, )1( nfNwfNnw SS −−  is the net 

electron escape flux from QDs to the WL. The coefficients capt p,n,w  in (4.9)-(4.12) describe the 

electron and hole capture from the WL into a QD and escape from a QD to the WL. They are 

measured in units of cm2/s and were referred to as the temporal cross-sections in [20, 21]. 

The quantities WL
1n  and WL

1p  entering into the electron and hole thermal escape fluxes 

from QDs to the WL [see (4.9)-(4.12)] are measured in units of cm-2. The general expressions for 
WL
1n  and WL

1p  are derived in Appendix II [see eq. (A7)]. In the case of an undoped WL, 
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where QD
pn,ε  are the energies of the electron and hole levels in a QD. 
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The last term in the right-hand side in (4.11) is the spontaneous radiative recombination 

flux in the WL. 

The terms describing the processes related to the WL for holes in (4.6), (4.10), and (4.12) 

are similar to those for electrons in (4.5), (4.9), and (4.11). 

4.3. Results and discussion 

We consider a continuous-wave operation of the laser and correspondingly use the set of 

rate equations (4.1)-(4.13) at the steady-state, 

( ) 0,,,,,,,,,,,, pnWLWLQWQWQWQW2211 =
∂
∂ NfNfNpnpnpnpbnbpbnb
t SS

RRLL
RRLL .   (4.17) 

It can be shown that only eleven out of twelve equations (4.1)–(4.12) are independent at the 

steady-state. Hence, to solve the set, we should complement it by one more equation. The 

equation is provided by the charge neutrality condition in QDs. 

Above the lasing threshold, the number of stimulated photons is nonvanishing ( 0≠N ). 

To satisfy eq. (4.13) at the steady-state at nonvanishing N, the following lasing condition should 

hold: 

( ) β=−+ 1pn
max ffg ,       (4.18) 

which is the condition of equality of the modal gain to the mirror loss at and above the lasing 

threshold (the internal optical loss is not considered here). 

If charge neutrality holds in QDs ( pn ff = ), we immediately obtain from (4.18) that the 

level occupancies in QDs are pinned at their threshold value and do not depend on the injection 

current density j, 
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  Since the opposite sides of the structure are only connected to each other by the current 

paths through QDs, the fact, that fn,p do not change with j, means that the steady-state rate 

equations for the left- and right-hand sides of the structure present two independent sets. Hence, 

the solutions of the rate equations (4.3), (4.4), (4.7) and (4.8) for the right-hand side of the 

structure are unaffected by the presence of the WL.  
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Using the steady-state rate equations, the following expression is obtained for the number 

of photons N and output power P from the rate equations: 
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where ћω is the photon energy. Eq. (4.20) states that the stimulated emission is produced by an 

excess of the injection current density j over the current densities of spontaneous recombination 

in QDs (second term in the brackets), WL (third term), QWs (fourth and fifth terms), and OCL 

(last two terms). 

To calculate the LCC [i.e., P versus j given by (4.20)], the dependences of the carrier 

densities on the injection current density j are found from the solution of the rate equations. 

As seen from Fig. 4.4(a), the electron density WLn  in the WL increases with j, which is 

due to the increase of the electron density LnQW  in the electron-injecting QW [Fig. 4.5(a)]. At the 

same time, the hole densities WLp  and LpQW  decrease [Figs. 4.4(a) and 4.5(b)] [see also the text 

after eq. (4.34)]. The electron densities increase faster than the hole densities decrease. For this 

reason, the recombination current densities increase with j [Figs. 4.4(b) and 4.5(c)]. 

Since the WL consumes a certain fraction of electrons from the electron-injecting QW, 

the electron density in the latter is reduced compared to the case of no WL [Fig. 4.5(a)]. At the 

same time, the hole density in the electron-injecting QW is increased [Fig. 4.5(b)]. This is 

because the holes from the WL tunnel to the electron-injecting QW in addition to the holes from 

QDs. At high injection currents, the increase of LpQW  due to the presence of the WL outweighs 

the decrease of LnQW . As a result, the recombination current density LjQW  in the electron-injecting 

QW is increased [Fig. 4.5(c)]. 

