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Automated Detection of SurfaceDefectson Barked Hardwood Logsand

StemsUsing 3-D LaserScannedData

Liya Thomas

(ABSTRACT)

This dissertationpresents an automateddetectionalgorithm that identi�es severeexternal

defectson the surfacesof barked hardwood logsand stems. The defectsdetectedare at least

0.5 inch in height and at least 3 inches in diameter, which are severe, medium to large in

size, and have external surfacerises. Hundreds of real log defect sampleswere measured,

photographed,and categorizedto summarizethe main defect featuresand to build a defect

knowledgebase.Three-dimensionallaser-scannedrangedata capture the external log shapes

and portray bark pattern, defective knobs,and depressions.

The log data are extremely noisy, have missingdata, and include severe outliers induced

by loosebark that danglesfrom the log trunk. Becausethe circle model is nonlinear and

presents both additive and non-additive errors, a new robust generalizedM-estimator has

beendeveloped that is di�erent from the onesproposedin the statistical literature for linear

regression. Circle �tting is performed by standardizing the residuals via scaleestimates

calculatedby meansof projection statistics and incorporated in the Huber objective function

to bound the in
uence of the outliers in the estimates.The projection statistics arebasedon

2-D radial-vector coordinates insteadof the row vectorsof the Jacobianmatrix asproposed

in the statistical literature dealing with linear regression.This approach provese�ective in

that it makesthe GM-estimator to be in
uence boundedand thereby, robust againstoutliers.



Severe defectsare identi�ed through the analysis of 3-D log data using decision rules

obtained from analyzing the knowledge base. Contour curves are generatedfrom radial

distances,which are determined by robust 2-D circle �tting to the log-data crosssections.

The algorithm detected63 from a total of 68 severe defects. There were 10 non-defective

regions falsely identi�ed as defects. When these were calculated as areas, the algorithm

locates97.6%of the defectarea,and falselyidenti�es 1.5%of the total clearareaasdefective.
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Chapter 1

In tro duction

Automatically locating and classifying log defectshelps to improve lumber yield, in terms

of both volume and quality. Traditional defect inspection is doneby the sawyer's naked eye

within a matter of seconds.Visual inspection hasa high error rate, and is easily in
uenced

by the operator's physical and mental conditions. Thus, researchers have beendeveloping

a variety of computerizeddefect detection and classi�cation systemsto assist the sawyers'

decision-makingprocess[8].

1.1 Background

In 1991,USDA, NIST, US Department of Commerce,Hardwood Research Council, and the

University of Maine sponsoredan investigation to identify the hardwood industry's current

needs. One of the four most pressingpriorities is external and internal defect detection to

optimize hardwood logsand lumber processing[8]. The abilit y to detectdefectson hardwood

treesand logsholdsgreat promisefor the hardwood forest products industry. At every stage

of wood processing,there is the potential for improving value and recovery: from bucking

hardwood stems into round wood products using optimal grading strategiescontrolled by

1
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surfacescanningdata processing,to log breakdown using inferred internal defectdata based

on external indicators. Beforea hardwood log is sawn, an assessment of its quality is usually

performed,typically via a mill operator's visual inspection, which can be quite variable and

subjective.

Log quality is inverselyproportional to the presenceof defects.Log defectsinclude both

internal and external defects. External defect indicators consist of knots, splits, holes,and

circular distortions in the bark pattern. Key data collectedto characterizetheseindicators

include surfacerise, length and width as well as type. Defect detection on hardwood trees

and logs can be categorizedinto two areas: internal and external detection. External de-

fect detection refers to the detection of defectson a log's surface,and internal detection,

the detection of defectsinside a log. The di�erence between high and low quality logs is

determined by defect type, size,and location. Detecting and measuringdefectsaccurately

and rapidly is often di�cult [94]. Accurate external log defectdata would permit bucking of

stemsto the highest-valued log combination possible.During sawing thesedata can lead to

improved cutting strategiesthat optimize log yields, that is, preservingthe largest possible

areaof clear wood on a board face.

The last two decadeshave seenthe emergenceof various scanningtechnologiesfor both

the softwood and hardwood industries. Variousinternal defectinspection methodshavebeen

developed using X-ray/CT (Computer Tomography), X-ray tomosynthesis,MRI (Magnetic

ResonanceImaging), microwave scanning,ultrasound, and enhancedpattern recognition of

regular X-ray images[96,101, 40,20, 3, 74]. External log-scanningequipment and accompa-

nying optimization softwaresystemsarealsoavailableon the market that aid in the sawing of

logsinto lumber. Most of thesescanningsystemsweredeveloped for the softwood lumber in-

dustry and only a handful for hardwoods. Available external hardwood log scanningsystems

gather information about external log characteristicssuch asdiameter, taper, curvature, and

length [72]. Optimization software systemsthen focus on using this pro�le information to

better position the log on the carriage and improve the sawyer's decision-makingabilit y.

Supplying external defect information to theseoptimization software systemsis a natural
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extensionof current technology. Using texture analysis,Tian et al. [93] developed a com-

puter vision software systemfor external defect recognition using photo imagesof softwood

tree stems. Hardwood defect typesand morphologyare su�cien tly di�erent from softwoods

to prevent a direct application. Further, the nature of the data, that is, gray-scalephoto

images,that Tian et al. analyzedare di�erent from the 3-D rangedata in this research. So

far no technology is available that can provide external defect information on hardwood logs

and stems.

With the aid of a hardwood log surfacedefect scanningsystem,decisionmaking at the

headrig can be improved during processing. If scanningoccurred early enoughin the pro-

cessing
o w, defect information could be usedto determine the best product or market by

grading logsand/or optimally bucking stems. This would alsoautomate current data collec-

tion systemsthat usean operator to manually identify defectson logsasan aid to processing

and grading. Recently, several companiesincluding Perceptron, Inc. [4], have designed3-D

laser-scanningsystemsto collect log and stem external pro�le data. Figure 1.1 illustrates

the scanneras well as the log data. A computerizeddetection systemis neededto process

the 3-D rangedata and extract defect information. To accomplishthe detectionprocess,the

systemwill needto apply multidisciplinary knowledgeincluding wood and forestry science,

computer vision, image processing,computer science,and statistics. For it to be practi-

cal in the sawing process,the systemmust also be fast. In this document, we useEnglish

measurements for length: inch and foot, commonly adoptedby U.S. forest product society.

X-Ray/CT technologyhasbeenusedto locateinternal hardwood log defectsin the labora-

tory [40, 101]. Log defectsexist both externally and internally. As X-Ray/CT technology is

capableof penetrating material, the resulting imagesdisplay internal defectsthrough density

variations. While X-Ray/CT-based detection approaches generatesuccessfulexperimental

results with a 95%detection accuracy[40], several obstaclesprevent them from being used

in industrial applications. First, the data collection speedis extremely slow due to the large

data volume, varying anywhere from 5 minutes to 4 hours per log. Second,variation in

moisture content in the log causesthe intensity of scannedimagesto vary, making detection
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(a) Schematic diagram of the laser log scanner.

(b) Portion of the 3-D projection of
laser-scannedrange data for a log
sample,a red oak.

(c) 3-D mesh projection of partial data (15,998
points). This portion is a large sound knot as
partially shown in (b), roughly in the size of 20
inches� 13 inches, rising approximately 4 inches
above the log surface

Figure 1.1: The 3-D laser scanningsystem and the range data. The curves on the
x2 x3plane are contour plots indicating the heights at di�erent elevations on the log
surface. In the plot, a high gray value, that is, a light-shadedgray color, indicates a
large x1 value.
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results unstable. Third, it presents an environmental hazard, as penetrating such a large

object requiresa tremendousamount of X-ray energy. Finally, the high cost of the scanning

equipment|on averageonemillion U.S. dollars|few sawmills can a�ord and thus haslittle

practical value.

In contrast, 3-D laserscannertechnology usesrelatively low-cost equipment that is more

a�ordable to sawmills. Laserscanningequipment collectsthe external log shape information

usingtriangulation technology. Sinceonly surfacedata are collected,data collectionspeedis

much faster. The systememploys low-energylaser-scanningunits, which are safeto operate.

Moisture content doesnot interfere with 3-D pro�le data. However one main disadvantage

for this method is that it only provides external defect information, which might prove

insu�cien t for lumber processing.To addressthis problem, a sister study [92] to determine

the correlation of external and internal defectsis ongoingat the USDA NortheasternForest

Research Laboratory in Princeton, WV.

Strong correlations have been found to exist between external indicators and internal

characteristics. For the most severe defects,the models can predict internal featuressuch

as total depth, midway point defect width and length, and penetration angle, with a low

measurement error. For lessseveredefectssuch asadventitious knots and medium and light

distortions, the correlations are lesssigni�cant. An adventitious knot is a knot resulting

from a branch that sproutedfrom the main trunk. Thesetypesof knots are often small (less

than 0.75inch) and do not penetrateall the way to the center of the tree asdo other knots.

Logscanbeclassi�ed into softwood and hardwood. In general,most softwoodshave a fast

growth rate and identical, clustereddefectsmostly causedby branch pruning. By contrast,

hardwood trees generally grow more slowly, and have more valuable products. Studies

have demonstrated that the use of defect data improves cutting strategies that optimize

log recovery or yield, that is, preservingthe largest possiblearea of clear wood on a board

face[27, 79]. This is a challengingtask to achieve becausethe distribution, types,and sizes

of hardwood defectsare random and irregular.
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1.2 General Research Ob jectiv es

The key objective of this research was to develop an algorithm capableof locating surface

defectson hardwood logs using laser pro�le data. In order to accomplish this objective,

several inter-related sub-objectiveshad to be met:

1. Characterizationof hardwood defecttypes. This requiredthe collection,measurement,

photographing,and analysisof external hardwood defect samples;

2. Development of non-linear regressionmodels that are able to perform the detection

tasks;

3. Development of a machine vision system basedon the knowledge of external hard-

wood defect samplesfor defect detection basedon contour levels derived from radial

distances;

4. Quanti�cation of the control parametersof the detection algorithm. This required

testing the accuracyof the algorithm using a rangeof valuesto determinethe optimal

combination of parameters.The optimal combination is onewhich returns the highest

number of correctly identi�ed defects,the lowest number of falsely identi�ed defects,

and the lowest number of unidenti�ed defects.

To the best of our knowledgethis is the �rst investigation of detection methods for lo-

cating defectson the surfaceof hardwood logs and stemsusing laser-scanned3D Cartesian

coordinates [91, 87]. The laser-scanningsystem is a commonly available industrial system

manufactured by Perceptron, Inc. [4]. The scannergenerateshigh-resolution pro�le images

of the log surfacein three dimensions.The scannerwasprimarily developed for the softwood

industry, wherethe scannerwould be usedto determinethe shape and sizeof the log being

sawn in three dimensions.Ideally, an optimizer would take the scanneddata and determine

the sawing pattern for the log in terms of maximizing volume of lumber sawn. The system

resolution is high enoughsuch that defectscan be manually located in the scandata by the
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human eye. The obvious questionis: how to get the computer to extrapolate internal defects

given known relationshipsbetweensurfacefeaturesand internal log features.

1.3 Ac hiev ements

Most severe log defectsare associated with a localized surface rise at least 0.5 inch. To

detect these features, an automated defect detection algorithm has been developed using

laser-scannedpro�le data. Circles are �t to data crosssections,and then radial distances

are computed between the �tted circle and the data [86]. Also explored is the possibility

of �tting ellipsesor cylinder to log data. From the radial distancesa gray-scaleimagewas

generatedshowing height changeson the log surface. Further, radial distancesare usedto

determinea contour plot of the log surface,from which the large and/or protruding defects

are determined. However, sometypes of severe defects do not lead to signi�cant height

changesagainst the surroundingbark, and thus are not detectedby the algorithm presented

in Chapter 6. Pattern-based methods to identify these kinds of severe defectsmight be

developed in future work. Currently only those defectswith a signi�cant height rise were

examined.

Log data were obtained from two commercially important north-east America hardwood

species:yellow poplar (Tulipifera Lirio dendron),and red oak (QuercusRubra). Over 160log

data sampleswerecollected,each consistingof crosssectionsalongthe log length at 0.8-inch

intervals (Figure 1.2). Each crosssection comprisesapproximately 1,0003-D coordinates

with adjacent points roughly 0.05inchesapart, so it is much denseralong the crosssections

than betweenthem. Typically a log's length rangesbetween8 and 16 feet. Thus, each log

data samplehas about 120,000to 240,000points. Clearly, the log surfacedata are range

data. Due to blockageby the log's supporting structure during scanning,there are missing

data aswell assevereoutliers introduced. Calibration problemswith the scanningunits and

log diameters also causedmissing or duplicated data. Becauseof the presenceof a small
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Figure 1.2: Dot cloud projection of 3-D log data. Shown is part of the data for
one log sample. A bump-like external defect (lower left), missing data, and outliers
causedby loosebark (upper-middle left) are visible.

percentage of severe outliers together with segments of missing data over the log surface,

conventional least-squares�tting performspoorly. This calls for the development of robust

curve �tting methods,which leadsto the application of robust statistics and the development

of 2-D curve-�tting generalizedM-estimator (GME) [21, 91, 86].

Actual defect locations, sizes,types,etc. for theselog sampleswere measuredmanually.

Color digital imagesof the log surface,four imagesper log (at 90o intervals) werecaptured.

About 200 external-defectsampleswere studied, measured,and their photos taken. These

defectsampleswereanalyzedto provide indicators and classi�cation of external defectchar-

acteristics. Statistics for thesedefect classi�cations are usedto de�ne the defect-detection

algorithm, and to improve it through comparingits simulation output data againstthe statis-

tics. Thesearethe training data for the defectdetectionalgorithm, and are further discussed

in Sectionssec:dt4and 6.1. In our experiments there area total of 68severedefects,of which

63 werecorrectly identi�ed. There were10 non-defective regionsfalsely identi�ed asdefects.

The 68 defectsare testing data to the defect detection algorithm. When thesewere calcu-

lated as areas,the algorithm locates97.6%of the defect area,and falsely identi�es 1.5%of
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the total clear areaas defective.

The defectsunder considerationare at least 0.5 inch in height and at least 3 inches in

diameter, which are large, severe external surfacerises. Testing results are found in Section

sec:das5.The method proceedsin three major steps. First, it determinesan appropriate

referencelevel|a 2-D circle|to the scanneddata crosssectionalongthe log length. Next, it

obtains radial distancesthat show surfacerise and depression.Finally, it locatessevere ex-

ternal defectsusingthe contour imagegeneratedfrom radial distances.This processrequires

2-D quadratic curve �tting. A small percentage of outliers exist in the log data amongthe

hundredsof 3-D points per crosssection. Statistically, outliers are observations that deviate

from the pattern formed by the majorit y of a data set. In this application they are caused

by loosebark or supporting structure of the scanningequipment. Note that currently the

defect detection system are implemented using two programming languages:Java for the

circle-�tting part, and Matlab for the defectdetectionpart. It is not yet integratedwith laser

scanningequipment, thus the simulation results are all from lab computers. In next phase,

we will integrate both two programsin Java, and experiment with a scannerequipment in

real time.

Many least squares2-D curve-�tting methods have beenproposedin the literature; see

for example [17, 14, 82, 13]. However the log data are extremely noisy and include large

outliers along with missingdata. This implies that non-robust least squares�tting fails as

it assumesthat data are free of outliers and complete. For this application, a good �tting

to log data is crucial becausesubsequent analysiscompletely relies on its results. It turns

out that estimation methods proposedin �eld of robust statistics, such as the M-estimators

introducedby Huber in 1965and the LeastMedian of Squares(LMS) estimator proposedby

Rousseeuw [21, 30, 70], do not meet the requirements of good resistanceto outliers and low

computational complexity for circle �tting. This needprompted the development of a new

generalizedM-estimator whoseobjective function makesuseof scaleestimatescalculatedby

meansof projection statistics and incorporated in the Huber objective function such that the

in
uence function of the estimator is bounded. The projection statistics algorithm usesthe
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2-D radial vector coordinatesinsteadof the row vectorsof the Jacobianmatrix. The vectors

start from the �tted circle to the log data cross-section,and passthrough the center of the

�tted circle. This nonlinear approach proves e�ective here in that it successfullyidenti�es

severe outliers in data, which otherwisewould not be identi�ed as outliers by conventional

linear methods.

The remaining dissertation is structured as follows: Chapter 2 reviews related work,

methodologies,and theories in defect detection, range image processing,image structure

modeling, and robust statistical estimation. It alsodiscussesthe relationship betweeninter-

nal and external defectsand why detecting external defectsprovides su�cien t information

for internal ones. Chapter 3 describes various external log defectsand their developments

during the tree growth. Chapter 4 outlines the detectionalgorithm, including both the circle

�tting processto log data, as well as defect identi�cation from radial distances. Chapter 5

presents the new GM-Estimator and proves that it is in
uence bounded. Chapter 6 shows

the defect detection algorithm, parameter-value testing results, and experiments with data

mining technology. Finally, Chapter 7 provides concluding remarks and describes what is

planned to be accomplishedin the next phase.



Chapter 2

Literature Review

2.1 Defect Detection Systems

There are both internal and external defect detection software systemsavailable for the

softwood industry as well as for the hardwood industry. Most internal defect inspection

methods on hardwood logsand stemsemploy technologiesusingX-ray/CT, X-ray tomosyn-

thesis, MRI, microwave scanning,ultrasound, and enhancedpattern recognition of regular

X-ray images.Using CT data, computer vision algorithms are able to accurately locate and

describe internal log defects. Wagner et al. [96] investigated a CT scannerthat operated

at an ultrafast speed,which approached the speedrequired by commercialsawmill and ve-

neerplants. Internal defectscould be seenin the scannedimagesacquiredat such a speed.

Thus, the authors concludedthat it is possibleto develop imageanalysistechniquesto au-

tomatically identify internal defects.Guddanti et al. [20] developed the TOPSAW computer

program to comparevirtual boardsgeneratedby analyzing X-ray/CT log images,with the

actual boardssawn from the sameposition in the samelog at a sawmill. In onesimulation

when the boards are graded, both virtual and actual, it was found that the value of the

virtual boardsis only 3% lessthan that of the actual boards. Thus, the authors showed that

it was possibleto assist the sawing processbasedon internal log structure obtained from

11
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X-ray/CT imagery.

Zhu and Beex [100] experimented with a stochastic texture modeling method for a ma-

chine vision log inspection systemusing computerizedtomography (CT) imaging to locate

and identify internal defectsin hardwood logs. In one simulation, correlation-classi�cation

was conducted with a training set, and the resulting classi�cation accuracieswere 71.4%,

100%, and 100%for decay regions,bark regions,and knots, respectively. Defect recogni-

tion accuraciesobtained with the testing set are: 80% for bark regions with 3 out of 15

bark regionsmisclassi�ed as decay regions;81% for decay regionswith 4 out of 14 decays

misclassi�ed as knots; and 100%for knot regionswith no misclassi�cation.

Zhu et al. [102] further developed a computer vision systemfor locating and identifying

internal defectsin hardwood logsusing CT imagery. The algorithm consistsof a number of

processingsteps:

1. an adaptive �lter smooths each 2-D CT imageto eliminate annual ring structure while

preservingother details;

2. a multithreshold 2-D segmentation scheme is used to separatepotential defect areas

from areasof clear wood on each image;

3. by generalizing8-neighbor connectivity to 3-D structures,sequencesof consecutive and

segmented 2-D slicesare then analyzedto �nd connected3-D regions.

To deal with the imprecision and ambiguity in assigninglabels to the 3-D regions,a set

of hypothesistests were employed that useda set of basic featurescapturing common3-D

characteristicsof wood defects,and the Dempster-Shafertheory of evidential reasoningwas

usedto classify defect objects. No quantitation information was given with respect to the

performanceof this system.

Using CT technology, Li et al. [40] investigated internal log inspection and developed

a feed-forward multila yer Arti�cial Neural Network (ANN) system, trained by a back-
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propagation method. ANN includes a training phaseand an operation phase. The ANN

classi�er usedhereis the Multi-La yer Perceptron(MLP) architecture trained usingthe back-

propagation algorithm [12]. A perceptroncan learn from examples,and needsbe trained to

recognizethe correct input vectors. By normalizing CT density values,theseclassi�ers can

accommodate several hardwood speciessuch asnorthern red oak, water oak, yellow poplar,

and black cherry. They can also accommodate three common defect types such as knots,

splits, and decay. Local 3-D data are used to extract defect features,and a pixel-by-pixel

classi�cation accuracyof 95%wasachieved. Analysis of a CT slicewith 256� 256elements,

each corresponding to a volumne of 2:5 � 2:5 � 2:5mm3, on a Macintosh Quadra 650 with

a MC680403/33MHzCPU requiresabout 25 seconds.Sarigul et al. [74, 73] further re�ned

theseclassi�ers in a subsequent post-processingstep,by developinga rule-basedapproach to

region re�nement to augment the initial emphasison local information. The resulting rules

are domain dependent, utilizing information that dependson region shape and defect type.

