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Automated Detection of SurfaceDefectson Barked Hardwood Logs and
StemsUsing 3-D Laser ScannedData

Liya Thomas

(ABSTRACT)

This dissertationpreserts an automateddetectionalgorithm that identi es seereexternal
defectson the surfacesof barked hardwood logsand stems. The defectsdetectedare at least
0.5inch in height and at least 3 inchesin diameter, which are sewere, medium to large in
size, and have external surfacerises. Hundreds of real log defect sampleswere measured,
photographed,and categorizedto summarizethe main defectfeaturesand to build a defect
knowledgebase. Three-dimensionalaser-scannedangedata capture the external log shapes

and portray bark pattern, defective knobs, and depressions.

The log data are extremely noisy, have missingdata, and include se\ere outliers induced
by loosebark that danglesfrom the log trunk. Becausethe circle model is nonlinear and
presens both additive and non-additive errors, a new robust generalizedM-estimator has
beendewlopedthat is di erent from the onesproposedin the statistical literature for linear
regression. Circle tting is performed by standardizing the residualsvia scale estimates
calculatedby meansof projection statistics and incorporated in the Huber objective function
to boundthe in uence of the outliers in the estimates. The projection statistics are basedon
2-D radial-vector coordinatesinstead of the row vectors of the Jacobianmatrix as proposed
in the statistical literature dealingwith linear regression.This approad provese ective in

that it makesthe GM-estimator to bein uence boundedand thereby, robust againstoutliers.



Se\ere defectsare iderti ed through the analysis of 3-D log data using decisionrules
obtained from analyzing the knowledge base. Contour curves are generatedfrom radial
distances,which are determined by robust 2-D circle tting to the log-data crosssections.
The algorithm detected 63 from a total of 68 seere defects. There were 10 non-defectie
regions falsely identi ed as defects. When these were calculated as areas, the algorithm

locates97.6%of the defectarea,and falselyidenti es 1.5%o0f the total clearareaasdefective.
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Chapter 1

In tro duction

Automatically locating and classifyinglog defectshelpsto improve lumber yield, in terms
of both volume and quality. Traditional defectinspection is doneby the savyer's naked eye
within a matter of seconds.Visual inspection hasa high error rate, and is easilyin uenced
by the operator's physical and mental conditions. Thus, researbiers have beendeweloping
a variety of computerizeddefect detection and classi cation systemsto assistthe sawyers'

decision-makingprocess[8].

1.1 Background

In 1991,USDA, NIST, US Departmert of Commerce,Hardwood Researb Council, and the
University of Maine sponsoredan investigation to identify the hardwood industry's currert
needs. One of the four most pressingpriorities is external and internal defect detection to
optimize hardwood logsand lumber processind8]. The ability to detectdefectson hardwood
treesand logsholds great promisefor the hardwood forest products industry. At ewvery stage
of wood processing,there is the potential for improving value and recovery: from bucking

hardwood stemsinto round wood products using optimal grading strategiescortrolled by
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surfacescanningdata processingto log breakdavn usinginferred internal defectdata based
on external indicators. Beforea hardwood log is sawvn, an assessmerof its quality is usually
performed,typically via a mill operator's visual inspection, which can be quite variable and

subjective.

Log quality is inverselyproportional to the presenceof defects. Log defectsinclude both
internal and external defects. External defectindicators consistof knots, splits, holes,and
circular distortions in the bark pattern. Key data collectedto characterizetheseindicators
include surfacerise, length and width as well astype. Defect detection on hardwood trees
and logs can be categorizedinto two areas: internal and external detection. External de-
fect detection refersto the detection of defectson a log's surface,and internal detection,
the detection of defectsinside a log. The di erence between high and low quality logsis
determined by defecttype, size,and location. Detecting and measuringdefectsaccurately
and rapidly is often di cult [94]. Accurate external log defectdata would permit bucking of
stemsto the highest-valued log combination possible. During saving thesedata canleadto
improved cutting strategiesthat optimize log yields, that is, preservingthe largest possible

areaof clear wood on a board face.

The last two decadeshave seenthe emergenceof various scanningtechnologiesfor both
the softwood and hardwood industries. Variousinternal defectinspection methods have been
deweloped using X-ray/CT (Computer Tomograply), X-ray tomosyrthesis, MRI (Magnetic
Resonancdmaging), microwave scanning,ultrasound, and enhancedpattern recognition of
regular X-ray images[96, 101, 40, 20, 3, 74]. External log-scanningequipmert and accompa-
nying optimization software systemsare alsoavailable on the market that aid in the saving of
logsinto lumber. Most of thesescanningsystemswere deweloped for the softwood lumber in-
dustry and only a handful for hardwoods. Available external hardwood log scanningsystems
gatherinformation about external log characteristicssuc asdiameter, taper, curvature, and
length [72]. Optimization software systemsthen focus on using this pro le information to
better position the log on the carriage and improve the sawvyer's decision-makingability.

Supplying external defectinformation to these optimization software systemsis a natural
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extensionof currernt technology Using texture analysis, Tian et al. [93 dewloped a com-
puter vision software systemfor external defectrecognition using photo imagesof softwood
tree stems. Hardwood defecttypesand morphologyare su cien tly di erent from softwoods
to prevert a direct application. Further, the nature of the data, that is, gray-scalephoto
images,that Tian et al. analyzedare di erent from the 3-D rangedata in this researb. So
far no technology is available that can provide external defectinformation on hardwood logs

and stems.

With the aid of a hardwood log surfacedefect scanningsystem, decisionmaking at the
headrig can be improved during processing.If scanningoccurred early enoughin the pro-
cessingow, defectinformation could be usedto determine the best product or market by
grading logsand/or optimally bucking stems. This would alsoautomate currert data collec-
tion systemsthat usean operator to manually idertify defectsonlogsasan aid to processing
and grading. Recettly, seweral companiesincluding Perceptron, Inc. [4], have designed3-D
laser-scanningsystemsto collect log and stem external pro le data. Figure 1.1 illustrates
the scanneras well asthe log data. A computerizeddetection systemis neededto process
the 3-D rangedata and extract defectinformation. To accomplishthe detection processthe
systemwill needto apply multidisciplinary knowledgeincluding wood and forestry science,
computer vision, image processing,computer science,and statistics. For it to be practi-
cal in the sawing process,the systemmust also be fast. In this documert, we use English

measuremets for length: inch and foot, commonly adopted by U.S. forest product scciety.

X-Ray/CT technologyhasbeenusedto locateinternal hardwood log defectsin the labora-
tory [40, 101]. Log defectsexist both externally and internally. As X-Ray/CT technologyis
capableof penetrating material, the resulting imagesdisplay internal defectsthrough density
variations. While X-Ray/CT-based detection approadies generatesuccessfukexperimenrtal
results with a 95% detection accuracy[40], se\eral obstaclesprevert them from being used
in industrial applications. First, the data collection speedis extremely slov dueto the large
data volume, varying anywhere from 5 minutes to 4 hours per log. Second,variation in

moisture cortent in the log causeghe intensity of scannedimagesto vary, making detection
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(a) Schematic diagram of the laserlog scanner.

(b) Portion of the 3-D projection of (c) 3-D mesh projection of partial data (15,998
laser-scannedrange data for a log points). This portion is a large sound knot as
sample, a red oak. partially shown in (b), roughly in the size of 20

inches 13 inches, rising approximately 4 inches
above the log surface

Figure 1.1: The 3-D laser scanningsystemand the range data. The curveson the
X2 Xzplane are contour plots indicating the heights at di erent elewations on the log
surface. In the plot, a high gray value, that is, a light-shadedgray color, indicates a
large x; value.
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results unstable. Third, it presens an ervironmental hazard, as penetrating sud a large
object requiresa tremendousamourt of X-ray energy Finally, the high costof the scanning
equipmenjon averageonemillion U.S. dollars|few savmills cana ord and thus haslittle

practical value.

In cortrast, 3-D laserscannertechnology usesrelatively low-costequipmen that is more
a ordable to savmills. Laserscanningequipmen collectsthe external log shape information
usingtriangulation technology Sinceonly surfacedata are collected,data collection speedis
much faster. The systememploys low-energylaser-scanningunits, which are safeto operate.
Moisture cortent doesnot interfere with 3-D pro le data. Howewer one main disadwantage
for this method is that it only provides external defect information, which might prove
insu cien t for lumber processing.To addressthis problem, a sister study [92] to determine
the correlation of external and internal defectsis ongoingat the USDA Northeastern Forest

Researb Laboratory in Princeton, WV.

Strong correlations have been found to exist between external indicators and internal
characteristics. For the most se\ere defects,the models can predict internal featuressud
astotal depth, midway point defect width and length, and penetration angle, with a low
measuremenerror. For lessseere defectssud asadvertitious knots and medium and light
distortions, the correlations are lesssigni cant. An advertitious knot is a knot resulting
from a branch that sproutedfrom the main trunk. Thesetypesof knots are often small (less

than 0.75inch) and do not penetrate all the way to the certer of the tree asdo other knots.

Logscanbe classi edinto softwood and hardwood. In general,most softwoods have a fast
growth rate and idertical, clustereddefectsmostly causedby branch pruning. By corirast,
hardwood trees generally grov more slowly, and have more valuable products. Studies
have demonstratedthat the use of defect data improves cutting strategiesthat optimize
log recovery or yield, that is, preservingthe largest possiblearea of clear wood on a board
face[27,79]. This is a challengingtask to adieve becausethe distribution, types,and sizes

of hardwood defectsare random and irregular.
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1.2 General Research Objectiv es

The key objective of this researb wasto dewlop an algorithm capableof locating surface
defectson hardwood logs using laser pro le data. In order to accomplishthis objective,

seeral inter-related sub-objectiveshad to be met:

1. Characterization of hardwood defecttypes. This requiredthe collection, measuremen

photographing, and analysisof external hardwood defectsamples;

2. Dewvelopmert of non-linear regressionmodels that are able to perform the detection

tasks;

3. Dewelopmen of a madine vision system basedon the knowledge of external hard-
wood defect samplesfor defect detection basedon cortour levels derived from radial

distances;

4. Quarti cation of the cortrol parametersof the detection algorithm. This required
testing the accuracyof the algorithm using a range of valuesto determinethe optimal
combination of parameters. The optimal conbination is onewhich returns the highest
number of correctly identi ed defects,the lowest number of falsely identi ed defects,

and the lowest number of unidenti ed defects.

To the best of our knowledgethis is the rst investigation of detection methods for lo-
cating defectson the surfaceof hardwood logs and stemsusing laser-scanneBD Cartesian
coordinates [91, 87]. The laser-scanningsystemis a commonly available industrial system
manufactured by Perceptron, Inc. [4]. The scannergenerateshigh-resolution pro le images
of the log surfacein three dimensions.The scannerwas primarily deweloped for the softwood
industry, wherethe scannerwould be usedto determinethe shape and size of the log being
sawn in three dimensions.Ideally, an optimizer would take the scanneddata and determine
the sawing pattern for the log in terms of maximizing volume of lumber savn. The system

resolution is high enoughsud that defectscan be manually locatedin the scandata by the
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human eye. The obvious questionis: how to getthe computerto extrapolate internal defects

given known relationships betweensurfacefeaturesand internal log features.

1.3 Achievements

Most seere log defectsare assaiated with a localized surfacerise at least 0.5 inch. To
detect these features, an automated defect detection algorithm has been deweloped using
laser-scannedpro le data. Circlesare t to data crosssections,and then radial distances
are computed betweenthe tted circle and the data [86]. Also exploredis the possibility
of tting ellipsesor cylinder to log data. From the radial distancesa gray-scaleimage was
generatedshowning height changeson the log surface. Further, radial distancesare usedto
determinea cortour plot of the log surface,from which the large and/or protruding defects
are determined. Howewer, sometypes of seere defectsdo not lead to signi cant height
changesagainstthe surrounding bark, and thus are not detectedby the algorithm presened
in Chapter 6. Pattern-based methods to idertify these kinds of seere defects might be
deweloped in future work. Currently only those defectswith a signi cant height rise were

examined.

Log data were obtained from two commerciallyimportant north-east America hardwood
species:yellow poplar (Tulipifera Lirio dendron), and red oak (QuercusRubra). Over 160log
data sampleswere collected,ead consistingof crosssectionsalongthe log length at 0.8-inch
intervals (Figure 1.2). Ead crosssection comprisesapproximately 1,000 3-D coordinates
with adjacen points roughly 0.05inchesapart, soit is much denseralongthe crosssections
than betweenthem. Typically a log's length rangesbetween8 and 16 feet. Thus, eat log
data sample has about 120,000to 240,000points. Clearly, the log surfacedata are range
data. Due to blockageby the log's supporting structure during scanning,there are missing
data aswell assewereoutliers introduced. Calibration problemswith the scanningunits and

log diameters also causedmissing or duplicated data. Becauseof the presenceof a small
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Figure 1.2: Dot cloud projection of 3-D log data. Shown is part of the data for
one log sample. A bump-like external defect (lower left), missing data, and outliers
causedby loosebark (upper-middle left) are visible.

percenage of sewere outliers together with segmets of missing data over the log surface,
convertional least-squarestting performspoorly. This calls for the dewelopmen of robust
curve tting methods, which leadsto the application of robust statistics and the developmern
of 2-D curve- tting generalizedM-estimator (GME) [21, 91, 86].

Actual defectlocations, sizes,types, etc. for theselog sampleswere measuredmanually.
Color digital imagesof the log surface,four imagesper log (at 9C° intervals) were captured.
About 200 external-defectsampleswere studied, measured,and their photos taken. These
defectsampleswere analyzedto provide indicators and classi cation of external defectchar-
acteristics. Statistics for these defect classi cations are usedto de ne the defect-detection
algorithm, andto improveit through comparingits simulation output data againstthe statis-
tics. Thesearethe training data for the defectdetectionalgorithm, and are further discussed
in Sectionssec:dt4and 6.1. In our experimerts there areatotal of 68 seweredefects,of which
63 werecorrectly identi ed. There were 10 non-defectiwe regionsfalselyidenti ed asdefects.
The 68 defectsare testing data to the defect detection algorithm. When thesewere calcu-

lated as areas,the algorithm locates97.6%of the defectarea, and falsely identi es 1.5% of
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the total clear areaas defectiwe.

The defectsunder considerationare at least 0.5 inch in height and at least 3 inchesin
diameter, which are large, se\ere external surfacerises. Testing results are found in Section
sec:dasb.The method proceedsin three major steps. First, it determinesan appropriate
referencdewvella 2-D circle|to the scanneddata crosssectionalongthe loglength. Next, it
obtains radial distancesthat show surfacerise and depression.Finally, it locatesse\ere ex-
ternal defectsusingthe cortour imagegeneratedfrom radial distances. This processrequires
2-D quadratic curve tting. A small percertage of outliers exist in the log data amongthe
hundredsof 3-D points per crosssection. Statistically, outliers are obsenations that deviate
from the pattern formed by the majority of a data set. In this application they are caused
by loosebark or supporting structure of the scanningequipmen. Note that currertly the
defect detection system are implemerted using two programming languages: Java for the
circle- tting part, and Matlab for the defectdetectionpart. It is not yet integrated with laser
scanningequipmen, thus the simulation results are all from lab computers. In next phase,
we will integrate both two programsin Java, and experimert with a scannerequipmert in

real time.

Many least squares2-D curve- tting methods have beenproposedin the literature; see
for example[17, 14, 82, 13]. Howewer the log data are extremely noisy and include large
outliers along with missingdata. This implies that non-robust least squarestting fails as
it assumeghat data are free of outliers and complete. For this application, a good tting
to log data is crucial becausesubsequen analysiscompletely relies on its results. It turns
out that estimation methods proposedin eld of robust statistics, sud asthe M-estimators
introducedby Huber in 1965and the Least Median of SquaregLMS) estimator proposedby
Rousseew [21, 30, 70], do not meetthe requiremerts of good resistanceto outliers and low
computational complexity for circle tting. This needprompted the dewelopmen of a new
generalizedVi-estimator whoseobjective function makesuseof scaleestimatescalculated by
meansof projection statistics and incorporated in the Huber objective function sud that the

in uence function of the estimator is bounded. The projection statistics algorithm usesthe
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2-D radial vector coordinatesinstead of the row vectorsof the Jacobianmatrix. The vectors
start from the tted circle to the log data cross-sectionand passthrough the certer of the
tted circle. This nonlinear approad provese ective herein that it successfullyidenti es
sewere outliers in data, which otherwisewould not be iderti ed as outliers by corvertional

linear methods.

The remaining dissertation is structured as follows: Chapter 2 reviews related work,
methodologies, and theories in defect detection, range image processing,image structure
modeling, and robust statistical estimation. It alsodiscusseghe relationship betweeninter-
nal and external defectsand why detecting external defectsprovides su cien t information
for internal ones. Chapter 3 descrikes various external log defectsand their dewelopmerts
during the tree growth. Chapter 4 outlines the detection algorithm, including both the circle
tting processto log data, as well as defectidenti cation from radial distances. Chapter 5
preseits the new GM-Estimator and provesthat it is in uence bounded. Chapter 6 shavs
the defectdetection algorithm, parameter-\alue testing results, and experimerts with data
mining technology Finally, Chapter 7 provides concluding remarks and descrikes what is

plannedto be accomplishedn the next phase.



Chapter 2

Literature Review

2.1 Defect Detection Systems

There are both internal and external defect detection software systemsavailable for the
softwood industry as well as for the hardwood industry. Most internal defect inspection
methods on hardwood logsand stemsemploy technologiesusing X-ray/CT, X-ray tomosyn-
thesis, MRI, microwave scanning,ultrasound, and enhancedpattern recognition of regular
X-ray images.Using CT data, computer vision algorithms are able to accuratelylocate and
descrike internal log defects. Wagner et al. [96] investigateda CT scannerthat operated
at an ultrafast speed,which approaded the speedrequired by commercialsavmill and ve-
neerplants. Internal defectscould be seenin the scannedimagesacquiredat sud a speed.
Thus, the authors concludedthat it is possibleto dewlop image analysistechniquesto au-
tomatically identify internal defects. Guddanti et al. [20] deweloped the TOPSAW computer
program to comparevirtual boardsgeneratedby analyzing X-ray/CT log images,with the
actual boardssavn from the sameposition in the samelog at a savmill. In one simulation
when the boards are graded, both virtual and actual, it was found that the value of the
virtual boardsis only 3% lessthan that of the actual boards. Thus, the authors shaved that

it was possibleto assistthe saving processbasedon internal log structure obtained from

11
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X-ray/CT imagery.

Zhu and Beex [10Q experimerted with a stochastic texture modeling method for a ma-
chine vision log inspection systemusing computerizedtomography (CT) imaging to locate
and identify internal defectsin hardwood logs. In one simulation, correlation-classi cation
was conducted with a training set, and the resulting classi cation accuracieswere 71.4%,
100%, and 100%for deca regions, bark regions, and knots, respectively. Defect recogni-
tion accuraciesobtained with the testing set are: 80% for bark regionswith 3 out of 15
bark regionsmisclassi ed as deca regions;81% for deca regionswith 4 out of 14 decas

misclassi ed as knots; and 100%for knot regionswith no misclassi cation.

Zhu et al. [102] further deweloped a computer vision systemfor locating and idertifying
internal defectsin hardwood logsusing CT imagery The algorithm consistsof a number of

processingsteps:

1. an adaptive Iter smaoths ead 2-D CT imageto eliminate annual ring structure while

preservingother details;

2. a multithreshold 2-D segmetation sthemeis usedto separatepotential defectareas

from areasof clear wood on ead image;

3. by generalizing8-neigtbor connectivity to 3-D structures, sequencesf consecutie and

segmeted 2-D slicesare then analyzedto nd connected3-D regions.

To deal with the imprecisionand ambiguity in assigninglabelsto the 3-D regions,a set
of hypothesistests were employed that useda set of basic featurescapturing common 3-D
characteristics of wood defects,and the Dempster-Shafertheory of evidertial reasoningwas
usedto classify defect objects. No quartitation information was given with respect to the

performanceof this system.