Hence, not only an additional electron-hole recombination channel appears [Fig. 4.4(b)], 

but the recombination in the electron-injecting QW becomes stronger as well in the presence of 

the WL [Fig. 4.5(c)]. Since the recombination in the right-hand side of the structure is unaffected, 

the total parasitic recombination current density outside QDs is increased. For this reason, the 

output power is reduced in a structure with the WL (solid curve in Fig. 4.6). The output power 
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depends strongly on the temporal cross-section captp,w  of hole capture from the WL into a QD 

[see (4.29)–(4.33)]. The larger captp,w , the lower is the power and the stronger is the deviation of 

the LCC from that for a structure without the WL (dashed curve in Fig. 4.6). Clearly the internal 

quantum efficiency [Fig. 4.7(a)] and the slope efficiency [Fig. 4.7(b)] are reduced in the presence 

of the WL. 

Despite the fact that the output power is reduced in the presence of the WL, it is clear 

from Fig. 4.6 that the LCC becomes increasingly linear with j. This remarkable feature can be 

understood and several general conclusions can be made from the analysis of the rate equations. 

At the steady-state, eqs. (4.2) and (4.12) for holes in the left-hand side of the OCL and in 

the WL can be written as follows: 

LLL
L

L

L

pBnbpv
p

1captp,
escp,

QW =−
τ

,      (4.21) 

.)1(~
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WLQW
 tunnp,WL

QW
v,2D

WLQW
 tunnp, pnBpfNwfNpwppwpNw SS

L −−−=− ↔↔
 (4.22) 

Using (4.21) and (4.22) in (4.6), we have 
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As seen from (4.23), bimolecular recombination in the WL and in the left-hand-side QW and 

OCL is entirely due to the net out-tunneling of holes from QDs to the electron-injecting QW 

[first brackets in (4.23)] and the net escape of holes from QDs to the WL (second brackets). 

Bimolecular recombination in the right-hand-side QW and OCL is entirely due to the net 

out-tunneling of electrons from QDs to the hole-injecting QW and is not affected by the presence 

of the WL, 
R

S
R

S
RR

RR
RR nfNwfNnwpBnbpnB QWntunnn,n

QW,
1tunnn,1QWQW2D )1( −−=+ .    (4.24) 

By dropping in (4.23) the flux L
S

L pfNw QWptunnp, )1( −  of backward tunneling of holes from 

the electron-injecting QW to QDs and the flux WLpcaptp, )1( pfNw S −  of hole capture from the WL 

into QDs, we obtain the upper limit for the parasitic recombination flux in the left-hand side of 

the structure. Since 1pn, ≤f , this limit, which presents the sum of the out-tunneling flux 
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p
QW,

1tunnp, fNpw S
LL  of holes from QDs to the electron-injecting QW and the thermal escape flux 

p
WL
1captp, fNpw S  of holes from QDs to the WL, is itself restricted and cannot exceed 

S
LL Npw QW,
1tunnp, + SNpw WL

1captp,  at any j [under the condition of charge neutrality (4.19), 

p
QW,

1tunnp, fNpw S
LL  and p

WL
1captp, fNpw S  are pinned and do not change with j]. Consequently, we 

have for the recombination flux in the left-hand side of the structure 
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From (4.24), we have for the recombination flux in the right-hand side of the structure 

constQW,
1tunnn,n

QW,
1tunnn,QWQW2D2 =<<+ S

RR
S

RRRR
RR NnwfNnwpnBpBnb .   (4.26) 

Fig. 4.8 (solid curve) shows the recombination current density outside QDs [the sum of 

the last five terms in the brackets in (4.20)]. The horizontal dashed line is the sum of the current 

densities of electron and hole out-tunneling from QDs to the foreign QWs 

n
QW,

1tunnn,p
QW,

1tunnp,tunnout fNnewfNpewj S
RR

S
LL +=−     (4.27) 

and hole thermal escape from QDs to the WL 

p
WL
1captp,

WLQDs
escp, fNpewj S=→ .      (4.28) 

