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Electromechanical Modeling of Piezoelectric Energy Harvesters 

 

Alper Erturk 

 

Abstract 

 

Vibration-based energy harvesting has been investigated by several researchers over the last 

decade. The ultimate goal in this research field is to power small electronic components 

(such as wireless sensors) by using the vibration energy available in their environment. 

Among the basic transduction mechanisms that can be used for vibration-to-electricity 

conversion, piezoelectric transduction has received the most attention in the literature. 

Piezoelectric materials are preferred in energy harvesting due to their large power densities 

and ease of application. Typically, piezoelectric energy harvesters are cantilevered structures 

with piezoceramic layers that generate alternating voltage output due to base excitation. This 

work presents distributed-parameter electromechanical models that can accurately predict the 

coupled dynamics of piezoelectric energy harvesters. First the issues in the existing models 

are addressed and the lumped-parameter electromechanical formulation is corrected by 

introducing a dimensionless correction factor derived from the electromechanically 

uncoupled distributed-parameter solution. Then the electromechanically coupled closed-form 

analytical solution is obtained based on the thin-beam theory since piezoelectric energy 

harvesters are typically thin structures. The multi-mode electromechanical frequency 

response expressions obtained from the analytical solution are reduced to single-mode 

expressions for modal vibrations. The analytical solutions for the electromechanically 

coupled voltage response and vibration response are validated experimentally for various 

cases. The single-mode analytical equations are then used for deriving closed-form relations 

for parameter identification and optimization. Asymptotic analyses of the electromechanical 

frequency response functions are given along with expressions for the short-circuit and the 

open-circuit resonance frequencies. A simple experimental technique is presented to identify 

the optimum load resistance using only a single resistor and an open-circuit voltage 

measurement. A case study is given to compare the power generation performances of 
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commonly used monolithic piezoceramics and novel single crystals with a focus on the 

effects of plane-stress material constants and mechanical damping. The effects of strain 

nodes and electrode configuration on piezoelectric energy harvesting are discussed 

theoretically and demonstrated experimentally. An approximate electromechanical solution 

using the assumed-modes method is presented and it can be used for modeling of asymmetric 

and moderately thick energy harvester configurations. Finally, a piezo-magneto-elastic 

energy harvester is introduced as a non-conventional broadband energy harvester. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Vibration Energy Harvesting Using Piezoelectric Transduction  

 

Vibration-based energy harvesting has received growing attention over the last decade. The 

research motivation in this field is due to the reduced power requirement of small electronic 

components, such as the wireless sensor networks used in structural health monitoring* 

applications. The ultimate goal in this research field is to power such small electronic devices by 

using the vibration energy available in their environment. If this can be achieved, the 

requirement of an external power source as well as the maintenance requirement for periodic 

battery replacement can be minimized. 

 It appears from the literature that the idea of vibration-to-electricity conversion first 

appeared in a journal article by Williams and Yates [2] in 1996. They described the basic 

transduction mechanisms that can be used for this purpose and provided a lumped-parameter 

base excitation model to simulate the electrical power output for electromagnetic energy 

harvesting. As stated by Williams and Yates [2], the three basic vibration-to-electric energy 

conversion mechanisms are the electromagnetic [2-4], electrostatic [5,6] and piezoelectric [7,8] 

transductions. Over the last decade, several articles have appeared on the use of these 

transduction mechanisms for low power generation from ambient vibrations. Two of the review 

articles covering mostly the experimental research on all transduction mechanisms are given by 

Beeby et al. [9] and Cook-Chennault et al. [10]. Comparing the number of publications appeared 

using each of these three transduction alternatives, it can be seen that the piezoelectric 

transduction has received the greatest attention especially in the last five years. Four review 

                                                            
* As an example, one of the recently started energy harvesting projects in the Center for Intelligent Material Systems 

and Structures at Virginia Tech aims to harvest ambient vibration energy to power the acoustic emission sensor 

nodes in bridges for structural health prognosis (supported by the National Institute of Standards and Technology, 

Technology Innovation Program, Cooperative Agreement Number 70NANB9H9007: Self-Powered Wireless Sensor 

Network for Structural Health Prognosis).  
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articles [10-13] have appeared in four years (2004-2008) with an emphasis on piezoelectric 

transduction to generate electricity from vibrations.  

Piezoelectricity is a form of coupling between the mechanical and electrical behaviors of 

certain materials. The materials exhibiting the piezoelectric effect are called the piezoelectric 

materials. The piezoelectric effect is usually divided into two parts as the direct and the converse 

piezoelectric effects. In the simplest terms, when a piezoelectric materials is squeezed (i.e. 

mechanically strained) an electric charge collects at the electrodes located on its surface. This is 

called the direct piezoelectric effect and it was first demonstrated by the Currie brothers in 1880. 

If the same material is subjected to a voltage drop (i.e. an electrical potential difference applied 

across its electrodes), it deforms mechanically. This is called the converse piezoelectric effect 

and it was deduced mathematically (after the discovery of the direct piezoelectric effect) from 

the fundamental principles of thermodynamics by Gabriel Lippmann in 1881 and then confirmed 

experimentally by the Curie brothers. It is important to note that these two effects usually co-

exist in a piezoelectric material. Therefore in an application where the direct piezoelectric effect 

is of the particular interest (which is the case in energy harvesting) ignoring the presence of the 

converse piezoelectric effect would be thermodynamically inconsistent.  