Using CT technology Li et al. [40] investigated internal log inspection and deweloped
a feed-forvard multilayer Articial Neural Network (ANN) system, trained by a badk-
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propagation method. ANN includes a training phaseand an operation phase. The ANN
classi er usedhereis the Multi-La yer Perceptron(MLP) architecture trained usingthe badk-
propagation algorithm [12). A perceptroncan learn from examples,and needsbe trained to
recognizethe correct input vectors. By normalizing CT density values,theseclassi ers can
accommalate seeral hardwood speciessud as northern red oak, water oak, yellow poplar,
and bladk cherry. They can also accommalate three commondefect types sud as knots,
splits, and deca. Local 3-D data are usedto extract defectfeatures, and a pixel-by-pixel
classi cation accuracyof 95%was achieved. Analysisof a CT slicewith 256 256 elemeitts,
ead correspnding to a volumne of 25 2.5 2:5mm3, on a Macintosh Quadra 650 with
a MC680403/33MHz CPU requiresabout 25 seconds.Sarigul et al. [74, 73] further re ned
theseclassi ersin a subsequenpost-processingstep, by deweloping a rule-basedapproad to
regionre nement to augmert the initial emphasison local information. The resulting rules
are domain depender, utilizing information that dependson region shape and defecttype.
Comparedto ANN, the Intellipost system deweloped by Sarigul et al. improved segmen-
tation accuracyfor hardwood log datasetswere 1.92%for the red oak datasetsand 9.45%
for the datasetsprovided by Forintek Canada, Inc [73]. For the caseof medical datasets,
improvemern for two datasetswere 4.22%and 0.33%,respectively. Similar excution time as

ANN is expected.

Bhandarkar et al. [3] dewloped CATALOG, a system for detection and classi cation
of internal defectsin hardwood logs via analysis of computer tomography images. Defect

detection and classi cation in CATALOG consistsof two phases:

1. Segmetation of a single CT imageslice, resulting in the extraction of 2-D defect-like
regions;
2. Correlation of the 2-D defect-like regionsacrossCT image slicesin order to establish

3-D supyport.

The segmetation algorithm includes multiple-value thresholding that exploits both the
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knowledgeof wood structure, and the gray-scalecharacteristicsof the image. The extraction
algorithm locatesthe pith of a log crosssection,groupspixelsin the segmeted imagebased
on their connectivity, and classi es ead 2-D region as a defect or non-defectregion using
shape, oriertation, and morphologicalfeatures. From the cross-sectiorCT images,CATLOG
performs3-D reconstructionand renderingof the log andits internal defects. It alsosimulates
and renderskey madine operationssud assaving and veneering.Overall, the ertire process
of defectidenti cation, defectlocalization, 3D model reconstruction,and renderingon a 200-
MHz PentiumPro workstation with 256 MB of RAM took between 3 and 4 minutes for all
the log speciesthat were considered. The graphical simulation of the saving operation
averaged38 secondgfor a cut de ned by two sawing surfaces. The graphical simulation of
the rotary-peeledveneeringoperation averaged8 secondsfor a veneerof length 1.2 meters
and width of 1 meter. No quartitativ e evaluation of the Catalog systemwasgiven, yet it was
claimedto be capableof detection and 3D rendering of defectssud as knots, cradks, holes
and bark/moisture pockets in hardwood logs of selecthardwood species. The speciesthat
were consideredwere Red Oak, Black Walnut, White Ash and Hard Maple, which accourt

for over 80% of the lumber poduction in the United States.

Tian et al. [93, 94] deweloped an automated camera-basedision systembasedon texture
analysisthat canlocate and idertify certain classef defectson freshly harvested Radiata
pine logs (a type of softwood). The systemappliesthe algorithm computing the orientation
eld for a ow-like texture, originally dewloped by Rao et al. [61]. The basic structure
of their systemconsistsof a feature extraction module estimating an oriented texture eld
basedon the original tree stem image, and an object analysisand recognition module for
processingthe oriented texture eld. Visual texture is de ned asrepeating patterns of local
variations in imageintensity that aretoo ne to be distinguished as separateobjects at the
obsened resolution [327]. The systemusesan texture-oriented lIter that analyzesgradierts

using a 2-D Gaussianfunction. It is madeup with two modules:

1. A feature extraction module for estimating the oriented texture eld from the raw
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image of a log surface;

2. A sceneanalysisand detection module for analyzing the oriented texture eld.

The systemis able to accurately detect di erent typesof defectson barked log surfaces.
The key di erence betweenthe experimerts by Tian et al. and this researb is the original
input data, where the former used gray-scaledigital imagesof softwoods, and the latter,
three-dimensionalsurfacepro le data of hardwoods. Also, Tian waslooking only for pruned
brandh stubsand overgrowvn pruned branches. This researb exploresa wider rangeof defect
types. Tian's systemcan accurately detect more than 95% of knot positions and more than
90%of knot sizes.The systemnamedKnotVision wasprogrammedusing Borland's C/C++
and Borland's Turbo Assenbler with an image processingand analysislibrary devloped in

Tian's researb. Howewer, no details on equipmern or executiontime were given.

Kline et al. [36] applied a method to evaluate the performanceof color cameramadine
vision in automated furniture rough mill systems.134red oak boardswere usedto compare
the performanceof automated gang-rip- rst rough mill yield basedon a color cameralumber
inspection system with both estimated optimum vyield and actual measureyield. Three
sawing patterns were studied, including gang-ripsav, ripsaw, and chopsav. For ead saving
pattern, board areathat the systemclassi esasclear is reported, which is comparedto the
obsened cleararea. Defectdetection accuracywas measuredn terms of falsenegative error
and falsepositive error. Falsenegative error was de ned as defectregionson the board that
the scanningsystemclassi ed as clearwood. Falsepositive error wasde ned asactual clear

wood regionthat the scanningsystemclassi ed as defect.

2.2 Estimation Metho ds for Circle Fitting

Fitting geometricalmodel to given data in the plane or spaceinvolves minimization of the

sum of squareddistancesbetweenthe data and the model usingleast-squaresnethods. Sut
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distancesinclude algebraic,geometric,and orthogonal distances[17, 6]. Let f (x) = 0 denote
a 2-D curve, and x1 denotea 2-D data point. Then f (x1) is the so-calledalgebraicdistance.
Geometric distancesdepend on the type of curves. For example,a circle is a closedconic
curve with a certer. Assumethe certer is p. Now let x1 denotea 2-D data point, andx1 6 p.
Let | denotethe line passingthrough both x1 and p and intersectingthe circle at x2. There
are two intersectionsbetween| and the circle, and x2 is the closestoneto x1. Then the
geometricdistanceis de ned by the distance betweenx1 and x2. The orthogonal distance
betweenthe point x1 andthe curvef (x) = Oisthe radius of the smallestcircle certered at x1,
which is tangert to the curve [6]. From the above de nitions, the minimization algorithms
in order of increasingcomplexity are: algebraic,geometric,and orthogonal distances. The
computation intensity increasesn the sameorderaswell. Orthogonal distanceminimization,
or regression,is advocated when errors exist not only in the depender variables, but also

in the independert variables,and is a method to minimize both errors.

Many least-squareslgorithms and software minimize the sumsof squaredalgebraic, ge-
ometric, and orthogonal distances; some of them apply weighed least-squaresmethods.
Howe\er, there is no medtanism in these algorithms capable of idertifying se\ere outliers
to correctly estimate the model parameters. Robust estimators have beenapplied in many
elds. Classesof robust estimatorsinclude A, D, L, M, P, R, S, and W estimators [21].
The M -estimators consist of many varieties, for example the corvertional Least-Squares
estimators, Least Absolute Value estimators, and the Huber estimator. The S estimators
include the Least Median of Squaresestimators(LM S) and Least Trimmed Squaresestima-
tors (LT S). For image structure analysis, Meer et al. [45, 46] applied the LM S estimator
to recover piecewisepolynomial surface ts. The LM S estimator is robust against outliers

up to 50% of the imagedata.

Under the Gaussiandistribution, LM S estimatesare lessaccuratethan GM E estimates,
sincethey only usesthe middle residual value and henceassumeghat the data set cortains
a 50%fraction of noise[70]. When the data set cortains lessthan 50% noise,the LM S es-

timates su er in terms of accuracy sincenot all the good points are usedin the estimation.
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This is a major drawbadk. The LM S estimator can be applied to provide initial conditions
for the GM algorithm. Howeer, this classof estimatorsis typically implemerted via com-
putationally intensive algorithms that are inappropriate for the defectdetection application.
For the application in our researb, we would liket to investigate algorithms that have fast
executiontime. In savmills, the averagetime for an operator to inspect a log is 9 seconds.
Thus, the detection systemshould be no slowver than a human. To circumvert this di cult v,
we deweloped a simple and very fast method basedon the log data characteristics, which

provides reasonablygood initial conditions. Section5.2 discusseghe method in detail.

In the region basedsurface and shape- tting techniques, Besl et al. proposedrobust
rectangular constart-coe cien t window operatorsfor performing local imagesmaothing and
determining derivative estimation for edgedetection [2]. The theory of robust statistics is
applied, and a variable order surfaceappraximation algorithm was deweloped that includes
model identi cation. Parametersare tuned for redesendingV estimatorsusing weigh func-
tions, pixels having similar properties are grouped together, and the smoothing acrossdis-
cortinuities is preverted. Mainguy et al. [42] further applied Monte Carlo simulation in the
study of M estimation and LM S estimation for piecewisecortinuousimage surfaceapprox-
imation, and proposeda variable order facet model paradigmin M estimation. Robust M
estimators and their variants have beenfound to be tolerant to occlusionand other outlier
cortamination, and more computationally e cient than high breakdovn operators. Thus,

they are currertly gaining popularity in computer vision.

The data for the researb work proposedhere are log surfacemeasuremets cortaining
3-D coordinates. Essemially they arerangedata, not the intensity valuescommonlyreferred
to as gray scales,which is 2-D. For example, Haralick et al. [24] de ned the topographic
primal sketch for gray-scaleintensity images. Harris [26] deweloped the coupleddepth/slope
model and testedon syrthetic gray-scalesurfacedata. Terzopouluset al. [84] proposedquasi-
symmetric 3-D shape models applicable for both gray-scaleimagesand 3-D rangedata. An
active cortour model named\snake" was deweloped by Kasset al. [33] and tested on gray-

scaleand other type of 2-D images. The snake model was further improved by Cohen[9].
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Experimerts were performedon gray-scaleimagesrenderedfrom various medicalimages.

Our algorithm iderti es objects in 3-D range data images,which requiresdi erent tech-
niquesfrom those deweloped for gray-scaleimages. Many algorithms have beendewloped
for gray-scaleimageswith pixel valuescommonly betweenO and 255, a few were for range
images.In computervision, surfacereconstruction,comprisingsurfaceinterpolation and ap-
proximation algorithms, ts a smooth surfaceto the imagedata to determine featuressud
asslope, and orientation basedon the imageintensity. Haralick et al. [24] gave a complete
treatment for describingthe topographicprimal sketch of the underlying gray-scaleintensity
surfaceof a digital image. Eight main shapesare descrilked, eat has a unique label and is
invariant, for example, peak, ridge, ravine, saddle, hillside. A 2-D cubic polynomial of the
facet model is tted to estimate the image surface. Testsfor the model were performedon

syrthetic imagesand sceneimagesof manufactured objects.

Harris [26] deweloped the coupleddepth/slope model that explicitly computesthe slope
and depth represetations, and allows for varying amourts of smaothness. The author ap-
plied nite dierence approximations to derive a parallel and iterativ e algorithm from the
model, which wastestedon syrthetic gray-scalesurfacedata. More details about thesemeth-
ods are introducedin the remaining section. Mainguy et al. [42] applied robust statistical
proceduresto study the underlying piecewisecortinuous surfaceof a gray-scaleimage and
proposeda robust variable order facet model. The imagewastested both with and without

addednoisesat di erent levels.

To handle outliers, Kim et al. suggestedusing robust techniqueswith a relatively high
e ciency [35. A Breakdowvn point can be usedto measurerobust algorithms, which is the
smallestfraction of outliers presen in the input data that may causethe output estimate
to be arbitrarily wrong. For instance,L, L,, and L, estimators have a breakdovn point at
1=n, wheren is the number of data items. Another measureof robust statistical procedures
is their \relativ e e ciency” de ned by Kim et al in [35, asthe ratio betweenthe lowest

achievable variance for the estimated parameters(the Cramer-Raobound), and the actual
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varianceprovided by the given method, sothat the bestpossiblevalueis 1. The Cramer-Rao
inequality, namedin honor of Harald Cramer and Calyampudi RadhakrishnaRao, expresses
a lower bound on the variance of a statistical estimator, basedon Fisher information [21].
Kim et al. alsonote that the leastmeansquaresestimator in the presenceof Gaussiannoise
has an asymptotic (large sample)e ciency of 1, while the least median squaresestimator's

e ciency is only 0.637.

In statistical estimation, there is a trade-o0 between algorithms with high breakdovn
points versusthosewith high e ciency. Further, mostreseart in robust statistics wasdone
for linear problems. To ensurethat robust techniqueswork for solving nonlinear problems,
oneneedsto carefully choosethe initial estimate values,sud that they are closeenoughto
the true solution. In this documert, we preser neither the breakdovn point, nor e ciency
measureof our new GM-estimator. Instead, we prove theoretically in Section5.4 that it is
robust by deriving its in uence function. Our nonlinear GM-estimator, proposedin Chap-
ter 5, appliesan iteratively reweighted least squaresalgorithm. It starts with a simple but

e ective initial estimate, making it robust, e cient, and e ective.

Tirumalai and Scunck [95] alsointroduceda robust statistical LM S regressioralgorithm
for surfaceapproximation usingleastmedianof squaresregression.Quadratic surface tting
was performed on monocular as well as binocular stereo2-D data. Rao and Scundk [61]
proposed oriented texture analysis methods and experimerted with both syrthetic gray-
scaleimages,and real imagesof manufactured parts with relatively simple geometricshapes.
Taubin [82] addressedhe problem of parametric represetation and estimation of complex
planar 2-D curvesand 3-D surfaces.Simulations were performedon both gray-scaleimages
and 3-D rangedata. Both imagescaptured man-madeobjects. An algorithm estimating the
parametersof a linear model in presenceof heteroscedastimoiseemploys errors-in-variables
(EIV) model arising from the linearization of bilinear form [38]. It ts ellipsesand achieves
accuracy of nonlinear optimization at low computational cost. Syrthetic 2-D data as well
as a bridge gray-scaleimage were evaluated in experimerts. Matei and Meer [44] proposed

an improved maximum likelihood estimator for ellipse tting basedon the heteroscedastic



Liya Thomas Chapter 2. Literature Review 20

EIV regressiomalgorithm, which wastested on syrthetic data aswell asgray-scaleimagesof

man-madeobjects.

The defect detection algorithm analyzes3-D lot data, extracts featuressud as length
width, surfacerise, gradierts, and iderti es objects described by 3-D Cartesiancoordinates.
Various methods were proposedin 3-D objects descriptionand iderti cation. In the domain
of dynamic 3-D modeling and 3-D object reconstruction, Terzopoulus et al. [84] proposed
guasi-symmetric 3-D shape models that can be consideredas deformable bodies made of
elastic material. Sud models are active becausethey change shape by attaining stable
equilibrium betweenthe internal energy of the model and external forcesfrom the image.
The model stops changing only when the energy function is minimized and the shape in
the image is determined. The model was tested on two imagesof real objects with quasi-
symmetric features (squash, potato, and pear). Sud a model was further deweloped to
t complex 3-D shapes using a superquadrical model that can deform both locally and
globally [83]. Superquadricalobjects are 3-D, whoseequations(in Cartesiancoordinates)are
of the secondor higher degree.They were rst discoreredby Hein [18. Take superellipsoids
for example. A special classof superellipsoidsare the familiar ellipsoids. One may expressan
ellipsoid certered at the origin, with a, b, and c represeting the three semiaxesyespectively,
asx?=a + y>=I¥ + z2=¢ = 1. Now the superellipsoidstake the generalizedform x"=a" +

y"'=8'+ z"=¢' = 1, wheren 2is areal number, and .

The systemsintroducedin [84, 83] were executedat interactive rates on a graphic work-
station. The dynamic equationsmake the modelsresponsiwe to forcesderived from imageor
range data, and compelsthem to conformto the data. This model is suitable for detecting
shapeswith relatively smaoth surfaces for instance,eggshellsand mugs. An active cortour
model named\snake" wasdewloped by Kasset al. [33], which is an energy-minimizingclosed
spline, analogousto the 3-D deformablemodel. It canbe usedto detect vision objects, sut
as edges,lines, and cortours. Various typesof 2-D imageswere tested for the model. The
snake model was further improved by Cohen[9] to give more stable results, and the curve

behaveslike a balloon to guarartee the algorithm convergesto the correct solution. Exper-
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imertation with medical images,sud as ultrasound, MRI, of human internal organs, was
performedto illustrate the technique. When an operator obsenesthat the initial curve lies
inside an imageobject, which is to be detected,the systemidenti es the curve. The balloon

techniqueis e ective in that it is ableto expandthe curveto t the object boundary.

ODRPACK dewloped by Boggset al. is a mathematical software for solving weighed
orthogonal distanceregressiorproblems|[5]. The algorithm for ODRPACK nds parameters
that minimize the sum of the squaredweighted orthogonal distancesfrom the data to a curve
or surface[6]. It implemerts an e cient and stable trust region (Leverberg-Marquardt)
procedure. The algorithm minimizes both model and measuremen errors. Howewer the

in uence of extreme outliers cannot be downweighed.

2.3 Relationship between External and Internal De-

fects

During the past50yearsthere hasbeena signi cant amourt of researb conductedexamining
the relationship of external hardwood log defectindicators to internal defectcharacteristics.
The majority of internal defectsare wherea branch hasbeenslowly grown around or over, to
form a soundknot defect. Depending on specie,knots can be the samecolor as surrounding
wood, but are usually somewhatdarker. Internal knots are characterizedby a tight circular
grain pattern cortrasted from the straight grain of the surrounding clearwood. This change
in grain pattern createsa weaknessn the wood that is transferred to any board cut that
cortains the knot. For any givenknot, it is largestnearthe surface,and tapersmore or less
uniformly to a point at the certer of the log. Knot sizeis highly variable betweenexamples,
and rangesfrom lessthan .5-inch to nearly as large as the log they are cortained on. In
general,the larger and more knots a log has, the lower its grade and dollar value. Internal
defectsmay alsobe rotten or decged, often referredto asunsound. Although lessfrequen

than soundknots, unsoundinternal defectsare more serious,and lower the log value and its
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products more so than sound knot defects. Unsound defectsstart as knots, wounds, holes
or splits, that deca due to the introduction of bacteria. In most cases,an unsound defect
started out as a knot from a branch that died or was broken o and the tree could not
grow over it quick enoughbeforethe onsetof deca. Unsound defectsare typically larger
than sound knots due to the nature of decg spreadingin wood. Holesand splits are the
least frequert internal defects,and are often assaiated with insects/animalsor harvesting
damage.When they are 2 incheslong or more, they have a signi cant impact on value and
strength of the boards produced. In the smallestexample,the log could have small worm
holeswhich have little or no impact on value. In the worst example,the log could be cradked

nearly in half due to poor harvesting technique.

Se\eral guidesand pictorial serieshave been published illustrating various external and
internal defect characteristics and their relationship for various hardwood species[43, 62,
63, 64, 65, 68, 66, 67]. While theseguidesare useful referencedor providing insight on the
external/internal relationship, only one or two examplesof eat defecttype are provided.
Thus, while informative, they donot ful Il the needof a de nitiv e model capableof predicting
internal defectfeaturesbasedon obsenable external defectfeatures. Further, most studies
are limited in scope with small samplesand examine a narrow range of defect types and

features.

Hyvearinen usedMarden's maple defectdata to explorethe relationshipsamongthe inter-
nal featuresof grain orientation and heigh of clearwood above an encapsulatedknot defect
and the external featuresof surfacerise, width, and length [31]. The sugar maple defect
data were collected from 44 trees covering three sites in upper Michigan. Hyvearinen used
simple linear regressiormethods to nd good correlationsamongclear wood above defects,
bark distortion width, length, and rise measuremets, aswell asage,tree diameter, and stem
taper. Howewer, the best simple correlation was with diameter inside bark (DIB) (r = :66)
and a 0.66-int standard error of estimate. A coe cien t of correlation of .74 and a standard
error of 0.60 inch were obtained using a stepwise regressionmethod with bark distortion

vertical sizeand DIB variablesbeing the most signi cant indicators.
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A similar study was conducted on a sample of 21 black spruce trees collected from a
natural stand 75 km north of Quebec City [39. Three trees, ead with three logs, were
selectedfrom which a total of 249knot defectswere dissectedand their data recorded. The
researbersfound better correlations betweenexternal indicator and internal characteristics
in the middle and bottom logs as comparedto the upper logs. Strong correlations(r > :89)
werefound to exist betweenexternal featuressud asbrand stub diameterand length to the
width and length of internal defectzones.The defectswere modeledas having three distinct
zones,correspnding to the manner in which the penetration angle changesover time in
bladk spruce. This study examinedonly branchesthat had not beenpruned or dropped and
thus could not examineencapsulationdepth. Encapsulation depth refersto the amourt of
clear wood that hasgrown over a defect. The greater the encapsulationdepth, the greater

the opportunity for a clear board to be savn from wood over the knot.