As in a structure without the WL [A1], in the presence of the WL too, the fact that the 

parasitic recombination flux outside QDs remains limited with increasing  j is due to the zero-

dimensional nature of QDs — the flux of escape from QDs (be it out-tunneling escape to the 

foreign QW or thermal escape to the WL) is controlled by the level occupancy in a QD fn,p [see 

(4.27) and (4.28)], which cannot exceed unity with increasing j [ fn = fp = const in the case of 

charge neutrality – see (4.19)]. 

With (4.23) and (4.24), eq. (4.20) can be rewritten as follows: 
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Fig. 4.4. 2-D densities of electrons and holes (a) and recombination 
current density (b) in the WL against excess injection current density. 
A GaInAsP heterostructure lasing at room-temperature (T = 300 K) 
near the telecommunication wavelength 1.55 µm  is considered here. 
10% QD size fluctuations are assumed. In Figs. 4.4 – 4.8 the 
parameters of the structure are as follows: NS = 6.11 × 1010 cm-2, L = 
1.139 mm, R = 0.32, α = 10 cm-1, W = 2 µm, τQD = 0.71 × 10-9 s, gmax = 
29.52 cm-1, b1 = b2 = 0.14 µm, RLv ,

p,captn,  = 3 × 105 cm/s, λ= 1.58 µm, B = 
1.27 × 10-10 cm3/s, and B2D = 2.8 × 10-4 cm2/s. The tunneling 
coefficients and temporal cross-sections are as follows unless 
otherwise specified: Lw tunnn,  = WLQW

tunnn,
↔w  = 0.073 cm2/s, Lw tunnp,  = 

WLQW
tunnp,

↔w  = 0.04 cm2/s, Rw tunnn,  = 0.013 cm2/s, Rw tunnp,  = 0.058 cm2/s, and 

p,captn,w  = 0.1 cm2/s. 



91 

0 5 10
0

2

4   with WL
  without WL

nL Q
W

 (×
 1

013
 c

m
-2
)

j  (kA/cm2)

(a)

 

0 5 10
0.0

0.4

0.8   with WL
  without WL

(b)

pL Q
W

 (×
 1

013
 c

m
-2
)

j  (kA/cm2)
 

0 5 10
0

0.85

1.70

  with WL
  without WL

(c)

j L Q
W

 (k
A

/c
m

2 )

j (kA/cm2)  
Fig. 4.5. 2-D densities of electrons (a) and holes (b) and 
recombination current density (c) in the electron-injecting QW 
against injection current density for the structures with (solid 
curve) and without (dashed curve) the WL. 
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Fig. 4.6. Light-current characteristics of the tunneling-injection 
QD lasers with (solid curve) and without (dashed curve) the WL. 
The temporal cross-sections of electron and hole capture from the 
WL into a QD are captp,n,w  = 0.03, 0.1, and 0.4 cm2/s in (a), (b), and 
(c), respectively. The threshold current density is jth = 417, 440, 
and 467 A/cm2; for the structure without the WL, jth = 366.3 A/cm2. 
The dotted line given by (4.32) is the upper limit for the LCC. The 
dash-dotted line given by (4.30) is the asymptote and the lower 
limit for the LCC. 
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Fig. 4.7. Internal quantum efficiency (a) and slope efficiency (b) 
against injection current density for the tunneling-injection QD 
lasers with (solid curve) and without (dashed curve) the WL. Since 
ηint increases with j, ηext also increases and is higher than ηint as is 
clear from (4.34). 