Compared to ANN, the Intellip ost system developed by Sarigul et al. improved segmen-

tation accuracyfor hardwood log datasetswere 1.92%for the red oak datasetsand 9.45%

for the datasetsprovided by Forintek Canada, Inc [73]. For the caseof medical datasets,

improvement for two datasetswere4.22%and 0.33%,respectively. Similar excution time as

ANN is expected.

Bhandarkar et al. [3] developed CATALOG, a system for detection and classi�cation

of internal defectsin hardwood logs via analysisof computer tomography images. Defect

detection and classi�cation in CATALOG consistsof two phases:

1. Segmentation of a singleCT imageslice, resulting in the extraction of 2-D defect-like

regions;

2. Correlation of the 2-D defect-like regionsacrossCT imageslicesin order to establish

3-D support.

The segmentation algorithm includesmultiple-value thresholding that exploits both the
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knowledgeof wood structure, and the gray-scalecharacteristicsof the image. The extraction

algorithm locatesthe pith of a log crosssection,groupspixels in the segmented imagebased

on their connectivity, and classi�es each 2-D region as a defect or non-defectregion using

shape,orientation, and morphologicalfeatures. From the cross-sectionCT images,CATLOG

performs3-D reconstructionand renderingof the log and its internal defects.It alsosimulates

and renderskey machine operationssuch assawing and veneering.Overall, the entire process

of defectidenti�cation, defectlocalization, 3D model reconstruction,and renderingon a 200-

MHz PentiumPro workstation with 256 MB of RAM took between3 and 4 minutes for all

the log speciesthat were considered. The graphical simulation of the sawing operation

averaged38 secondsfor a cut de�ned by two sawing surfaces.The graphical simulation of

the rotary-peeledveneeringoperation averaged8 secondsfor a veneerof length 1.2 meters

and width of 1 meter. No quantitativ e evaluation of the Catalogsystemwasgiven, yet it was

claimed to be capableof detection and 3D rendering of defectssuch as knots, cracks, holes

and bark/moisture pockets in hardwood logs of selecthardwood species. The speciesthat

were consideredwere Red Oak, Black Walnut, White Ash and Hard Maple, which account

for over 80%of the lumber poduction in the United States.

Tian et al. [93, 94] developed an automated camera-basedvision systembasedon texture

analysisthat can locate and identify certain classesof defectson freshly harvestedRadiata

pine logs(a type of softwood). The systemappliesthe algorithm computing the orientation

�eld for a 
o w-like texture, originally developed by Rao et al. [61]. The basic structure

of their systemconsistsof a feature extraction module estimating an oriented texture �eld

basedon the original tree stem image, and an object analysisand recognition module for

processingthe oriented texture �eld. Visual texture is de�ned asrepeating patterns of local

variations in imageintensity that are too �ne to be distinguishedasseparateobjects at the

observed resolution [32]. The systemusesan texture-oriented �lter that analyzesgradients

using a 2-D Gaussianfunction. It is madeup with two modules:

1. A feature extraction module for estimating the oriented texture �eld from the raw
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imageof a log surface;

2. A sceneanalysisand detection module for analyzing the oriented texture �eld.

The systemis able to accurately detect di�erent typesof defectson barked log surfaces.

The key di�erence betweenthe experiments by Tian et al. and this research is the original

input data, where the former used gray-scaledigital imagesof softwoods, and the latter,

three-dimensionalsurfacepro�le data of hardwoods. Also, Tian was looking only for pruned

branch stubsand overgrown pruned branches. This research exploresa wider rangeof defect

types. Tian's systemcan accuratelydetect more than 95%of knot positions and more than

90%of knot sizes.The systemnamedKnotVision wasprogrammedusingBorland's C/C++

and Borland's Turbo Assembler with an imageprocessingand analysis library devloped in

Tian's research. However, no details on equipment or executiontime were given.

Kline et al. [36] applied a method to evaluate the performanceof color cameramachine

vision in automated furniture rough mill systems.134red oak boardswereusedto compare

the performanceof automatedgang-rip-�rst rough mill yield basedon a color cameralumber

inspection system with both estimated optimum yield and actual measureyield. Three

sawing patterns werestudied, including gang-ripsaw, ripsaw, and chopsaw. For each sawing

pattern, board areathat the systemclassi�esas clear is reported, which is comparedto the

observed cleararea. Defectdetection accuracywasmeasuredin terms of falsenegative error

and falsepositive error. Falsenegative error wasde�ned asdefectregionson the board that

the scanningsystemclassi�ed asclear wood. Falsepositive error wasde�ned asactual clear

wood region that the scanningsystemclassi�ed as defect.

2.2 Estimation Metho ds for Circle Fitting

Fitting geometricalmodel to given data in the plane or spaceinvolvesminimization of the

sumof squareddistancesbetweenthe data and the model usingleast-squaresmethods. Such
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distancesinclude algebraic,geometric,and orthogonaldistances[17,6]. Let f (x) = 0 denote

a 2-D curve, and x1 denotea 2-D data point. Then f (x1) is the so-calledalgebraicdistance.

Geometric distancesdepend on the type of curves. For example,a circle is a closedconic

curve with a center. Assumethe center is p. Now let x1 denotea 2-D data point, and x1 6= p.

Let l denotethe line passingthrough both x1 and p and intersecting the circle at x2. There

are two intersectionsbetween l and the circle, and x2 is the closestone to x1. Then the

geometricdistance is de�ned by the distancebetweenx1 and x2. The orthogonal distance

betweenthe point x1 and the curve f (x) = 0 is the radiusof the smallestcirclecenteredat x1,

which is tangent to the curve [6]. From the above de�nitions, the minimization algorithms

in order of increasingcomplexity are: algebraic,geometric,and orthogonal distances. The

computation intensity increasesin the sameorderaswell. Orthogonaldistanceminimization,

or regression,is advocated when errors exist not only in the dependent variables, but also

in the independent variables,and is a method to minimize both errors.

Many least-squaresalgorithms and software minimize the sumsof squaredalgebraic,ge-

ometric, and orthogonal distances; some of them apply weighted least-squaresmethods.

However, there is no mechanism in these algorithms capableof identifying severe outliers

to correctly estimate the model parameters. Robust estimators have beenapplied in many

�elds. Classesof robust estimators include A, D, L, M , P, R, S, and W estimators [21].

The M -estimators consist of many varieties, for example the conventional Least-Squares

estimators, Least Absolute Value estimators, and the Huber estimator. The S estimators

include the Least Median of Squaresestimators(LM S) and Least Trimmed Squaresestima-

tors (LT S). For image structure analysis,Meer et al. [45, 46] applied the LM S estimator

to recover piecewisepolynomial surface�ts. The LM S estimator is robust against outliers

up to 50%of the imagedata.

Under the Gaussiandistribution, LM S estimatesare lessaccuratethan GM E estimates,

sincethey only usesthe middle residualvalue and henceassumesthat the data set contains

a 50%fraction of noise[70]. When the data set contains lessthan 50%noise,the LM S es-

timates su�er in terms of accuracy, sincenot all the good points are usedin the estimation.
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This is a major drawback. The LM S estimator can be applied to provide initial conditions

for the GM algorithm. However, this classof estimators is typically implemented via com-

putationally intensive algorithms that are inappropriate for the defectdetectionapplication.

For the application in our research, we would liket to investigatealgorithms that have fast

executiontime. In sawmills, the averagetime for an operator to inspect a log is 9 seconds.

Thus, the detectionsystemshouldbe no slower than a human. To circumvent this di�cult y,

we developed a simple and very fast method basedon the log data characteristics, which

provides reasonablygood initial conditions. Section5.2 discussesthe method in detail.

In the region basedsurface and shape-�tting techniques, Besl et al. proposedrobust

rectangularconstant-coe�cien t window operatorsfor performing local imagesmoothing and

determining derivative estimation for edgedetection [2]. The theory of robust statistics is

applied, and a variable order surfaceapproximation algorithm was developed that includes

model identi�cation. Parametersare tuned for redesendingM estimatorsusing weight func-

tions, pixels having similar properties are grouped together, and the smoothing acrossdis-

continuities is prevented. Mainguy et al. [42] further applied Monte Carlo simulation in the

study of M estimation and LM S estimation for piecewisecontinuousimagesurfaceapprox-

imation, and proposeda variable order facet model paradigm in M estimation. Robust M

estimators and their variants have beenfound to be tolerant to occlusionand other outlier

contamination, and more computationally e�cien t than high breakdown operators. Thus,

they are currently gaining popularity in computer vision.

The data for the research work proposedhere are log surfacemeasurements containing

3-D coordinates. Essentially they are rangedata, not the intensity valuescommonlyreferred

to as gray scales,which is 2-D. For example, Haralick et al. [24] de�ned the topographic

primal sketch for gray-scaleintensity images.Harris [26] developed the coupleddepth/slope

model and testedon synthetic gray-scalesurfacedata. Terzopouluset al. [84] proposedquasi-

symmetric 3-D shape modelsapplicable for both gray-scaleimagesand 3-D rangedata. An

active contour model named\snake" was developed by Kass et al. [33] and tested on gray-

scaleand other type of 2-D images. The snake model was further improved by Cohen [9].
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Experiments were performedon gray-scaleimagesrenderedfrom various medical images.

Our algorithm identi�es objects in 3-D rangedata images,which requiresdi�erent tech-

niques from those developed for gray-scaleimages. Many algorithms have beendeveloped

for gray-scaleimageswith pixel valuescommonly between0 and 255, a few were for range

images.In computervision, surfacereconstruction,comprisingsurfaceinterpolation and ap-

proximation algorithms, �ts a smooth surfaceto the imagedata to determine featuressuch

as slope, and orientation basedon the image intensity. Haralick et al. [24] gave a complete

treatment for describingthe topographicprimal sketch of the underlying gray-scaleintensity

surfaceof a digital image. Eight main shapesare described, each has a unique label and is

invariant, for example,peak, ridge, ravine, saddle,hillside. A 2-D cubic polynomial of the

facet model is �tted to estimate the imagesurface. Tests for the model were performedon

synthetic imagesand sceneimagesof manufactured objects.

Harris [26] developed the coupleddepth/slope model that explicitly computesthe slope

and depth representations, and allows for varying amounts of smoothness. The author ap-

plied �nite di�erence approximations to derive a parallel and iterativ e algorithm from the

model, which wastestedon synthetic gray-scalesurfacedata. More detailsabout thesemeth-

ods are introduced in the remaining section. Mainguy et al. [42] applied robust statistical

proceduresto study the underlying piecewisecontinuous surfaceof a gray-scaleimage and

proposeda robust variable order facet model. The imagewas tested both with and without

addednoisesat di�erent levels.

To handle outliers, Kim et al. suggestedusing robust techniqueswith a relatively high

e�ciency [35]. A Breakdown point can be usedto measurerobust algorithms, which is the

smallest fraction of outliers present in the input data that may causethe output estimate

to be arbitrarily wrong. For instance,L 1, L2, and Lp estimatorshave a breakdown point at

1=n, wheren is the number of data items. Another measureof robust statistical procedures

is their \relativ e e�ciency" de�ned by Kim et al in [35], as the ratio between the lowest

achievable variance for the estimated parameters(the Cram�er-Rao bound), and the actual
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varianceprovided by the givenmethod, sothat the bestpossiblevalueis 1. The Cram�er-Rao

inequality, namedin honor of Harald Cram�er and Calyampudi RadhakrishnaRao, expresses

a lower bound on the variance of a statistical estimator, basedon Fisher information [21].

Kim et al. alsonote that the leastmeansquaresestimator in the presenceof Gaussiannoise

hasan asymptotic (large sample)e�ciency of 1, while the least median squaresestimator's

e�ciency is only 0.637.

In statistical estimation, there is a trade-o� between algorithms with high breakdown

points versusthosewith high e�ciency . Further, most research in robust statistics wasdone

for linear problems. To ensurethat robust techniqueswork for solving nonlinear problems,

oneneedsto carefully choosethe initial estimate values,such that they are closeenoughto

the true solution. In this document, we present neither the breakdown point, nor e�ciency

measureof our new GM-estimator. Instead, we prove theoretically in Section5.4 that it is

robust by deriving its in
uence function. Our nonlinear GM-estimator, proposedin Chap-

ter 5, appliesan iterativ ely reweighted least squaresalgorithm. It starts with a simple but

e�ective initial estimate,making it robust, e�cien t, and e�ective.

Tirumalai and Schunck [95] alsointroduceda robust statistical LM S regressionalgorithm

for surfaceapproximation using leastmedianof squaresregression.Quadratic surface�tting

was performed on monocular as well as binocular stereo2-D data. Rao and Schunck [61]

proposedoriented texture analysis methods and experimented with both synthetic gray-

scaleimages,and real imagesof manufactured parts with relatively simplegeometricshapes.

Taubin [82] addressedthe problem of parametric representation and estimation of complex

planar 2-D curvesand 3-D surfaces.Simulations were performedon both gray-scaleimages

and 3-D rangedata. Both imagescaptured man-madeobjects. An algorithm estimating the

parametersof a linear model in presenceof heteroscedasticnoiseemploys errors-in-variables

(EIV) model arising from the linearization of bilinear form [38]. It �ts ellipsesand achieves

accuracyof nonlinear optimization at low computational cost. Synthetic 2-D data as well

as a bridge gray-scaleimagewere evaluated in experiments. Matei and Meer [44] proposed

an improved maximum likelihood estimator for ellipse �tting basedon the heteroscedastic
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EIV regressionalgorithm, which wastestedon synthetic data aswell asgray-scaleimagesof

man-madeobjects.

The defect detection algorithm analyzes3-D lot data, extracts features such as length

width, surfacerise, gradients, and identi�es objects described by 3-D Cartesiancoordinates.

Variousmethods wereproposedin 3-D objects descriptionand identi�cation. In the domain

of dynamic 3-D modeling and 3-D object reconstruction, Terzopoulus et al. [84] proposed

quasi-symmetric3-D shape models that can be consideredas deformablebodies made of

elastic material. Such models are active becausethey change shape by attaining stable

equilibrium between the internal energyof the model and external forcesfrom the image.

The model stops changing only when the energy function is minimized and the shape in

the image is determined. The model was tested on two imagesof real objects with quasi-

symmetric features (squash, potato, and pear). Such a model was further developed to

�t complex 3-D shapes using a superquadrical model that can deform both locally and

globally [83]. Superquadricalobjects are3-D, whoseequations(in Cartesiancoordinates)are

of the secondor higher degree.They were�rst discoveredby Hein [18]. Take superellipsoids

for example.A specialclassof superellipsoidsare the familiar ellipsoids. Onemay expressan

ellipsoid centered at the origin, with a, b, and c representing the three semiaxes,respectively,

as x2=a2 + y2=b2 + z2=c2 = 1. Now the superellipsoidstake the generalizedform xn=an +

yn=bn + zn=cn = 1, wheren � 2 is a real number, and .

The systemsintroduced in [84, 83] were executedat interactive rates on a graphic work-

station. The dynamic equationsmake the modelsresponsive to forcesderived from imageor

rangedata, and compels them to conform to the data. This model is suitable for detecting

shapeswith relatively smooth surfaces,for instance,eggshellsand mugs. An active contour

model named\snake" wasdevelopedby Kasset al. [33],which is an energy-minimizingclosed

spline, analogousto the 3-D deformablemodel. It can be usedto detect vision objects, such

as edges,lines, and contours. Various typesof 2-D imageswere tested for the model. The

snake model was further improved by Cohen [9] to give more stable results, and the curve

behaveslike a balloon to guarantee the algorithm convergesto the correct solution. Exper-
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imentation with medical images,such as ultrasound, MRI, of human internal organs,was

performedto illustrate the technique. When an operator observesthat the initial curve lies

insidean imageobject, which is to be detected,the systemidenti�es the curve. The balloon

technique is e�ective in that it is able to expandthe curve to �t the object boundary.

ODRPACK developed by Boggset al. is a mathematical software for solving weighted

orthogonaldistanceregressionproblems[5]. The algorithm for ODRPACK �nds parameters

that minimize the sumof the squaredweighted orthogonaldistancesfrom the data to a curve

or surface [6]. It implements an e�cien t and stable trust region (Levenberg-Marquardt)

procedure. The algorithm minimizes both model and measurement errors. However the

in
uence of extremeoutliers cannot be downweighted.

2.3 Relationship between External and In ternal De-

fects

During the past 50yearstherehasbeena signi�cant amount of research conductedexamining

the relationship of external hardwood log defect indicators to internal defectcharacteristics.

The majorit y of internal defectsarewherea branch hasbeenslowly grown aroundor over, to

form a soundknot defect. Dependingon specie,knots can be the samecolor assurrounding

wood, but are usually somewhatdarker. Internal knots are characterizedby a tight circular

grain pattern contrasted from the straight grain of the surroundingclear wood. This change

in grain pattern createsa weaknessin the wood that is transferred to any board cut that

contains the knot. For any given knot, it is largestnear the surface,and tapersmore or less

uniformly to a point at the center of the log. Knot sizeis highly variable betweenexamples,

and rangesfrom lessthan .5-inch to nearly as large as the log they are contained on. In

general,the larger and more knots a log has, the lower its gradeand dollar value. Internal

defectsmay alsobe rotten or decayed, often referredto asunsound. Although lessfrequent

than soundknots, unsoundinternal defectsare more serious,and lower the log value and its
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products more so than sound knot defects. Unsound defectsstart as knots, wounds, holes

or splits, that decay due to the introduction of bacteria. In most cases,an unsounddefect

started out as a knot from a branch that died or was broken o� and the tree could not

grow over it quick enoughbefore the onset of decay. Unsound defectsare typically larger

than sound knots due to the nature of decay spreadingin wood. Holes and splits are the

least frequent internal defects,and are often associated with insects/animalsor harvesting

damage.When they are 2 incheslong or more, they have a signi�cant impact on value and

strength of the boards produced. In the smallest example, the log could have small worm

holeswhich have little or no impact on value. In the worst example,the log could be cracked

nearly in half due to poor harvesting technique.

Several guidesand pictorial serieshave beenpublished illustrating various external and

internal defect characteristics and their relationship for various hardwood species[43, 62,

63, 64, 65, 68, 66, 67]. While theseguidesare useful referencesfor providing insight on the

external/internal relationship, only one or two examplesof each defect type are provided.

Thus,while informative, they do not ful�ll the needof a de�nitiv emodel capableof predicting

internal defect featuresbasedon observable external defect features. Further, most studies

are limited in scope with small samplesand examine a narrow range of defect types and

features.

Hyv•arinen usedMarden's mapledefectdata to explorethe relationshipsamongthe inter-

nal featuresof grain orientation and height of clear wood above an encapsulatedknot defect

and the external featuresof surfacerise, width, and length [31]. The sugar maple defect

data were collected from 44 trees covering three sites in upper Michigan. Hyv•arinen used

simple linear regressionmethods to �nd good correlationsamongclear wood above defects,

bark distortion width, length, and risemeasurements, aswell asage,tree diameter,and stem

taper. However, the best simple correlation was with diameter inside bark (DIB) (r = :66)

and a 0.66-inch standard error of estimate. A coe�cien t of correlation of .74 and a standard

error of 0.60 inch were obtained using a stepwise regressionmethod with bark distortion

vertical sizeand DIB variablesbeing the most signi�cant indicators.
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A similar study was conducted on a sample of 21 black spruce trees collected from a

natural stand 75 km north of Quebec City [39]. Three trees, each with three logs, were

selectedfrom which a total of 249knot defectsweredissectedand their data recorded.The

researchers found better correlationsbetweenexternal indicator and internal characteristics

in the middle and bottom logsascomparedto the upper logs. Strong correlations(r > :89)

werefound to exist betweenexternal featuressuch asbranch stub diameterand length to the

width and length of internal defectzones.The defectsweremodeledashaving three distinct

zones,corresponding to the manner in which the penetration angle changesover time in

black spruce. This study examinedonly branchesthat had not beenpruned or dropped and

thus could not examineencapsulationdepth. Encapsulationdepth refers to the amount of

clear wood that has grown over a defect. The greater the encapsulationdepth, the greater

the opportunit y for a clear board to be sawn from wood over the knot.

2.3.1 Defects need to be detected both externally and in ternally

One of the major areasof study today in hardwood research is the development of equip-

ment and a methodology that can accuratelysenseinternal defect locations and structures.

Determining the location and characteristicsof defectslocated inside logs promisesto dra-

matically improve current log recovery in terms of both quantit y and quality. In addition,

accurateinternal defectinformation would permit researchersto re�ne, expand,and analyze

log grading rules, multi-pro duct potential, stand di�erences, and silvicultural treatments in

ways previously not available or economicallyfeasible.