2.3.1 Defects need to be detected both externally and internally

One of the major areasof study today in hardwood researt is the dewelopmen of equip-
mert and a methodology that can accurately sensanternal defectlocations and structures.
Determining the location and characteristics of defectslocated inside logs promisesto dra-
matically improve currert log recovery in terms of both quartity and quality. In addition,
accurateinternal defectinformation would permit researbersto re ne, expand,and analyze
log grading rules, multi-pro duct potertial, stand di erences, and silvicultural treatments in

ways previously not available or economicallyfeasible.

Studieshave demonstratedthat the useof external or internal defectdata improvescutting
strategiesthat optimize log recovery or yield, that is, preservingthe largest possiblearea of
clear wood on a board face [79]. The value of the lumber that can be recorered depends
on the presenceand location of defects. This is especially true for hardwood logs. In the
production of hardwood lumber, boards are savn to xed thicknessesand random widths.

The presenceand placemen of defectson the boards a ect board quality and value, so
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much attention is focusedon log surfacedefectsduring processing. Thus, while detecting
external defectsis useful for determining overall log quality characteristics, internal defect

information is the key to improving lumber value and volume in the savmill.

2.3.2 External defects have a high correlation with internal defects

A recen study has discovered strong relationships between external defect features and
internal defectcharacteristicsfor se\eredefects: overgronvn knots, soundknots, knot clusters,
and unsound knots [90]. This study harvesteda total of 66 yellow-poplar trees from two
sites separatedby approximately 220 miles. 300 se\ere knot defectswere randomly sampled
from the trees. The sampleswere dissectedand measured. A seriesof stepvise multiple-
linear regressioranalyseswereperformedto determineif any signi cant correlationsbetween

external and internal featuresexisted.

In mostinstances strong correlationswerefound to existamongexternal defectindicators
andinternal characteristicsfor se\eredefecttypes: overgronvn knots, overgronvn knot clusters,
sound knots, and unsound knots. The number of overgrovn knot cluster defectswas not
su cient samplesizefor establishinga defectprediction model. Becauseof this, overgrovn

knot clustersand overgronn knots obsenations were grouped together.

The correlation results for seere defectsare shovn in Table 2.1. The strength of the
correlations (adjusted multiple R?) betweeninterior halfway point width measuremenand
exterior featuresrangedfrom 0.48to 0.75. Similar resultswerefound to existamongexternal
featuresand the halfway point length measuremen (adjusted multiple R? from 0.45to 0.75).
Most of the se\eredefectobsenations terminated at the pith, appraximately the certer of the
slab for most samples. This is demonstratedin the strong relationship among penetration
depth and external features- speci cally diameter, with adjusted multiple R? ranging from
0.63to 0.81. The strongestcorrelationwith penetration anglewaswith soundknots (adjusted
multiple R? = 0.70). Howeer, in most cases,the relationship between penetration angle

and external featureswas not asstrong with adjusted multiple R? ranging from 0.23to 0.39
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Table2.1: External/ internal defectcorrelation results

Internal Adjusted Mean Residual
Defect type defect R absolute  standard
feature squared  error error
CK);]’(‘;Z‘{Q“""” Halfway width 0.49 0.28 0.36
Halfway length 0.45 0.50 0.63
Penetrationangle 0.39 7.79 10.49
Depth 0.76 0.41 0.56
Overgrovn Knot /
Overgrevn Knot Halfway width 0.47 0.27 0.36
Cluster
Halfway length 0.46 0.48 0.59
Penetrationangle 0.22 11.13 13.82
Depth 0.73 0.42 0.59
SoundKnot Halfway width 0.75 0.31 0.42
Halfway length 0.75 0.53 0.76
Penetrationangle 0.70 8.75 11.33
Depth 0.63 0.41 0.54
UnsoundKnot Halfway width 0.71 0.26 0.39
Halfway length 0.65 0.67 0.93
Penetrationangle 0.39 8.16 10.79
Depth 0.74 0.45 0.65

for the other se\ere knot defects. All correlations between external indicators and internal
features were signi cant at the 99% level. Further, the low mean absolute errors (0.25
to 0.70inch) indicate that internal featurescan be reliably predicted. Additional testing is
plannedto determineif the error rateswould a ect processingdecisionshasedon the inferred

internal information.



Chapter 3

Defect Taxonomy

3.1 The Structure and Nature of Log Defects

A tree shouldbethought of ashaving multiple layers. Every growing seasorthe tree produces
a completely new layer of wood and bark tissue. In a sensea new layer envelopsthe old
tree ewvery year [75. As the tree builds the new layers, placeswhere wounds have occurred
or brandhes have fallen or beensavn o are overgronvn. Figure 3.1 shavs a cutaway view
of a tree showing se\eral selectedlayers and ass@iated overgrovn brandhes. The pictures
in Figure 3.1 were extracted from [76]. It is by growing in this way that the tree protects
itself from animal, insect, and bacterial invasions. Thus, defectsformed on hardwood logs
are a responseto the natural growth processor to damage. The most seriousand common
log surfacedefectsconsistof soundknots, unsound(rotten) knots, overgronvn knots, medium
and heavy bark distortions, and holes[25]. Lesscommon, but quite seere are wounds and
splits. Knot type defectscan appear clusteredtogether and are more seriousthan a defect
appearing singly, asthe underlying wood is more defective. More common, but lessseere
are adwvertitious knots. In most casesadvertitious knots are not regardedas a log defect,

unlessthey have deweloped into a brand.

26
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(@) Selected layers and (b) Brokenbranch stub
branch stubs that have shawing jagged break
beenovergrown in a log and hanging loosebark

Figure 3.1: A cutaway view of a tree and assiated overgrovn branches(taken from
[76].

3.2 Branc h-Related Defects

The formation of defectsrelated to brandhesand knots follows a logical progression.In the
rst phasethe brandh is pruned, falls o naturally, or is torn away by natural causes|eaving
a sound knot defect (Figure 3.1(b)). This leavesan abruptly raised, round areaon the log
surface. If the branch wasnaturally removed, asin a wind storm, the surfacewould be rough
(Figures 3.2(a) and 3.2(c)). A smooth surfacewould have beenleft if it had beensavn o

(Figures 3.2(b) and 3.2(d)). Knots from brand stubs can vary in size,from a few square

inchesin surfaceareato a squarefoot or more.

In the next phase,the soundknot (sawvn or pruned branch stub) is grown over with bark

and someunderlying wood to yield an overgrovn knot. Here the areais still signi cantly
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(@) (b)

() (d)

Figure 3.2: (a) and (c): sideview and top view of a broken branch stub from a log.
(b) and (d): sideview and top view of a savn branch stub from alog. Both are sound
knots.

higher than the surroundingwood. The bark texture of the new bark over the branch stub
is smooth and usually rounded. Figure 3.3 shaws two examplesof overgrovn knots. As
the tree cortinuesto grow, the height di erence betweenthe knot and the surrounding area

decreases.

If a bacterial or viral infection occursbeforethe tree can completelygrow over the branch
stub, then an unsoundknot canoccur. Unsoundknots have much the sameoverall shape and
characteristicsas a brandh stub with the exceptionof a rotten areausually in the middle of
the defect. The rotten areacan be a hole or an exposedpieceof the original branch showving
signsof deca. Figures 3.4(a) and 3.4(c) shov an example of an unsound knot where the
brandc stub hasrotted away and left a hole. Figure 3.4(b) and 3.4(d) shav an unsoundknot

that was nearly grown over, but hasan exposedrotten part of the branch stub remaining.

If the tree is successfuin growing over the brandch stub, then the overgrovn knot will
ewertually becomea heary distortion defect. The heary distortion looks like a attened
version of the overgrovn knot. It is characterizedby at least a single heary circular ring

in the bark texture. Figure 3.5 shaovs a heary distortion defectfrom a red oak log. In this
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(@) (b)

(©) (d)

Figure 3.3: (a) and (c): side view and top view of an overgronn knot on a yellow
poplar. (b) and (d): sideview and top view of another overgrovn knot on a red oak.

(a) (b)

(©) (d)

Figure 3.4: (a) and (c): side view and top view of an unsound knot, a hole where
brandch stub hasrotted away on a red oak log. (b) and (d): sideview and top view
of another unsoundknot on yellow poplar shaving rotten remainsof branch stub.
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(a) (b)

Figure 3.5: Typical heavy distortion defectsshowing the circular ring of bark tissue.
(a) ison ared oaklog, and (b) a yellow-poplar log.

(@) (b)

Figure 3.6: Medium distortion defects. (a) is on a yellow-poplar log, and (b) is on a
red oak log.

examplethere is an inner circle of smoother, youngerbark which grew over the branch stub.
The circular ring of the defectis easyto discernfrom the straight lines of the normal bark

texture. At this point the branch stub is just under the bark surface.

Gradually the heavy distortion will becomea medium distortion. The branch stub has
beenovergrovn to the point that it can be se\eral inchesbeneaththe log surface. Medium
distortions lack the strong circular area of heavy distortions. The certers of medium dis-
tortions are generally more broken up and the circular areamay be split in two. In general
medium distortions are lesscircular and harderto nd on the bark than heavy distortions.
Figure 3.6 shavstwo mediumdistortion defects.In the certer of Figure 3.6(a) a semi-circular

areaof disjoint bark can be seen.

Eventually the medium distortion defectwill becomea light distortion. Light distortion
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defectsare simply a slight break in the texture of the bark. Thesedefectscan be di cult

to nd, ewen by experiencedloggersand processors.Becausethesedefectsindicate a defect
near the certer of the tree or one that is many inches belowv the log surfaceand do not
a ect the value or utilit y of the log, they are not regardedas a defect. Evertually the light

distortion and all evidenceof the overgravn branch will fade from the bark.

Advertitious buds or knots can be quite common on somehardwood log species. Ad-
vertitious buds exist in a dormarnt state within the tree until conditions are right for the
bud to sprout into a branch. Sud conditions can be initiated by damageto the tree, such
as the loss of seweral brandhes, or a neighboring tree has beenremoved exposing the bark
to sunlight. Advertitious knots rangein diameter from lessthan 0.25inch to more than 2
inches and averageapproximately 1 to 1.5 inches. They are characterizedby a small cir-
cular ring distortion of the bark, and the certer can be raised 0.25inch or more. In very
minor examples the indicator of an advertitious bud is simply a small, 0:25 0:25inch?, or
smaller, rounded raised point. Figure 3.7 shavs two examplesof advertitious buds. Figure
3.8(a) shaws an examplewhere a small branch has started from the advertitious bud and
hasbeencut o. Only in the casewherea branch has started are thesedefectsconsidered
serious.Branchesfrom advertitious budsare called suders. If the suder is successfuit will
grow into a branch, otherwiseit will becomea branch stub, which will form an overgrovn or
unsoundknot depending on its circumstances.Although a savn-o sudker may resenble a
soundknot, there are key di erences. Speci cally the sizeof a soundknot is generallymuch
larger, 4 inch? or more in surfacearea,comparedto 1 to 2 inch? for a sudker. In addition,
the areaaround a sudker remains at with little surrounding height change. A sound knot

often raisesa large areaof surrounding bark (Figure 3.2).

All of the knot defectsmertioned above can occur in clusters. Clusters of defectsare
regardedas more seriousthan a single occurrence. As the internal defect manifestation is
more se\ere. The commonnamesfor clustereddefectsare advertitious knot cluster (Figure
3.8(b)), sound knot cluster, overgrowvn knot cluster, unsoundknot cluster. In general,the

cluster defectshave the samecharacteristicsascomparablesingleexamples.Howeer, cluster
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(@) (b)

Figure 3.7: Advertitious knot examples. (a) is on a red oak log, and (b) is on a
yellow-poplar log.

defectscan have greater surfacerise sincethe branch defectsare growing out and over ead
other. In addition, dueto the extra branchesand competition amongthe brandches,the bark

will be more heavily distorted and the areaof the distortion will be wider.

3.3 Damage Defects

Damagedefectsinclude the defectclasse®f holesand wounds. Holesare abrupt depressions
into the log surface. The surrounding bark can be completely normal with no distortion
or other indicator of a defect. Holes are most often causedby animals, insects, or decy.
Figures 3.4(a) and 3.4(c) shaved a hole defectin the middle of an unsoundknot. Wounds
are where damageto the bark surfacehas occurred. Like holesthe surrounding bark can
appearcompletelynormal. Dependingon the se\erity of the wound and how much wood was
removed, a depressiorcan exist in the middle of the wound. Figure 3.9 shows two examples
of wounds. Normally a wound is characterizedby smooth bark with a split down the middle.

The split is the meeting point of the bark tissuewhenit grew over the wound.
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(@) (b)

Figure 3.8: (a). An adwertitious bud that deweloped into a branch. This type of
brandh is sometimesreferredto as a \sucker". This picture shows the savn branch
stub. (b). A cluster of advertitious knots on a yellow poplar log.

(@) (b)

Figure 3.9: Two examplesof woundson yellow poplar logs.

3.4 Defect Taxonomy From the Laser-Data Perspec-

tiv e

As discussedin Sections 3.1 through 3.3, there are many external defects on hardwood
logs, including sound knots, overgrovn knots, unsound knots, holes, gouges,bumps, close
bird bed, advertitious knots and their clusters,hard distortion, and medium distortion, and
wounds. Thesestandardizedexternal defectdescriptionswere deweloped by a group of forest
researb scierists for log grading rules [7]. To better distinguish external log defecttypes
that are usefulfor the laser-scanned-D data, we now categorizethem from a di erent point

of view. The knob defecttype includesboth the sound and unsound overgrovn knots by
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Table3.1: Defecttaxonomy and characteristicsfrom the laser-dataperspective.

Code Name Average Height

KNOB Knob 15

SWK Savn Knot 1

HOLE Hole 1.3

AKC Adventitious 0.5
Knot Cluster

HD HeavyDistartion

MD MediumDistartion

WOUND Wound

LOOSEBARK LooseBark 4.5

traditional forestry de nition, which are referredto asovergrovn knots and unsoundknots,
respectively. The sawn knot defecttype includesboth the soundand unsoundsavn knots
by traditional forestry de nition, which are referredto as soundknots and unsoundknots,
respectively. The reasonthat we categorizethesetwo typesin sud a way is that, using
the 3-D laserdata there is no signi cant distinction betweensoundand unsoundovergronn
knots, or betweensoundand unsoundsawvn knots. At this stage,we group them into knobs
and savn knots. Putting them together allows us to analyzetheir characteristics, sud as

length, width, and surfacerise, which are usedin our detection algorithm dewelopmen.

Table 3.1 presens defecttaxonomy and characteristics from the laser-dataperspective.
The measuremets are collectedfrom about 200real external defectsamplesof both red oak
and yellow poplar. Note the defecttypesare listed in decreasingorder of the height (surface

rise). The following are the indicators and de nitions of defecttypeslisted in Table 3.1.

Knob

Indicator  An abrupt surfacerise (usually .5 inch or more) and texture change?2 to 8

inchesin diameter. Somemay have a surfacerise with a depressionor hole in the middle.
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De nition Indicates a knot just belowv the bark surface. Somemay have a portion

rotten.

Sawn Knot

Indicator  An abrupt surfacerise (usually .5 inch or more) and texture change?2 to 8
inchesin diameter that is characterizedby a at sawvn top. Somemay have a surfacerise

with a depressionor hole in the middle.

De nition Location where a branch has beensavn o of the log. Somemay have a

portion rotten.

Hole

Indicator  An abrupt circular surfacedepression 1.5inchesin diameterand 2 inches

in depth). The edgesof the hole may have surfacerise.

De nition A holeis mostoften rotten. A holecanberesult from a branch that dropped
0 and rotted badk into the tree. A hole canalsobe causedby animals,which will evertually

becomerotten. A seeredefectbecauseof the staining and decg assaiated with the defect.

Adv entitious Knot Cluster

Indicator A groupingof two or more Advertitious Knots. Can be asseiated with small

distortion defectsrepreseting past AK's that have sprouted,fallen o, and beenovergrown.

De nition More seere than a single advertitious knot. A group of suppressedouds

that will dewlop into brancheswhen conditions are favorable.
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Heavy Distortion

Indicator  Slight surfacerise and circular texture pattern consistingof seweral conceitric

rings. The horizontal and vertical diametersof the defectare approximately equal.

De nition A heavy distortion is knot (branch stub) that hasbeenrecerly completely

overgronvn by the surrounding wood.
Medium Distortion

Indicator  Circular texture pattern consistingof oneor two circular rings that have been
broken by the badkground bark texture. The horizontal diameter of the defectis usually

noticeably greaterthan the vertical diameter.

De nition A medium distortion is a knot or branch stub that has beenovergrovn to

the point that it is now seeral inchesbelow the log surface.
Wound

Indicator A scaron the bark with no surfacerise, usually elongatedwith a certer seam
wherethe edgesof the wound grew together. Depending on the se\erity of the damagethe

bark may have a slight depression.

De nition Damageto the bark and possibleunderlying wood causedby insects, bac-

teria, animals, or past logging operations.
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Table3.2: Statistics of defectmeasuremets categorizedfrom the laser-dataperspec-
tive. The units are inches,and the format for the data is: rst quartile-median-third
quartile.

: . Surface
Type Width Length Surface rise Depression
KNOB 5.0-5.5-6.8 5.5-6.5-8.3 1.0-1.5-1.5 None
SWK 4.9-6.3-8.6 6.5-9.5-10.5 0.5-1.0-1.5 0.6-1.0-1.0
HOLE 5.5-5.5-5.,5 8.9-9.3-9.6 1.1-1.3-1.4 1.9-2.8-3.6
AKC 3.9-5.0-5.1 4.0-4.3-5.0 0.5-0.5-0.5 0.0-0.0-0.0
HD 4.5-4.8-5.3 4.0-5.0-5.1 0.5-0.5-0.5 0.5-0.5-0.5
MD 3.5-3.5-3.6 2.9-3.0-3.1 0.5-0.5-0.5 None

LOOSEBARK 1.5-2.0-3.5 6.3-9.5-15.5 2.5-4.5-6.8 None

Lo ose Bark

Indicator  Bark piecesdangleor protrude from the log surface. Generallythey arelong
and narrow bark strips or fallen leaves, with one of the narrow endsattachedto the log. 1 -

2 incheswide, and 2 - 10 inches.

De nition Leaves or sectionsof bark torn or loosenedduring harvesting and/or han-

dling that are attached to log surface.

There are other defecttypes, sud as gouges,that are possibleto detect yet extremely
rare. Due to the di cult y in collecting sampledata, they are not listed here. Sinceclusters
of savn knots and thoseof knobscanbe detectedand classi ed asindividual defects,herewe
omit them. Next, we discusseat defecttype using the defectdata collectedand analyzed
basedon the measuremets of the defect sample collection. Table 3.2 cortains statistics
obtain from the sample collection. The defecttypes are listed in decreasingorder of the
surfacerise. For seeral defecttypes,their measuremets and statistics are absen because
they are trivial or not available due to the nature of sud defecttypes. The format for the
data is: rst quartile-median-third quartile. The information was analyzedfor establishing

defectmodelsin the defectdetection algorithm discussedn Chapter 6.
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Note that although the defect median height in Table 3.2. Although they seemto be
not trivial, for example, 1.5 inches for knobs and 1.0 inches for savn knots, the heigh
was measuredas the highest point of the defect. In our contour-based defect detection
algorithm, very likely only a small portion of the defects(represered by the correspnding
radial distances)are enclosedin the cortour. Therefore, the relative signi cant median
heights in above table do not indicate an sure sign of correct iderti cation of the defects.
Nonethelessthe metric indicates the likelihood for the corntour-based detection algorithm
to locate the defects. Evidently, knobs and savn knots are the majority to be identify. The
median height for holesis 1.3 inches. Sud a height is causeby the \ridge" surrounding
it. This seemdo suggestthat we are likely to detect many holes. Howeer, statistics show
that the perceriage of holesin external defectsare very low, which is about 1%. Thesedata

referencedfor the detection algorithm dewelopmen. We refer to them astraining data.



