TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Description</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Purpose and Broad Objectives</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Plan of Research</td>
<td>7</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>10</td>
</tr>
<tr>
<td>2.2 U.S. Maglev Efforts</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Superconductivity</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Guideway Considerations</td>
<td>12</td>
</tr>
<tr>
<td>2.5 Status of AHS</td>
<td>13</td>
</tr>
<tr>
<td>2.6 Automatic Longitudinal Control</td>
<td>14</td>
</tr>
<tr>
<td>2.6.1 Car-Following Models</td>
<td>14</td>
</tr>
<tr>
<td>2.6.2 Autonomous Intelligent Cruise Control (AICC) Concept</td>
<td>15</td>
</tr>
<tr>
<td>2.6.3 Point-Following Control (PFC) Concept</td>
<td>16</td>
</tr>
<tr>
<td>2.7 Deterministic Control Systems</td>
<td>17</td>
</tr>
<tr>
<td>2.8 Vehicle Dynamics</td>
<td>18</td>
</tr>
<tr>
<td>2.8.1 Propulsive Force</td>
<td>18</td>
</tr>
<tr>
<td>2.8.2 Braking Resistance</td>
<td>19</td>
</tr>
<tr>
<td>2.8.3 Fluid Resistance</td>
<td>19</td>
</tr>
<tr>
<td>2.8.4 Rolling Resistance</td>
<td>20</td>
</tr>
<tr>
<td>2.8.5 Curve Resistance</td>
<td>20</td>
</tr>
</tbody>
</table>
5.5 Car Maneuvering 110
5.6 Platooning 117
5.7 Merging and Weaving 119
 5.7.1 Ideal Gap 121
 5.7.2 Delay-Oriented Approach 122
 5.7.3 Multiple Merge Approach 124
 5.7.4 Finite Capacity Queuing 125
 5.7.5 State Depending Queuing 128
5.8 Summary of Merging 129

6. THREE-DIMENSIONAL CONTROL MODEL 135
 6.1 Introduction 135
 6.2 Vertical Control Model 135
 6.3 Lateral Position Control 144
 6.4 Lateral Position Control on Horizontal Curve 146
 6.5 Longitudinal Control 150
 6.6 Three-Dimensional Control Model 152
 6.7 Longitudinal Control Model 156
 6.7.1 Car Maneuvering Control Model 156
 6.7.2 Spacing Dependent Control Model 159
 6.7.3 Magnetic Coupling Control Model 177
 6.7.4 Combinations of Longitudinal Control Models 177
 6.8 Vehicle Motion on Curve 183
 6.9 Integration of 3-D Models 190

7. SUMMARY AND DISCUSSION 193
 7.1 Search for Perspective 193
 7.2 Purpose, Premise and Approach 195
 7.3 Overcoming Congestion with AHS Maglev 198
 7.4 Preserving Stream Stability 200
 7.5 Recommendations for Further Studies 202
LIST OF FIGURES

Figure 2.1 Autonomous Intelligent Cruise Control 16
Figure 2.2 Point Following Control 17
Figure 2.3 AHS Guideway and freeway roadways 22
Figure 2.4 Guideway-freeway interchange 23
Figure 2.5 Guideway-guideway interchange 24
Figure 2.6 Guideway stream dynamics 26

Figure 3.1 Comparison between two types of maglev vehicles currently in use 30
Figure 3.2 Magnetic levitation system for electrodynamic levitation 30
Figure 3.3 Drag forces versus speed 32
Figure 3.4 AHS Maglev Levitation, Propulsion and Guidance 34
Figure 3.5 Decision support system elements 38
Figure 3.6 Vehicle longitudinal feedback control diagram based on GM’s car following model 40

Figure 4.1 Magway metropolitan structure 56
Figure 4.2 Application of UTPP 62
Figure 4.3 Supply performance functions for work trips 70
Figure 4.4 Supply performance functions for long trips 70
Figure 4.5 Supply performance function for trucks 71
Figure 4.6 Determination of user benefits in transportation improvement 74
Figure 4.7 User benefits for Expansion Alternative (work trips) 76
Figure 4.8 User benefits for AHS Maglev Alternative (work trips) 77
Figure 4.9 User benefits for Extension Alternative (long trips) 78
Figure 4.10 User benefits for AHS Maglev Alternative (long trips) 79
Figure 4.11a Assumed condition for Alternative 2 85
Figure 4.11b Assumed condition for Alternative 3 85
Figure 4.12 Causal diagram for nonuser benefits 89
Figure 4.13 DYNAMO program for nonuser benefits 90
Figure 4.14 Gross National Product for Alternative 1 92
Figure 4.15 Gross National Product for Alternative 2 92
Figure 4.16 Gross National Product for Alternative 3 92
Figure 4.17 Summary of comparison of nonuser benefits 93
Figure 4.18 Mode competitiveness based on travel time 96
Figure 4.19 Modal split between air travel & AHS Maglev 96

Figure 5.1 Platoon spacing on the guideway 100
Figure 5.2 Dynamics of platoon flow 101
Figure 5.3 Relationship between platoon spacing and velocity 103
Figure 5.4 Guideway practical capacities 107
Figure 5.5 Maglev traffic network (a = 3) 108
Figure 5.6 Traffic Impedance 109
Figure 5.7 Relationship between total traffic volume and guideway volume 112
Figure 5.8 Relationship between total traffic volume and freeway volume 113
Figure 5.9 Determination of variables for car maneuvering theory 115
Figure 5.10 Relationship of platoon size to longitudinal control 120
Figure 6.8 Vehicle Characteristics under Cooperative Longitudinal Control Model 184

Figure 6.9 Vehicle Motion on a 90-Degree Curve 187

Figure 6.10 Vehicle Tilting and Superelevation in a Curvature Motion 190

Figure 6.11 Distance traveled by four vehicles under integrated model 191

Figure 6.12 Headway between four vehicles under integrated model 191

Figure 6.13 First vehicle’s longitudinal velocity under integrated model 192

Figure 6.14 First vehicle’s longitudinal acceleration under integrated model 192
LIST OF TABLES

Table 4.1 Calculations of user benefit 81
Table 4.2 Calculations of costs for Alternative 3 82
Table 4.3 Calculations of Benefit Cost Ratio 83
Table 5.1 Network Assignment: Sample of Calculation (Cars, a =3) 110
Table 5.2 Results of regression analysis for relationship between q and q^g 111