Several natural crystals have been observed to exhibit the piezoelectric effect in the first 

half of the last century, e.g. Rochelle salt, quartz, etc. However, in order to use them in 

engineering applications, the electromechanical coupling between the mechanical and the 

electrical behaviors of the material has to be sufficiently strong. As a result, man-made 

piezoelectric ceramics have been developed in the second half of the last century. The most 

popular of engineering ceramics, PZT (lead zirconate titanate) was developed at the Tokyo 

Institute of Technology in the 1950s and various versions of it (particularly PZT-5A and PZT-

5H) are today the most commonly used engineering piezoceramics. As far as energy harvesting 

research is concerned, PZT-5A and PZT-5H are the most widely implemented piezoceramics 

according to the literature [10]. 

The main advantages of piezoelectric materials in energy harvesting (compared to using 

the other two transduction mechanisms) are their large power densities and ease of application. 

When vibration input is applied, usable voltage output can be obtained directly from the 

piezoelectric material itself based on the direct piezoelectric effect. In electrostatic energy 

harvesting, for instance, an input voltage is required so that it can be alternated due to the relative 
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vibratory motion between the capacitor elements [5,6]. The voltage output in piezoelectric 

energy harvesting emerges from the constitutive law of the material which eliminates the 

requirement of an external voltage input. In addition, unlike electromagnetic devices, 

piezoelectric devices can be fabricated both in macro-scale and micro-scale owing to the well-

established thin-film and thick-film fabrication techniques [8,14]. 

 Typically, a piezoelectric energy harvester is a cantilevered beam with one or two 

piezoceramic layers. The harvester beam is located on a vibrating host structure and the dynamic 

strain induced in the piezoceramic layer(s) generates an alternating voltage output across the 

electrodes covering the piezoceramic layer(s). An example of a cantilever tested under base 

excitation is shown in Fig. 1.1 (referred from Chapter 4) along with its schematic view. An 

alternating voltage output is obtained due to the oscillatory base motion applied to the structure. 

In the mechanics research on piezoelectric energy harvesting as well as in the experimental 

research conducted to estimate the device performance for power generation, it is a common 

practice to consider a resistive load in the electrical domain [6-8,15-22] as depicted in Fig. 1.1b 

(which is also the case in this dissertation). From the electrical engineering point of view, it is 

often required to convert the alternating voltage output to a constant voltage using a rectifier 

bridge (AC-to-DC converter) and a smoothing capacitor in order to reach a constant level of 

voltage for charging a small battery or a capacitor using the harvested energy. Since the voltage 

levels for charging batteries and capacitors are not arbitrary, it is usually required to use a DC-to-

DC converter (step-up or step-down) in order to regulate the rectified voltage output of the 

piezoceramic according to the voltage requirement of the specific charging application. These 

electrical engineering and power electronics aspects are beyond the scope of this dissertation and 

the relevant electrical engineering work can be found in the literature [23-25]. 

 

                   
 

Fig. 1.1 (a) A cantilevered piezoelectric energy harvester tested under base excitation (photo by 

A. Erturk, 2009) and (b) its schematic view (referred from Chapter 4) 

(a) (b) 
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1.2 Review of the Existing Piezoelectric Energy Harvesting Models 

 

Research in the area of piezoelectric energy harvesting involves understanding the mechanics of 

vibrating structures, the fundamental electrical circuit theory and the constitutive behavior of 

piezoelectric materials. This promising way of powering small electronic components and 

remote sensors has attracted researchers from different disciplines of engineering including 

mechanical, electrical and civil as well as researchers from the field of material science [10-13] 

and various modeling approaches have appeared as summarized in the following. 

 As shown with Fig. 1.1b, the modeling problem of vibration energy harvesting using 

piezoelectric transduction is to estimate the voltage output across the resistive load in terms of 

the base motion input. The voltage output can then be used to calculate the power delivered to 

the given electrical load. The coupled problem of predicting the voltage across the resistive load 

connected to the electrodes of a vibrating energy harvester (under base excitation) has been 

investigated by several researchers. In the early mathematical modeling treatments, researchers 

[15,16] employed lumped-parameter (single-degree-of-freedom) solutions. Lumped-parameter 

modeling is a convenient modeling approach since the electrical domain already consists of 

lumped parameters: a capacitor due to the internal (or inherent) capacitance of the piezoceramic 

and a resistor due to an external load resistance. Hence, the only thing required is to obtain the 

lumped parameters representing the mechanical domain so that the mechanical equilibrium and 

electrical loop equations can be coupled through the piezoelectric constitutive relations [26] 

(Appendix A) and a transformer relation can be established. This was the main procedure 

followed by Roundy et al. [15] and duToit et al. [16] in their lumped-parameter model 

derivations. Although lumped-parameter modeling gives initial insight into the problem by 

allowing simple expressions, it is an approximation limited to a single vibration mode and it 

lacks important aspects of the coupled physical system, such as the information of dynamic 

mode shapes and accurate strain distribution as well as their effects on the electrical response.  