Chapter 4

Overview of the Detection Algorithm

Seere external defectsthat correspnd to rises or depressionson the log surfacecan be
obsened from the three-dimensionallog surfaceimage. This suggeststhat oneway to de-
termine their location is to extract the height changeon the log surfacefrom its 3-D image.
To do so, a seriesof circle tting to log cross-sectiordata setswere appliedto obtain ground
zeroreferenceevels of the log surface. Becausethe laserrange data setsmay include either
missing data or irrelevant deviart data points, a new, robust estimator was deweloped to
estimatein a reliable mannerthe certers and the radii of the tted circles. Radial distances
betweenthe latter and the log data points are thus indicative of the local height changes.
Defects characterized by signi cant (in a statistical sense)surfacerisesor depressionsare
then located using appropriate statistical methods. The following sectionsgive an overview
of the GM-Estimator in circle tting, aswell asan overview of the defectdetectionalgorithm.

Both are discussedn details in Chapters5 and 6, respectively.

39
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4.1 Fitting Circles to Log Data Using a New GM-

Estimator

To convert the 3-D log surfacedata to 2-D imagesfor processing,a referencesurfacemust
be imposedon the log data from the scanner.Sincelogsare natural objects that are approx-
imately circular or elliptical along the crosssections,circle- and ellipses- tting to log data
were experimerted with. Fitted circlesand ellipsesall together form a referencesurface,or
virtual log, that is neededfor defect detection. Defectsthat correspnd to risesor depres-
sionson the log surfacecan be detectedusing cortour levels estimated from the orthogonal

distancesbetweenthe virtual log surfaceand any point of the crosssection.

Fitting quadratic curves(i.e., circles,ellipses)to 2-D data points is a nonlinear regression
problem [17]. Classic least-squarestting methods fail in our casebecausethe laser log
cross-sectiondata cortain either missing data and/or large deviart data points, termed
outliers in the statistical literature. These data characteristics are causedby both logs
and the scanningsystem. As depicted in Figure 4.1, the laser data setsinclude deviarnt
data generatedby dangling loosebark, duplicate and/or missing data causedby scanner
calibration errors, unwanted data from the supporting structure under the log, and missing
data due to the blockageof the log by the supporting structure. In robust statistics, outliers
are de ned asdata points that strongly deviate from the pattern formed by the majority of
the measuremets. To overcomethe non-robustnessof the least-squaretting, we resortto
the theoriesand methods of robust statistics [21]. The nonlinear form of the circle equation
prompt us to dewlop a new, robust estimation method that is an outgrowth of the one

proposedby Mili et al. [48].

The nonlinearregressiorcircle- tting estimator is a generalizedM-estimator termed GM-
estimator for short [86]. As shavn in Figure 4.2, it lters out not only the errorsin the
measuremets, but alsothe errorsin the circle model that is applied to a given cross-section

data set. For example,for a log samplewith 120 crosssections,an equal number of circles
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(a) loosebark ak esin lower left cor-
ner

(c) Outliers and shape of log at one
end where the log was cut diagonally
instead of squarely

Figure 4.1: Various formations of outliers presein in cross-sectiondata from laser

scanning.

(b) Outliers in form of scanning sup-
port structure and missingdata dueto
structure

(d) A good log data crosssection con-
taining no outliers

41
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Figure 4.2: Circle tting to a crosssectionthat cortains a portion of the log support.

are tted, forming a virtual log for the radial-distance extraction as depictedin Figure 4.3.
Unlike the method descriked in  [48], the estimator minimizes an objective function that
makes use of a weight function that levels o for large scaledradial distance betweenthe
asseiated data point andthe tted circle. It doesthis at every stepof the iterativ e algorithm
that solvesthe estimator. The robust measureof the scaleof thesedistancesis performed
by meansof projection statistics [19, 49, 71] while the minimum of the objective function is
found through the iterativ ely re-weighted least-squaresalgorithm [29]. Chapter 5 provides

detailed information regardingthe robust circle- tting GM-Estimator.

To ched that the nonlinear circle- tting GM-Estimator is robust against outliers, its in-
uence function wasderived, which is a measureof the estimator's sensitivity to in nitesimal
data cortamination [21]. If this function increaseswithout boundsasa data point is moved
farther and farther away from its true value, the estimator is saidto be non-robust; otherwise
it is saidto be robust. It canbe shovn that the in uence function of our estimator can be
decommsedasthe product of two terms, onere ecting the in uence of model (i.e., the circle
equation), and anotherre ecting the in uence of measuremenerrors(i.e., radial distances).

It canbe shown that both terms are bounded, making the estimator robust againstextreme
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Figure 4.3: A 3-D rendering of the log data with automatically detected defects
marked by patches. Sud an image might be usedby savyersto maximize the value
of wood products.

outliers.

The robustnessof the estimator was tested on real log data samples. It was found that
the resulting tted circlesvary little amongneighboring crosssections. This yields a smaoth
tting over the ertire data of onelog. Figure 4.2 displays a circle that was tted to a cross
sectionwith a non negligiblefraction of outliers and missingdata. Outliers identi ed by this
method are plotted in bold. The smoothnessof the tting is further reinforcedby smaothing
the parametersusing a box Iter [23]. Note that approximately 3 percen of the points are

labeled as outliers, and hencesuppressedrom the data set.
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4.2 Generating the residual gray-lev el image

The next step is converting the three-dimensionallaser-scannedCartesian coordinates into
a two-dimensional, 256 gray-level image (Figure 4.4). In this process,the log surfaceis
unrolled onto a 2-D coordinate space. In essencethis processcreatesa \skin" of the log
surfacerepreseting the pattern of log bark along with bumps and bulgesassaiated with
most defects. Using the adjusted, tted circle to ead crosssection, radial distanceswere
calculated between circle and log surface points, typically ranging from -0.5 to 0.5 inch.
The radial distancesare scaledto rangefrom 0 to 255and mapped to gray-levelsto create
a 2-D image. Originally the log data are not in a grid format, so they are processedand
interpolated linearly to Il any gapsbetweendata points. The x3 value in 3-D data is the
coordinate in the third dimensionor the z-axis value, which is the position along the log's
length. It is mapped to the 2-D image as the x, value, given by a row number. The x;
value of the image, given by a column number, is calculated by scalingthe angle of a cross

section'spoint from the certer of tted circle.

If the desiredimageis to be 750pixels wide, the scalingfactor would be 750=(2 ). On av-
erage,the sizeof an unrolled log output imageis about 2 MB (MegaBytes), or 1,400 1;600
pixels at 1 byte per pixel. To sase spaceand future processingime, the resolution of output
gray-level image from log-data unrolling is reduced. The Gaussianpyramid algorithm [23]
isappliedanda5 5 window is usedto smooth and subsamplethe image. The imageis re-
ducedto 25 percer of the original size,that is, roughly 500KB/image. Sincethe density in
a crosssectionis nearly 20 times that of alongthe log length, only data in crosssectionsare
reduced,the total number of crosssectionsis not reduced. This speedsadditional analysis

of the imagewith little or no lossof data of interest.

Experimerts with tting ellipsesto the log data shoved that while ead individual ellipse
doesgenerateradial distances,resulting radial distancestend to reveal more surfacedetails,
hencethe log surface\height" map cortains more undesirableinformation, primarily dueto

the di erence of axesorientation betweenneighboring ellipses. The resulting imagetendsto
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Figure 4.4: Radial distancesgeneratedby the log-unrolling processpresened as a
gray-level rangeimage. Light pixels represem protrusions from the log surface,and
dark pixels represeh depressions.This log is appraximately 9 feetin length with a
diameter of 2 feet.

be noisier. Unlike white noise,the noise has low frequency It adds unwanted information
that camou agestrue defective regions. Howewer, tting only circlesto the data doescause
the rolling or striping e ect in the height map along the cross-sectiordirection, asshown in
Figure 4.4. As log crosssectionsare generallyround, they are often not totally round. Nor
they are perfectly elliptical. Thus, radial distancesextracted from circle tting inevitably
introduce the striping e ect in many cases. We have attempted to resole the issue by
applying a lItering method to reduce overall radial distancesalong the rising strips, and
increasethem along the dipping ones. Howeer, since logs comein unlimited number of
shapes, this method causesunwanted side e ect which is worsethan the striping one. This

is a complicatedissuethat can be addressedn future researb.
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4.3 ldentifying Defects Based on the Radial Distances

To accommalate the courtless possibledefect sizes,heiglts, shapes, types,etc. in the 3-D
log data, we deweloped a madine vision systemto implemert the defectdetectiontask. The
current version of our systemusesthe cortour image generatedfrom the radial distances,
which provides a map of defectheight changeagainstthe surrounding bark. Also usedare
the measured3-D log data. Expert knowledgeis applied in a stepwise fashionto rule out
regionsas potertial defects,including regionsin sizessmallerthan a given threshold, nested
in other curves, or long and narrow (determined by the \actual" width to length ratio,
referredto as w/l for short). By \actual" we refer to the width to length ratio acquired
through the calculation of the statistical medium of the widths of the region enclosedn the

selectedcortour curve.

The data resolution (0.8 inchesper crosssection) and the nature of external defectshapes
restrict seard scope in the algorithm. The onesvisible through the log data are the most
obvious defectsbasedon their external characteristics,sud asprotrusion on surface,certain
width-length ratio, and area. They have a relatively signi cant height changeon the surface
( 0.5 inches), and/or a relatively signi cant size ( 3 inchesin diameter). Using radial
distancesvisualizedby the gray-level imagein Figure 4.4, the algorithm generatesa cortour
plot as depicted in Figure 4.5, and determinesrectangle-enclosedegions. The rectangles
are bounding boxesof cortour curvesat the highestlevel. Then someregionsare selectedif
they are big enoughor with a signi cant height. More detailed discussionof the algorithm
is found in Chapter 6. In Figure 4.5 four out of the nine surfacedefectsare found using
this method. Figure 4.5 also shovs a manually recordedmap of the defectson the same
log. The defecttypesrepreseted in the map include SKCs (sound knot clusters) and OKs

(overgrown knots).

Further, the algorithm includesa statistical procedureto examinethe regionsurrounding
a selectedsmall region for relatively straight line segmets. If the coverageof straight line

segmets is su cient, the defectregionis adjustedto cover the ertire defectsurface,rather
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(a) Contour plot of a log surfacewith (b) Defect diagram illustrating the
the four most-obvious defect regions \ground truth"

markedwith crossedrectangleslabeled

in the descendingorder of area

Figure 4.5: Contour plot and the \ground truth". Note that only v e small and/or
at defectswerenot detected. Both plots were generatedby Matlab programs,while
defectregionsin (a) were determinedby the detection algorithm.

than just a corner. The algorithm examinesangle changesbetween the lines connecting
log data points along crosssection at certain intervals. If the changesare small enough
( 25°), the correspnding segmets are recordedas nearly straight. Then the coverageof
the \straight" segmets is determined. If there are a su cient number of straight segmets,
this regionis identied asa attop, which is likely a sawvn top, either sound(not rotten), or

unsound (rotten).

Many se\ere defectsare asseiated with alocalizedheight change,a height analysisof the

residualimageprovidesinformation about the presenceof sut seweredefects. A substartial,
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localized, and abrupt surfacerise or depressiongreater than 1.0 inch is almost always a
defect. The reason3 incheswas chosenasthe threshold for defectdiameter is that the log-
data resolution-0.8inch per crosssection-isnot high enoughto well capture defectswhose
diameters are smaller than that. Sincethe pixel valuesin the gray-level image represen
radial distancesbetweenthe tted circle and the log surface,the analysisis straightforward.
In the contour plot image,it is possibleto discernregionscortaining likely defectsbasedon

height information alone.

Region-remeal rules are given as: regionssmallerthan a given threshold are mainly tiny
fragmerts; regionsenclosedn curvesnestedin other curvesare removed, asthere will only
be up to one defect in the samelocation; those being long and narrow are normal bark
regions;regionsthat are smaller than 50 inch? and are too closeto the selectedlarge ones.
Someregionsare removed for further considerationif they cortain a sewereportion of missing
data. Although not illustrated in Figure 4.5, certain defects,in particular the savn ones,
are often detectedpartially in the cortour. This is becausehey are relatively low-lying and
at, and often only a small portion of a savn knot, for example, a relatively high-raised
corner,is enclosedn the highestcortour. The algorithm adjusts the boundariesof this type
of identi ed regions. Regionsmay include elevated yet non-defective log surface. Typically
they are coveredwith tree bark, thus assaiated with distinctive bark patterns. Finally, due
to the lack of \depressed"defect samplesin the log data, at this stageof dewelopmert the

systemdoesnot detect sud defecttypes.



Chapter 5

A Novel Robust GM-Estimator

A typical log sizeis 10 to 20 inchesin diameter and 8 to 16 feet long. The scanneddata
density is about 0:04 0:78inch? per point. Typically, ead crosssectionof log data can be
approximated by a closedcurve resenbling a circle or an ellipse. Hence,one of the problems
that we dealt with isto t aquadratic curve or surfaceto the recordedlog data. It turns out
that thesedata are corrupted by grosserrors as bark on logs often becomedoose,forming
ak es. Furthermore, the supporting structure underneaththe log blocks the scanner,causes

missingdata, and the shape of the structure can be seenin the scannedimages.

Statistically, measuremets with large errors, known asoutliers, canbe regardedasobser-
vations that deviate from the pattern formed by the majority of the data set. Consequetiy,
classicalestimators basedon the least-squaresmethod cannot be used here to carry out
curve or surface tting becausehey generateincorrect estimatesin presenceof outliers. We
needinstead to resort to robust statistics as initiated by Huber [30]. This is a collection
of theoriesaimed at designingestimators and statistical teststhat enjoy a certain degreeof
insensitivity to departure from the assumptions,including resistanceto outliers [30, 21, 70].
Basedon thesetheories, a new generalizedM-estimator was deweloped to t circlesto log
data, which is able to downweigh all types of outliers, hencebounding their in uence on

the estimates. The correspnding regressionmodels were deweloped to extract residualsfor

49
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further analysis.

5.1 The New Estimator

To obtain a good circle tting to the recordeddata for a given log cross-section,a new
generalizedM-estimator was deweloped and an algorithm proposedthat implemerns it. We
show that it is in uence boundedand robust againstall typesof outliers. Outliers are data
that are far apart from the main bulk of data. For an estimator, when the outliers move
farther and farther away from the main bulk, two casescould happen. The rst is that no
matter how far away the outliers move, the estimator still corvergeto the correct solution.
The secondis that the estimator divergesas the outliers move away. An estimator could
divergeeven when the fraction of cortamination is in nitiv ely small. The estimator in the
rst caseis consideredin uence bounded, while the onein the secondcase,not in uence

bounded.

The 3-D log surfacedata consistof a collection of 3-dimensionalrangedata points grouped

as circular-shaped cross sectionsfrom the scanner. Ead cross section has the same x3

which all lie on a plane de ned by a constart third coordinate, x3. Note that the Boggset
al. consideredthe generalcaseof nding orthogonal distancesto a curve [6]. For the circle
tting, the radial distanceareeasilycalculated,becausehey arealongthe radius of the tted
circle. Thus, it is unnecessaryto usean iterativ e algorithm to calculatethem. By cortrast,
the ODRPACK software deweloped by Boggset al. [9] is appropriate for ellipse tting. Now
on the planede ned by a constart third coordinate, X3, onecande ne a nonlinearregression
model given by

(it P+ )?+ (X2 pat i2)® p3+e=0; (5.1)

wherep = [p1; p2; ps]" is the parametervector cortaining the certer coordinates (p;; p,) and
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the radius p; of the circle, and where x; = [Xi1; Xi»]" is the two-dimensionalmeasuremen
vector in the crosssection under consideration. In Equation 5.1, the measuremen error
vectoris de ned as ; = [ i1; i»]", while the model error is denotedby e and accourts for
the uncertainty in the assumedcircle model. Note that this uncertainty exists even if the
measuremets are perfect. The model given by Equation 5.1 can be written in a compact
form as

fi(p;xi; )+e=0fori=1;:::;m: (5.2)

M-estimators are not robust becausetheir in uence function is not boundedfor the error
vector, ;, asit is showvn in Section5.4. A Shweppe-type generalizedM-estimator is more
appropriate here. Termed GM-estimator for short, this estimator minimizes an objective

function of the form

J e (. 5.3
(p)—izlwi (S—Wi)- (5.3)

Here () is the Huber function expresseds

8
()2 forjdij b

i SWj
(=)= ' ; (5.4)
SWit T gl 2 forjlij>b
and the residualr; is de ned as
ri= hi(p;x); (5.5)
with
hi(p;xi) = (Xi1 Po)?+ (Xiz  P2)®  Pa: (5.6)

Note that the only di erence betweenthe two functions, h;(p; x;) and fi(p; Xi; ;), is the
presenceof the measuremenh error vector, ;, in the latter. Pick b = 1:5 in Equation 5.4

to have a good statistical e ciency at the Gaussiandistribution while not increasingtoo
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much the bias under cortamination [30, 21]. Writing Equation 5.5 in compact form for
i = 1;:::;m, onecan get the m-dimensionalresidual vectorr = h(p;x), whereh() is an
m-dimensionalvector-valued function. In Equation 5.3, s is a robust estimator of scaleof
the residualsgiven by s = 1:483medianjr;j, andw; 2 (0; 1]is an appropriate weight function
that makesthe estimator robust againstoutliers in x;. The w; arebeingintroducedto bound
the in uence of the measuremen errors, ; in the model given by Equations 5.1 and 5.2.
The errorse and ; are assumedto follow the -cortaminated model,F = (1 ) + H,
where 0 1. It de nes a full neighborhood of the Gaussianprobability distribution,
, which includesasymmetric distributions. For small , this model indicatesthat there is
alargefraction (1 ) of the errorsthat follow while the remaining fraction, , follow an
unknown distribution, H. Sud a model will be usedin Section5.4 to derive the in uence

function of the GM-estimator.

The estimator p is a solution to

@p), _X*wl i @

—jp=p = _ =0: 5.7
@ Ip=p s @ sr_vlv, @ (5.7)
Assumingthat w; is constart in the neighborhood of p and de ning the scalarfunction

(u) = 28, then

xn r
wiHi(p;x) — =0 (5.8)
i=1 SWi

The vector Hi(p;x) in Equation 5.8 denotesthe transposeof the ith row of the m 3

Jacobianmatrix H(p;x) given by

@(p;x) _

2
@

H(p;x) =

(5.9)

2
X112 P1 X2 P2 P3
E X1 P1 X2 P2 P3

Xm1 pl Xm2 pZ p3



Liya Thomas Chapter 5. A Novel Robust GM-Estimator 53

The function w; is calculated basedon the projection statistics de ned in Section5.3.2.
It is sud that it equalsone for a good measuremen x; and decreasesasymptotically to
zero as the radial distance of x; to the tted circle increasesbeyond a given threshold.
Consequetly, the objective function given by Equations 5.3 and 5.4 will not down-weight
a good measuremen with small standardizedresidual, ri=(sw;), becausein this casethe
term w? (r;=(sw;)) in Equation 5.3 reducesto r2=(2s?); but for an outlier, it becomes
bwi ri=§  (bw;)?=2, down-weighting it. Thus, the estimator is in uence-bounded,; this
property will be madeclearerin Section5.4 by showing that its in uence function is indeed

bounded.

5.2 The lterativ ely Reweighted Least-Squares Algo-

rithm

A solution to Equation 5.8 is found through the iterativ ely reweighted least-squaregIRLS)
algorithm [30, 29]. To derive its expression, rst divide and multiply the function in

Equation 5.8 by the standardizedresidualto get

X i i
wiH{(p;x)g — — =0; (5.10)
i=1 SW; SW;

whereq(ri=sw;) = (ri=sw;) =(r;=sw;). Then, put Equation 5.10in a matrix form to get

H(p;x)" Q h(p;x) = 0; (5.11)

whereQ = diag(q(ri=sw;)) isam m weight matrix. Performinga rst-order Taylor series

expansionof h(p; x;) about the value of p obtained at the kth iteration, p), gives

h(p;x) hE™;x)+HEY:x)(p pY): (5.12)
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Substituting Equation 5.12into Equation 5.11,and putting p = p**Y to obtain

P& = p® 4 [H(p®; )T QW H(p®;x)] H(p®;x)T QWr®: (513

The initial conditionsfor the IRLS algorithm given by Equation 5.13are not determined
by the convertional least-squaresnethod [17]. This is becausehe latter providesa solution
that is too biaseddue to the action of se\ere outliers, esgecially those that stemsfrom the
supporting scannerstructure under the log. One alternative method would be to resort to
the least median of squaresestimator or any other high breakdavn estimator [69]. Howe\er,
this classof estimatorsis typically implemerted via computational intensive algorithms that
are inappropriate for this application. To circumvert this di cult y, a simple and very fast
method was deweloped basedon the log data characteristics,which providesreasonablygood

initial conditions. It consistsof the following three steps:

1. Identify all the crosssectionsthat have a su ciently large number of data points,
say larger or equal to 80% of the average number of data points per crosssection;
the remaining crosssectionsare consideredcorrupted and will be excludedfrom the

computation in the next two steps.

