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(ABSTRACT)

Solid rocket motors consist of a thin metallic or composite shell filled with a soft rubbery

propellant.  Such motors are vulnerable and prone to buckling due to sudden external

pressures produced by nearby detonation.

The stability conditions of rocket motors subjected to axisymmetric, external pressure

loading are examined.  The outer cases of motors are considered as isotropic (metallic) or

anisotropic (composite), thin and high-strength shells, which are the main structures of

interest in the stability analyses.  The inner, low-strength elastic cores are modeled as

linear and nonlinear elastic foundations.

A general, refined, Sanders' nonlinear shell theory, which accounts for geometric

nonlinearity in the form of von Karman type of nonlinear strain-displacement relations, is

used to model thin-walled, laminated, composite cylindrical shells.  The first order shear

deformable concept is adopted in the analysis to include the transverse shear flexibility of

composites.  A Winkler-type linear and nonlinear elastic foundation is applied to model

the internal foundations.  Pasternak-foundation constants are also chosen to modify the

proposed elastic foundation model for the purpose of shear interactions.  A set of

displacement-based finite element codes have been formulated to determine critical

buckling loads and mode shapes.  The effect of initial imperfections on the structural

responses are also incorporated in the formulations.

A variety of numerical examples are investigated to demonstrate the validity and

efficiency of the proposed theory under various boundary conditions and loading cases.

First, linear eigenvalue analysis is used to examine approximate buckling loads and

buckling modes as well as symmetry conditions.  An iterative solution procedure, either
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Newton-Raphson or Riks-Wempner method, is employed to trace the nonlinear

equilibrium paths for the cases of stress, buckling and post-buckling analyses.  Both ring-

and shell-type models are applied for the structural analyses with different internal elastic

foundations and initial imperfections.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, fiber-reinforced composite materials have been widely used in the

construction of solid-propellant rocket motors.  Because of their excellent advantages of

high stiffness, strength to weight ratio, and superior mechanical properties, the uses of

composites have significantly improved performance of rocket motors, and the advances

in fiber manufacturing technology have given an additional assist to their use. However,

despite numerous advantages of composites over conventional metallic materials, there are

still some areas of concern to be considered in industry, such as high cost, difficult quality

control, and complicated manufacturing processes.

From the above considerations, the efficient use of these materials requires a good

understanding of the structural response to external causes such as mechanical and

environmental loads.  In earlier researches [1, 2, 3, 4, 5], the material properties, stress,

and reliability analyses of solid-propellant rocket motors under various loading conditions

have been studied.  These reports treated the motor case as an isotropic or orthotropic

single layer or multiply-layer composite, and utilized elastic approaches, finite element

stress analysis, and experimental measurements to characterize the structures.

During a war explosions in the vicinity of motors may produce high circumferential

pressures.  Such external pressure might cause the motors to buckle and then become
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inoperational.  Therefore, the stability analyses of rocket motors under external pressure

becomes important for the safety consideration of such structures.

Rocket motors are modeled as long multi-layered cylinders with thin, high-strength outer

cases and thick, low-strength rubber-like inner layers.  In the proposed model, the case is

treated as an isotropic layer, which is made of metallic materials, or as a multiply

anisotropic composite.  The inner layer is also treated as an elastic medium.

Other than rocket motors, such thin-walled circular rings and cylindrical tubes subjected

to external pressure are commonly used in silos, water towers, oil tanks, large penstocks,

aircraft fuselages, submarines, and other aerospace and underwater structures.  The

nonlinear response and buckling analysis are of major interest in the design of such

systems.

1.2 Objectives and Present Study

The primary object of this present research is to derive specific forms of equations that

govern the nonlinear structural behavior of thin, anisotropic, circular rings and cylindrical

shells with internal elastic foundations as well as initial imperfections under various

loading and boundary conditions.  Based on the above formulations, finite element

equations are developed for both linear and nonlinear analyses.  It is of interest to examine

the nonlinear bending, buckling and initial post-buckling behavior of the proposed rocket

motor models under axisymmetric external pressure loading.  The outer cases of motors

are considered as isotropic (metallic) and anisotropic (composite) circular rings or
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cylindrical shells.  They are the main structures of interest in the stability analyses.  The

inner elastic core is modeled as linear and nonlinear elastic foundations.

For the purpose of reducing the mathematical difficulty and physical complexity of the

general nonlinear elasticity equations in polar coordinates, a refined Sanders type,

nonlinear shell theory is employed.  The model accounts for small strains, and moderately

large rotations about the normal to the shell mid-surface.  Due to non-negligible transverse

shear effects in composite materials, first order shear deformable theory is also applied to

determine global response of the structures.  A Winkler-type linear and nonlinear elastic

foundation is used to model the internal elastic medium.  Pasternak-foundation constants

are also chosen to modify the proposed elastic foundation for the purpose of shear

interactions.

The present theory is developed from an assumed displacement field, von Karman type

of nonlinear strain-displacement relations valid for large displacements, equations of

mechanics of composite materials, and the principle of virtual displacements.  With the

resulting equations as a starting point, the nonlinear governing equations, the associated

boundary conditions, and the displacement-based finite element models are formulated by

making certain simplifying assumptions.

To compare to the work of early researchers, a variety of numerical examples are

investigated to demonstrate the validity and efficiency of the proposed theory and

corresponding finite element programs under various boundary conditions and loading

cases.  Eigenvalue analysis is used to predict approximate buckling loads, mode shapes,

and symmetrical conditions by solving a set of linearized, coupled equations.  An iterative
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solution procedure, either Newton-Raphson or Riks-Wempner method, is employed to

trace the equilibrium paths for the cases of nonlinear analysis.

Several cases studies are performed numerically to determine the geometric nonlinear

behavior of general ring-type and shell-type structures, anisotropic as well as isotropic,

with and without the inclusion of internal elastic foundations and the effect of initial

imperfections, in bending, buckling and post-buckling under various boundary conditions.

The results indicate that the stability of thin-walled cylindrical structures can be

significantly improved by the application of soft, elastic liners.
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CHAPTER 2

LITERATURE REVIEW

2.1 Buckling of Circular Arches and Rings

The problems of the buckling of circular arches and rings under external pressure loading

have captured a great amount of attention in the design of aerospace and underwater

structures.  Many variations of the equilibrium and stability equations for circular rings

are available in the literature.

The early classical works have been discussed by Timoshenko and Gere [6].  More

contributions on the linear analysis of the structural behavior of circular rings under

various types of pressure loading are made by Stevens [7], Boresi [8], and Wasserman

[9].  In Smith and Simitses' [10] paper, the external pressure loadings are classified into

three different categories, which are: hydrostatic ("live"); constant-directional radial

("dead");  and centrally directed pressures.  The critical values of the buckling pressures

of a complete circular ring are different for various pressure loading conditions.  Brush and

Almroth [11] summarized linear and nonlinear equilibrium and stability equations by use

of Donnell's approximations.  They also conducted analytical solutions of the buckling

pressures of a ring on a Winkler elastic foundation.  Rehfield [12] and Naschie [13]

investigated the initial postbuckling behavior of circular rings under external pressures.  In

Katzenberger's [14] thesis, he considered the geometric nonlinearity in developing his

finite elements for arches, rings and frames.
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2.2 Shell Theories

2.2.1 Classical Shell Theories

In the past, a wide variety of different shell theories were proposed to discuss the

mechanical responses of a thin shell structures.  Love [15] is the first author who

presented the foundations of linear classical theory of thin shells by applying Kirchoff's

hypothesis, which assumes that the normals to the reference surface remain straight and

normal during the deformation.  The transverse shear strains are also neglected in his

theory.  Based on the Love-Kirchhoff linear theory, numerous works appeared in the

literature [16-23].  Sanders [20], Budiansky and Sanders [24], Budiansky and Radkowski

[25], and Koiter [26] modified Love's linear first-order theory in order to remedy some of

the inconsistencies.  Leissa [27] presented an excellent comparison of various theories

used in linear shell analysis.

Among the great amount of research in the area of geometrically nonlinear shell theories, a

simple set of nonlinear equations governing the response of cylindrical shells was first

presented by Donnell [28].  Based on LoveÕs assumptions, Vlasov [30] extended them to

the Donnell-Mushtari-Vlasov (DMV) equations for the analysis of quasi-shallow shells.

Novozhilov [31] presented another set of nonlinear equations for general shell problems.

DonnellÕs [28, 29], FluggeÕs [32], and Sanders' [33] equations are the three most

commonly employed in analysis of circular cylindrical shells.  For the purpose of

reducing complexities, there are significant differences in the formulations of strain-

displacement (kinematics) equations and the expressions for the force and moment

resultants (constitutive equations) for a thin shell structure.  In the applications of the
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above three shell theories, several publications are available.  Marquerre [34] achieved

good results on shallow cylindrical panels by using DonnellÕs equations.  Hoff [35]

presented the closed-form solutions for the linear bending response of isotropic cylinders

based on both Flugge and DMV theories.  The general linear theoretical solutions for

anisotropic cylinders were performed by Cheng and Ho [36], Jones and Morgan [37],

Jones [38], and Hennemann and Hirano [39].  Dong, Pister and Taylor [40] studied thin

shell structures made of fiber composite laminates by extension of Donnell's shallow shell

theory.  Wu [41] and Simitses, et al. [42, 43] studied the responses of laminated

cylindrical shells using various theories.

2.2.2 Shear Deformable Shell Theories

The transverse shear effects have become quite significant for thick shells and certain

composite structures.  The Love-Kirchhoff theory usually underestimates deflections and

stresses, but overestimates natural frequencies and buckling loads of shell structures [44,

45, 46].  Due to the above consideration, numerous plate and shell theories which account

for transverse shear flexibility are well documented in the literature.

Reissner [47] proposed the first stress-based shear deformable shell theory.  It assumed a

linear distribution of normal and shear stresses through the thickness of the bodies.  The

transverse normal and shear stresses may be obtained by integrating the equilibrium

equations which are derived from three-dimensional elasticity theory over the thickness.

BassetÕs [48] theory describes a displacement-based shear deformable shell theory.  In

contrast to ReissnerÕs theory, the displacement components are considered as linear
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variations across the thickness.  In the application of Basset's work, Hildebrand, Reissner

and Thomas [49] proposed a first order shear deformable theory to analyze shells.  The

first shear deformable theory was also applied for anisotropic laminated shells by Yang,

Norris and Stavsky [50].  Later on, Dong and Tso [51] also constructed their laminated

orthotropic shell theory including transverse shear deformations.  Reddy used the refined

first-order shear theory to study moderately thick laminated shells [52].  For the first

order theory, a shear correction factor is required for transverse shear terms.

To include the transverse shear deformations in the analysis of moderately thick,

anisotropic composite shells, Di Scuiva [53] and Librescu and Schmidt [54] assumed a

piecewise linear displacement field to satisfy the continuity of interlaminar shear stresses.

In higher-order, displacement-based shear deformable shell theories, the displacement

fields are interpolated in power series of the thickness coordinate and unknown

generalized displacement vectors.  Librescu and Khdeir [55] and Murthy [56] formulated

their problems in this manner.  Librescu [57] also developed a refined geometrical

nonlinear shell theory for anisotropic laminated shells by expanding the displacement

vectors with respect to the thickness coordinate.  There are numerous higher-order refined

shear deformable theories in the literature, such as third-order [58-64] and other higher-

order theories [65-69].

Usually, the first order shear deformable theories provide good predictions for global

response, such as eigen-frequencies and critical buckling loads.  Higher-order theories

generally give much more accurate results in transverse stress components and are also

particularly good for special purposes of analyses, such as the determination of the

interlaminar stresses, boundary effects and some delimitation problems.
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2.2.3 Stability of Circular Cylindrical Shells

The stability of circular cylindrical shells has been studied since the late 1800's.

However, early researchers could only solve linear buckling problems of shells by solving

a set of linear diferential equations.  The earliest solution for circular cylinders subjected

to axial compression was presented by Lorenz [70] in 1911.  Southwell [71] is the first

researcher to propose solutions for buckling loads of cylindrical shells under uniform

lateral pressure.  Flugge [72] presented a comprehensive treatment of cylindrical shell

stability by providing the theory of buckling of orthotropic cylinders, including combined

loading and cylinders subjected to bending.  The results for cylinders under torsional load

were given by Donnell [28], where a relatively simple set of equations governing the

stability condition for circular cylindrical shells was suggested.  Batdorf [73] reviewed the

early work available for buckling of thin circular cylindrical shells and also proposed a

simplified method.  Ho and Cheng [74] studied the stability of heterogeneous cylinders

under combined loading and arbitrary boundary conditions.  Seide and Weingarten [75]

assumed a linear prebuckled state, and showed that the bending buckling load of isotropic

cylinders was nearly the same as the buckling load of the same cylinder under pure axial

compression.  Holston [76] performed a similar analysis on cylinders made of laminated

composite materials.  Up to this point, their works were based on the assumptions of

small displacements and the Love-Kirchhoff hypothesis.

In their analysis of the buckling of thin-walled cylinders, von Karman and Tsien [77]

considered nonlinear terms in the kinematic relations.  Donnell [28] was the first author

who pointed out that imperfections in the shape of the shell play an important role in the

buckling analysis.  With the limitation of small deflections, some shell theories are not
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capable of solving post-buckling problems [78].  To improve the deficiencies of small

displacement theories, Naghdi [79] developed a finite deflection theory for post-buckling

analysis.  Koiter [80] published a general theory for post-buckling behavior of shells in

his dissertation.  In his work, he also showed that the buckling loads are significantly

reduced even for small imperfections.  His theory was applied by Hutchinson [81],

Budiansky and Hutchinson [82], and Arbocz and Babcock [83] to investigate

imperfection sensitivity to buckling of cylindrical shells under axial or lateral

compression.

The finite element method has become a very useful tool for the analyses of static,

stability, and vibration problems of shells.  Based on small displacement theories, Schmit

and Monforton [84], Panda and Natarajan [85], Shivakumar and Krishna Murty [86], Rao

[87], Seide and Chang [88], Hsu , Reddy, and Bert [89], Reddy [90], and Venkatesh and

Rao [91, 92] studied the structural behavior of anisotropic laminated cylindrical shells

using finite element analysis.  In the stability analysis of circular cylindrical shells, a high

geometrical nonlinearity is required in order to accurately predict the buckling loads.  The

finite element technique prossesses great advantages in those problems.  In the literature

[93, 94, 95],  the finite element method was used to analyze the nonlinear instability

problems of arches and shells.  Riks and Wempner [96] used the constant-arc-length

method to investigate the post-buckling load versus the displacement path.  Ramm [97]

and Crisfield [98] gave a good study of the commonly used algorithms for shell stability

analysis.
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2.3 Buckling of Cylindrical Shell with Elastic Core

2.3.1 Elastic Buckling of Isotropic Cylindrical Shells

Solid propellant rocket motors were modeled as thin shells with soft elastic cores.  The

stability of such rocket-motors is of great interest.  The elastic buckling behavior of thin-

walled, isotropic cylinders with elastic cores have also been investigated by many authors

under various loading configurations.  Based on linear and small-deformation theory,

Reissner [99], Zak and Bollard [100], Seide [101] , and Yao [102] presented the

stabilizing effect of cores on the bucking strength of shells under axially compressive

loads.  In Seide's work [101], the Winkler type of foundation [103] was used to model the

soft elastic core.  Yao [102] found that the radial stress of the core is the predominant

stabilizing force in bucking behavior, and also indicated that the effect of the second

parameter was very weak.  Myint [104] used a Pasternak (two-parameter) foundation to

include shear interactions.

For the problems of the stability condition under uniform radial pressure, Seide and

Weingarten [105], and Herramann and Forrestal [106] calculated the buckling pressures of

circular rings (plane stress) and long cylinders (plane strain).  Seide [101] investigated

finite length, simply-supported cylinders by using Batdorf's modified Donnell equations

and neglecting the shear stresses between the cylinder and the core.  Korbut and

Soksonov's [107] work included both the linear and nonlinear problems.

Other loading situations include circumferential band of pressure (Yao [108]), combined

loading of axial compression and uniform radial pressure (Seide [101]; Brush and Almroth
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[109]; Vlasov [110]), and combined loading of axial compression and non uniform radial

pressure or circumferential band of pressure (Brush and Almroth [109]), axially varying

circumferential thermal stress (Zak and Bollard [100]), bending (Yabuta [111]), and

torsion (Weingarten [112]).  The experimental studies can also be found in the early

publications of Kachman [113], Fitzgibbon [114], and Goree and Nash [115].  Recently,

Karam and Gibson [116] experimentally investigated the buckling resistance of silicon

rubber shells with and without compliant cores using uniaxial compression and four point

bending tests.

2.3.2 Elastic Buckling of Anisotropic Cylindrical Shells

Regarding the effect of heterogeneity and transverse shear flexibility of composite

cylindrical shells, numerous studies have been made.  Lemke [117] and Holston [118]

performed buckling analyses of core-filled orthotropic shells. Their work considered

specially orthotropic shells, but neglected shear deformable flexibility.  It has, however,

been shown that transverse shear flexibility is much more significant in composite

materials than in homogeneous, isotropic ones [119].

Based on the Timoshenko-type hypotheses, Bert [120] determined the buckling loads of

core-filled specially isotropic and orthotropic cylinders with the effect of transverse shear

deformation.  He also used a Winkler-type foundation to model the isotropic core.

Vlasov [121] analyzed the buckling behavior of an orthotropic cylindrical composite shell

strongly bonded to a solid elastic transversely isotropic core.  Malyutin et. al. [122]
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presented experimental and theoretical studies of the stability of cylindrical shells in axial

compression.

Stability of cylindrical shells with an elastic-plastic filler under axial compression was

studied by Babich and Cherevko [123].  They employed three-dimensional linearized

stability theory for both the filler and the supporting shell.

2.4 Elastic Foundations

Structures supported by elastic foundations are quite important in design for engineers.

The literature on the linear analysis of beams, rings, plates and shells continuously

supported by one or two-parameter elastic media is extensive.  In general, the analysis of

structures on an elastic foundation is based on the assumption that the reaction forces of

the foundation are proportional at every point to the deflection of the body at that

particular point.

The simplest model of formulating an elastic foundation was proposed by Winkler [103],

who assumed that the reaction force generated by an elastic base is proportional to the

deflection of the footing at that point.  This assumption is applied by Zimmermann [124]

to study the problems of railroad tracks.  Hetenyi [125, 126] developed the classical

differential equations to study beams or plates on an elastic foundation.  Even with the

simplicity of Winkler's assumption, his work showed satisfactory results in stress

analysis of beams on an elastic foundation.  Pasternak [127] introduced shear interaction

between the springs to improve the accuracy of Winkler's model.  Vlasov and Leont'ev
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[128] also included the shear interactions in the foundation and formulated their problems

by using the variational method.  They studied numerous problems involving beams,

plates, and shells on elastic foundations.  Despite the fact that a two parameter elastic

foundation gives better results, it is difficult to determine an appropriate value for the

second parameter.  Vallabhan [129, 130] showed the determination of this value in his

works.

For the nonlinear analysis of this class of structures, much less work has been covered

and discussed and, in particular, very little attention has been given to structures on a

nonlinear elastic foundation.  The relevant publications in the literature are the works of

Amazigo et al. [131], Fraser and Budiansky [132], Hui and Hansen [133], Hui [134],

Keener [135], Tvergaard and Needleman [136], Mahrenholtz et al. [137] and Reissner

[138, 139].
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CHAPTER 3

GENERAL EQUATIONS FOR CIRCULAR ARCHES AND RINGS

3.1 Introduction and Basic Assumptions

The primary object of the presented research is to investigate the buckling and initial

post-buckling behavior of rocket motors under various loading conditions.  As a first step,

one dimensional arches and rings are investigated.  The formulation of two-dimensional

elasticity theory in polar coordinates can be simplified to one-dimensional arch and ring

equations by referencing about the centroidal axes for thin elastic bodies [11].  Due to the

complexity and shear deformable flexibility of composite materials, the first order, shear

deformable, laminate theory will be applied.  Both linear and geometrically nonlinear

analyses will be undertaken.

The basic assumptions that provide a reasonable description of the proposed theory for

thin-walled arches and rings on elastic foundations are stated as follows:

1. Sections originally perpendicular to the reference axis of the ring will remain plane,

but not necessarily normal to the deformed mid-surface because of transverse 

shear considerations.

2. The transverse thickness is inextensible.

3 The ring is thin so that the ratio of thickness-to-radius is small compared to 

unity.
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4 Transverse normal stress is small compared to other normal stress components, 

and can be neglected.

5 Strains are small, but rotations of ring elements about the normal planes are 

allowed to be moderately large.

6 Material behavior is linearly elastic.

7 Only in-plane stretching and bending are considered.

8 There is a perfect bond between the ring and the elastic foundation.

3.2 Displacement Field

A laminated composite ring is composed of N orthotropic laminae of arbitrarily oriented

fiber angles with respect to the ring coordinate system as shown in Figure 3.1.  Using the

assumption of first order shear deformable theory, one can define the displacement

vectors for linear and nonlinear theories as follows:

  v(y, z) = v0(y) + z y y (y)

(3.1)

  w(y, z) = w0(y)

where v and w are the total displacements in the tangential and radial directions,

respectively;   v0 , and   w0 are the associated mid-surface displacements in the y and z

directions;   y y  is the rotation about the x-axis (in the yz plane).
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Figure 3.1- Geometry and coordinate definition of a ring
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3.3 Kinematic (Strain-Displacement) Relations

3.3.1 Linear Formulation

In association with the displacement fields defined in equation (3.1), one can obtain the

linear strain-displacement relations of a ring-type structure in an orthogonal ring

coordinate system by specializing the corresponding expressions for polar coordinates of

the Sanders kinematic relations [20] as:

  ex = 0

  ey = ey
0
+ zk y

0

  ez = 0 (3.2)

  g yz = g yz
0

  g xy = g xz = 0

where

  
ey
0
=
d v0
d y

+
w0
R

  
k y

0
=
dy y

d y
(3.3)
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g yz

0
= y y +

dw0
d y

-
v0
R

3.3.2 Non-linear Formulation [33, 10]

In the study of the nonlinear behavior, the von Karman theory [140], which assumes that

the in-plane displacements are relatively small when compared to the transverse

displacements, is applied.  It is stated that all the nonlinear terms of the Green's strain

tensor are negligible except for the term containing products of transverse deflections.  In

contrast to those of linear relations, the alternative components of strain-displacement

relations in an orthogonal ring coordinate system are:

  
ey
0
=
d v0
d y

+
w0
R

+
1
2
(
dw0
d y

-
v0
R
)2 (3.4)

3.4 Mechanical Behavior of a Lamina

Consider a composite laminate composed of N thin orthotropic layers,  each one having

constant thickness.  Fibers in each layer are oriented at an arbitrary angle with respect to

the ring coordinate system.  Utilizing the generalized Hooke's law relating stress and

strain, the general equations for a lamina of a fiber-reinforced orthotropic composite

material can be obtained as follows [141, 142]:
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where 1, 2, and 3 refer to three respective principal axes of each lamina.  In the above

equations, the   Qij are used for stiffness quantities.  Using the notation of Sloan [143],

their related equations with the lamina's material properties and geometry are shown as

follows:

  Q11 = E11 (1- n23 n32 ) / D ,

  Q22 = E22 (1- n31 n13 ) / D ,

  Q33 = E33 (1- n12 n21 ) / D ,

  Q44 = G23 ,

  Q55 = G13 ,

(3.6)

  Q66 = G12 ,

  Q12 = E11 ( n21 + n31 n23 ) / D = E22 ( n12 + n32 n13 ) / D,
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  Q13 = E11 ( n31 + n21 n32 ) / D = E22 ( n13 + n12 n23 ) / D,

  Q23 = E22 ( n32 + n12 n31 ) / D = E33( n23 + n21 n13 ) / D,

  D = 1- n12 n21 - n23 n32 - n31 n13 - 2n21 n32 n13 .

3.5 Constitutive Equations of a Laminate

The constitutive equations of each layer were defined in the preceding paragraph.

Combining and relating these to the x-y-z orthogonal coordinate system, one can easily

obtain a three dimensional constitutive equation of an arbitrarily oriented orthotropic

lamina as [141, 142]:
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where   Qij are the generalized stiffness coefficients.  The relationship between   Qij and   Qij

is also stated in the following equations:

  Q11 = Q11m
4 + 2(Q12 + 2Q66 )m

2 n2 + Q22 n
4

  Q12 = (Q11 + Q22 - 4Q66 )m
2 n2 + Q12 (m

4 + n4 )
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  Q13 = Q13 m
2 + Q23 n

2

  Q16 = - mn
3Q22 + m

3 nQ11 - mn(m
2 - n2 )(Q12 + 2Q66 )

  Q22 = Q11 n
4 + 2(Q12 + 2Q66 )m

2 n2 + Q22 m
4

  Q23 = Q13 n
2 + Q23 m

2

  Q33 = Q33 (3.8)

  Q26 = - m
3 nQ22 + mn

3Q11 + mn(m
2 - n2 )(Q12 + 2Q66 )

  Q36 = (Q13 - Q23 )mn

  Q44 = Q44 m
2 + Q55 n

2

  Q45 = (Q55 - Q44 )mn

  Q55 = Q55 m
2 + Q44 n

2

  Q66 = (Q11 + Q22 - 2Q12 )m
2 n2 + Q66 (m

2 - n2 )2

where m = cosq , n = sinq , and q  is defined positive as shown in Figure 3.2.
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Figure 3.2 - Laminae coordinate system
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The shear correlation factor   KS [144] is taken into account, so that the constitutive

equations can be rewritten in another form:
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3.6 Stress and Moment Resultants

For a laminated structure, the stress and moment resultants are obtained by integration of

the stress components in each layer or lamina across the laimnate thickness.  Since each

layer has unifom properties, one can also obtain the resultant forces and moments acting

on a laminate by performing the summations of the stress and moment resultants of every

lamina as shown in the following relations:
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where   hk  and   hk-1 are defined in Figure 3.3.

Similarily, the shear stress resultants are defined as:
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The positive directions of all the resultant forces (force per unit length) and couples

(moment per unit length) are shown in Figure 3.4.

Since the quantity z/R is small compared to unity and may be neglected, substituting the

constitutive equations into the above expressions leads to:
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and
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where Aij , Bij and Dij are given by

  

Aij = (Qij
-
h

2

h

2

ò ) dz = (Qij
k=1

N

å )k[hk - hk-1], [i, j = 1, 2, 4, 5, 6];

  

Bij = (Qij )
-
h

2

h

2

ò zdz =
1
2

(
k=1

N

å Qij)k[hk
2
- hk-1

2
], [i, j = 1, 2, 6]; (3.17)

  

Dij = (
-
h

2

h

2

ò Qij ) z2 dz =
1
3

(Qij
k=1

N

å )k[hk
3
- hk-1

3
], [i, j = 1, 2, 6].

3.7 Virtual Work Statement

Using Hamilton's principle, the virtual work statement implies that minimization of total

potential energy of the elastic body under the equilibrium state will become zero, which

indicates that

d P = d U + d V = 0, (3.18)

where P  is the total potential energy of the elastic body; U is the total strain energy of

the elastic body; V is the total potential energy of applied loads; d  denotes the variational

operator.
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The virtual strain energy of an elastic ring associated with internal stresses is given as:

  

d U = (

-
h

2

h

2

ò
W
ò syyd eyy + tyzd g yz )dzdA, (3.19)

where W  is the cross-sectional area of the elastic body along the x-y plane.

The virtual work generated by the applied loads along the domain is of the form:

  
d V = - ptotal

W
ò · d w dA (3.20)

where   ptotal  is the applied radial pressure.

Substitutions of the strain-displacement relations into the total potential energy equation,

utilizing also the expressions of stress and moment resultants, leads to the following weak

form of the virtual work statement:

  

0 = d p = (
W
ò Ny d eyy

0
+My d k y

0
+ Qyz dg yz

0
) dA - ptotal

W
ò · d w0 dA

= (
y1

y 2

ò Ny d eyy
0
+My d k y

0
+ Qyz d g yz

0
) dy - qtotaly1

y 2

ò · d w0 dA
(3.21)

where   Ny = b Ny ,   My = bMy ,   Qyz = b Qyz ,   qtotal = b ptotal , which denotes the applied

radial force per unit circumferential length, and b is the width of the ring.

Based on the linear theory, equation (3.21) can be rewritten as:
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0 = [
y1

y 2

ò Ny (
dd v0

dy
+
d w0

R
) +My (

dd y y

dy
) + Qyz (dy y +

dd w0

dy
-
d v0

R
) ] dy

- qtotaly1

y 2

ò · d w0 d y

(3.22)

Similarly, introduction of the nonlinear theory, equation (3.21) can be expressed as:

  

{
y1

y 2

ò Ny [
dd v0
dy

+
d w0
R

+ (
v0
R
-
dw0
dy
)(
d v0
R

-
dd w0
dy

)] +My (
dd y y

dy
)

+ Qyz (dy y +
dd w0
dy

-
d v0
R
) } dy - qtotaly1

y 2

ò · d w0 d y

(3.23)

3.8 Equilibrium Equations and Associated Boundary Conditions

Utilizing integration by parts on the derivatives of various displacement variables of

equations (3.22) and (3.23), one can obtain the equilibrium equations and the associated

boundary conditions by collecting terms involving   d v0,   d w0 , and   d y y , respectively as

shown in the following sub-chapter.

3.8.1 Linear Relations

Based on the linear theory as stated before, the equilibrium equations which govern the

behavior of elastic arches and rings can be expressed as:

  
d v0 · · · ·

dNy
d y

+
Qyz
R

= 0
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dw0 · · · ·

dQyz
dy

-
Ny
R

+ qtotal = 0 (3.24)

  
dy y · · · ·

dMy

d y
-Qyz = 0

The geometrical and natural boundary conditions associated with the linear theory are

specified as:

Geometrical Natural

    v0 =
)
v0     Ny =

)
Ny

    w0 =
)
w0 or     Qyz =

)
Qyz (3.25)

    y y =
)
y y     My =

)
My

3.8.2 Non-linear Relations

Similarly, applying the non-linear theory leads to the equations of equilibrium which

govern the nonlinear behavior of elastic arches and rings as:

  
d v0 · · · ·

d Ny
d y

+
Qyz
R

+
Ny
R
(
dw0
dy

-
v0
R
) = 0
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dw0 · · · ·

dQyz
dy

-
Ny
R

+
d
dy
[ Ny (

dw0
dy

-
v0
R
) ]+ qtotal = 0 (3.26)

  
dy y · · · ·

dMy

d y
-Qyz = 0

The geometrical and natural boundary conditions associated with the nonlinear theory are

specified as:

Geometrical Natural

    v0 =
)
v0     Ny =

)
Ny

    w0 =
)
w0 or

    
Qyz + Ny (

dw0
dy

-
v0
R
) =

)
Qyz (3.27)

    y y =
)
y y     My =

)
My

3.9 Weak Formulation and Finite Element Model

Introduction of the equations of stress and moment resultants of a composite, which were

represented by equations (3.14) to (3.16), the linear and nonlinear variational formulations

of the minimum potential energy statement (equations (3.22) and (3.23)) can be rewritten

in terms of displacement vectors only by using strain-displacement relations of equations

(3.2), (3.3), and (3.4), as the following equations (3.28) and (3.29), respectively:
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0 = { d p }Linear = { d U + d V}Linear

= { b [
y1

y 2

ò A22 (
d v0
dy

+
w0
R
) + B22 (

dy y

dy
) ] (

dd v0
dy

+
d w0
R

)

+ b [ B22 (
d v0
dy

+
w0
R
) + D22 (

dy y

dy
) ] (

dd y y

dy
)

+ b [ Ks A44 (y y +
dw0
dy

-
v0
R
) ] (dy y +

dd w0
dy

-
d v0
R
) } dy

+ [ Boundary Terms ] y=y1
y=y 2 - qtotaly1

y 2

ò · d w0 d y,

(3.28)

  

0 = { d p }Nonlinear = { d U + d V}Nonlinear

= { b [
y1

y 2

ò A22
d v0
d y

+
w0
R

+
1
2
( v0
R
-
dw0
d y

)2é

ë
ê

ù

û
ú + B22 (

dy y

dy
) ]

[
dd v0
dy

+
d w0
R

+ ( v0
R
-
dw0
d y

)( d v0
R

-
dd w0
d y

) ]

+ b [ B22
d v0
d y

+
w0
R

+
1
2
( v0
R
-
dw0
d y

)2é

ë
ê

ù

û
ú + D22 (

dy y

dy
) ](

dd y y

dy
)

+ b [ Ks A44 (y y +
dw0
dy

-
v0
R
) ] (dy y +

dd w0
dy

-
d v0
R
) } dy

+ [ Boundary Terms ] y=y1
y=y 2 - qtotaly1

y 2

ò · d w0 d y.