Whatever the dependences of LpQW , RnQW  and WLp  on  j, it is clear from (4.29) that by 

dropping the last three terms in the brackets (the current densities of backward tunneling of 

minority carriers from the foreign QWs to QDs and of hole capture from the WL into QDs) we 

will obtain the lower limit for the output power, 

( )highest
th

lowest jjS
e

P −=
ωh ,      (4.30) 



94 

where 
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is the upper limit for the threshold current density. 

As seen from (4.30), the lower limit for the LCC is linear (dash-dotted line in Fig. 4.6) 

and its slope efficiency is unity. 

 The upper limit for the LCC is obtained in an ideal structure wherein out-tunneling from 

QDs to the foreign QWs and hence recombination in the QWs and OCL are completely blocked. 

Since recombination in the WL will still occur in such a structure, we have from (4.20) 

   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= WLWLWL

QD

pnhighest pneB
ff

eNjS
e

P S τ
ωh .     (4.32) 

In this case, we obtain from (4.25) that the recombination current density WLWLWL pneB  in the 

WL is limited by the current density p
WL
1captp, fNpew S  of hole thermal escape from QDs to the 

WL, 

SS NpwfNpwpnB WL
1captp,p

WL
1captp,WLWL2D << .     (4.33) 

With increasing j, WLWLWL pneB  asymptotically approaches p
WL
1captp, fNpew S  and the upper limit 

(4.32) for the LCC becomes linear (dotted line in Fig. 4.6). 

Hence, the actual LCC (obtained from the solution of the rate equations and shown by the 

solid curve in Fig. 4.6) in a structure with the WL is confined between the two parallel lines 

given by (4.30) and (4.32) (dash-dotted and dotted lines). Since the parasitic recombination 

current density remains restricted [see (4.25), (4.26) and Fig. 4.8], the fraction of the excess 

injection current density j – jth that goes into the stimulated emission [the internal differential 

quantum efficiency, ( ) )()( thgint jjSNce −∈= βη ] should rise with j [Fig. 4.7(a)]. As a result, 

the LCC should become increasingly linear (Fig. 4.6). 

From (4.29), we have for the slope efficiency (external differential quantum efficiency) 
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Fig. 4.8. Parasitic recombination current density outside QDs (solid 
curve). The horizontal dashed line is the sum of the current densities of 
electron and hole out-tunneling from QDs to the foreign QWs and hole 
thermal escape from QDs to the WL. 
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Since extη  should not be higher than unity, the derivatives of LpQW , RnQW , and WLp  with respect to 

j should be negative — the minority carrier density in each of the two QWs and the hole density 

in the WL decrease with j [Figs. 4.4(a) and 4.5(b)]. Hence, the last three terms in the brackets in 

(4.29) decrease with increasing j and the LCC asymptotically approaches the straight line given 

by (4.30) (Fig. 4.6). 

4.3.1. Laser characteristics versus temporal cross-sections of electron and hole 

          capture from the WL into a QD 

Fig. 4.9 shows the dependences of the carrier densities and recombination current 

densities in the WL and QW, total parasitic recombination current density outside QDs, and 
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output power on the temporal cross-section captn,w  of majority carrier (electron) capture from the 

WL into a QD at a fixed temporal cross-section captp,w  of minority carrier (hole) capture. As 

captn,w  increases, electrons are more efficiently captured into QDs and the electron densities in 

the WL and QW decrease [Fig. 4.9(a) and (b)]. Hence, the recombination current densities 

decrease [Fig. 4.9(e) and (f)], and the hole densities increase in the WL and QW [Fig. 4.9(c) and 

(d)]. Following the decrease of the recombination current densities in the WL and QW, the total 

parasitic recombination current density outside QDs decreases [Fig. 4.9(g)] and, consequently, 

the output power increases [Fig 4.9(h)]. As ∞→captn,w , the electron density in the WL saturates 

[dashed line in Fig. 4.9(a)], 

     
n

n
WL1,WL 1captn, f

fnn
w −

=
∞→

.      (4.35) 

Eq. (4.35) is the equilibrium relation between nWL and fn and is easily obtained from eq. (4.11). 