2. For eath of these crosssections,pick as an estimate of the x; and x, coordinates of
its certer, the midpoints of the minimum and maximum valuesalong the x; and x,
axes,respectively; pick asan estimate of its radius, the midpoint of the width and the

height of the bounding rectangle.

3. Smaoth out the certer point valuesand radii by replacingeadt of them with the corre-

sponding averagestaken over three consecutie crosssections,known asbox lter [23].
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5.3 Dening the Weight Function w

Unlike the GM-Estimator deweloped for linear regressionthe weights w; in Equation 5.3 are
not calculated from the residuals,r; given by Equation 5.5, which are algebraic distances;
they are rather determinedfrom the radial distancesbetweenthe data points and the circle.
Furthermore, they are evaluated in a robust manner by meansof the projection statistics,
which canbe viewed asa robust versionof the classicalMahalanobisdistancesof a collection

of points in n-dimensions.

The above mertioned radial distancesare de ned asfollows. Let ¢ = [py; p»]" denotethe
certer of the circle and let d; = [d;;;di»]" denotethe radial vector betweenthe point x; and

the circle with radius ps. The vector d; is then given by d; = (x; c¢)(1 ps=kx; ck),

point cloud in a plane.

5.3.1 Classical Outlier Identication Metho ds based on Maha-

lanobis Distances

The corvertional method for idertifying outliers makes use of the Mahalanobis distances.
In statistics, Mahalanobisdistanceis a distance measureintroducedby P. C. Mahalanobis
in 1936. It is basedon correlations between variables, by which di erent patterns can
be identied and analyzed. It is a useful way of determining similarity of an unknown
samplesetto a known one. It di ers from Euclideandistancein that it takesinto accourt
the correlations of the data set and is scale-irvariant, that is, not dependert on the scale
of measuremets. Formally, the Mahalanobis distance from a collection of m points in
n-dimensions,fd;;i = 1;:::;mg, with the samplemean * = P ., di=m, and the sample

covariance matrix R=P mo(di  M(di M)T=(m 1)isdened as:
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MDi= (d MTT Ndi M)

A well known result is that when the d;'s are drawn from a multiv ariate normal distri-
bution N( ; ), the MD? follow approximately a chi-squareddistribution with n degrees
of freedom, 2 [1]. Therefore,there is a probability of appraximately 97.5%that a point d;
will fall inside the toleranceellipsoid givenby MD? = 2..... A sensibleapproat would
then beto ag asdeviart points, termed outliers, all the data points that fall outside that
ellipsoid. While this method seemdo be reasonableat rst glance,it is unfortunately prone
to the maskinge ect of multiple outliers becauseghe samplemeanis attracted by them and
the samplecovariancematrix isin ated to the extert that someor all of them may fall inside

the toleranceellipsoid.

5.3.2 Robust Outlier Identication Based on Pro jection Statistics

Initiated independerily by Staheland Donohoin 1982[78, 11], the projection method was

inspired by the following equivalernt expressionof the Mahalanobisdistance:

jdTv  L(d]v;:::;dlv)j
" kvk=l S(dv;::i;dlv)

(5.14)

whereL and S are respectively the sample mean and the sample standard deviation of
the projections of data points d; on the direction of vector v and where the maximum is
takenover all the possibledirections. A robust versionof Equation 5.14is then obtainedin a
straightforward mannerby replacingL and S by robust statistics, for exampleby the sample

median and the Median-Absolute-Deviationfrom the median (MAD) of the projections.

A practical implemertation of this method wasadvocated by Gasko and Donoho[19], who

proposedto investigateonly thosedirections originating from the coordinate-wisemedian M
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of the point cloud and passingthrough ead of the data points, yielding a total of m directions
to be examined. The directional vector of a data point d; isde ned asv;, i = 1, m. Termed
projection statistic, the resulting estimate for a data point, say the ith point, is indicative
of the distancesthat it has with respect to the bulk of the point cloud in the worst one-

dimensionalprojection. Formally, it is de ned as

PS = max jdfvi  med (dfvi)j _
" kvike1 1:4826medidlv;  med (d] v;)j’

The algorithm that calculatesprojection statistics can be found in Section5.5. Note that
this estimator is di erent from the one proposedby Mili et al. [49] for power system state
estimationashereP S; is determinedbasedon the radial vector, while in the latter, it is based
on the row vectors of the Jacobian matrix H(p;x) given by Equation 5.9, which revealed
to be not robust in this application. The weights w; are calculated from the projection
statistics, which are a robust version of the Mahalanobis distances. The PS; accourts for
the correlations betweenthe radial distances. ODRPACK doesnot calculate weights as we
are proposing here. For ellipse tting, we may run ODRPACK to nd the radial distances,

and then calculatethe PS; and w; values.

Rousseew and Van Zomerenin [71] shoved through Monte Carlo simulations that whena
collectionof data points in n-dimensionsaredrawn from a multiv ariate Gaussiandistribution,
their squaredprojection statistics follow roughly a chi-squareddistribution with n degreesof
freedom. Sincein our caseobsenations arein 2 dimensions a statistical test wasappliedat a
signi cance level of say 97.5%to tag asan outlier any data point d; that hasP S? > 5;0:975.
This allows us to de ne a weight function w; asw; = min(1; =PS?), where = 2.4,
which is usedin the objective function of the GM-estimator given by Equation 5.3. Note

that this weight function decreasessthe squaredP S getslarger than threshold
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Figure 5.1: Most outliers are excludedfrom the con dencering.

5.3.3 Determining Condence Rings of the Fitted Mo del

The extreme data points in the log data can be detected by determining the con dence
ring of a tted circle. Sudh points are composedof outliers, as well as data that are part
of a log defect with signi cant protrusion or depression. The 95% con dence ring is the
region betweentwo circlesboth certered at (p;; p2), with radius (ps ps3) and (ps+  ps3),
respectively, where p;= 2 1:428 medianjd;j. If a data point is outside that con dence
ring, it may belongeither to a loosebark or to a defectwith large protrusion or depression.

Figure 5.1 demonstratessuc a method.

5.4 Deriving the Inuence Function of GM-Estimator

Following Neugebauerand Mili [54, 55], we derive the asymptotic in uence function of the

GM-estimator and show that it is bounded. To this end, considera set of 2-dimensional
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Supposethat the rst m 1 measuremets, whosecoordinatesare cortained in vector z, are
independert and identically distributed (i.i.d.) accordingto the Gaussiancumulative prob-
ability distribution function, ( z), while the last measuremen point, x, takeson arbitrary

valueson R?, yielding a fraction of cortamination, = 1=m. Also, supposethat the vector z

ponenrs are assumedo bei.i.d. accordingto a cumulative probability distribution function

K(e). Let F(z;e) = ( z)K(e) denotethe joint probability distribution function of z and e.

By processinghe measuremenvector x , the GM-estimator, p, providesan estimate for

p by seekinga solution to an implicit equation given by

i(x;p)=0; (5.15)

i=1

where

)= w PEE

ri

sw)’ (5.16)

Now, let m grow to in nit y, leadingto anin nitesimal fraction of cortamination as ! O.
Therefore, the cumulative probability distribution function of the random vectorsz, x and

e may be expressedasthe cortamination model given by

G(x;e)=(1 )F(ze)+ «; (5.17)

where  is the unit probability massat point x. Letting T(G) denote the asymptotic

functional form of p, Equation 5.15reducesto

(x ;T(G)) dG(x ;r) = O: (5.18)
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The asymptotic in uence function of the estimator T(G) at F is de ned asthe Gateaux

derivative given by

Foir s T =iy TEDEr ) TE)

(5.19)

It is the directional derivative of T(G) in the direction of , at F. To derive it, let us

rst substitute Equation 5.17into Equation 5.18to get

(x ;T(G)) dF + x;T(G)d( x F)=0: (5.20)

Di erentiating with respectto , it follows

z z @Z
(x;T(G)dF+  (x;T(G)d( x F)+ @[ (x ;T(G)d( x F)I=0:(5.21)

®le

The Huber function (g;) is cortinuous and measurableon F, and O(ﬁ) IS measur-
able on F. Thus, by Equation 5.16, we know for our case, (x ;T (G)) is cortinuous and
measurableon F, and its derivative measurableon F. Evaluating Equation 5.21at = 0,
assumingFisher consistencygiven by R (z;T(F))dF = 0, (x ;T(G)) satis es regularity
conditions [34], and interchanging di erentiation and integration in the rst term of the
summation, then

Z @ _ z
@ (X ;T(G))] = dF + (x;T(F)d x=0: (5.22)

On page 301 of [34], Theorem 7.10.1 states the regularity conditions are: (1) Function

f (a1; a2), wherea; and a, areindependert variables,hasthe property that @@2 Rf (a1; @) day

exists. (2) Further, function f (a;; a;) shouldbe cortinuous, and hasa cortinuous rst-order

partial derivative with respectto a,. Applying the chain rule to the kernelof the rst integral
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and using the sifting property of the Dirac impulse, we obtain

Z
o @Pire) Cg i dF+ (GT(F) = 0 (5.23)
Solvingfor IF (x;F) = €8} 5, then
z @ by
IF(X;F) = @ (z;p)it(F)dF (x;T(F)): (5.24)

Deriving (:) given by Equation 5.16 with respect to p while assumingthat w and s are

independer of p over the neighborhood wherethe derivative is applied, it follows

@ (z:p) _ W" e e@p', w () @hzp)
@ sw @2

@ @

Applying the chain rule to the derivative of (:) with respectto p and usingthe fact that

@=@ = @(z;p)=@, the following equationis obtained
@zp)_ 141, @zp) @@p) @z p)
z; r z; z; r z;
P)_ 2 gl P w22l (5.25)
@ s @ @ sw' @
where Qu) = d (u)=du. Substituting Equations5.16and 5.25into the expressionof | F (:)

given by Equation 5.24to get

IF (x;F) = w (SLW) @I(C;(p; P)_a; (5.26)

where
- @(z; )#" @(z; )#T r, @h(z; )2
O(S—W) @p @p w (S—W) Tz’p’ jT(F) dF:

1
S

It was obsened that the in uence function, 1 F(:), is boundedbecause (:) is bounded
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and becausethe weight function w is decreasingfrom one to zero for an outlier, x, and

thereby is bounding the in uence of the column vector, @(x; p)=@.

5.5 Algorithm for Pro jection Statistics
The algorithm for projection statistics consistsof the following main steps:

2. Calculate the directionsu; = di M;i = 1;:::;m. Whenewr d; == M, yielding

u; == 0, disregardthe correspnding direction in subsequen computation.

q
3. Calculatev; = uj=kujk = u;= u%+uj+ +U3;i=1:::;m

.....
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7. For all i in [1;m], and all k in [1; m], calculate the standardizedprojections:

Pik = JZik  Zmeax]MADy; i; k= 1;:::;m

5.6 Simulation Results

Simulations for the deweloped robust estimators were performed using seweral completelog
samples, some were executed on single data cross sections, while the rest on the ertire
log data. First, we discussthe results obtained using data crosssections. Then, radial
distancesare analyzed, and cortour curves generatedfor defectidenti cation. The circle
tting procedurewasimplemerted in Java programming language[80]. The versionwe use
is Sun Java virtual madine 1.5. The maximum number of iterations neededfor estimating
the circle parametersper crosssectionis limited to 5. In most casesho morethan 4 iterations
are required. One log data samplehas about 80 to 100 crosssections. It takeslessthan 1
minute to completeall the circle tting to crosssectionson a HP notebook with a 3.06 GHz
Intel Pertium 4 processorwith hyperthread. The reasonwe choosea personal computer
for the simulation is that ultimately the systemwill be usedby savmills where high-end
personalcomputersare more a ordable than high-performancework stations or other more
powerful computers. The programshave not beentested on any laser scanningequipmert.

They were only executedon the HP notebook personalcomputer.
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Table5.1: Statistics of SomelLog Data

Xa  Xp g dp PS

|
1 -14.29 549 -474 -3.03 12.44
2 -9.16 893 047 0.29 0.77
3 -14.25 545 -4.72 -3.04 12.39
4 -9.09 875 043 0.28 0.73
5 -14.47 5.15 -499 -3.27 13.06
6 -9.01 831 028 0.19 0.65
7 -11.85 5.47 -2.88 -2.23 7.88
8 1494 0.03 7.11 -6.80 18.47
9 1476 0.55 6.83 -6.37 17.67
10 1455 133 6.46 -5.77 16.60

5.6.1 Circle tting using the GM-estimator

The simulations werecarried out on the crosssectionof log data asshowvn in Figures5.2 and
5.3. Theseare data points of log# 480at length 30.044inches,which is a crosssectionwith
786 data points. Table 5.1 displays the projection statistics calculated from the projection

statistics assessedrom the radial distances,which are denotedby PS. The squareroot of

q
the 97.5 percertile of the chi-squareddistribution with 2 degreesof freedom, 34,5 = 2:7,
is the threshold chosenfor P S beyond which a point is agged asan outlier. It wasobsened

that PS identi es all the outliers in the data.

Figures 5.2 and 5.3 further demonstratesthe robustnessof the GM algorithm. Here, in

the presenceof sewere outliers, the GM solution is very satisfying.

The experimerts with the circle tting robust regressionmodel brought insight to the
researb work of external log defect detection of hardwood logs and stems. First, it is
essetial to perform a model tting to the log data, becausethe tted solutions help to
sort the input data and provide a referencelevel of the log surfacefor defect detection,
segmeimation, and classi cation. Depending on the skill of the operator and the log size,
the four units may or may not be calibrated well. The parametersof the tted model, that

is, the certer of a tted circle, can be applied to remove redundart data, and to sort data
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Figure 5.2: End points for radial vectors (from the origin) of one data crosssection.
Outliers (leveragepoints) are marked in darker color, and are visibly separablefrom
the good data.

Figure 5.3: A crosssection of log data with a large segmen of missing valuesalong
with outliers marked and three tted circlessuperimposed. Thesecircleshave been
tted usingthe nonlinear robust GM-Estimator (solid red), the Huber M-estimator
(dashedblue), and the least squaresestimator (dashdot black). The robust GM-
tted circle passeghrough the good data points while the other two tted circlesare
attracted by the loosebark data points, namely the outliers.

65
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points in an increasingorder of anglesof the vectors passingthrough the circle certer and

data points with respect to the horizonal axis.

Moreover, a robust 2-D circle tting helpsto amplify the variation on log surfacesthat
cortain external defectinformation. The criterion consideredfor a good tting algorithm
is the one for which the solution minimizes the variance of the regular bark areas, and
maximizesthat of the defectregions. To do so, the weight function of the data, de ned
in Section 5.3, should give more weight to data in the bark area, and give lessweigh to
data in the defectregion. Statistically, it is assumedthat a regressionmodel, for instance,
a circle, appraximately ts a log data crosssection. Typically, the bark region tends to
uctuate around the assumedmodel with small variations for the majority of the log data
crosssection,thereby revealing a large protrusion or depressiorthat departsfrom the tted

model signi cantly.

5.6.2 The Radial Distance Images

Radial distancesobtained from the log data are the signedvalues. To createa radial distance
image, the radial distancesare corverted to gray-scale values as depicted in Figure 4.4.
Typical radial distancesrangefrom -2 to 2 inches,and the gray-scalevalues,0 to 255. Since
the log data are not originally in a grid format, the correspnding radial distancesare not
in a grid format either. To form a grid, the radial distancesare interpolated linearly to |l

up any gaps. This is carried out as follows. First, the x3 value (position along the log's

length) in the 3-dimensionaldata is mapped to the row number, i in the 2-dimensional

wide, then the scalingfactor would be 750=2 ). Thus, the 3-dimensionalpoint (Xy;Xz;X3)
with a radial distanceof rd; would becomethe 2-dimensionalpoint (i; j) with a gray-scale
value of ¢; . The radial distancesare linearly interpolated that ead point (i; j) is ass@iated

with a certain value. After sut a corversion, they are referredto as gridded. To cornvert
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the gridded radial distance,rd; , to a gray value, ¢; , the maximum, rdmay, and minimum,

rdmin , Of all the radial distancesare rst determinedan the ¢; is calculatedthrough

Sincethe number of rows and columnsare out of proportion (10? vs: 10°), another linear
interpolation is performed to insert rows betweenthe original radial distance rows. This
createsa radial distanceimageresenbling the log surface. This is illustrated in Figure 6.5,
whereresidual imageswere generatedby circle tting alongwith the log defectdiagram for

comparison.



Chapter 6

Algorithm  for External Defect

Detection Using Radial Distances

6.1 Algorithm Overview and Pseudo Code

The external-defectdetection procedureincludestwo major steps. The rst stepis to obtain
the radial distancesby tting 2-D circlesto log-data crosssectionsusing the robust GM-
Estimator described in Section5.6.1and in further detail in [91]. The program s written in
Java. It outputs of a matrix of radial distancesfrom the tted circlesto the actual log data
(seeFigure 4.4). The secondstep of the procedureis to determinethe actual defectson the
log surface. Current implementation for this phaseis in Matlab 7. The detection program
incorporates expertise that was obtained through measuring,photographing, and analyzing

of approximately 500 external-defectsamples.

Before describingthe detection algorithm, let us rst de ne the \defects" that the algo-
rithm is expectedto detect. The scanningtechnology limits the types of defectsthat can
be found. Defectsshould be at least 5 inchesin diameter, otherwisethe defectsare unde-

tectable under the 0.8-indh resolution alongthe log length provided by the scanningsystem.

68
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The current detection algorithm only detectsdefectswith a minimum oneinch surfacerise,
becausehe algorithm is height (surfacerise) based. Thus, \large defects" meansthosewith
at leasta oneinch surfacerise, v e inchesin diameter, and a width to length ratio between
0.5and 2. In the 14 log data samples,60 defectsof this type were obsened, and 59 were
located. \Medium defects" meanthose with a distinctive bark pattern, a medium rise (0.5
to 1inch), and a medium diameter (3 to 5 inches). Eight sud defectswere obsened in the
log samples.There are 8 of this type, 4 of which wereidenti ed in 14 log sampledata. Both
\large defects"and \Medium defects"are sewere. The defectdetection algorithm wastested

using these 68 defects.

As discussedn Chapter 3, the external defect characteristics provided a foundation for
usin the dewelopmer of the detectionalgorithm. The surfacerise information suggestghat
most of the defectsto be identied would be knobs ans savn knots. Their surfacerise are
commonly 1 inch, with a few exceptionof 0.5inch. The basewidth and length of knots are
5-6inches,indicating cortour curveswill likely enclosea regionwith a5 inch diameter. The
median length of savn knots is 9.5 inches, which is misleading. Due to the nature of these
defects,often only a small corner of the defectsare enclosedn the cortour. Thus, we need
another method to determinethe ertire surfaceof a savn knot, which is referredto assawvn
top in the remaining discussionof this chapter. From Table 3.2, we obsene that is a quarter
of the knobs and savn knobsare about 1 inch high (tip), 5 incheswide, and 5.5 incheslong
at the base. This indicates a small group of knobs might be identi ed asno higher than 1
inch, and no wider than 5 inches. This is indeedthe basisfor the \medium defects"detected

by the algorithm in Section6.3.
In the remainder of this documert, the following terminologiesare used:
A contour, or cortour curve in a plot, is a curved line connectingpoints with the same

surfacerise;

A rectangular region (typically referred to simply as a region) is a solid rectangle

enclosedby the bounding box for a cortour.
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Hereis a pseudocode overview of the defectdetection algorithm:

1. Find large defects

(a) Using radial distancedata, obtain cortours at a set of evenly spacedlevels. The
rst level is the lowest; the highestlevel is usually greaterthan 1.5 inches. From
this point, most processings on the bounding boxes (regions). SeeSection6.2.1

for detailed explanation.