Since cantilevered energy harvesters are basically excited due to the motion of their base, 

the well-known lumped parameter harmonic base excitation relation taken from the elementary 

vibration texts has been used in the energy harvesting literature both for modeling [16] and 

studying the maximum power generation and parameter optimization [27,28]. In both lumped-

parameter models [15,16] (derived for the transverse vibrations and longitudinal vibrations, 
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respectively), the contribution of the distributed mass (spring mass in the lumped-parameter 

sense) to the forcing amplitude in the base excitation problem is neglected.  The contribution of 

the distributed mass to the excitation amplitude can be important especially if the harvester does 

not have a very large proof mass.  

As an improved modeling approach, the Rayleigh-Ritz type discrete formulation  

originally derived by Hagood et al. [29] for piezoelectric actuation (based on the generalized 

Hamilton’s principle for electromechanical systems given by Crandall et al. [30]) was employed 

by Sodano et al. [17] and duToit et al. [15,21] for modeling of cantilevered piezoelectric energy 

harvesters (based on the Euler-Bernoulli beam theory). The Rayleigh-Ritz model gives a discrete 

model of the distributed parameter system and it is a more accurate approximation compared to 

lumped-parameter modeling with a single degree of freedom. It can be seen that the modeling the 

force acting on the beam due to base excitation in the distributed-parameter formulation caused 

some confusion [17]. The Rayleigh-Ritz model gives an approximate representation of the 

distributed-parameter system (Fig. 1.1) as a discretized system by reducing its mechanical 

degrees of freedom from infinity† to a finite dimension and usually it is computationally more 

expensive than the analytical solution (if available).  

In order to obtain an analytical expressions, Lu et al. [18] used the vibration mode shapes 

obtained from the Euler-Bernoulli beam theory along with the piezoelectric constitutive relation 

[26] that gives the electric displacement to relate the electrical outputs to the vibration mode 

shape. Due to the derivation issues in Lu et al. [18], the most important concept in structural 

dynamics, the resonance phenomenon, is completely lost and the resulting frequency response 

curves do not have any peak. Another problem in the same work is due to the oversimplified 

modeling of piezoelectric coupling as viscous damping (this work remains very frequently cited 

regardless of these very important issues). Similar models were presented by Chen et al. [19] and 

Lin et al. [20] where the electrical response is expressed in terms of the beam vibration response 

in an effort to obtain an analytical representation. The deficiencies in these analytical modeling 

attempts can be summarized as the lack of consideration of the resonance phenomenon, 

ignorance of modal expansion (higher mode effects) and oversimplified modeling of 

piezoelectric coupling in the beam equation as viscous damping. Representing the effect of 

                                                            
† Indeed the electromechanical system shown in Fig. 1.1b has infinite mechanical degrees of freedom from all 

vibration modes and one electrical degree of freedom due to the RC circuit.  
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electromechanical coupling on the harvester structure as an electrically induced viscous damping 

effect is a reasonable approximation for certain electromagnetic energy harvesters [2] where the 

transduction force is proportional to the velocity. However, several other researchers [8,13,31] 

represented the piezoelectric energy harvester problem referring to the early electromagnetic 

energy harvesting model by Williams and Yates [2] although in the original work [2] the authors 

explicitly state that they focus on electromagnetic energy harvesting. The experiments [32] show 

that the form of the damping induced in the structure due to piezoelectric power generation is 

considerably different from the effect of viscous damping. In a more recent work aiming to 

obtain an analytical representation, Ajitsaria et al. [22] presented a cantilevered energy harvester 

model, where they combined the static sensing/actuation equations (with constant radius of 

curvature due to a static tip force) with the dynamic Euler-Bernoulli beam equation (where the 

radius of curvature varies) under base excitation (where there is no tip force). Their model [22] 

uses the static actuation formulation given by DeVoe and Pisano [33] (which is based on an 

analogy that uses Timoshenko’s approach of modeling bi-metal thermostats [34]) clearly fails in 

the dynamic problem of vibration energy harvesting. 

The aforementioned papers are frequently cited modeling papers from the literature of 

piezoelectric energy harvesting. Since this dissertation focuses on electromechanical modeling of 

piezoelectric energy harvesters, several papers related to experimentation, materials research and 

circuit design for piezoelectric energy harvesting are not reviewed here and such work can be 

found in the existing review articles [10-13]. Based on the modeling review given in this section, 

it can be seen that highly different modeling approaches have appeared in the literature of 

vibration energy harvesting over the last five years. These modeling papers have originated from 

different disciplines such as mechanical, electrical, civil and materials engineering. Considering 

the propagation rate of some of the fundamentally incorrect results, there seems to be an urgent 

need to develop reliable piezoelectric energy harvester models for the use of this particular 

research community from different disciplines of engineering. 

 

1.3 Objectives of the Dissertation  

 

Considering the issues in the existing literature of mathematical modeling of piezoelectric energy 

harvesters, the primary objective of this dissertation is to develop reliable mathematical models 
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for predicting the electromechanically coupled system dynamics of cantilevers used for 

piezoelectric energy harvesting. For the particular research community of this rapidly growing 

and multi-disciplinary area of engineering, developing computationally efficient but accurate 

models that can be implemented by the researchers in academia and industry is essential. 