(3.29)

For a typical element, consider three displacement vectors,   v0 ,   w0, and   y y , as linear

combinations of Lagrange interpolation functions in the form of

  
v0 (y) = v jf j

(1) (y),
j=1

l

å

  
w0 (y) = wjf j

(2) (y),
j=1

m

å

(3.30)

and
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y y (y) = y yjf j

(3) (y).
j=1

n

å

where   f j
(1)

,   f j
(2)

, and   f j
(3)

 are the interpolation functions of degrees l-1, m-1, and n-1,

respectively;   v j,   wj, and   y yj are the nodal values of   v0 ,   w0, and   y y , respectively.

Substituting of equation (3.30) into (3.28), and letting   d v0 = f i
(1)

,   d w0 = f i
(2)

, and

  d y y = f i
(3)

, leads to a typical linear finite-element equation of an arch or ring structure as

follows:

  
k(e )[ ]

L
u{ } = f (e ){ } (3.31)

where 
  
u{ } = {{v0},{w0},{y y}}

T  is the displacement vector, 
  
k(e )[ ]

L
 is the linear element

stiffness matrix, and {  f (e )} is the force vector.

For the expressions in matrix form, one can also obtain an alternative form as:

  

k11[ ] k12[ ] k13[ ]
k12[ ] k22[ ] k23[ ]
k13[ ] k23[ ] k33[ ]

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú
(e )

v0{ }
w0{ }
y y{ }

ì

í
ï

î
ï

ü

ý
ï

þ
ï
=

f 1{ }
f 2{ }
f 3{ }

ì

í
ïï

î
ï
ï

ü

ý
ïï

þ
ï
ï
(e )

(3.32)

In the interest of brevity, the corresponding components of the element stiffness matrix

  
k(e )[ ]

L
 and the force vector {  f (e )} are included in Appendix A.1.

Utilizing similar procedures as those for a linear ring element, substitution of equation

(3.30) into (3.29) yields the nonlinear finite element equations as:
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( k(e)[ ]L + k(e)[ ]NL
) u{ } = f (e){ } (3.33)

where the components of k(e)[ ]L  and { f (e)} are the same as those shown in Appendix

A.1, and those of k(e)[ ]NL
 are also detailed in Appendix A.2.  Note that k(e)[ ]L  is a

symmetric matrix, and k(e)[ ]NL
 is non-symmetrical.

3.10 Consideration of Elastic Foundations

For the purpose of analyzing the buckling and initial post-buckling behavior of rocket

motors, we consider them first as circular rings completely filled with a soft elastic

medium.  The outer surface is considered as a thin composite layer, and the inner one is

treated as an infinite set of radial springs.

The nonlinear elastic foundation is used to model the inner elastic core.  Both the Winkler

and Pasternak foundations are chosen to formulate the model for the present research in

order to account for shear interactions between individual springs.  The reaction pressure

between the elastic body and the foundation is described by

  
qf = - K0w0 +( KI w0

3
- KG

d2w0
dy2

) (3.34)

where qf  is the reactive force per unit circumferential length due to the interaction

between the body and the foundation, K0 , in force per unit square length, is the linear

Winkler-foundation parameter, KI , in force per unit length to the fourth power, is the
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nonlinear Winkler-foundation parameter, and KG , in force per unit length, is the shear

parameter of a Pasternak type of foundation.

A set of concise assumptions that provide a reasonable description of the behavior of the

present elastic-foundation model is stated as follows:

1. The medium is considered to be homogeneous and isotropic.

2. The medium is always in contact with the ring before and after the body deforms.

Based on the above statements and formulation, the potential energy with the nonlinear

elastic foundation, defined in equation (3.34), is obtained as:

  
Vf = [

y1

y 2

ò
1
2
K0 w0

2
d w0 +

1
4
KI w0

4
d w0 +

1
2
KG (

dw0
dy
)2 ] dy (3.35)

The virtual strain energy associated with the elastic foundation may also be obtained as:

  
d Vf = [

y1

y 2

ò K0 w0 d w0 + KI w0
3
d w0 + KG (

dw0
dy
)(
dd w0
dy

) ] dy (3.36)

Using integration by parts on the derivatives of the displacement variable w0 , equation

(3.36) can be evaluated as:

  

d Vf = {
y1

y 2

ò ( K0 w0 + KI w03 )d w0 - ddy [KG (
dw0
dy
)]d w0 } dy

+ [ KG (
dw0
dy
)d w0 ] y=y1

y=y 2

(3.37)
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The equilibrium equation associated with   d w0 , which was expressed in equation (3.26),

is altered as:

  
dw0 ·· · ·

dQyz
dy

-
Ny
R

+
d
dy
[ Ny (

dw0
dy

-
v0
R
) ]+ qtotal = 0 (3.38)

where

  
qtotal = q0 - [ K0 w0 + KI w0

3
- KG (

d2w0
dy2

) ] (3.39)

The corresponding boundary conditions associated with the elastic foundation can also be

obtained as:

Geometrical Natural

    w0 =
)
w0 or

    
Qyz + Ny (

dw0
dy

-
v0
R
) +KG (

dw0
dy
) =

)
Qyz (3.40)

With the additional virtual strain energy, d Vf , the variational formulation over an

element, which was shown in equation (3.29), can be obtained as:

  

{
y1

y 2

ò same as the ones of equation (3.29) } dy

+ [ Boundary Terms ] y=y1
y=y 2

- { [q0 - ( K0 w0 + KI w0
3
) ]

y1

y 2

ò · d w0 - KG (
dw0
dy
)(
dd w0
dy

) } d y

(3.41)
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The additional components of the 
  
kij
22[ ] term of the finite-element equation, over an

element, with the elastic foundation can be generated as follows:

  

kij
22[ ] = {

y1

y 2

ò same as the ones of equation (A.17)

+ K0 f i
(2)
f j
(2)
+ KI w0

2
f i
(2)
f j
(2)
+ KG (

df i
(2)

dy
)(
df j

(2)

dy
) }dy

(3.42)

3.11 Linear and Nonlinear Buckling Analyses

For complex, composite, curved structures and the theory of large deformations, the

coupling relations between different displacement vectors sometimes produce significant

pre-buckling deformations before the elastic bodies even reach the buckling stage.  It is,

however, also critical for design purposes to have approximate estimates of the critical

buckling loads and modes by performing a linearized stability analysis.

Moreover, for post-buckling, imperfection sensitivity analysis, predictions of the

buckling loads and modes become extremely important for further nonlinear buckling and

post-buckling analysis.  For the analysis of elastic bodies on elastic foundations, the

estimated results of eigenvalues and vectors will provide the tendency of the deformable

behavior and the symmetric conditions before and after buckling occurs.  One can reduce

the computational effort and expense for nonlinear analysis by applying symmetry as

much as possible.
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In general, there are two major types of buckling phenomena: the bifurcation point and

limit point types of buckling.  For the determination of the bifurcation points, linear

eigenvalue analysis will be selected.  But, in most of the general cases, including the

imperfection sensitivity analysis, loss of stability occurs at a limit point rather than at a

bifurcation point.  In such cases the critical buckling load must be evaluated through

solutions of a set of nonlinear equations of equilibrium for the purpose of accuracy.  The

following sub-chapters are to explain the theories of linear and nonlinear analyses of

elastic rings.

3.11.1 Linear Eigenvalue Analysis

Under the external loading of uniform radial pressure   q0 (force per unit length), the

circumferential normal stress   b sy  generated in the ring body can be expressed as

  Ny
0
= b h sy = R(q0 ) (3.43)

where R is the radius, and h is the thickness of the ring.

The potential energy associated with an initially circumferential compressive load   Ny
0
 is

given as

  
Vp = [

y1

y 2

ò
1
2
Ny

0
(
dw0
dy

-
v0
R
)2 ] dy (3.44)

where   Ny
0
 has a positive sign for a tensile load, and negative sign for a compressive one.
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The virtual work done by an initially circumferential compressive load   Ny
0
 is also given

as

  
d Vp = [

y1

y 2

ò Ny
0
(
dw0
dy

-
v0
R
)(
dd w0
dy

-
d v0
R
) ] dy (3.45)

Integration by parts on the derivative of the displacement variable   w0 of equation (3.45)

leads to

  

d Vp = {
y1

y 2

ò -
d
dy
[Ny

0
(
dw0
dy

-
v0
R
)]d w0 } dy - { [Ny

0
(
dw0
dy

-
v0
R
)]
d v0
R
} dy

y1

y 2

ò

+ [ Ny
0
(
dw0
dy

-
v0
R
)d w0 ] y=y1

y=y 2

(3.46)

In association with   d v0 and   d w0 , respectively, the equilibrium equations governing the

stability of an elastic ring may be obtained as:

  
d v0 · · · ·

dNy
d y

+
Qyz
R

+
Ny

0

R
(
dw0
dy

-
v0
R
) = 0 (3.47)

  
dw0 · · · ·

dQyz
dy

-
Ny
R

+ qf +
d
dy
[Ny

0
(
dw0
dy

-
v0
R
)] = 0 (3.48)

where   qf  is the pressure (force per unit circumferential length) generated by the reaction

from the linear Pasternak-elastic-foundation.

The corresponding boundary conditions can also obtained as:
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Geometrical Natural

    w0 =
)
w0 or

    
Qyz + Ny

0
(
dw0
dy

-
v0
R
) +KG (

dw0
dy
) =

)
Qyz

(3.49)

The additional components of the 
  
kij
mn[ ] terms of the finite-element equations, over an

element, can be generated as follows:

  

kij
11[ ] = {

y1

y 2

ò same as the ones of equation (A.1)

+
Ny

0

R2
f i
(1)
f j
(1)
}dy

(3.50)

  

kij
12[ ] = {

y1

y 2

ò same as the ones of equation (A.2)

-
Ny

0

R
f i
(1) df j

(2)

¶ y
}dy

(3.51)

  

kij
21[ ] = {

y1

y 2

ò same as the ones of equation (A.4)

-
Ny

0

R
df i

(2)

d y
f j
(1)
}dy

(3.52)

  

kij
22[ ] = {

y1

y 2

ò same as the ones of equation (A.5)

+ K0 f i
(2)
f j
(2)
+ KG (

df i
(2)

dy
)(
df j

(2)

dy
) + Ny

0
(
df i

(2)

dy
)(
df j

(2)

dy
) }dy

(3.53)
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Substituting equations (3.50) to (3.53) into equation (3.32), for the eigenvalue analysis,

the finite element model takes the form:

  

k11[ ] k12[ ] k13[ ]
k12[ ] k22[ ] k23[ ]
k13[ ] k23[ ] k33[ ]

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú
(e )

v0{ }
w0{ }
y y{ }

ì

í
ï

î
ï

ü

ý
ï

þ
ï
= (l )

S11[ ] S12[ ] 0

S21[ ] S22[ ] 0

0 0 S33[ ]

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú
(e )

(3.54)

where the components of kij
mn  (m, n = 1, 2, 3) were defined in Appendix A.1 and

equation (3.42), which is associated with the elastic foundations,

  Sij
13
= Sij

23
= Sij

31
= Sij

32
= Sij

33
= 0, (3.55)

and

  
Sij
11[ ] = {

y1

y 2

ò
1

R2
f i
(1)
f j
(1)
}dy. (3.56)

  
Sij
12[ ] = {

y1

y 2

ò -
1
R
f i
(1) df j

(2)

dy
}dy. (3.57)

  
Sij
21[ ] = {

y1

y 2

ò -
1
R
df i

(2)

dy
f j
(1)
}dy. (3.58)

  
Sij
22[ ] = {

y1

y 2

ò (
df i

(2)

dy
)(
df j

(2)

dy
) }dy. (3.59)

Solving the eigenvalue problem defined by equations (3.54) to (3.59), one can obtain a set

of eigenvalues and the corresponding eigenvectors.  The minimum eigenvalue and the
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corresponding eigenvector provide the information of the critical buckling load and mode.

Similarly, the critical buckling pressure can also be evaluated by using the relation shown

in equation (3.43).

3.11.2 Nonlinear Buckling and Initial Post-Buckling Analysis

Note that the solutions of the eigenvalue analysis only provide an approximate estimate

of buckling loads.  In the present study, the behavior of buckling and initial post-buckling

of elastic arches and rings is governed by a set of nonlinear partial differential equations,

which were modeled as the finite element equations defined in equation (3.33).

Introducing the nonlinear elastic foundations and geometrical nonlinearity, the accuracy of

the results of the linear buckling analysis may be far different from the real ones.  So,

some numerically nonlinear schemes should be applied for solving the problems by using

incremental iterative processes.  The Newton-Raphson and Riks-Wempner methods will

be applied.  The detailed descriptions and algorithms of these schemes will be introduced

in Chapter 6.

In order to use these schemes, the tangent stiffness matrix for a nonlinear ring, apart from

equation (3.33), needs to be determined first.  The procedure of determining the tangent

stiffness matrix is shown as follows:

Let

  
R1 = kij

11
v j

j=1

l

å + kij
12
w j

j=1

m

å + kij
13
y yj - Fi

1
,

j=1

l

å (3.60)
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R2 = kij

21
v j

j=1

l

å + kij
22
w j

j=1

m

å + kij
23
y yj - Fi

2
,

j=1

l

å (3.61)

and

  
R3 = kij

31
v j

j=1

l

å + kij
32
w j

j=1

m

å + kij
33
y yj - Fi

3
.

j=1

l

å (3.62)

where   R1,   R2, and   R3 are the residual force vectors associated with three different

directions, separately; the other components of the equations (3.60) to (3.62) are defined

in Appendix A.2.

From the definition of the tangent stiffness matrix, one obtains

  
( kT )ij

pq
=
¶Rp
¶ Uq

= k ij
pq
+

¶ kij
pq

¶ Uq
Uk

k=1

3

å (3.63)

where

  Rp = ( k ij
pq
) Uq - Fp ( p, q = 1, 2, 3 ) (3.64)

Introducing equations (3.60) to (3.64), the element tangent stiffness matrix, over an

element, can be generated as:

  

kT[ ](e ) =
k11[ ] k12[ ] k13[ ]
k12[ ] k22[ ] k23[ ]
k13[ ] k23[ ] k33[ ]

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú
(e )

(3.65)
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The coefficients of the element tangent stiffness matrix are included in Appendix B.  Note

that the tangent stiffness matrix is symmetric.



4 6

CHAPTER 4

GENERAL EQUATIONS FOR CIRCULAR CYLINDRICAL SHELLS

4.1 Introduction and Basic Assumptions

It is quite difficult to solve the buckling and post-buckling problems through a direct

application of the general nonlinear theory of elasticity, owing to mathematical and

physical complexities.  The fundamental equations of three-dimensional elasticity theory

can be simplified and approximated into a two-dimensional formulation for thin-walled,

flexible bodies.  In contrast to the counterparts stated in Chapter 3, the formulation of a

general two-dimensional model for cylindrical shells based on Sanders' thin shell theory

[20, 33] will be reviewed.

Unlike the traditional classical theory, known as Love's first approximation theory [15],

the present formulation is based on the first order shear deformable theory.  It takes into

account the transverse shear flexibility of layered anisotropic composites.  To account for

the parabolic distribution of transverse shear stresses, shear correction factors are used.

Using an extension of Sanders' shell theory, a displacement-based finite element model,

for both linear and nonlinear analyses, is developed and is shown in the following sub-

chapters.  For the portion of geometrical nonlinearity, the von Karman nonlinear strains

[140] are incorporated.
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The major assumptions for supporting the present theory of thin cylindrical shells on

elastic foundations are:

1. Sections originally perpendicular to the reference axis of the ring will remain plane,

but not necessarily normal to the deformed mid-surface because of transverse 

shears.

2. The shell is sufficiently thin so that the thickness is small compared to other 

dimensions.

3. The transverse thickness is considered to be inextensible.

4. Transverse normal stress is small compared to other normal stress components, 

and can be neglected.

5. Strains are sufficiently small, and Hooke's law applies; in other words, material 

behavior is within the linearly elastic range.

6. Rotations of shell elements about the normal planes are allowed to be moderately 

large so that, in the second order terms, the derivatives of in-plane displacements 

are small compared to the derivatives of the out-of-plane displacements (the von 

Karman theory holds).

7 There is a perfect bond between the shell and the elastic foundation.

4.2 Displacement Field

The laminated cylindrical shell under consideration is composed of a finite number of

orthotropic laminae of arbitrarily oriented fiber angles with respect to the shell coordinate

system, as shown in Figure 4.1.  Based on the first order shear deformable theory, one can
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Figure 4.1 - Geometry and coordinate system of a cylindrical shell
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assume the displacement vectors at a generic point (x, y, z) in the body, for both linear

and nonlinear theories, to be of the following form:

  u(x,y, z) = u0(x,y) + z y x (x, y)

  v(x,y, z) = v0(x,y) + z y y (x, y) (4.1)

  w(x,y, z) = w0(x,y)

where u, v, and w are the total displacements, and   u0 ,   v0 , and   w0 are the associated mid-

surface displacements in the x, y, and z directions, respectively;   y x  is the rotation about

the y-axis (in the xz plane);   y y  is the rotation about the x-axis (in the yz plane).

4.3 Kinematic (Strain-Displacement) Relations

4.3.1 Linear Formulation

With the displacement fields defined in equation (4.1) and the assumptions stated in

Chapter 4.1, the linear strain-displacement relations of a cylinder in an orthogonal

cylindrical coordinate system are shown as [20, 145, 146]:

  ex = ex
0
+ zk x

0

(4.2)

  ey = ey
0
+ zk y

0
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  ez = 0

  g yz = g yz
0

(4.2)

  g xz = g xz
0

  g xy = g xy
0
+ zk xy

0

where

  
ex
0
=
¶ u0
¶ x

  
ey
0
=
¶ v0
¶ y

+
w0
R

  
g xy

0
=
¶ u0
¶ y

+
¶ v0
¶ x

  
k x

0
=
¶y x

¶ x

(4.3)

  
k y

0
=
¶y y

¶ y

  
k xy

0
=
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)

  
g yz

0
= y y +

¶ w0
¶ y

-
v0
R
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g xz

0
= y x +

¶ w0
¶ x

  
C0 = -

1
2R

in which the   C0  term is introduced by Sanders [20] and accounts for the condition of zero

strain for rigid body motion.

4.3.2 Non-linear Formulation

Under the assumptions of small strains and moderate rotations about the reference surface

of the shell, the von Karman type of nonlinear strains are considered in the study of

nonlinear behavior.  The rotation components with respect to the normal to the shell

reference surface are negligible when thin walled structures are considered; where the ratio

of thickness-to-radius is relatively small compared to unity.  The nonlinear strain-

displacement relations in an orthogonal cylindrical coordinate system are:

  
ex
0
=
¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2

  
ey
0
=
¶ v0
¶ y

+
w0
R

+
1
2
(
v0
R
-
¶ w0
¶ y

)2 (4.4)

  
g xy

0
=
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)
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where the relations of the remaining strain components are the same as the corresponding

ones of the linear theory.

4.4 Mechanical Behavior of a Lamina

It is the same as those stated in Chapter 3.4.

4.5 Constitutive Equations of a Laminate

It is the same as those stated in Chapter 3.5.

4.6 Stress and Moment Resultants

It is the same as those stated in Chapter 3.6

4.7 Virtual Work Statement

The principle of minimization of total potential energy for the present problem implies

that

  d P = d U + d V = 0 (4.5)
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where P  is the total potential energy, U is the total strain energy of the elastic body; V is

the total potential energy of applied loads; d  denotes the variational operator.

The virtual strain energy of a cylindrical shell associated with internal stresses is given as:

  

d U = (

-
h

2

h

2

ò
W
ò sxxd exx + syyd eyy + txyd g xy + tyzd g yz + txzd g xz )dzdA, (4.6)

where W  is the cross-sectional area of the elastic body along the x-y plane.

The virtual work generated by the applied loads along the domain is of the form:

  
d V = - ptotal

W
ò · d w dA (4.7)

where ptotal  is the applied radial pressure (force per unit area).

Substitutions of the strain-displacement relations into the total potential energy equation,

utilizing also the expressions of stress and moment resultants, leads to the following weak

form of the virtual work statement:

  

0 = (
W
ò Nx d exx

0
+ Ny d eyy

0
+ Nxy d g xy

0
+Mx d k x

0
+My d k y

0
+Mxy d k xy

0

+ Qyz d g yz

0
+ Qxz d g xz

0
) dA - ptotal

W
ò · d w0 dA

(4.8)

where the components of N, M, and Q are defined in Chapter 3.6.
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Introduction of equations (4.2) and (4.3), equation (4.8) can be expressed as the linear

version of weak formulation:

  

0 = [
W
ò Nx (

¶ d u0
¶ x

) + Ny (
¶ d v0
¶ y

+
d w0
R

) + Nxy (
¶ d u0
¶ y

+
¶ d v0
¶ x

)

+Mx (
¶d y x

¶ x
) +My (

¶d y y

¶ y
) +Mxy [

¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]

+ Qyz (dy y +
¶d w0
¶ y

-
d v0
R
) + Qxz (dy x +

¶d w0
¶ x

) ] dA

- ptotal
W
ò · d w0 dA

(4.9)

Similarly, introduction of the nonlinear strain-displacement equations (4.2), (4.3), and

(4.4) leads to the nonlinear weak form:

  

0 = {
W
ò Nx [ ¶ d u0¶ x

+ (
¶ w0
¶ x

) (
¶ d w0
¶ x

) ]

+ Ny [
¶ d v0
¶ y

+
d w0
R

+ (
¶w0
¶y

-
v0
R
)(
¶ dw0
¶y

-
d v0
R
) ]

  

+ Nxy [
¶ d u0
¶ y

+
¶ d v0
¶ x

+ (
¶ d w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ dw0
¶ y

-
d v0
R
) ]

+Mx (
¶d y x

¶ x
) +My (

¶d y y

¶ y
) +Mxy [

¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

) ]

+ Qyz (dy y +
¶d w0
¶ y

-
d v0
R
) + Qxz (dy x +

¶d w0
¶ x

) } dA

- ptotal
W
ò · d w0 dA

(4.10)
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4.8 Equilibrium Equations and the Associated Boundary 

Conditions

Utilizing integration by parts on the derivatives of various displacement variables of

equations (4.9) and (4.10), one can obtain the equilibrium equations and the associated

boundary conditions by collecting terms involving   d u0,   d v0,    d w0 ,   d y x  and   d y y ,

respectively, as shown in the following sub-chapter:

4.8.1 Linear Relations

Based on the linear equations of strain-displacement relations as stated before, the

equilibrium equations which govern the behavior of elastic cylindrical shells can be

expressed as:

  
d u0 · · · ·

¶ Nx
¶ x

+
¶ Nxy
¶ y

+C0

¶Mxy

¶ y
= 0

  
d v0 · · · ·

¶ Nxy
¶ x

+
¶ Ny
¶ y

-C0

¶Mxy

¶ x
+
Qyz
R

= 0

  
dw0 · · · ·

¶Qxz
¶ x

+
¶Qyz
¶ y

-
Ny
R

+ ptotal = 0 (4.11)

  
dy x · · · ·

¶Mx

¶ x
+
¶Mxy

¶ y
-Qxz = 0
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dy y · · · ·

¶Mxy

¶ x
+
¶My

¶ y
-Qyz = 0

The associated geometric and natural boundary conditions are specified as:

Geometric Natural

    u0 =
)
u0     Nn = nxNx + ny (Nxy +C0Mxy ) =

)
Nn

    v0 =
)
v0     Nt = nx (Nxy -C0Mxy ) + nyNy =

)
Nt

    w0 =
)
w0 or     Pn = nxQxz + nyQyz =

)
Pn (4.12)

    y x =
)
y x     Mn = nxMx + nyMxy =

)
Mn

    y y =
)
y y     Mt = nxMxy + nyMy =

)
Mt

where (  nx ,   ny ) denote the components of the unit outward normal vector on the

boundary.

4.8.2 Non-linear Relations

Similarly, applying the non-linear equations of strain-displacement relations leads to a set

of nonlinear governing differential equations of elastic cylindrical shells as:
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d u0 · · · ·

¶ Nx
¶ x

+
¶ Nxy
¶ y

+C0

¶Mxy

¶ y
= 0

  
d v0 · · · ·

¶ Nxy
¶ x

+
¶ Ny
¶ y

-C0

¶Mxy

¶ x
+
Qyz
R

+
Nxy
R
(
¶ w0
¶ x

) +
Ny
R
(
¶ w0
¶ y

-
v0
R
) = 0

  

dw0 · · · ·
¶
¶ x
[ Nx (

¶ w0
¶ x

) + Nxy (
¶ w0
¶ y

-
v0
R
) ] +

¶
¶ y
[ Nxy (

¶ w0
¶ x

) + Ny (
¶ w0
¶ y

-
v0
R
) ]

¶Qxz
¶ x

+
¶Qyz
¶ y

-
Ny
R

+ ptotal = 0

(4.13)

  
dy x · · · ·

¶Mx

¶ x
+
¶Mxy

¶ y
-Qxz = 0

  
dy y · · · ·

¶Mxy

¶ x
+
¶My

¶ y
-Qyz = 0

The geometric and natural boundary conditions associated with the nonlinear theory are

specified as:

Geometric Natural

    u0 =
)
u0     Nn = nxNx + ny (Nxy +C0Mxy ) =

)
Nn

    v0 =
)
v0     Nt = nx (Nxy -C0Mxy ) + nyNy =

)
Nt
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    w0 =
)
w0 or

    

Pn = nx [ Nx (
¶ w0
¶ x

) + Nxy (
¶ w0
¶ y

-
v0
R
) ]

+ ny [ Nxy (
¶ w0
¶ x

) + Ny (
¶ w0
¶ y

-
v0
R
) ]

+ nxQxz + nyQyz =
)
Pn

(4.14)

    y x =
)
y x     Mn = nxMx + nyMxy =

)
Mn

    y y =
)
y y     Mt = nxMxy + nyMy =

)
Mt

4.9 Weak Formulation and Finite Element Model

4.9.1 Linear Finite Element Equations

Introduction of the equations of stress and moment resultants of a composite, which were

represented by equations (3.14) to (3.16), the linear variational formulations of the

minimum potential energy statement (equations (4.9)) can be rewritten in terms of

displacement vectors only by using the strain-displacement relations of equations (4.2)

and (4.3) as follows:

  

0 = { d P }Linear = { d U + d V}Linear

= { d Us + d Ub + d Ubs + d UT + d V}Linear

(4.15)

where   {d Us }Linear  is the variational strain energy term caused by in-plane stretching alone,
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{d Us}Linear = {
W
ò A11 (

¶ u0
¶ x

)(
¶ d u0
¶ x

) + A22 (
¶ v0
¶ y

+
w0
R
)(
¶ d v0
¶ y

+
d w0
R
)

+ A66 (
¶ u0
¶ y

+
¶ v0
¶ x

)(
¶ d u0
¶ y

+
¶ d v0
¶ x

) + A12 (
¶ v0
¶ y

+
w0
R
)(
¶ d u0
¶ x

)

+ A12 (
¶ u0
¶ x

)(
¶ d v0
¶ y

+
d w0
R

) + A16 (
¶ u0
¶ y

+
¶ v0
¶ x

) (
¶ d u0
¶ x

)

+ A16 (
¶ u0
¶ x

)(
¶ d u0
¶ y

+
¶ d v0
¶ x

) + A26 (
¶ u0
¶ y

+
¶ v0
¶ x

)(
¶ d v0
¶ y

+
d w0
R

)

+ A26 (
¶ v0
¶ y

+
w0
R
)(
¶ d u0
¶ y

+
¶ d v0
¶ x

) }dA,

(4.16)

  {d Ub}Linear  is the variational strain energy term caused by bending alone,

  

{d Ub}Linear = {
W
ò D11 (

¶ y x

¶ x
)(
¶ d y x

¶ x
) + D22 (

¶ y y

¶ y
)(
¶ d y y

¶ y
)

+ D66 (
¶ y y

¶ x
+
¶ y x

¶ y
)[
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]

+ D12 (
¶ y x

¶ x
)(
¶ d y y

¶ y
) + D12 (

¶ y y

¶ y
)(
¶ d y x

¶ x
)

+ D16 [
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)](
¶ d y x

¶ x
)

+ D16 (
¶ y x

¶ x
) [
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]

+ D26 [
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)](
¶ d y y

¶ y
)

+ D26 (
¶ y y

¶ y
) [
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]}dA,

(4.17)

  {d Ubs }Linear  is the variational strain energy term caused by bending-stretching coupling

alone,
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{d Ubs}Linear = {
W
ò B11 (

¶ y x

¶ x
)(
¶ d u0
¶ x

) + B11 (
¶ u0
¶ x

)(
¶ dy x

¶ x
)

+ B22 (
¶ v0
¶ y

+
w0
R
)(
¶ d y y

¶ y
) + B22(

¶ y y

¶ y
)(
¶ d v0
¶ y

+
d w0
R

)

+ B66 (
¶ u0
¶ y

+
¶ v0
¶ x

)[
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]

+ B66[
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)](
¶ d u0
¶ y

+
¶ d v0
¶ x

)

+ B12 (
¶ y x

¶ x
)(
¶ d u0
¶ x

) + B12 (
¶ u0
¶ x

)(
¶ d y y

¶ y
)

+ B12 (
¶ y y

¶ y
)(
¶ d v0
¶ y

+
d w0
R
) + B12 (

¶ v0
¶ y

+
w0
R
)(
¶ d y x

¶ x
)

+ B16 [
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)] (
¶ d u0
¶ x

)

+ B16 (
¶ u0
¶ x

)[
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]

+ B16 (
¶ y x

¶ x
)(
¶ d u0
¶ y

+
¶ d v0
¶ x

) + B16 (
¶ u0
¶ y

+
¶ v0
¶ x

)(
¶ d y x

¶ x
)

+ B26 (
¶ v0
¶ y

+
w0
R
) [
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]

+ B26 [
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)](
¶ d v0
¶ y

+
d w0
R

)

+ B26 (
¶ y y

¶ y
)(
¶ d u0
¶ y

+
¶ d v0
¶ x

) + B26 (
¶ u0
¶ y

+
¶ v0
¶ x

)(
¶ d y y

¶ y
) }dA,

(4.18)

  {d UT}Linear  denotes the variational strain energy term resulting from transverse shear

deformations,
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{d UT}Linear = {
W
ò Ks A44 (y y +

¶ w0
¶ y

-
v0
R
) (dy y +

¶d w0
¶ y

-
d v0
R
)

+ Ks A55 (y x +
¶ w0
¶ x

) (dy x +
¶d w0
¶ x

)

+ Ks A45 (y x +
¶ w0
¶ x

)(dy y +
¶d w0
¶ y

-
d v0
R
)

+ Ks A45 (y y +
¶ w0
¶ y

-
v0
R
)(dy x +

¶d w0
¶ x

) }dA,

(4.19)

and   {d V}Linear   denotes the variational potential energy term due to applied loads,

  
{d V}Linear = {

W
ò ptotal · d w0} dA. (4.20)

For a typical linear shell element, the generalized displacement vectors,   u0 ,   v0 ,   w0,   y x

and   y y , are interpolated by Lagrange interpolation functions of the form of

  
u0 (x,y) = u jf j

(1) (x1,x2 ),
j=1

l

å

  
v0 (x,y) = v jf j

(2 ) (x1,x2 ),
j=1

m

å

  
w0 (x,y) = wjf j

(3) (x1,x2 ),
j=1

n

å (4.21)

  
y x (x, y) = y xjf j

(4 ) (x1,x2 ),
j=1

p

å

and
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y y (x, y) = y yjf j

(5) (x1,x2 ),
j=1

q

å

where f j
(1) , f j

(2) , f j
(3),   f j

(4 )
, and   f j

(5)
 are the interpolation functions of degrees l-1, m-1,

n-1, p-1 and q-1 respectively;   u j, vj , wj,   y xj and y yj  are the nodal values of   u0 ,   v0 ,   w0,

  y x and   y y , respectively.

Substituting equation (4.21) into (4.15), and letting   d u0 = f i
(1)

,   d v0 = f i
(2 )

,   d w0 = f i
(3)

,

  d y x = f i
(4 )

 and   d y y = f i
(5)

, leads to a typical linear finite-element equation of a

cylindrical shell element as follows:

  
k(e )[ ]

L
D{ } = f (e ){ } (4.22)

where 
  
D{ } = {{u0},{v0},{w0},{y x},{y y}}

T  is the generalized displacement vector, k(e)[ ]L
is the linear element stiffness matrix, and { f (e)} is the element force vector.