(b) Eliminate regionswhoseareais lessthan a certain threshold; sort the remaining

regionsin descendingorder of area. SeeSection6.2.2.
(c) Eliminate various other regionsthat are unlikely defective. SeeSection6.2.3.

(d) Adjust bounding boxesthat do not encloseertire savn tops. The adjustedbound-
ing boxesarereferredto asadjustedregions. Remove adjustedregionswith seere

missingdata, and remove adjusted regionsthat are too small. SeeSection6.2.4.

(e) The remaining regionsare reported as possibledefects.

2. Find the less protruding and smaller diameter defects no more than 1 inch

in height and 3 to 5 inches in diameter .

(a) Using the original 3-D log data, determine gradierts parallel to the long axis of

the log. SeeSection6.3.1.

(b) Find regionswhosegradierts are within a de ned rangefor this defectclass. See
Section6.3.2.

(c) Theseareasare reported as defects.
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6.2 Algorithm for Detecting Large Defects

6.2.1 Generate Contours

A Matlab built-in function inputs and analyzesradial-distance data to generate cortour
curves. The curvesarethen analyzedto locate wheresurfacedefectsmight exist. Recallthat
radial distancesare generatedby the circle- tting procedureof Section5.6.1. A gray-scale
imageis only a graphicalway to illustrate them. Now for ead cortour curve, the algorithm
determinesits borders. The width, length, area, width/length ratio, and length/width ratio
arethen computed. Becausdhe radial distancesare generallylessthan 5 inches, it wasfound
that partitioning the cortours into six levels proved e ectiv e for the algorithm to determine
the defects. Preserly, only the highest level cortours were analyzed, as they enclosethe
highest rising regionsand thus the most protruding defects. Usually ead log sample has

anywhere from a few dozento a few hundred cortour curvesat the highestlevel.

The original 3-D log data are then readin. Dependingon the scannercalibration and the
diameter of the log, the original log data may cortain a certain amourt of idertical points.
Thereforethe algorithm removesduplicates. For ead data point, a line is drawn from it to
the cross-section'stted-circle origin. The angle betweenthis line and a horizortal line is

computed. The points on a cross-sectiorare then sorted by their anglevalues.

The main idea throughout the remainder of the algorithm is to take a seriesof stepsto
eliminate non-defective regionsfrom the potertial candidates. This is adhieved by using
statistics from measuredand calculated log data, and wood-scienceexpert knowledgein a

stepwise fashion.

6.2.2 Elimination of Non-defectiv e Regions

Remove Small Regions First, the algorithm removes regionswhoseareais lessthan

7.5inch?, becausethe data resolution (0.8 inch between crosssections)meansthey cannot
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be reliably recognizedas defects. Most defects are assaiated with a 0.75 width/length

ratio. Thus, regionswith an arealessthan 7.5 inch? would have lessthan 3 crosssections
intersectingit, and socould not be detected. Next, the remainingregionsare sortedin order
of their areas. This makesit easyto determine whether a smaller region is nestedinside a
biggerone. Any cortour nestedwithin another is removed from considerationbecausehere

canonly be onedefectin the samelocation.

Small regions (with area lessthan 10 inch?) that are within two inches of the top or
bottom of the image are rejected as well. They either enclosepartial defects(part of the
defectis lost), which the algorithm is incapable of detecting, or a small defectthat cannot
be detecteddue to current data resolution. Sincethis is an artifact of the original scanning
process,defectsnear or outside the scannedregion were not iderti ed for the purpose of

testing the algorithm.

Region Adjustmen t At the beginning of the algorithm, to get a rough estimation of
potential defectlocations, only the widths and lengths of corntour bounding boxesare used.
Howe\er, this is not accurate enoughto determine the true extert of certain defects. To
make sure the ertire region of an external defect is identi ed, the algorithm adjusts the
width, length, and width-length ratio of the region. It is done as follows. First, for eadh
selectedcandidate rectangle, an extended region surrounding the curve is analyzed. The
top and bottom boundariesof the enclosingrectangle are expandedead by a length of 10
cross-sectiong8 inches) along the log length. The \widest consecutie segmetl’ of eadh
crosssectionrefersto a set of cortinuous data points with radial distancesgreaterthan the
corntour level. A segmenis a setof linesconnectingthe adjacert log-data points in the same
crosssection and enclosedin the cortour curve. This step provides us with preciseshape

information about the potential surface-defecregions,shovn in Figure 6.1.
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Figure 6.1: An illustration shawing that by expandingthe bounding box, it may help
to determine the true defectregion, rather than a portion of it. The dashedcurve
encloseghe baseof a defect.

6.2.3 Deletion of Non-Relev ant Regions

Bark Regions Bark regionsare not considereddefective. They have (1) an arealarger
than 25 inch?, (2) at least 75% of the segmets inside the cortour are assaiated with the
following characteristic: the ratio betweenthe widest consecutie part of ead segmety and
the total width of the regionis lessthan 0.8. Regionswith thesefeaturesare unlikely to be

defective, and so are rejected from further consideration.

Remove Fragments For the remaining regions, segmets that are wide enough (width
of the widest consecutie segmen greater than 1/4 of the bounding rectangle width) are
identi ed. The algorithm then determineswhether the top or bottom of an enclosedregion
is a narrow and long fragmert along log length with a width lessthan 1/4 that of the
rectangle, indicating bark, instead of being part of an actual defect. If sud a fragmern
exists, sud asthe part being marked by a crossin Figure 6.2, the top or bottom boundary
for the regionis adjusted to remove the bark artifact. Thus, someregionsmight be rejected

as being long and narrow, and thus non-defectie.
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Figure 6.2: A cortour encompassing defectwith a long and narrow portion that is
not part of it, which the algorithm identi es and removes.

Remove Regions too Close to Large Regions Regionsthat are smallerthan 50inch?
and are too closeto larger candidates(lessthan 3.5 inchesapart horizortally or vertically)
are excluded. Due to the nature of defectdistribution on hardwood log surfaces,the larger
onesmore likely indicate the true defects,while the smaller onesare simply cortinuations of
the samedefect. This is how it is done: Among candidateswith a length lessthan 7 inches,
or longerthan 7 inchesand width/length ratio greaterthan .2, thoselessthan 50inch?, and

lessthan 3.5inchesapart from the selectedlarger ones,are excluded.

Remove Regions with Non-Defectiv e Shapesor with Missing Data Whenthe area
is lessthan 15inch? and the width/length ratio is out of range (lessthan 0.5 or greaterthan
2), they are alsoremoved asthey are too small and are not shaped like a defect. Candidates
are then cheded for amourt of missing data. If there are more than 20 points missingin

a segmehn (i.e., the data crosssection has a gap wider than 1 inch), it is classied as a
corrupted segmen If there are more than 50% corrupted segmets enclosedn the cortour,

the regionis classi ed as se\erely missingdata and is rejected. Figure 6.3 illustrates sut a

situation.



Liya ThomasChapter 6. Algorithm for External Defect Detection Using Radial Distances75

Figure 6.3: A regionwith a large portion cortaining corrupted data and thereforeis
rejected as possibly defectiwe.

6.2.4 Determine Sawn Tops

A sawn top is a type of external defectwherethe tree limb was removed by loggersin the
woods. Often it is not completelyleveledwith respectto the log surface,but insteadtilted at
asmallangle. Sinceit's a natural human operation, the sawvn top is often not completely at.

Saving on natural wood material leavesa sawvn pattern. Typically, part of the savn top will
fall below the highestcortour level, and this sectionof the defectneedsto berecognized.The
algorithm is able to locate sud regionsusing a \straight-line" segmen technique descrited

below, and is capableof adjusting the boundariesto idertify the ertire attop region.

The procedureto nd sawn topsis asfollows: For remainingregionswith an arealessthan
25 inch?, in its surrounding region the algorithm examinesangle changesbetween straight
lines connecting log data points at an interval of v e points along the crosssections. If
changesare small enough(lessthan 25°), thesesegmets are recordedasrelatively straight.
Then the range of \straight" segmets is determined. If over half of the segmets cortain

straight parts, this regionis iderti ed asa sawvn top, either sound(not rotten), or unsound
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(rotten). The boundary of the identi ed regionis adjusted to surround all \straight" seg-

merts, soasto capture that portion of the savn top that falls belowv the cortour level.

Someregionsmay be falselyidenti ed asa sawvn top, becausehey cortain seere missing
data causingthe algorithm to generatean incorrectresult. Thus, they arerejecteddepending
on how sewere the missing data are. Sincethe processof idertifying sawvn tops is often
accompaniedby adjustmert of the defect region boundaries, which a ects the geometric
relationshipsamongthe detectedregions,regionscompletely nestedor partially overlapped
areidenti ed andremoved. To this point, thosecandidatesthat have survived are considered
to be large defects. Their rectangular borders are plotted on the contour image, and are

labeledwith their rank number in decreasingorder of region areas.

6.3 Finding Medium Defects

Sofar, the algorithm has attempted to locate the most obvious defecttypes(Part 1 of the
pseudo-cde description). They are large bump-like knots, either old (healed broken stubs)
or new (savn at harvest). They may be large (20 inches diameter) or relatively small (4
inches diameter), protruding (at least 3 incheshigh) or with a more gertle rise. They can
alsobe unsoundor sound. There is another group of seere defects,with medium rise (0.5
to 1inch), and medium diameter (3 to 5 inches). Due to thesecharacteristics, they are not
enclosedn the highestcorntour curvesand thus not identi ed by the proceduredescrilked so
far. Howewer, they have a distinctiv e pattern (surfacerise and diameter). Thus, an algorithm
explicitly designedo identify thesedefectswasdeweloped, for what we referredto asmedium
defects.In a sampleof 14 logs, eight sud defectswere obsened and the algorithm was able

to detect 4 of them.

Initially , the original log data points are processedby removing outliers outside of the
99th percertile, which is roughly 2 inchesin radial distance. Then the data points are sorted

accordingto the anglesof vectorspassingthrough the circle certer and points. The approat
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applied hererequiresthat there be no missingdata. Thusthe algorithm \ xes" regionswith

missingdata in the matrix of radial distancesby using a linear interpolation.

6.3.1 Determining Gradien ts

The next stepis to determine the existenceof upward slopesand downward slopesthat fall
within 0.15to 0.3. Sud a rangeindicatesthat a protruding regionis high enough,but not
sohigh asto represen a protruding defectthat should have beendetectedin the rst stage.
A slope hererefersto a group of adjacen data points, whoseradial distancesincreaseor
decreasealong the log length in a generaltrend, similar to a slope in a mountain. During
the process,a group of adjacen data points alongthe log length (x3-axis) are examined. In
this procedure,the type of defectsare not large or protruding|those defectsshould have
beendetectedearlier. If the gradiert falls within a certain range, it is tagged. Also note that
the predominart surfacefeature of a log is bark, which has an unewen texture. Therefore
the data points on a slope usually do not form a strict straight line. The algorithm detects
sud slopesby judging their tendency either goingup or down, and an appropriate tolerance

threshold|no morethan 1 slope is out of the range|is applied.

6.3.2 Finding Defectiv e Regions

Basedon the results from slope detection, those regionssatisfying the following conditions

are determined.

1. width and length of 3 to 5 inches;
2. height of 0.5to 1 inch, and

3. no morethan 1 slope is out of the range.
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This kind of defect can also include rotten and non-rotten, savn, or naturally formed
defects. The detectedmedium defectsare plotted in the samecortour image with the large

defectspreviously idernti ed. This completesthe algorithm.

6.4 Simulation Results and Discussions

Fourteenlog data sampleswerechosenbasedon their data characteristics,and analyzedusing
the defectdetection system. The algorithm waswritten in Matlab using Matlab version7.0.
As mertioned in Section5.6, it is implemerted on a high-end notebook computer with a
Pertium 4 processor.It takeslessthan 1 minute to nish the calculation of cortour curves,
defect detection, and results output. The programs have not been tested on any laser
scanningequipmen. They wereonly executedon the HP notebook personalcomputer. The
defectdiagramsof all external defectspresen on log sampleswere collectedmanually by the
USDA Forest Servicelab in Princeton, WV. Sincelogs are heary (1,000to 5,000 pounds),
and comein various taper, sweep,and diametersat the two ends,accurately measuringthe
defectlocationsand sizes,and classifyingdefecttypes,proved challenging. Consequetly the
diagramsare often erroneous,ambiguous, and inaccurate. Further, they often only cortain
the width and length of a defect, but not its heigh, or surfacerise. External defectsmay
not always be visible in the color imagesof a samplelog, and the angle order of eat side
of the color imagesare often incorrectly arranged. Among the 160 or so scannedlog data
samples 45 of them are poor quality and not usable. Theseproblemscut down the number

of log samplesthat could be experimerted with.

The defect diagrams illustrate not only the defectsvisible in the radial-distance gray
images,but alsothose undetectabledue to the adopted methods and/or the data resolution
limits. The information from the diagrams,aswell asfrom the color imageswere conbined
(Figure 6.4). Obsened defectswere marked in gray-scaleimages(Figure 6.5(a)). We will

referto them as\ground truth”. The coordinatesof the marked rectanglesare measuredand
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Figure 6.4: Four digital intensity imageof alog sampleat 9(° per side. Theseimages
are usedin part to determine the correctnessof the madine generateddefective

regions.

recorded. We canoverlay them on the cortour plot (Figure 6.5(b)) soasto comparethem to
the regionsdetectedby the algorithm. In the cortour plot, the predicted (obsened) defect
regionsare marked in solid crossedrectangles,while the automatically detectedregionsare
displayedwith dashedcrossedectangles.The locations,widths, and lengthsof automatically
detectedregionsare reported by the programs. To determine whether a marked regionin

the cortour plot correctly indicatesan external defect, it is comparedwith the ground truth.

Table 6.1 givesa breakdavn for ead log sampleof obsened defect numbers, automated
defect numbers, falsely identi ed defect numbers, and misseddefect numbers. Table 6.2

gives a breakdavn for eat log sample of the surface area, automated defect area, false
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(@) (b)

Figure 6.5: The algorithm nds two of three defects,where a correct identi cation
is de ned asthe certer of a detectedregion falling inside the obsened one, and vice
versa. (a) The correspnding gray-scaleimagewith manually marked defectregions.
(b) A cortour plot automatically generatedby the defectdetection Matlab programs.
Dashed,crossedrectanglesmark the possibledefective regions,and solid and crossed
rectanglesare overlaid obsened defective regions.

Table 6.1: Obsened defect numbers, automated defect numbers, falsely identi ed
defectnumbers, and misseddefectnumbers for ead log sample.

Log # Species Total Correct False Missed

444 BOAK 4 4

448 ROAK 9 8 1 1
450 ROAK 4 3 1
453 ROAK 7 6 1
468 ROAK 3 3 1

480 ROAK 6 6

493 ROAK 6 5 1
501 ROAK 3 3

508 ROAK 5 5 1

521 ROAK 6 6 1

537 ROAK 5 4 2 1
441 YPOP 2 2

485 YPOP 6 6 2

520 YPOP 2 2 2

Total 68 63 10 5




Liya ThomasChapter 6. Algorithm for External Defect Detection Using Radial Distances81

Table 6.2: The surface area, automated defect area, false identi cation area, and
misseddefectareafor ead log sample.

Log # Species Surface Observed Automated False Missed

444 BOAK 5797 456 456

448 ROAK 7284 1196 1105 30 91
450 ROAK 7278 570 553 17
453 ROAK 6301 1732 1671 61
468 ROAK 5453 959 959 122

480 ROAK 7486 1256 1256

493 ROAK 8551 364 314 50
501 ROAK 3916 445 445

508 ROAK 4031 573 573 243

521 ROAK 8560 496 496 113

537 ROAK 6414 390 356 178 34
441 YPOP 4645 297 297

485 YPOP 9352 1385 1385 309

520 YPOP 6188 358 358 218

Total 91257 10476 10223 1213 253

Table 6.3: Obsened defect numbers, automated defect numbers, falsely identi ed
defectnumbers, and misseddefect numbers for eat tree specie.

Specie Total Correct False Missed

BOAK 4 4 0 0
ROAK 54 49 6 5
YPOP 10 10 4 0
Total 68 63 10 5

Table 6.4: The surface area, automated defect area, false identi cation area, and
misseddefectareafor ead tree specie.

Specie Surface Observed Automated False Missed

BOAK 5797 456 456 0 0
ROAK 65275 7980 7728 687 253
YPOP 20185 2040 2039 526 0

Total 91257 10476 10223 1213 253
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identi cation area, and misseddefectarea, all in inch?. In both tables BOAK, ROAK, and
YPOP referto Black Oak, Red Oak, and Yellow Poplar, respectively. The samplenumbers
of eat speciein turn are 1, 10, and 3. The majority of the samplesare Red Oak. There
is no falseidenti cation, or misseddefectsfor the Black Oak sample,and no misseddefects
for all Yellow Poplar. Howewer samplenumbers of thesetwo speciesare low. For ead tree
specie, Table6.3summarizeghe obsened defectnumbers,automateddefectnumbers, falsely
identi ed defect numbers, and misseddefect numbers. Similarly, Table 6.4 summarizesfor
ead tree speciethe surfacearea,automated defectarea, falseidenti cation area,and missed
defectarea, all in inch?. From Table 6.1 and Table 6.2, we found that the averagesize of
a correctly detecteddefectis 162inch?, but the averagesize of a misseddefectis 51 inch?.
This tells us that the misseddefectstend to be relatively small. In forest product industry,

a large defectis worsethan a small one. This shavs that the detection algorithm is e ective.

We usedtwo methods to evaluate the performanceof the detection algorithm. The rst
one, referred to asthe \raw-court method", courts the number of defectsdetected out of
the total number detectedby hand to exist. In our experimerts there are a total of 68 se\ere
defects, of which 63 were correctly identied. There are 10 non-defective regions falsely
identi ed as defects. Most non-iderti ed defectsare small (lessthan 5 inchesin diameter)
and/or relatively at (lessthan 1 inch in surfacerise). Nine of ten falsely identi ed regions
cortain high-rise bark regionsthat are enclosedn the highestcorntour curves. Their widths
and lengths range from 6 to over 20 inches. The algorithm fails to remove them from the

true defectsusing the criteria descriked in the previoussection.

The other way to ewaluate the algorithm performanceis to calculate the surfacearea of
detected defectsagainst that of the ground truth. This is similar to the analysis proposed
by Kline et al. [36] to ewaluate the detection algorithm. It is consistet with statistical

hypothesistesting [47]. The total surfaceareasare given as follows:

log samples(LSA), 91,257inch?;

obsened external defects(ODA), 10,476inch?;
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automatically identi ed defectsthat match the obsenations (MDA), 10,223inch?;

automatically iderti ed defectsthat do not match the obsenations (FPA), an false

identi cation, 1,213inch?;
all defectsdeterminedby the detection algorithm (ADA ), 11,435inch?;

obsened defectsthat are NOT identied by the detection algorithm|uniden ti ed
defects(FNA), 253inch?.

When the certer point of a detectedregion falls inside the bounding box of an obsened
defect,and vice versa,it is saidto be a correctiderti cation, and the defectareagivenby the
ground truth is usedin calculation. If we usethe defectareagiven by the automated detec-
tion, onemay arguethat the detectionsystemcould intentionally setit larger or smallerthan
the true value, which makesits objectivenessdoubtful. Thus, we usethe defectareagiven
by the third party. Now the detection statistics are given as: the percernage of observed
clear region is 88.5%((LSA-ODA)/LSA 100%). The perceriage of automated clear re-
gion is 87.5%,givenby (LSA-ADA)/LSA 100%. That the latter is smallerthan the former
implies that the algorithm identied more defective surfaceareathan the actual obsened
area. The percenage of false positiv e or the falsely identied defectregionsfrom clear
surface,is 1.5% (FPA/(LSA-OD A) 100%). The percerniage of false negativ e, indicating
how much the algorithm missedthe defective regions,amourts to 2.4%(FNA/OD A 100%).
Finally, 97.6%is the area detection rate for the defectdetectionalgorithm with respect to
obsenations, given by MDA/OD A 100%. Sincethe total of FNA and MDA is equivalernt

to ODA, the falsenegatiwe rate and the detection rate add up to 1.