Studieshavedemonstratedthat the useof externalor internal defectdata improvescutting

strategiesthat optimize log recovery or yield, that is, preservingthe largest possibleareaof

clear wood on a board face [79]. The value of the lumber that can be recovered depends

on the presenceand location of defects. This is especially true for hardwood logs. In the

production of hardwood lumber, boards are sawn to �xed thicknessesand random widths.

The presenceand placement of defectson the boards a�ect board quality and value, so
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much attention is focusedon log surfacedefectsduring processing. Thus, while detecting

external defectsis useful for determining overall log quality characteristics, internal defect

information is the key to improving lumber value and volume in the sawmill.

2.3.2 External defects have a high correlation with in ternal defects

A recent study has discovered strong relationships between external defect features and

internal defectcharacteristicsfor severedefects:overgrown knots, soundknots, knot clusters,

and unsound knots [90]. This study harvested a total of 66 yellow-poplar trees from two

sitesseparatedby approximately 220miles. 300severeknot defectswererandomly sampled

from the trees. The sampleswere dissectedand measured. A seriesof stepwise multiple-

linear regressionanalyseswereperformedto determineif any signi�cant correlationsbetween

external and internal featuresexisted.

In most instances,strongcorrelationswerefound to exist amongexternal defectindicators

and internal characteristicsfor severedefecttypes: overgrown knots, overgrown knot clusters,

sound knots, and unsound knots. The number of overgrown knot cluster defectswas not

su�cien t samplesizefor establishinga defectprediction model. Becauseof this, overgrown

knot clustersand overgrown knots observations were grouped together.

The correlation results for severe defectsare shown in Table 2.1. The strength of the

correlations (adjusted multiple R2) betweeninterior halfway point width measurement and

exterior featuresrangedfrom 0.48to 0.75. Similar resultswerefound to exist amongexternal

featuresand the halfway point length measurement (adjusted multiple R2 from 0.45to 0.75).

Most of the severedefectobservations terminated at the pith, approximately the center of the

slab for most samples. This is demonstratedin the strong relationship among penetration

depth and external features- speci�cally diameter, with adjusted multiple R2 ranging from

0.63to 0.81. The strongestcorrelationwith penetrationanglewaswith soundknots (adjusted

multiple R2 = 0.70). However, in most cases,the relationship between penetration angle

and external featureswasnot asstrong with adjusted multiple R2 ranging from 0.23to 0.39
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Table2.1: External/ internal defect correlation results

Defect type
Internal
defect
feature

Adjusted
R
squared

Mean
absolute
error

Residual
standard
error

Overgrown
Knot

Halfway width 0.49 0.28 0.36

Halfway length 0.45 0.50 0.63
Penetrationangle 0.39 7.79 10.49
Depth 0.76 0.41 0.56

Overgrown Knot /
Overgrown Knot
Cluster

Halfway width 0.47 0.27 0.36

Halfway length 0.46 0.48 0.59
Penetrationangle 0.22 11.13 13.82
Depth 0.73 0.42 0.59

SoundKnot Halfway width 0.75 0.31 0.42
Halfway length 0.75 0.53 0.76
Penetrationangle 0.70 8.75 11.33
Depth 0.63 0.41 0.54

UnsoundKnot Halfway width 0.71 0.26 0.39
Halfway length 0.65 0.67 0.93
Penetrationangle 0.39 8.16 10.79
Depth 0.74 0.45 0.65

for the other severe knot defects. All correlationsbetweenexternal indicators and internal

features were signi�cant at the 99% level. Further, the low mean absolute errors (0.25

to 0.70 inch) indicate that internal featurescan be reliably predicted. Additional testing is

plannedto determineif the error rateswould a�ect processingdecisionsbasedon the inferred

internal information.



Chapter 3

Defect Taxonom y

3.1 The Structure and Nature of Log Defects

A treeshouldbethought of ashaving multiple layers. Every growing seasonthe tree produces

a completely new layer of wood and bark tissue. In a sensea new layer envelops the old

tree every year [75]. As the tree builds the new layers, placeswherewoundshave occurred

or branches have fallen or beensawn o� are overgrown. Figure 3.1 shows a cutaway view

of a tree showing several selectedlayers and associated overgrown branches. The pictures

in Figure 3.1 were extracted from [76]. It is by growing in this way that the tree protects

itself from animal, insect, and bacterial invasions. Thus, defectsformed on hardwood logs

are a responseto the natural growth processor to damage.The most seriousand common

log surfacedefectsconsistof soundknots, unsound(rotten) knots, overgrown knots, medium

and heavy bark distortions, and holes[25]. Lesscommon,but quite severe are woundsand

splits. Knot type defectscan appear clusteredtogether and are more seriousthan a defect

appearing singly, as the underlying wood is more defective. More common,but lesssevere

are adventitious knots. In most casesadventitious knots are not regardedas a log defect,

unlessthey have developed into a branch.

26
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(a) Selected layers and
branch stubs that have
beenovergrown in a log

(b) Brokenbranch stub
showing jagged break
and hanging loosebark

Figure 3.1: A cutaway view of a tree and associated overgrown branches(taken from
[76].

3.2 Branc h-Related Defects

The formation of defectsrelated to branchesand knots follows a logical progression.In the

�rst phasethe branch is pruned, falls o� naturally, or is torn away by natural causes,leaving

a sound knot defect (Figure 3.1(b)). This leavesan abruptly raised, round area on the log

surface.If the branch wasnaturally removed, asin a wind storm, the surfacewould be rough

(Figures 3.2(a) and 3.2(c)). A smooth surfacewould have beenleft if it had beensawn o�

(Figures 3.2(b) and 3.2(d)). Knots from branch stubs can vary in size, from a few square

inchesin surfaceareato a squarefoot or more.

In the next phase,the soundknot (sawn or pruned branch stub) is grown over with bark

and someunderlying wood to yield an overgrown knot. Here the area is still signi�cantly
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(a) (b)

(c) (d)

Figure 3.2: (a) and (c): side view and top view of a broken branch stub from a log.
(b) and (d): sideview and top view of a sawn branch stub from a log. Both aresound
knots.

higher than the surrounding wood. The bark texture of the new bark over the branch stub

is smooth and usually rounded. Figure 3.3 shows two examplesof overgrown knots. As

the tree continuesto grow, the height di�erence betweenthe knot and the surrounding area

decreases.

If a bacterial or viral infection occursbeforethe tree cancompletelygrow over the branch

stub, then an unsoundknot canoccur. Unsoundknots havemuch the sameoverall shapeand

characteristicsasa branch stub with the exceptionof a rotten areausually in the middle of

the defect. The rotten areacan be a hole or an exposedpieceof the original branch showing

signsof decay. Figures 3.4(a) and 3.4(c) show an exampleof an unsound knot where the

branch stub hasrotted away and left a hole. Figure 3.4(b) and 3.4(d) show an unsoundknot

that was nearly grown over, but hasan exposedrotten part of the branch stub remaining.

If the tree is successfulin growing over the branch stub, then the overgrown knot will

eventually becomea heavy distortion defect. The heavy distortion looks like a 
attened

version of the overgrown knot. It is characterizedby at least a single heavy circular ring

in the bark texture. Figure 3.5 shows a heavy distortion defect from a red oak log. In this
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(a) (b)

(c) (d)

Figure 3.3: (a) and (c): side view and top view of an overgrown knot on a yellow
poplar. (b) and (d): sideview and top view of another overgrown knot on a red oak.

(a) (b)

(c) (d)

Figure 3.4: (a) and (c): side view and top view of an unsound knot, a hole where
branch stub has rotted away on a red oak log. (b) and (d): side view and top view
of another unsoundknot on yellow poplar showing rotten remainsof branch stub.
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(a) (b)

Figure 3.5: Typical heavy distortion defectsshowing the circular ring of bark tissue.
(a) is on a red oak log, and (b) a yellow-poplar log.

(a) (b)

Figure 3.6: Medium distortion defects. (a) is on a yellow-poplar log, and (b) is on a
red oak log.

examplethere is an inner circle of smoother, youngerbark which grew over the branch stub.

The circular ring of the defect is easyto discern from the straight lines of the normal bark

texture. At this point the branch stub is just under the bark surface.

Gradually the heavy distortion will becomea medium distortion. The branch stub has

beenovergrown to the point that it can be several inchesbeneaththe log surface. Medium

distortions lack the strong circular area of heavy distortions. The centers of medium dis-

tortions are generallymore broken up and the circular areamay be split in two. In general

medium distortions are lesscircular and harder to �nd on the bark than heavy distortions.

Figure 3.6showstwo mediumdistortion defects.In the center of Figure 3.6(a)a semi-circular

areaof disjoint bark can be seen.

Eventually the medium distortion defect will becomea light distortion. Light distortion
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defectsare simply a slight break in the texture of the bark. Thesedefectscan be di�cult

to �nd, even by experiencedloggersand processors.Becausethesedefectsindicate a defect

near the center of the tree or one that is many inches below the log surfaceand do not

a�ect the value or utilit y of the log, they are not regardedas a defect. Eventually the light

distortion and all evidenceof the overgrown branch will fade from the bark.

Adventitious buds or knots can be quite common on somehardwood log species. Ad-

ventitious buds exist in a dormant state within the tree until conditions are right for the

bud to sprout into a branch. Such conditions can be initiated by damageto the tree, such

as the lossof several branches, or a neighboring tree has beenremoved exposing the bark

to sunlight. Adventitious knots range in diameter from lessthan 0.25 inch to more than 2

inches and averageapproximately 1 to 1.5 inches. They are characterizedby a small cir-

cular ring distortion of the bark, and the center can be raised 0.25 inch or more. In very

minor examples,the indicator of an adventitious bud is simply a small, 0:25� 0:25 inch2, or

smaller, rounded raisedpoint. Figure 3.7 shows two examplesof adventitious buds. Figure

3.8(a) shows an examplewhere a small branch has started from the adventitious bud and

has beencut o�. Only in the casewherea branch has started are thesedefectsconsidered

serious.Branchesfrom adventitious budsare calledsuckers. If the sucker is successfulit will

grow into a branch, otherwiseit will becomea branch stub, which will form an overgrown or

unsoundknot depending on its circumstances.Although a sawn-o� sucker may resemble a

soundknot, there are key di�erences. Speci�cally the sizeof a soundknot is generallymuch

larger, 4 inch2 or more in surfacearea, comparedto 1 to 2 inch2 for a sucker. In addition,

the area around a sucker remains 
at with little surrounding height change. A soundknot

often raisesa large areaof surrounding bark (Figure 3.2).

All of the knot defectsmentioned above can occur in clusters. Clusters of defectsare

regardedas more seriousthan a single occurrence. As the internal defect manifestation is

more severe. The commonnamesfor clustereddefectsare adventitious knot cluster (Figure

3.8(b)), sound knot cluster, overgrown knot cluster, unsoundknot cluster. In general, the

clusterdefectshave the samecharacteristicsascomparablesingleexamples.However, cluster
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(a) (b)

Figure 3.7: Adventitious knot examples. (a) is on a red oak log, and (b) is on a
yellow-poplar log.

defectscan have greater surfacerise sincethe branch defectsare growing out and over each

other. In addition, due to the extra branchesand competition amongthe branches,the bark

will be more heavily distorted and the areaof the distortion will be wider.

3.3 Damage Defects

Damagedefectsinclude the defectclassesof holesand wounds. Holesare abrupt depressions

into the log surface. The surrounding bark can be completely normal with no distortion

or other indicator of a defect. Holes are most often causedby animals, insects, or decay.

Figures 3.4(a) and 3.4(c) showed a hole defect in the middle of an unsoundknot. Wounds

are where damageto the bark surfacehas occurred. Like holes the surrounding bark can

appearcompletelynormal. Dependingon the severity of the wound and how much wood was

removed, a depressioncan exist in the middle of the wound. Figure 3.9 shows two examples

of wounds. Normally a wound is characterizedby smooth bark with a split down the middle.

The split is the meetingpoint of the bark tissuewhen it grew over the wound.
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(a) (b)

Figure 3.8: (a). An adventitious bud that developed into a branch. This type of
branch is sometimesreferred to as a \sucker". This picture shows the sawn branch
stub. (b). A cluster of adventitious knots on a yellow poplar log.

(a) (b)

Figure 3.9: Two examplesof woundson yellow poplar logs.

3.4 Defect Taxonom y From the Laser-Data Perspec-

tiv e

As discussedin Sections3.1 through 3.3, there are many external defects on hardwood

logs, including sound knots, overgrown knots, unsound knots, holes, gouges,bumps, close

bird beck, adventitious knots and their clusters,hard distortion, and mediumdistortion, and

wounds. Thesestandardizedexternal defectdescriptionsweredeveloped by a group of forest

research scientists for log grading rules [7]. To better distinguish external log defect types

that are usefulfor the laser-scanned3-D data, we now categorizethem from a di�erent point

of view. The knob defect type includes both the sound and unsoundovergrown knots by
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Table3.1: Defect taxonomy and characteristicsfrom the laser-dataperspective.

Code Name Average Height
KNOB Knob 1.5
SWK Sawn Knot 1
HOLE Hole 1.3

AKC Adventitious
Knot Cluster

0.5

HD HeavyDistortion
MD MediumDistortion
WOUND Wound
LOOSEBARK LooseBark 4.5

traditional forestry de�nition, which are referredto asovergrown knots and unsoundknots,

respectively. The sawn knot defect type includesboth the soundand unsoundsawn knots

by traditional forestry de�nition, which are referred to as sound knots and unsoundknots,

respectively. The reasonthat we categorizethese two types in such a way is that, using

the 3-D laserdata there is no signi�cant distinction betweensoundand unsoundovergrown

knots, or betweensoundand unsoundsawn knots. At this stage,we group them into knobs

and sawn knots. Putting them together allows us to analyzetheir characteristics, such as

length, width, and surfacerise, which are usedin our detection algorithm development.

Table 3.1 presents defect taxonomy and characteristics from the laser-dataperspective.

The measurements are collectedfrom about 200real external defectsamplesof both red oak

and yellow poplar. Note the defecttypesare listed in decreasingorder of the height (surface

rise). The following are the indicators and de�nitions of defect typeslisted in Table 3.1.

Knob

Indicator An abrupt surfacerise (usually .5 inch or more) and texture change2 to 8

inchesin diameter. Somemay have a surfacerise with a depressionor hole in the middle.
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De�nition Indicates a knot just below the bark surface. Somemay have a portion

rotten.

Sawn Knot

Indicator An abrupt surfacerise (usually .5 inch or more) and texture change2 to 8

inches in diameter that is characterizedby a 
at sawn top. Somemay have a surfacerise

with a depressionor hole in the middle.

De�nition Location where a branch has beensawn o� of the log. Somemay have a

portion rotten.

Hole

Indicator An abrupt circular surfacedepression(� 1.5 inchesin diameter and 2 inches

in depth). The edgesof the hole may have surfacerise.

De�nition A holeis most often rotten. A holecanberesult from a branch that dropped

o� and rotted back into the tree. A holecanalsobe causedby animals,which will eventually

becomerotten. A severedefectbecauseof the staining and decay associated with the defect.

Adv entitious Knot Cluster

Indicator A groupingof two or moreAdventitious Knots. Can beassociated with small

distortion defectsrepresenting past AK's that have sprouted,fallen o�, and beenovergrown.

De�nition More severe than a single adventitious knot. A group of suppressedbuds

that will develop into brancheswhen conditions are favorable.
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Heavy Distortion

Indicator Slight surfaceriseandcircular texture pattern consistingof several concentric

rings. The horizontal and vertical diametersof the defectare approximately equal.

De�nition A heavy distortion is knot (branch stub) that hasbeenrecently completely

overgrown by the surrounding wood.

Medium Distortion

Indicator Circular texture pattern consistingof oneor two circular rings that havebeen

broken by the background bark texture. The horizontal diameter of the defect is usually

noticeably greater than the vertical diameter.

De�nition A medium distortion is a knot or branch stub that has beenovergrown to

the point that it is now several inchesbelow the log surface.

Wound

Indicator A scaron the bark with no surfacerise,usually elongatedwith a center seam

wherethe edgesof the wound grew together. Depending on the severity of the damagethe

bark may have a slight depression.

De�nition Damageto the bark and possibleunderlying wood causedby insects,bac-

teria, animals, or past logging operations.
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Table3.2: Statistics of defectmeasurements categorizedfrom the laser-dataperspec-
tive. The units are inches,and the format for the data is: �rst quartile-median-third
quartile.

Type Width Length Surface rise
Surface
Depression

KNOB 5.0-5.5-6.8 5.5-6.5-8.3 1.0-1.5-1.5 None
SWK 4.9-6.3-8.6 6.5-9.5-10.5 0.5-1.0-1.5 0.6-1.0-1.0
HOLE 5.5-5.5-5.5 8.9-9.3-9.6 1.1-1.3-1.4 1.9-2.8-3.6
AKC 3.9-5.0-5.1 4.0-4.3-5.0 0.5-0.5-0.5 0.0-0.0-0.0
HD 4.5-4.8-5.3 4.0-5.0-5.1 0.5-0.5-0.5 0.5-0.5-0.5
MD 3.5-3.5-3.6 2.9-3.0-3.1 0.5-0.5-0.5 None
LOOSEBARK 1.5-2.0-3.5 6.3-9.5-15.5 2.5-4.5-6.8 None

Lo ose Bark

Indicator Bark piecesdangleor protrude from the log surface.Generally they are long

and narrow bark strips or fallen leaves,with oneof the narrow endsattached to the log. 1 -

2 incheswide, and 2 - 10 inches.

De�nition Leaves or sectionsof bark torn or loosenedduring harvesting and/or han-

dling that are attached to log surface.

There are other defect types, such as gouges,that are possibleto detect yet extremely

rare. Due to the di�cult y in collecting sampledata, they are not listed here. Sinceclusters

of sawn knots and thoseof knobscanbe detectedand classi�ed asindividual defects,herewe

omit them. Next, we discusseach defect type using the defect data collectedand analyzed

basedon the measurements of the defect sample collection. Table 3.2 contains statistics

obtain from the samplecollection. The defect types are listed in decreasingorder of the

surfacerise. For several defect types, their measurements and statistics are absent because

they are trivial or not available due to the nature of such defect types. The format for the

data is: �rst quartile-median-third quartile. The information was analyzedfor establishing

defectmodels in the defectdetection algorithm discussedin Chapter 6.
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Note that although the defect median height in Table 3.2. Although they seemto be

not trivial, for example, 1.5 inches for knobs and 1.0 inches for sawn knots, the height

was measuredas the highest point of the defect. In our contour-based defect detection

algorithm, very likely only a small portion of the defects(represented by the corresponding

radial distances) are enclosedin the contour. Therefore, the relative signi�cant median

heights in above table do not indicate an sure sign of correct identi�cation of the defects.

Nonetheless,the metric indicates the likelihood for the contour-based detection algorithm

to locate the defects.Evidently, knobsand sawn knots are the majorit y to be identify . The

median height for holes is 1.3 inches. Such a height is causeby the \ridge" surrounding

it. This seemsto suggestthat we are likely to detect many holes. However, statistics show

that the percentage of holesin external defectsare very low, which is about 1%. Thesedata

referencedfor the detection algorithm development. We refer to them as training data.



Chapter 4

Overview of the Detection Algorithm

Severe external defects that correspond to rises or depressionson the log surfacecan be

observed from the three-dimensionallog surfaceimage. This suggeststhat one way to de-

termine their location is to extract the height changeon the log surfacefrom its 3-D image.

To do so,a seriesof circle �tting to log cross-sectiondata setswereapplied to obtain ground

zeroreferencelevelsof the log surface.Becausethe laserrangedata setsmay include either

missing data or irrelevant deviant data points, a new, robust estimator was developed to

estimate in a reliable manner the centers and the radii of the �tted circles. Radial distances

between the latter and the log data points are thus indicative of the local height changes.

Defectscharacterizedby signi�cant (in a statistical sense)surfacerises or depressionsare

then located using appropriate statistical methods. The following sectionsgive an overview

of the GM-Estimator in circle �tting, aswell asan overviewof the defectdetectionalgorithm.

Both are discussedin details in Chapters5 and 6, respectively.

39
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4.1 Fitting Circles to Log Data Using a New GM-

Estimator

To convert the 3-D log surfacedata to 2-D imagesfor processing,a referencesurfacemust

be imposedon the log data from the scanner.Sincelogsare natural objects that are approx-

imately circular or elliptical along the crosssections,circle- and ellipses-�tting to log data

were experimented with. Fitted circlesand ellipsesall together form a referencesurface,or

virtual log, that is neededfor defect detection. Defectsthat correspond to risesor depres-

sionson the log surfacecan be detectedusing contour levels estimated from the orthogonal

distancesbetweenthe virtual log surfaceand any point of the crosssection.