One can also obtain an alternative expression in matrix form as:

  

k11[ ] k12[ ] k13[ ] k14[ ] k15[ ]
k21[ ] k22[ ] k23[ ] k24[ ] k25[ ]
k31[ ] k32[ ] k33[ ] k34[ ] k35[ ]
k41[ ] k42[ ] k43[ ] k44[ ] k45[ ]
k51[ ] k52[ ] k53[ ] k54[ ] k55[ ]

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
(e )

u0{ }
v0{ }
w0{ }
y x{ }
y y{ }

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï

=

f 1{ }
f 2{ }
f 3{ }
f 4{ }
f 5{ }

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï
(e )

(4.23)

In the interest of brevity, the corresponding components of the element stiffness matrix

k(e)[ ]L  and the force vector { f (e)} are included in Appendix C.1.
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4.9.2 Non-linear Finite Element Equations

Utilizing similar procedures as those for a linear shell element, the nonlinear variational

formulations of the minimum potential energy statement (equations (4.10)) can be

expressed in terms of displacement vectors only by using the nonlinear strain-

displacement relations of equations (4.2), (4.3) and (4.4) as follows:

  

0 = { d P }Linear + { d P }Nonlinear

= { d U + d V}Linear + { d U}Nonlinear

= { d Us + d Ub + d Ubs + d UT + d V}Linear + { d U}Nonlinear

(4.24)

where   {d U +d V}Linear  is the variational energy, which is defined in Chapter 4.9.1,

resulting from the linear theory.

The variational form of the total potential energy associated with nonlinear terms is

obtained as:

  

{d U}Nonlinear = {
W
ò A11 [

¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 ](
¶ w0
¶ x

)(
¶ d w0
¶ x

)

+ A12 [
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 ](

¶ w0
¶ x

)(
¶ d w0
¶ x

)

+ A16 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)](

¶ w0
¶ x

)(
¶ d w0
¶ x

)

+ B11 (
¶ y x

¶ x
)(
¶ w0
¶ x

)(
¶ d w0
¶ x

) + B12 (
¶ y y

¶ y
)(
¶ w0
¶ x

)(
¶ d w0
¶ x

)

+ B16[
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)](
¶ w0
¶ x

)(
¶ d w0
¶ x

)
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+ A12 [
¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 ](
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
)

+ A22 [
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 ](

¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
)

+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)](

¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
)

+ B12 (
¶ y x

¶ x
)(
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
) + B22 (

¶ y y

¶ y
)(
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
)

+ B26[
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)](
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
)

+ A16 [
¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 ] [(
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ x

) + (
¶ w0
¶ x

)(
¶ d w0
¶ y

-
d v0
R
) ]

+ A26 [
¶ v0
¶ y

+
w0
R

+
1
2
(
v0
R
-
¶ w0
¶ y

)2 ] [(
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ x

)

+ (
¶ w0
¶ x

)(
¶ d w0
¶ y

-
d v0
R
) ]

+ A66 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)] [(

¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ x

)

+ (
¶ w0
¶ x

)(
¶ d w0
¶ y

-
d v0
R
) ]

  

+ B16 (
¶ y x

¶ x
) [(

¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ x

) + (
¶ w0
¶ x

)(
¶ d w0
¶ y

-
d v0
R
) ]

+ B26 (
¶ y y

¶ y
) [(

¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ x

) + (
¶ w0
¶ x

)(
¶ d w0
¶ y

-
d v0
R
) ]

+ B66[
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)]

[(
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ x

) + (
¶ w0
¶ x

)(
¶ d w0
¶ y

-
d v0
R
) ]

+ [
A11
2
(
¶ w0
¶ x

)2 +
A12
2
(
¶ w0
¶ y

-
v0
R
)2 + A16(

¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ] (

¶ d u0
¶ x

)

+ [
A12
2
(
¶ w0
¶ x

)2 +
A22
2
(
¶ w0
¶ y

-
v0
R
)2 + A26(

¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ](

¶ d v0
¶ y

+
d w0
R
)

+ [
A16
2
(
¶ w0
¶ x

)2 +
A26
2
(
¶ w0
¶ y

-
v0
R
)2 + A66(

¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ](

¶ d u0
¶ y

+
¶ d v0
¶ x

)

(4.25)
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+ [
B11
2
(
¶ w0
¶ x

)2 +
B12
2
(
¶ w0
¶ y

-
v0
R
)2 +B16(

¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ] (

¶ d y x

¶ x
)

+ [
B12
2
(
¶ w0
¶ x

)2 +
B22
2
(
¶ w0
¶ y

-
v0
R
)2 +B26(

¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ](

¶ d y y

¶ y
)

+ [
B16
2
(
¶ w0
¶ x

)2 +
B26
2
(
¶ w0
¶ y

-
v0
R
)2 +B66(

¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

[
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

)]}dA

Using similar procedures as those for obtaining a linear finite element equation,

substitution of equation (4.21) into (4.25) yields the nonlinear finite element equations

over a typical cylindrical shell element as:

  
( k(e )[ ]

L
+ k(e )[ ]

NL
) D{ } = f (e ){ } (4.26)

where the components of k(e)[ ]L  and { f (e)} are the same as those shown in Appendix

C.1, and those of k(e)[ ]NL
 are also detailed in Appendix C.2.  Note that k(e)[ ]L  is a

symmetric matrix, and k(e)[ ]NL
 is non-symmetric.

4.10 Consideration of Elastic Foundations

In this chapter, a solid propellant rocket motor is modeled as a thin-walled circular

cylindrical shell with inner, soft, elastic core.  As stated in Chapter 3.10, the outer case is

also treated as a layered composite cylinder.
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The Winkler-type nonlinear elastic foundation is used to model the inner elastic medium.

The Pasternak-foundation constants are also chosen to modify the present model for the

purpose of accounting for shear interactions.  The reaction pressure between the elastic

shell and the proposed foundation is mathematically described by

  
pf = - [ k0 w0 + kI w0

3
- kG (

¶ 2w0
¶ x2

+
¶ 2w0
¶ y2

) ] (4.27)

where   pf  is the reactive force per unit area resulting from the interaction between the

body and the foundation,   k0 , in force per unit volume, is the linear Winkler-foundation

parameter,   kI , in force per unit length to the fifth power, is the nonlinear Winkler-

foundation parameter, and   kG , in force per unit area, is the shear parameter of a Pasternak

type of foundation.

The assumptions that support this proposed elastic-foundation model are the same as the

ones stated in Chapter 3.10.

According to the preceding statements and formulation, the potential energy generated by

the nonlinear elastic foundation is obtained as:

  
Vf = [

W
ò
1
2
k0 w0

2
+
1
4
kI w0

4
+
1
2
kG (

¶ w0
¶ x

)2 +
1
2
kG (

¶ w0
¶ y

)2 ] dA (4.28)

The virtual strain energy associated with the elastic foundation may also be obtained as:

  
d Vf = [

W
ò k0 w0 d w0 + kI w0

3
d w0 + kG (

¶ w0

¶ x
)(
¶d w0

¶ x
) + kG (

¶ w0

¶ y
)(
¶d w0

¶ y
) ] dA (4.29)



6 7

Integrating by parts on the derivatives of the mid-surface displacement variable   w0,

equation (4.29) can be rewritten as:

  

d Vf = {
W
ò (k0 w0 + kI w0

3
) -

¶
¶ x
[kG (

¶ w0
¶ x

)] -
¶
¶ y
[kG (

¶ w0
¶ y

)] }d w0 dA

+ [
G
ò nx · kG (

¶ w0
¶ x

) + ny · kG (
¶ w0
¶ y

) ]d w0 dS

(4.30)

Due to the presence of the elastic foundation, the nonlinear equilibrium equation

associated with   d w0 , which was expressed in equation (4.13), is rewritten as:

  

dw0 · · · ·
¶
¶ x
[ Nx (

¶ w0
¶ x

) + Nxy (
¶ w0
¶ y

) ] +
¶
¶ y
[ Nxy (

¶ w0
¶ x

) + Ny (
¶ w0
¶ y

) ]

¶Qxz
¶ x

+
¶Qyz
¶ y

-
Ny
R

+ ptotal = 0

(4.31)

where

  
ptotal = p0 - [ k0 w0 + kI w0

3
- kG (

¶ 2w0
¶ x2

+
¶ 2w0
¶ y2

) ] (4.32)

The corresponding boundary conditions associated with the elastic foundation can also

obtained as:
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Geometric Natural

    w0 =
)
w0 or

    

Pn = nx [ Nx (
¶ w0
¶ x

) + Nxy (
¶ w0
¶ y

) ]

+ ny [ Nxy (
¶ w0
¶ x

) + Ny (
¶ w0
¶ y

) ]

+ nxQxz + nyQyz

+ nx · kG (
¶ w0
¶ x

) + ny · kG (
¶ w0
¶ y

)

=
)
Pn

(4.33)

With the additional virtual strain energy terms, the variational formulation over an

element, which was previously shown in equation (4.24), can be altered as:

  

0 = {
W
ò same as the ones of equation (4.24) } dA

+ {
G
ò Boundary Terms}dS

+ {
W
ò [( k0 w0 + kI w0

3
) ]· d w0 - kG (

¶ w0
¶ x

)(
¶ d w0
¶ x

) - kG (
¶ w0
¶ y

)(
¶ d w0
¶ y

) } dA

(4.34)

Over a typical shell element, the additional components of the 
  
kij
33[ ] term of the finite-

element equation with the existence of the nonlinear elastic foundation can, therefore, be

generated as follows:

  

kij
33[ ] = {

W
ò same as the ones of equation (C.13)+ equation (C.43)

+ k0 f i
(3)
f j
(3)
+ kI w0

2
f i
(3)
f j
(3)
+ kG (

¶ f i
(3)

¶ x
)(
¶ f j

(3)

¶ x
) + kG (

¶ f i
(3)

¶ y
)(
¶ f j

(3)

¶ y
) }dA

(4.35)
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4.11 Linear and Nonlinear Buckling Analyses

The major objective of the study is to determine the buckling loads and modes of a general

anisotropic cylinder on elastic foundation under various loading conditions.  As stated in

Chapter 3.11, the linear eigenvalue analysis is applied for obtaining estimated values of

the critical buckling loads and modes.  Furthermore, more accurate results can be achieved

by performing the nonlinear stability analysis.  The supporting theories for the present

research are stated in the following sub-chapters.

4.11.1 Linear Eigenvalue Analysis

In determining the state of stresses in the cylinder prior to buckling it is assumed that the

end effects can be neglected.  For the pre-buckling stage, the stresses are considered to be

pure in a membrane state.  Under uniform radial pressure   p0 (force per unit area), the

circumferential normal stress   sy  produced in the body can be expressed as

  Ny
0
= h sy = R( p0 ) (4.36)

where R is the radius, h is the thickness of the cylinder.

The potential energy associated with an initially circumferential compressive load   Ny
0
 is

given as

  
Vpy = [

W
ò
1
2
Ny

0
(
¶ w0
¶ y

-
v0
R
)2 ] dA (4.37)
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where   Ny
0
 has a positive sign for a tensile load, and negative sign for a compressive one.

Similarly, the potential energy of the cylinder resulting from an initially axial compressive

load   Nx
0
 is also given by

  
Vpx = [

W
ò
1
2
Nx

0
(
¶ w0
¶ x

)2 ] dA (4.38)

The virtual work done by these prebuckling stresses can be written as:

  

d Vp = d (Vpx + Vpy )

= [
W
ò Nx

0
(
¶ w0
¶ x

)(
¶d w0
¶ x

) + Ny
0
(
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
) ] dA

(4.39)

Integration by parts on the derivatives of the displacement variable   w0 of equation (4.39)

leads to

  

d Vp = {
W
ò -

¶
¶ x
[Nx

0
(
¶ w0
¶ x

)]d w0 } dA + [
G
ò nx · (Nx0(¶ w0¶ x

))d w0 ] dS

+ {
W
ò -

¶
¶ y
[Ny

0
(
¶ w0
¶ y

-
v0
R
)]d w0 } dA - {

W
ò [Ny

0
(
¶ w0
¶ y

-
v0
R
)]
d v0
R
} dA

+ [
G
ò ny · (Ny0(¶ w0¶ y

-
v0
R
))d w0] dS

(4.40)

In association with   d v0 and   d w0 , the equilibrium equations governing the stability of an

elastic cylindrical shell may be obtained as:
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d v0 · · · ·

¶ Nxy
¶ x

+
¶ Ny
¶ y

-C0
¶Mxy

¶ x
+
Qyz
R

+
(Ny )

0

R
(
¶ w0
¶ y

-
v0
R
) = 0 (4.41)

  
dw0 · · · ·

¶Qxz
¶ x

+
¶Qyz
¶ y

-
Ny
R

+
¶
¶ x
[Nx

0
(
¶ w0
¶ x

)]+
¶
¶ y
[Ny

0
(
¶ w0
¶ y

-
v0
R
)]+ pf = 0

(4.42)

where   pf  is the pressure resulting from the interaction between the elastic cylinder and

the linear Pasternak-elastic-foundation.

The corresponding boundary conditions can also obtained as:

Geometric Natural

    w0 =
)
w0 or

    

Pn = nxQxz + nyQyz

+ KS [ nx (
¶ w0
¶ x

) + ny (
¶ w0
¶ y

) ]

+ nx [ Nx
0
(
¶ w0
¶ x

) ]

+ ny [ Ny
0
(
¶ w0
¶ y

-
v0
R
) ]

=
)
Pn

(4.43)

The corresponding 
  
kij
mn[ ] terms of the finite-element equations, over an element,

associated with the pre-buckling stresses may be obtained as follows:
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kij
22[ ] = {

W
ò same as the ones of equation (C.7)

+
Ny

0

R2
f i
(2)
f j
(2)
}dA

(4.44)

  

kij
23[ ] = {

W
ò same as the ones of equation (C.8)

- (
Ny

0

R
) f i

(2) ¶ f j
(3)

¶ y
}dA

(4.45)

  

kij
32[ ] = {

W
ò same as the ones of equation (C.12)

- (
Ny

0

R
)
¶ f i

(3)

¶ y
f j
(2)
}dA

(4.46)

  

kij
33[ ] = {

W
ò same as the ones of equation (C.13)

+ K0 f i
(3)
f j
(3)
+ KG (

¶ f i
(3)

¶ x
)(
¶ f j

(3)

¶ x
) + KG (

¶ f i
(3)

¶ y
)(
¶ f j

(3)

¶ y
)

+ Nx
0
(
¶ f i

(3)

¶ x
)(
¶ f j

(3)

¶ x
) + Ny

0
(
¶ f i

(3)

¶ y
)(
¶ f j

(3)

¶ y
) }dA

(4.47)

Substituting equations (4.44) to (4.47) into the linear finite element equation (4.23), the

finite element model takes the form for eigenvalue analysis as:
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k11[ ] k12[ ] k13[ ] k14[ ] k15[ ]
k21[ ] k22[ ] k23[ ] k24[ ] k25[ ]
k31[ ] k32[ ] k33[ ] k34[ ] k35[ ]
k41[ ] k42[ ] k43[ ] k44[ ] k45[ ]
k51[ ] k52[ ] k53[ ] k54[ ] k55[ ]

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
(e )

u0{ }
v0{ }
w0{ }
y x{ }
y y{ }

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï

= (l )

S11[ ] 0 0 0 0

0 S22[ ] S23[ ] 0 0

0 S32[ ] S33[ ] 0 0

0 0 0 S44[ ] 0

0 0 0 0 S55[ ]

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
(e )

(4.48)

where the components of kij
mn  ( m, n = 1, 2, 3, 4, 5 ) were defined in Appendix C.1 and

equations (4.44) to (4.47), which account for the existence of linear elastic foundations;

the values of   Sij are shown as

  

Sij
11
= Sij

12
= Sij

13
= Sij

14
= Sij

15
= Sij

21
= Sij

24
= Sij

25

= Sij
31
= Sij

34
= Sij

35
= Sij

41
= Sij

42
= Sij

43
= Sij

44

= Sij
45
= Sij

51
= Sij

52
= Sij

53
= Sij

54
= Sij

55
= 0.

(4.49)

For the case of axial compression only, one can obtain the nonzero factors of the S matrix

as:

  
Sij
22[ ] = {

W
ò

1

R2
f i
(2)
f j
(2) }dA, (4.50)

  
Sij
23[ ] = {

W
ò - (

1
R
) f i

(2) ¶ f j
(3)

¶ y
}dA, (4.51)
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Sij
32[ ] = {

W
ò - (

1
R
)
¶ f i

(3)

¶ y
f j
(2) }dA, (4.52)

  
Sij
33[ ] = {

W
ò (

¶ f i
(3)

¶ x
)(
¶ f j

(3)

¶ x
) }dA. (4.53)

For the case of radial (lateral) compression only, one can also obtain the distinct nonzero

factor, apart from the case of axial compression, of the S matrix as

  
Sij
33[ ] = {

W
ò (

¶ f i
(3)

¶ y
)(
¶ f j

(3)

¶ y
) }dA. (4.54)

Similarly, for the case of both axial and lateral compression, one may obtain the different

nonzero component as

  
Sij
33[ ] = {

W
ò (

¶ f i
(3)

¶ x
)(
¶ f j

(3)

¶ x
) + f 0(

¶ f i
(3)

¶ y
)(
¶ f j

(3)

¶ y
) }dA, (4.55)

where   f 0 , a fraction factor between   Nx
0
 and   Ny

0
, is described by the following relation:

  Ny
0
= f 0 Nx

0
(4.56)

Based on equations (4.48) to (4.56), one can obtain a set of eigenvalues and the

corresponding eigenvectors for various loading cases.  The minimum eigenvalue and the

corresponding eigenvector provide the information of the critical buckling load and mode.
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4.11.2 Nonlinear Buckling and Initial Post-Buckling Analysis

With the additional terms caused by the nonlinear elastic foundations, which were shown

in equation (4.26), the behavior of buckling and post-buckling of elastic cylindrical shells

is purely nonlinear and could be described by a set of nonlinear partial differential

equations, which were modeled as the finite element equations (4.26).  Some nonlinear

finite element solution procedures have to be applied in order to solve the problems by

using incremental iterative processes.  For the present research, the Newton-Raphson and

Riks-Wempner methods will be chosen.  The theories and algorithms of using these

numerical procedures will be mentioned, in detail, in Chapter 6.

The first step in applying these schemes is to determine the tangent stiffness matrix for a

nonlinear cylindrical shell element.  Similarly to the ones stated in Chapter 3.11.2, the

procedure of obtaining the tangent stiffness matrix is shown as follows.

Let

  
R1 = kij

11
u j

j=1

l

å + kij
12
v j

j=1

m

å + kij
13
wj

j=1

n

å + kij
14
y xj

j=1

p

å + kij
15
y yj - Fi

1
,

j=1

q

å (4.57)

  
R2 = kij

21
u j

j=1

l

å + kij
22
v j

j=1

m

å + kij
23
wj

j=1

n

å + kij
24
y xj

j=1

p

å + kij
25
y yj - Fi

2
,

j=1

q

å (4.58)

  
R3 = kij

31
u j

j=1

l

å + kij
32
v j

j=1

m

å + kij
33
wj

j=1

n

å + kij
34
y xj

j=1

p

å + kij
35
y yj - Fi

3
,

j=1

q

å (4.59)
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R4 = kij

41
u j

j=1

l

å + kij
42
v j

j=1

m

å + kij
43
wj

j=1

n

å + kij
44
y xj

j=1

p

å + kij
45
y yj - Fi

4
,

j=1

q

å (4.60)

and

  
R5 = kij

51
u j

j=1

l

å + kij
52
v j

j=1

m

å + kij
53
wj

j=1

n

å + kij
54
y xj

j=1

p

å + kij
55
y yj - Fi

5
.

j=1

q

å (4.61)

where R1, R2 , R3 ,   R4  and   R5 are the residual force vectors associated with five different

directions, separately; the components of the element stiffness matrix are included in

Appendix C.2.

Evaluating the tangent stiffness matrix, one obtains

  
( kT )ij

rs
=
¶Rr
¶ Us

= k ij
rs
+

¶ kij
rs

¶ Us
Uk

k=1

5

å (4.62)

where

  Rr = ( k ij
rs
) Us - Fr ( r, s = 1, 2, 3,4,5 ) (4.63)

Introducing equations (4.57) to (4.63), the element tangent stiffness matrix, over a shell

element, can be generated as:
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kT[ ](e ) =

kT
11[ ] kT

12[ ] kT
13[ ] kT

14[ ] kT
15[ ]

kT
12[ ] kT

22[ ] kT
23[ ] kT

24[ ] kT
25[ ]

kT
13[ ] kT

23[ ] kT
33[ ] kT

34[ ] kT
35[ ]

kT
14[ ] kT

24[ ] kT
34[ ] kT

44[ ] kT
45[ ]

kT
15[ ] kT

25[ ] kT
35[ ] kT

45[ ] kT
55[ ]

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
(e )

(4.64)

The coefficients of the element tangent stiffness matrix are included in Appendix D.  Note

that the tangent stiffness matrix is symmetric.
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CHAPTER 5

INFLUENCE OF INITIAL IMPERFECTIONS

5.1 Introduction

In the preceding chapters the geometries of elastic rings and cylindrical shells were

considered to be perfectly round along the circumferential and straight along the axial

directions before applying any mechanical loads.  Of course, no structures are perfectly

round or straight in our real world.  Initial imperfections were included to describe small

deviations from the assumed perfect shape of the body.  It was shown in the literature

[80, 11] that the existence of initial imperfections causes significant reduction in the

critical buckling loads for some particular structures when theoretical results are compared

with experimental ones.  In 1941, Von Karman and Tsien [77] performed an analysis of

the post-buckling equilibrium of axially compressed cylinders.  It has been pointed out

that the secondary equilibrium path, which plays a very important role in governing the

load-displacement curve beyond the buckling point, drops sharply downward from the

bifurcation point.  The consideration of initial imperfections becomes critical for the

determination of the stability condition and the analysis of post-buckling behavior.

Let an imperfection function describe a known, small, imperfection.  The main

assumptions for applying this function in further derivation of the theory are:

1 An imperfection function is defined as a slight deviation of the centroidal (or 

middle) surface from a perfect structure.
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2 The elastic body with an initial imperfection is assumed to be stress-free before 

applying any external loading.

3 The magnitude of an initial imperfect function is also assumed to be a small 

fraction of the ring- or shell-wall thickness.

In this chapter, the theories for rings and cylindrical shells involving small imperfections

are developed.  The finite element equations based on the assumed initially imperfect

models will also be derived and stated in the following sections.

5.2 Theory for Rings with Initial Imperfections

As an example of initial imperfection analysis, we consider the slight imperfection along

the circumferential direction of an elastic ring.  Introducing an initial imperfection

function, which is expressed as   w0 (y), one can define the amplitude of small deviations

of the undeformed, imperfect ring mid-surface, from a perfectly circular shape.

5.2.1 Displacement Fields

With the addition of the initial imperfection function   w0 (y), the displacement fields,

which were expressed by equation (3.1), can be rewritten as

  v(y, z) = v0(y) + z y y (y)

(5.1)
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  w(y, z) = w0(y) + w0 (y)

where v, w,   v0 ,   w0 and   y y  were defined in Chapter 3.2.

5.2.2 Kinematic (Strain-Displacement) Relations

Introducing the initial imperfection function, the strain-displacement relation, previously

defined in equations (3.3) and (3.4), is replaced by the following form:

  
ey
0
=
d v0
d y

+
w0
R

+
1
2
( dw0
d y

-
v0
R

)2 + ( dw0
d y

-
v0
R

)( dw0
dy

) (5.2)

where   g yz
0
 and   k y

0
 remain the same as those defined in equation (3.3).

5.2.3 Virtual Work Statement

The principle of virtual work for an imperfect ring was already stated and defined through

equations (3.18) to (3.20).  Introduction of the newly derived equation of displacement

fields, equation (5.1), and strain-displacement relations, equation (5.2), the weak form of

the virtual statement associated with the initially imperfect ring can be derived and is

obtained as follows:



8 1

  

0 = d P = d U + d V

= (
y1

y 2

ò Ny d eyy
0
+My dk y

0
+ Qyz dg yz

0
) dy - qtotaly1

y 2

ò · d wdA

= {
y1

y 2

ò Ny
d v0
d y

+
w0
R

+
1
2
( dw0
d y

-
v0
R

)2 + ( dw0
d y

-
v0
R

)( dw0
dy

)
é

ë
ê

ù

û
ú

+ My (
dd y y

dy
) + Qyz (dy y +

dd w0
dy

-
d v0
R
) } dy - qtotaly1

y 2

ò · d w0 dA

(5.3)

Using integration by parts on the displacement variables separately, one can obtain three

new equilibrium equations and the corresponding boundary conditions by collecting terms

involving   d v0,   d w0 , and   d y y , respectively, as shown in the following sub-chapter.

5.2.4 Equilibrium Equations and Associated Boundary Conditions

Based on the principle of the minimum potential energy, as stated in the previous

paragraph, the equilibrium equations which govern the behavior of imperfect, elastic

arches and rings can be given by:

  
d v0 · · · ·

d Ny
d y

+
Qyz
R

+
Ny
R
(
dw0
d y

-
v0
R
) +
Ny
R
(
dw0
dy

) = 0

  
dw0 · · · ·

dQyz
dy

-
Ny
R

+
d
dy
[ Ny (

dw0
d y

-
v0
R
) ]+

d
dy
[ Ny (

dw0
dy

) ] + qtotal = 0 (5.4)

  
dy y · · · ·

dMy

d y
-Qyz = 0
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The geometric and natural boundary conditions associated with the linear theory are

specified as:

Geometrical Natural

    v0 =
)
v0     Ny =

)
Ny

    w0 =
)
w0 or

    
Qyz + Ny [ d (w0 + w0 )dy

-
v0
R

] =
)
Qyz (5.5)

    y y =
)
y y     My =

)
My

5.2.5 Weak Formulation and Finite Element Model

Introduction of the principle of virtual work statement, expressed in equation (5.3),

combined with the equations of stress and moment resultants of a composite, which were

shown on equations (3.14) to (3.16), and the equations of strain-displacement relations,

which are written as equations (3.2), (3.3) and (5.2), one obtains the variational weak-

form of a nonlinear elastic ring with initial imperfections over an element as:

  

0 = d P = d U + d V

= { b [
y1

y 2

ò A22
d v0
d y

+
w0
R

+
1
2
( dw0
d y

-
v0
R

)2 + ( dw0
d y

-
v0
R

)( dw0
dy

)
é

ë
ê

ù

û
ú + B22 (

dy y

dy
) ]

[
dd v0
dy

+
d w0
R

+ ( dw0
d y

-
v0
R

)( dd w0
d y

-
d v0
R

) + ( dd w0
d y

-
d v0
R

)( dw0
dy

)]
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+ b [ B22
d v0
d y

+
w0
R

+
1
2
( dw0
d y

-
v0
R

)2 + ( dw0
d y

-
v0
R

)( dw0
dy

)
é

ë
ê

ù

û
ú

+ D22 (
dy y

dy
) ](

dd y y

dy
) + b [ Ks A44 (y y +

dw0
dy

-
v0
R
) ] (dy y +

dd w0
dy

-
d v0
R
) } dy

+ [ Boundary Terms ] y=y1
y=y 2 - qtotaly1

y 2

ò · d w0 d y

(5.6)

Let four displacement vectors,   v0 ,   w0,   y y , and   w0, be represented in terms of Lagrange

interpolation functions in the forms of

  
v0 (y) = v jf j

(1) (y),
j=1

l

å

  
w0 (y) = wjf j

(2) (y),
j=1

m

å

  
y y (y) = y yjf j

(3) (y),
j=1

n

å (5.7)

and

  
w0 (y) = wjf j

(4) (y).
j=1

p

å

where   f j
(1)

,   f j
(2)

,   f j
(3)

, and   f j
(4)

 are the interpolation functions of degrees l-1, m-1, n-1,

and p-1, respectively.
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Substitution of equation (5.7) into (5.6), and letting   d v0 = f i
(1)

,   d w0 = f i
(2)

, and

  d y y = f i
(3)

 leads to a typical finite-element equation of initially imperfect arch or ring

structures, over an element, as follows:

  
k(e )[ ]

Imperfect
u{ } = f (e ){ } (5.8)

where 
  
u{ } = {{v0},{w0},{y y},{w0}}

T  is the displacement vector, 
  
k(e )[ ]

Imperfect
 is the

element stiffness matrix, and {  f (e )} is the element nodal force vector.

Equation (5.8) can also be expressed in matrix form as follows:

  

k11[ ] k12[ ] k13[ ] k14[ ]
k21[ ] k22[ ] k23[ ] k24[ ]
k31[ ] k32[ ] k33[ ] k34[ ]
k41[ ] k42[ ] k43[ ] k44[ ]

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú (e )

v0{ }
w0{ }
y y{ }
w0{ }

ì

í

ï
ï

î

ï
ï

ü

ý

ï
ï

þ

ï
ï

=

f 1{ }
f 2{ }
f 3{ }
f 4{ }

ì

í

ï
ï

î

ï
ï
ï

ü

ý

ï
ï

þ

ï
ï
ï
(e )

(5.9)

The additional components of the element stiffness matrix 
  
k(e )[ ]

Imperfect
 and the force

vector {  f (e )} are stated in Appendix E.  All the other coefficients are the same as the ones

defined in Appendix A.2.  Note that the presence of the imperfection function introduces

the additional terms corresponding to the the fourth row and column.

Since the initial imperfection over the entire domain is prescribed, the terms associated

with   w0 can be considered and entered as boundary terms, and moved to the right-hand

side vector of equation (5.9).  The equation of the finite element model of an initially

imperfect ring is, therefore, rewritten as:
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k11[ ] k12[ ] k13[ ]
k21[ ] k22[ ] k23[ ]
k31[ ] k32[ ] k33[ ]

ì

í
ïï

î
ï
ï

ü

ý
ïï

þ
ï
ï
(e )

v0{ }
w0{ }
y y{ }

ì

í
ï

î
ï

ü

ý
ï

þ
ï
=

f 1{ } - k14[ ] w0{ }
f 2{ } - k24[ ] w0{ }
f 3{ } - k34[ ] w0{ }

ì

í
ïï

î
ï
ï

ü

ý
ïï

þ
ï
ï
(e )

(5.10)

where the components of equation (5.10) are identical to those of equation (5.9).

5.2.6 Nonlinear Finite Element Analysis of Imperfect Rings

For the purpose of solving the nonlinear behavior and stability condition of imperfect ring

structures, which are governed by equation (5.9) and (5.10), some iterative nonlinear

methods will be required.  Similarly, as stated in Chapter 3.11.2, the determination of the

element tangent stiffness matrix will be the priority step for applying these nonlinear

schemes.  The procedures are stated as follows:

Let

  
R1 = kij

11
v j

j=1

l

å + kij
12
w j

j=1

m

å + kij
13
y yj - Fi

1
+ kij

14
w j

j=1

p

å ,
j=1

l

å (5.11)

  
R2 = kij

21
v j

j=1

l

å + kij
22
w j

j=1

m

å + kij
23
y yj - Fi

2
+ kij

24
w j

j=1

p

å ,
j=1

l

å (5.12)

and

  
R3 = kij

31
v j

j=1

l

å + kij
32
w j

j=1

m

å + kij
33
y yj - Fi

3
+ kij

34
w j

j=1

p

å .
j=1

l

å (5.13)
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where   R1,   R2, and   R3 are the residual force vectors associated with three different

directions, respectively; the other components of equations (5.11) to (5.13) are defined in

Appendix E.

From the definition of the tangent stiffness matrix, one obtains

  
( kT )ij

pq
=
¶Rp
¶ Uq

= k ij
pq
+

¶ kij
pq

¶ Uq
Uq

q=1

3

å +
¶ kij

p4

¶ Uq
U4 (5.14)

where

  Rp = ( k ij
pq
) Uq + ( k ij

p4
) U4 - Fp ( p, q = 1, 2, 3 ) (5.15)

Introducing equations (5.11) into (5.15), the element tangent stiffness matrix can be

generated as:

  

kT
(e )[ ]

Imperfect
=

kT
11[ ] kT

12[ ] kT
13[ ]

kT
12[ ] kT

22[ ] kT
23[ ]

kT
13[ ] kT

23[ ] kT
33[ ]

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
(e )

(5.16)

The coefficients of the element tangent stiffness matrix are included in Appendix F.
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5.3 Theory for Cylindrical Shells with Initial Imperfections

For the purpose of analysis of an initially imperfect cylinder, an initial imperfection

function   w0 (x,y) is chosen as a known function to represent small deviations from a

perfectly circular cylindrical shape.  Based on the existence of an initial imperfection

function, the refined theory and finite element model, apart from those stated in Chapter

4, are determined and derived in the following sub-chapters.