Analytical solutions, as long as they are available, are usually much faster than the numerical 

solution techniques such as the finite element modeling and other energy-based discretization 

techniques. Moreover, the closed-form expressions associated with the analytical solutions often 

provide an explicit understanding of the effects of systems parameters and the physics of the 

problem clearly. Therefore the focus is placed on analytical modeling and a major part of this 

work covers analytical formulations and their validations.  

In addition to deriving and experimentally validating the analytical solutions, another 

objective is to study the effects of system parameters such as the piezoelectric, elastic and 

dielectric properties of the piezoceramic layers as well as mechanical damping. It is also aimed 

to obtain closed-form expressions that can be used to identify the critical system parameters (e.g. 

the optimum electrical load, the maximum voltage, mechanical damping ratio in the presence of 

an electrical load, etc.) accurately from the experimental data. Such equations can be considered 

as relations for experimental modal analysis in the presence of electromechanical coupling.  

It is also aimed in this dissertation to compare the performances of the existing 

piezoelectric materials for power generation in order to provide the materials scientists a physical 

understanding of how different properties of various piezoceramics affect the resulting power 

output so that the composition of the piezoelectric materials can be optimized using the models 

developed here. Therefore, the models given here are for designing and optimizing not only the 

mechanical structure of an energy harvester but also the materials aspects. 

Since the analytical solutions are not available for all configurations, it is aimed to 

develop the mathematical background for the relatively complicated problem of energy 

harvesting using asymmetric and moderately thick beams based on an electromechanical version 

of the assumed-modes method. Even though piezoelectric energy harvesters are usually designed 

and manufactured as thin structures for larger flexibility and larger power, there might be need to 

use configurations where the structure might have moderate thickness (e.g. due to the limitations 

in the active material dimensions) where the shear deformation and the rotary inertia effects are 

pronounced. It is also aimed to validate the predictions of the approximate formulation against 
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the experimental cases of the analytical solution part to observe the convergence of the assumed-

modes solution to the analytical solution (hence to the experimental results) with the increasing 

number of modes. 

 

1.4 Layout of the Dissertation  

 

The main body of this work consists of eight chapters mostly focusing of modeling and analysis 

of piezoelectric energy harvesters along with experimental validations. Starting with the second 

chapter, the contents of the main body are as follows: 

The second chapter of this dissertation improves the existing lumped-parameter 

piezoelectric energy harvester model by considering the electromechanically uncoupled 

distributed-parameter base excitation problem. The inaccuracy of the frequently referred lumped-

parameter base excitation equation is shown and correction factors are derived to improve it. 

Experimental validations are given for the corrected lumped-parameter base excitation equation. 

An amplitude correction factor is then introduced to the lumped-parameter piezoelectric energy 

harvester equations.    

The third chapter presents electromechanically coupled analytical solutions of 

symmetric bimorph piezoelectric energy harvester configurations under base excitation for 

the series and parallel connections of the piezoceramics layers. The formulation is given 

based on the thin-beam theory since piezoelectric energy harvesters are typically thin 

structures. The multi-mode solutions (for arbitrary excitation frequencies) and the single-

mode solutions (approximately valid for resonance excitation) are obtained and an extensive 

theoretical case study is provided. 

The fourth chapter provides detailed experimental validations for the analytical 

expressions derived in Chapter 3. Three case studies are given with a focus on a brass-

reinforced PZT-5H cantilever without and with a tip mass and a PZT-5A cantilever. 

Validations of the electromechanical frequency response equations are given along with the 

electrical performance diagrams.  

In Chapter 5, the analytical solutions are first expressed in dimensionless forms. The 

asymptotic forms of the FRFs (frequency response functions) are obtained for the short-

circuit and the open-circuit conditions, which are then used to derive closed-form 
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expressions for identifying system parameters such as the short-circuit and the open-circuit 

resonance frequencies, mechanical damping ratio and the optimum load resistance for the 

maximum power output. Experimental validations of the closed-form modal 

electromechanical expressions are also provided. 

The electromechanical model is used in Chapter 6 for simulating and comparing the 

performance results of conventional monolithic piezoceramics and commonly used single 

crystals for energy harvesting. The effects of piezoelectric constant, elastic compliance, 

permittivity and mechanical damping on the power output are addressed. The importance of 

the reduced (plane-stress) piezoelectric stress constant (rather that the well-known d31 strain 

constant) is highlighted since single crystals have not only very large d31 constant but also 

very large elastic compliance (which tends to reduce the effective piezoelectric stress 

constant). An experimental demonstration is given to demonstrate the effect of mechanical 

damping with a focus on two bimorphs using PZT-5A and PZT-5H piezoceramics. 

In Chapter 7, the effects of strain nodes are discussed in detail with an experimental 

demonstration for the cancellation of the electrical output in the second vibration mode of a 

cantilever. The cancellation problem due to the presence of the strain nodes is discussed and 

dimensionless data for the strain node positions of thin beams are provided. The relationship 

between this chapter and a recent paper on energy harvesting from the static deflection of a 

clamped plate is explained. How to avoid the cancellation problem in the electrical circuit is 

also discussed.  