Fig. 4.10 shows the dependences of the carrier densities and recombination current 

densities in the WL and QW, total parasitic recombination current density outside QDs, and 

output power on the temporal cross-section captp,w  of minority carrier (hole) capture from the WL 

into a QD at a fixed temporal cross-section captn,w  of majority carrier (electron) capture. As 

captp,w  increases, holes are efficiently provided to the WL and left-hand side QW and hence the 

hole densities there increase [Fig. 4.10(c) and (d)]. The increase of the hole densities leads to the 

increase of the recombination current densities in the WL and QW [Fig. 4.10(e) and (f)] and, 

consequently, the electron densities in the WL and QW decrease [Fig. 4.10(a) and (b)]. As a 

result, the parasitic recombination current density outside QDs increases [Fig. 4.10 (g)], and the 

output power decreases [Fig .4.10(h)]. As ∞→captp,w , the hole density in the WL saturates 

[dashed line in Fig. 4.10(c)], 

     
p

p
WL1,WL 1captp, f

f
pp

w −
=

∞→
.      (4.36) 

Eq. (4.36) is the equilibrium relation between pWL and fp and is easily obtained from eq. (4.12). 
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Fig. 4.9. 2-D densities of electrons and holes, recombination current densities in the 
WL [(a), (c), and (e), respectively] and QW [(b), (d), and (f), respectively], total 
parasitic recombination current density outside QDs (g), and output power (h) 
against temporal cross-section captn,w  of majority carrier (electron) capture from the 
WL into a QD at a fixed temporal cross-section captp,w  = 0.1 cm2/s of minority 
carrier (hole) capture. The injection current density is j = 10 kA/cm2. 



98 

0 2.5 5.0
0

0.5

1.0

(a)
n W

L (
×

 10
13

 c
m

-2
)

0 2.5 5.0
0

1.5

3.0

 n
L Q

W
 (

×
 10

13
 c

m
-2
)

(b)

 

0 2.5 5.0
0

0.2

0.4

(c)

p W
L (

×
 10

13
 c

m
-2
)

0 2.5 5.0
0

0.5

1.0

(d)

pL Q
W

 (
×

 10
13

 c
m

-2
)

 

0 2.5 5.0
0

0.4

0.8

(e)

 

 j W
L (

kA
/c

m
2 )

2   0 2.5 5.0
0

3

6

(f)

 

 j L Q
W

 (
kA

/c
m

2 )

2  

0 2.5 5.0
0

3

6

(g)

 

 j Q
W

+ 
j O

C
L+ 

j W
L (

kA
/c

m
2 )

w  
p, capt (cm2/s)

  

0 2.5 5.0
60

115

170
(h)

 

P 
(m

W
)

w  
p, capt (cm2/s)

 

Fig. 4.10. 2-D densities of electrons and holes, recombination current densities in 
the WL [(a), (c), and (e), respectively] and QW [(b), (d), and (f), respectively], total 
parasitic recombination current density outside QDs (g), and output power (h) 
against temporal cross-section captp,w  of minority carrier (hole) capture from the 
WL into a QD at a fixed temporal cross-section captn,w  = 0.1 cm2/s of majority 
carrier (electron) capture. The injection current density is j = 10 kA/cm2. 
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Fig. 4.11. 2-D densities of electrons and holes, recombination current densities in 
the WL [(a), (c), and (e), respectively] and QW [(b), (d), and (f), respectively], total 
parasitic recombination current density outside QDs (g), and output power (h) 
against temporal cross-sections of majority and minority carrier capture, which vary 
simultaneously and are equal to each other, captn,w  = captp,w . The injection current 
density is j = 10 kA/cm2. 
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Hence, as it could be expected and is natural, and is seen from Figs. 4.9 and 4.10, the 

parasitic recombination outside QDs becomes less (more) intensive and hence the output power 

increases (decreases) as the majority (minority) carrier capture from the WL into a QD becomes 

more intensive. 