5.3.1 Displacement Fields

With the additional terms caused by the presence of the initial imperfection function

  w0 (x,y), the displacement fields can be rewritten as

  u(x,y, z) = u0(x,y) + z y x (x, y)

  v(x,y, z) = v0(x,y) + z y y (x, y) (5.17)

  w(x,y, z) = w0(x,y) + w0 (x,y)

where u, v, w,   u0 ,   v0 ,   w0,   y x  and   y y  were defined in Chapter 4.2.
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5.3.2 Kinematic (Strain-Displacement) Relations

Introducing an initial imperfection function, the strain-displacement relations, previously

defined in equation (4.4) for a perfect cylindrical shell, are replaced by the following

forms:

  
ex
0
=
¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

)

  
ey
0
=
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

) (5.18)

  
g xy

0
=
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)

The rest of the strain-displacement relations remain the same as those defined in

equations (4.2) and (4.3).

5.3.3 Virtual Work Statement

Introducing newly derived equations of displacement fields (equation (5.17)) and strain-

displacement relations (equation (5.18)) for an imperfect, nonlinear cylindrical shell, the

weak form derived from the principle of the virtual work can be obtained as follows:
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0 = d P = d U + d V

= (
W
ò Nx d exx

0
+ Ny d eyy

0
+ Nxy d g xy

0
+Mx d k x

0
+My d k y

0
+Mxy d k xy

0

+ Qyz d g yz

0
+ Qxz d g xz

0
) dA - ptotal

W
ò · d w0 dA

= {
W
ò Nx [

¶ d u0
¶ x

+ (
¶ w0
¶ x

) (
¶ d w0
¶ x

) + (
¶ d w0
¶ x

)(
¶ w0
¶ x

) ]

+ Ny [
¶ d v0
¶ y

+
d w0
R

+ (
¶w0
¶y

-
v0
R
)(
¶ dw0
¶y

-
d v0
R
) + (

¶ d w0
¶ y

-
d v0
R
)(
¶ w0
¶ y

) ]

+ Nxy [
¶ d u0
¶ y

+
¶ d v0
¶ x

+ (
¶ d w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ dw0
¶ y

-
d v0
R
)

+ (
¶ d w0
¶ x

)(
¶ w0
¶ y

) + (
¶ d w0
¶ y

-
d v0
R
)(
¶ w0
¶ x

) ]

+Mx (
¶d y x

¶ x
) +My (

¶d y y

¶ y
) +Mxy [

¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

) ]

+ Qyz (dy y +
¶d w0
¶ y

-
d v0
R
) + Qxz (dy x +

¶d w0
¶ x

) } dA

- ptotal
W
ò · d w0 dA

(5.19)

Using integration by parts on various displacement variables individually and also

applying the Gauss identity theory, one can obtain five new equilibrium equations and

the corresponding boundary conditions which govern the nonlinear behavior of an initially

imperfect cylindrical shell by collecting terms involving   d u0,   d v0,   d w0 ,   d y x  and   d y y ,

respectively.  The newly derived equations of equilibrium and boundary conditions are

stated in Chapter 5.3.4.
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5.3.4 Equilibrium Equations and Associated Boundary Conditions

According to the statement of the minimum potential energy theory and the procedures

stated in the preceding sub-chapter, the refined equilibrium equations which govern the

behavior of imperfect, elastic cylindrical shells are obtained as:

  
d u0 · · · ·

¶ Nx
¶ x

+
¶ Nxy
¶ y

+C0
¶Mxy

¶ y
= 0

  

d v0 · · · ·
¶ Nxy
¶ x

+
¶ Ny
¶ y

-C0
¶Mxy

¶ x
+
Qyz
R

+
Nxy
R
(
¶ w0
¶ x

+
¶ w0
¶ x

)

+
Ny
R
(
¶ w0
¶ y

+
¶ w0
¶ y

-
v0
R
) = 0

  

dw0 · · · ·
¶
¶ x
[ Nx (

¶ w0
¶ x

+
¶ w0
¶ x

) + Nxy (
¶ w0
¶ y

+
¶ w0
¶ y

-
v0
R
) ]

+
¶
¶ y
[ Nxy (

¶ w0
¶ x

+
¶ w0
¶ x

) + Ny (
¶ w0
¶ y

+
¶ w0
¶ y

-
v0
R
) ]

¶Qxz
¶ x

+
¶Qyz
¶ y

-
Ny
R

+ ptotal = 0

(5.20)

  
dy x · · · ·

¶Mx

¶ x
+
¶Mxy

¶ y
-Qxz = 0

  
dy y · · · ·

¶Mxy

¶ x
+
¶My

¶ y
-Qyz = 0

The geometrical and natural boundary conditions related to the initial imperfection theory

are specified as:
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Geometric Natural

    u0 =
)
u0     Nn = nxNx + ny (Nxy +C0Mxy ) =

)
Nn

    v0 =
)
v0     Nt = nx (Nxy -C0Mxy ) + nyNy =

)
Nt

    w0 =
)
w0 or

    

Pn = nx [ Nx (
¶ w0
¶ x

+
¶ w0
¶ x

)

+ Nxy (
¶ w0
¶ y

+
¶ w0
¶ y

-
v0
R
) ]

+ ny [ Nxy (
¶ w0
¶ x

+
¶ w0
¶ x

)

+ Ny (
¶ w0
¶ y

+
¶ w0
¶ y

-
v0
R
) ]

+ nxQxz + nyQyz =
)
Pn

(5.21)

    y x =
)
y x     Mn = nxMx + nyMxy =

)
Mn

    y y =
)
y y     Mt = nxMxy + nyMy =

)
Mt

5.3.5 Weak Formulation and Finite Element Model

Introducing the principle of virtual work statement, expressed in equation (5.19),

combined with the equations of stress and moment resultants of a composite, shown in

equations (3.14) to (3.16), and the equations of strain-displacement relations, stated in

equations (4.2), (4.3) and (5.18), the displacement-based, variational weak-form of a
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nonlinear, elastic cylindrical shell involving initial imperfections over an element result in

the following equations:

  

0 = { d P }Perfect + { d P }Imperfect

= { d U + d V}Perfect + { d U}Imperfect

= { d Us + d Ub + d Ubs + d UT + d V}Perfect + { d U}Imperfect

(5.22)

where   {d U +d V}Perfect  is the variational energy resulting from the theory for a perfectly

circular cylindrical shell, and is also defined in Chapter 4.

The variational form of the total potential energy related to initially imperfect terms is

given as follows:

  

{d U}Imperfect = {
W
ò {A11 [ ¶ u0¶ x

+
1
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

)]

+ A12 [
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
d v0
R
)(
¶ w0
¶ y

)]

+ A16 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)+ (

¶ w0
¶ x

)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
d v0
R
)(
¶ w0
¶ x

)]

+ B11 (
¶ y x

¶ x
) + B12 (

¶ y y

¶ y
)+ B16[

¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)]}(¶ d w0
¶ x

)(
¶ w0
¶ x

)

+ { A12 [ ¶ u0¶ x
+
1
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

)]

+ A22 [
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

)]

+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)+ (

¶ w0
¶ x

)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)]

+ B12 (
¶ y x

¶ x
) + B22 (

¶ y y

¶ y
)+ B26[

¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)]}
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(
¶ d w0
¶ y

-
d v0
R
)(
¶ w0
¶ y

) + { A16 [ ¶ u0¶ x
+
1
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

)]

+ A26 [
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

)]

+ A66 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)+ (

¶ w0
¶ x

)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)]

+ B16 (
¶ y x

¶ x
) + B26 (

¶ y y

¶ y
)+ B66[

¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

)]}

[(
¶ d w0
¶ x

)(
¶ w0
¶ y

) + (
¶ d w0
¶ y

-
d v0
R
)(
¶ w0
¶ x

)]

+ [ A11(
¶ w0
¶ x

)(
¶ w0
¶ x

) + A12(
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

)

+ A16 ((¶ w0¶ x
)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)) ] [¶ d u0
¶ x

+ (
¶ w0
¶ x

)(
¶ d w0
¶ x

)]

+ [ A12(
¶ w0
¶ x

)(
¶ w0
¶ x

) + A22(
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

) + A26 ((¶ w0¶ x
)(
¶ w0
¶ y

)

+ (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)) ] [¶ d v0
¶ y

+
d w0
R

+ (
¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ y

-
d v0
R
)]

+ [ A16(
¶ w0
¶ x

)(
¶ w0
¶ x

) + A26(
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

)

+ A66 ((¶ w0¶ x
)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)) ]

[
¶ d u0
¶ y

+
¶ d v0
¶ x

+ (
¶ w0
¶ x

)(
¶ d w0
¶ y

-
d v0
R
) + (

¶ w0
¶ y

-
v0
R
)(
¶ d w0
¶ x

)]

+ [ B11(
¶ w0
¶ x

)(
¶ w0
¶ x

) + B12(
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

)

+ B16 ((¶ w0¶ x
)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)) ] (¶ d y x

¶ x
)

+ [ B12(
¶ w0
¶ x

)(
¶ w0
¶ x

) + B22(
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

)

+ B26 ((¶ w0¶ x
)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)) ] (¶ d y y

¶ y
)

+ [ B16(
¶ w0
¶ x

)(
¶ w0
¶ x

) + B26(
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

)
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+ B66 ((¶ w0¶ x
)(
¶ w0
¶ y

) + (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

)) ]

[
¶d y x

¶ y
+
¶d y y

¶ x
-C0(

¶ d v0
¶ x

-
¶ d u0
¶ y

) ] }dA

(5.23)

As in the case of perfect cylindrical shells, the mid-surface displacements (  u0 ,   v0 ,   w0,

  y x ,   y y ,   w0) over an element are expanded as linear combinations of the two dimensional

Lagrange interpolation functions in the forms of

  
u0 (x,y) = u jf j

(1) (x1,x2 ),
j=1

l

å

  
v0 (x,y) = v jf j

(2) (x1,x2 ),
j=1

m

å

  
w0 (x,y) = wjf j

(3) (x1,x2 ),
j=1

n

å

(5.24)

  
y x (x, y) = y xjf j

(4) (x1,x2 ),
j=1

p

å

  
y y (x, y) = y yjf j

(5) (x1,x2 ),
j=1

q

å

and

  
w0 (x,y) = wjf j

(6) (x1,x2 ).
j=1

r

å
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where   f j
(1)

,   f j
(2)

,   f j
(3)

,   f j
(4)

,   f j
(5)

 and   f j
(6)

 are the interpolation functions of degrees l-1,

m-1, n-1, p-1 q-1 and r-1, respectively;   u j ,   v j,   wj,   y xj,   y yj, and   wj  are the nodal values.

Substituting equation (5.24) into equation (5.23), and letting   d u0 = f i
(1)

,   d v0 = f i
(2)

,

  d w0 = f i
(3)

,   d y x = f i
(4)

 and   d y y = f i
(5)

, leads to a typical finite-element equation of an

initially imperfect cylindrical shell over an element as follows:

  
k(e )[ ]

Imperfect
D{ } = f (e ){ } (5.25)

where 
  
D{ } = {{u0},{v0},{w0},{y x},{y y}}

T  is the generalized displacement vector,

  
k(e )[ ]

Imperfect
 is an element stiffness matrix, and {  f (e )} is the element nodal force vector,

which is defined in Chapter 4.

For the convenience of computer code implementation, equation (5.25) can be rewritten in

matrix form as:

  

k11[ ] k12[ ] k13[ ] k14[ ] k15[ ] k16[ ]
k21[ ] k22[ ] k23[ ] k24[ ] k25[ ] k26[ ]
k31[ ] k32[ ] k33[ ] k34[ ] k35[ ] k36[ ]
k41[ ] k42[ ] k43[ ] k44[ ] k45[ ] k46[ ]
k51[ ] k52[ ] k53[ ] k54[ ] k55[ ] k56[ ]
k61[ ] k62[ ] k63[ ] k64[ ] k65[ ] k66[ ]

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
(e )

u0{ }
v0{ }
w0{ }
y x{ }
y y{ }
w0{ }

ì

í

ï
ï
ïï

î

ï
ï
ï
ï

ü

ý

ï
ï
ïï

þ

ï
ï
ï
ï

=

f 1{ }
f 2{ }
f 3{ }
f 4{ }
f 5{ }
f 6{ }

ì

í

ï
ï
ï
ï

î

ï
ï
ï
ï

ü

ý

ï
ï
ï
ï

þ

ï
ï
ï
ï
(e )

(5.26)

The additional components of the element stiffness matrix 
  
k(e )[ ]

Imperfect
 and the force

vector {  f (e )} are stated in Appendix G.  All the other coefficients are the same as the
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ones defined in Appendix C.2.  Note that the presence of the imperfection function

introduces the additional terms corresponding to the sixth row and column.

Since the initial imperfection over the entire domain is prescribed, the terms associated

with   w0 can be considered and entered as boundary terms, and moved to the right-hand

side vector of equation (5.26).  The equation of the finite element model of an initially

imperfect cylindrical shell is, therefore, rewritten as:

  

k11[ ] k12[ ] k13[ ] k14[ ] k15[ ]
k21[ ] k22[ ] k23[ ] k24[ ] k25[ ]
k31[ ] k32[ ] k33[ ] k34[ ] k35[ ]
k41[ ] k42[ ] k43[ ] k44[ ] k45[ ]
k51[ ] k52[ ] k53[ ] k54[ ] k55[ ]

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
(e )

u0{ }
v0{ }
w0{ }
y x{ }
y y{ }

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï

=

f 1{ } - k16[ ] w0{ }
f 2{ } - k26[ ] w0{ }
f 3{ } - k36[ ] w0{ }
f 4{ } - k46[ ] w0{ }
f 5{ } - k56[ ] w0{ }

ì

í

ï
ï
ï

î

ï
ï
ï

ü

ý

ï
ï
ï

þ

ï
ï
ï
(e )

(5.27)

where the components of equation (5.27) are exactly the same as those shown in equation

(5.26).

5.3.6 Nonlinear Finite Element Analysis of Imperfect Cylindrical Shells

For the purpose of solving the nonlinear behavior and stability condition of imperfect

cylindrical shell types of structures, governed by equation (5.26) and (5.27), some

nonlinear methods will be required to perform the iterative solution procedures.  As

stated in Chapter 4.11.2, the determination of the element tangent stiffness matrix will be

the first step for applying these nonlinear schemes.  The procedures are shown as

follows.
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Let

  
R1 = kij

11
u j

j=1

l

å + kij
12
v j

j=1

m

å + kij
13
w j

j=1

n

å + kij
14
y xj

j=1

p

å + kij
15
y yj - Fi

1
+ kij

16
w j

j=1

r

å ,
j=1

q

å (5.28)

  
R2 = kij

21
u j

j=1

l

å + kij
22
v j

j=1

m

å + kij
23
w j

j=1

n

å + kij
24
y xj

j=1

p

å + kij
25
y yj - Fi

2
+ kij

26
w j

j=1

r

å ,
j=1

q

å (5.29)

  
R3 = kij

31
u j

j=1

l

å + kij
32
v j

j=1

m

å + kij
33
w j

j=1

n

å + kij
34
y xj

j=1

p

å + kij
35
y yj - Fi

3
+ kij

36
w j

j=1

r

å ,
j=1

q

å (5.30)

  
R4 = kij

41
u j

j=1

l

å + kij
42
v j

j=1

m

å + kij
43
w j

j=1

n

å + kij
44
y xj

j=1

p

å + kij
45
y yj - Fi

4
+ kij

46
w j

j=1

r

å ,
j=1

q

å (5.31)

and

  
R5 = kij

51
u j

j=1

l

å + kij
52
v j

j=1

m

å + kij
53
w j

j=1

n

å + kij
54
y xj

j=1

p

å + kij
55
y yj - Fi

5
+ kij

56
w j

j=1

r

å .
j=1

q

å (5.32)

where   R1,   R2,   R3,   R4  and   R5 are the residual force vectors associated with five different

directions, separately; the components of equations (5.28) to (5.32) are included in

Appendix G.

From the definition of the tangent stiffness matrix, one obtains

  
( kT )ij

rs
=
¶Rr
¶ Us

= k ij
rs
+

¶ kij
rs

¶ Us
Uk +

¶ kij
r6

¶ Us
U6

k=1

5

å (5.33)
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where

  Rr = ( k ij
rs
) Us + ( k ij

r6
) U6 - Fr ( r, s = 1, 2, 3,4,5 ) (5.34)

Introducing equations (5.28) to (5.34), the element tangent stiffness matrix can be

obtained as:

  

kT
(e )[ ]

Imperfect
=

kT
11[ ] kT

12[ ] kT
13[ ] kT

14[ ] kT
15[ ]

kT
12[ ] kT

22[ ] kT
23[ ] kT

24[ ] kT
25[ ]

kT
13[ ] kT

23[ ] kT
33[ ] kT

34[ ] kT
35[ ]

kT
14[ ] kT

24[ ] kT
34[ ] kT

44[ ] kT
45[ ]

kT
15[ ] kT

25[ ] kT
35[ ] kT

45[ ] kT
55[ ]

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
(e )

(5.35)

The coefficients of the element tangent stiffness matrix are included in Appendix H.



9 9

CHAPTER 6

NUMERICAL SOLUTION PROCEDURES

6.1 Introduction

In the preceding Chapters 3, 4 and 5, the finite element equations are formulated by use of

the principle of virtual displacements of the total potential energy generated from the

deformations of entire elastic bodies and all the external loads, including the effects of

elastic foundations and initial imperfections.  The formulations lead to a set of algebraic

equations for each element of the finite element mesh.  After assembling element stiffness

matrices and load vectors into global ones, the boundary conditions are then applied.  The

next important step is to try to solve the linear and nonlinear systems of equations

numerically.

For the linear static and stability problems, the generalized displacement vectors and the

corresponding buckling loads could be determined by means of solving a set of linear

algebraic equations and the linear eigenvalue problems, respectively.  Because the global

stiffness matrices are constants at all times, in other words, they are independent of

displacement or load vectors, the equation can be solved easily.

However, in general cases one has to deal with nonlinear static and stability problems by

solving a set of coupled, nonlinear finite element equations.  In order to solve those

nonlinear problems, iterative schemes are often used.  Most numerical schemes are

incremental iterative processes that use a series of linear solutions to approximate the
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nonlinear solutions.  The linear solutions are achieved by expanding the nonlinear

equations in terms of small incremental values of the unknowns about some known

solutions.  In the finite element analysis of structural mechanics, the major objective is to

trace the nonlinear equilibrium path for a given structure and the associated environment.

The most basic nonlinear iterative method is based on the load control technique where

prescribed load increments are applied to the system and the resulting displacements are

to be calculated to satisfy the equilibrium points.  The most popular load control method

is the Newton-Raphson scheme.  The limitation of the Newton-Raphson method is that it

is not able to trace nonlinear load-displacement curves with negative slopes or non-

positive determinants of the total stiffness matrices.  Therefore, more complicated

solution procedures are applied to overcome these problems where the methods treat

both the incremental loads and resulting displacements as unknowns in the analysis.

They are referred to as arc length methods.  The most popular arc length schemes are

derived from the Riks-Wempner method.  They will be explicitly described in the

following sub-chapters [147].

6.2 Eigenvalue Analysis

Linear stability analysis of elastic bodies under uniform pressure requires the solution of

the eigenvalues and the associated eigenvectors of a system of linear finite element

equations.  The eigenvalues and eigenvectors of the global stiffness matrices are referred to

as buckling loads and modes, respectively.  An eigenvalue and eigenvector solver is
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required for the present analysis.  The DVGLRG subroutine in the IMSL library has been

used.

6.3 Newton-Raphson Method

Consider a nonlinear set of finite element equations which has the form:

  [ K(ui ) ]{ui} = {Fi}, i = 1,2,· · ·, n (6.1)

or

  {R(ui )} = {Fi} - [ K(ui ) ]{ui} = 0, i = 1,2,· · ·, n (6.2)

where   [ K(u) ] is the global secant stiffness matrix, {u} is the generalized displacement

vector, {F}is the global force vector, and {R} is the out-of-balance force vector (so-called

residual force vector).  Expanding R(u) about the known solution   u(r-1)  in Taylor's series,

neglecting the second and higher order terms in   d u , one can obtain

  

{d u} = - [ KT(u
(r-1) ) ]-1 ·{R(u(r-1) )}

= - [ KT(u
(r-1) ) ]-1 · [ F -K(u(r-1) ) · u(r-1) ]

(6.3)

where   d u  is the increment, which can be expressed as

  d u = u
(r ) - u(r-1) , (6.4)
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and   KT  is the slope (tangent) of the curve R(u) at the equilibrium point of   u(r-1) , which

may be given as:

  
KT = (

¶R
¶ u
)|
u (r-1)

(6.5)

The new equilibrium solution at the end of the r-th iteration is updated as:

  u
(r ) = u(r-1) + d u (6.6)

The residual or imbalance force,   R(u
(r-1) ) , is gradually reduced to zero if the procedure is

repeated.  The iteration is continued until a specified convergence criterion is satisfied.

The algorithm for the Newton-Raphson scheme may be summarized as follows.

For each load step (with a specified load increment), the method starts at a known point

(r-1) on the equilibrium path as shown in Figure 6.1.  Then, the following computational

steps should be followed:

Step 1. Evaluate element matrices   [ k
(e ) ] and   {F

(e) }, and also compute   [ kT
(e )
] and 

  {R
(e) } for each element.

Step 2. Assemble element matrices   [ kT
(e )
] and   {R

(e) } into global matrices.

Step 3. Apply the boundary conditions on the assembled set of nonlinear equations.

Step 4. Solve the assembled equations.

Step 5. Update the obtained solution vector   {u
(r ) }.

Step 6. Check for convergence.
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Step 7. If the convergence criterion is satisfied, increase the load by adding another load 

increment, initialize the iteration counter, and repeat steps 1 through 6.

Step 8. If the convergence criterion is not satisfied, check if the maximum allowed 

number of iterations is exceeded.  If it is not exceeded, go back to step 1 and 

repeat those steps.  If it exceeds the maximum iteration number, then stop the 

computational procedure.

6.4 Riks-Wempner on a Normal Plane Method

The assembled equations to be solved are of the form,

  [ K(U) ]{U} = {Q} (6.7)

where

  [K]n x n  is the assembled stiffness matrix,

  {U}n x1 is the column vector of nodal displacements of an elastic body,

  {Q}n x1 is the column vector of external nodal forces,

and n is the total number of degrees of freedom included in the mesh.

Introduction of a load factor l , which is a number between zero and one, as an

independent variable, one may obtain

  {Q}n x1 = l {Q}n x1 (6.8)
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  F

  u

  F
(r-1)

  F
(r)

  DF
(r-1)

  u
(1)

  u
(2)

  KT

(1)

  KT

(2)

  u
(r-1)

  u
(r)

Figure 6.1 - Newton-Raphson method for a single degree of freedom system
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where   {Q}n x1 is a specified constant load vector.

Combining with equation (6.8), equation (6.7) can be rewritten as:

  {R({U},l )} = [K]{U}- l {Q}n x1 (6.9)

where {R} is a residual vector associated with both l  and {U}.

The Riks-Wempner solution technique treats both the load vector l  and displacement

vector {U} as unknowns, which are independent of each other, in the analysis.  The

process of solving equation (6.9) is prescribed as follows.

As shown in Figure 6.2, iteration begins at point i on the load-displacement curve, and the

solution of the equilibrium point i, which is ({  Ui},   l i), is assumed to be known or

determined for the i-th load step.  Let   t i be a vector which is tangent to the equilibrium

path at point i, and is defined as

  

t i =
{DUi

(0)
}

Dl i
(0)

é

ë
ê
ê

ù

û
ú
ú

(6.10)

where the scalar   Dl i
(0)

 is the load increment at point i and the vector   {DUi
(0)
} is the

displacement increment at point i, which can be obtained by solving

  [KTi
(0) ]{DUi(0)} = Dl i(0){Q} (6.11)

where 
  [KTi

(0) ] is the assembled global tangent stiffness matrix at the equilibrium point i.
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  u

  Fi
(0)

  Fi
(1)

  Fi
(2)

  l i

(1)

  l i
(0)

  Dl i
(0)

  ui
(0)

  ui
(1)

  ui
(2)

  Ri
(2)

  Ri
(1)

  ti

  ni

  KTi

(0)   KTi

(1)

  Du i
(0)

  [Dui
(1)

]( II)
  [Dui

(1)
]( I ) ·Dl i

(1)

  Dl i
(1)

l

  i

  k

  k +1

Figure 6.2 - Riks-Wempner method on a normal plane for a single degree of freedom

system
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The objective of this method is to iterate along a normal to the tangent vector   t i until the

new equilibrium point is found.  The normal   ni , which is also shown in Figure 6.2, is

referred to as

  

ni =
{DUi

(1)
}

Dl i
(1)

é

ë
ê
ê

ù

û
ú
ú

(6.12)

where the vector   {DUi
(1)
} is an unknown displacement vector from point k to the

intersection point between the normal vector   ni  and the tangent from point k.  The scalar

  Dl i
(1)

 is an unknown load increment from   l i
(1)

 down to the point where   ni  intersects

with the tangent from point k.

It is required that the inner product between   t i and   ni  be equal to zero in order to

constrain the iterative process to a normal plane.  It is also implied mathematically that

  t i · ni = 0 (6.13)

Substitution of equations (6.10) and (6.12) into equation (6.13) leads to

  {DUi
(0)
}T {DUi

(1)
}+ Dl i

(0)
Dl i

(1)
= 0 (6.14)

From equation (6.9), expanding the residual vector {R}, which is a function of l  and

{U}, in Taylor's series about the previous equilibrium point k, one has

  
R({Ui

(2)
}, l i

(2)
) = R({Ui

(1)
}, l i

(1)
) + (

¶R
¶ l
)k + (

¶R
¶{U}

)k{DUi
(1)
}+H.O.T.= {0} (6.15)
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Omitting the higher order terms involving the increments   Dl i
(1)

 and   {DUi
(1)
},

rearrangement of equation (6.15) gives

  
{0} = -Dl i {Q}+ [KTi(1) ] DUi{ (1) } + Ri{ (1) } (6.16)

where 
  
{Q} = -(

¶R
¶ l
)k  is a constant load vector, and 

  
[ KTi(1) ] = ( ¶R¶{U}

)k  indicates the

tangent stiffness matrix at the given point k.

Based on equation (6.16), the incremental solution at the current point k of the i-th load

step is given by

  
DUi{ (1) } = Dl i(1) [KTi(1) ]

-1
{Q}- [KTi(1) ]

-1
Ri{ (1) } (6.17)

So, the vector 
  
DUi{ (1) } can be split into two parts [97, 98]:

  
DUi{ (1) } = DUi{ (1) }(II ) + Dl i(1) DUi{ (1) }(I) (6.18)

where the vector 
  
DUi{ (1) }(II )  results from solving

  
DUi{ (1) }(II ) = -[KTi(1) ]

-1
Ri{ (1) } (6.19)

and the vector 
  
DUi{ (1) }(I) results from the equation

  
DUi{ (1) }(I) = [KTi(1) ]

-1
{Q} (6.20)
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The vector 
  
Dl i

(1)
DUi{ (1) }(I)  also results from the similar triangles shown in Figure 6.3.

Introducing an intermediate quantity 
  
DUi{ (1) }*, the similar triangles relationship can be

expressed as

  

Dl i
(1)

DUi{ (1) }*
=

1

DUi{ (1) }(I)
(6.21)

Since the direction of   Dl i
(1)

 is going downward, as shown in Figure 6.2, so 
  
DUi{ (1) }*will

also be going downward, and can be represented as

  
DUi{ (1) }* = Dl i(1) DUi{ (1) }(I) (6.22)

Substituting the expression for 
  
DUi{ (1) }, which is shown in equation (6.18), into the

constraint equation (6.14) gives

  
{DUi

(0)
}T ( DUi{ (1) }(II ) + Dl i(1) DUi{ (1) }(I) ) + Dl i(0)Dl i(1) = 0 (6.23)

Expanding the above equation and solving for   Dl i
(1)

 yields

  

Dl i
(1)
= -

{DUi
(0)
}T DUi{ (1) }(II )

Dl i
(0)
+{DUi

(0)
}T DUi{ (1) }(I)

(6.24)

When   Dl i
(1)

 is determined, the load increment may be updated by the expression

  l i
(2)
= l i

(1)
+ Dl i

(1)
(6.25)
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  Dl i
(1)

  
Dl = 1

  (
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(1)
)
*

  D u i
(1)

  KTi
(k)

Figure 6.3 - Similar triangles for solving 
  
Dl i

(1)
DUi{ (1) }(I)   for the Riks-Wempner method

on a normal plane
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and the nodal displacement vector at point k+1 may also be updated as

  {Ui
(2) } = {Ui(1) } + {DUi(1) } (6.26)

or in the form of

  {Ui
(2) } = {Ui(1) } + ( DUi{ (1) }(II ) + Dl i(1) DUi{ (1) }(I) ) (6.27)

For the first iteration of the first load step, as shown in Figure 6.4, one usually starts with

a specific load increment   Dl0 , which is a fraction of the total external load applied to the

structure.  It is also often assumed that the initial starting point is the origin, which

implies {  U0}={0}.

Then the displacement vector   {DU0} and the length   DS0  of the initial tangent vector can

be evaluated by using the load increment   Dl0 .  The displacement vector   {DU0} is

evaluated using the similar triangles relation shown in Figure 6.5.  The vector   {DU0} is

computed from the relation

  

Dl0
Du0

=
1

Dutotal
, or Du0 = Dl0 · Dutotal. (6.28)

The vector   {DUtotal}  is calculated from the expression

  [ KT0 ]{DUtotal} = l{Q} (6.29)
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where the load factor l  is equal to one, and   [KT0] is the assembled tangent stiffness

matrix measured from the starting point O.

Since the vector   {DU0} can be determined by using equations (6.28) and (6.29), the length

of   t0, which is   DS0 , can also be calculated by

  
DS0 = t0 · t0 = (Dl0 )

2 +{DU0}
T{DU0} (6.30)

Using equation (6.28), one could obtain the alternate form of   DS0  as

  DS0 = Dl0 1+{DUtotal}
T{DUtotal} (6.31)

The scalar   DS0  is often referred to as the arc length along the equilibrium path from the

equilibrium point O.  The arc length for subsequent iterations is usually held as a constant

or is scaled using the relation

  
DSi = DSi-1(

Ides
Ii-1
)
1

2 (6.32)

The scalar   DSi-1 is the current arc length, while   Ii-1 is the number of iterations required for

convergence to the current equilibrium point and   Ides  is the desired number of iterations

which is usually chosen as a small number approximately equal to 3.  A maximum value

for   DSi  is usually specified as

  DSmax = 2 · DS0 (6.33)
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KT0

Figure 6.4 - The graph for the first iteration of the first load step in the Riks-Wempner

method on a normal plane
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  KT0
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Figure 6.5 - Similar triangles in the first iteration of the first load step for the

Riks-Wempner method on a normal plane
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The value of   DSi  is used to compute the value of   Dl i  which is required to begin the next

iteration.  The load increment   Dl i  is computed from equation (6.31) as

  

Dl i =
±DSi

1+{DUtotal}i
T
{DUtotal}i

(6.34)

where the vector   {DUtotal}i can be evaluated from

  {DUtotal}i = [KTi ]
-1{Q} (6.35)

The sign ambiguity in equation (6.34) results from the fact that the quantity   DSi  is

simply a length along the path whose direction is uncertain.  The correct sign for   Dl i  is

found by looking at the projection of the hypothetical tangent vector   t i on the initial

tangent vector for the previous iteration,   t i-1.  Introducing of equation (6.10), combined

with equation (6.28), the partitioned tangent vector   t i becomes

  
t i =

Dl i{DUtotal}i
Dl i

é

ë
ê

ù

û
ú (6.36)

The vector   t i is termed hypothetical because the correct sign of   Dl i  is not yet known.