Fitting quadratic curves(i.e., circles,ellipses)to 2-D data points is a nonlinear regression

problem [17]. Classic least-squares�tting methods fail in our casebecausethe laser log

cross-sectiondata contain either missing data and/or large deviant data points, termed

outliers in the statistical literature. These data characteristics are causedby both logs

and the scanningsystem. As depicted in Figure 4.1, the laser data sets include deviant

data generatedby dangling loosebark, duplicate and/or missing data causedby scanner

calibration errors, unwanted data from the supporting structure under the log, and missing

data due to the blockageof the log by the supporting structure. In robust statistics, outliers

are de�ned asdata points that strongly deviate from the pattern formed by the majorit y of

the measurements. To overcomethe non-robustnessof the least-square�tting, we resort to

the theoriesand methods of robust statistics [21]. The nonlinear form of the circle equation

prompt us to develop a new, robust estimation method that is an outgrowth of the one

proposedby Mili et al. [48].

The nonlinear regressioncircle-�tting estimator is a generalizedM-estimator termed GM-

estimator for short [86]. As shown in Figure 4.2, it �lters out not only the errors in the

measurements, but alsothe errors in the circle model that is applied to a given cross-section

data set. For example,for a log samplewith 120 crosssections,an equal number of circles
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(a) loosebark 
ak es in lower left cor-
ner

(b) Outliers in form of scanning sup-
port structure and missingdata due to
structure

(c) Outliers and shape of log at one
end where the log was cut diagonally
instead of squarely

(d) A good log data crosssection con-
taining no outliers

Figure 4.1: Various formations of outliers present in cross-sectiondata from laser
scanning.
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Figure 4.2: Circle �tting to a crosssectionthat contains a portion of the log support.

are �tted, forming a virtual log for the radial-distanceextraction as depicted in Figure 4.3.

Unlike the method described in [48], the estimator minimizes an objective function that

makes use of a weight function that levels o� for large scaledradial distance between the

associateddata point and the �tted circle. It doesthis at every stepof the iterativ ealgorithm

that solves the estimator. The robust measureof the scaleof thesedistancesis performed

by meansof projection statistics [19, 49, 71] while the minimum of the objective function is

found through the iterativ ely re-weighted least-squaresalgorithm [29]. Chapter 5 provides

detailed information regarding the robust circle-�tting GM-Estimator.

To check that the nonlinear circle-�tting GM-Estimator is robust against outliers, its in-


uence function wasderived, which is a measureof the estimator's sensitivity to in�nitesimal

data contamination [21]. If this function increaseswithout boundsasa data point is moved

farther and farther away from its true value, the estimator is said to benon-robust;otherwise

it is said to be robust. It can be shown that the in
uence function of our estimator can be

decomposedasthe product of two terms, onere
ecting the in
uence of model (i.e., the circle

equation), and another re
ecting the in
uence of measurement errors (i.e., radial distances).

It can be shown that both terms are bounded,making the estimator robust againstextreme
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Figure 4.3: A 3-D rendering of the log data with automatically detected defects
marked by patches. Such an imagemight be usedby sawyers to maximize the value
of wood products.

outliers.

The robustnessof the estimator was tested on real log data samples. It was found that

the resulting �tted circlesvary little amongneighboring crosssections.This yields a smooth

�tting over the entire data of one log. Figure 4.2 displays a circle that was �tted to a cross

sectionwith a non negligiblefraction of outliers and missingdata. Outliers identi�ed by this

method areplotted in bold. The smoothnessof the �tting is further reinforcedby smoothing

the parametersusing a box �lter [23]. Note that approximately 3 percent of the points are

labeledas outliers, and hencesuppressedfrom the data set.



Liya Thomas Chapter 4. Overview of the Detection Algorithm 44

4.2 Generating the residual gray-lev el image

The next step is converting the three-dimensionallaser-scannedCartesian coordinates into

a two-dimensional, 256 gray-level image (Figure 4.4). In this process,the log surface is

unrolled onto a 2-D coordinate space. In essence,this processcreatesa \skin" of the log

surfacerepresenting the pattern of log bark along with bumps and bulgesassociated with

most defects. Using the adjusted, �tted circle to each crosssection, radial distanceswere

calculated between circle and log surface points, typically ranging from -0.5 to 0.5 inch.

The radial distancesare scaledto rangefrom 0 to 255 and mapped to gray-levels to create

a 2-D image. Originally the log data are not in a grid format, so they are processedand

interpolated linearly to �ll any gapsbetweendata points. The x3 value in 3-D data is the

coordinate in the third dimensionor the z-axis value, which is the position along the log's

length. It is mapped to the 2-D image as the x2 value, given by a row number. The x1

value of the image,given by a column number, is calculatedby scaling the angleof a cross

section'spoint from the center of �tted circle.

If the desiredimageis to be 750pixels wide, the scalingfactor would be 750=(2� ). On av-

erage,the sizeof an unrolled log output imageis about 2 MB (MegaBytes), or 1; 400� 1; 600

pixels at 1 byte per pixel. To save spaceand future processingtime, the resolutionof output

gray-level image from log-data unrolling is reduced. The Gaussianpyramid algorithm [23]

is applied and a 5� 5 window is usedto smooth and subsamplethe image. The imageis re-

ducedto 25 percent of the original size,that is, roughly 500KB/image. Sincethe density in

a crosssectionis nearly 20 times that of along the log length, only data in crosssectionsare

reduced,the total number of crosssectionsis not reduced. This speedsadditional analysis

of the imagewith little or no lossof data of interest.

Experiments with �tting ellipsesto the log data showed that while each individual ellipse

doesgenerateradial distances,resulting radial distancestend to reveal more surfacedetails,

hencethe log surface\height" map contains more undesirableinformation, primarily due to

the di�erence of axesorientation betweenneighboring ellipses.The resulting imagetends to
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Figure 4.4: Radial distancesgeneratedby the log-unrolling processpresented as a
gray-level range image. Light pixels represent protrusions from the log surface,and
dark pixels represent depressions.This log is approximately 9 feet in length with a
diameter of 2 feet.

be noisier. Unlike white noise, the noisehas low frequency. It adds unwanted information

that camou
agestrue defective regions. However, �tting only circlesto the data doescause

the rolling or striping e�ect in the height map along the cross-sectiondirection, asshown in

Figure 4.4. As log crosssectionsare generally round, they are often not totally round. Nor

they are perfectly elliptical. Thus, radial distancesextracted from circle �tting inevitably

introduce the striping e�ect in many cases. We have attempted to resolve the issue by

applying a �ltering method to reduceoverall radial distancesalong the rising strips, and

increasethem along the dipping ones. However, since logs come in unlimited number of

shapes,this method causesunwanted side e�ect which is worsethan the striping one. This

is a complicatedissuethat can be addressedin future research.
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4.3 Iden tifying Defects Based on the Radial Distances

To accommodate the countless possibledefect sizes,heights, shapes, types,etc. in the 3-D

log data, we developed a machine vision systemto implement the defectdetection task. The

current version of our system usesthe contour image generatedfrom the radial distances,

which provides a map of defect height changeagainst the surrounding bark. Also usedare

the measured3-D log data. Expert knowledgeis applied in a stepwise fashion to rule out

regionsaspotential defects,including regionsin sizessmaller than a given threshold, nested

in other curves, or long and narrow (determined by the \actual" width to length ratio,

referred to as w/l for short). By \actual" we refer to the width to length ratio acquired

through the calculation of the statistical medium of the widths of the region enclosedin the

selectedcontour curve.

The data resolution (0.8 inchesper crosssection)and the nature of external defectshapes

restrict search scope in the algorithm. The onesvisible through the log data are the most

obvious defectsbasedon their external characteristics,such asprotrusion on surface,certain

width-length ratio, and area. They have a relatively signi�cant height changeon the surface

(� 0.5 inches), and/or a relatively signi�cant size (� 3 inches in diameter). Using radial

distancesvisualizedby the gray-level imagein Figure 4.4, the algorithm generatesa contour

plot as depicted in Figure 4.5, and determinesrectangle-enclosedregions. The rectangles

are bounding boxesof contour curvesat the highest level. Then someregionsare selectedif

they are big enoughor with a signi�cant height. More detailed discussionof the algorithm

is found in Chapter 6. In Figure 4.5 four out of the nine surfacedefectsare found using

this method. Figure 4.5 also shows a manually recordedmap of the defectson the same

log. The defect typesrepresented in the map include SKCs (sound knot clusters) and OKs

(overgrown knots).

Further, the algorithm includesa statistical procedureto examinethe regionsurrounding

a selectedsmall region for relatively straight line segments. If the coverageof straight line

segments is su�cien t, the defect region is adjusted to cover the entire defectsurface,rather
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(a) Contour plot of a log surfacewith
the four most-obvious defect regions
markedwith crossedrectangleslabeled
in the descendingorder of area

(b) Defect diagram illustrating the
\ground truth"

Figure 4.5: Contour plot and the \ground truth". Note that only �v e small and/or

at defectswerenot detected. Both plots weregeneratedby Matlab programs,while
defect regionsin (a) were determinedby the detection algorithm.

than just a corner. The algorithm examinesangle changesbetween the lines connecting

log data points along crosssection at certain intervals. If the changesare small enough

(� 25o), the corresponding segments are recordedas nearly straight. Then the coverageof

the \straigh t" segments is determined. If there are a su�cien t number of straight segments,

this region is identi�ed asa 
attop, which is likely a sawn top, either sound(not rotten), or

unsound(rotten).

Many severedefectsareassociated with a localizedheight change,a height analysisof the

residualimageprovidesinformation about the presenceof such severedefects.A substantial,
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localized, and abrupt surface rise or depressiongreater than 1.0 inch is almost always a

defect. The reason3 incheswas chosenas the threshold for defect diameter is that the log-

data resolution-0.8inch per crosssection-isnot high enoughto well capture defectswhose

diameters are smaller than that. Since the pixel values in the gray-level image represent

radial distancesbetweenthe �tted circle and the log surface,the analysisis straightforward.

In the contour plot image,it is possibleto discernregionscontaining likely defectsbasedon

height information alone.

Region-removal rules are given as: regionssmaller than a given threshold are mainly tiny

fragments; regionsenclosedin curvesnestedin other curvesare removed, as there will only

be up to one defect in the samelocation; those being long and narrow are normal bark

regions;regionsthat are smaller than 50 inch2 and are too closeto the selectedlarge ones.

Someregionsareremoved for further considerationif they contain a severeportion of missing

data. Although not illustrated in Figure 4.5, certain defects, in particular the sawn ones,

are often detectedpartially in the contour. This is becausethey are relatively low-lying and


at, and often only a small portion of a sawn knot, for example, a relatively high-raised

corner, is enclosedin the highestcontour. The algorithm adjusts the boundariesof this type

of identi�ed regions. Regionsmay include elevated yet non-defective log surface. Typically

they are coveredwith tree bark, thus associated with distinctive bark patterns. Finally, due

to the lack of \depressed"defect samplesin the log data, at this stageof development the

systemdoesnot detect such defect types.



Chapter 5

A Novel Robust GM-Estimator

A typical log size is 10 to 20 inches in diameter and 8 to 16 feet long. The scanneddata

density is about 0:04� 0:78 inch2 per point. Typically, each crosssectionof log data can be

approximated by a closedcurve resembling a circle or an ellipse. Hence,oneof the problems

that we dealt with is to �t a quadratic curve or surfaceto the recordedlog data. It turns out

that thesedata are corrupted by grosserrors as bark on logs often becomesloose,forming


ak es. Furthermore, the supporting structure underneaththe log blocks the scanner,causes

missingdata, and the shape of the structure can be seenin the scannedimages.

Statistically, measurements with largeerrors,known asoutliers, canbe regardedasobser-

vations that deviate from the pattern formed by the majorit y of the data set. Consequently,

classicalestimators basedon the least-squaresmethod cannot be used here to carry out

curve or surface�tting becausethey generateincorrect estimatesin presenceof outliers. We

need instead to resort to robust statistics as initiated by Huber [30]. This is a collection

of theoriesaimed at designingestimatorsand statistical tests that enjoy a certain degreeof

insensitivity to departure from the assumptions,including resistanceto outliers [30, 21, 70].

Basedon thesetheories, a new generalizedM-estimator was developed to �t circles to log

data, which is able to downweight all types of outliers, hencebounding their in
uence on

the estimates. The corresponding regressionmodels were developed to extract residualsfor

49
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further analysis.

5.1 The New Estimator

To obtain a good circle �tting to the recorded data for a given log cross-section,a new

generalizedM-estimator was developed and an algorithm proposedthat implements it. We

show that it is in
uence boundedand robust against all typesof outliers. Outliers are data

that are far apart from the main bulk of data. For an estimator, when the outliers move

farther and farther away from the main bulk, two casescould happen. The �rst is that no

matter how far away the outliers move, the estimator still convergeto the correct solution.

The secondis that the estimator divergesas the outliers move away. An estimator could

divergeeven when the fraction of contamination is in�nitiv ely small. The estimator in the

�rst caseis consideredin
uence bounded, while the one in the secondcase,not in
uence

bounded.

The 3-D log surfacedata consistof a collectionof 3-dimensionalrangedata points grouped

as circular-shaped cross sections from the scanner. Each cross section has the same x3

value. Let f ~x1; ~x2; : : : ; ~xmg denote the set of data points of a given crosssection, where

~x i = [x i 1; x i 2; x i 3]T for i = 1; : : : ; m. Our intension is to �t a circle to these data points,

which all lie on a plane de�ned by a constant third coordinate, x3. Note that the Boggset

al. consideredthe generalcaseof �nding orthogonal distancesto a curve [6]. For the circle

�tting, the radial distanceareeasilycalculated,becausethey arealongthe radiusof the �tted

circle. Thus, it is unnecessaryto usean iterativ e algorithm to calculate them. By contrast,

the ODRPACK software developed by Boggset al. [5] is appropriate for ellipse�tting. Now

on the planede�ned by a constant third coordinate, x3, onecande�ne a nonlinear regression

model given by

(x i 1 � p1 + � i 1)2 + (x i 2 � p2 + � i 2)2 � p2
3 + ei = 0; (5.1)

wherep = [p1; p2; p3]T is the parametervector containing the center coordinates(p1; p2) and
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the radius p3 of the circle, and where x i = [x i 1; x i 2]T is the two-dimensionalmeasurement

vector in the crosssection under consideration. In Equation 5.1, the measurement error

vector is de�ned as � i = [� i 1; � i 2]T , while the model error is denotedby ei and accounts for

the uncertainty in the assumedcircle model. Note that this uncertainty exists even if the

measurements are perfect. The model given by Equation 5.1 can be written in a compact

form as

f i (p; x i ; � i ) + ei = 0; for i = 1; : : : ; m: (5.2)

The problemis henceto robustly estimatethe parametervectorp in Equation 5.2from a 2-

dimensionalmeasurement vector x = [x11; x12; : : : ; xm1; xm2]T . For this model, conventional

M-estimators are not robust becausetheir in
uence function is not bounded for the error

vector, � i , as it is shown in Section5.4. A Schweppe-type generalizedM-estimator is more

appropriate here. Termed GM-estimator for short, this estimator minimizes an objective

function of the form

J(p) =
mX

i =1

w2
i � (

r i

swi
): (5.3)

Here � (�) is the Huber function expressedas

� (
r i

swi
) =

8
><

>:

1
2( r i

s wi
)2 for j r i

s wi
j � b

bj r i
s wi

j � b2

2 for j r i
s wi

j > b
; (5.4)

and the residual r i is de�ned as

r i = � hi (p; x i ); (5.5)

with

hi (p; x i ) = (x i 1 � p1)2 + (x i 2 � p2)2 � p2
3: (5.6)

Note that the only di�erence betweenthe two functions, hi (p; x i ) and f i (p; x i ; � i ), is the

presenceof the measurement error vector, � i , in the latter. Pick b = 1:5 in Equation 5.4

to have a good statistical e�ciency at the Gaussiandistribution while not increasingtoo
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much the bias under contamination [30, 21]. Writing Equation 5.5 in compact form for

i = 1; : : : ; m, onecan get the m-dimensionalresidual vector r = � h(p; x), whereh(�) is an

m-dimensionalvector-valued function. In Equation 5.3, s is a robust estimator of scaleof

the residualsgiven by s = 1:483mediani jr i j, and wi 2 (0; 1] is an appropriate weight function

that makesthe estimator robust againstoutliers in x i . The wi arebeingintroducedto bound

the in
uence of the measurement errors, � i in the model given by Equations 5.1 and 5.2.

The errors e and � i are assumedto follow the � -contaminated model, F = (1 � � )� + �H ,

where 0 � � � 1. It de�nes a full neighborhood of the Gaussianprobability distribution,

�, which includesasymmetric distributions. For small � , this model indicates that there is

a large fraction (1 � � ) of the errors that follow � while the remaining fraction, � , follow an

unknown distribution, H . Such a model will be usedin Section5.4 to derive the in
uence

function of the GM-estimator.

The estimator p̂ is a solution to

@J(p)
@p

jp= p̂ =
mX

i =1

wi

s

@�
�

r i
s wi

�

@
�

r i
s wi

�
@r i

@p
= 0: (5.7)

Assuming that wi is constant in the neighborhood of p and de�ning the scalar function

 (u) = @� (u)
@(u) , then

mX

i =1

wi H i (p; x) 
� r i

swi

�

= 0: (5.8)

The vector H i (p; x) in Equation 5.8 denotesthe transposeof the i th row of the m � 3

Jacobianmatrix H (p; x) given by

H (p; x) =
@h(p; x)

@p
= � 2

2

6
6
6
6
6
6
6
6
4

x11 � p1 x12 � p2 p3

x21 � p1 x22 � p2 p3

...
...

...

xm1 � p1 xm2 � p2 p3

3

7
7
7
7
7
7
7
7
5

: (5.9)
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The function wi is calculated basedon the projection statistics de�ned in Section5.3.2.

It is such that it equalsone for a good measurement x i and decreasesasymptotically to

zero as the radial distance of x i to the �tted circle increasesbeyond a given threshold.

Consequently, the objective function given by Equations 5.3 and 5.4 will not down-weight

a good measurement with small standardized residual, r i =(swi ), becausein this casethe

term w2
i � (r i =(swi )) in Equation 5.3 reducesto r 2

i =(2 s2); but for an outlier, it becomes

bjwi r i =sj � (bwi )2=2, down-weighting it. Thus, the estimator is in
uence-bounded; this

property will be madeclearerin Section5.4 by showing that its in
uence function is indeed

bounded.

5.2 The Iterativ ely Reweighted Least-Squares Algo-

rithm

A solution to Equation 5.8 is found through the iterativ ely reweighted least-squares(IRLS)

algorithm [30, 29]. To derive its expression,�rst divide and multiply the  � function in

Equation 5.8 by the standardizedresidual to get

mX

i =1

wi H i (p; x) q
� r i

swi

� r i

swi
= 0; (5.10)

whereq(r i =swi ) =  (r i =swi ) =(r i =swi ). Then, put Equation 5.10 in a matrix form to get

H (p; x)T Q h(p; x) = 0; (5.11)

whereQ = diag(q(r i =swi )) is a m � m weight matrix. Performing a �rst-order Taylor series

expansionof h(p; x i ) about the value of p obtained at the kth iteration, p (k) , gives

h(p; x) � h(p (k) ; x) + H (p (k) ; x) (p � p (k)): (5.12)
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Substituting Equation 5.12 into Equation 5.11,and putting p = p (k+1) to obtain

p(k+1) = p (k) + [H (p (k) ; x)T Q(k) H (p (k) ; x)]� 1H (p (k) ; x)T Q(k)r (k) : (5.13)

The initial conditions for the IRLS algorithm given by Equation 5.13are not determined

by the conventional least-squaresmethod [17]. This is becausethe latter providesa solution

that is too biaseddue to the action of severe outliers, especially those that stemsfrom the

supporting scannerstructure under the log. One alternative method would be to resort to

the least medianof squaresestimator or any other high breakdown estimator [69]. However,

this classof estimatorsis typically implemented via computational intensive algorithms that

are inappropriate for this application. To circumvent this di�cult y, a simple and very fast

method wasdeveloped basedon the log data characteristics,which providesreasonablygood

initial conditions. It consistsof the following three steps:

1. Identify all the crosssectionsthat have a su�cien tly large number of data points,

say larger or equal to 80% of the averagenumber of data points per crosssection;

the remaining crosssectionsare consideredcorrupted and will be excludedfrom the

computation in the next two steps.

2. For each of thesecrosssections,pick as an estimate of the x1 and x2 coordinates of

its center, the midpoints of the minimum and maximum valuesalong the x1 and x2

axes,respectively; pick asan estimateof its radius, the midpoint of the width and the

height of the bounding rectangle.