For relatively complicated structural configurations which do not allow analytical 

solutions, an approximate analytical solution using an electromechanical version of the 

assumed-modes method is given in Chapter 8. Euler-Bernoulli, Rayleigh and Timoshenko 

solutions are presented. The formulation given here should be preferred for asymmetric 

energy harvesters, moderately thick energy harvesters as well as energy harvesters with 

varying cross section. Two of the experimental cases given in Chapter 4 are revisited for 

validation of the approximate solutions using the electromechanical assumed-modes method. 

Convergence of the assumed-modes solution to the analytical solution is also shown. 

Chapter 9 introduces a piezo-magneto-elastic structure for broadband vibration energy 

harvesting. The lumped-parameter equations describing the nonlinear system dynamics are 

given along with the theoretical simulations. Experimental results are also presented to verify 
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the presence of high-energy orbits of the piezo-magneto-elastic energy harvester over a range 

of frequencies. Energy harvesting from the large-amplitude oscillations on these orbits yields 

an order of magnitude larger power compared to energy harvesting from the conventional 

piezo-elastic configuration. 

Finally, Chapter 10 summarizes the results of this work and draws conclusions from 

the chapters. 
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CHAPTER 2 

 

CORRECTION OF THE EXISTING LUMPED-PARAMETER 

PIEZOELECTRIC ENERGY HARVESTER MODEL 

 

The goal of this chapter is to improve the existing electromechanical lumped-parameter 

piezoelectric energy harvester model by considering the (electromechanically) uncoupled 

distributed-parameter formulation. First the general solution of the base excitation problem for 

the transverse vibrations of a cantilevered Euler-Bernoulli beam is reviewed. The formal 

treatment of mechanical damping as a combination of internal (strain-rate) and external (air) 

damping mechanisms is addressed. The base motion is described by translation in the transverse 

direction with superimposed small rotation and it is not restricted to be harmonic in time. The 

general solution is then reduced to the particular case of harmonic base translation and the results 

of the distributed-parameter model are compared with those of the lumped-parameter model in a 

dimensionless basis. It is shown that the lumped-parameter model may yield highly inaccurate 

results and an amplitude correction factor is derived for improving the lumped-parameter base 

excitation model for transverse vibrations. The variation of correction factor with tip mass – to – 

beam mass ratio is also given and it is observed that the uncorrected lumped-parameter model 

can be accurate only when this ratio is sufficiently large. Case studies are presented for 

experimental validation of the dimensionless correction factor. Then the base excitation problem 

is summarized for the case of longitudinal vibrations and a correction factor is introduced for the 

lumped-parameter harmonic base excitation model of longitudinal vibrations as well. Finally, the 

amplitude correction factor is introduced to the electromechanically coupled lumped-parameter 

piezoelectric energy harvester equations and a theoretical case study is given to demonstrate the 

requirement of a correction factor in the lumped-parameter electromechanical equations. 
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2.1 Base Excitation Problem for the Transverse Vibrations of a Cantilevered Beam 

 

2.1.1 Response to General Base Excitation. The clamped-free Euler-Bernoulli beam shown in 

Fig. 2.1 is subjected to the translation ( )g t  of its base in the transverse direction with 

superimposed small rotation ( )h t . Deformations of the geometrically uniform thin beam are 

assumed to be small and its composite structure (of isotropic or transversely isotropic layers) 

exhibits linear-elastic material behavior. The shear deformation and the rotary inertia effects are 

neglected based on the thin-beam assumption. For the purpose of demonstration, the cantilevered 

beam is depicted as a symmetric bimorph with three layers. Typically the outer two layers are 

piezoceramics (poled in the thickness direction) and the layer bracketed in between is a metallic 

substructure. The distributed-parameter formulations given in this chapter do not consider the 

piezoelectric coupling effect as the purpose here is to investigate the accuracy of the lumped-

parameter harmonic base excitation relation in the absence of electromechanical coupling.  

 

 

Fig. 2.1 Cantilevered beam transversely excited by the translation and small rotation of its base 

 

The transverse displacement of the beam at any point x along neutral axis is denoted by 

( , )w x t . If the beam is assumed to be undamped, the equation of motion for free vibrations in the 

absolute frame of reference can be written as [35]  

4 2

4 2

( , ) ( , )
0

w x t w x t
YI m

x t

 
 

 
                         (2.1) 

where YI is the bending stiffness and m is the mass per unit length of the beam.* Note that the 

expression of the bending stiffness of a uniform bimorph cantilever is given in the 

electromechanical derivations of Chapter 3.  

                                                            
* Y is preferred to denote the elastic modulus (Young’s modulus) in order to avoid confusion with the electric field 

term (E) in the following chapters. 

    x 

( )g t

( )h t YI, m  

0x  x L

z 
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Two types of damping mechanisms are included to the undamped beam: viscous air 

damping and Kelvin-Voigt (or strain-rate) damping (then the material behavior is approximated 

as linear-viscoelastic hereafter). The equation of motion of the damped beam becomes 

4 5 2

4 4 2

( , ) ( , ) ( , ) ( , )
0s a

w x t w x t w x t w x t
YI c I c m

x x t t t

   
   

    
                     (2.2) 

where ac  is the viscous air damping coefficient and sc  is the strain-rate damping coefficient 

(appears as an effective term sc I  for the composite structure). Viscous air damping is a simple 

way of modeling the force acting on the beam due to the air particles displaced during the 

vibratory motion and strain-rate damping accounts for the structural damping due to the friction 

internal to the beam. Both of these damping mechanisms satisfy the proportional damping 

criterion and hence they are mathematically convenient for the modal analysis solution 

procedure. Other beam damping mechanisms and the identification procedures of their respective 

damping parameters from experimental measurements are discussed by Banks and Inman [36]. 