The projection of   t i on   t i-1 is

  t i · t i-1 = Dl i{DUtotal}i
T
{DUi-1}+ Dl iDl i-1 (6.37)

which reduces to
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t i · t i-1 = Dl i ({DUtotal}iT{DUi-1}+ Dl i-1 ) (6.38)

If the projection of   t i on   t i-1 is negative then the slope of the equilibrium path at i is

negative and the load parameter   Dl i  should be negative so that the external load on the

structure is reduced, thereby producing an unloading effect.  If the projection of   t i on   t i-1

is positive, then the slope of the equilibrium path at i is positive and   Dl i  should be

positive, indicating that the external load is increasing.

6.5 Convergence Criteria

During the process of nonlinear iterative methods as described in the previous sections, a

specified convergence criterion is applied for checking the required accuracy of the

obtained solutions.  This will also prevent the divergence of the solution procedures.  In

the analysis of nonlinear finite element schemes, two types of convergence criteria are

usually used.

The first criterion ensures that the incremental displacements are relatively small.  In

other words, the criterion indicates that the "norm" of the incremental displacement

  {DUi} is small compared to the total displacement   {Ui+1}.  The criterion states that

  

{DUi}
T{DUi}

{Ui+1}
T{Ui+1}

£ bd (6.39)

where   bd  is a small, user specified tolerance on the order of   10-3.
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The second convergence criterion involves the residual (or out-of-balance) forces   Ri
(k+1)

.

The idea behind this criterion is to ensure that the imbalance forces themselves, or that the

norm of the vector   {Ri
(k+1)
} is small.  For the finite element models with rotational

variables, additional problems arise because the residual vector contains both forces and

moments.  Therefore, when computing the norm of   {Ri
(k+1)
}, quantities with different

units must be added together.  Because of the units involved in the analysis, the moments

are generally much larger than the forces and therefore contribute much more to the

calculation of the norm of   {Ri
(k+1)
}.  This problem can cause convergence of the solution

to be obtained based solely on the moments rather than on the combination of both forces

and moments.  To solve this problem, scaling of the residual force vector is recommended

[98, 148, 149].

The convergence criterion for checking the out-of-balance forces is

  

{Ri
(k+1)
}T [Si]{Ri

(k+1)
}

l i
(k+1)

{Q}T [Si]{Q}
£ bf (6.40)

where   [Si] is a diagonal scaling matrix that contains the inverse of the diagonal elements of

the tangent stiffness matrix   [KTi ],   {Q} is a constant external load vector, and   l i
(k+1)

 is the

current load increment.  The quantity   bd  is a small, user specified tolerance on the order

of   10-4.
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CHAPTER 7

EXAMPLE ANALYSES AND NUMERICAL RESULTS

FOR RING MODEL

7.1 Introduction

Using the proposed linear and nonlinear theories for arch and ring structures, and the

corresponding finite element models which are developed and detailed in Chapter 3, a

wide variety of examples are investigated.  As the first step, the accuracy and efficiency

of the theory and finite element codes are tested.  Both linear and nonlinear static and

buckling analyses are performed using the prescribed finite element equations.  The

computational results are also compared with analytical or numerical results which are

obtained from the literature, as shown in Section 7.2.

In Section 7.3, linear and nonlinear stability analyses of isotropic circular rings under

uniform, constant-directional pressure are examined.  The examples include a complete

circular ring and a circular arch with pinned-pinned ends.  An internal elastic foundation is

also taken into account.  Comparisons of corresponding buckling loads and modes are also

made and described in this section.  Utilizing the same analysis procedures, the stability

of composite rings with and without elastic foundations under uniform dead pressure are

investigated and included in Section 7.4.  Several types of lamination stacking sequences

are also considered.  In section 7.5, the imperfection sensitivities of isotropic and

composite rings under uniform pressure are examined.  One of the studies also includes

the effect of internal elastic foundations.
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7.2 Test Examples for Arch and Ring Structures

7.2.1 Static Analysis of an Isotropic Circular Ring under Uniform Pressure

The first example used to verify the validity of the linear theory and the finite element

model derived in Chapter 3 is to determine the radial displacements of a circular ring when

subjected to uniform external pressure.  The material properties, geometry and loading

condition, as shown in Figure 7.1, are:

  E = 200 GPa

  G = 77 GPa

  n = 0.3

  R = 250 mm (7.1)

  h = 5 mm(thickness)

  b = 1m (width)

  q0 = 5000 N / m

Due to axisymmetry in both loading and geometry, only one quarter of the ring was

chosen to model and to create a mesh.  Convergence was also achieved using four

quadratic, three-node elements.  The mesh details are also given in Figure 7.1.

The numerical result obtained using the present model is   w0 = 3.125 x 10
-7  m, which is

identical to that of Reference [11] and is given as:

  
w0 = -

R2

EA
(q0 ) (7.2)
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Figure 7.1 - Geometry and mesh information of a circular ring
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7.2.2 Nonlinear, Large Deflection Analysis of a Hinged, Deep Arch under a 

Concentrated Load at the Apex

This example studies the nonlinear response of a deep, circular arch under a point load at

midspan, shown in Figure 7.2.  It is used to test the large radial deflection capability of

the present nonlinear theory and the corresponding finite element model.  For the hinged-

end boundary conditions, the arch exhibits critical buckling associated with bifurcation

phenomena.

The material properties and geometry information used for the present example are:

  EA = 1.0 x 106 lb (4.448 x 106 N),

  GA = 1.0 x 106 lb (4.448 x 106 N),

  EI = 1.0 x 106 lb· in2 (2.870 KN·m2), (7.3)

  R = 100 inches,

  f = 2150.

The arch has been discretized by twenty equally-spaced, three-noded, quadratic ring

elements to meet the convergence requirement.  The comparisons of the load-deflection

curves between the present element and a plane beam formulation, previously employed

by Wriggers and Simo [150], are given in Figure 7.3.  The first bifurcation point is 329

pounds predicted by the present solution, and is 335 pounds in the result of Wriggers and

Simo [150].  The major differences are caused by the distinct element types and

kinematics relations.  For the range of moderately large rotations, it clearly shows the

differences for large deflection behavior.
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Figure 7.2 - A hinged, deep, circular arch subjected to a center point load
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Figure 7.3 - Nonlinear load-deflection curve of a simply-supported, deep arch subjected

to a point load at midspan
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7.2.3 Geometrically Nonlinear Analysis of a Clamped, Shallow, Circular Arch 

Subjected to a Concentrated Load at Midspan

A shallow circular arch with fixed end boundary conditions is considered.  A point load is

applied at midspan as shown in Figure 7.4.  The shell geometry is also shown in Figure

7.4.  The material properties and geometry information used for the present example are:

  E = 10.0 x 106 psi,

  n = 0.2,

  b = 1.0 inch (width), (7.4)

  R = 133.114 inches,

  h = 3 / 16 inch (thickness),

  R = 34.0 inches,

  b = 7.3370.

The arch was modeled with twelve equally-spaced, three-noded, quadratic ring elements

to reach the accurate results.  For the fixed-end boundary conditions, the load-

displacement curve will exhibit a limit-point type of nonlinear response.  The present

numerical results are retained by using one dimensional ring elements, based on the

assumptions of small strains, large deflections and moderate rotations, are plotted in

Figure 7.5.  The critical buckling load which corresponds to the first limit point is 34.07

pounds.  As shown in Figure 7.5, it is also compared with the nonlinear finite element

solutions employed by Sorem and Surana [151].  The numerical results proposed by

Sorem and Surana are obtained by using a p-version geometrically nonlinear formulation

based on the total Lagrangian approach for a nine node three dimensional curved shell
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element.  From the load-displacement graph, a fairly good agrement between the two

approaches is shown.
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Figure 7.4 - A shallow, circular arch with both fixed end conditions under a concentrated

load at the apex
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7.3 Example Studies for One-Layered Isotropic or Orthotropic Arch

and Ring Structures

In this section, linear and nonlinear buckling analyses of single-layered, complete circular

rings and arches with prescribed boundary conditions under uniformly constant-

directional, hydrostatic pressure are examined.  Stability analyses of circular rings with

various internal elastic foundations are also compared and discussed in the following

subchapters.

7.3.1 Linear Stability Analysis of a Uniformly Compressed, Isotropic, Circular 

Ring

Linear eigenvalue analysis is used to study the stability condition of a one-layered

isotropic, complete, circular ring under uniform dead pressure.  The arch and ring elements

based on the linear theory which is derived in Chapter 3 were utilized to formulate the

isotropic ring model.  The configuration of the loading, geometry and coordinate system

of a circular ring is shown in Figure 7.1.  The material and geometric properties of a steel

ring are:

  E = 200 GPa

  G = 77 GPa

  n = 0.3

  R = 250 mm (7.5)

  h = 5 mm(thickness)
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  b = 1m (width)

Since there is axisymmetry in both loading and geometry, only half of a circular ring is

used to model and mesh.  For the convergence test, ten equally spaced three-nodded

quadratic elements can reach a very good result.  Uniformly reduced integration rule is

also applied during the finite element procedures in order to eliminate membrane and

transverse shear locking problems.

The numerical value for the buckling load,   (Ny )critical, under dead, hydrostatic pressure is

  1.3330 x 10
5  Newtons.  The corresponding critical buckling mode is shown in Figure 7.6.

The ring buckled into a two-wave pattern (n=2) in the circumferential direction.  For the

case of dead pressure loading, the classical buckling solution may be evaluated from

equation (7.6) as follows [152]:

  
(Ny )critical =

4EI

R2
(7.6)

which provides the critical buckling load as   1.3333 x 10
5 Newtons.  The results of the

classical and the present numerical solutions are almost identical.  For the case of thin-

walled , isotropic rings, the effect of the transverse shear terms on the buckling loads is

not very significant [10], as indicated by the present solution for this example.
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Figure 7.6 - Undeformed and buckled shapes of a complete circular ring subjected to

uniform dead pressure
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7.3.2 Nonlinear Buckling Analysis of a Uniformly Compressed Circular Ring

In this section, nonlinear finite element analysis is applied to examine the buckling

behavior of a one-layered, isotropic ring under uniform radial pressure.  The conditions of

the loading, geometry, material properties and coordinate system of a circular ring are the

same as those of example 7.3.1.  Since a perfect ring under perfectly uniform pressure

deforms in uniform contraction, a small concentrated load or an initially imperfect model

is necessary to induce buckling.  As shown in Figure 7.7(a), a small force with the

magnitude of 100 Newtons is applied to initiate the imperfect model (model I) for the

preloading stage.  The other method to initiate buckling is to prescribe a slightly out-of-

round model (model II) before applying any external loading.  Referring to Figure 7.7(b),

the radius r of the out-of-round ring is chosen as

  r = R + 0.0000195Rcos(2q ) (7.7)

The Newton-Raphson method is used to trace the nonlinear load-displacement path for

the present example.  The normalized determinants of the corresponding tangent stiffness

matrices at each equilibrium point are evaluated in order to check the stability condition of

the structure under uniform load increments.

Figure 7.8 is a plot showing external radial pressure versus the radial deflections at points

A and B for the case of model I, whereas Figure 7.9 corresponds to those of model II.

The buckled configurations for both models are identical to the one of the linear solutions.

Nonlinear numerical solution of the critical buckling pressure gives   5.330 x 10
5 N / m,

which is very close to the linear buckling pressure   5.332 x 10
5 N / m.



1 3 2

  P

  A

  B

  P

Figure 7.7 (a) - Configuration of a half circular ring with a small concentrated load
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Figure 7.7 (b) - Configuration of a circular ring with an initially out-of-round model
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Figure 7.9 - Nonlinear load-deflection curves of a circular ring subjected to uniform dead

pressure for the case of model II
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7.3.3 Linear and Nonlinear Buckling Analysis of a Uniformly Compressed 

Circular Arch with Pinned-Pinned Ends

In this section, a half circular arch with pinned-pinned end conditions under uniform dead

pressure is studied.  The purpose of the present example is to understand the structural

response of arch structures under various boundary conditions.  The configuration of the

structure, loading and boundary conditions are shown on Figure 7.10.  The dimension of

the arch and the material properties are the same as in the previous example.  Utilizing the

linear and nonlinear finite element schemes which are derived in Chapter 3, one can

conclude the corresponding critical buckling loads based on various theories in the

following table:

Table 7.1 - Comparisons of critical buckling loads based on various theories

Critical Buckling Pressure   (q0 )Critical (N/m)

Linear Solution   4.361X10
5

Nonlinear Solution   4.360 X10
5

  (q0 )Critical = (3.2712) EI / R
3

Dym [153]

  4.362 X10
5

It is shown that there is no major difference between the above theories.  The associated

critical buckling mode is also plotted in Figure 7.11.
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Figure 7.10 - Configuration of a circular arch under uniform dead pressure with pinned

boundary conditions
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Figure 7.11 - Critical buckling mode of a circular arch under uniform dead pressure with

pinned boundary conditions
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7.3.4 Stability Analysis of Isotropic Rings with Internal Elastic Foundations 

under Constant Directional Pressure

For ring structures with elastic foundations, the internal pressure generated by internal

elastic foundations through the deformation of the ring under external lateral pressure is

included in the global stiffness of the solid outer layer.  The effects of elastic foundations

are included in the linear and nonlinear finite element formulations for the determination of

the stability conditions.

The material properties and other information for the input data are the same as in

example 7.3.1.  In order to obtain a very good convergent solution, twenty equally-

spaced, quadratic elements are chosen to mesh a half ring model.  For the purpose of

simulating soft elastic foundations when compared to the stiffness (200 GPa) of the outer

layer, which is made of steel, the elastic foundation constants are selected in the range of

  2 x 10
5  to   2 x 10

8  Pa.  Linear eigenvalue and nonlinear solutions give the associated first

buckling loads and modes in Table 7.1.  Linear analytical results of the buckling pressures

of circular rings with linear elastic foundations under uniform dead pressure loading [11],

which are determined by the following equation (7.8), are also provided in Table 7.1 to

make comparisons with the obtained numerical results:

  
q = (n2 )

EI

R3
+

n2

(n2 -1)2
K0R, n = 2,3,4,· · · (7.8)

Numbers of lobes (n) represent the wavelength parameter in the circumferential direction,

which characterize the buckled configurations associated with various buckling loads.
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As the results will attest, the critical buckling loads are not varying much for softer elastic

foundations (  K0  =   2 x 10
5  and   2 x 10

6  Pa) and without elastic foundation.  In the other

cases, buckling loads tend to increase a lot with moderately hard elastic media (  K0  =

  2 x 10
7 and   2 x 10

8  Pa).  The associated buckling modes also have the tendency to deform

into higher numbers of wave patterns when the elastic media become more influential.

The corresponding buckling shapes for the wavelength parameter n of two, three, and five

are shown in Figures 7.6, 7.12, and 7.13, respectively.
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Table 7.2 - Comparisons of first buckling loads and the associated modes of a circular ring

for various elastic foundation constants

Critical Buckling Pressure   (q0 )critical : (N/m)

  K0  (KPa) 0   2 x 10
2

  2 x 10
3

  2 x 10
4

  2 x 10
5

Linear

Solutions

  5.3332 x 10
5

  5.552 x 10
5

  7.552 x 10
5

  19.02 x 10
5

  54.96 x 10
5

Nonlinear

Solutions

  5.3300 x 10
5

  5.544 x 10
5

  7.540 x 10
5

  19.01 x 10
5

  54.80 x 10
5

Analytical

Solutions

  5.3333 x 10
5

  5.556 x 10
5

  7.556 x 10
5

  19.03 x 10
5

  55.04 x 10
5

Number of

Lobes (n)

2 2 2 3 5
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Figure 7.12 - Undeformed and buckled shapes (n = 3) of a complete circular ring with

    K0  =   2 x 10
4 KPa when subjected to uniform dead pressure
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Figure 7.13 - Undeformed and buckled shapes (n = 5) of a complete circular ring with

    K0  =   2 x 10
5  KPa when subjected to uniform dead pressure
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7.3.5 Effect of Pasternak's Constants on the Stability of an Isotropic Ring with 

Internal Elastic Foundation   K0  =   2 x 10
5  Pa under Uniform Pressure

In the real phenomenon of the resulting pressure caused by an internal elastic medium, the

shear interactions between individual springs should be considered.  This example is to

study the buckling behavior of an isotropic ring structure on a two-parameter elastic

foundation under external loading of uniform pressure.  Pasternak's type of shear

parameter is included in the theory and the associated finite element model.  Choosing the

linear elastic foundation constant to be   2 x 10
5  Pa for the present study, the effect of the

shear parameter on the buckling of an isotropic ring is examined.

In order to make comparisons with the results of section 7.3.4, the input information is

set to be the same except for the values of the Pasternak constant   KS.  The numerical

solutions resulting from the changing of the shear parameter values are concluded in the

following table.

Table 7.3 - Comparisons of the critical buckling pressures under various shear parameters

Pasternak constant   KS (N).   (q0 )Critical: (X 10
5 N / m)

0 5.5520

  1X10
3 5.5935

  2 X10
3 5.6335

  3X10
3 5.6735

  4 X10
3 5.7135
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From the literature, the Pasternak's parameter is related to the elastic, shear modulus and

thickness of elastic medium.  For the shear parameter in the range from   1 x 10
3  to   4 x 10

3

N, the corresponding critical buckling loads could arise from 0.75 to 2.9 % when

compared to that of Winkler's linear elastic foundation.  The present numerical results

show no significant changes of the corresponding buckling loads with the consideration of

shear interactions of internal elastic foundations.  With the existence of moderately large

Pasternak's constants, the critical bukling loads will be much larger than the ones without

considering the shear effect of internal elastic foundations.

7.3.6 Effect of Nonlinear Winkler-Foundation Constant   KI  on the Stability of an

Isotropic Ring with Internal Elastic Foundation   K0  =   2 x 10
5  Pa under 

Uniform Radial Pressure

Similar to the shear parameter study for the previous case, the effect of nonlinear

foundation constants on the stability of circular rings on elastic foundations is examined.

The numerical results are obtained by the nonlinear finite element analysis which includes

the potential energy generated by the nonlinear elastic foundation terms.  The following

table contains the associated critical buckling loads under various values of nonlinear

constants.
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Table 7.4 Comparisons of the critical buckling pressures under various nonlinear

elastic foundational constants

Nonlinear Winkler constant   KI  (  N / m
4)   (q0 )Critical: (X 10

6 N / m)

0 -   1X10
12 0.554

  1X10
13 0.558

  2 X10
14 0.602

Since the radial displacements before the buckling stage are relative small, the effect of

nonlinear constants on the stability conditions is not very significant.  As shown in the

table of this section, the critical buckling load only increases about 8.66 percent even with

the inclusion of a very large value of nonlinear elastic foundation constant   2 x 10
14    N / m4.

So, one can conclude that the effect of the nonlinear elastic foundation on the stability

condition is not very crucial except for the cases of post-buckling analysis with a very

large value of nonlinear elastic foundation constant.
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7.4 Example Studies for Multi-Layered, Composite Ring Structures

In this section, stability of multiple-layered, complete circular rings under uniformly

constant-directional, hydrostatic pressure are studied.  Both cross-ply   (0 / 90 / 90 / 0)S

and angle-ply   (0 / 45 / -45 / 0)S  types of composite rings will be taken into consideration.

Buckling analysis of circular rings with various internal elastic foundations is also treated

in this chapter.

7.4.1 Stability Analysis of Uniformly Compressed, Composite Circular Rings

Linear eigenvalue and nonlinear finite element analyses are used to study the stability

condition of multiply-layered, circular rings under uniform radial pressure.  These

analyses are based on linear and nonlinear theories and the associated finite element

equations which are proposed in Chapter 3.  The configuration of the loading, geometry

and coordinate system of a composite ring is the same as the one described in Section 7.3.

The composite material used for the present study is T300/5280 Graphite Epoxy and the

properties are:

  E11 = 145GPa

  E22 = 11.7 GPa

  G12 = G13 = 4.5GPa (7.9)

  G23 = 3.0 GPa

  n12 = 0.21
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Due to axisymmetry in both loading and geometry, twenty equally spaced three-noded

quadratic elements are used to model and mesh a half circular ring.  Two different types of

composite rings, one with   (0 / 90 / 90 / 0)S  lamination sequence and the other with

  (0 / 45 / -45 / 0)S  stacking lay-up are used to study the stability conditions.  The

numerical results of critical buckling pressure are listed in the following table:

Table 7.5 - Comparisons of the critical buckling pressures of composite rings

under various lamination sequences

Critical Buckling Pressure   (q0 )Critical (  x 10
5 N/m)

  (0 / 90 / 90 / 0)S  lamination   (0 / 45 / -45 / 0)S  lamination

Linear Solution 5.00500 4.61952

Nonlinear Solution 5.00399 4.61943

Number of Lobes (n) 2 2

From the above results, one can see that the linear and nonlinear solutions for composite

rings under uniform pressure are almost identical.  The buckling shapes in both cases are

the same as the one for an isotropic ring, which buckled into a two wave pattern in the

circumferential direction.  The determination of the critical buckling pressures depends on

the material properties, geometry of the structures, and lamination stacking sequences of

the composites.
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7.4.2 Stability Analysis of Composite Circular Rings with Internal Elastic 

Foundations under Uniform, Constant-Directional Pressure

By running similar tests as those of Example 7.4.1, using the same conditions and

including a number of internal elastic foundation constants, the results may be compared

as follows:

Table 7.6 - Comparisons of the critical buckling pressures of two different types of

composite rings with various elastic foundational constants

Critical Buckling Pressure   (q0 )Critical (  x 10
5 N/m) for   (0 / 90 / 90 / 0)S  Lamination

  K0 (KPa) 0   1 x 10
2

  1 x 10
3

  1 x 10
4

  1 x 10
5

  1 x 10
6

Numerical

Solutions

5.005 5.116 6.116 14.68 37.372 109.32

Numbers of

Lobes

2 2 2 3 4 7

Critical Buckling Pressure   (q0 )Critical (  x 10
5 N/m) for   (0 / 45 / -45 / 0)S  Lamination

  K0 (KPa) 0   1 x 10
2

  1 x 10
3

  1 x 10
4

  1 x 10
5

  1 x 10
6

Numerical

Solutions

4.6195 4.7306 5.7306 13.8044 35.8093 104.9372

Number of

Lobes

2 2 2 3 4 7

The above table shows the details of the corresponding critical buckling pressures for two

different types of composite rings with various elastic foundations.  Similarly to the
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structural responses of isotropic rings with elastic foundations, the buckling resistance

becomes much greater as elastic foundation constants become larger.  The associated

buckled shapes of the deformed rings have the tendency to be multiple wave patterns

instead of two wave pattern (buckling modes for relatively soft or no elastic foundation

cases) along the circumferential direction.  The critical buckling pressures and modes

become functions of the elastic foundations as the internal foundations become

moderately large.
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7.5 Imperfection Sensitivity Analysis of Rings under Uniform

Radial Pressure

In order to induce buckling of a circular ring when subjected to uniform pressure, a

slightly imperfect shape with a very small amplitude was prescribed.  In this section,

imperfection sensitivity analysis of the buckling behavior of complete circular rings under

uniform constant-directional pressure is examined.  Both isotropic and composite rings

will be taken into consideration.  Imperfection sensitivity analysis of rings with internal

elastic foundations will also be included and compared in this chapter.

7.5.1 Imprefection Sensitivity Analysis of an Isotropic Circular Ring under 

Uniform Radial Pressure

This example is used to examine the nonlinear behavior and the critical buckling load of an

isotropic ring when subjected to uniform radial pressure (so-called dead pressure).  The

nonlinear theory and the associated finite element equations for ring structures with

prescribed imperfections are detailed in Chapter 5.2.  From the results of the previous

examples, the first buckling mode of an isotropic ring under uniform pressure is a two

wave shape along the circumferential direction.  So, for the reason of convenience, an

initial imperfection function is assumed to be:

  
w0(y) = D cos

n y
R

æ

è
ç

ö

ø
÷ (7.10)
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where n is the number of waves in the y direction, which is prescribed to be two in this

example, and D  denotes the imperfection amplitude, set as a small fraction of the ring

radius.  Varying the values of amplitude from   1.95 x 10
-5  to   1.95 x 10

-2   times R, one may

obtain the corresponding nonlinear load-displacement relations shown in Figure 7.14.  The

critical buckling pressure remains 533,000 N/m, which is identical to the numerical result

generated from the nonlinear analysis of a perfect ring.  The associated buckling modes are

also the same as those of the perfect structure.  Buckling of isotropic rings is evidently

not sensitive to initial imperfections, though the load deflection curves are significantly

different.

7.5.2 Imperfection Sensitivity Analysis of Composite Circular Rings under 

Uniform Radial Pressure

It is of interest to examine the imperfection sensitivity of composite rings subjected to

uniform dead pressure.  Both cross-ply   (0 / 90 / 90 / 0)S  and angle-ply   (0 / 45 / -45 / 0)S

types of composite rings were selected.  Using the same imperfection amplitudes as in the

previous example, the nonlinear behavior and the corresponding first buckling loads are

given in the following table and in Figures 7.15 and  7.16, respectively.
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Table 7.7 - Comparisons of the critical buckling pressures of two different types of

composite rings with various initial imperfections

Critical Buckling Pressure (  1 x 10
5
 N/m)

  D / R   (0 / 90 / 90 / 0)S  type of

composite ring

  (0 / 45 / -45 / 0)S  type of

composite ring

0 5.004 4.61952

  1.95 x 10
-5 5.00399 4.61943

  1.95 x 10
-4 5.00396 4.61940

  1.95 x 10
-3 4.99210 4.60850

  1.95 x 10
-2 4.9200 4.52072

As the above results indicate, the corresponding critical buckling loads drop by 1.68% and

2.14% only, respectively, even with the imperfection amplitude up to the value of

  1.95 x 10
-2  times the radius.  It is safe to say that the buckling behavior of composite

rings is not sensitive to the effect of initial imperfections but their deflection behavior is

sensitive.

7.5.3 Imperfection Sensitivity Analysis of a Composite   (0 / 45 / -45 / 0)  Circular 

Ring with Internal Elastic Foundation (  K0  = 1000 KPa) under Uniform 

Radial Pressure

The effect of initial imperfections on the nonlinear behavior and critical buckling pressure

of rings with internal elastic foundations under uniform pressure is studied in this section.
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A composite ring containing the lamination of   (0 / 45 / -45 / 0)   on an internal elastic

foundation with   K0  = 1000 KPa is chosen to test the imperfection sensitivity.  The initial

imperfection function before loading is assumed to be the same one used in Section 7.5.2.

The wavelength parameter n is set to be three in this case.  After performing the nonlinear

finite element analysis, the associated buckling pressures under various imperfection

amplitudes are shown in the following table, and the nonlinear load-displacement relations

are shown in Figure 7.17.  The results prove to be non-sensitive to initial imperfections in

the presence of internal elastic foundations though their load-deflection curves differ.

Table 7.8 - Comparisons of the critical buckling pressures of a Composite Circular

Ring with Internal Elastic Foundation (  K0  = 1000 KPa)

under various initial imperfection amplitudes

  D / R   1.95 x 10
-5

  1.95 x 10
-4

  1.95 x 10
-3

  1.95 x 10
-2

  (q0 )Critical

  ( x 10
5 N / m )

6.420 6.420 6.420 6.390
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CHAPTER 8

EXAMPLE ANALYSES AND NUMERICAL RESULTS FOR

CYLINDRICAL SHELL MODEL

8.1 Introduction

In Chapter 4, linear and nonlinear formulations for cylindrical shells with and without

elastic foundations are derived.  The finite element models are also developed based on

both theories.  The initial imperfection functions are taken into consideration for the

principle of virtual displacements and the associated finite element equations used for the

analysis in this section are formulated in Chapter 5.  With the above formulations and

finite element models, the static, buckling, and post-buckling analyses of cylindrical shells

under various conditions are applied in this chapter.

In order to verify the proposed theories and finite element programs, several examples

which include static and buckling analyses of isotropic and anisotropic cylindrical panels

and shells under various loading and boundary conditions are presented and the results are

compared with some early research works.  They are shown in Section 8.2.  In Section

8.3, the linear and nonlinear stability analyses of isotropic cylinders with or without the

effect of internal elastic foundations are performed.  The effect of Pasternak's and

nonlinear elastic foundational constants on the buckling loads are also investigated in this

section.  Similarly, the stability analysis of multiply-layered composite cylinders are

examined and described in Section 8.3.  The imperfection sensitivity analysis for
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cylindrical shells with and without elastic foundations under uniform radial pressures are

shown in Section 8.4.

8.2 Test Examples for Cylindrical Shell Structures

8.2.1 Linear Static Analysis of a Pressurized, Clamped, Cylindrical Shell

Calculation of the radial deflection of a thin-walled cylinder under hydrostatic pressure is

used to verify the linear shell element developed in Chapter 4.  Figure 8.1 presents the

geometry of the shell.  The material properties of an orthotropic layer (glass-epoxy

composite) are given as follows:

  
E11 = 7.5 x 10

6 psi 52.90GPA( ),

  
E22 = E33 = 2.0 x 10

6 psi 13.79GPA( ),

  
G12 = G13 = G23 = 1.25 x 10

6psi 8.62GPA( ),

  n12 = n13 = 0.25, n23 = 0.24, (8.1)

  
R = 20 inches 50.8cm( ),

  
h = 1 inch 2.54cm( ),
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L = 20 inches 50.8cm( ),

  
q0 =

6.41
p
psi

44.20
p
KPA

æ

è
ç

ö

ø
÷

Due to axisymmetry in both loading and geometry, only an octant of the cylinder is used.

The comparisons of midspan displacements for different element types and numbers are

listed in Table 8.1.  They show the convergence and validity conditions.

As indicated in the Table, the numerical results provide excellent agreement with those of

References[146, 154, 155].
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L

  q0

Figure 8.1 - Geometry of a clamped cylindrical shell
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Table 8.1 - Comparisons of the midspan deflections in mm of a clamped cylinder

subjected to hydrostatic pressure

Present Solutions (
  
q0 =

6.41
p

psi
44.20
p
KPa

æ

è
ç

ö

ø
÷ )

Element

Type & Number

Single Layer

(0)

Multiple Layers

(0/90)

2 L4   97.536x 10
-4

  55.651x 10
-4

4 L4   95.504x 10
-4

  47.574 x 10
-4

6 L4   94.844 x 10
-4

  46.533x 10
-4

8 L4   94.615 x 10
-4

  46.203 x 10
-4

2 Q9   94.818 x 10
-4

  45.872 x 10
-4

4 Q9   94.336 x 10
-4

  45.822 x 10
-4

Reddy [146]

4 L4   95.352 x 10
-4

  47.498 x 10
-4

2 Q9   94.666 x 10
-4

  45.796 x 10
-4

Other References

Rao [154]   93.116 x 10
-4

Timoshenko &

Woinowsky- Krieger

[155]

  93.218 x 10
-4
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8.2.2 Buckling of a Simply-Supported Isotropic Cylindrical Panel Subjected to 

Axial Loading

A thin-walled, isotropic cylindrical panel under axial compressive loading is analyzed to

determine the critical buckling load.  Figure 8.2 presents the geometry, coordinate system

and boundary conditions for this problem.  The material properties and panel sizes are as

follows:

  E = 179.27 GPa,

  G = 68.95GPa,

  n = 0.3,

  R = 50.8 cm, (8.2)

  h = 0.2 cm,

  a = 12.7 cm,

  b = 13.36 cm.

Under conditions of axisymmetry, a quarter of the panel is used for the analysis.  A 2x2

mesh of nine-nodded quadratic elements, as shown in Figure 8.2, is used to obtain a

convergent result.  Eigenvalue analysis is performed by using the proposed finite element

equations, as stated in Chapter 4, and the corresponding simply-supported boundary

conditions.  Table 8.2 contains the comparisons of the critical buckling load of the present

result with those of some early researchers [156, 157, 6].
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X

Y

a
b

(a) Geometry of a cylindrical panel

Y

X

  u0 = w0= yx = 0

  v0 =w0= y y = 0

  v0 = yy = 0

  u0 = yx = 0

(b) Representative quarter model and the corresponding boundary conditions

Figure 8.2 - A simply-supported cylindrical panel
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Table 8.2 - Comparison of the critical buckling loads,   NX , (N/m) of a simply-supported

cylindrical panel under axial compressive loading

Critical buckling load in axial direction (N/m)

Present Solution   0.8617 x 10
6

Rao & Tripathy [156]   0.8616 x 10
6

Kassegne [157]   0.8800 x 10
6

Timoshenko & Gere [6]   0.8609 x 10
6
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8.2.3 Nonlinear Analysis of a Simply-Supported Cylindrical Roof under a 

Central Point Load

In the preceding examples, linear static and buckling analyses were performed in order to

test the linear finite element model obtained in Chapter 4.  A simply-supported

cylindrical roof subjected to a central point load is studied for nonlinear structural

response with two different laminate sequences.  The geometry and boundary conditions

are shown in Figure 8.3.  The material properties and geometry information are as

follows:

  
E11 = 4.0 x 10

7 psi 280GPA( ),

  
E22 = E33 = 1.0 x 10

6 psi 6.90GPA( ),

  
G12 = G13 = 0.6 x 10

6 psi 4.14GPA( ), G23 = 0.5 x 10
6 psi 3.45GPA( )

  n12 = n13 = n23 = 0.25,

  
R = 100 inches 254cm( ), (8.3)

  
h = 1 inch 2.54cm( ),

  
a = 20 inches 50.8cm( ),

  
b = 20 inches 50.8cm( ).