3. Smooth out the center point valuesand radii by replacingeach of them with the corre-

sponding averagestaken over three consecutive crosssections,known asbox �lter [23].
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5.3 De�ning the Weight Function w

Unlike the GM-Estimator developed for linear regression,the weights wi in Equation 5.3 are

not calculated from the residuals,r i given by Equation 5.5, which are algebraicdistances;

they are rather determinedfrom the radial distancesbetweenthe data points and the circle.

Furthermore, they are evaluated in a robust manner by meansof the projection statistics,

which canbe viewed asa robust versionof the classicalMahalanobisdistancesof a collection

of points in n-dimensions.

The above mentioned radial distancesare de�ned as follows. Let c = [p1; p2]T denotethe

center of the circle and let d i = [di 1; di 2]T denotethe radial vector betweenthe point x i and

the circle with radius p3. The vector d i is then given by d i = (x i � c)(1 � p3=kx i � ck),

wherekuk stands for the magnitude of a vector u. The vectors f d1; d2; : : : ; dm g identify a

point cloud in a plane.

5.3.1 Classical Outlier Iden ti�cation Metho ds based on Maha-

lanobis Distances

The conventional method for identifying outliers makes use of the Mahalanobisdistances.

In statistics, Mahalanobisdistance is a distancemeasureintroducedby P. C. Mahalanobis

in 1936. It is based on correlations between variables, by which di�erent patterns can

be identi�ed and analyzed. It is a useful way of determining similarity of an unknown

sampleset to a known one. It di�ers from Euclidean distancein that it takes into account

the correlations of the data set and is scale-invariant, that is, not dependent on the scale

of measurements. Formally, the Mahalanobis distance from a collection of m points in

n-dimensions,f d i ; i = 1; : : : ; mg, with the sample mean �̂ =
P m

i=1 d i =m, and the sample

covariancematrix
P̂

=
P m

i=1 (d i � �̂ )(d i � �̂ )T =(m � 1) is de�ned as:
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M D i =

r

(d i � �̂ )T P̂ � 1
(d i � �̂ ):

A well known result is that when the d i 's are drawn from a multiv ariate normal distri-

bution N (� ; � ), the M D 2
i follow approximately a chi-squareddistribution with n degrees

of freedom,� 2
n [1]. Therefore,there is a probability of approximately 97.5%that a point d i

will fall inside the toleranceellipsoid given by M D 2 = � 2
n;0:975. A sensibleapproach would

then be to 
ag as deviant points, termed outliers, all the data points that fall outside that

ellipsoid. While this method seemsto be reasonableat �rst glance,it is unfortunately prone

to the maskinge�ect of multiple outliers becausethe samplemeanis attracted by them and

the samplecovariancematrix is in
ated to the extent that someor all of them may fall inside

the toleranceellipsoid.

5.3.2 Robust Outlier Iden ti�cation Based on Pro jection Statistics

Initiated independently by Stahel and Donoho in 1982[78, 11], the projection method was

inspired by the following equivalent expressionof the Mahalanobisdistance:

M D i = max
kv k=1

jdT
i v � L(dT

1 v; : : : ; dT
m v)j

S(dT
1 v; : : : ; dT

m v)
; (5.14)

where L and S are respectively the sample mean and the sample standard deviation of

the projections of data points d i on the direction of vector v and where the maximum is

taken over all the possibledirections. A robust versionof Equation 5.14is then obtained in a

straightforward mannerby replacingL and S by robust statistics, for exampleby the sample

median and the Median-Absolute-Deviationfrom the median (MAD) of the projections.

A practical implementation of this method wasadvocatedby Gasko and Donoho[19],who

proposedto investigateonly thosedirectionsoriginating from the coordinate-wisemedianM
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of the point cloudandpassingthrough each of the data points, yielding a total of m directions

to be examined.The directional vector of a data point d i is de�ned asv i , i = 1; m. Termed

projection statistic, the resulting estimate for a data point, say the i th point, is indicative

of the distancesthat it has with respect to the bulk of the point cloud in the worst one-

dimensionalprojection. Formally, it is de�ned as

PSi = max
kv i k=1

jdT
i v i � medj (dT

j v i )j
1:4826medk jdT

k v i � medj (dT
j v i )j

:

The algorithm that calculatesprojection statistics can be found in Section5.5. Note that

this estimator is di�erent from the one proposedby Mili et al. [49] for power systemstate

estimation asherePSi is determinedbasedon the radial vector, while in the latter, it is based

on the row vectors of the Jacobian matrix H (p; x) given by Equation 5.9, which revealed

to be not robust in this application. The weights wi are calculated from the projection

statistics, which are a robust version of the Mahalanobisdistances. The PSi accounts for

the correlationsbetweenthe radial distances.ODRPACK doesnot calculate weights as we

are proposinghere. For ellipse �tting, we may run ODRPACK to �nd the radial distances,

and then calculate the PSi and wi values.

Rousseeuw and Van Zomerenin [71] showed through Monte Carlo simulations that whena

collectionof data points in n-dimensionsaredrawn from a multiv ariate Gaussiandistribution,

their squaredprojection statistics follow roughly a chi-squareddistribution with n degreesof

freedom.Sincein our caseobservations are in 2 dimensions,a statistical test wasappliedat a

signi�cance level of say 97.5%to tag asan outlier any data point d i that hasPS2
i > � 2

2;0:975.

This allows us to de�ne a weight function wi as wi = min(1; � =PS2
i ), where � = � 2

2;0:975,

which is used in the objective function of the GM-estimator given by Equation 5.3. Note

that this weight function decreasesas the squaredPS gets larger than threshold � .



Liya Thomas Chapter 5. A Novel Robust GM-Estimator 58

Figure 5.1: Most outliers are excludedfrom the con�dence ring.

5.3.3 Determining Con�dence Rings of the Fitted Mo del

The extreme data points in the log data can be detected by determining the con�dence

ring of a �tted circle. Such points are composedof outliers, as well as data that are part

of a log defect with signi�cant protrusion or depression. The 95% con�dence ring is the

region betweentwo circlesboth centered at (p1; p2), with radius (p3 � � p3) and (p3 + � p3),

respectively, where� p3 = 2 � 1:428� mediani jdi j. If a data point is outside that con�dence

ring, it may belongeither to a loosebark or to a defectwith large protrusion or depression.

Figure 5.1 demonstratessuch a method.

5.4 Deriving the In
uence Function of GM-Estimator

Following Neugebauerand Mili [54, 55], we derive the asymptotic in
uence function of the

GM-estimator and show that it is bounded. To this end, considera set of 2-dimensional
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measurements of sizem, x1; x2; : : : ; xm� 1; x whosecoordinates are contained in vector x � .

Supposethat the �rst m � 1 measurements, whosecoordinatesare contained in vector z, are

independent and identically distributed (i.i.d.) accordingto the Gaussiancumulative prob-

abilit y distribution function, �( z), while the last measurement point, x, takeson arbitrary

valueson R2, yielding a fraction of contamination, � = 1=m. Also, supposethat the vector z

is independent from the m-dimensionalmodel error vector, e = [e1; e2; : : : ; em ]T , whosecom-

ponents are assumedto be i.i.d. accordingto a cumulative probability distribution function

K (e). Let F (z; e) = �( z)K (e) denotethe joint probability distribution function of z and e.

By processingthe measurement vector x � , the GM-estimator, p̂, providesan estimatefor

p by seekinga solution to an implicit equation given by

mX

i =1

� i (x � ; p) = 0; (5.15)

where

� i (x � ; p) = wi
@hi (x � ; p)

@p
 (

r i

swi
): (5.16)

Now, let m grow to in�nit y, leadingto an in�nitesimal fraction of contamination as� ! 0.

Therefore, the cumulative probability distribution function of the random vectors z, x and

e may be expressedas the contamination model given by

G(x � ; e) = (1 � � )F (z; e) + � � x ; (5.17)

where � x is the unit probability massat point x. Letting T (G) denote the asymptotic

functional form of p̂, Equation 5.15reducesto

Z
� (x � ; T (G)) dG(x � ; r ) = 0: (5.18)
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The asymptotic in
uence function of the estimator T(G) at F is de�ned as the Gâteaux

derivative given by

IF (x; F ) =
@T (G)

@�
j � =0 = lim

� #0

T ((1 � � )F + � � x ) � T (F )
�

: (5.19)

It is the directional derivative of T(G) in the direction of � x at F . To derive it, let us

�rst substitute Equation 5.17 into Equation 5.18to get

Z
� (x � ; T (G)) dF + �

Z
� (x � ; T (G)) d(� x � F ) = 0: (5.20)

Di�eren tiating with respect to � , it follows

@
@�

Z
� (x � ; T (G)) dF +

Z
� (x � ; T (G)) d(� x � F )+ �

@
@�

[
Z

� (x � ; T (G)) d(� x � F )] = 0: (5.21)

The Huber function  ( r
s w ) is continuous and measurableon F , and  0( r

s w ) is measur-

able on F . Thus, by Equation 5.16, we know for our case,� (x � ; T (G)) is continuous and

measurableon F , and its derivative measurableon F . Evaluating Equation 5.21 at � = 0,

assumingFisher consistencygiven by
R

� (z; T (F )) dF = 0, � (x � ; T (G)) satis�es regularity

conditions [34], and interchanging di�erentiation and integration in the �rst term of the

summation, then

Z @
@�

� (x � ; T (G)) j � =0 dF +
Z

� (x � ; T (F )) d� x = 0: (5.22)

On page301 of [34], Theorem 7.10.1states the regularity conditions are: (1) Function

f (a1; a2), wherea1 and a2 are independent variables,hasthe property that @
@a2

R
f (a1; a2) da1

exists. (2) Further, function f (a1; a2) shouldbe continuous,and hasa continuous�rst-order

partial derivativewith respect to a2. Applying the chain rule to the kernelof the �rst integral
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and using the sifting property of the Dirac impulse, we obtain

Z @
@p

� (z; p)jT (F )
@T (G)

@�
j � =0 dF + � (x; T (F )) = 0: (5.23)

Solving for IF (x; F ) = @T (G)
@� j � =0 , then

IF (x; F ) = �

 Z @
@p

� (z; p)jT (F )dF

! � 1

� (x; T (F )): (5.24)

Deriving � (:) given by Equation 5.16with respect to p while assumingthat w and s are

independent of p over the neighborhood wherethe derivative is applied, it follows

@� (z; p)
@p

= w

"
@ ( r

s w )
@p

# "
@h(z; p)

@p

#T

+ w  (
r

sw
)

@2h(z; p)
@p2

Applying the chain rule to the derivative of  (:) with respect to p and using the fact that

@r=@p = � @h(z; p)=@p, the following equation is obtained

@� (z; p)
@p

= �
1
s

 0(
r

sw
)

"
@h(z; p)

@p

# "
@h(z; p)

@p

#T

+ w  (
r

sw
)

@2h(z; p)
@p2

(5.25)

where 0(u) = d (u)=du. Substituting Equations 5.16and 5.25into the expressionof I F (:)

given by Equation 5.24to get

IF (x; F ) = w  (
r

sw
)

@h(x; p)
@p

=A; (5.26)

where

A =
Z

8
<

:
1
s

 0(
r

sw
)

"
@h(z; p)

@p

# "
@h(z; p)

@p

#T

� w  (
r

sw
)

@2h(z; p)
@p2

9
=

;
jT (F ) dF:

It was observed that the in
uence function, I F (:), is bounded because (:) is bounded
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and becausethe weight function w is decreasingfrom one to zero for an outlier, x, and

thereby is bounding the in
uence of the column vector, @h(x; p)=@p.

5.5 Algorithm for Pro jection Statistics

The algorithm for projection statistics consistsof the following main steps:

1. For a certain j in [1; n], let medi =1 ;:::;m (dj i ) denote the median of f dj 1; dj 2; : : : ; dj m ; g.

Calculate the coordinate-wisemedian given by

M = [medi =1 ;:::;m (d1i ); medi =1 ;:::;m (d2i ); : : : ; medi =1 ;:::;m (dni )]T

2. Calculate the directions u i = d i � M ; i = 1; : : : ; m. Whenever d i == M , yielding

u i == 0, disregardthe corresponding direction in subsequent computation.

3. Calculate v i = u i =ku i k = u i =
q

u2
1i + u2

2i + � � � + u2
ni ; i = 1; : : : ; m

4. Calculate the standardizedprojections of f d1; d2; : : : ; dm g on vk ; k = 1; : : : ; m, which

are given by

z1k = dT
1 vk ; z2k = dT

2 vk ; : : : ; zmk = dT
m vk ; k = 1; : : : ; m

5. Calculate med(z1k ; : : : ; zmk ) = zmed;k ; k = 1; : : : ; m.

6. For a certain k in [1; m], let medj =1 ;:::;m jzj k � zmed;k j denotethe median absolutedevi-

ation of f z1k ; z2k ; : : : ; zmk g from zmed;k . Then for every k in [1; m], calculate the k-th

median-absolute-deviationfrom the median, that is

M AD k = 1:4826medj =1 ;:::;m jzj k � zmed;k j; k = 1; : : : ; m
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7. For all i in [1; m], and all k in [1; m], calculate the standardizedprojections:

Pik = jzik � zmed;k j=M AD k ; i; k = 1; : : : ; m

8. For all i in [1; m], calculate the projection statistics:

PSi = maxf Pi 1; Pi 2; : : : ; Pim g; i = 1; : : : ; m

5.6 Simulation Results

Simulations for the developed robust estimators were performedusing several completelog

samples,some were executed on single data cross sections, while the rest on the entire

log data. First, we discussthe results obtained using data crosssections. Then, radial

distancesare analyzed, and contour curves generatedfor defect identi�cation. The circle

�tting procedurewas implemented in Java programming language[80]. The versionwe use

is Sun Java virtual machine 1.5. The maximum number of iterations neededfor estimating

the circle parametersper crosssectionis limited to 5. In most casesno morethan 4 iterations

are required. One log data samplehas about 80 to 100 crosssections. It takes lessthan 1

minute to completeall the circle �tting to crosssectionson a HP notebook with a 3.06GHz

Intel Pentium 4 processorwith hyperthread. The reasonwe choosea personal computer

for the simulation is that ultimately the system will be used by sawmills where high-end

personalcomputersare more a�ordable than high-performancework stations or other more

powerful computers. The programshave not beentested on any laser scanningequipment.

They were only executedon the HP notebook personalcomputer.
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Table5.1: Statistics of SomeLog Data

i xi1 xi2 di1 di2 PS
1 -14.29 5.49 -4.74 -3.03 12.44
2 -9.16 8.93 0.47 0.29 0.77
3 -14.25 5.45 -4.72 -3.04 12.39
4 -9.09 8.75 0.43 0.28 0.73
5 -14.47 5.15 -4.99 -3.27 13.06
6 -9.01 8.31 0.28 0.19 0.65
7 -11.85 5.47 -2.88 -2.23 7.88
8 14.94 0.03 7.11 -6.80 18.47
9 14.76 0.55 6.83 -6.37 17.67

10 14.55 1.33 6.46 -5.77 16.60

5.6.1 Circle �tting using the GM-estimator

The simulations werecarried out on the crosssectionof log data asshown in Figures5.2and

5.3. Theseare data points of log# 480at length 30.044inches,which is a crosssectionwith

786 data points. Table 5.1 displays the projection statistics calculated from the projection

statistics assessedfrom the radial distances,which are denotedby PS. The squareroot of

the 97.5 percentile of the chi-squareddistribution with 2 degreesof freedom,
q

� 2
0:975 = 2:7,

is the threshold chosenfor PS beyond which a point is 
agged asan outlier. It wasobserved

that PS identi�es all the outliers in the data.

Figures 5.2 and 5.3 further demonstratesthe robustnessof the GM algorithm. Here, in

the presenceof severe outliers, the GM solution is very satisfying.

The experiments with the circle �tting robust regressionmodel brought insight to the

research work of external log defect detection of hardwood logs and stems. First, it is

essential to perform a model �tting to the log data, becausethe �tted solutions help to

sort the input data and provide a referencelevel of the log surface for defect detection,

segmentation, and classi�cation. Depending on the skill of the operator and the log size,

the four units may or may not be calibrated well. The parametersof the �tted model, that

is, the center of a �tted circle, can be applied to remove redundant data, and to sort data
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Figure 5.2: End points for radial vectors (from the origin) of onedata crosssection.
Outliers (leveragepoints) are marked in darker color, and are visibly separablefrom
the good data.

Figure 5.3: A crosssectionof log data with a large segment of missingvaluesalong
with outliers marked and three �tted circlessuperimposed. Thesecircleshave been
�tted using the nonlinear robust GM-Estimator (solid red), the Huber M-estimator
(dashed blue), and the least squaresestimator (dashdot black). The robust GM-
�tted circle passesthrough the good data points while the other two �tted circlesare
attracted by the loosebark data points, namely the outliers.
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points in an increasingorder of anglesof the vectors passingthrough the circle center and

data points with respect to the horizontal axis.

Moreover, a robust 2-D circle �tting helps to amplify the variation on log surfacesthat

contain external defect information. The criterion consideredfor a good �tting algorithm

is the one for which the solution minimizes the variance of the regular bark areas, and

maximizes that of the defect regions. To do so, the weight function of the data, de�ned

in Section 5.3, should give more weight to data in the bark area, and give lessweight to

data in the defect region. Statistically, it is assumedthat a regressionmodel, for instance,

a circle, approximately �ts a log data crosssection. Typically, the bark region tends to


uctuate around the assumedmodel with small variations for the majorit y of the log data

crosssection,thereby revealing a large protrusion or depressionthat departs from the �tted

model signi�cantly.

5.6.2 The Radial Distance Images

Radial distancesobtainedfrom the log data are the signedvalues. To createa radial distance

image, the radial distancesare converted to gray-scale values as depicted in Figure 4.4.

Typical radial distancesrangefrom -2 to 2 inches,and the gray-scalevalues,0 to 255. Since

the log data are not originally in a grid format, the corresponding radial distancesare not

in a grid format either. To form a grid, the radial distancesare interpolated linearly to �ll

up any gaps. This is carried out as follows. First, the x3 value (position along the log's

length) in the 3-dimensionaldata is mapped to the row number, i in the 2-dimensional

image,i = 1; : : : ; m. Secondly, the column number, j , is calculatedby scalingthe angleof a

point from the center of the �tted circle, j = 1; : : : ; n. If the desiredimageis to be 750pixels

wide, then the scalingfactor would be 750=(2 � ). Thus, the 3-dimensionalpoint (x1; x2; x3)

with a radial distanceof rdij would becomethe 2-dimensionalpoint (i; j ) with a gray-scale

value of cij . The radial distancesare linearly interpolated that each point (i; j ) is associated

with a certain value. After such a conversion, they are referred to as gridded. To convert
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the gridded radial distance, rdij , to a gray value, cij , the maximum, rdmax , and minimum,

rdmin , of all the radial distancesare �rst determinedan the cij is calculated through

Sincethe number of rows and columnsare out of proportion (102 vs: 103), another linear

interpolation is performed to insert rows between the original radial distance rows. This

createsa radial distanceimageresembling the log surface. This is illustrated in Figure 6.5,

whereresidual imagesweregeneratedby circle �tting along with the log defectdiagram for

comparison.



Chapter 6

Algorithm for External Defect

Detection Using Radial Distances

6.1 Algorithm Overview and Pseudo Code

The external-defectdetectionprocedureincludestwo major steps. The �rst step is to obtain

the radial distancesby �tting 2-D circles to log-data crosssectionsusing the robust GM-

Estimator described in Section5.6.1and in further detail in [91]. The program is written in

Java. It outputs of a matrix of radial distancesfrom the �tted circlesto the actual log data

(seeFigure 4.4). The secondstep of the procedureis to determinethe actual defectson the

log surface. Current implementation for this phaseis in Matlab 7. The detection program

incorporatesexpertise that was obtained through measuring,photographing,and analyzing

of approximately 500external-defectsamples.

Beforedescribingthe detection algorithm, let us �rst de�ne the \defects" that the algo-

rithm is expected to detect. The scanningtechnology limits the types of defectsthat can

be found. Defectsshould be at least 5 inches in diameter, otherwisethe defectsare unde-

tectable under the 0.8-inch resolution along the log length provided by the scanningsystem.

68
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The current detection algorithm only detectsdefectswith a minimum one inch surfacerise,

becausethe algorithm is height (surfacerise) based.Thus, \large defects"meansthosewith

at least a one inch surfacerise, �v e inchesin diameter, and a width to length ratio between

0.5 and 2. In the 14 log data samples,60 defectsof this type were observed, and 59 were

located. \Medium defects" mean thosewith a distinctive bark pattern, a medium rise (0.5

to 1 inch), and a medium diameter (3 to 5 inches). Eight such defectswere observed in the

log samples.There are 8 of this type, 4 of which wereidenti�ed in 14 log sampledata. Both

\large defects"and \Medium defects"are severe. The defectdetection algorithm was tested

using these68 defects.