Thus, there are 2 setsof measuredrom the above two methods. By raw court, amongthe
63 obsened defectsthere are 63 correctidenti cations, and 10 falselyiderti ed regions. By
areamethod, 97.6%o0bsened defectareais detected,with 1.5%clear surfacefalsely declared

as defectiwe.
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There are pros and cons with both ewaluation methods. The pros for the raw-court
method is that it is simple and easyto understand. Howeer, in wood scienceand forest
products, a large defectusually is much worsethan a small one. Missing many small defects
is unlikely as serious(economically) as missing a few large ones. Unfortunately the raw-
court method cannot re ect this property. Another problem with the raw-court method is
that statistically it is unclearwhat thesenumbersreally mean. For instance,one should not
comparethe number of defectsthat are falsely identi ed (10) against those obsened (68),

asit is not the statistical property known as\false positive".

\F alsepositive”, or \T ypel error", is the error of rejecting a null hypothesiswhenit is the
true state of nature. In other words, this is the error of acceptingan alternative hypothesis
(the real hypothesis of interest) when an obsenation is due to chance[28 47, 77, 97]. In
medical science,for example, a false positive is a positive nding of a test when, in fact,
the true result was negative. This would meanthat the test results indicate that a patient
had a particular condition or diseasewhen they do not [15]. In the raw-court method,
only the numbers of obsened defects, correctly-detected defects, and falsely-detectedde-
fects are given. One may considerthe detection rate is the ratio betweenthe numbers of
correctly-detecteddefectsand obsened defects. The false negative can be calculated as the
ratio betweenthe numbers of misseddefectsand obsened defects. Howewer, one cannot
immediately infer from the above the detection accuracyin terms of false positive and false

negative.

The areamethod overcomesproblemsoccurredin the raw-court method. Both the detec-
tion rate and the falsenegative can be determinedin a similar fashionaswith the raw-court
method. The falsepositiveis not di cult to determine,becausene have the total cleararea,
and it canbe usedin the calculation. Yet dueto the relative inaccuracyof the calculation of
defectarea, the resulting numbers may not be completelyreliable. This is becausehe area
for eat defectregionis estimated asa rectangle,using the width and length of the matched
ground-truth defect. The bounding rectanglesgive only a rough appraximation to the \true"

areas,both for the obsened defectsand the algorithm's reported defects. Thus, the calcula-
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tions derived from those areashave relatively low precision. It is especially a problem when
the statistic is only a few percen. For example,the false positive is 1.5 percen. With the

lack of accuracyin our calculations,the error might be greaterthan that.

One may argue about the de nitions for calculations in the area method as to their
\reasonableness'or \fairness". Choicesare madehere on how thesecalculationswere done.

Would there be a methodological bias? Let us look into the facts of the calculations.

(a) Calculating the areaof detecteddefects:
If there is a correct identi cation (de ned asthe certer points for the two bounding
boxesare eat cortained in the other), then the FULL areafor the (obsened) defect
is credited to the algorithm, regardlessof the area covered by the overlap portion of
the two, and also regardlessof the area covered by the algorithm's reported defect.
Thus, this measureis only indirectly in uenced by the sizeof the reported defectsby
the algorithm, in that smaller reported defectsmight reducethe chance of detecting
the defectin the rst place (becausesmaller areamight reducethe probability of the

certer points overlapping).

(b) Calculating the areaof undetecteddefects:
This is simply the area of the obsened, undetected defects. That is, this measure

is unrelated to the sizesof the defectregionsreported by the algorithm.

(c) Calculating the areaof falseiderti cations:
This is directly the areaof the mis-reported defects. Clearly, this is directly in uenced
by the sizesof thesereported regions. Also clearly, an algorithm that consistetly

reports smallerregionsgetsa direct bene t in this metric.

The above statemeris hold true for an algorithm that consisterly reports regionslarger
than the ground truth. The consequenc&ould be reversedto thoseof (a){(c), respectively.
Thus, it is possiblethat theseareameasuresare biasedby the algorithm's reporting sizefor

its detecteddefects. That is, an algorithm bene ts in the metrics by consistely reporting
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smaller or larger regions. There might be a penalty in measure(a) for smaller regions,but
(b) is not in uenced, and (c) clearly bene ts. Note alsothat (a) is completelyinsensitive to
the amourt of overlap betweenthe obsened and reported rectangles,and is only sensitive
to the binary decisionof whether the two certer points are included. In short, both the raw-
court method and area method have their advantages and shortcomings. The raw-court
method is simple, but doesnot re ect all detection performanceaspects. The areamethod
doesreport the complete set of numbers. Howewer its accuracyis questionable. For our
estimatesof false positivesand false negativesto be unbiased,the sampleshould have been
randomly chosen. Also, the samplesizeshould be su ciently large sothat theseestimates
of false positives and false negatives have not a too large variance. Obviously 14 logs are
not a large number. It would be good to repeat these calculations over a much larger log
sample,preferably randomly selected,to have a better evaluation of the performanceof the

detection method.

6.5 Testing of Parameter Values

In the algorithm description of Section 6.1, a large number of algorithm parametersare
identi ed with speci ¢ constart valuesgiven. This naturally begsthe questionof why these
parameter values are used. To determine whether various parameter settings usedin the
detection algorithm are appropriate, 10 of the most important parametersare tested. We
tested the parametersindividually, one value a time. From the algorithm description, we
beliewve that it is a reasonableassumptionthat these parametersare independen of eah
other, andtesting them individually canreasonablyhopeto improve the algorithm. Numbers
of defectsand falselyiderti ed regionsare small (68 and 10, respectively), thereforea change

even by 1is major. The 10 parametersare:

1. cut-o cortour height

2. cut-o value for region area
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3. cut-o value for bark area

4. rectanglehorizortal padding for region adjusting

5. rectanglevertical padding for region adjusting

6. actual regionwidth/length ratio

7. rectangle(region) length

8. width/length ratio during the sear@ for a group of large defects
9. data point interval during the identi cation of at tops

10. angle changeduring the identi cation of at tops

For ea parametervalue testing, three setsof results were generated:

1. the number of correctidenti cations of ead log samplegivenfor ead parametervalue;
2. the number of falseiderti cations of eat log samplegiven for ead parametervalue;

3. the number of unideni ed defectsof eah log samplegiven for eat parametervalue.

The results are shovn in Tables6.5 through 6.14. In thesetables, original valuesof the
detection algorithm and their correspnding results are shovn in bold. Herewe only presen
total number of defects, instead of total number of defect area, as the former e ectively

demonstrateschangesalong the changeof parametervalues.

In the original algorithm, we calculated the minimum and maximum radial distances,
and determinedthe di erence betweenthem. Then this distanceis partitioned at six even
intervals. Only the topmost partition is usedfor determining the cortours. Therefore, it
could well be that adjusting this parameterup or down would yield cortours that result in

better detection. Therefore the range of height valuesbetweenthe fth partition and the
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Table6.5: Testing results for cortour height.

Level 1 2 3 4 5 6 7 8 9 10
Carect 33 38 40 39 37 44 49 49 54 63
False 49 36 37 31 24 25 21 24 15 10
Unidentied 35 30 28 29 31 24 19 19 14 5
Level 11 12 13 14 15 16 17 18 19
Carect 56 49 47 50 44 40 34 28 14
False 13 16 11 12 13 16 20 6 11

Unidentied 12 19 21 18 24 28 34 40 54

maximum radial distanceis divided with 19intervals. This is illustrated in Figure 6.6. Now
index number 1 is assignedto the lowest of the 19 intervals, and 2 to the next interval, and
soon. Index number 10is the sameasthe 6th original interval, which is the original cortour

level usedin the detection algorithm.

Sincethe increment amongany two adjacert valuesof the original 6 intervals is only 1{2
inches, further partitioning with 19 intervals makesthem about 0.1 inch apart. This is ne
enoughto capture possiblee ects given out scanner'sresolution. Sinceead log samplehas
a unique set of radial distances,the interval distancesare unique to eat log. We add up
the number of correct identi cations for all log samplesat ead of the 19 levels (as labeled
by an index number), even though for eat log samplethe real cortour level for this index
number is di erent from other log samples. The sameholds true for the total numbers of
false identi cations, and those of uniderti ed defects. It can be obsened from Table 6.6
that the original cortour level yields the best results by all the measures. This is further

illustrated in Figure 6.7.

In the remaining tables, we choosea di erent number of divisions for ead parameter, as
basedon the characteristicsof the parameter. In most caseshe original parametervalue is
at the certer of the testing range. The cut-o value of regionareain Table 6.6 rangesfrom 5
to 15inch?. The original valueis 7.5inch?. If we choosea value lessthan 5 inch?, almostno

fragmerts would be excluded. Similarly, we choosea value no more than 15 inch? becausef
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Figure 6.6: lllustration of how radial distancesare partitioned for the cortour-level
parametertesting.
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Figure 6.7: Bar chart of parametertesting resultsfor cortour levels. Note the original
contour level yields the bestresults by all measures.
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Table6.6: Parameter testing results for cut-o value of region area(in inch?).

Value 50 55 6.0 65 70 75 80 85 9.0 95 10.0 125 15.0
Carect 62 62 63 63 63 63 62 61 59 59 59 57 56
False 17 15 14 13 12 10 10 11 11 11 11 9 9

Unidentied 6 6 5 5 5 5 6 7 9 9 9 11 12

Table6.7: Parametertesting results for bark-regioncut-o size(in inch?).

Value 20 25 30 35 40
Carect 61 63 62 62 62
False 10 10 11 10 10

Unidentied 7 5 6 6 6

the cut-o valueis too large, many cortours enclosinga defective region would be excluded.
In Table 6.6, the increment is 0.5 for valuesbetween5.0 and 10.0,and 2.5 for those between
10.0and 15.0,becauseheseintervals generategesults ne enoughfor cut-o value of region

area.

In Table 6.7, sincebark regionsthat are non-defective tend to be large, the smallestvalue
tested is 20 inch?. Howewer, any region larger than 40 inch? and is enclosedin a cortour
might be defectiwe, therefore, we stop testing at this value. The interval is 5 inch? because

the results vary only slightly.

Table 6.8 cortains testing resultsfor the parameterof rectanglehorizortal padding. Since

log surfacedata are unrolled, the horizontal value is proportional to anglesbetweenvectors

Table 6.8: Parameter testing results for rectangle horizontal padding (left and right
sides)during region adjusting (in degrees).

Value 45 50 55 56 57 58 59 60 61 62 63 64 65 70 75
Carect 59 60 60 61 60 59 61 63 62 63 61 62 61 60 62
False 12 13 13 11 10 13 10 10 14 10 11 11 14 12 11

Unidentied 9 8 8 7 8 9 7 5 6 5 7 6 7 8 6
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Table6.9: Parameter testing results for rectanglevertical padding (top and bottom)
during region adjusting (in number of crosssections).

Value 6 8 10 12 14
Carect 61 61 63 62 62
False 11 11 10 11 11

Unidentied 7 7 5 6 6

Table6.10: Parametertesting results for actual region width/length ratio.

Value 0.3 04 05 06 0.7
Carect 63 63 63 61 61
False 11 10 10 10 10

Unidenti ed 5 5 5 7 7

of data points with respect to a horizontal axis. Thus this parameteris measuredn degrees
(°). The valuesrangefrom 45° to 6(0°. Too large or too small are not appropriate for the
region adjustmert. The interval is 5°, which givesa good picture of how this parameter

in uences detection results.

Five di erent valuesweretested for the amourt of rectanglevertical padding on the top
and bottom of regions. They range from 6 to 14 crosssections,with an interval of 2 cross
sections. Sincethe crosssectionsare approximately 0.8 inch apart, the parameter values
range between5 to 12 inches. That givesa fairly broad testing range. We choose?2 values

lessthan the default one,and 2 greater, certering around the original.

The actual width and length ratio is obtained through a proceduredescribed in Section
6.2.2. Again, 5 valuesof this parameterweretested, with the parametervaluein the middle.
Sinceexternal defectsin generalhave a width/length ratio in the range of 0.3{0.7, that is
the reasonwe choosethesevalues. Table 6.10 shaws that in fact the original value is the

best choice.

In the algorithm during one of the seard stepsfor large defects,the region-lengthparam-

eter is setto 7 inches. We tested valuesfrom 5 to 9 inches. The interesting aspect of this
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Table6.11: Parameter testing results for rectangle (region) length during the seard
for one of the large-defectgroups(in inches).

Value 5 6 7 8 9
Carect 63 63 63 63 63
False 10 10 10 10 10

Unidentied 5 5 5 5 5

Table6.12: Parametertesting results for width/length ratio during the seart for one
of the large-defectgroups.

Value 0.10 0.15 0.20 0.25 0.30
Carect 63 63 63 60 57
False 11 10 10 9 6

Unidenti ed 5 5 5 8 11

testing is that all outcomesare the samefor all values. The procedurewas double-theded
to make sureit waswas set up properly, and that correct valuesare usedby the algorithm.
Yet we obtained the sameresults. To ensurethere is no bug in the programs,we usedthese
values: -1,000,-500, 0, 500, and 1,000for debugging. Evidently they are unreasonablefor
the detection purposes.Among all 14 log samples,only onegot di erent results. It hasthe
samenumber of correct iderti cations for all v e values,which is 6, and the samenumber
of uniderti ed defects,0. For values-1,000,-500,and O, there is no falseiderti cation, but
for both values500and 1,000,there is 1 falseiderti cation. This indicatesthe algorithm is

not sensitive to the reasonablerange of values.

The width and length ratio parameteris examinedduring the processof identifying a
group of large defects. The default is 0.2. Five values were tested, including the origi-
nal, which generatesthe best number of correct identi cations, and the lowest number of
unidentied defects. Howewer at the original value, the false-ideni cation result is neither
the greatest, nor the smallest, comparedto those of the rest values. The value (0.3) that
returns the least number of false identi cations also yields the lowest number of correct

identi cations and highestnumber of uniderti ed defects.
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Table6.13: Parametertesting results for data point interval during the identi cation
of at tops (number of points).

Value 3 4 5 6 7
Carect 56 59 63 61 62
False 7 10 10 16 15

Unidentied 12 9 5 7 6

Table6.14: Parametertesting results for anglechangeduring the identi cation of at
tops (in degrees).

Value 15 20 25 30 35 40
Carect 52 62 63 62 61 60
False 8 7 10 14 16 17

Unidentied 16 6 5 6 7 8

The parameter of data point interval is critical for the iderti cation of at tops. It
determineshow far apart are two data points connectedby a line whoseangleis calculated.
The anglechangesare then inspectedfor \straight line segmetija sign of the existenceof
a at top. Along a crosssection, neighboring data points are appraximated 0.02inch apart,
thus testing valuesbetween3 and 7 points are equivalert to roughly 0.06and 0.14inch. Too
small a value will make the algorithm look in too much detail in terms of \straightness", but
too big a value, would make the algorithm ignore the changesthat re ect the \straightness"
or roughness. Testing results demonstrate that the default value is the best at number
of correct identi cations and number of uniderti ed defects, but not the number of false

identi cations.

Similarly, the parameter of angle changeis also critical to the procedurethat identi ca-
tions at tops. Our past experimerts shoved that 25° is an appropriate threshold, henceit
was chosenas default. Five di erent valueswere tested, all evenly spaced. We decided15°
is as small asit should be, astoo small will be too strict. Recall that even a savn top is
not completely straight and/or smaoth, it is only sowithin a certain tolerancelevel. 40° is

su ciently large, becausaf it is too big, all type of surfacesmight be selected regardlesst
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is at or not. Onceagain,the default valueis assaiated with a high falseiderti cation, but

the bestresults for the rest.

The reasonthese 10 parameterswere chosenare:

1. Thesearethe mostimportant parametersfor the algorithm. The changeto their values
will produce signi cantly di erent results. For example,the cortour level determines
at what radial distancepossibledefectregionswereidenti ed. All subsequencompu-
tation dependson this value. The \region size" cut-o of is very important aswell, as

it determineswhich regionsare selectedfor the rest of algorithm.

2. Parameters 1 through 6 are usedin the early part of the algorithm, and make a
di erence to all regions. For instance, the cut-o value of bark sizethat keepssome
regionsfrom being selectedfor further consideration,and the 4 paddingsof rectangle

regions(parameters4 and 5).

There are many more parametersusedby the algorithm that werenot tested, becausehey
only matter to the identi cation of a small subsetof the regions. In other words, changing
them will not heavily in uence the erire algorithm. For example,there is a parameterused
asthe ratio betweenthe width of the maximum consecutie segmets, and the bounding box
width. If the number of segmets with a value smallerthan the default ratio is high enough,
then the region may be agged as bark, should other conditions be met aswell. Sincethis
is but one of seeral parametersthat are applied in decisionmaking, and usedonly in this

place, currertly it is not included in this test.

In summary for ead parameter,the total number of matchesat a certain value of all the
log samplesis calculated. The samewas done for both falseiderti cation and uniderti ed
defects. From the testing results sud asin Tables6.5to0 6.7, it was found that among 10

parameters,

1. for 9 parameters,the total number of matchesat the original parameter value is the
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highest. The only exceptionis the bark regioncut-o size;

2. for 5 parameters,the total number of false identi cations at the original parameter
value is the lowest, wherethe exceptionsare cortour levels, cut-o size,width/length
ratio, data point interval for detecting at tops, and angle changefor detecting at

tops;

3. for 9 parameters,the total number of unidentied defectsat the original parameter
value is the lowest. This property correspndsto that of the rst property for the
number of matches. That is becausethe sum of matching numbers and uniderti ed

defectsis always a constart, which equalsthe total number of ground truth.

This indicatesthat at the original parametervalues,the algorithm tendsto identify defects
correctly, but thereis alikelihood to claim aregionis defective but in truth it is not. However,
for all parametersthe numbers of false identi cations at the original valuesare not much
greater than the lowest ones. In other words the algorithm with the original parameter

valuesis oversensitive to a low degree.

6.6 EXxperiments with Data Mining

Data Mining (DM) theoriesand algorithms [16, 22, 50, 81] were explored as an alternative
way to implemen defectdetection. An online survey was conducted,aswell as a literature
seard on the subject to determine potertial DM algorithms. Basedon this surwey, the

following data mining strategieswere investigatedin detail:

K -meansclustering [98, 41, 51, 81], wheren-dimensionalcertroids are predetermined.
The algorithm assignsead object to its \closest" certroid, optimizesthe classi cation

metric, and modi es positions of K certroids until stopping criteria are satis ed.
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Spatial AggregatesLanguage(SAL) in Active Data Mining [59, 60, a generalDM
framework. With SAL, objects being mined are constartly changingin the sensethat
detailed, low-level ones(e.g., a dot) are aggregatedto obtain objects that are more
abstract and at a higherlevel (i.e., a setof dots forming a line). The processs repeated
until the desiredobjects (a hill composing se\eral curvy lines) are classi ed. Through
the iterativ e processeslower-lewel object featuresmay be employedin decisionmaking

during high-level aggregations.

DecisionTrees(DT) [98, 99,50, 57,58, 81], whereewery object passeshrough a certain
path in a tree which de nes the process.Nodesof the tree correspnd to sub tasksin

the algorithm.

We rst consideredK -meansclustering and other similar clustering algorithms. The
principles of thesemethods are straightforward. Further, for the log data only two certroids
are needed,represeting the classes\defects" and \non-defects". Howewer, the fact that
parametersin the detection algorithm (such as bounding rectanglewidths and lengths) are
constartly being changedthroughout the algorithm makesit impossibleto establish\static"

rules, which the clustering algorithm needsto implemert the optimization procedure.

Next, the SAL approat wasstudied. Our hope wasthat by applying its methodology, we
could comeup with a data mining algorithm that would hierardcically aggregateobjects from
the lowest level to the highest. This would result in log surfaceregionsbeing classi ed as
either defective or non-defective. An outline of the SAL algorithm is available in [59], which

was adoptedto the log-defectdetection algorithm. The following is the generalprocedure.

Levell (Points):

1. For eadt log data point, determine and normalize the gradierts of its radial distance

[89], both alongthe x, and x3 directions;

2. Determineif a point is \aligned with" any of its 8 neighbors (left, right, top, bottom,

upper-left, upper-right, lower-left, and lower-right).
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Level2 (Curves):

3. Connectthe aligned points to form a \forw ard" graph;
4. For ead data point, determineits \b estforward neighbor" by penalizingfor distance;
5. Rewersethe forward graph to generatea correspnding \backward" graph;

6. Determine the \b est badkward neighbor” using the samestrategy asin 4. At this

point, ead point is connectedby at most two adjacert points in a trajectory.