A quarter model with 2x2 mesh of nine-noded quadratic elements is used because of the

symmetry in both loading and geometry, as shown in Figure 8.3.  A convergence test was

also performed..  The nonlinear load-maximum radial displacement curve is shown in

Figure 8.4  for the case of a single-layered orthotropic roof, whereas Figure 8.5 contains

the nonlinear response of a cross-ply (0/90) composite cylindrical roof.



1 6 7

b

a

R

X

Y

h
P

  Boundary Conditions:

  
v0 = w0 = y y = 0 at x = -

a
2
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u0 = w0 = y x = 0 at x = -

b
2

,
b
2

  u0 = y x = 0 at x = 0

  v0 = y y = 0 at y = 0

Figure 8.3 - Mesh and geometry information of a  simply-supported cylindrical roof

under a central point load
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Figure 8.4 - Nonlinear response of a simply-supported, orthotropic cylindrical roof under

a central point load
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Figure 8.5- Nonlinear response of a  simply-supported, cross-ply (0/90) cylindrical roof

under a central point load
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The present numerical results are based on the derived nonlinear equations from Chapter

4.  The comparisons with other references are shown as follows.

For the case of a single-layered cylindrical roof, the corresponding applied loads to

produce the central deflection of 2.026 inch (5.146 cm) in various studies are summarized

as:

Table 8.3 - Comparison of the applied loads to produce the central deflection of 2.026

inch (5.146 cm) for the case of a single-layered cylindrical roof under various studies

Applied Point Load (KN)

Present Solution 365.6

Liao [158 ] 348.8

MRT, Palmerio [159] 366.1

RVK, Palmerio [159] 358.7

For the other case, of a (0/90) composite cylindrical roof, the corresponding applied loads

to produce a maximum deflection of 2.222 inch (5.644 cm) in various studies are also

compared as:
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Table 8.4 - Comparison of the applied loads to produce the central deflection of 2.222

inch (5.644 cm) for the case of a (0/90) composite cylindrical roof under various studies

Applied Point Load (KN)

Present Solution 279.5

Liao [158 ] 277.4

MRT, Palmerio [159] 295.4

RVK, Palmerio [159] 283.3

8.3 Example Studies for Cylindrical Shell Structures

In this section, a number of examples are analyzed for linear and nonlinear buckling

behavior of circular cylindrical shells under uniform external lateral pressure.  Both

isotropic and composite cylinders are considered.  Comparisons of the structural

responses with various internal elastic foundations are also illustrated in the following

sub-chapters.

8.3.1 Linear and Nonlinear Buckling Analysis of an Isotropic Cylindrical Shell  

under Uniform Radial Pressure

The first example is used to study the stability conditions of an isotropic cylinder with

simply-supported edges under uniform hydrostatic pressure.  The finite element

equations derived in Chapter 4 are used to model the present cylindrical structure and
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loading conditions.  The geometry and the coordinate system for the present study are

included in Figure 8.6 (a).

As the first step, the linear eigenvalue analysis is applied for the determination of

buckling points and the symmetry conditions.  The mesh information and the

corresponding boundary conditions for this problem are also shown in Figure 8.6 (b).

Due to the symmetry in both loading and geometry, only a quarter model is used in order

to reduce the complexity of the model and to save computational time.  A 4 X 8 mesh

with nine-noded quadratic elements was used to meet the convergence requirement.

The material and geometric properties used as input data for the finite element programs

are:

  E = 200 GPa,

  G = 77 GPa,

  n = 0.3, (8.4)

  R = 25 cm,

  h = 0.5 cm,

  L = 2 m .

The numerical results for linear buckling analysis of an isotropic, circular cylindrical shell

subjected to uniform lateral pressure are listed in the following table.  As shown in the

table, the corresponding classical solutions based on Donnell's quasi-shallow, thin shell

theory [11] are also included and compared with the present numerical solutions.
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R

R

XY

L

Figure 8.6 (a) - Geometry and coordinate system of a cylindrical shell

X
R

Y
L/2

  Boundary conditions:

  v0 = w0 = yy = 0 at X = 0

  
u0 = yx = 0 at X =

L
2

  v0 = yy = 0 at Y = p R
  v0 = yy = 0 at Y = 0

Figure 8.6 (b) - Mesh information and the corresponding boundary conditions of a

simply-supported cylindrical shell
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Table 8.5 - Comparisons of the corresponding buckling loads between the linear numerical

analysis and the classical solutions based on Donnell's quasi-shallow, thin theory

  q0 ( KPa) Critical Second Third

Present Solutions 1528 2446 3094

Classical Solutions 1490 2010 2413

Number of Lobes 3 2 4

The critical, second, and third buckling modes, which are evaluated by the corresponding

eigenvectors, are shown in Figure 8.7(a), (b), and (c), respectively.  The present numerical

solutions based on Sanders' nonshallow, thin shell theory produce higher buckling load

values when compared with classical results.  One of the important reasons for the

differences is that the cylinder is under constant directional pressure (so-called "dead

load') for the present theory instead of the hydrostatic pressure (so-called "live load') for

the classical solutions.  The second reason is the inclusion of the v/R term in Equation

(3.4).  This is also the major difference between Sanders' and Donnell's theories.  On the

other hand, the associated buckled shapes are identical.

The nonlinear finite element analysis is also performed.  The geometry, material

properties, mesh information and boundary conditions are identical to those used in the

linear analysis.  Iterative nonlinear schemes, such as Newton-Raphson and Riks-

Wempner methods, are used to trace nonlinear load-displacement curves.  The normalized

determinant values of the stiffness matrices at each equilibrium point are also evaluated
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for the determination of the stability condition.   The nonlinear numerical solutions differ

only by a very small quantity from the linear ones.  Since the buckling behavior for the

present example undergoes a bifurcation type of phenomenon, the numerical solutions

from the nonlinear finite element equations almost match the linear ones.  The buckling

shapes resulting from the nonlinear analysis are exactly the same as those of the linear

solutions.
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Figure 8.7(a) - First buckling mode with   q0 = 1528 KPa
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Figure 8.7(b) - Second buckling mode with   q0 = 2446 KPa
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Figure 8.7(c) - Third buckling mode with   q0 = 3094 KPa



1 7 8

8.3.2 Stability Analysis of an Isotropic Cylindrical Shell with Internal Elastic 

Foundation under Uniform Radial Pressure

The influence of internal elastic foundations on the buckling behavior of metallic cylinders

is examined.  The edges of the shell are also hinged, and the applied external loads remain

constant-directional radial pressure.  The geometry and material properties are the same

as in Chapter 8.3.1.  A quarter cylindrical shell containing four by eight nine-node

elements is also applied in the study.

Using both linear eigenvalue and nonlinear analyses, numerous critical buckling pressures

are determined for various constants of elastic foundations.  The numerical results and the

corresponding buckling modes are compared in Table 8.3.  It is seen from the table that

the critical buckling loads for soft elastic foundations do not differ much from the case

without a foundation.  As the elastic-foundation constants become larger and larger, the

resistance to buckling becomes much stronger.  The entire stiffness is much enhanced due

to the existence of the stiffer elastic medium.  The pattern of the critical buckling modes is

also altered to higher numbers of waves.

With internal elastic foundations, the stability is still the bifurcation type.  Nonlinear

solutions give somewhat more conservative results but do not vary much from the linear

buckling pressures.  The influence of initial imperfections on the nonlinear response and

critical buckling loads of the shells with and without internal elastic foundations will be

detailed in the next sub-chapter.



1 7 9

Table 8.6 - Comparisons of the critical buckling pressure   q0 (N/  m2) of simply-supported

cylindrical shells with and without elastic foundations

under uniform lateral pressure

  K0   (N/  m3)   (q0 )Critical (X 10
6 N / m2 ) Number of Lobes (N)

0 1.5284 3

  2 x 10
5 1.5355 3

  2 x 10
6 1.5984 3

  2 x 10
7 2.2280 3

  2 x 10
8 5.9226 4
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8.3.3 Stability Analysis of Composite Cylindrical Shells under Uniform Radial 

Pressure

Linear stability analyses of composite cylinders with hinged ends when subjected to

uniform constant radial pressure are studied.  The geometry, mesh scheme and

corresponding boundary conditions for this study are illustrated in Figure 8.6 (a) and (b).

The properties of the Graphite Epoxy (GY70/339) shell used in equation (8.5), are as

follows:

  E11 = 289 GPa, E22 = E33 = 6.063GPa,

  n12 = n13 = n23 = 0.31,

  G12 = G13 = G23 = 4.134 GPa. (8.5)

  R = 25 cm,

  h = 0.5 cm,

  L = 2 m .

Two types of lamination schemes are examined in this section.  One is a composite

cylinder with cross-ply (0/90/90/0) laminate sequences, the other is an angle-ply (0/45/-

45/0) type of lamination.  Similarly to the procedures stated in Section 8.3.1, the linear

eigenvalues and the associated eigenvectors of composite cylindrical shells are determined

and are shown in Table 8.4 .  Table 8.5 also contains the number of lobes of the

corresponding buckling modes for the two different types of lamination schemes.

Distinct buckling modes (numbers of complete cosine waves in the circumferential

direction) are also presented.  Performing the nonlinear finite element analysis of both

cross-ply and angle-ply types of composite cylinders, the buckling pressures are 326.57
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Table 8.7 - Comparisons of the critical buckling pressure   q0 (N/  m2) of simply-supported,

composite cylinders with different lamination schemes

under uniform lateral pressure

  q0 ( KPa)

Number of

Buckling Load

(0/90/90/0)

Composite Cylinder

(0/45/-45/0)

Composite Cylinder

Critical 326.75 122.99

Second 462.84 169.41

Third 714.70 180.61

Table 8.8 - Comparisons of the numbers of lobes  of composite cylinders with different

lamination schemes under uniform lateral pressure

Number of Lobes (N) in the Circumferential Direction

Number of

Buckling Load

(0/90/90/0)

Composite Cylinder

(0/45/-45/0)

Composite Cylinder

Critical 3 4

Second 4 3

Third 2 5
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and 122.27 KPa, respectively, whereas the corresponding linear solutions are 326.75, and

122.99 KPa, respectively.

8.3.4 Stability Analysis of Composite Cylindrical Shells with Internal Elastic 

Foundations under Uniform Pressure

The study of the buckling phenomenon of composite shells is extended in this section by

including internal elastic foundations.  The geometry, mesh scheme, corresponding

boundary conditions and stacking sequences of composite cylinders were stated in

Section 8.3.3.  With increasing values of the elastic foundation constant   K0 , one can

obtain the associated critical buckling points by using eigenvalue analysis and running the

finite element program.

Table 8.6 presents the numerical results of critical buckling loads and modes for a series of

elastic foundation constants, for the case of a cross-ply (0/90/90/0) composite cylinder.

Similarly, Table 8.7 summarizes the results and comparisons for the case of an angle-ply

(0.45/-45/0) type of composite cylindrical shell.

As one can see from the results of these two tables, the buckling loads of the soft elastic

foundations do not vary much from the one without a foundation.  Once the elastic

foundations become stiffer, the buckling loads increase.  On the other hand, the lowest

buckling modes have the tendency to deform into more wave patterns when compared to

those without elastic foundation and with softer elastic medium, as shown in Table 8.6

and 8.7.
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Table 8.9 - Comparisons of the critical buckling pressures   q0 (N/  m2) of simply-

supported, cross-ply (0/90/90/0) type of composite cylinders with different elastic

foundations under uniform lateral pressure

  K0   (N/  m3)   (q0 )Critical (X 10
5 N / m2 ) Number of Lobes (N)

0 3.2675 3

  1 x 10
5 3.3024 3

  1 x 10
6 3.6169 3

  1 x 10
7 6.3763 3

  1 x 10
8 17.3719 5

Table 8.10 - Comparisons of the critical buckling pressures   q0 (N/  m2) of simply-

supported, angle-ply (0/45/-45/0) type of composite cylinders with different elastic

foundations under uniform lateral pressure

  K0   (N/  m3)   (q0 )Critical (X 10
5 N / m2 ) Number of Lobes (N)

0 1.2300 4

  1 x 10
5 1.2476 4

  1 x 10
6 1.4060 4

  1 x 10
7 2.7361 5

  1 x 10
8 8.1426 7
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8.3.5 Stability Analysis of an Isotropic Cylindrical Shells with a Two-Parameter 

Elastic Foundation under Uniform Radial Pressure

In Section 7.3.5, the effect of Pasternak's constants on the stability of an isotropic ring

with an internal elastic foundation was observed for the purpose of consideration of the

shear interactions between individual springs.  Similarly, the buckling analysis of an

isotropic cylinder with internal elastic foundation under uniform external pressure is

studied here by including various values of Pasternak's constants.  The linear Winkler

elastic foundation constant is chosen as   K0  =   2 x 10
6 N / m3 .  The formulation and the

finite element equations which include the terms of the Pasternak foundation are derived

in Chapter 4.10.  Based on those equations, the critical buckling pressures under different

Pasternak's constants are detailed in the following table.

Table 8.11 - Comparisons of the critical buckling pressures of simply-supported,

Isotropic Cylindrical Shells with various Pasternak Elastic Foundation Constants

under uniform lateral pressure

Pasternak Elastic Foundation Constants

  KS (N / m
2 )

  (q0 )Critical: (KPa)

0 1598.412

  1 x 10
4 1649.892

  2 x 10
4 1701.372

  3 x 10
4 1752.852

  4 x 10
4 1804.332
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According to the numerical results shown in the above table, the critical buckling

pressures will rise from 3.22% to 12.88% as the values of   KS rise from   1 x 10
4 to   4 x 10

4

when compared to the one without Pasternak's constant.

8.3.6 Stability Analysis of Isotropic Cylindrical Shells with a Nonlinear Elastic 

Foundation under Uniform Radial Pressure

This example is to test the effect of nonlinear elastic foundation constants on the stability

of isotropic cylinders under uniform radial pressure.  The critical buckling pressures is

compared with those of the linear Winkler elastic foundation model (  K0 = 2 x 10
6 N / m3).

An nonlinear finite element model with linear and nonlinear Winkler elastic foundations is

used to determine the first buckling loads.  The following table includes the numerical

results of stability analyses under various nonlinear elastic foundational constants.
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Table 8.12 - Comparisons of the critical buckling pressures of simply-supported,

Isotropic cylindrical shells with various nonlinear elastic foundation constants

under uniform lateral pressure

Nonlinear Winkler Elastic

Foundation Constants

  KI (N / m
5 )

  (q0 )Critical: (KPa) % increase of   (q0 )Critical

Compared with that of

Linear Winkler Model

0 -   2 x 10
11 1528 -----

  2 x 10
12 1530 0.131 %

  1 x 10
13 1536 0.524 %

  2 x 10
13 1546 1.178 %

  5 x 10
13 1578 3.272 %

  2 x 10
14 1792 17.28 %

As one can see from the above table, the critical buckling pressures remain almost the

same even though the nonlinear constant   KI  reaches a large value of   2 x 10
11   N / m5 .  With

a very large elastic foundation constant of   2 x 10
14    N / m5 , the critical buckling pressure

will increase up to 17 percent.  In general, the nonlinear elastic foundation constants

become more effective only when one deals with post-buckling behavior or when the

value of nonlinear elastic foundation constant is very large.
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8.4 Initial Post-Buckling and Imperfection Sensitivity Analysis for 

Cylindrical Shell Structures

In contrast to the examples of Chapter 8.3, the nonlinear responses of both isotropic and

composite cylindrical shells with initial imperfections under uniform radial pressure are

studied in this section.  Comparisons of the buckling points and the nonlinear load-

deflection behavior of cylindrical shells with and without elastic foundations are also

included.

8.4.1 Imperfection Sensitivity Analysis of an Isotropic Cylindrical Shell with 

Simply Supported Ends under Uniform Radial Pressure

In Section 8.3.1, the linear and nonlinear analyses of an initially perfect, isotropic cylinder

under external uniform pressure were performed.  For the specified material and

geometry, the thin shell has a first bifurcation point which corresponds to the critical

buckling point.  Mathematically, the bifurcation point is the intersection between the

primary and secondary load-displacement curves.  Before the entire structure loses its

stability, the shell will contract uniformly due to uniform pressure.  In other words, the

equilibrium path is followed until it reaches the bifurcation point, which is also the

buckling point, and then turn into the secondary path.  That's the explanation for the fact

of extremely close, numerically predicted values by both linear and nonlinear analyses.

In the literature cited in Chapter 5, the existence of the initial imperfection will not only

change the behavior of the structure, but also dramatically reduce its buckling resistance,
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especially for shell type of structures.  In this example, the stability of an isotropic

cylindrical shell with initial imperfections is studied.  The imperfection function is

assumed to be:

  
w0(x, y) = D sin ( m p x

L
) cos n y

R

æ

è
ç

ö

ø
÷ (8.6)

where   w0 denotes the imperfection function, D  is the imperfection amplitude, which is

considered as a small fraction of the wall thickness, and m and n indicate the numbers of

half sine waves in the axial direction and complete cosine waves in the circumferential

direction, respectively.  Using the same mesh and loading condition, one may apply the

nonlinear theory associated with the initial imperfection function and the corresponding

finite element program derived in Chapter 5 to characterize the nonlinear response and the

first buckling point.  The Riks-Wempner nonlinear scheme is used to trace the load-

displacement curve, iteratively.

Let m be equal to one, and n be three, which represents the first buckled shape, as the

wavelength parameters.  Imperfection amplitudes were chosen to be 0.01, 0.1, and 0.2 of

the shell thickness  The nonlinear responses under this imperfection function with various

amplitudes are presented in Figure 8.8.  Figure 8.9 also shows the normalized

determinants versus the applied external loading.  As one can see in Figure 8.8, the

structural behavior becomes a limit-point type of equilibrium configuration.  As the

amplitude increases, the corresponding buckling loads drop gradually.  The numerical

results of critical buckling loads under various initial imperfections are contained in Table

8.8.  The linear and nonlinear results of a perfect cylinder are also included in Table 8.8 to
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Table 8.13 - Comparisons of the critical buckling pressure   q0 (N/  m2) of simply-

supported, isotropic cylinders under uniform lateral pressure for the cases of linear,

nonlinear, and imperfection sensitivity analyses

Critical Buckling Pressure

  q0 (KPa)

Linear Solution 1528.4

Nonlinear Solution 1527.9

Imperfection Sensivity Analysis (m = 1, n = 3)

D  = 0.01*thickness 1498

D  =  0.1*thickness 1427

D  =  0.2*thickness 1373
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make comparisons.  The buckling loads become 98%, 93%, and 89% of that of a perfect

structure as D  increases from 0.01, 0.1, and 0.2 of the shell thickness.

8.4.2 Imperfection Sensitivity Analysis of an Angle-Ply Type of Composite 

Cylindrical Shell with Simply Supported Edges under Uniform Radial 

Pressure

In this section, the nonlinear structural responses and the corresponding critical buckling

pressures of a composite cylinder with the effect of various initial imperfections under

external uniform pressure are examined.  An angle-ply type of composite cylindrical shell

with the lamination of (0/45/-45/0) is selected for the present example.  The imperfection

function is assumed to be the same one which is shown in equation (8.6).  Performing the

wave parameter (m and n) studies, the corresponding critical buckling pressures under

various imperfection conditions are shown in the following table.  The numerical solutions

obtained from linear and nonlinear finite element analyses of a perfect cylindrical shell

under uniform pressure are also included in the following table for comparisons.
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Table 8.14 - Comparisons of the critical buckling pressure of simply-supported, angle-

ply type of composite cylinders under uniform lateral pressure for the cases of

imperfection sensitivity analyses

  (q0 )Critical: (KPa)

Linear Solution 123.00

Nonlinear Solution 122.27

Imperfect Cylinder with m = 1, and n = 2

D  = 0.01*thickness 122.25

D  = 0.02*thickness 122.20

D  = 0.05*thickness 121.93

Imperfect Cylinder with m = 1, and n = 3

D  = 0.01*thickness 121.67

Imperfect Cylinder with m = 1, and n = 4

D  = 0.01*thickness 120.91

D  = 0.02*thickness 117.13

Due to the convergence difficulty of the numerical procedures, only small imperfection

amplitudes are listed here.  As the results indicated, the associated buckling pressures



1 9 4

drop as the imperfection amplitudes become larger.  The critical buckling pressures also

vary with a variety of the imperfection functions.

8.4.3 Imperfection Sensitivity Analysis of an Isotropic Cylindrical Shell with 

Simply Supported Ends and Elastic Foundation (  K0 = 2 x 10
8 N / m3) under 

Uniform Radial Pressure

In contrast to the examples of imperfection sensitivity analyses of rings on elastic

foundations as shown in Chapter 7.5.3, this example is to examine the nonlinear structural

responses and the corresponding critical buckling loads of imperfect cylinders with

internal elastic foundations under various initial imperfection conditions.  The loading

condition, geometry and material properties are chosen the same as those in Section 8.3.2

in order to make comparisons.  The internal elastic foundation is selected as the one with

  K0 = 2 x 10
8 N / m3 , which is a relatively stiff elastic medium.

A nonlinear finite element program including the terms associated with the imperfection

functions is applied to determine the nonlinear load-displacement relations and also to

evaluate the normalized determinants at each equilibrium point to check for stability

conditions.  Two types of wave parameters are seleced to form the assumed imperfection

functions, one with m = 1 and n = 2 , and the other one with m = 1 and n = 4.  With

various imperfection amplitudes, the numerical results of critical buckling loads are shown

in the following table.  Linear and nonlinear solutions of a perfect cylinder are also

provided in the table.  Figures 8.10 and 8.11 represent the nonlinear solutions of

imperfect, isotropic cylinders with various amplitudes under uniform radial pressure,



1 9 5

whereas Figures 8.12 and 8.13 also show the graphs of normalized determinants versus

applied pressures, respectively.

Critical Buckling Pressure

  (q0 )Critical: KPa

Linear Buckling Analysis 5922.6

Nonlinear Buckling Analysis 5920

Imperfect Cylinder with m = 1 and n = 2

D  = 0.01*h 5918

D  = 0.1*h 5918

D  = 0.2*h 5916

D  = 0.5*h 5913

Imperfect Cylinder with m = 1 and n = 4

D  = 0.01*h -----

D  = 0.1*h -----

D  = 0.2*h -----

From the computational results of the case of a perfect isotropic cylinder with internal

elastic foundation under uniform pressure, which were shown in Section 8.3.2, the first

buckled shape is the one with four lobes in the circumferential direction, which implies
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the value of n to be four.  For the case of an isotropic cylinder with a relatively stiff

elastic foundation, the normalized determinant does not reach zero since the cylinder

already reached the buckled shape for the case of m = 1 and n = 4.  It also shown in Figure

8.11 that the radial deflections will converge as the applied pressure reaches

approximately 7000 KPa.  But, in the other case of m = 1 and n = 2, the critical buckling

loads are not sensitive to increasing imperfection amplitudes with the inclusion of internal

elastic foundation   K0 = 2 x 10
8 N / m3 , though the nonlinear load-displacement curves

behave quite differently as shown in Figure 8.10.

8.4.4 Imperfection Sensitivity Analysis of an Angle-Ply Type of Composite 

Cylinder with Simply Supported Edges and Elastic Foundation 

(  K0 = 1 x 10
5 N / m3) under Uniform Radial Pressure

In this section, the imperfection sensitivity analysis of a composite cylinder with (0/45/-

45/0) stacking sequence on a relatively soft elastic foundation (  K0 = 1 x 10
5 N / m3) under

uniform radial pressure is examined.  For a specified initial imperfection function, the

corresponding wavelength parameters with m = 1 and n = 4 are assumed.  The linear

buckling pressures of a perfect cylinder along with the associated critical buckling

pressures of imperfect cylinders under the consideration of various imperfection

amplitudes are listed in the following table:



1 9 7

Table 8.15 - Comparisons of the critical buckling pressure of simply-supported, angle-

ply type of cylindrical shell with elastic foundation under uniform lateral pressure

for the cases of imperfection sensitivity analyses

  D / h 0.01 0.02 0.05 0.1

  (q0 )Critical: KPa 124.03 123.98 123.73 123.25

Linear Buckling Pressure of a Perfect Cylinder = 124.76 KPa

The nonlinear relationship of load and radial displacement are illustrated in Figure 8.14.

Figure 8.15 also shows the graph of normalized determinants versus applied uniform

radial pressures.  Since the critical buckling loads only drop a little with the increasing of

imperfection amplitudes, it can be said that the composite cylinder with a relatively soft

elastic foundation (  K0 = 1 x 10
5 N / m3) is not sensitive to initial imperfections.  The

structural responses with various imperfection amplitudes do not differ much.  This

behavior is completely different from the case of an isotropic cylinder with a relatively

stiff elastic foundation (  K0 = 2 x 10
8 N / m3).
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CHAPTER 9

CONCLUSIONS AND FURTHER WORK

9.1 Summary and Conclusions

A refined Sanders theory which includes the von Karman type of geometric nonlinearity

and first order shear deformable flexibility was used to develop both two-dimensional

cylindrical shell and one-dimensional ring elements for the displacement-based finite

element models.  The proposed elements were tested in order to investigate their validity

and efficiency on a variety of examples involving static, buckling and post-buckling

analyses under various boundary and loading conditions.

Linear and nonlinear elastic-foundation models were applied to simulate an inner, soft,

elastic medium.  Pasternak-elastic constants were also chosen to modify the proposed

elastic foundation model to include shear interactions between individual springs.  Initial

imperfections were also incorporated in the formulation of the finite element equations for

both thin-walled ring and shell elements for nonlinear buckling and imperfection

sensitivity analyses.

In this work, the stability analysis of arches and complete rings under uniform constant-

directional radial pressure was presented in Chapter 7, whereas the buckling analysis of

cylinders was shown in Chapter 8.  Both isotropic and anisotropic materials were applied

for the outer, thin layered structures.  As the first step, linear eigenvalue analysis was

performed to obtain the approximate buckling pressures and the associated buckling
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modes as well as the symmetry conditions.  Iterative nonlinear schemes, such as Newton-

Raphson and Riks-Wempner methods, were used to solve a system of nonlinear finite

element equations.  Both linear and nonlinear buckling analyses of ring and cylindrical

shell structures with internal elastic foundations under uniform pressure were also

investigated and compared with their counterparts without elastic foundations. A slightly

initially imperfect ring model was used to induce the nonlinear buckling behavior.  The

results show (Chapter 7) that the inclusion of initial imperfection functions does not

change the critical buckling pressures.  The imperfection sensitivity of rings and shells

with internal elastic foundations was examined, too.  Parameter studies under various

imperfection amplitudes were also included in this research.

Based on the study of various examples carried out in this work, a number of conclusions

are made as follows:

· The present research is based on Sanders' nonlinear theory and the first order 

shear deformable theory.  Unlike the conventional Donnell's theory, the numerical

results show much improved accuracy in dealing with global structural responses 

(such as the displacement field in the mid-surface or buckling loads) of complete 

rings, cylinders and nonshallow circular structures.  It also provides the capability

of including the effect of transverse shear of composites.

· Under the range of small strains and moderate rotations (less than 30 degrees), the

numerical results of the test examples in Chapter 7 and 8 present reasonable 

coincidence when compared with studies in the literature, which use various 

nonlinear ring and shell theories.
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· The lowest buckling modes for plane cylinders are not necessarily those with the 

lowest number of lobes along the circumferential direction.  For both ring and shell

structures with relatively stiff elastic foundations, the lowest modes are functions

of the foundation stiffness.

· The existence of internal elastic foundations is beneficial to the buckling resistance

of thin-walled rings and cylindrical shells.

· As the obtained results attest, the examples shown in Chapters 7 and 8 exhibit 

bifurcation type of buckling phenomena.  With either isotropic or composite 

circular structures, the linear and nonlinear solutions are almost identical.

· Distinct nonlinear load-displacement relations of a cylindrical shell without elastic

foundation under various initial imperfection amplitudes are observed.  The critical

buckling pressures drop quite a lot compared to perfect cylinders.

· The initially out-of-round model is prescribed to induce the buckling of rings in 

the nonlinear analysis.  Numerical results in Chapter 7 show that the buckling 

behavior of rings is not sensitive to initial imperfections although the load-

displacement curves are significantly different.

· With internal elastic foundations, especially stiffer foundations, the critical 

buckling pressures are not sensitive to the initial imperfection functions.  

However, for various values of elastic-foundation constants, the load-radial 

deflection relations vary from case to case.
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9.2 Recommendations for Further Research

The following list of research areas might be followed in the applications of the present

theories and finite element models:

· The external loading could be extended to uniform hydrostatic (so called "live"), 

nonuniform, constant-directional pressures, and in-plane concentrated loads.

· The proposed Sanders' theory can also be extended to shells of any general 

geometry such as spherical and conical shells.

· The stability of cylindrical shells with and without elastic foundations under axial

pressures may be investigated.  Imperfection sensitivity analyses may also be 

examined and compared with perfect structures under the same circumstances.

· Instead of using first order shear deformation theory, some higher order theory 

may be applied to accurately characterize the interlaminar displacement and stress

field of the entire composite structure.  Some defects or delaminations could also 

be considered in order to simulate the real situation.
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APPENDIX A

COEFFICIENTS OF ELEMENT STIFFNESS MATRIX AND FORCE

VECTOR FOR A RING ELEMENT

A.1 COEFFICIENTS OF LINEAR ELEMENT STIFFNESS MATRIX AND 

FORCE VECTOR

The components of the element stiffness matrix 
  
k(e )[ ]

L
, which were shown in equations

(3.31) and (3.32), can be expressed as:
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kij
31[ ] = kij13[ ]T (A.7)

  
kij
32[ ] = kij23[ ]T (A.8)

  
kij
33[ ] = b{D22

df i
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ò
df j
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dy
+ Ks A44 f i

(3) f j
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The components of the element force vector {  f (e )}, which were shown in equations

(3.31) and (3.32), also can be given by

  Fi
(1)
= Q4

(e )
- Q1

(e )
(A.10)

  
Fi
(2)
= qtotaly A

yB

ò · f i
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(e )
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(e )
(A.11)

  Fi
(3)
= Q6

(e )
- Q3

(e )
(A.12)

where   Qi
(e )

 denotes the nodal contributions of the boundary forces of the element, which

were shown in equation (3.25).

A.2 COEFFICIENTS OF NONLINEAR ELEMENT STIFFNESS MATRIX

The components of the element stiffness matrix 
  
k(e )[ ]

NL
, which were shown in equation

(3.33), can be obtained as follows:
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(
dw0
dy

-
v0
R
)
df i

(1)

dy

df j
(2)

dyyA

yB

ò +
A22
R
(
dw0
dy

-
v0
R
)
df i

(2)

dy
f j
(2)

+
A22
2
(
dw0
dy

-
v0
R
)2
df i

(2)

dy

df j
(2)

dy
}dy

(A.17)

  
kij
23[ ]

NL
= b{ B22 (

dw0
dy

-
v0
R
)
df i

(2)

dyyA

yB

ò
df j

(3)

dy
}dy (A.18)

  
kij
31[ ]

NL
= b{ -

B22
2R

(
dw0
dy

-
v0
R
)
df i

(3)

dy
f j
(1)

y A

yB

ò }dy (A.19)
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kij
32[ ]

NL
= b{

B22
2
(
dw0
dy

-
v0
R
)
df i

(3)

dyyA

yB

ò
df j

(2)

dy
}dy (A.20)

  
kij
33[ ]

NL
= 0 (A.21)



2 2 9

APPENDIX B

COEFFICIENTS OF ELEMENT TANGENT STIFFNESS MATRIX

FOR A RING ELEMENT

The components of the tangent stiffness matrix for a nonlinear, perfect ring element are

given below.