In order to use analytical modal analysis techniques, one is basically restricted with the stiffness 

and mass proportional damping mechanisms (often referred to as Rayleigh damping [37] 

especially in dynamic analysis of discrete systems).  

Following Timoshenko et al. [35], the absolute transverse displacement of the beam (i.e. 

the transverse displacement relative to the absolute reference frame) at any point x and time t can 

be written as 

( , ) ( , ) ( , )b relw x t w x t w x t   (2.3) 

where ( , )relw x t  is the transverse displacement relative to the clamped end of the beam and 

( , )bw x t  is the base displacement given by 

 1 2( , ) ( ) ( ) ( ) ( )bw x t x g t x h t                                                 (2.4) 

Here, 1( )x  and 2 ( )x  are the displacement influence functions for the transverse base 

displacement and small base rotation of the beam, respectively. For the cantilevered beam case, 

1( ) 1x   and 2 ( )x x   [35]. Using Eq. (2.3) in Eq. (2.2) yields 

4 5 2 2

4 4 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )rel rel rel rel b b
s a a

w x t w x t w x t w x t w x t w x t
YI c I c m m c

x x t t t t t

     
     

      
  (2.5) 
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Note that, after expressing the absolute transverse displacement ( , )w x t  in terms of the base 

displacement ( , )bw x t  and the relative transverse displacement ( , )relw x t , the free vibration 

equation for the absolute vibratory motion of the beam given by Eq. (2.2) becomes a forced 

vibration equation for the relative vibratory motion of the beam. There are two important points 

to mention at this stage. First, the external damping acts on the absolute velocity whereas the 

internal damping acts on the relative velocity of the beam. Secondly, for the same reason, the 

excitation is not only due to the rigid body inertia of the beam but also it is due to the effect of 

external damping on the rigid body motion. The latter may or may not be negligible depending 

on the amount of external damping, which will be discussed later in this chapter. 

The boundary conditions for the relative vibratory motion of the beam can be written as 

(0, ) 0relw t  , 
0

( , )
0rel

x

w x t

x 





                                    (2.6) 

2 3

2 2

( , ) ( , )
0rel rel

s

x L

w x t w x t
YI c I

x x t


  
     

, 
3 4

3 4

( , ) ( , )
0rel rel

s

x L

w x t w x t
YI c I

x x t


  
     

        (2.7) 

Note that the strain-rate damping results in a moment as well as a transverse force term that 

appears in the natural boundary conditions written for the free end [36]. Based on the expansion 

theorem, the solution of Eq. (2.5) can be represented by an absolutely and uniformly convergent 

series of the eigenfunctions as 

1

( , ) ( ) ( )rel r r
r

w x t x t 




                         (2.8) 

where ( )r x  and ( )r t  are the mass normalized eigenfunction and the modal coordinate of the 

clamped-free beam for the r-th mode, respectively. Since the system is proportionally damped, 

the eigenfunctions denoted by ( )r x  are indeed the mass normalized eigenfunctions of the 

corresponding undamped free vibration problem [38] given by Eq. (2.1) along with the clamped-

free boundary conditions 

(0, ) 0relw t  , 
0

( , )
0rel

x

w x t

x 





, 

2

2

( , )
0rel

x L

w x t
YI

x






, 

3

3

( , )
0rel

x L

w x t
YI

x






       (2.9) 

Therefore, the resulting mass normalized eigenfunction of the r-th vibration mode is 

1
( ) cosh cos sinh sinr r r r

r rx x x x x
mL L L L L

             
          (2.10) 
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where the r  is the dimensionless frequency parameter of the r-th mode obtained from the 

characteristic equation given by 

1 cos cosh 0                      (2.11) 

and r  is expressed as  

sinh sin

cosh cos
r r

r
r r

 
 





                  (2.12) 

It should be noted that Eqs. (2.10)-(2.12) are valid for a clamped-free beam without a tip mass. 

The presence of a tip mass affects not only the eigenvalue problem but also the right hand side of 

Eq. (2.5) since the inertia of a possible tip mass also contributes to the excitation of the beam in 

that case (Section 2.2.2).  

The mass normalized form of the eigenfunctions given by Eq. (2.10) satisfies the 

following orthogonality conditions: 

0

( ) ( )
L

s r rsm x x dx    , 

4

2

4

0

( )
( )

L

r

s r rs

d x
YI x dx

dx


                 (2.13) 

where rs  is the Kronecker delta, defined as being equal to unity for s r  and equal to zero for 

s r , and r  is the undamped natural frequency of the r-th mode given by 

2
4r r

YI

mL
                          (2.14) 

Using Eqs. (2.5)-(2.7) and (2.13), the partial differential equation of motion can be reduced to an 

infinite set of ordinary differential equations 

2
2

2

( ) ( )
2 ( ) ( )r r

r r r r r

d t d t
t f t

dt dt

                          (2.15) 

where  

2

2 s r a
r r

c I c

YI m

                            (2.16) 