Both in Figs. 4.9 and 4.10, the electron densities decrease [(a) and (b)] and the hole 

densities increase [(c) and (d)] with increasing capture temporal cross-sections. The 

recombination current densities are controlled by the product of the electron and hole densities. 

The decrease of the recombination current densities in Fig. 4.9(e) and (f) reflects the fact that the 

electron densities decrease faster than the hole densities increase. In contrast, the increase of the 

recombination current densities in Fig. 4.10(e) and (f) reflects the fact that the electron densities 

decrease slower than the hole densities increase. 

Fig. 4.11 shows the carrier densities and recombination current densities in the WL and 

QW, total parasitic recombination current density, and output power versus the temporal cross-

sections of majority and minority carrier capture, which vary simultaneously and are equal to 

each other, captn,w  = captp,w . Such a simultaneous increase of captp,n,w  means that both the 

desirable electron capture from the WL into a QD and undesirable hole supply (by thermal 

escape) from a QD to the WL [and then the hole supply (by tunneling from the WL) to the 

electron-injecting QW] become more efficient. The electron (hole) densities decrease (increase) 

with increasing each of captn,w  and captp,w  [Figs. 4.9 and 4.10]. Hence, these tendencies remain 

the same as captp,n,w  change simultaneously [Fig. 4.11(a, b, c, d)]. In contrast, the effects of 

varying captn,w  and captp,w  on the recombination current densities in the WL and QW, and hence 

on the total parasitic recombination current density outside QDs, are opposite to each other. As a 

result of the competition between these effects, the recombination current densities are 

nonmonotonic – they first increase and then decrease [Fig. 4.11(e, f, g)]. Consequently, the 

output power is also nonmonotonic – it first decreases and then increases [Fig. 4.11(h)]. Hence, 

as a function of captn,w  = captp,w , the parasitic recombination current density has a maximum and 

the output power has a minimum. The total parasitic recombination current density is minimum 

[Fig. 4.11(g)] and the output power is maximum [Fig. 4.11(h)] at captn,w  = captp,w  = 0. This is 

because the hole densities in the WL and QW are minimum at captn,w  = captp,w  = 0. 
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Fig. 4.12. Optical power against temporal cross-sections captn,w  
and captp,w  of electron and hole capture from the WL into a QD. The 
injection current density is j = 10 kA/cm2. 

Note that the recombination current density in the WL is nonzero at a zero value of captn,w  

or (and) captp,w  [Fig. 4.9(e), Fig. 4.10(e), and Fig. 4.11(e)]. This is because, even in such a case of 

absence of direct coupling between the WL and a QD, there is an alternative path for the electron 

and hole supply to the WL – the path from the electron-injecting QW (processes ④ and ⑨ in 

Fig. 4.3). As ∞→= captp,captn, ww , the electron and hole densities in the WL saturate at (4.35) 

and (4.36) [dashed lines in Fig. 4.11(a) and (c)], respectively, and hence the recombination 

current density in the WL saturates [dashed line in Fig. 4.11(e)]. 

As seen from Figs. 4.9-4.11, the output power is strongly affected by the temporal cross-

sections of carrier capture into a QD. Fig. 4.12 shows the dependence of the output power on 

both captn,w  and captp,w  in the most general form. The specific cases described by Figs. 4.9(h), 
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4.10(h), and 4.11(h) (changing only one of the two cross-sections at a fixed value of another, and 

changing them simultaneously) are easily seen from this general dependence. 

As clear from Figs. 4.9-4.12, to properly optimize the tunneling-injection structure with 

the WL, the temporal cross-sections of electron and hole capture into a QD should be controlled 

in addition to the tunneling coefficients (chapter 3) – captn,w  should be kept high and captp,w  low. 