  

( kT )ij
11[ ] = kij

11[ ]
L
+ kij

11[ ]
NL

+ b{ -
A22
2R
(
dw0
dy

-
v0
R
)
df i

(1)

dyyA

yB

ò f j
(1)

+[
A22
R2

( dv0
dy

+
w0
R
+ (
dw0
dy

-
v0
R
)2 )+ B22

R2
(
dy y

dy
)] f i

(1) f j
(1)}dy

(B.1)

  

( kT ) ij
12[ ] = kij

12[ ]
L
+ kij

12[ ]
NL

+ b{
A22
2
(
dw0
dy

-
v0
R
)
df i

(1)

dyyA

yB

ò
df j

(2)

dy

- [
A22
R

( dv0
dy

+
w0
R
+ (
dw0
dy

-
v0
R
)2 )+ B22

R
(
dy y

dy
)] f i

(1)
df j

(2)

dy
}dy

(B.2)

  
( kT ) ij

13[ ] = kij
13[ ]

L
+ kij

13[ ]
NL

(B.3)
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( kT ) ij
21[ ] = kij

21[ ]
L
+ kij

21[ ]
NL

+ b{
yA

yB

ò -
A22
2R2

(
dw0
dy

-
v0
R
)f i

(2) f j
(1)

- [
A22
R

( dv0
dy

+
w0
R
+ (
dw0
dy

-
v0
R
)2 )+ B22

R
(
dy y

dy
)]
df i

(2)

dy
f j
(1)}dy

(B.4)

  

( kT ) ij
22[ ] = kij

22[ ]
L
+ kij

22[ ]
NL

+ b {
A22
2R
(
dw0
dy

-
v0
R
) f i

(2)
df j

(2)

dyyA

yB

ò

+ [ A22 ( dv0dy +
w0
R
+ (
dw0
dy

-
v0
R
)2 )+B22 (

dy y

dy
)]
df i

(2)

dy

df j
(2)

dy
}dy

(B.5)

  
( kT ) ij

23[ ] = kij
23[ ]

L
+ kij

23[ ]
NL

(B.6)

  

( kT ) ij
31[ ] = kij

31[ ]
L
+ kij

31[ ]
NL

+ b { -
B22
2R

(
dw0
dy

-
v0
R
)
df i

(3)

dy
f j
(1)

y A

yB

ò }dy
(B.7)

  

( kT ) ij
32[ ] = kij

32[ ]
L
+ kij

32[ ]
NL

+ b {
B22
2
(
dw0
dy

-
v0
R
)
df i

(3)

dyyA

yB

ò
df j

(2)

dy
}dy

(B.8)

  

( kT ) ij
33[ ] = kij

33[ ]
L
+ kij

33[ ]
NL

= kij
33[ ]

L

(B.9)



2 3 1

APPENDIX C

COEFFICIENTS OF ELEMENT STIFFNESS MATRIX AND FORCE

VECTOR FOR A CYLINDRICAL SHELL ELEMENT

C.1 COEFFICIENTS OF LINEAR ELEMENT STIFFNESS MATRIX AND 

FORCE VECTOR

The components of the element stiffness matrix 
  
k(e )[ ]

L
, which were shown in equations

(4.22) and (4.23), can be expressed as:

  

kij
11[ ] = { A11

¶f i
(1)

¶ x
W
ò

¶f j
(1)

¶ x
+ (A16 +C0B16 )( ¶f i

(1)

¶ x

¶f j
(1)

¶ y
+
¶f i

(1)

¶ y

¶f j
(1)

¶ x
)

+ (A66 +2C0B66 +C0
2
D66 )

¶f i
(1)

¶ y

¶f j
(1)

¶ y
}dA

(C.1)

  

kij
12[ ] = { A12

¶f i
(1)

¶ x
W
ò

¶f j
(2)

¶ y
+ (A16 -C0B16 )

¶f i
(1)

¶ x

¶f j
(2)

¶ x

+ (A26 +C0B16 )
¶f i

(1)

¶ y

¶f j
(2)

¶ y
+ (A66 -C0

2
D66 )

¶f i
(1)

¶ y

¶f j
(2)

¶ x
}dA

(C.2)

  
kij
13[ ] = {

A12
R

¶f i
(1)

¶ x
W
ò f j

(3) + (
A26 +C0B26

R
)
¶f i

(1)

¶ y
f j
(3) }dA (C.3)

  

kij
14[ ] = { B11

¶f i
(1)

¶ x
W
ò

¶f j
(4)

¶ x
+ (B16 +C0D16 ) ( ¶f i

(1)

¶ x

¶f j
(4)

¶ y
+
¶f i

(1)

¶ y

¶f j
(4)

¶ x
)

+ (B66 +C0D66 )
¶f i

(1)

¶ y

¶f j
(4)

¶ y
}dA

(C.4)
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kij
15[ ] = { B12

¶f i
(1)

¶ x
W
ò

¶f j
(5)

¶ y
+ B16

¶f i
(1)

¶ x

¶f j
(5)

¶ x

+ (B26 +C0D26 )
¶f i

(1)

¶ y

¶f j
(5)

¶ y
+ (B66 +C0D66 )

¶f i
(1)

¶ y

¶f j
(5)

¶ x
}dy

(C.5)

  
kij
21[ ] = kij

12[ ]T (C.6)

  

kij
22[ ] = { A22

¶f i
(2)

¶ y
W
ò

¶f j
(2)

¶ y
+ (A26 -C0B26 )( ¶f i

(2)

¶ y

¶f j
(2)

¶ x
+
¶f i

(2)

¶ x

¶f j
(2)

¶ y
)

+ (A66 - 2C0B66 +C0
2
D66 )

¶f i
(2)

¶ x

¶f j
(2)

¶ x
+
Ks A44

R2
f i
(2) f j

(2) }dA

(C.7)

  

kij
23[ ] = {

A22
R

¶f i
(2)

¶ y
W
ò f j

(3) + (
A26 -C0B26

R
)
¶f i

(2)

¶ x
f j
(3)

-
KS A44

R
f i
(2)
¶f j

(3)

¶ y
-
KS A45

R
f i
(2)
¶f j

(3)

¶ x
}dA

(C.8)

  

kij
24[ ] = { B12

¶f i
(2)

¶ y
W
ò

¶f j
(4)

¶ x
+ (B16 -C0D16 )

¶f i
(2)

¶ x

¶f j
(4)

¶ x
+ B26

¶f i
(2)

¶ y

¶f j
(4)

¶ y

+ (B66 -C0D66 )
¶f i

(2)

¶ x

¶f j
(4)

¶ y
-
Ks A45

R
f i
(2) f j

(4) }dA

(C.9)

  

kij
25[ ] = { B22

¶f i
(2)

¶ y
W
ò

¶f j
(5)

¶ y
+ (B26 -C0D26 )( ¶f i

(2)

¶ x

¶f j
(5)

¶ y
)

+ B26(
¶f i

(2)

¶ y

¶f j
(5)

¶ x
) + (B66 -C0D66 ) ¶f i

(2)

¶ x

¶f j
(5)

¶ x
-
Ks A44

R
f i
(2) f j

(5) }dA

(C.10)

  
kij
31[ ] = kij

13[ ]T (C.11)
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kij
32[ ] = kij

23[ ]T (C.12)

  

kij
33[ ] = {

A22
R2

f i
(3)

W
ò f j

(3) + KS A44

¶f i
(3)

¶ y

¶f j
(3)

¶ y
+ KS A55

¶f i
(3)

¶ x

¶f j
(3)

¶ x

+ KS A45 ( ¶f i
(3)

¶ x

¶f j
(3)

¶ y
+
¶f i

(3)

¶ y

¶f j
(3)

¶ x
) }dA

(C.13)

  

kij
34[ ] = {

B12
R
f i
(3)
¶f j

(4)

¶ x
W
ò +

B26
R

f i
(3)
¶f j

(4)

¶ y

+ KS A55
¶f i

(3)

¶ x
f j
(4) + KS A45

¶f i
(3)

¶ y
f j
(4) }dA

(C.14)

  

kij
35[ ] = {

B22
R

f i
(3)
¶f j

(5)

¶ y
W
ò +

B26
R

f i
(3)
¶f j

(5)

¶ x

+ KS A44

¶f i
(3)

¶ y
f j
(5) + KS A45

¶f i
(3)

¶ x
f j
(5) }dA

(C.15)

  
kij
41[ ] = kij

14[ ]T (C.16)

  
kij
42[ ] = kij

24[ ]T (C.17)

  
kij
43[ ] = kij

34[ ]T (C.18)

  

kij
44[ ] = { D11

¶f i
(4)

¶ x
W
ò

¶f j
(4)

¶ x
+ D16 ( ¶f i

(4)

¶ y

¶f j
(4)

¶ x
+
¶f i

(4)

¶ x

¶f j
(4)

¶ y
)

+ D66
¶f i

(4)

¶ y

¶f j
(4)

¶ y
+ Ks A55 f i

(4) f j
(4) }dA

(C.19)
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kij
45[ ] = { D12

¶f i
(4)

¶ x
W
ò

¶f j
(5)

¶ y
+ D16

¶f i
(4)

¶ x

¶f j
(5)

¶ x
+ D26

¶f i
(4)

¶ y

¶f j
(4)

¶ y

+ D66
¶f i

(4)

¶ y

¶f j
(5)

¶ x
+ Ks A45 f i

(4) f j
(5) }dA

(C.20)

  
kij
51[ ] = kij

15[ ]T (C.21)

  
kij
52[ ] = kij

25[ ]T (C.22)

  
kij
53[ ] = kij

35[ ]T (C.23)

  
kij
54[ ] = kij

45[ ]T (C.24)

  

kij
55[ ] = { D22

¶f i
(5)

¶ y
W
ò

¶f j
(5)

¶ y
+ D26 ( ¶f i

(5)

¶ y

¶f j
(5)

¶ x
+
¶f i

(5)

¶ x

¶f j
(5)

¶ y
)

+ D66
¶f i

(5)

¶ x

¶f j
(5)

¶ x
+ Ks A44 f i

(5) f j
(5) }dA

(C.25)

The components of the element force vector {  f (e )}, which were shown in equations

(4.22) and (4.23), can be also given by

  Fi
(1)
= Q6

(e )
- Q1

(e )
(C.26)

  Fi
(2)
= Q7

(e )
- Q2

(e )
(C.27)

  
Fi
(3)
= ptotal ·

W
ò f i

(3)
dA + Q8

(e )
- Q3

(e )
(C.28)
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  Fi
(4)
= Q9

(e )
- Q4

(e )
(C.29)

  Fi
(5)
= Q10

(e )
- Q5

(e )
(C.30)

where   Qi
(e )

 denotes the nodal contributions of the boundary forces of the element, which

were shown in equation (4.12).

C.2 COEFFICIENTS OF NONLINEAR ELEMENT STIFFNESS MATRIX

The components of the element stiffness matrix 
  
k(e )[ ]

NL
, which were shown in equation

(4.26), can be written as follows:

  
kij
11[ ]

NL
= 0 (C.31)

  

kij
12[ ]

NL
= { -

1
2R
(
¶ w0
¶ x

) [ A16
¶f i

(1)

¶ x
W
ò f j

(2) + (A66 +C0B66 )
¶f i

(1)

¶ y
f j
(2) ]

-
1
2R
(
¶ w0
¶ y

-
v0
R
) [ A12

¶f i
(1)

¶ x
f j
(2) + (A26 +C0B26 )

¶f i
(1)

¶ y
f j
(2) ] }dA

(C.32)

  

kij
13[ ]

NL
= {

1
2
(
¶ w0
¶ x

) [ A11
¶f i

(1)

¶ x

¶f j
(3)

¶ x
W
ò + (A16 +C0B16 )

¶f i
(1)

¶ y

¶f j
(3)

¶ x

+ A16
¶f i

(1)

¶ x

¶f j
(3)

¶ y
+ (A66 +C0B66 )

¶f i
(1)

¶ y

¶f j
(3)

¶ y
]

+
1
2
(
¶ w0
¶ y

-
v0
R
) [ A12

¶f i
(1)

¶ x

¶f j
(3)

¶ y
+ (A26 +C0B26 )

¶f i
(1)

¶ y

¶f j
(3)

¶ y

+ A16
¶f i

(1)

¶ x

¶f j
(3)

¶ x
+ (A66 +C0B66 )

¶f i
(1)

¶ y

¶f j
(3)

¶ x
] }dA

(C.33)
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kij
14[ ]

NL
= 0 (C.34)

  
kij
15[ ]

NL
= 0 (C.35)

  

kij
21[ ]

NL
= { -

1
R
(
¶ w0
¶ x

) [ A16 f i
(2)
¶f j

(1)

¶ x
W
ò + (A66 +C0B66 )f i

(2)
¶f j

(1)

¶ y
]

-
1
R
(
¶ w0
¶ y

-
v0
R
) [ A12 f i

(2)
¶f j

(1)

¶ x
+ (A26 +C0B26 )f i

(2)
¶f j

(1)

¶ y
] }dA

(C.36)

  

kij
22[ ]

NL
= {

1

2R2
[ A66 (

¶ w0
¶ x

)2 + 2A26 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

W
ò

+ A22 (
¶ w0
¶ y

-
v0
R
)2 ] f i

(2)f j
(2)

- [
A26
R
(
¶ w0
¶ x

) +
A22
R
(
¶ w0
¶ y

-
v0
R
)] (f i

(2)
¶f j

(2)

¶ y
+
1
2

¶f i
(2)

¶ y
f j
(2) )

- [ (
A26 -C0B26

R
)(
¶ w0
¶ y

-
v0
R
) + (

A66 -C0B66
R

)(
¶ w0
¶ x

)]

(f i
(2)
¶f j

(2)

¶ x
+
1
2

¶f i
(2)

¶ x
f j
(2) ) }dA

(C.37)

 

  

kij
23[ ]

NL
= {

1
2
(
¶ w0
¶ x

) [ A12
¶f i

(2)

¶ y

¶f j
(3)

¶ x
W
ò + (A16 -C0B16 )

¶f i
(2)

¶ x

¶f j
(3)

¶ x

+ A26
¶f i

(2)

¶ y

¶f j
(3)

¶ y
+ (A66 -C0B66 )

¶f i
(2)

¶ x

¶f j
(3)

¶ y
]

+
1
2
(
¶ w0
¶ y

-
v0
R
) [ A22

¶f i
(2)

¶ y

¶f j
(3)

¶ y
+ (A26 -C0B26 )

¶f i
(2)

¶ x

¶f j
(3)

¶ y

+ A26
¶f i

(2)

¶ y

¶f j
(3)

¶ x
+ (A66 -C0B66 )

¶f i
(2)

¶ x

¶f j
(3)

¶ x
]

-
1
2R

[ A66 (
¶ w0
¶ x

)2 + 2A26 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

(C.38)
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+ A22 (
¶ w0
¶ y

-
v0
R
)2 ] f i

(2)
¶f j

(3)

¶ y

-
1
2R

[ A16 (
¶ w0
¶ x

)2 + (A66 + A12 )(
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+ A26 (
¶ w0
¶ y

-
v0
R
)2 ] f i

(2)
¶f j

(3)

¶ x

-
1

R2
[ A26 (

¶ w0
¶ x

) + A22(
¶ w0
¶ y

-
v0
R
) ] f i

(2) f j
(3) }dA

(C.38)

  

kij
24[ ]

NL
= { -

1
R
(
¶ w0
¶ x

) [ B16 f i
(2)
¶f j

(4)

¶ x
W
ò + B66 f i

(2)
¶f j

(4)

¶ y
]

-
1
R
(
¶ w0
¶ y

-
v0
R
) [ B12 f i

(2)
¶f j

(4)

¶ x
+ B26 f i

(2)
¶f j

(4)

¶ y
] } dA

(C.39)

  

kij
25[ ]

NL
= { -

1
R
(
¶ w0
¶ x

) [ B26 f i
(2)
¶f j

(5)

¶ y
W
ò + B66 f i

(2)
¶f j

(5)

¶ x
]

-
1
R
(
¶ w0
¶ y

-
v0
R
) [ B22 f i

(2)
¶f j

(4)

¶ y
+ B26 f i

(2)
¶f j

(4)

¶ x
] } dA

(C.40)

  

kij
31[ ]

NL
= { (

¶ w0
¶ x

) [ A11
¶f i

(3)

¶ x

¶f j
(1)

¶ x
W
ò + (A16 +C0B16 )

¶f i
(3)

¶ x

¶f j
(1)

¶ y

+ A16
¶f i

(3)

¶ y

¶f j
(1)

¶ x
+ (A66 +C0B66 )

¶f i
(3)

¶ y

¶f j
(1)

¶ y
]

+ (
¶ w0
¶ y

-
v0
R
) [ A12

¶f i
(3)

¶ y

¶f j
(1)

¶ x
+ (A26 +C0B26 )

¶f i
(3)

¶ y

¶f j
(1)

¶ y

+ A16
¶f i

(3)

¶ x

¶f j
(1)

¶ x
+ (A66 +C0B66 )

¶f i
(3)

¶ x

¶f j
(1)

¶ y
] }dA

(C.41)

  
kij
32[ ]

NL
= { (

¶ w0
¶ x

) [ A12
¶f i

(3)

¶ x

¶f j
(2)

¶ y
W
ò + (A16 -C0B16 )

¶f i
(3)

¶ x

¶f j
(2)

¶ x
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+ A26
¶f i

(3)

¶ y

¶f j
(2 )

¶ y
+ (A66 -C0B66 )

¶f i
(3)

¶ y

¶f j
(2 )

¶ x
]

+ (
¶ w0
¶ y

-
v0
R
) [ A22

¶f i
(3)

¶ y

¶f j
(2 )

¶ y
+ (A26 -C0B26 )

¶f i
(3)

¶ y

¶f j
(2 )

¶ x

+ A26
¶f i

(3)

¶ x

¶f j
(2 )

¶ y
+ (A66 -C0B66 )

¶f i
(3)

¶ x

¶f j
(2 )

¶ x
]

-
1
2R

[ A66 (
¶ w0
¶ x

)2 + 2A26 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+ A22 (
¶ w0
¶ y

-
v0
R
)2 ]

¶f i
(3)

¶ y
f j
(2 )

-
1
2R

[ A16 (
¶ w0
¶ x

)2 + (A66 + A12 )(
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+ A26 (
¶ w0
¶ y

-
v0
R
)2 ]

¶f i
(3)

¶ x
f j
(2 )

-
1

2R2
[ A26 (

¶ w0
¶ x

) + A22(
¶ w0
¶ y

-
v0
R
) ] f i

(3) f j
(2 ) }dA

(C.42)

  

kij
33[ ]

NL
= { [

A11
2
(
¶ w0
¶ x

)2 + A16 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

W
ò

+
A66
2
(
¶ w0
¶ y

-
v0
R
)2 ]

¶f i
(3)

¶ x

¶f j
(3)

¶ x

+ [
A16
2
(
¶ w0
¶ x

)2 + (
A12
2
+
A66
2
)(
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+
A26
2
(
¶ w0
¶ y

-
v0
R
)2 ] (

¶f i
(3)

¶ x

¶f j
(3)

¶ y
+
¶f i

(3)

¶ y

¶f j
(3)

¶ x
)

+ [
A66
2
(
¶ w0
¶ x

)2 + A26 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+
A22
2
(
¶ w0
¶ y

-
v0
R
)2 ]

¶f i
(3)

¶ y

¶f j
(3)

¶ y

+ [
A26
R
(
¶ w0
¶ x

) +
A22
R
(
¶ w0
¶ y

-
v0
R
)] (

¶f i
(3)

¶ y
f j
(3) +

1
2
f i
(3)
¶f j

(3)

¶ y
)

(C.43)
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+ [ (
A26
R
)(
¶ w0
¶ y

-
v0
R
) + (

A12
R
)(
¶ w0
¶ x

)]

(
¶f i

(3)

¶ x
f j
(3) +

1
2
f i
(3)
¶f j

(3)

¶ x
) }dA

(C.43)

  

kij
34[ ]

NL
= { (

¶ w0
¶ x

) [ B11
¶f i

(3)

¶ x

¶f j
(4 )

¶ x
W
ò + B16

¶f i
(3)

¶ x

¶f j
(4 )

¶ y

+ B16
¶f i

(3)

¶ y

¶f j
(4 )

¶ x
+ B66

¶f i
(3)

¶ y

¶f j
(4 )

¶ y
]

+ (
¶ w0
¶ y

-
v0
R
) [ B12

¶f i
(3)

¶ y

¶f j
(4 )

¶ x
+ B26

¶f i
(3)

¶ y

¶f j
(4 )

¶ y

+ B16
¶f i

(3)

¶ x

¶f j
(4 )

¶ x
+ B66

¶f i
(3)

¶ x

¶f j
(4 )

¶ y
] }dA

(C.44)

  

kij
35[ ]

NL
= { (

¶ w0
¶ x

) [ B12
¶f i

(3)

¶ x

¶f j
(5)

¶ y
W
ò + B16

¶f i
(3)

¶ x

¶f j
(5)

¶ x

+ B26
¶f i

(3)

¶ y

¶f j
(5)

¶ y
+ B66

¶f i
(3)

¶ y

¶f j
(5)

¶ x
]

+ (
¶ w0
¶ y

-
v0
R
) [ B22

¶f i
(3)

¶ y

¶f j
(5)

¶ y
+ B26

¶f i
(3)

¶ y

¶f j
(5)

¶ x

+ B26
¶f i

(3)

¶ x

¶f j
(5)

¶ y
+ B66

¶f i
(3)

¶ x

¶f j
(5)

¶ x
]} dA

(C.45)

  
kij
41[ ]

NL
= 0 (C.46)

  

kij
42[ ]

NL
= { -

1
2R
(
¶ w0
¶ x

) [ B16
¶f i

(4 )

¶ x
W
ò f j

(2 ) + B66
¶f i

(4 )

¶ y
f j
(2 ) ]

-
1

2R
(
¶ w0
¶ y

-
v0
R
) [ B12

¶f i
(4 )

¶ x
f j
(2 ) + B26

¶f i
(4 )

¶ y
f j
(2 ) ] }dA

(C.47)
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kij
43[ ]

NL
= {

1
2
(
¶ w0
¶ x

) [ B11
¶f i

(4 )

¶ x

¶f j
(3)

¶ x
W
ò + B16

¶f i
(4 )

¶ y

¶f j
(3)

¶ x

+ B16
¶f i

(4 )

¶ x

¶f j
(3)

¶ y
+ B66

¶f i
(4 )

¶ y

¶f j
(3)

¶ y
]

+
1
2
(
¶ w0
¶ y

-
v0
R
) [ B12

¶f i
(4 )

¶ x

¶f j
(3)

¶ y
+ B26

¶f i
(4 )

¶ y

¶f j
(3)

¶ y

+ B16
¶f i

(4 )

¶ x

¶f j
(3)

¶ x
+ B66

¶f i
(4 )

¶ y

¶f j
(3)

¶ x
] }dA

(C.48)

  
kij
44[ ]

NL
= 0 (C.49)

  
kij
45[ ]

NL
= 0 (C.50)

  
kij
51[ ]

NL
= 0 (C.51)

  

kij
52[ ]

NL
= { -

1
2R
(
¶ w0
¶ x

) [ B26
¶f i

(5)

¶ y
f j
(2 ) + B66

¶f i
(5)

¶ x
f j
(2 ) ]

W
ò

-
1
2R
(
¶ w0
¶ y

-
v0
R
) [ B22

¶f i
(5)

¶ y
f j
(2 ) + B26

¶f i
(5)

¶ x
f j
(2 ) ] }dA

(C.52)

  

kij
53[ ]

NL
= {

1
2
(
¶ w0
¶ x

) [ B12
¶f i

(5)

¶ y

¶f j
(3)

¶ x
W
ò + B16

¶f i
(5)

¶ x

¶f j
(3)

¶ x

+ B26
¶f i

(5)

¶ y

¶f j
(3)

¶ y
+ B66

¶f i
(5)

¶ x

¶f j
(3)

¶ y
]

+
1
2
(
¶ w0
¶ y

-
v0
R
) [ B22

¶f i
(5)

¶ y

¶f j
(3)

¶ y
+ B26

¶f i
(5)

¶ x

¶f j
(3)

¶ y

+ B26
¶f i

(5)

¶ y

¶f j
(3)

¶ x
+ B66

¶f i
(5)

¶ x

¶f j
(3)

¶ x
] }

(C.53)
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kij
54[ ]

NL
= 0 (C.54)

  
kij
55[ ]

NL
= 0 (C.55)
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APPENDIX D

COEFFICIENTS OF ELEMENT TANGENT STIFFNESS MATRIX

FOR A CYLINDRICAL SHELL ELEMENT

The components of the tangent stiffness matrix for a nonlinear, perfect, cylindrical shell

element are given below.

  
(kT )ij

11[ ] = kij11[ ]
L
+ kij

11[ ]
NL

(D.1)

  
(kT )ij

12[ ] = kij12[ ]
L
+ 2 kij

12[ ]
NL

(D.2)

  
(kT )ij

13[ ] = kij13[ ]
L
+ 2 kij

13[ ]
NL

(D.3)

  
(kT )ij

14[ ] = kij14[ ]
L
+ kij

14[ ]
NL

(D.4)

  
(kT )ij

15[ ] = kij15[ ]
L
+ kij

15[ ]
NL

(D.5)

  
(kT )ij

21[ ] = kij21[ ]
L
+ kij

21[ ]
NL

(D.6)

  

(kT )ij
22[ ] = kij22[ ]

L
+ kij

22[ ]
NL

+ { - [
A26
R
(
¶ w0
¶ x

) +
A22
R
(
¶ w0
¶ y

-
v0
R
) ] (

1
2

¶ f i
(2)

¶ y
f j
(2) )

W
ò

- [ (
A26 -C0B26

R
)(
¶ w0
¶ y

-
v0
R
) + (

A66 -C0B66
R

)(
¶ w0
¶ x

) ](
1
2

¶ f i
(2)

¶ x
f j
(2) )
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+
1

R2
{ A12 [

¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 ] + A22 [
¶ v0
¶ y

+
w0
R

+ (
¶ w0
¶ y

-
v0
R
)2 ]

+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 2(
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]+

A66
2
(
¶ w0
¶ x

)2

+ B12 (
¶ y x

¶ x
) + B22 (

¶ y y

¶ y
) + B26 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ] } f i
(2)f j

(2) }dA

(D.7)

 

  

(kT )ij
23[ ] = kij23[ ]

L
+ kij

23[ ]
NL

+ {
1
2
(
¶ w0
¶ x

) [ A12
¶f i

(2)

¶ y

¶f j
(3)

¶ x
W
ò + (A16 -C0B16 )

¶f i
(2)

¶ x

¶f j
(3)

¶ x

+ A26
¶f i

(2)

¶ y

¶f j
(3)

¶ y
+ (A66 -C0B66 )

¶f i
(2)

¶ x

¶f j
(3)

¶ y
]

+
1
2
(
¶ w0
¶ y

-
v0
R
) [ A22

¶f i
(2)

¶ y

¶f j
(3)

¶ y
+ (A26 -C0B26 )

¶f i
(2)

¶ x

¶f j
(3)

¶ y

+ A26
¶f i

(2)

¶ y

¶f j
(3)

¶ x
+ (A66 -C0B66 )

¶f i
(2)

¶ x

¶f j
(3)

¶ x
]

-
1
R
{ A16 [

¶ u0
¶ x

+ (
¶ w0
¶ x

)2 ] + A26 [
¶ v0
¶ y

+
w0
R

+ (
¶ w0
¶ y

-
v0
R
)2 ]

+ A66 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

+ (
A12 + A66

2
) (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+ B16 (
¶ y x

¶ x
) + B26 (

¶ y y

¶ y
) + B66 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ]} f i
(2)
¶f j

(3)

¶ x

-
1
R
{ A12 [

¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 ] +
A66
2
(
¶ w0
¶ x

)2

+ A22 [
¶ v0
¶ y

+
w0
R

+ (
¶ w0
¶ y

-
v0
R
)2 ]

(D.8)
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+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 2(
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

+ B12 (
¶ y x

¶ x
) + B22 (

¶ y y

¶ y
) + B26 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ]} f i
(2)
¶f j

(3)

¶ y
}dA

  
(kT )ij

24[ ] = kij24[ ]
L
+ kij

24[ ]
NL

(D.9)

  
(kT )ij

25[ ] = kij25[ ]
L
+ kij

25[ ]
NL

(D.10)

  
(kT )ij

31[ ] = kij31[ ]
L
+ kij

31[ ]
NL

(D.11)

  

(kT )ij
32[ ] = kij32[ ]

L
+ kij

32[ ]
NL

+ {
W
ò -

1

2R2
[ A26 (

¶ w0
¶ x

) + A22(
¶ w0
¶ y

-
v0
R
) ] f i

(3) f j
(2)

-
1
R
{ A16 [

¶ u0
¶ x

+ (
¶ w0
¶ x

)2 ] + A26 [
¶ v0
¶ y

+
w0
R

+ (
¶ w0
¶ y

-
v0
R
)2 ]

+ A66 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

+ (
A12 + A66

2
) (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+ B16 (
¶ y x

¶ x
) + B26 (

¶ y y

¶ y
) + B66 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ]}
¶ f i

(3)

¶ x
f j
(2)

-
1
R
{ A12 [

¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 ] +
A66
2
(
¶ w0
¶ x

)2

+ A22 [
¶ v0
¶ y

+
w0
R

+ (
¶ w0
¶ y

-
v0
R
)2 ]

(D.12)
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+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 2(
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

+ B12 (
¶ y x

¶ x
) + B22 (

¶ y y

¶ y
) + B26 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ]}
¶ f i

(3)

¶ y
f j
(2) } dA

  

(kT )ij
33[ ] = kij33[ ]

L
+ kij

33[ ]
NL

+ {
W
ò

1
R
[ A26 (

¶ w0
¶ x

) + A22(
¶ w0
¶ y

-
v0
R
) ] (

1
2
f i
(3)
¶f j

(3)

¶ y
)

+
1
R
[ A26 (

¶ w0
¶ y

-
v0
R
) + A12 (

¶ w0
¶ x

) ] (
1
2
f i
(3)
¶f j

(3)

¶ x
)

+{ A11[
¶ u0
¶ x

+ (
¶ w0
¶ x

)2 ] +
A66
2
(
¶ w0
¶ y

-
v0
R
)2

+ A12 [
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 ]

+ A16 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 2 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

+ B11 (
¶ y x

¶ x
) + B12 (

¶ y y

¶ y
) + B16 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ]}
¶f i

(3)

¶ x

¶f j
(3)

¶ x

+{ A12 [
¶ u0
¶ x

+
1
2
(
¶ w0
¶ x

)2 ] +
A66
2
(
¶ w0
¶ x

)2

+ A22 [
¶ v0
¶ y

+
w0
R

+ (
¶ w0
¶ y

-
v0
R
)2 ]

+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 2 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

+ B12 (
¶ y x

¶ x
) + B22 (

¶ y y

¶ y
) + B26 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ]}
¶f i

(3)

¶ y

¶f j
(3)

¶ y

(D.13)
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+{ A16 [
¶ u0
¶ x

+ (
¶ w0
¶ x

)2 ] + A26 [
¶ v0
¶ y

+
w0
R

+ (
¶ w0
¶ y

-
v0
R
)2 ]

+ A66 [
¶ u0
¶ y

+
¶ v0
¶ x

+ (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) ]

+ (
A12 + A66

2
) (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+ B16 (
¶ y x

¶ x
) + B26 (

¶ y y

¶ y
) + B66 [

¶ y x

¶ y
+
¶ y y

¶ x

- C0 (
¶ v0
¶ x

-
¶ u0
¶ y

) ]} (
¶f i

(3)

¶ x

¶f j
(3)

¶ y
+
¶f i

(3)

¶ y

¶f j
(3)

¶ x
) } dA

  
(kT )ij

34[ ] = kij34[ ]
L
+ kij

34[ ]
NL

(D.14)

  
(kT )ij

35[ ] = kij35[ ]
L
+ kij

35[ ]
NL

(D.15)

  
(kT )ij

41[ ] = kij41[ ]
L
+ kij

41[ ]
NL

(D.16)

  
(kT )ij

42[ ] = kij42[ ]
L
+ 2 kij

42[ ]
NL

(D.17)

  
(kT )ij

43[ ] = kij43[ ]
L
+ 2 kij

43[ ]
NL

(D.18)

  
(kT )ij

44[ ] = kij44[ ]
L
+ kij

44[ ]
NL

(D.19)

  
(kT )ij

45[ ] = kij45[ ]
L
+ kij

45[ ]
NL

(D.20)

  
(kT )ij

51[ ] = kij51[ ]
L
+ kij

51[ ]
NL

(D.21)

  
(kT )ij

52[ ] = kij52[ ]
L
+ 2 kij

52[ ]
NL

(D.22)
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(kT )ij

53[ ] = kij53[ ]
L
+ 2 kij

53[ ]
NL

(D.23)

  
(kT )ij

54[ ] = kij54[ ]
L
+ kij

54[ ]
NL

(D.24)

  
(kT )ij

55[ ] = kij55[ ]
L
+ kij

55[ ]
NL

(D.25)
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APPENDIX E

COEFFICIENTS OF ELEMENT STIFFNESS MATRIX FOR AN

INITIALLY IMPERFECT RING ELEMENT

The additional components of the element stiffness matrix for a ring type of element

involving the initial imperfection function   w0 (y) are expressed as below.