Therefore, the damping ratio r  includes the effects of both strain-rate damping and viscous air 

damping and it can be expressed as s a
r r r     where the strain-rate and the air damping 

components of the damping ratio are / 2s
r s rc I YI   and / 2a

r a rc m  , respectively. It is 

clear from Eq. (2.16) that the strain-rate damping coefficient is proportional to structural stiffness 
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and the viscous air damping coefficient is proportional to mass per unit length. It is worth 

mentioning that identification of the proportional damping coefficients sc I  and ac  (from 

experimental measurements) requires knowing the natural frequencies and modal damping ratios 

of two separate modes [37]. If one knows the natural frequencies ( j , k ) and the modal 

damping ratios† ( j , k ) of modes j and k, it is straightforward from Eq. (2.16) to obtain the sc I  

and ac  values using‡ 

2 2

2 j ks j
k j

a kj k
k j

YI YI
c I

c
m m

   
 

 

              

                  (2.17) 

In Eq. (2.15), the modal forcing function ( )rf t  can be expressed as 

( ) ( ) ( )m c
r r rf t f t f t                      (2.18) 

Here, the inertial and the damping excitation terms are given by the following expressions, 

respectively, 

2 2

2 2

( ) ( )
( )m w

r r r

d g t d h t
f t m

dt dt
 

 
   

 
, 

( ) ( )
( )c w

r a r r

dg t dh t
f t c

dt dt
     

 
           (2.19) 

where 

0

( )
L

w
r r x dx   , 

0

( )
L

r rx x dx                           (2.20) 

Then, the modal response can be obtained by using the Duhamel integral (for zero initial 

conditions) as 

( )

0

1
( ) ( ) sin ( )r r

t
t

r r rd
rd

t f e t d      


                                   (2.21) 

                                                            
† Concepts such as the quality factor, half-power points or the Nyquist plot can be used for the identification of 

modal damping ratio in frequency domain [39], or alternatively, logarithmic decrement can be used for its 

identification in time domain [37].  
‡ This procedure assumes that the modal damping ratios of all the other modes can be determined if those of only 

two modes are known (which is practically not the case for most physical systems). The reader is referred to Banks 

and Inman [36] for a more realistic approach of identifying these damping coefficients. Often the damping ratios of 

the individual vibration modes are identified separately from experiments. 
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where 21rd r r     is the damped natural frequency of the r-th mode. Eventually, the modal 

response obtained from Eq. (2.21) can be used in Eq. (2.8) along with the eigenfunction 

expression given by Eq. (2.10) and the relative response ( , )relw x t  at any point along the beam 

axis can be obtained as 

( )

1 0

( )
( , ) ( ) sin ( )r r

t
tr

rel r rd
r rd

x
w x t f e t d      




 



                    (2.22) 

Note that the displacement at the tip of the beam (relative to the moving base) can be obtained by 

just setting x L  in Eq. (2.22). If one is interested, the response of the beam relative to the 

absolute reference frame can be obtained by just using the relative displacement and the base 

displacement input in Eq. (2.3). However, the main concern in vibration energy harvesting is the 

response of the beam relative to its base. The expression obtained for the relative vibratory 

motion of the beam, Eq. (2.22), is not restricted to harmonic base excitation and it can handle 

transient base histories (including small base rotations).  

 

2.1.2 Steady-state Response to Harmonic Base Excitation. In most of the theoretical and 

experimental work on piezoelectric energy harvesting, the base excitation is assumed to be 

harmonic translation to simplify the problem and also to estimate the maximum power 

generation from resonance excitation. If the base translation is of the form 0( ) j tg t W e   (where 

0W  is the base displacement amplitude,   is the excitation frequency and 1j    is the unit 

imaginary number) and if the base does not rotate (i.e. ( ) 0h t  ), the steady-state modal response 

can be obtained as 

2

02 2
( )

2
w j ta

r r
r r r

m j c
t W e

j
  

    



 

                  (2.23) 

where 

0

2
( )

L
w r
r r

r

L
x dx

m

 


                       (2.24) 

is obtained by integrating Eq. (2.10) over the beam length. Using Eqs. (2.8), (2.10) and (2.23), 

one can obtain the expression for the relative response at point x and time t as 
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  (2.25) 

Then, by setting x L  one obtains 

    
 

2

0 2 2
1

2
( , ) 2 cosh cos sinh sin

2

a
r r rj t

rel r r r r r
r r r r r

j
w L t W e

j


    
    

     






         (2.26) 

which is the distributed-parameter (Euler-Bernoulli model) steady-state solution of the relative 

tip displacement due to harmonic base excitation (when there is no tip mass). 

 

 2.1.3 Lumped-parameter Model of the Harmonic Base Excitation Problem. Lumped-

parameter modeling approach with a single degree of freedom requires describing the dynamics 

of the point of interest (usually the free end of the beam) in terms of certain lumped parameters 

which are the equivalent mass, stiffness and the damping of the beam denoted by eqm , eqk  and 

eqc , respectively (Fig. 2.2a). The equivalent stiffness is obtained from the static deflection 

relation of a cantilevered beam due to a concentrated transverse load at the tip whereas the 

equivalent mass is obtained by expressing the total kinetic energy of the beam in terms of the 

velocity at the tip through Rayleigh’s quotient [40] for cantilevered end conditions where the 

base is not moving. It should be highlighted at this point that, in the base excitation problem 

(unlike the problem of a beam where the base is not moving), the cantilevered beam is excited by 

its own inertia and there is an inertial contribution to the excitation from its distributed mass. The 

contribution of this distributed inertia to the excitation amplitude can be very significant as will 

be shown in the next section. 