4.4. Conclusion 

The effect of the WL, which is inherently present in self-assembled Stranski-Krastanow 

grown structures, on the optical power of a tunneling-injection QD laser has been studied. Due to 

thermal escape of carriers from QDs, bipolar population establishes and hence electron-hole 

recombination occurs in the WL. Since the opposite sides of a tunneling-injection structure are 

only connected by the current paths through QDs, and the WL is located in the n-side of the 

structure, the only source of holes for the WL is provided by QDs. It has been shown that, due to 

the zero-dimensional nature of QDs, the rate of the hole supply to the WL remains limited with 

increasing injection current. For this reason, as in the other parts of the structure outside QDs 

(QWs and OCL), the parasitic electron-hole recombination remains restricted in the WL. As a 

result, even in the presence of the WL, the LCC of a tunneling-injection QD laser becomes 

increasingly linear at high injection currents, which is a further demonstration of robustness of 

such a laser and its potential for high-power operation. 
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Appendix I 

Quantities WL
1

~n  and WL
1

~p  in the tunneling fluxes 

of electrons and holes from the electron-injecting QW to the WL 

For definiteness, we consider in Appendixes I and II electrons. The derivation and 

expressions for holes are similar. Under thermal equilibrium, the flux eq
QW

WL
1

 WLQW
 tunnn,

~ nnw ↔  of 

electron tunneling from the electron-injecting QW to the WL is equal to the flux 
eq
WL

QW
c,2D

WLQW
 tunnn, nNw ↔  of backward tunneling of electrons from the WL to the QW, to give: 

eq
QW

eq
WLQW

c,2D
WL

1
~

n
nNn = .         (A1) 

Using the closed-form expression for the 2-D equilibrium carrier density (see, e.g., [22]), 

we have for eq
WLn  and eq

QWn  

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

T
Nn

QWWL,
n

eq
QWWL,

c,2D
eq

QWWL, exp1ln εµ ,       (A2) 

where ( )2QWWL,
c

QWWL,
c,2D hπTmN =  are the 2-D effective densities of states in the conduction band 

in the WL and QW, respectively, QWWL,
cm  are the electron effective masses there, T is the 

temperature (measured in units of energy), QWWL,
nε  are the energies of the lowest electron-

subband edge in the WL and QW, respectively, and eqµ  is the equilibrium Fermi level. 

With (A2), (A1) becomes 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

=

T

T
Nn

QW
n

eq

WL
n

eq

WL
c,2D

WL
1

exp1ln

exp1ln
~

εµ

εµ

.        (A3) 

If both QW and WL materials are nondegenerate (the Fermi level eqµ  is below QW
nε  by 

several T), which is the case of undoped QW and WL considered here, then 
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⎝

⎛ −
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TT

eqQWWL,
n

QWWL,
n
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expexp1ln µεεµ .      (A4) 

With (A4), eq. (15) is obtained from (A3). 
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Appendix II 

Quantities WL
1n  and WL

1p  in the thermal escape fluxes 

of electrons and holes from QDs to the WL 

We now use the detailed balance condition under thermal equilibrium for the flux 
eq

n
WL
1captn, fNnw S  of carrier thermal escape from QDs to the WL and the flux 

( ) eq
WL

eq
ncaptn, 1 nfNw S −  of capture from the WL to QDs to obtain 

eq
WLeq

n

eq
nWL

1
1 n

f
fn −

= ,        (A5) 

where 

1exp

1
eqQD

n

eq
n

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

T

f
µε

,        (A6) 

is the equilibrium occupancy of the energy level QD
nε  in a QD. 

With (A2) for eq
WLn , (A5) becomes 

⎥
⎦

⎤
⎢
⎣
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⎛ −
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⎛ −
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TT
Nn

WL
n

eqeqQD
nWL

c,2D
WL
1 exp1lnexp εµµε .      (A7) 

If a WL material is nondegenerate ( eqµ  is below WL
nε  by several T), which is the case of 

an undoped WL considered here, the use of (A4) in (A7) yields eq. (16). In (16), the separation 
QD
n

WL
n εε −  between the energies of the lowest subband edge in the WL and the level in a QD can 

be controlled by post-growth annealing [11] or changing the growth temperature [12]. 
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