  

kij
14[ ]

Imperfect
= b { A22(

dw0
dy

-
v0
R
)
df i

(1)

dyyA

yB

ò
df j

(4)

dy

- [ A22
R

( dv0
dy

+
w0
R

+
3
2
(
dw0
dy

-
v0
R
)2 + (

dw0
dy

-
v0
R
)(
dw0
dy

) )

+
B22
R
(
dy y

dy
) ] f i(1)

df j
(4)

dy
}dy

(E.1)

  

kij
24[ ]

Imperfect
= b {

A22
R
(
dw0
dy

-
v0
R
) f i

(2)

y A

yB

ò
df j

(4)

dy

+ [ A22 ( dv0dy +
w0
R

+
3
2
(
dw0
dy

-
v0
R
)2 + (

dw0
dy

-
v0
R
)(
dw0
dy

) )

+ B22 (
dy y

dy
) ] df i

(2)

dy

df j
(4)

dy
}dy

(E.2)

  
kij
34[ ]

Imperfect
= b { B22(

dw0
dy

-
v0
R
)
df i

(3)

dyyA

yB

ò
df j

(4)

dy
}dy (E.3)

  
kij
41[ ]

Imperfect
= kij

42[ ]
Imperfect

= kij
43[ ]

Imperfect
= kij

44[ ]
Imperfect

= f 4{ } = 0 (E.4)
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APPENDIX F

COEFFICIENTS OF ELEMENT TANGENT STIFFNESS MATRIX

FOR A NONLINEAR RING ELEMENT WITH INITIAL

IMPERFECTIONS

The components of the tangent stiffness matrix for a nonlinear ring element containing

prescribed initial imperfections are given below.

  

( kT )ij
11[ ]

Imperfect
= ( kT )ij

11[ ]
perfect

+ b {-
A22
R
(
dw0
d y

) (
df i

(1)

dyyA

yB

ò f j
(1) + f i

(1)
df j

(1)

dy
)

+
A22
R2

(
dw0
d y

) [
dw0
d y

+ 3(
dw0
dy

-
v0
R
) ] f i

(1) f j
(1)}dy

(F.1)

where the components of 
  
( kT )ij

11[ ]
perfect

 were shown in equation (B.1).

  

( kT )ij
12[ ]

Imperfect
= ( kT )ij

12[ ]
perfect

+ b{ A22(
dw0
d y

)
df i

(1)

dy

df j
(2)

dy
-
A22
R2
(
dw0
d y

)f i
(1) f j

(2)

y A

yB

ò

-
A22
R
(
dw0
d y

) [
dw0
d y

+ 3(
dw0
dy

-
v0
R
) ] f i

(1)
df j

(2)

dy
}dy

(F.2)

where the components of 
  
( kT )ij

12[ ]
perfect

 were shown in equation (B.2).

  

( kT )ij
13[ ]

Imperfect
= ( kT )ij

13[ ]
perfect

- b{
B22
R
(
dw0
d y

) f i
(1)
df j

(3)

dyyA

yB

ò }dy
(F.3)
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where the components of 
  
( kT )ij

13[ ]
perfect

 were shown in equation (B.3).

  

( kT )ij
21[ ]

Imperfect
= ( kT )ij

21[ ]
perfect

+ b { A22(
dw0
d y

)
df i

(2)

dy

df j
(1)

dy
-
A22
R2
(
dw0
d y

)f i
(2) f j

(1)

y A

yB

ò

-
A22
R
(
dw0
d y

) [
dw0
d y

+ 3(
dw0
dy

-
v0
R
) ]
df i

(2)

dy
f j
(1) }dy

(F.4)

where the components of 
  
( kT )ij

21[ ]
perfect

 were shown in equation (B.4).

  

( kT )ij
22[ ]

Imperfect
= ( kT )ij

22[ ]
perfect

+ b{
A22
R
(
dw0
d y

) [ f i
(2)
df j

(2)

dy
+
df i

(2)

dyyA

yB

ò f j
(2) ]

+ A22 (
dw0
d y

) ( dw0
d y

+ 3(
dw0
dy

-
v0
R
) ) df i

(2)

dy

df j
(2)

dy
}dy

(F.5)

where the components of 
  
( kT )ij

22[ ]
perfect

 were shown in equation (B.5).

  

( kT )ij
23[ ]

Imperfect
= ( kT )ij

23[ ]
perfect

+ b{ B22(
dw0
d y

)
df i

(2)

dy

df j
(3)

dyyA

yB

ò }dy
(F.6)

where the components of 
  
( kT )ij

23[ ]
perfect

 were shown in equation (B.6).

  

( kT )ij
31[ ]

Imperfect
= ( kT )ij

31[ ]
perfect

- b{
B22
R
(
dw0
d y

)
df i

(3)

dy
f j
(1)

y A

yB

ò }dy
(F.7)
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where the components of 
  
( kT )ij

31[ ]
perfect

 were shown in equation (B.7).

  

( kT )ij
32[ ]

Imperfect
= ( kT )ij

32[ ]
perfect

+ b{ B22(
dw0
d y

)
df i

(3)

dy

df j
(2)

dyyA

yB

ò }dy
(F.8)

where the components of 
  
( kT )ij

32[ ]
perfect

 were shown in equation (B.8).

  
( kT )ij

33[ ]
Imperfect

= ( kT )ij
33[ ]

perfect
(F.9)

where the components of 
  
( kT )ij

33[ ]
perfect

 were shown in equation (B.9).
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APPENDIX G

COEFFICIENTS OF ELEMENT STIFFNESS MATRIX FOR AN

INITIALLY IMPERFECT, CYLINDRICAL SHELL ELEMENT

The additional components of the element stiffness matrix for a cylindrical shell type of

element involving the initial imperfection function   w0 (x,y) are expressed as below.

  

kij
16[ ]

Imperfect
= { (

¶ w0
¶ x

) [ A11
¶f i

(1)

¶ x
W
ò

¶f j
(6)

¶ x
+ A16

¶f i
(1)

¶ x

¶f j
(6)

¶ y

+ (A16 +C0B16 )
¶f i

(1)

¶ y

¶f j
(6)

¶ x
+ (A66 +C0B66 )

¶f i
(1)

¶ y

¶f j
(6)

¶ y
]

+ (
¶ w0
¶ y

-
v0
R
) [ A16

¶f i
(1)

¶ x

¶f j
(6)

¶ x
+ A12

¶f i
(1)

¶ x

¶f j
(6)

¶ y

+ (A66 +C0B66 )
¶f i

(1)

¶ y

¶f j
(6)

¶ x
+ (A26 +C0B26 )

¶f i
(1)

¶ y

¶f j
(6)

¶ y
] }dA

(G.1)

  

kij
26[ ]

Imperfect
= { (

¶ w0
¶ x

) [ (A16 -C0B16 )
¶f i

(2)

¶ x
W
ò

¶f j
(6)

¶ x

+ (A66 -C0B66 )
¶f i

(2)

¶ x

¶f j
(6)

¶ y
+ A12

¶f i
(2)

¶ y

¶f j
(6)

¶ x
+ A26

¶f i
(2)

¶ y

¶f j
(6)

¶ y
]

+ (
¶ w0
¶ y

-
v0
R
) [ (A66 -C0B66 )

¶f i
(2)

¶ x

¶f j
(6)

¶ x

+ (A26 -C0B26 )
¶f i

(2)

¶ x

¶f j
(6)

¶ y
+ A26

¶f i
(2)

¶ y

¶f j
(6)

¶ x
+ A22

¶f i
(2)

¶ y

¶f j
(6)

¶ x
]

-
1
R
{ A16 [ ¶ u0¶ x

+
3
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

) ]

+ A26 [
¶ v0
¶ y

+
w0
R

+
3
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

) ]

+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 2 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ w0
¶ y

)

(G.2)
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+ (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

) ] + A12 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
)

+ B16 (
¶y x

¶ x
) + B26 (

¶y y

¶ y
) + B66[

¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

) ] }f i(2)
¶f j

(6)

¶ x

-
1
R
{ A12 [ ¶ u0¶ x

+
1
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

) ]+ A66 (
¶ w0
¶ x

)2

+ A22 [
¶ v0
¶ y

+
w0
R

+
3
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

) ]

+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 3 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ w0
¶ y

)

+ (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

) ]

+ B12 (
¶y x

¶ x
) + B22 (

¶y y

¶ y
) + B26[

¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

) ] }

f i
(2)
¶f j

(6)

¶ y
}dA

(G.2)

  

kij
36[ ]

Imperfect
= { (A11 [ ¶ u0¶ x

+
3
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

) ]
W
ò

+ A12 [
¶ v0
¶ y

+
w0
R

+
1
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

) ]

+ A16 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 3 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ w0
¶ y

)

+ (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

) ]+ A66 (
¶ w0
¶ y

-
v0
R
)2

+ B11 (
¶y x

¶ x
) + B12 (

¶y y

¶ y
) + B16[

¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

) ] ) ¶f i
(3)

¶ x

¶f j
(6)

¶ x

+ (A12 [ ¶ u0¶ x
+
1
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

) ]+ A66 (
¶ w0
¶ x

)2

+ A22 [
¶ v0
¶ y

+
w0
R

+
3
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

) ]

+ A26 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 3 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ w0
¶ y

)

(G.3)
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+ (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

) ]+ B12 (
¶y x

¶ x
) + B22 (

¶y y

¶ y
)

+ B26[
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

) ] ) ¶f i
(3)

¶ y

¶f j
(6)

¶ y

+ (A16 [ ¶ u0¶ x
+
3
2
(
¶ w0
¶ x

)2 + (
¶ w0
¶ x

)(
¶ w0
¶ x

) ]

+ A26 [
¶ v0
¶ y

+
w0
R

+
3
2
(
¶ w0
¶ y

-
v0
R
)2 + (

¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ y

) ]

+ A66 [
¶ u0
¶ y

+
¶ v0
¶ x

+ 2 (
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
) + (

¶ w0
¶ x

)(
¶ w0
¶ y

)

+ (
¶ w0
¶ y

-
v0
R
)(
¶ w0
¶ x

) ]+ B12 (
¶y x

¶ x
) + B22 (

¶y y

¶ y
)

+ B26[
¶y x

¶ y
+
¶y y

¶ x
-C0(

¶ v0
¶ x

-
¶ u0
¶ y

) ] + A12(
¶ w0
¶ x

)(
¶ w0
¶ y

-
v0
R
))

(
¶f i

(3)

¶ x

¶f j
(6)

¶ y
+
¶f i

(3)

¶ y

¶f j
(6)

¶ x
)

+
1
R
[ A12 (

¶ w0
¶ x

) + A26 (
¶ w0
¶ y

-
v0
R
) ] f i

(3)
¶f j

(6)

¶ x

+
1
R
[ A26 (

¶ w0
¶ x

) + A22 (
¶ w0
¶ y

-
v0
R
) ] f i

(3)
¶f j

(6)

¶ y
}dA

(G.3)

  

kij
46[ ]

Imperfect
= { (

¶ w0
¶ x

) [ B11
¶f i

(4)

¶ x
W
ò

¶f j
(6)

¶ x
+ B16

¶f i
(4)

¶ x

¶f j
(6)

¶ y

+ B16
¶f i

(4)

¶ y

¶f j
(6)

¶ x
+ B66

¶f i
(4)

¶ y

¶f j
(6)

¶ y
]

+ (
¶ w0
¶ y

-
v0
R
) [ B16

¶f i
(4)

¶ x

¶f j
(6)

¶ x
+ B12

¶f i
(4)

¶ x

¶f j
(6)

¶ y

+ B66
¶f i

(4)

¶ y

¶f j
(6)

¶ x
+B26

¶f i
(4)

¶ y

¶f j
(6)

¶ y
] }dA

(G.4)
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kij
56[ ]

Imperfect
= { (

¶ w0
¶ x

) [ B16
¶f i

(5)

¶ x
W
ò

¶f j
(6)

¶ x
+ B66

¶f i
(5)

¶ x

¶f j
(6)

¶ y

+ B12
¶f i

(5)

¶ y

¶f j
(6)

¶ x
+ B26

¶f i
(5)

¶ y

¶f j
(6)

¶ y
]

+ (
¶ w0
¶ y

-
v0
R
) [ B66

¶f i
(5)

¶ x

¶f j
(6)

¶ x
+ B26

¶f i
(5)

¶ x

¶f j
(6)

¶ y

+ B26
¶f i

(5)

¶ y

¶f j
(6)

¶ x
+B22

¶f i
(5)

¶ y

¶f j
(6)

¶ y
] }dA

(G.5)

  

kij
61[ ]

Imperfect

= kij
62[ ]

Imperfect

= kij
63[ ]

Imperfect

= kij
64[ ]

Imperfect

= kij
65[ ]

Imperfect

= kij
66[ ]

Imperfect

= f 6{ } = 0

(G.6)
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APPENDIX H

COEFFICIENTS OF ELEMENT TANGENT STIFFNESS MATRIX

FOR A NONLINEAR, CYLINDRICAL SHELL ELEMENT WITH

INITIAL IMPERFECTIONS

The components of the tangent stiffness matrix for a nonlinear cylindrical shell element

containing prescribed initial imperfections are given below.

  
( kT )ij

11[ ]
Imperfect

= ( kT )ij
11[ ]

perfect
(H.1)

where the components of 
  
( kT )ij

11[ ]
perfect

 were shown in equation (D.1).

  

( kT )ij
12[ ]

Imperfect
= ( kT )ij

12[ ]
perfect

+ -
1
R
{

W
ò [ A16 (

¶ w0
¶ x

) + A12 (
¶ w0
¶ y

) ]
¶f i

(1)

¶ x
f j
(2)

+ [ (A66 +C0B66 ) (
¶ w0
¶ x

) + (A26 +C0B26 ) (
¶ w0
¶ y

) ]
¶f i

(1)

¶ y
f j
(2) } dA

(H.2)

where the components of 
  
( kT )ij

12[ ]
perfect

 were shown in equation (D.2).

  

( kT )ij
13[ ]

Imperfect
= ( kT )ij

13[ ]
perfect

+ { (
¶ w0
¶ x

) [ A11
¶f i

(1)

¶ x
W
ò

¶f j
(3)

¶ x
+ A16

¶f i
(1)

¶ x

¶f j
(3)

¶ y

+ (A16 +C0B16 )
¶f i

(1)

¶ y

¶f j
(3)

¶ x
+ (A66 +C0B66 )

¶f i
(1)

¶ y

¶f j
(3)

¶ y
]

(H.3)
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+ (
¶ w0
¶ y

) [ A16
¶f i

(1)

¶ x

¶f j
(3)

¶ x
+ A12

¶f i
(1)

¶ x

¶f j
(3)

¶ y

+ (A66 +C0B66 )
¶f i

(1)

¶ y

¶f j
(3)

¶ x
+ (A26 +C0B26 )

¶f i
(1)

¶ y

¶f j
(3)

¶ y
] }dA

(H.3)

where the components of 
  
( kT )ij

13[ ]
perfect

 were shown in equation (D.3).

  
( kT )ij

14[ ]
Imperfect

= ( kT )ij
14[ ]

perfect
(H.4)

where the components of 
  
( kT )ij

14[ ]
perfect

 were shown in equation (D.4).

  
( kT )ij

15[ ]
Imperfect

= ( kT )ij
15[ ]

perfect
(H.5)

where the components of 
  
( kT )ij

15[ ]
perfect

 were shown in equation (D.5).

  

( kT )ij
21[ ]

Imperfect
= ( kT )ij

21[ ]
perfect

+ -
1
R
{

W
ò [ A16 (

¶ w0
¶ x

) + A12 (
¶ w0
¶ y

) ] f i
(2)
¶f j

(1)

¶ x

+ [ (A66 +C0B66 ) (
¶ w0
¶ x

) + (A26 +C0B26 ) (
¶ w0
¶ y

) ] f i
(2)
¶f j

(1)

¶ y
}dA

(H.6)

where the components of 
  
( kT )ij

21[ ]
perfect

 were shown in equation (D.6).

  

( kT )ij
22[ ]

Imperfect
= ( kT )ij

22[ ]
perfect

+ {
W
ò -

1
R
[ (A66 -C0B66 ) (

¶ w0
¶ x

) + (A26 -C0B26 ) (
¶ w0
¶ y

) ]
(H.7)
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(
¶f i

(2)

¶ x
f j
(2) + f i

(2)
¶f j

(2)

¶ x
)

-
1
R
[ A26 (

¶ w0
¶ x

) + A22 (
¶ w0
¶ y

) ] (
¶f i

(2)

¶ y
f j
(2) + f i

(2)
¶f j

(2)

¶ y
)

+
1

R2
{ (¶ w0

¶ x
) [ A66 [ (¶ w0¶ x

) + ( 2A66 + A12 ) (
¶ w0
¶ x

) ]

+ A26 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ]

+ (
¶ w0
¶ y

) [A26 [ (¶ w0¶ x
) + 3(

¶ w0
¶ x

) ]

+ A22 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ] } f i(2)f j(2) } dA

(H.7)

where the components of 
  
( kT )ij

22[ ]
perfect

 were shown in equation (D.7).

  

( kT )ij
23[ ]

Imperfect
= ( kT )ij

23[ ]
perfect

+ { (
¶ w0
¶ x

) [ (A16 -C0B16 )
¶f i

(2)

¶ x
W
ò

¶f j
(3)

¶ x
+ (A66 -C0B66 )

¶f i
(2)

¶ x

¶f j
(3)

¶ y

+ A12
¶f i

(2)

¶ y

¶f j
(3)

¶ x
+ A26

¶f i
(2)

¶ y

¶f j
(3)

¶ y
]

+ (
¶ w0
¶ y

) [ (A66 -C0B66 )
¶f i

(2)

¶ x

¶f j
(3)

¶ x
+ (A26 -C0B26 )

¶f i
(2)

¶ x

¶f j
(3)

¶ y

+ A26
¶f i

(2)

¶ y

¶f j
(3)

¶ x
+ A22

¶f i
(2)

¶ y

¶f j
(3)

¶ y
]

-
1
R
{ (¶ w0

¶ x
) [ A16 [ (¶ w0¶ x

) + 3 (
¶ w0
¶ x

) ]

+ [ A66 (
¶ w0
¶ y

) + ( 2A66 + A12 ) (
¶ w0
¶ y

-
v0
R
) ] ]

+ (
¶ w0
¶ y

) [ [ A12 (¶ w0¶ x
) + ( 2A66 + A12 ) (

¶ w0
¶ x

) ]

+ A26 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ] } f i(2)

¶f j
(3)

¶ x

(H.8)
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-
1
R
{ (¶ w0

¶ x
) [ A66 (¶ w0¶ x

) + ( 2A66 + A12 ) (
¶ w0
¶ x

) ]

+ A26 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ]

+ (
¶ w0
¶ y

) [ A26 [ (¶ w0¶ x
) + 3 (

¶ w0
¶ x

) ]

+ A22 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ] } f i(2)

¶f j
(3)

¶ y

-
1

R2
[ A26 (

¶ w0
¶ x

) + A22 (
¶ w0
¶ y

) ] f i
(2)f j

(3) } dA

(H.8)

where the components of 
  
( kT )ij

23[ ]
perfect

 were shown in equation (D.8).

  

( kT )ij
24[ ]

Imperfect
= ( kT )ij

24[ ]
perfect

+ -
1
R
{

W
ò [ B16 (

¶ w0
¶ x

) + B12 (
¶ w0
¶ y

) ] f i
(2)
¶f j

(4)

¶ x

+ [ B66 (
¶ w0
¶ x

) + B26 (
¶ w0
¶ y

) ] f i
(2)
¶f j

(4)

¶ y
}dA

(H.9)

where the components of 
  
( kT )ij

24[ ]
perfect

 were shown in equation (D.9).

  

( kT )ij
25[ ]

Imperfect
= ( kT )ij

25[ ]
perfect

+ -
1
R
{

W
ò [ B66 (

¶ w0
¶ x

) + B26 (
¶ w0
¶ y

) ] f i
(2)
¶f j

(5)

¶ x

+ [ B26 (
¶ w0
¶ x

) + B22 (
¶ w0
¶ y

) ] f i
(2)
¶f j

(5)

¶ y
}dA

(H.10)

where the components of 
  
( kT )ij

25[ ]
perfect

 were shown in equation (D.10).
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( kT )ij
31[ ]

Imperfect
= ( kT )ij

31[ ]
perfect

+ { (
¶ w0
¶ x

) [ A11
¶f i

(3)

¶ x
W
ò

¶f j
(1)

¶ x
+ A16

¶f i
(3)

¶ y

¶f j
(1)

¶ x

+ (A16 +C0B16 )
¶f i

(3)

¶ x

¶f j
(1)

¶ y
+ (A66 +C0B66 )

¶f i
(3)

¶ y

¶f j
(1)

¶ y
]

+ (
¶ w0
¶ y

) [ A16
¶f i

(3)

¶ x

¶f j
(1)

¶ x
+ A12

¶f i
(3)

¶ y

¶f j
(1)

¶ x

+ (A66 +C0B66 )
¶f i

(3)

¶ y

¶f j
(1)

¶ x
+ (A26 +C0B26 )

¶f i
(3)

¶ y

¶f j
(1)

¶ y
] }dA

(H.11)

where the components of 
  
( kT )ij

31[ ]
perfect

 were shown in equation (D.11).

  

( kT )ij
32[ ]

Imperfect
= ( kT )ij

32[ ]
perfect

+ { (
¶ w0
¶ x

) [ (A16 -C0B16 )
¶f i

(3)

¶ x
W
ò

¶f j
(2)

¶ x
+ (A66 -C0B66 )

¶f i
(3)

¶ y

¶f j
(2)

¶ x

+ A12
¶f i

(3)

¶ x

¶f j
(2)

¶ y
+ A26

¶f i
(3)

¶ y

¶f j
(2)

¶ y
]

+ (
¶ w0
¶ y

) [ (A66 -C0B66 )
¶f i

(3)

¶ x

¶f j
(2)

¶ x
+ (A26 -C0B26 )

¶f i
(3)

¶ y

¶f j
(2)

¶ x

+ A26
¶f i

(3)

¶ x

¶f j
(2)

¶ y
+ A22

¶f i
(3)

¶ y

¶f j
(2)

¶ y
]

-
1
R
{ (¶ w0

¶ x
) [ A16 [ (¶ w0¶ x

) + 3 (
¶ w0
¶ x

) ]

+ [ A66 (
¶ w0
¶ y

) + ( 2A66 + A12 ) (
¶ w0
¶ y

-
v0
R
) ] ]

+ (
¶ w0
¶ y

) [ [ A12 (¶ w0¶ x
) + ( 2A66 + A12 ) (

¶ w0
¶ x

) ]

+ A26 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ] } ¶f i

(3)

¶ x
f j
(2)

-
1
R
{ (¶ w0

¶ x
) [ A66 (¶ w0¶ x

) + ( 2A66 + A12 ) (
¶ w0
¶ x

) ]

(H.12)
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+ A26 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ]

+ (
¶ w0
¶ y

) [ A26 [ (¶ w0¶ x
) + 3 (

¶ w0
¶ x

) ]

+ A22 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ] } ¶f i

(3)

¶ y
f j
(2)

-
1

R2
[ A26 (

¶ w0
¶ x

) + A22 (
¶ w0
¶ y

) ] f i
(3) f j

(2) } dA

(H.12)

where the components of 
  
( kT )ij

32[ ]
perfect

 were shown in equation (D.12).

  

( kT )ij
33[ ]

Imperfect
= ( kT )ij

33[ ]
perfect

+ {
W
ò

1
R
[ A12 (

¶ w0
¶ x

) + A26 (
¶ w0
¶ y

) ] (
¶f i

(3)

¶ x
f j
(3) + f i

(3)
¶f j

(3)

¶ x
)

+
1
R
[ A26 (

¶ w0
¶ x

) + A22 (
¶ w0
¶ y

) ] (
¶f i

(3)

¶ y
f j
(3) + f i

(3)
¶f j

(3)

¶ y
)

+ { (¶ w0
¶ x

) [ A11 [ (¶ w0¶ x
) + 3 (

¶ w0
¶ x

) ]

+ A16 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ]

+ (
¶ w0
¶ y

) [ A16 [ (¶ w0¶ x
) + 3 (

¶ w0
¶ x

) ]

+ [ A66 (
¶ w0
¶ y

) + ( 2A66 + A12 ) (
¶ w0
¶ y

-
v0
R
) ] ] } ¶f i

(3)

¶ x

¶f j
(3)

¶ x

+ { (¶ w0
¶ x

) [ A66 (¶ w0¶ x
) + ( 2A66 + A12 ) (

¶ w0
¶ x

) ]

+ A26 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ]

+ (
¶ w0
¶ y

) [ A26 [ (¶ w0¶ x
) + 3 (

¶ w0
¶ x

) ]

+ A22 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ] } ¶f i

(3)

¶ y

¶f j
(3)

¶ y

(H.13)
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+ { (¶ w0
¶ x

) [ A16 [ (¶ w0¶ x
) + 3 (

¶ w0
¶ x

) ]

+ [ A12 (
¶ w0
¶ y

) + ( 2A66 + A12 ) (
¶ w0
¶ y

-
v0
R
) ] ]

+ (
¶ w0
¶ y

) [ [ A66 (¶ w0¶ x
) + ( 2A66 + A12 ) (

¶ w0
¶ x

) ]

+ A26 [ (
¶ w0
¶ y

) + 3 (
¶ w0
¶ y

-
v0
R
) ] ] } ( ¶f i

(3)

¶ x

¶f j
(3)

¶ y
+
¶f i

(3)

¶ y

¶f j
(3)

¶ x
) } dA

(H.13)

where the components of 
  
( kT )ij

33[ ]
perfect

 were shown in equation (D.13).

  

( kT )ij
34[ ]

Imperfect
= ( kT )ij

34[ ]
perfect

+ { (
¶ w0
¶ x

) [ B11
¶f i

(3)

¶ x
W
ò

¶f j
(4)

¶ x
+ B16

¶f i
(3)

¶ x

¶f j
(4)

¶ y

+ B16
¶f i

(3)

¶ y

¶f j
(4)

¶ x
+ B66

¶f i
(3)

¶ y

¶f j
(4)

¶ y
]

+ (
¶ w0
¶ y

) [ B16
¶f i

(3)

¶ x

¶f j
(4)

¶ x
+ B66

¶f i
(3)

¶ x

¶f j
(4)

¶ y

+ B12
¶f i

(3)

¶ y

¶f j
(4)

¶ x
+B26

¶f i
(3)

¶ y

¶f j
(4)

¶ y
] }dA

(H.14)

where the components of 
  
( kT )ij

34[ ]
perfect

 were shown in equation (D.14).

  

( kT )ij
35[ ]

Imperfect
= ( kT )ij

35[ ]
perfect

+ { (
¶ w0
¶ x

) [ B16
¶f i

(3)

¶ x
W
ò

¶f j
(5)

¶ x
+ B12

¶f i
(3)

¶ x

¶f j
(5)

¶ y

+ B66
¶f i

(3)

¶ y

¶f j
(5)

¶ x
+ B26

¶f i
(3)

¶ y

¶f j
(5)

¶ y
]

+ (
¶ w0
¶ y

) [ B66
¶f i

(3)

¶ x

¶f j
(5)

¶ x
+ B26

¶f i
(3)

¶ x

¶f j
(5)

¶ y

(H.15)
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+ B26

¶f i
(3)

¶ y

¶f j
(5)

¶ x
+B22

¶f i
(3)

¶ y

¶f j
(5)

¶ y
] }dA

where the components of 
  
( kT )ij

35[ ]
perfect

 were shown in equation (D.15).

  
( kT )ij

41[ ]
Imperfect

= ( kT )ij
41[ ]

perfect
(H.16)

where the components of 
  
( kT )ij

41[ ]
perfect

 were shown in equation (D.16).

  

( kT )ij
42[ ]

Imperfect
= ( kT )ij

42[ ]
perfect

+ -
1
R
{

W
ò [ B16 (

¶ w0
¶ x

) + B12 (
¶ w0
¶ y

) ]
¶f i

(4)

¶ x
f j
(2)

+ [ B66 (
¶ w0
¶ x

) + B26 (
¶ w0
¶ y

) ]
¶f i

(4)

¶ y
f j
(2) } dA

(H.17)

where the components of 
  
( kT )ij

42[ ]
perfect

 were shown in equation (D.17).

  

( kT )ij
43[ ]

Imperfect
= ( kT )ij

43[ ]
perfect

+ { (
¶ w0
¶ x

) [ B11
¶f i

(4)

¶ x
W
ò

¶f j
(3)

¶ x
+ B16

¶f i
(4)

¶ x

¶f j
(3)

¶ y

+ B16
¶f i

(4)

¶ y

¶f j
(3)

¶ x
+ B66

¶f i
(4)

¶ y

¶f j
(3)

¶ y
]

+ (
¶ w0
¶ y

) [ B16
¶f i

(4)

¶ x

¶f j
(3)

¶ x
+ B66

¶f i
(4)

¶ y

¶f j
(3)

¶ x

+ B12
¶f i

(4)

¶ x

¶f j
(3)

¶ y
+B26

¶f i
(4)

¶ y

¶f j
(3)

¶ y
] }dA

(H.18)

where the components of 
  
( kT )ij

43[ ]
perfect

 were shown in equation (D.18).
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( kT )ij

44[ ]
Imperfect

= ( kT )ij
44[ ]

perfect
(H.19)

where the components of 
  
( kT )ij

44[ ]
perfect

 were shown in equation (D.19).

  
( kT )ij

45[ ]
Imperfect

= ( kT )ij
45[ ]

perfect
(H.20)

where the components of 
  
( kT )ij

45[ ]
perfect

 were shown in equation (D.20).

  
( kT )ij

51[ ]
Imperfect

= ( kT )ij
51[ ]

perfect
(H.21)

where the components of 
  
( kT )ij

51[ ]
perfect

 were shown in equation (D.21).

  

( kT )ij
52[ ]

Imperfect
= ( kT )ij

52[ ]
perfect

+ -
1
R
{

W
ò [ B66 (

¶ w0
¶ x

) + B26 (
¶ w0
¶ y

) ]
¶f i

(5)

¶ x
f j
(2)

+ [ B26 (
¶ w0
¶ x

) + B22 (
¶ w0
¶ y

) ]
¶f i

(5)

¶ y
f j
(2) } dA

(H.22)

where the components of 
  
( kT )ij

52[ ]
perfect

 were shown in equation (D.22).

  

( kT )ij
53[ ]

Imperfect
= ( kT )ij

53[ ]
perfect

+ { (
¶ w0
¶ x

) [ B16
¶f i

(5)

¶ x
W
ò

¶f j
(3)

¶ x
+ B12

¶f i
(5)

¶ y

¶f j
(3)

¶ x

+ B66
¶f i

(5)

¶ x

¶f j
(3)

¶ y
+ B26

¶f i
(5)

¶ y

¶f j
(3)

¶ y
]

+ (
¶ w0
¶ y

) [ B66
¶f i

(5)

¶ x

¶f j
(3)

¶ x
+ B26

¶f i
(5)

¶ y

¶f j
(3)

¶ x

(H.23)
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+ B26

¶f i
(5)

¶ x

¶f j
(3)

¶ y
+B22

¶f i
(5)

¶ y

¶f j
(3)

¶ y
] }dA

where the components of 
  
( kT )ij

53[ ]
perfect

 were shown in equation (D.23).

  
( kT )ij

54[ ]
Imperfect

= ( kT )ij
54[ ]

perfect
(H.24)

where the components of 
  
( kT )ij

54[ ]
perfect

 were shown in equation (D.24).

  
( kT )ij

55[ ]
Imperfect

= ( kT )ij
55[ ]

perfect
(H.25)

where the components of 
  
( kT )ij

55[ ]
perfect

 were shown in equation (D.25).
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