Table of Contents

1. Introduction
 1-1 Background of Ferroelectric Capacitors 1
 1-2 Ferroelectric Materials Issue 4
 1-3 Damages Induced During Dry Etching Process 5
 1-4 Hydrogen-induced Degradation 6
 1-5 Effect of Stress 8
 1-6 Objectives of Research 9
 1-7 References 10

2. Characterization of Dry Etching Damaged Layer
 2.1 Introduction 21
 2.2 Experimental Procedure 21
 2.3 Results and Discussion 22
 2.4 Conclusion 24
 2.5 References 24

3. Wet Cleaning Method of the Etching Damaged Layer
 3.1 Introduction 32
 3.2 Experimental Procedure 33
 3.3 Results and Discussion 34
 3.3.1 The Characterization of the Etching Damaged Layer 34
 3.3.2 The Properties of Cleaning Solution 35
 3.3.3 The Effects of Secondary Phases and Etching Damaged Layer 36
 3.4 Conclusion 39
 3.5 References 40

4. Hydrogen-induced Damages
 4.1 Introduction 50
 4.2 Experimental Procedure 52
 4.3 Comparison of Pt/PZT/Pt with Ir/IrO\textsubscript{2}/PZT/Pt/IrO\textsubscript{2} Structures 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Dependence of PZT Film Composition</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Dependence of The Poling State</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary and Model Suggestion</td>
<td>59</td>
</tr>
<tr>
<td>4.7</td>
<td>References</td>
<td>60</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>76</td>
</tr>
<tr>
<td>5.2</td>
<td>Experimental Procedure</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>Results and Discussion</td>
<td>77</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td>79</td>
</tr>
<tr>
<td>5.5</td>
<td>References</td>
<td>80</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental Procedure</td>
<td>87</td>
</tr>
<tr>
<td>6.3</td>
<td>Results and Discussion</td>
<td>88</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusion</td>
<td>93</td>
</tr>
<tr>
<td>6.5</td>
<td>References</td>
<td>94</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>7.2</td>
<td>Experimental Procedure</td>
<td>107</td>
</tr>
<tr>
<td>7.3</td>
<td>Results and Discussion</td>
<td>108</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>110</td>
</tr>
<tr>
<td>7.5</td>
<td>References</td>
<td>110</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1. SEM Pictures of capacitor nodes for 1 G DRAM device. (a) Hemispherical grain (HSG) method and (b) double-cylindrical structure. p 13

Figure 1-2. Trend of ferroelectric capacitor technology. p 14

Figure 1-3. Cross-sectional SEM pictures of 64 K FRAM fabricated by Samsung Electronics. Design Rule 1.2µm, double Metal, 1T/1C architecture. p 15

Figure 1-4. Cross-sectional SEM pictures of 4 M FRAM fabricated by Samsung Electronics. Design Rule 0.6µm, triple Metal, 1T/1C architecture. p 16

Figure 1-5. Suppression of the hysteretic property due to the dry etching process. (a) Polarization recovery by the annealing. (b) Hysteresis loops before and after recovery annealing. p 17

Figure 1-6. Degradation of the hysteretic property due to hydrogen-induced damage. Loops were measured from the 100 capacitors after ILD deposition. The effect of hydrogen-induced damage is more serious as the size is smaller. The structure of capacitor is Ir/IrO2/PZT/Pt/IrO2. p 18

Figure 1-7. Remnant polarization values with a variation of stress applied in PZT thin film. (a) tensile stress, (b) compressive stress [29]. p 19

Figure 2-1. (a) SEM pictures of as-deposited PZT thin film, (b) after dry etching process, (c) surface wet cleaned PZT. The etching damaged layer is completely removed by the cleaning solution treatment. (c) Cross-sectional TEM images of dry etched PZT, (d) magnified image of inset region in (c). p 26

Figure 2-2. X-ray diffraction spectra of the dry etched PZT film with the glance angle of 1°, 3° and 5°. p 27

Figure 2-3. (a) Hysteresis loops of Pt/PZT/Pt capacitors; ○ with the etching damaged layer on the PZT film surface, ▲ 550°C annealed, ▽ 650°C annealed, ◆ as-deposited PZT. (b) Hysteresis loops of Pt/PZT/Pt capacitors; ◆ as-deposited PZT, □ after cleaning solution treatment. p 28
Figure 2-4. X-ray photoelectron spectrum of the etching damaged layer. Solid lines: perovskite PZT, dashed lines: etching damaged layer. p 29