Level3 (Regions):

7. Group cornverging trajectoriesto form a region (e.g., a pocket, or a bump).

The problemwith this approad is that the barkedlog surface [88]is far more complicated
than any SAL examplefound in literature:
it is coveredunder bark, which is a mixture of ridgesand groovesin anirregular fashion;

since a log is not perfectly circular or elliptical along cross section, the \unrolled"
surfacecreatedby using tted circles(or any other simplegeometricalshape) inevitably
introducesbulging or depressingregionsalong log direction, camou aging true defect

bumps;
knots (defects)are covered under a complexbark pattern;

regionswith missing bark (that falls o before a log gets scanned)result in dented

portions, adding more noise;

missingdata and outliers in data also make log surfacesmore complicatedto process.

These problems make it unrealistic for SAL programs to single out defectsfrom the

\messy" badground. Simulation results were not satisfying, with results not even close
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in quality to those from the detection algorithm described in Section 6.2.1. Further, we
also tried applying SAL as an assistingtool to the original algorithm in that, wheneer
a region is determined, the best-fornard neighbors are agged as defective as well. The
only changebetweenthis approad and the original is that detectedregionsare irregularly
shaped, instead of a rectangle (Figure 6.8(b)). We had hoped that they could shov the
regionsin more natural shapes,and more similar to the ground truth. Howe\er, that is not
guite the case,perhapsbecausethe SAL programs apply decisionrules that makes sense

mathematically, but meaninglessn the graphical represetation of defects.

As the SAL experimert was not successfuldecisiontree algorithms were considered.We
chosenon-corinuousparameterdecisiontree algorithms, obtained a publicly available padk-
age,C4.5,which isimplemerted in C for Unix operating system [99, 58, 57]. Non-cortinuous
parameter decisiontree algorithms are less complex than the cortinuous-parameterkind.
Howewer, they are also not as e ective, becausethey learn only axis-parallel hyperplanes,
while the latter allows for better parametertuning. As we werelooking into C4.5, and plan-
ning to preparethe attribute-data le for the programsto usein defect classi cation, we
realizedthe samecausesasfor K-meansclustering is an issuehere: decisiontree algorithms
only dealwith predeterminedor static attributes, and the madine-vision systemalgorithm
modi es bounding boxesthroughout the ertire algorithm. In other words, to apply a deci-
sion tree algorithm would require a completerewrite of the detection algorithm. Thus, we

did not pursuethis any further for now.

Due to the unique features of the defect detection algorithm using an madine-vision
systemand the complexity of the data, it is hard to quickly adapt it into any Data Mining
algorithm. In future, we may start building a data mining systemfrom scratc that performs

the detection task.
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Figure 6.8: Comparison of the defect detection algorithm using the madine-vision
systemandthat of an data-mining approad. (a) Resultsfrom the detectionalgorithm
usingan madine-visionsystem. Solid rectanglesenclosedetectedregions,and dashed
ones,groundtruth. (b) Resultsfrom conbining the madine-vision systemalgorithm
with SAL functions. The ellipseencloseground truth. The two bold crossesre the
certer of detectedregion, and the ellipse certer, respectively. Due to the complex
structure of the defect, it is only partially detected.



Chapter 7

Summary and Future Work

7.1 Summary

This researb has created the rst automated algorithm for detecting surface defectsin
hardwood logsusing 3-D laser-scannegro le data. Due to the presenceof extremeoutliers
and missingdata in the laserlog data set, robust estimation techniquesare well suited to this
application. The deweloped programscan processan ertire log-data sampleby transforming
the original log data set, which may cortain a large number of missingand/or seeredeviart
data, into a matrix of radial distancesthat better portrays surfacedefects. This is illustrated
as a sharper and cleanergray-level image. This shows that the radial distanceslay a solid
foundation for the remaining defect-detectionprocess.It is found that cortour levelsderived
from the radial distancesmake it possibleto detect and further narrow down the potential
defectregions. For defectsthat lie within the bark layer, information other than the radial

distanceswill needto be used. This calls for further researb and dewelopmer.

A new robust GM-estimator has beendewloped that performs 2-dimensionalcircle t-
ting to detect external defectson hardwood logs and stems. Classicalestimation methods

basedon the least-squaresnethod revealedthemsehesto be unreliable becausehey gener-

100
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ate strongly biasedestimatesdue to the presenceof missingdata and seere outliers. This
is shawn in Figure 5.3. By cortrast, the GM-estimator suppressesheseoutliers via weights
calculated from projection statistics applied to the radial distances,thereby bounding the
in uence function of the estimator. Basedon theserobust circle ttings, the defect-detection
programs transform the original log data into a sharper and cleanergray-level image, de-
termine corntour levels of the radial distances,and further narrow down the potential defect

regions.

We also deweloped a computer algorithm that identi es external defectsusing the radial
distancesgeneratedby the circle tting method by applying the new GM-Estimator. The
generation and initial processingof radial distancesare not the nal steps of this work.
Clearly, additional researt is needed.At this point, only log unrolling and height analyses
methods have beenexamined. A preliminary study was conductedto extract features of
external defect types from randomly chosendefect samples. These features were studied
to help making decisionrules for the defect defection algorithm. To read the nal goal
of locating and classifying surfacedefects,we are exploring the potential bene ts of image

processing,computer vision, and pattern recognition techniquesusing radial-distance data.

There are two methods to ewvaluate performanceof the detection algorithm. The rst
one looks at the number of defectsdetected out of the total number of ground truth. In
our experimerts there are a total of 68 seere defects,of which 63 were correctly iderti ed.
There are 10 non-defectie regionsfalselyidenti ed asdefects. The other way is calculating
the surface areasthat are detected against that of ground truth. To calculate this, we
implemerted the method to compute the false-detectionrate as discussedn Section6.2.4,
which demonstrateda reasonablygood algorithm (87.5% automated clear regionvs. 88.5%
obsened clear region, and a 97.6%areadetection rate). There are pros and conswith both
methods. The pros for the rst oneis that it agreeswith cornvertional understanding of
detection rates. However, in wood scienceand forest products, a large defectusually is a lot
worsethan a small one. The secondmethod overcomeshis problem. Yet dueto the relative

inaccuracyof the defectarea, the statistics may not be completelyreliable. This is because
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the areaof ead defectregionis estimated as a rectangle,using the width and length of the

matched ground-truth defect.

Many defectswere not identied mainly becausethey do not have a signi cant height
change. Thus, the heigh-based approad is not e ective for these defects. Among them
there is a group of se\ere defectswith heavy distortions and at knots. Thesedefectsoften
have a distinctive ring-like bark pattern. Edge detection, a computer vision technique, may

help in identifying sud defects. This will be implemerted in a secondphaseof this researd.

When a single cylinder is tted to the ertire log data, the number of parametersto
be estimated is the fewest as comparedto tting a sequenceof circles and ellipsesto all
crosslog sections. This meansthat cylinder tting providesthe fewest degreesof freedom.
In addition, the radial distancesare extracted against a uniform surface, resulting in the
smoothest image among the three. Clearly this gives a more consistem surface map for
subsequentasks. Howewer, it may re ect lessdetails of defective regions,asthe surfaceof a
simple cylinder like this tendsto resenble very little of a log surface. Thus, radial distances
betweenthe cylinder model and log data will give few details of log surfacestructure, critical

to the detection task.

In cortrast, the circle tting approad involves far more parametersto be estimated,
which resultsin more degreesof freedom. Howewer, ead circle provides a better t to ead
individual crosssection,revealingmore details on log surfacewhile radial distancesextracted
betweenneighboring crosssectionsare lessconsistem, or noisier, than in the cylinder case.
On the other hand, ellipse tting introducesthe greatestnumber of estimated parameters
and hence, generatesthe most detailed radial-distance image. By the sametoken, radial
distancesfrom neighboring crosssectionsare much lessconsisten, or lesscrisp, comparedto
circle- or cylinder- tting. This is primarily dueto the di erence of axesorientation between

neighboring ellipses.

Generatingand processingadial distancesis not the nal stepof this work. An algorithm

was deweloped that determineswhether an areaof interest cortains a savn knot, by locating
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the appraximately straight line segmen in a cross-section Parametertesting was conducted
and demonstrated that the detection algorithm was capable of idertifying most defects.
Further, a preliminary study was conductedto extract featuresof external defecttypesfrom

randomly chosendefectsamples.

7.2 Future Work

Recently judged by our achievemerts, the USDA Wood Education and ResourceCerter
(WERC) hasgranted new funding for the re nement and analysisof the log surfacedefect
methods. It will provide partial nancial support for our future work. Our plansinclude the

following.

Develop a Java software package The Matlab defect-detectioncode that detectsde-
fectswill be cornverted to Java and integrated with the scanningand saving equipmen. A
complied Java program can be run directly on the Java virtual madine of any architecture,
givenversioncompatibility. We plan to provide a completepadagethat is publicly available
through internet. Further, the detectionresultswill be displayed in graphical formats to as-
sist savyers who can rotate, zoom, and move the virtual log marked with defects(Figure

4.3).

Overall, Java is a good choice for the real time processingand userinteraction demands
of this project. In the recen releasesf Java 1.4.2and later, Java's mathematical operations
were further optimized to improve performance. Recen bendimarking studies shav that
the performancedi erencesamongJava, C, and C++ for most mathematical operationsare
minimal [10, 37]. Corwell-Shahreported that for integerand double-precision Java actually
outperformedgcc C code by 9.5%and 32%respectively. Similar resultsare reported in [37].
Lea alsoreports that using the sener Java virtual madine (JVM) results in signi cantly

faster executiontimes than whenusingthe client JVM. One weaknesswith the JVM is with
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trigonometric functions where C outperforms Java by as much as 33-percen.

Further, developmen of padkagessud as NINJA (Java for High PerformanceNumerical
Computing) have madeJava an even more attractiv e candidatefor this researt [52]. NINJA
supports improved matrix and vector handling and faster mathematical operationson these
data types. The bendimarks preseed by Moreira et al. are basedon a pre 1.4.2 JVM
whose mathematical operations were not fully optimized. The study showed that Java
with NINJA scoredwithin 15 percen of the bendymark scoreof Fortran 90 on the matmul
bendimark. Similarly, NINJA scoredwithin 2.9 percent of Fortran 90 on the Cholesky
bendimark. Howewer, NINJA exceededhe Fortran 90 scoreon the microdc bendimark by

2.4 percen.

Fortran and C aree cien t languagedor scierii c computation. Howeer, Java is portable.
Any compiled Java program can be executedon any platform as long as a JVM for that
platform exists. Java hasexcellert graphical user-irterfacedevelopmert capabilities, and has
seweral GUI dewlopmenal padkages.One notable GUI dewlopmen padkagefor Fortran is
japi (http://www.japi.de ), which providesthe Java AWT Toolkit to non-object oriented
Languagedike C and Fortran. Howewer, Fortran haslimited GUI dewelopmen support that

is not integrated as well asthose available in Java and C++.

Exp eriment with more log samples We would like to obtain more log samples,and
capture pro le data using Perceptron's 3-D scanningequipmert [4]. From past experience,

there are a few things that can be improved:

the processof manually marking and labeling surfacedefectson the logs should take
place prior to taking side photographsare taken. This will make the defectsobvious
in the heavily camou agedbark surface,and thus make comparing simulation results

of the detection algorithm with the ground truth and photographsa lot easier.

we needto keepclosewatch on the scanneddata, photos,and groundtruth data ertry.

In the current experimert, somelog data are unusable;someside-viewlog photoswere
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arrangedin the wrong order; and ground truth data were incorrectly ertered and/or
some elds weremissing. All thesereducethe number of log samplesthat can be used

to test the algorithm.

In future work, oncesud problemsoccur, we will x it immediately.

Detect more types of defects We implemerted the method to compute the false-
detectionrate asdiscussedn Section6.4, which demonstrateda reasonablygood algorithm.
Many defectswerenot idernti ed mainly becausdahey do not have a signi cant height change.
Thus, the cortour-basedapproad is not e ectiv e for thesedefects. Among them is a group
of defectsthat are se\ere,for example,heavy distortions and at knots. Thesedefectsoften
have a distinctiv e ring-like bark pattern. Edge detection, a computer vision technique, may

help in identifying sud defects.

Classify defects Cluster analysis,or clustering, is an attempt to nd structure in a setof
obsenations [53]. Clustering techniquesare usedin two generalclassesof problems: those
with unlabeled samples referredto asunsupervisedlearning; and thosewith labeledsetsin
which given classesnay consistof distinct subsets,referredto assupervisedlearning. Clus-
ters are aids to interpreting and evaluating the measuremets and features. Tedniquessud
assplitting, merging,and graph theory are applied, ead assaiated with a di erent criterion
for assigningan object to a cluster. Objects and patterns are referredto as points in fea-
ture space.Patterns are represeted in terms of features,which form n-dimensionalfeature
vectors[85]. Approadhesto clusteringinclude error function minimization, hierarchical, and
graph-theoreticalclustering. The basicstepsto dewelop a cluster algorithm are the following:
feature selection,proximity measure clustering criterion, clusteringalgorithms, validation of
the results, and interpretation of the results. Proximity measureanclude dissimilarity and

similarity measuresgadt de ned by its metric [12].

We shall dewelop methods and algorithms for feature extraction, defect segmetation,
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and classi cation using cluster analysis. By analyzing the characteristics of the cortour
levels, defectswith a signi cant rise or depressionwill be located, segmeted, and classi ed
through cluster analysis. To this end, classi cation criteria will be set up and clustering
algorithms will be deweloped. This task will accomplishthe following classi cation tasks:
feature selection; proximity measure;validation of the results; and interpretation of the
results[12, 53, 85].

Ultimately, accurate defect locations needto be pinpointed, defect features extracted,
and the nal detection of external defectsperformed. To this end, algorithms in pattern
recognition, including cluster analysis,will be investigated. Other methods, sud as surface
reconstructionand texture analysis,will be examinedaswell whereer necessaryNote that
the pattern recognitionmethodsaredi erent from thoseadvocatedin computervision, where
image elemeits are categorizedinto iderti able classes.Here, a learning set must be built
rst through extensive simulations by grouping the defectsinto separateclasses. Pattern
recognition will be carried out through cluster analysis, which will be the primary method

for feature extraction and defectdetection of the log surfacedata.

Defectsmay be classi ed as knots, splits, holes, and bark distortions, ead of which is
characterizedby a set of featuresthat idertify a cluster of points in an n-dimensionalspace.
The featuresare chosenin sud a way that two similar defectswill have closepoints while
dissimilar defectswill have remote points in the feature space. In other words, when the
featuresare appropriately chosen,two dissimilar defectshave their assaiated feature points

distant from ead other, resulting in a clear separationbetweenthe clusters.

For the log data set, the features can be determined from the radial distancesof the
curve or surface tting and the correspnding cortours. Boundaries between clusters will
have to be determinedaswell. This is again a curve- tting problem, and robust techniques

will be usedhere. Assumethat the featuresof a defect are characterizedby the following

defect, including slopes, length, height, width, elongation, the boundary information of its
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enclosedregion, and the number of its neighboring cortours with the samelevel within a
certain range. The latter would indicate whether the rise is just a high-rise bark regionor a
real defect. Note that elongationrefersto the ratio betweenthe width (along the horizortal
direction) and the length (along the vertical direction). The width of a cortour is de ned
asthe di erence betweenthe minimum and the maximum horizortal valuesof the cortour,
and its length, the di erence betweenthe minimum and the maximum vertical values. Bark

regionsin high-level cortours tend to have a smaller elongationvalue than most defectsdo.

Most defectsare assaiated with cortours of the highestor lowest levels. Thus, our focus
is on detecting defectsin the regionsinside sud cortours. Note that a cortour is represeted
by its level and a set of data points on its path. The most commondefectsare medium-sized
knots, about 4 to 6 inchesin diameter, and 1-2 incheshigh. This indicatesthat we cangroup
the correspnding cortours in oneclass,call it Class1. Thesecortours are characterizedby
the sizeand elongation of the regionsenclosedin them. Howewer, somebark regionswith
the samecortour level also have a similar size and elongation, the only di erence is that
there are small cortours with the samelevel scatteredaround them. Using this feature, one
can rule out the cortour enclosingbark regions as false defects; sud a cortour de nes a
secondclass(Class 2). There are high-level cortours enclosinglarge-sizedregions (about
15 20 2:5inch®). The oneswith an elongation value that is not too small are likely to
enclosedefects,call it Class3. For the oneswith a small elongation value, their enclosed

regionsinclude three di erent cases:

1. A large defect with relatively straight edgesalong the vertical direction, de ning

Class4;

2. A large bark region also with relatively straight edgesalong the vertical direction,

resulting in Class5;

3. A largedefectwith elliptical shaped edgesalongthe vertical direction, yielding Class6.

The main di erence betweenClassesl and 2 is that a bark regiontendsto cortain long
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Figure 7.1: Radial-distanceimagefor a red oak log.

and narrow strips, so the ratio between the median of its \solid" widths and its length
is smaller than that of a defect. Here, the \solid" width refersto the one between two
contour segmets in the vertical direction where there is no break. The cortour plot in
Figure 7.1 contains a typical large bark regionin the bottom-left portion at about 90°. The
main di erence amongClassesl, 2 and 3 is that the rst two are ass@iated with relatively
straight cortour segmets in the vertical direction while the third onehaselliptical cortours.
This indicatesthat the scaleestimator, determinedvia Median Absolute Deviation from the
Median (MAD), of the slopeson the boundary for the rst two caseswill be smallerthan
that of the third. This separatesthe third into a di erent class. For defectsin the shape of

holes, splits, similar featuresapply, exceptthat their cortour levels are low.

Oncefeaturesare de ned, we cande ne the training setof defectclasses.To this end, we
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carry out a mapping betweenknown defectclassesand their assaiated clustersof points in
the feature space.Speci cally, thesefeatureswill be measuredfor a sampleof a given defect
class, determine its certer (i.e., coordinate-wise medians) and a 95% con dence ellipsoid
that de nes its boundaries. We will repeat this for ewvery given classof defects. Once the
training setis completed,we may then useit to classifyany potential defectby estimating its
featuresand nding the closestcluster. When the number of classess large, cluster analysis
is carried out with the help of decisiontrees. Neural networks may alsobe investigatedhere

for identifying the clusters.

Impro ve the algorithm eciency  Various numerical methods for solving nonlinear
equationswill be investigatedto speedup the algorithms while making them numerically
stable. We will improve the method so it would be fast and numerically robust. We are
preserly using the iteratively reweighted least squares(IRLS) method together with QR
decompsitions and Householderre ections for numerical stability [56. The executiontime
constrairt cannotbe ignoredbecausehe systemtargets lumber manufacturing. On average,
it takesabout 8 to 10 seconddor a human expert to examinea log. Evertually, the system
to be deweloped must operate within the sametime frame or less. We will investigate ways

to speedup the IRLS algorithm.

Integrating both the circle- tting and defectdetectionalgorithmsin Java makesit possible
to be accessedia internet by public. This makesour systemavailable to the forest product
sceiety in that researbers may useit in their simulations, and savmills may useit to help
improve their productivity. Further, written in Java alsomeansthe software canbe readyin
executableform for various platforms. Usersmay simply download it and it is ready to run
on their computers. Dewveloping a GUI for the systemwill make it a lot easierto operate.
The detection results can be viewed on screen,the operators may zoom in or out, rotate,
and/or move the virtual log to get a better look of the defectsize,shape and distribution on
the log. Detect information can also be displayed at the operator's request. All thesecould

be accomplishedby a few key strokes.



Liya Thomas Chapter 7. Summary and Future Work 110

Experimerting with more log sampleswill help usto test the algorithm, collect detection
statistics about it. As we have seenthrough this documert, only 14 log sampleswere used,
and amongthem the majority are red oak. To improve and test the algorithm, we certainly
need signi cantly more samplesfor both red or black oak and yellow poplar. Currently
our algorithm is only capable of detecting surface defects asseiated with height change.
Howewer, defectswithout signi cant surfacerise, sud as heary distortion are also seere
and needto be detected. To be ableto detect them we shall develop an algorithm. Knowing
what type of defects,for instance,a knobby knot causedby a broken branch, or a savn top,
would provide more information for the inferenceof the internal defectfeatures. Internal
defectinformation is crucial to wood processing.Thus, we would like to classifythe external
defecttypes. Finally, we want to improve the algorithm e ciency is becauset implies fast

executionand lessbreakdawns, key factors to a high-quality, useful, and robust software.
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