As discussedin Chapter 3, the external defect characteristics provided a foundation for

us in the development of the detectionalgorithm. The surfacerise information suggeststhat

most of the defectsto be identi�ed would be knobs ans sawn knots. Their surfacerise are

commonly 1 inch, with a few exceptionof 0.5 inch. The basewidth and length of knots are

5-6 inches,indicating contour curveswill likely enclosea regionwith a 5 inch diameter. The

median length of sawn knots is 9.5 inches,which is misleading. Due to the nature of these

defects,often only a small corner of the defectsare enclosedin the contour. Thus, we need

another method to determinethe entire surfaceof a sawn knot, which is referredto assawn

top in the remainingdiscussionof this chapter. From Table 3.2, we observe that is a quarter

of the knobsand sawn knobsare about 1 inch high (tip), 5 incheswide, and 5.5 incheslong

at the base. This indicates a small group of knobs might be identi�ed as no higher than 1

inch, and no wider than 5 inches. This is indeedthe basisfor the \medium defects"detected

by the algorithm in Section6.3.

In the remainderof this document, the following terminologiesare used:

� A contour, or contour curve in a plot, is a curved line connectingpoints with the same

surfacerise;

� A rectangular region (typically referred to simply as a region) is a solid rectangle

enclosedby the bounding box for a contour.
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Here is a pseudocode overview of the defectdetection algorithm:

1. Find large defects

(a) Using radial distancedata, obtain contours at a set of evenly spacedlevels. The

�rst level is the lowest; the highest level is usually greater than 1.5 inches. From

this point, most processingis on the bounding boxes(regions). SeeSection6.2.1

for detailed explanation.

(b) Eliminate regionswhosearea is lessthan a certain threshold; sort the remaining

regionsin descendingorder of area. SeeSection6.2.2.

(c) Eliminate various other regionsthat are unlikely defective. SeeSection6.2.3.

(d) Adjust boundingboxesthat do not encloseentire sawn tops. The adjustedbound-

ing boxesarereferredto asadjustedregions.Remove adjustedregionswith severe

missingdata, and remove adjusted regionsthat are too small. SeeSection6.2.4.

(e) The remaining regionsare reported as possibledefects.

2. Find the less protruding and smaller diameter defects no more than 1 inch

in heigh t and 3 to 5 inches in diameter .

(a) Using the original 3-D log data, determine gradients parallel to the long axis of

the log. SeeSection6.3.1.

(b) Find regionswhosegradients are within a de�ned rangefor this defectclass.See

Section6.3.2.

(c) Theseareasare reported as defects.
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6.2 Algorithm for Detecting Large Defects

6.2.1 Generate Con tours

A Matlab built-in function inputs and analyzesradial-distance data to generatecontour

curves. The curvesare then analyzedto locatewheresurfacedefectsmight exist. Recall that

radial distancesare generatedby the circle-�tting procedureof Section5.6.1. A gray-scale

imageis only a graphical way to illustrate them. Now for each contour curve, the algorithm

determinesits borders. The width, length, area,width/length ratio, and length/width ratio

arethen computed. Becausethe radial distancesaregenerallylessthan 5 inches,it wasfound

that partitioning the contours into six levels proved e�ective for the algorithm to determine

the defects. Presently, only the highest level contours were analyzed, as they enclosethe

highest rising regionsand thus the most protruding defects. Usually each log samplehas

anywhere from a few dozento a few hundred contour curvesat the highest level.

The original 3-D log data are then read in. Dependingon the scannercalibration and the

diameter of the log, the original log data may contain a certain amount of identical points.

Thereforethe algorithm removesduplicates. For each data point, a line is drawn from it to

the cross-section's�tted-circle origin. The angle between this line and a horizontal line is

computed. The points on a cross-sectionare then sorted by their anglevalues.

The main idea throughout the remainder of the algorithm is to take a seriesof stepsto

eliminate non-defective regions from the potential candidates. This is achieved by using

statistics from measuredand calculated log data, and wood-scienceexpert knowledgein a

stepwise fashion.

6.2.2 Elimination of Non-defectiv e Regions

Remo ve Small Regions First, the algorithm removes regions whosearea is less than

7.5 inch2, becausethe data resolution (0.8 inch betweencrosssections)meansthey cannot
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be reliably recognizedas defects. Most defects are associated with a 0.75 width/length

ratio. Thus, regionswith an area lessthan 7.5 inch2 would have lessthan 3 crosssections

intersectingit, and socould not be detected. Next, the remainingregionsare sorted in order

of their areas. This makes it easyto determine whether a smaller region is nestedinside a

biggerone. Any contour nestedwithin another is removed from considerationbecausethere

can only be onedefect in the samelocation.

Small regions (with area less than 10 inch2) that are within two inches of the top or

bottom of the image are rejected as well. They either enclosepartial defects(part of the

defect is lost), which the algorithm is incapableof detecting, or a small defect that cannot

be detecteddue to current data resolution. Sincethis is an artifact of the original scanning

process,defectsnear or outside the scannedregion were not identi�ed for the purposeof

testing the algorithm.

Region Adjustmen t At the beginning of the algorithm, to get a rough estimation of

potential defect locations, only the widths and lengths of contour bounding boxesare used.

However, this is not accurate enoughto determine the true extent of certain defects. To

make sure the entire region of an external defect is identi�ed, the algorithm adjusts the

width, length, and width-length ratio of the region. It is done as follows. First, for each

selectedcandidate rectangle, an extended region surrounding the curve is analyzed. The

top and bottom boundariesof the enclosingrectangleare expandedeach by a length of 10

cross-sections(8 inches) along the log length. The \widest consecutive segment" of each

crosssectionrefersto a set of continuousdata points with radial distancesgreater than the

contour level. A segment is a set of linesconnectingthe adjacent log-data points in the same

crosssection and enclosedin the contour curve. This step provides us with preciseshape

information about the potential surface-defectregions,shown in Figure 6.1.
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Figure 6.1: An illustration showing that by expandingthe bounding box, it may help
to determine the true defect region, rather than a portion of it. The dashedcurve
enclosesthe baseof a defect.

6.2.3 Deletion of Non-Relev ant Regions

Bark Regions Bark regionsare not considereddefective. They have (1) an area larger

than 25 inch2, (2) at least 75% of the segments inside the contour are associated with the

following characteristic: the ratio betweenthe widest consecutive part of each segment, and

the total width of the region is lessthan 0.8. Regionswith thesefeaturesare unlikely to be

defective, and soare rejectedfrom further consideration.

Remo ve Fragmen ts For the remaining regions,segments that are wide enough(width

of the widest consecutive segment greater than 1/4 of the bounding rectangle width) are

identi�ed. The algorithm then determineswhether the top or bottom of an enclosedregion

is a narrow and long fragment along log length with a width less than 1/4 that of the

rectangle, indicating bark, instead of being part of an actual defect. If such a fragment

exists, such as the part being marked by a crossin Figure 6.2, the top or bottom boundary

for the region is adjusted to remove the bark artifact. Thus, someregionsmight be rejected

as being long and narrow, and thus non-defective.
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Figure 6.2: A contour encompassinga defectwith a long and narrow portion that is
not part of it, which the algorithm identi�es and removes.

Remo ve Regions to o Close to Large Regions Regionsthat are smaller than 50 inch2

and are too closeto larger candidates(lessthan 3.5 inchesapart horizontally or vertically)

are excluded. Due to the nature of defect distribution on hardwood log surfaces,the larger

onesmore likely indicate the true defects,while the smalleronesare simply continuations of

the samedefect. This is how it is done: Among candidateswith a length lessthan 7 inches,

or longer than 7 inchesand width/length ratio greater than .2, thoselessthan 50 inch2, and

lessthan 3.5 inchesapart from the selectedlarger ones,are excluded.

Remo ve Regions with Non-Defectiv e Shapes or with Missing Data When the area

is lessthan 15 inch2 and the width/length ratio is out of range(lessthan 0.5 or greater than

2), they are alsoremoved asthey are too small and are not shaped like a defect. Candidates

are then checked for amount of missing data. If there are more than 20 points missing in

a segment (i.e., the data crosssection has a gap wider than 1 inch), it is classi�ed as a

corrupted segment. If there are more than 50%corrupted segments enclosedin the contour,

the region is classi�ed as severely missingdata and is rejected. Figure 6.3 illustrates such a

situation.
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Figure 6.3: A region with a large portion containing corrupted data and thereforeis
rejectedas possiblydefective.

6.2.4 Determine Sawn Tops

A sawn top is a type of external defect where the tree limb was removed by loggersin the

woods. Often it is not completelyleveledwith respect to the log surface,but insteadtilted at

a small angle. Sinceit's a natural humanoperation, the sawn top is often not completely
at.

Sawing on natural wood material leavesa sawn pattern. Typically, part of the sawn top will

fall below the highestcontour level, and this sectionof the defectneedsto berecognized.The

algorithm is able to locate such regionsusing a \straigh t-line" segment technique described

below, and is capableof adjusting the boundariesto identify the entire 
attop region.

The procedureto �nd sawn tops is asfollows: For remainingregionswith an arealessthan

25 inch2, in its surrounding region the algorithm examinesangle changesbetweenstraight

lines connecting log data points at an interval of �v e points along the crosssections. If

changesare small enough(lessthan 25o), thesesegments are recordedasrelatively straight.

Then the range of \straigh t" segments is determined. If over half of the segments contain

straight parts, this region is identi�ed as a sawn top, either sound(not rotten), or unsound
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(rotten). The boundary of the identi�ed region is adjusted to surround all \straigh t" seg-

ments, so as to capture that portion of the sawn top that falls below the contour level.

Someregionsmay be falsely identi�ed asa sawn top, becausethey contain severemissing

data causingthe algorithm to generatean incorrect result. Thus, they arerejecteddepending

on how severe the missing data are. Since the processof identifying sawn tops is often

accompaniedby adjustment of the defect region boundaries, which a�ects the geometric

relationshipsamongthe detectedregions,regionscompletely nestedor partially overlapped

are identi�ed and removed. To this point, thosecandidatesthat have survived areconsidered

to be large defects. Their rectangular borders are plotted on the contour image, and are

labeledwith their rank number in decreasingorder of region areas.

6.3 Finding Medium Defects

So far, the algorithm has attempted to locate the most obvious defect types(Part 1 of the

pseudo-code description). They are large bump-like knots, either old (healedbroken stubs)

or new (sawn at harvest). They may be large (20 inches diameter) or relatively small (4

inchesdiameter), protruding (at least 3 incheshigh) or with a more gentle rise. They can

also be unsoundor sound. There is another group of severe defects,with medium rise (0.5

to 1 inch), and medium diameter (3 to 5 inches). Due to thesecharacteristics, they are not

enclosedin the highestcontour curvesand thus not identi�ed by the proceduredescribed so

far. However, they havea distinctive pattern (surfaceriseand diameter). Thus, an algorithm

explicitly designedto identify thesedefectswasdeveloped, for what wereferredto asmedium

defects. In a sampleof 14 logs,eight such defectswereobserved and the algorithm wasable

to detect 4 of them.

Initially , the original log data points are processedby removing outliers outside of the

99th percentile, which is roughly 2 inchesin radial distance. Then the data points are sorted

accordingto the anglesof vectorspassingthrough the circle center and points. The approach
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applied hererequiresthat there be no missingdata. Thus the algorithm \�xes" regionswith

missingdata in the matrix of radial distancesby using a linear interpolation.

6.3.1 Determining Gradien ts

The next step is to determinethe existenceof upward slopesand downward slopesthat fall

within 0.15 to 0.3. Such a rangeindicates that a protruding region is high enough,but not

sohigh asto represent a protruding defect that shouldhave beendetectedin the �rst stage.

A slope here refers to a group of adjacent data points, whoseradial distancesincreaseor

decreasealong the log length in a generaltrend, similar to a slope in a mountain. During

the process,a group of adjacent data points along the log length (x3-axis) are examined. In

this procedure, the type of defectsare not large or protruding|those defectsshould have

beendetectedearlier. If the gradient falls within a certain range,it is tagged. Also note that

the predominant surfacefeature of a log is bark, which has an uneven texture. Therefore

the data points on a slope usually do not form a strict straight line. The algorithm detects

such slopesby judging their tendency, either goingup or down, and an appropriate tolerance

threshold|no more than 1 slope is out of the range|is applied.

6.3.2 Finding Defectiv e Regions

Basedon the results from slope detection, those regionssatisfying the following conditions

are determined.

1. width and length of 3 to 5 inches;

2. height of 0.5 to 1 inch, and

3. no more than 1 slope is out of the range.
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This kind of defect can also include rotten and non-rotten, sawn, or naturally formed

defects.The detectedmedium defectsare plotted in the samecontour imagewith the large

defectspreviously identi�ed. This completesthe algorithm.

6.4 Simulation Results and Discussions

Fourteenlogdata sampleswerechosenbasedon their data characteristics,andanalyzedusing

the defectdetection system. The algorithm waswritten in Matlab usingMatlab version7.0.

As mentioned in Section 5.6, it is implemented on a high-end notebook computer with a

Pentium 4 processor.It takeslessthan 1 minute to �nish the calculation of contour curves,

defect detection, and results output. The programs have not been tested on any laser

scanningequipment. They wereonly executedon the HP notebook personalcomputer. The

defectdiagramsof all external defectspresent on log sampleswerecollectedmanually by the

USDA Forest Servicelab in Princeton, WV. Sincelogs are heavy (1,000 to 5,000pounds),

and comein various taper, sweep,and diametersat the two ends,accuratelymeasuringthe

defectlocationsand sizes,and classifyingdefecttypes,provedchallenging. Consequently the

diagramsare often erroneous,ambiguous,and inaccurate. Further, they often only contain

the width and length of a defect, but not its height, or surfacerise. External defectsmay

not always be visible in the color imagesof a samplelog, and the angle order of each side

of the color imagesare often incorrectly arranged. Among the 160 or so scannedlog data

samples,45 of them are poor quality and not usable. Theseproblemscut down the number

of log samplesthat could be experimented with.

The defect diagrams illustrate not only the defects visible in the radial-distance gray

images,but alsothoseundetectabledue to the adoptedmethods and/or the data resolution

limits. The information from the diagrams,aswell as from the color imageswerecombined

(Figure 6.4). Observed defectswere marked in gray-scaleimages(Figure 6.5(a)). We will

refer to them as\ground truth". The coordinatesof the marked rectanglesaremeasuredand
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Figure 6.4: Four digital intensity imageof a log sampleat 90o per side. Theseimages
are used in part to determine the correctnessof the machine generateddefective
regions.

recorded.We canoverlay them on the contour plot (Figure 6.5(b)) soasto comparethem to

the regionsdetectedby the algorithm. In the contour plot, the predicted (observed) defect

regionsare marked in solid crossedrectangles,while the automatically detectedregionsare

displayedwith dashedcrossedrectangles.The locations,widths, and lengthsof automatically

detectedregionsare reported by the programs. To determine whether a marked region in

the contour plot correctly indicatesan external defect,it is comparedwith the ground truth.

Table 6.1 givesa breakdown for each log sampleof observed defect numbers, automated

defect numbers, falsely identi�ed defect numbers, and misseddefect numbers. Table 6.2

gives a breakdown for each log sample of the surface area, automated defect area, false
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(a) (b)

Figure 6.5: The algorithm �nds two of three defects,where a correct identi�cation
is de�ned as the center of a detectedregion falling inside the observed one,and vice
versa. (a) The corresponding gray-scaleimagewith manually marked defect regions.
(b) A contour plot automatically generatedby the defectdetectionMatlab programs.
Dashed,crossedrectanglesmark the possibledefective regions,and solid and crossed
rectanglesare overlaid observed defective regions.

Table 6.1: Observed defect numbers, automated defect numbers, falsely identi�ed
defectnumbers,and misseddefectnumbers for each log sample.

Log # Species Total Correct False Missed
444 BOAK 4 4
448 ROAK 9 8 1 1
450 ROAK 4 3 1
453 ROAK 7 6 1
468 ROAK 3 3 1
480 ROAK 6 6
493 ROAK 6 5 1
501 ROAK 3 3
508 ROAK 5 5 1
521 ROAK 6 6 1
537 ROAK 5 4 2 1
441 YPOP 2 2
485 YPOP 6 6 2
520 YPOP 2 2 2
Total 68 63 10 5
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Table 6.2: The surface area, automated defect area, false identi�cation area, and
misseddefectareafor each log sample.

Log # Species Surface Observed Automated False Missed
444 BOAK 5797 456 456
448 ROAK 7284 1196 1105 30 91
450 ROAK 7278 570 553 17
453 ROAK 6301 1732 1671 61
468 ROAK 5453 959 959 122
480 ROAK 7486 1256 1256
493 ROAK 8551 364 314 50
501 ROAK 3916 445 445
508 ROAK 4031 573 573 243
521 ROAK 8560 496 496 113
537 ROAK 6414 390 356 178 34
441 YPOP 4645 297 297
485 YPOP 9352 1385 1385 309
520 YPOP 6188 358 358 218
Total 91257 10476 10223 1213 253

Table 6.3: Observed defect numbers, automated defect numbers, falsely identi�ed
defectnumbers,and misseddefectnumbers for each tree specie.

Specie Total Correct False Missed
BOAK 4 4 0 0
ROAK 54 49 6 5
YPOP 10 10 4 0
Total 68 63 10 5

Table 6.4: The surface area, automated defect area, false identi�cation area, and
misseddefectareafor each tree specie.

Specie Surface Observed Automated False Missed
BOAK 5797 456 456 0 0
ROAK 65275 7980 7728 687 253
YPOP 20185 2040 2039 526 0
Total 91257 10476 10223 1213 253
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identi�cation area,and misseddefectarea,all in inch2. In both tables BOAK, ROAK, and

YPOP refer to Black Oak, Red Oak, and Yellow Poplar, respectively. The samplenumbers

of each specie in turn are 1, 10, and 3. The majorit y of the samplesare Red Oak. There

is no falseidenti�cation, or misseddefectsfor the Black Oak sample,and no misseddefects

for all Yellow Poplar. However samplenumbers of thesetwo speciesare low. For each tree

specie,Table6.3summarizesthe observeddefectnumbers,automateddefectnumbers,falsely

identi�ed defect numbers, and misseddefect numbers. Similarly, Table 6.4 summarizesfor

each tree speciethe surfacearea,automateddefectarea,falseidenti�cation area,and missed

defect area, all in inch2. From Table 6.1 and Table 6.2, we found that the averagesizeof

a correctly detecteddefect is 162 inch2, but the averagesizeof a misseddefect is 51 inch2.

This tells us that the misseddefectstend to be relatively small. In forest product industry,

a largedefectis worsethan a small one. This shows that the detection algorithm is e�ective.

We usedtwo methods to evaluate the performanceof the detection algorithm. The �rst

one, referred to as the \ra w-count method", counts the number of defectsdetectedout of

the total number detectedby hand to exist. In our experiments there are a total of 68 severe

defects, of which 63 were correctly identi�ed. There are 10 non-defective regions falsely

identi�ed as defects. Most non-identi�ed defectsare small (lessthan 5 inches in diameter)

and/or relatively 
at (lessthan 1 inch in surfacerise). Nine of ten falsely identi�ed regions

contain high-risebark regionsthat are enclosedin the highest contour curves. Their widths

and lengths range from 6 to over 20 inches. The algorithm fails to remove them from the

true defectsusing the criteria described in the previoussection.

The other way to evaluate the algorithm performanceis to calculate the surfacearea of

detecteddefectsagainst that of the ground truth. This is similar to the analysisproposed

by Kline et al. [36] to evaluate the detection algorithm. It is consistent with statistical

hypothesistesting [47]. The total surfaceareasare given as follows:

� log samples(LSA), 91,257inch2;

� observed external defects(ODA), 10,476inch2;
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� automatically identi�ed defectsthat match the observations (MDA), 10,223inch2;

� automatically identi�ed defectsthat do not match the observations (FPA), an false

identi�cation, 1,213inch2;

� all defectsdeterminedby the detection algorithm (ADA ), 11,435inch2;

� observed defects that are NOT identi�ed by the detection algorithm|uniden ti�ed

defects(FNA), 253 inch2.

When the center point of a detectedregion falls inside the bounding box of an observed

defect,and viceversa,it is said to bea correct identi�cation, and the defectareagivenby the

ground truth is usedin calculation. If we usethe defectareagiven by the automated detec-

tion, onemay arguethat the detectionsystemcould intentionally set it largeror smallerthan

the true value, which makes its objectivenessdoubtful. Thus, we usethe defect area given

by the third party. Now the detection statistics are given as: the percentage of observ ed

clear region is 88.5%((LSA-ODA)/LSA � 100%). The percentageof automated clear re-

gion is 87.5%,given by (LSA-ADA)/LSA � 100%. That the latter is smaller than the former

implies that the algorithm identi�ed more defective surfacearea than the actual observed

area. The percentage of false positiv e or the falsely identi�ed defect regions from clear

surface,is 1.5% (FPA/(LSA-OD A) � 100%). The percentage of false negativ e, indicating

how much the algorithm missedthe defective regions,amounts to 2.4%(FNA/OD A� 100%).