Figure 2-5. Leakage current properties of Pt/PZT/Pt capacitors before and after cleaning solution treatment. Applied voltage: 5 V. p 30

Figure 3-1. Four types of Pt/PZT/Pt capacitors were fabricated. (a) Annealed at 450°C in an O₂ ambient after dry etching, (b) sidewall cleaning processed to eliminate the etching damaged layer, (c) surface cleaning processed to eliminate secondary phases, (d) surface and sidewall cleaning processed. p 42

Figure 3-2. XRD spectra of the surface cleaned PZT film with a glance angle of 1°, and the 650°C annealed etching damaged PZT film with glance angles of 1°, 3° and 5°. p 43

Figure 3-3. XPS spectrum of the etching damaged layer. Fluorine and chlorine peaks were detected and metal (Pb, Zr, and Ti) peaks were shifted to higher binding energy. Solid lines in insets: perovskite PZT, dotted line: etching damaged layer. p 44

Figure 3-4. Effect of cleaning solution components. (a) Etch rate of PZT film with increasing amounts of BOE, EthOH/AcOH/BOE = 85/10/x, x = 0, 5, 10, 15 ml. (b) Etch rate of PZT film with increasing amounts of acetic acid, EthOH/AcOH/BOE = 85/y/5, y = 5, 10, 20, 30 ml p 45

Figure 3-5. Remnant polarization values of Pt/PZT/Pt capacitors. 15 capacitors in a 6-inch wafer were measured for accurate comparison. ● no sidewall cleaning, ▽ 60 Å of the etching damaged layer was eliminated by the sidewall cleaning process, ■ 90 Å of the etching damaged layer was eliminated. p 46

Figure 3-6. SEM pictures of the side region in Pt/PZT/Pt capacitors. (a) Before sidewall cleaning, (b) after sidewall cleaning. p 47

Figure 3-7. Leakage current behavior of Pt/PZT/Pt capacitors before and after hydrogen anneals. I-t properties were measured at 5 V (a, b, c). I-V properties were measured with a voltage step 0.1 V and delay time 0.3 sec. ○ Surface and sidewall cleaning processed, △ sidewall cleaning processed, ◇ surface cleaning processed, □ no wet cleaning. p 48
Figure 3-8. Hysteresis loop changes before and after hydrogen anneals. (a) No wet cleaning, (b) sidewall cleaning processed, (c) surface cleaning processed, (d) surface and sidewall cleaning processed. Hydrogen anneal time: ◊ 0 min, ▲ 2 min, □ 4 min. p 49

Figure 4-1. Hysteresis loops of Pt/PZT/Pt and Ir/IrO$_2$/PZT/Pt/IrO$_2$. Both capacitors were exposed to a hydrogen anneal for 5 min in the temperature range 100-300ºC. p 62

Figure 4-2. Currents from domain switching in hydrogen damaged Pt/PZT/Pt and Ir/IrO$_2$/PZT/Pt/IrO$_2$ capacitors. p 63

Figure 4-3. Shifts of coercive voltage in hydrogen damaged capacitors. Pt/PZT(40/60)/Pt (●), Ir/IrO$_2$/PZT(40/60)/Pt/IrO$_2$ (◊) p 64

Figure 4-4. SIMS depth profiles of hydrogen damaged Pt/PZT/Pt and Ir/IrO$_2$/PZT(40/60)/Pt/IrO$_2$ capacitors. p 65

Figure 4-5. SEM photographs of hydrogen annealed Ir/IrO$_2$/PZT(40/60)/Pt/IrO$_2$. Delamination has clearly occurred at the interfaces between Ir/IrO$_2$ and Pt/IrO$_2$. p 66

Figure 4-6. Degradation of remnant polarization by hydrogen annealing with variation in Zr/Ti composition. p 67

Figure 4-7. SIMS depth profile of hydrogen atom in Pt/PZT/Pt capacitors which have various Zr/Ti composition (60/40, 52/48, 40/60, 30/70). Hydrogen anneal was performed at 150ºC for 5 min. p 68

Figure 4-8. Degradation of remnant polarization for the PbTiO$_3$ seed layer (thickness ~100Å) is applied to enhance a crystallinity. Hydrogen anneal was performed at 200ºC. The structure of capacitors was PT/PZT(52/48)/Pt. p 69

Figure 4-9. SIMS depth profile of hydrogen atom in Ir/IrO$_2$/PZT(40/60)/Pt/IrO$_2$ capacitors which contain different levels of excess Pb. Hydrogen anneal was performed at 300ºC for 5 min. p 70

Figure 4-10. XRD diffraction pattern of Pt/PZT(40/60)/Pt before and after hydrogen anneal. Hydrogen anneal was performed at 300ºC for 5 min. p 71

Figure 4-11. Degradation of dielectric constant of PZT films by hydrogen anneal. p 72
Figure 4-12. Hysteresis loops of Pt/PZT(40/60)/Pt capacitors, which were hydrogen annealed at 100°C for 125 min. Prior to the hydrogen anneal, capacitors were poled by ±5V triangular pulse. p 73

Figure 4-13. Variation in hysteretic properties in hydrogen annealed Pt/PZT(40/60)/Pt capacitors. (a) Remnant polarization (2P_r) and coercive voltage (V_c). The hydrogen anneal was performed at 100°C. p 74

Figure 5-1. Variation of 2P_r as a function of electrode size. (▲) for as-received, (○) for ECR oxygen plasma treated at 1000 W and 2 mTorr, and (●) for ECR oxygen plasma treated at 1200 W and 1 mTorr. p 81

Figure 5-2. Leakage current density measured at 5 V with current vs. time mode for the ECR oxygen plasma treated PZT capacitor at various microwave powers. p 82

Figure 5-3. Change in polarization hysteresis loops of ECR oxygen plasma treated PZT capacitors after annealing in hydrogen atmosphere. p 83

Figure 5-4. Leakage current density measured for the ECR oxygen plasma treated PZT capacitors after annealing in hydrogen atmosphere. p 84

Figure 5-5. XPS spectra of (a) O 1s, and (b) Pt 4f obtained from Pt electrode of as-etched, annealed after etching, and ECR plasma treated PZT capacitors. ECR oxygen plasma treatment was performed at a microwave power of 1000 W and a pressure of 2 mTorr for 10 min. p 85

Figure 6-1. Schematic drawing of PZT capacitor with PECVD SiO2. p 95

Figure 6-2. Optical micrographs of PZT capacitors annealed in O2 atmosphere. p 96

Figure 6-3. Optical micrographs of capacitors annealed at 500°C in (a) N2 and (b) Ar ambient. PECVD SiO2 film was deposited at SiH4 flow rate of 4 sccm. p 97

Figure 6-4. Optical micrograph of capacitor with sputter SiO2 layer. Capacitor was annealed at 500°C in O2 atmosphere. p 98

Figure 6-5. Scanning electron micrographs of blister: (a) surface of PZT capacitor and (b) cross-sectional micrograph showing delamination of top Pt from PZT film. p 99
Figure 6-6. Stress-temperature behavior of sputter and PECVD SiO₂. p 100
Figure 6-7. IR spectrum of PECVD SiO₂. p 101
Figure 6-8. Hydrogen thermal evolution spectrum of PECVD SiO₂. p. 102
Figure 6-9. IR absorption spectrum of Si-OH bands for sputter SiO₂ film, which was exposed to relative humidity 85 % for 3 days. p 103
Figure 6-10. Optical micrograph of annealed capacitor with sputter SiO₂, which was exposed to relative humidity 85 % for 3 days prior to anneal. p 104
Figure 6-11. Changes in IR absorption spectra of PECVD SiO₂ with annealing temperature. (a) Si-H absorption band, and (b) Si-OH absorption band. p 105

Figure 7-1. The hysteresis curves of Pt/PZT/Pt capacitors covered with ECR-OXIDE and 400°C PE-TEOS. p. 111
Figure 7-2. The stress characteristics of ECR-OXIDE and PE-TEOS on Silicon p 112
Figure 7-3. The stress characteristics of ECR-OXIDE and PE-TEOS on the capacitor stack. Tensile stress from PE-TEOS deposition. p 113
Figure 7-4. The stress characteristics of the capacitor stack and the deposition temperature of ECR-OXIDE and PE-TEOS. (a) Tensile stress at ECR-OXIDE deposition temperature (b) Tensile stress at PE-TEOS deposition temperature p 114
Figure 7-5. The measured d-spacing variation of PZT (111) plane before and after ECR-OXIDE and PE-TEOS. p 115
Figure 7-6. The hysteresis curves of Pt/PZT/Pt capacitors covered with 200°C and 400°C PE-TEOS. p 116
List of Tables

Table 1-1. Thin film properties of PZT and SBT families. p 5
Table 3-1. Etching rates of various PZT thin films. p 36
Table 4-1. Standard Reduction Potential E^0 (V) (298K, 1 atm) p 55