Finally, 97.6%is the area detection rate for the defectdetectionalgorithm with respect to

observations, given by MDA/OD A� 100%. Sincethe total of FNA and MDA is equivalent

to ODA, the falsenegative rate and the detection rate add up to 1.

Thus, there are2 setsof measuresfrom the above two methods. By raw count, amongthe

63 observed defectsthere are 63 correct identi�cations, and 10 falsely identi�ed regions.By

areamethod, 97.6%observed defectareais detected,with 1.5%clearsurfacefalselydeclared

as defective.
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There are pros and cons with both evaluation methods. The pros for the raw-count

method is that it is simple and easyto understand. However, in wood scienceand forest

products, a largedefectusually is much worsethan a small one. Missing many small defects

is unlikely as serious(economically) as missing a few large ones. Unfortunately the raw-

count method cannot re
ect this property. Another problem with the raw-count method is

that statistically it is unclearwhat thesenumbersreally mean. For instance,oneshouldnot

comparethe number of defectsthat are falsely identi�ed (10) against those observed (68),

as it is not the statistical property known as \false positive".

\F alsepositive", or \T ype I error", is the error of rejecting a null hypothesiswhenit is the

true state of nature. In other words, this is the error of acceptingan alternative hypothesis

(the real hypothesisof interest) when an observation is due to chance [28, 47, 77, 97]. In

medical science,for example, a false positive is a positive �nding of a test when, in fact,

the true result was negative. This would mean that the test results indicate that a patient

had a particular condition or diseasewhen they do not [15]. In the raw-count method,

only the numbers of observed defects, correctly-detecteddefects, and falsely-detectedde-

fects are given. One may considerthe detection rate is the ratio between the numbers of

correctly-detecteddefectsand observed defects.The falsenegative can be calculatedas the

ratio between the numbers of misseddefectsand observed defects. However, one cannot

immediately infer from the above the detection accuracyin terms of falsepositive and false

negative.

The areamethod overcomesproblemsoccurredin the raw-count method. Both the detec-

tion rate and the falsenegative canbe determinedin a similar fashionaswith the raw-count

method. The falsepositive is not di�cult to determine,becausewe have the total cleararea,

and it can be usedin the calculation. Yet due to the relative inaccuracyof the calculation of

defectarea, the resulting numbers may not be completely reliable. This is becausethe area

for each defectregion is estimatedasa rectangle,using the width and length of the matched

ground-truth defect. The boundingrectanglesgive only a rough approximation to the \true"

areas,both for the observed defectsand the algorithm's reported defects.Thus, the calcula-
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tions derived from thoseareashave relatively low precision. It is especially a problem when

the statistic is only a few percent. For example,the falsepositive is 1.5 percent. With the

lack of accuracyin our calculations,the error might be greater than that.

One may argue about the de�nitions for calculations in the area method as to their

\reasonableness"or \fairness". Choicesare madehereon how thesecalculationsweredone.

Would there be a methodologicalbias? Let us look into the facts of the calculations.

(a) Calculating the areaof detecteddefects:

If there is a correct identi�cation (de�ned as the center points for the two bounding

boxesare each contained in the other), then the FULL area for the (observed) defect

is credited to the algorithm, regardlessof the area covered by the overlap portion of

the two, and also regardlessof the area covered by the algorithm's reported defect.

Thus, this measureis only indirectly in
uenced by the sizeof the reported defectsby

the algorithm, in that smaller reported defectsmight reducethe chanceof detecting

the defect in the �rst place (becausesmaller areamight reducethe probability of the

center points overlapping).

(b) Calculating the areaof undetecteddefects:

This is simply the area of the observed, undetected defects. That is, this measure

is unrelated to the sizesof the defect regionsreported by the algorithm.

(c) Calculating the areaof falseidenti�cations:

This is directly the areaof the mis-reported defects.Clearly, this is directly in
uenced

by the sizesof these reported regions. Also clearly, an algorithm that consistently

reports smaller regionsgetsa direct bene�t in this metric.

The above statements hold true for an algorithm that consistently reports regionslarger

than the ground truth. The consequencewould be reversedto thoseof (a){(c), respectively.

Thus, it is possiblethat theseareameasuresare biasedby the algorithm's reporting sizefor

its detecteddefects. That is, an algorithm bene�ts in the metrics by consistently reporting
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smaller or larger regions. There might be a penalty in measure(a) for smaller regions,but

(b) is not in
uenced, and (c) clearly bene�ts. Note alsothat (a) is completely insensitive to

the amount of overlap between the observed and reported rectangles,and is only sensitive

to the binary decisionof whether the two center points are included. In short, both the raw-

count method and area method have their advantages and shortcomings. The raw-count

method is simple, but doesnot re
ect all detection performanceaspects. The areamethod

does report the complete set of numbers. However its accuracy is questionable. For our

estimatesof falsepositivesand falsenegativesto be unbiased,the sampleshould have been

randomly chosen. Also, the samplesizeshould be su�cien tly large so that theseestimates

of false positives and false negatives have not a too large variance. Obviously 14 logs are

not a large number. It would be good to repeat thesecalculations over a much larger log

sample,preferably randomly selected,to have a better evaluation of the performanceof the

detection method.

6.5 Testing of Parameter Values

In the algorithm description of Section 6.1, a large number of algorithm parametersare

identi�ed with speci�c constant valuesgiven. This naturally begsthe questionof why these

parameter values are used. To determine whether various parameter settings used in the

detection algorithm are appropriate, 10 of the most important parametersare tested. We

tested the parametersindividually, one value a time. From the algorithm description, we

believe that it is a reasonableassumption that these parametersare independent of each

other, and testing them individually canreasonablyhopeto improve the algorithm. Numbers

of defectsand falselyidenti�ed regionsaresmall (68 and 10, respectively), thereforea change

even by 1 is major. The 10 parametersare:

1. cut-o� contour height

2. cut-o� value for region area
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3. cut-o� value for bark area

4. rectanglehorizontal padding for region adjusting

5. rectanglevertical padding for region adjusting

6. actual region width/length ratio

7. rectangle(region) length

8. width/length ratio during the search for a group of large defects

9. data point interval during the identi�cation of 
at tops

10. anglechangeduring the identi�cation of 
at tops

For each parametervalue testing, three setsof results were generated:

1. the number of correct identi�cations of each log samplegiven for each parametervalue;

2. the number of falseidenti�cations of each log samplegiven for each parametervalue;

3. the number of unidenti�ed defectsof each log samplegiven for each parametervalue.

The results are shown in Tables6.5 through 6.14. In thesetables, original valuesof the

detection algorithm and their corresponding resultsare shown in bold. Herewe only present

total number of defects, instead of total number of defect area, as the former e�ectively

demonstrateschangesalong the changeof parametervalues.

In the original algorithm, we calculated the minimum and maximum radial distances,

and determined the di�erence betweenthem. Then this distance is partitioned at six even

intervals. Only the topmost partition is used for determining the contours. Therefore, it

could well be that adjusting this parameterup or down would yield contours that result in

better detection. Therefore the range of height valuesbetween the �fth partition and the
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Table6.5: Testing results for contour height.

Level 1 2 3 4 5 6 7 8 9 10
Correct 33 38 40 39 37 44 49 49 54 63
False 49 36 37 31 24 25 21 24 15 10
Unidenti�ed 35 30 28 29 31 24 19 19 14 5
Level 11 12 13 14 15 16 17 18 19
Correct 56 49 47 50 44 40 34 28 14
False 13 16 11 12 13 16 20 6 11
Unidenti�ed 12 19 21 18 24 28 34 40 54

maximum radial distanceis divided with 19 intervals. This is illustrated in Figure 6.6. Now

index number 1 is assignedto the lowest of the 19 intervals, and 2 to the next interval, and

soon. Index number 10 is the sameasthe 6th original interval, which is the original contour

level usedin the detection algorithm.

Sincethe increment amongany two adjacent valuesof the original 6 intervals is only 1{2

inches,further partitioning with 19 intervals makesthem about 0.1 inch apart. This is �ne

enoughto capture possiblee�ects given out scanner'sresolution. Sinceeach log samplehas

a unique set of radial distances,the interval distancesare unique to each log. We add up

the number of correct identi�cations for all log samplesat each of the 19 levels (as labeled

by an index number), even though for each log samplethe real contour level for this index

number is di�erent from other log samples. The sameholds true for the total numbers of

false identi�cations, and those of unidenti�ed defects. It can be observed from Table 6.6

that the original contour level yields the best results by all the measures.This is further

illustrated in Figure 6.7.

In the remaining tables, we choosea di�erent number of divisions for each parameter,as

basedon the characteristicsof the parameter. In most casesthe original parametervalue is

at the center of the testing range. The cut-o� valueof regionareain Table6.6 rangesfrom 5

to 15 inch2. The original value is 7.5 inch2. If we choosea value lessthan 5 inch2, almost no

fragments would be excluded. Similarly, we choosea value no more than 15 inch2 becauseif
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Figure 6.6: Illustration of how radial distancesare partitioned for the contour-level
parameter testing.
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Figure 6.7: Bar chart of parametertesting results for contour levels. Note the original
contour level yields the best results by all measures.
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Table6.6: Parameter testing results for cut-o� value of region area(in inch2).

Value 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 12.5 15.0
Correct 62 62 63 63 63 63 62 61 59 59 59 57 56
False 17 15 14 13 12 10 10 11 11 11 11 9 9
Unidenti�ed 6 6 5 5 5 5 6 7 9 9 9 11 12

Table6.7: Parameter testing results for bark-regioncut-o� size(in inch2).

Value 20 25 30 35 40
Correct 61 63 62 62 62
False 10 10 11 10 10
Unidenti�ed 7 5 6 6 6

the cut-o� value is too large, many contours enclosinga defective region would be excluded.

In Table 6.6, the increment is 0.5 for valuesbetween5.0 and 10.0,and 2.5 for thosebetween

10.0and 15.0,becausetheseintervals generatesresults �ne enoughfor cut-o� valueof region

area.

In Table6.7, sincebark regionsthat are non-defective tend to be large, the smallestvalue

tested is 20 inch2. However, any region larger than 40 inch2 and is enclosedin a contour

might be defective, therefore,we stop testing at this value. The interval is 5 inch2 because

the results vary only slightly.

Table6.8contains testing results for the parameterof rectanglehorizontal padding. Since

log surfacedata are unrolled, the horizontal value is proportional to anglesbetweenvectors

Table6.8: Parameter testing results for rectanglehorizontal padding (left and right
sides)during region adjusting (in degrees).

Value 45 50 55 56 57 58 59 60 61 62 63 64 65 70 75
Correct 59 60 60 61 60 59 61 63 62 63 61 62 61 60 62
False 12 13 13 11 10 13 10 10 14 10 11 11 14 12 11
Unidenti�ed 9 8 8 7 8 9 7 5 6 5 7 6 7 8 6
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Table6.9: Parameter testing results for rectanglevertical padding (top and bottom)
during region adjusting (in number of crosssections).

Value 6 8 10 12 14
Correct 61 61 63 62 62
False 11 11 10 11 11
Unidenti�ed 7 7 5 6 6

Table6.10: Parameter testing results for actual region width/length ratio.

Value 0.3 0.4 0.5 0.6 0.7
Correct 63 63 63 61 61
False 11 10 10 10 10
Unidenti�ed 5 5 5 7 7

of data points with respect to a horizontal axis. Thus this parameteris measuredin degrees

(o). The valuesrange from 45o to 60o. Too large or too small are not appropriate for the

region adjustment. The interval is 5o, which gives a good picture of how this parameter

in
uences detection results.

Five di�erent valueswere tested for the amount of rectanglevertical padding on the top

and bottom of regions. They range from 6 to 14 crosssections,with an interval of 2 cross

sections. Since the crosssectionsare approximately 0.8 inch apart, the parameter values

range between5 to 12 inches. That givesa fairly broad testing range. We choose2 values

lessthan the default one,and 2 greater, centering around the original.

The actual width and length ratio is obtained through a proceduredescribed in Section

6.2.2. Again, 5 valuesof this parameterweretested,with the parametervalue in the middle.

Sinceexternal defectsin generalhave a width/length ratio in the range of 0.3{0.7, that is

the reasonwe choosethesevalues. Table 6.10 shows that in fact the original value is the

best choice.

In the algorithm during oneof the search stepsfor largedefects,the region-lengthparam-

eter is set to 7 inches. We tested valuesfrom 5 to 9 inches. The interesting aspect of this
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Table6.11: Parameter testing results for rectangle(region) length during the search
for oneof the large-defectgroups(in inches).

Value 5 6 7 8 9
Correct 63 63 63 63 63
False 10 10 10 10 10
Unidenti�ed 5 5 5 5 5

Table6.12: Parametertesting results for width/length ratio during the search for one
of the large-defectgroups.

Value 0.10 0.15 0.20 0.25 0.30
Correct 63 63 63 60 57
False 11 10 10 9 6
Unidenti�ed 5 5 5 8 11

testing is that all outcomesare the samefor all values. The procedurewas double-checked

to make sure it was was set up properly, and that correct valuesare usedby the algorithm.

Yet we obtained the sameresults. To ensurethere is no bug in the programs,we usedthese

values: -1,000,-500, 0, 500, and 1,000for debugging. Evidently they are unreasonablefor

the detection purposes.Among all 14 log samples,only onegot di�erent results. It has the

samenumber of correct identi�cations for all �v e values,which is 6, and the samenumber

of unidenti�ed defects,0. For values-1,000,-500,and 0, there is no falseidenti�cation, but

for both values500and 1,000,there is 1 falseidenti�cation. This indicates the algorithm is

not sensitive to the reasonablerangeof values.

The width and length ratio parameter is examinedduring the processof identifying a

group of large defects. The default is 0.2. Five values were tested, including the origi-

nal, which generatesthe best number of correct identi�cations, and the lowest number of

unidenti�ed defects. However at the original value, the false-identi�cation result is neither

the greatest, nor the smallest, comparedto those of the rest values. The value (0.3) that

returns the least number of false identi�cations also yields the lowest number of correct

identi�cations and highest number of unidenti�ed defects.
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Table6.13: Parameter testing results for data point interval during the identi�cation
of 
at tops (number of points).

Value 3 4 5 6 7
Correct 56 59 63 61 62
False 7 10 10 16 15
Unidenti�ed 12 9 5 7 6

Table6.14: Parametertesting results for anglechangeduring the identi�cation of 
at
tops (in degrees).

Value 15 20 25 30 35 40
Correct 52 62 63 62 61 60
False 8 7 10 14 16 17
Unidenti�ed 16 6 5 6 7 8

The parameter of data point interval is critical for the identi�cation of 
at tops. It

determineshow far apart are two data points connectedby a line whoseangleis calculated.

The anglechangesare then inspectedfor \straigh t line segment"|a sign of the existenceof

a 
at top. Along a crosssection,neighboring data points are approximated 0.02inch apart,

thus testing valuesbetween3 and 7 points are equivalent to roughly 0.06and 0.14inch. Too

small a valuewill make the algorithm look in too much detail in terms of \straigh tness", but

too big a value, would make the algorithm ignore the changesthat re
ect the \straigh tness"

or roughness. Testing results demonstrate that the default value is the best at number

of correct identi�cations and number of unidenti�ed defects,but not the number of false

identi�cations.

Similarly, the parameter of anglechangeis also critical to the procedurethat identi�ca-

tions 
at tops. Our past experiments showed that 25o is an appropriate threshold, henceit

was chosenas default. Five di�erent valueswere tested, all evenly spaced.We decided15o

is as small as it should be, as too small will be too strict. Recall that even a sawn top is

not completely straight and/or smooth, it is only so within a certain tolerancelevel. 40o is

su�cien tly large, becauseif it is too big, all type of surfacesmight be selected,regardlessit
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is 
at or not. Onceagain, the default value is associated with a high falseidenti�cation, but

the best results for the rest.

The reasonthese10 parameterswere chosenare:

1. Thesearethe most important parametersfor the algorithm. The changeto their values

will produce signi�cantly di�erent results. For example,the contour level determines

at what radial distancepossibledefect regionswere identi�ed. All subsequent compu-

tation dependson this value. The \region size" cut-o� of is very important aswell, as

it determineswhich regionsare selectedfor the rest of algorithm.

2. Parameters 1 through 6 are used in the early part of the algorithm, and make a

di�erence to all regions. For instance, the cut-o� value of bark size that keepssome

regionsfrom being selectedfor further consideration,and the 4 paddingsof rectangle

regions(parameters4 and 5).

Therearemany moreparametersusedby the algorithm that werenot tested,becausethey

only matter to the identi�cation of a small subsetof the regions. In other words, changing

them will not heavily in
uence the entire algorithm. For example,there is a parameterused

asthe ratio betweenthe width of the maximum consecutive segments, and the bounding box

width. If the number of segments with a value smaller than the default ratio is high enough,

then the region may be 
agged as bark, should other conditions be met as well. Sincethis

is but one of several parametersthat are applied in decisionmaking, and usedonly in this

place,currently it is not included in this test.

In summary, for each parameter,the total number of matchesat a certain value of all the

log samplesis calculated. The samewas done for both false identi�cation and unidenti�ed

defects. From the testing results such as in Tables6.5 to 6.7, it was found that among10

parameters,

1. for 9 parameters,the total number of matchesat the original parameter value is the
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highest. The only exceptionis the bark region cut-o� size;

2. for 5 parameters, the total number of false identi�cations at the original parameter

value is the lowest, wherethe exceptionsare contour levels, cut-o� size,width/length

ratio, data point interval for detecting 
at tops, and angle change for detecting 
at

tops;

3. for 9 parameters, the total number of unidenti�ed defectsat the original parameter

value is the lowest. This property corresponds to that of the �rst property for the

number of matches. That is becausethe sum of matching numbers and unidenti�ed

defectsis always a constant, which equalsthe total number of ground truth.

This indicatesthat at the original parametervalues,the algorithm tendsto identify defects

correctly, but there is a likelihood to claim a regionis defectivebut in truth it is not. However,

for all parametersthe numbers of false identi�cations at the original valuesare not much

greater than the lowest ones. In other words the algorithm with the original parameter

valuesis oversensitive to a low degree.

6.6 Exp erimen ts with Data Mining

Data Mining (DM) theoriesand algorithms [16, 22, 50, 81] were exploredas an alternative

way to implement defectdetection. An online survey was conducted,as well as a literature

search on the subject to determine potential DM algorithms. Based on this survey, the

following data mining strategieswere investigatedin detail:

� K -meansclustering [98, 41, 51, 81], wheren-dimensionalcentroids are predetermined.

The algorithm assignseach object to its \closest" centroid, optimizesthe classi�cation

metric, and modi�es positions of K centroids until stopping criteria are satis�ed.
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� Spatial AggregatesLanguage(SAL) in Active Data Mining [59, 60], a generalDM

framework. With SAL, objects being mined are constantly changing in the sensethat

detailed, low-level ones(e.g., a dot) are aggregatedto obtain objects that are more

abstract and at a higher level (i.e., a setof dots forming a line). The processis repeated

until the desiredobjects (a hill composingseveral curvy lines) are classi�ed. Through

the iterativ e processes,lower-level object featuresmay be employed in decisionmaking

during high-level aggregations.

� DecisionTrees(DT) [98, 99,50, 57,58, 81],whereevery object passesthrough a certain

path in a tree which de�nes the process.Nodesof the tree correspond to sub tasks in

the algorithm.

We �rst consideredK -meansclustering and other similar clustering algorithms. The

principles of thesemethods are straightforward. Further, for the log data only two centroids

are needed,representing the classes\defects" and \non-defects". However, the fact that

parametersin the detection algorithm (such as bounding rectanglewidths and lengths) are

constantly beingchangedthroughout the algorithm makesit impossibleto establish\static"

rules, which the clustering algorithm needsto implement the optimization procedure.

Next, the SAL approach wasstudied. Our hope wasthat by applying its methodology, we

couldcomeup with a data mining algorithm that would hierarchically aggregateobjects from

the lowest level to the highest. This would result in log surfaceregionsbeing classi�ed as

either defective or non-defective. An outline of the SAL algorithm is available in [59], which

was adopted to the log-defectdetection algorithm. The following is the generalprocedure.

Level1 (Points):

1. For each log data point, determine and normalize the gradients of its radial distance

[89], both along the x2 and x3 directions;

2. Determine if a point is \aligned with" any of its 8 neighbors (left, right, top, bottom,

upper-left, upper-right, lower-left, and lower-right).
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Level2 (Curves):

3. Connect the aligned points to form a \forw ard" graph;

4. For each data point, determineits \b est forward neighbor" by penalizingfor distance;

5. Reversethe forward graph to generatea corresponding \backward" graph;

6. Determine the \b est backward neighbor" using the samestrategy as in 4. At this

point, each point is connectedby at most two adjacent points in a tra jectory.

Level3 (Regions):

7. Group converging tra jectories to form a region (e.g., a pocket, or a bump).

The problemwith this approach is that the barkedlog surface [88] is far morecomplicated

than any SAL examplefound in literature:

� it is coveredunderbark, which is a mixture of ridgesandgroovesin an irregular fashion;

� since a log is not perfectly circular or elliptical along cross section, the \unrolled"

surfacecreatedby using�tted circles(or any other simplegeometricalshape) inevitably

introducesbulging or depressingregionsalong log direction, camou
aging true defect

bumps;

� knots (defects)are coveredunder a complexbark pattern;

� regionswith missing bark (that falls o� before a log gets scanned)result in dented

portions, adding more noise;

� missingdata and outliers in data alsomake log surfacesmore complicatedto process.

These problems make it unrealistic for SAL programs to single out defects from the

\messy" background. Simulation results were not satisfying, with results not even close



Liya ThomasChapter 6. Algorithm for External DefectDetection UsingRadial Distances98

in quality to those from the detection algorithm described in Section 6.2.1. Further, we

also tried applying SAL as an assisting tool to the original algorithm in that, whenever

a region is determined, the best-forward neighbors are 
agged as defective as well. The

only changebetweenthis approach and the original is that detectedregionsare irregularly

shaped, instead of a rectangle (Figure 6.8(b)). We had hoped that they could show the

regionsin more natural shapes,and more similar to the ground truth. However, that is not

quite the case,perhapsbecausethe SAL programs apply decisionrules that makes sense

mathematically, but meaninglessin the graphical representation of defects.

As the SAL experiment wasnot successful,decisiontree algorithms wereconsidered.We

chosenon-continuousparameterdecisiontree algorithms, obtaineda publicly available pack-

age,C4.5,which is implemented in C for Unix operating system [99,58, 57]. Non-continuous

parameter decision tree algorithms are lesscomplex than the continuous-parameterkind.

However, they are also not as e�ective, becausethey learn only axis-parallel hyperplanes,

while the latter allows for better parametertuning. As we werelooking into C4.5, and plan-

ning to prepare the attribute-data �le for the programs to use in defect classi�cation, we

realizedthe samecausesas for K-meansclustering is an issuehere: decisiontree algorithms

only deal with predeterminedor static attributes, and the machine-vision systemalgorithm

modi�es bounding boxesthroughout the entire algorithm. In other words, to apply a deci-

sion tree algorithm would require a completerewrite of the detection algorithm. Thus, we

did not pursuethis any further for now.

Due to the unique features of the defect detection algorithm using an machine-vision

systemand the complexity of the data, it is hard to quickly adapt it into any Data Mining

algorithm. In future, we may start building a data mining systemfrom scratch that performs

the detection task.
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Figure 6.8: Comparisonof the defect detection algorithm using the machine-vision
systemand that of an data-mining approach. (a) Resultsfrom the detectionalgorithm
usingan machine-visionsystem. Solid rectanglesenclosedetectedregions,and dashed
ones,ground truth. (b) Resultsfrom combining the machine-visionsystemalgorithm
with SAL functions. The ellipseenclosesground truth. The two bold crossesare the
center of detected region, and the ellipse center, respectively. Due to the complex
structure of the defect, it is only partially detected.



Chapter 7

Summary and Future Work

7.1 Summary

This research has created the �rst automated algorithm for detecting surface defects in

hardwood logsusing 3-D laser-scannedpro�le data. Due to the presenceof extremeoutliers

and missingdata in the laserlog data set, robust estimation techniquesarewell suited to this

application. The developed programscan processan entire log-data sampleby transforming

the original log data set, which may contain a largenumber of missingand/or severedeviant

data, into a matrix of radial distancesthat better portrays surfacedefects.This is illustrated

as a sharper and cleanergray-level image. This shows that the radial distanceslay a solid

foundation for the remainingdefect-detectionprocess.It is found that contour levelsderived

from the radial distancesmake it possibleto detect and further narrow down the potential

defect regions. For defectsthat lie within the bark layer, information other than the radial

distanceswill needto be used. This calls for further research and development.

A new robust GM-estimator has beendeveloped that performs 2-dimensionalcircle �t-

ting to detect external defectson hardwood logs and stems. Classicalestimation methods

basedon the least-squaresmethod revealedthemselvesto be unreliable becausethey gener-

100



Liya Thomas Chapter 7. Summary and Future Work 101

ate strongly biasedestimatesdue to the presenceof missingdata and severe outliers. This

is shown in Figure 5.3. By contrast, the GM-estimator suppressestheseoutliers via weights

calculated from projection statistics applied to the radial distances,thereby bounding the

in
uence function of the estimator. Basedon theserobust circle �ttings, the defect-detection

programs transform the original log data into a sharper and cleanergray-level image, de-

termine contour levels of the radial distances,and further narrow down the potential defect

regions.

We also developed a computer algorithm that identi�es external defectsusing the radial

distancesgeneratedby the circle �tting method by applying the new GM-Estimator. The

generation and initial processingof radial distancesare not the �nal steps of this work.

Clearly, additional research is needed.At this point, only log unrolling and height analyses

methods have been examined. A preliminary study was conducted to extract features of

external defect types from randomly chosendefect samples. These features were studied

to help making decision rules for the defect defection algorithm. To reach the �nal goal

of locating and classifyingsurfacedefects,we are exploring the potential bene�ts of image

processing,computer vision, and pattern recognition techniquesusing radial-distancedata.

There are two methods to evaluate performanceof the detection algorithm. The �rst

one looks at the number of defectsdetected out of the total number of ground truth. In

our experiments there are a total of 68 severe defects,of which 63 were correctly identi�ed.

There are 10 non-defective regionsfalsely identi�ed asdefects.The other way is calculating

the surface areas that are detected against that of ground truth. To calculate this, we

implemented the method to compute the false-detectionrate as discussedin Section6.2.4,

which demonstrateda reasonablygood algorithm (87.5%automated clear region vs. 88.5%

observed clear region, and a 97.6%areadetection rate). There are pros and conswith both

methods. The pros for the �rst one is that it agreeswith conventional understanding of

detection rates. However, in wood scienceand forest products, a largedefectusually is a lot

worsethan a small one. The secondmethod overcomesthis problem. Yet due to the relative

inaccuracyof the defectarea, the statistics may not be completely reliable. This is because
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the areaof each defect region is estimatedasa rectangle,using the width and length of the

matched ground-truth defect.

Many defectswere not identi�ed mainly becausethey do not have a signi�cant height

change. Thus, the height-based approach is not e�ective for these defects. Among them

there is a group of severe defectswith heavy distortions and 
at knots. Thesedefectsoften

have a distinctive ring-like bark pattern. Edgedetection, a computer vision technique, may

help in identifying such defects.This will be implemented in a secondphaseof this research.

When a single cylinder is �tted to the entire log data, the number of parameters to

be estimated is the fewest as comparedto �tting a sequenceof circles and ellipsesto all

crosslog sections. This meansthat cylinder �tting provides the fewest degreesof freedom.

In addition, the radial distancesare extracted against a uniform surface, resulting in the

smoothest image among the three. Clearly this gives a more consistent surfacemap for

subsequent tasks. However, it may re
ect lessdetails of defective regions,asthe surfaceof a

simple cylinder like this tends to resemble very little of a log surface.Thus, radial distances

betweenthe cylinder model and log data will give few details of log surfacestructure, critical

to the detection task.

In contrast, the circle �tting approach involves far more parameters to be estimated,

which results in more degreesof freedom. However, each circle provides a better �t to each

individual crosssection,revealingmoredetailson log surfacewhile radial distancesextracted

betweenneighboring crosssectionsare lessconsistent, or noisier, than in the cylinder case.

On the other hand, ellipse �tting introducesthe greatest number of estimated parameters

and hence,generatesthe most detailed radial-distance image. By the sametoken, radial

distancesfrom neighboring crosssectionsare much lessconsistent, or lesscrisp, comparedto

circle- or cylinder-�tting. This is primarily due to the di�erence of axesorientation between

neighboring ellipses.

Generatingand processingradial distancesis not the �nal stepof this work. An algorithm

wasdeveloped that determineswhether an areaof interest contains a sawn knot, by locating
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the approximately straight line segment in a cross-section.Parametertesting wasconducted

and demonstrated that the detection algorithm was capable of identifying most defects.

Further, a preliminary study wasconductedto extract featuresof external defecttypesfrom

randomly chosendefect samples.

7.2 Future Work

Recently judged by our achievements, the USDA Wood Education and ResourceCenter

(WERC) has granted new funding for the re�nement and analysisof the log surfacedefect

methods. It will provide partial �nancial support for our future work. Our plans include the

following.

Dev elop a Java soft ware package The Matlab defect-detectioncode that detects de-

fects will be converted to Java and integrated with the scanningand sawing equipment. A

compliedJava program can be run directly on the Java virtual machine of any architecture,

given versioncompatibilit y. We plan to provide a completepackagethat is publicly available

through internet. Further, the detection results will be displayed in graphical formats to as-

sist sawyers who can rotate, zoom, and move the virtual log marked with defects(Figure

4.3).

Overall, Java is a good choice for the real time processingand user interaction demands

of this project. In the recent releasesof Java 1.4.2and later, Java's mathematical operations

were further optimized to improve performance. Recent benchmarking studies show that

the performancedi�erences amongJava, C, and C++ for most mathematical operationsare

minimal [10, 37]. Conwell-Shahreported that for integerand double-precision,Java actually

outperformedgccC code by 9.5%and 32%respectively. Similar resultsare reported in [37].

Lea also reports that using the server Java virtual machine (JVM) results in signi�cantly

faster executiontimes than whenusing the client JVM. Oneweaknesswith the JVM is with
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trigonometric functions whereC outperformsJava by as much as 33-percent.

Further, development of packagessuch asNINJA (Java for High PerformanceNumerical

Computing) have madeJava an evenmoreattractiv ecandidatefor this research [52]. NINJA

supports improved matrix and vector handling and faster mathematical operationson these

data types. The benchmarks presented by Moreira et al. are basedon a pre 1.4.2 JVM

whose mathematical operations were not fully optimized. The study showed that Java

with NINJA scoredwithin 15 percent of the benchmark scoreof Fortran 90 on the matmul

benchmark. Similarly, NINJA scoredwithin 2.9 percent of Fortran 90 on the Cholesky

benchmark. However, NINJA exceededthe Fortran 90 scoreon the microdc benchmark by

2.4 percent.

Fortran andC aree�cien t languagesfor scienti�c computation. However, Java is portable.

Any compiled Java program can be executedon any platform as long as a JVM for that

platform exists. Java hasexcellent graphicaluser-interfacedevelopment capabilities,and has

several GUI developmental packages.One notable GUI development packagefor Fortran is

japi (http://www.japi.de ), which provides the Java AWT Toolkit to non-object oriented

Languageslike C and Fortran. However, Fortran haslimited GUI development support that

is not integrated as well as thoseavailable in Java and C++.

Exp erimen t with more log samples We would like to obtain more log samples,and

capture pro�le data using Perceptron's3-D scanningequipment [4]. From past experience,

there are a few things that can be improved:

� the processof manually marking and labeling surfacedefectson the logs should take

place prior to taking side photographsare taken. This will make the defectsobvious

in the heavily camou
agedbark surface,and thus make comparingsimulation results

of the detection algorithm with the ground truth and photographsa lot easier.

� we needto keepclosewatch on the scanneddata, photos,and ground truth data entry.

In the current experiment, somelog data are unusable;someside-viewlog photoswere
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arrangedin the wrong order; and ground truth data were incorrectly entered and/or

some�elds weremissing. All thesereducethe number of log samplesthat can be used

to test the algorithm.

In future work, oncesuch problemsoccur, we will �x it immediately.

Detect more typ es of defects We implemented the method to compute the false-

detection rate asdiscussedin Section6.4, which demonstrateda reasonablygood algorithm.

Many defectswerenot identi�ed mainly becausethey do not havea signi�cant height change.

Thus, the contour-basedapproach is not e�ective for thesedefects.Among them is a group

of defectsthat are severe, for example,heavy distortions and 
at knots. Thesedefectsoften

have a distinctive ring-like bark pattern. Edgedetection, a computer vision technique, may

help in identifying such defects.

Classify defects Cluster analysis,or clustering, is an attempt to �nd structure in a set of

observations [53]. Clustering techniquesare usedin two generalclassesof problems: those

with unlabeledsamples,referredto asunsupervisedlearning; and thosewith labeledsetsin

which given classesmay consistof distinct subsets,referredto assupervisedlearning. Clus-

ters are aids to interpreting and evaluating the measurements and features. Techniquessuch

assplitting, merging,and graph theory are applied, each associated with a di�erent criterion

for assigningan object to a cluster. Objects and patterns are referred to as points in fea-

ture space.Patterns are represented in terms of features,which form n-dimensionalfeature

vectors[85]. Approachesto clustering include error function minimization, hierarchical, and

graph-theoreticalclustering. The basicstepsto developa cluster algorithm are the following:

featureselection,proximit y measure,clusteringcriterion, clusteringalgorithms, validation of

the results, and interpretation of the results. Proximit y measuresinclude dissimilarity and

similarity measures,each de�ned by its metric [12].

We shall develop methods and algorithms for feature extraction, defect segmentation,
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and classi�cation using cluster analysis. By analyzing the characteristics of the contour

levels, defectswith a signi�cant rise or depressionwill be located, segmented, and classi�ed

through cluster analysis. To this end, classi�cation criteria will be set up and clustering

algorithms will be developed. This task will accomplishthe following classi�cation tasks:

feature selection; proximit y measure;validation of the results; and interpretation of the

results [12, 53, 85].

Ultimately, accurate defect locations need to be pinpointed, defect features extracted,

and the �nal detection of external defectsperformed. To this end, algorithms in pattern

recognition, including cluster analysis,will be investigated. Other methods, such as surface

reconstructionand texture analysis,will be examinedaswell wherever necessary. Note that

the pattern recognitionmethodsaredi�erent from thoseadvocatedin computervision, where

image elements are categorizedinto identi�able classes.Here, a learning set must be built

�rst through extensive simulations by grouping the defectsinto separateclasses.Pattern

recognition will be carried out through cluster analysis,which will be the primary method

for feature extraction and defectdetection of the log surfacedata.

Defectsmay be classi�ed as knots, splits, holes, and bark distortions, each of which is

characterizedby a set of featuresthat identify a cluster of points in an n-dimensionalspace.

The featuresare chosenin such a way that two similar defectswill have closepoints while

dissimilar defectswill have remote points in the feature space. In other words, when the

featuresare appropriately chosen,two dissimilar defectshave their associated feature points

distant from each other, resulting in a clear separationbetweenthe clusters.

For the log data set, the features can be determined from the radial distancesof the

curve or surface�tting and the corresponding contours. Boundariesbetween clusters will

have to be determinedaswell. This is again a curve-�tting problem, and robust techniques

will be usedhere. Assumethat the featuresof a defect are characterizedby the following

n variables: f y1; y2; y3; : : : ; yng. There are several features that may characterize a given

defect, including slopes, length, height, width, elongation, the boundary information of its
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enclosedregion, and the number of its neighboring contours with the samelevel within a

certain range. The latter would indicate whether the rise is just a high-risebark region or a

real defect. Note that elongationrefersto the ratio betweenthe width (along the horizontal

direction) and the length (along the vertical direction). The width of a contour is de�ned

as the di�erence betweenthe minimum and the maximum horizontal valuesof the contour,

and its length, the di�erence betweenthe minimum and the maximum vertical values. Bark

regionsin high-level contours tend to have a smaller elongationvalue than most defectsdo.

Most defectsare associated with contours of the highestor lowest levels. Thus, our focus

is on detectingdefectsin the regionsinsidesuch contours. Note that a contour is represented

by its level and a set of data points on its path. The most commondefectsare medium-sized

knots, about 4 to 6 inchesin diameter,and 1-2 incheshigh. This indicatesthat we cangroup

the corresponding contours in oneclass,call it Class1. Thesecontours are characterizedby

the sizeand elongation of the regionsenclosedin them. However, somebark regionswith

the samecontour level also have a similar size and elongation, the only di�erence is that

there are small contours with the samelevel scatteredaround them. Using this feature, one

can rule out the contour enclosingbark regionsas false defects; such a contour de�nes a

secondclass(Class 2). There are high-level contours enclosinglarge-sizedregions (about

15� 20� 2:5 inch3). The oneswith an elongation value that is not too small are likely to

enclosedefects,call it Class3. For the oneswith a small elongation value, their enclosed

regionsinclude three di�erent cases:

1. A large defect with relatively straight edgesalong the vertical direction, de�ning

Class4;

2. A large bark region also with relatively straight edgesalong the vertical direction,

resulting in Class5;

3. A largedefectwith elliptical shapededgesalongthe vertical direction, yielding Class6.

The main di�erence betweenClasses1 and 2 is that a bark region tends to contain long
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Figure 7.1: Radial-distanceimagefor a red oak log.

and narrow strips, so the ratio between the median of its \solid" widths and its length

is smaller than that of a defect. Here, the \solid" width refers to the one between two

contour segments in the vertical direction where there is no break. The contour plot in

Figure 7.1 contains a typical large bark region in the bottom-left portion at about 90o. The

main di�erence amongClasses1, 2 and 3 is that the �rst two are associated with relatively

straight contour segments in the vertical direction while the third onehaselliptical contours.

This indicatesthat the scaleestimator, determinedvia Median Absolute Deviation from the

Median (MAD), of the slopeson the boundary for the �rst two caseswill be smaller than

that of the third. This separatesthe third into a di�erent class.For defectsin the shape of

holes,splits, similar featuresapply, except that their contour levels are low.

Oncefeaturesare de�ned, we can de�ne the training set of defectclasses.To this end, we



Liya Thomas Chapter 7. Summary and Future Work 109

carry out a mapping betweenknown defectclassesand their associated clustersof points in

the featurespace.Speci�cally, thesefeatureswill be measuredfor a sampleof a given defect

class, determine its center (i.e., coordinate-wise medians) and a 95% con�dence ellipsoid

that de�nes its boundaries. We will repeat this for every given classof defects. Once the

training set is completed,we may then useit to classifyany potential defectby estimating its

featuresand �nding the closestcluster. When the number of classesis large,cluster analysis

is carried out with the help of decisiontrees. Neural networks may alsobe investigatedhere

for identifying the clusters.

Impro ve the algorithm e�ciency Various numerical methods for solving nonlinear

equationswill be investigated to speed up the algorithms while making them numerically

stable. We will improve the method so it would be fast and numerically robust. We are

presently using the iterativ ely reweighted least squares(IRLS) method together with QR

decompositions and Householderre
ections for numerical stabilit y [56]. The executiontime

constraint cannotbe ignoredbecausethe systemtargets lumber manufacturing. On average,

it takesabout 8 to 10 secondsfor a human expert to examinea log. Eventually, the system

to be developed must operate within the sametime frame or less. We will investigateways

to speedup the IRLS algorithm.

Integrating both the circle-�tting and defectdetectionalgorithms in Java makesit possible

to be accessedvia internet by public. This makesour systemavailable to the forest product

society in that researchers may useit in their simulations, and sawmills may useit to help

improve their productivit y. Further, written in Java alsomeansthe software canbe ready in

executableform for various platforms. Usersmay simply download it and it is ready to run

on their computers. Developing a GUI for the systemwill make it a lot easierto operate.

The detection results can be viewed on screen,the operators may zoom in or out, rotate,

and/or move the virtual log to get a better look of the defectsize,shape and distribution on

the log. Detect information can alsobe displayed at the operator's request. All thesecould

be accomplishedby a few key strokes.
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Experimenting with more log sampleswill help us to test the algorithm, collect detection

statistics about it. As we have seenthrough this document, only 14 log sampleswere used,

and amongthem the majorit y are red oak. To improve and test the algorithm, we certainly

need signi�cantly more samplesfor both red or black oak and yellow poplar. Currently

our algorithm is only capable of detecting surfacedefectsassociated with height change.

However, defectswithout signi�cant surfacerise, such as heavy distortion are also severe

and needto be detected. To be able to detect them we shall develop an algorithm. Knowing

what type of defects,for instance,a knobby knot causedby a broken branch, or a sawn top,

would provide more information for the inferenceof the internal defect features. Internal

defectinformation is crucial to wood processing.Thus, we would like to classifythe external

defect types. Finally, we want to improve the algorithm e�ciency is becauseit implies fast

executionand lessbreakdowns, key factors to a high-quality, useful, and robust software.
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