The commonly referred [2,3,8,10,13,16,22,27,28,31] lumped parameter model is shown 

in Fig. 2.2a and the lumped parameter model with a more precise representation of damping is 

depicted in Fig. 2.2b. The correction made in Fig. 2.2b is due to the modeling of the external 

viscous damping (air damping). It is analogous to the Euler-Bernoulli model solution in the sense 

that the structural damping acts on the relative velocity between the mass and the base however 

the air damping acts on the absolute velocity of the mass.  
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Fig. 2.2 Lumped-parameter models of the base excitation problem; (a) the commonly used 

representation and (b) a more precise representation of external damping 

 

In Fig. 2.2, ( )y t  is the harmonic base displacement ( 0( ) j ty t Y e  ) whereas ( )x t  is the 

absolute displacement response of the mass (i.e. it is the absolute transverse displacement at the 

free end of the beam). Let the response of the mass relative to the base be ( ) ( ) ( )z t x t y t  . 

Then, for the system shown in Fig. 2.2a, one can obtain the relative displacement of the mass as 

2

02
( ) eq j t

eq eq eq

m
z t Y e

k m j c


 


 
                   (2.27) 

which can be found in any elementary vibration text [41,42] and which has also been frequently  

referred in order to describe dynamics of vibration energy harvesters [2,3,8,10,13,16,22,27, 

28,31]. In Eq. (2.27), the equivalent flexural stiffness of the cantilever at the tip is 

      
3

3
eq

YI
k

L
                     (2.28) 

and the equivalent mass is due to Lord Rayleigh [40]: 

  
33

140eq tm mL M          (2.29) 

where tM  is the tip mass (if exists). The undamped natural frequency (the fundamental natural 

frequency of the structure) is§ 

                                                            
§ It can be shown that the error due to using Eq. (2.30) in predicting the fundamental natural frequency is about 1.5 

% in the absence of a tip mass (relative to the Euler-Bernoulli model fundamental natural frequency 
1

  obtained for 

1r   in Eq. (2.14)). The prediction of Eq. (2.30) is improved in the presence of a tip mass. 

  eqm

  eqc  

   ( )y t  

   ( )x t  

eqk

  eqm

eqk    s
eqc

   ( )x t  

   ( )y t  

   a
eqc  

(a)  (b)
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33 /

(33 /140)
eq

n
eq t

k YI L

m mL M
  


    (2.30) 

Then the equivalent damping coefficient is 2eq n eqc m  where   is the equivalent damping 

ratio. According to Fig. 2.2a, this model assumes a single damping coefficient which acts on the 

relative velocity of the tip mass. 

Consider the lumped-parameter model presented in Fig. 2.2b where air damping and 

structural damping are treated separately; the former acts on the absolute velocity of the mass 

whereas the latter acts on the velocity of the mass relative to the base. The air damping 

coefficient a
eqc  is assumed to be proportional to eqm  ( 0

a
eq eqc a m ) whereas the structural damping 

coefficient s
eqc  is assumed to be proportional to eqk  ( 1

s
eq eqc a k ), where 0a  and 1a  are the 

constants of proportionality. Once again, obtaining the proportionality constants 0a  and 1a  

(hence the damping coefficients a
eqc  and s

eqc ) from experimental measurements requires knowing 

the damping ratios and natural frequencies of two separate modes of the physical (multi-mode) 

system as in the case of the Euler-Bernoulli model (see Eq. (2.17)). For the lumped-parameter 

model shown in Fig. 2.2b, the relative response of the mass can be expressed as 

2

02
( )

a
eq eq j t

eq eq eq

m j c
z t Y e

k m j c
 

 



 

               (2.31) 

Here, 2a a
eq n eqc m   and 2a s

eq eq eq n eqc c c m   , where a  is the damping ratio due to the 

viscous damping effect of air. Clearly, in the commonly referred Eq. (2.27), the forcing term due 

to air damping is missing. Therefore, representing all sources of mechanical damping by a single 

damping ratio acting on the relative velocity of the tip mass [16] is not the most general case. 

However, for the case where the damping ratio a  due to the surrounding fluid (which is usually 

air) is very low, it is reasonable to expect the forcing term a
eqj c  coming from the air damping 

to be much less than the inertial forcing term 2
eqm  and consequently Eq. (2.31) reduces to Eq. 

(2.27). For a dimensionless comparison, dividing both of these forcing terms by eqm  gives the 

inertia contribution as 2  and the air damping contribution as 2 a
nj    . For the case of 

excitation at the natural frequency ( n  ), variation of the percentage forcing contribution of 
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air damping with a  is shown in Fig. 2.3 (which is simply the plot of 22 / 1 (2 ) 100a a   ). 

As can be seen from Fig. 2.3, the excitation amplitude coming from the air damping is less than 

5 % of the total excitation (inertial and damping) if 0.025a  .  The conclusion of this brief 

discussion is that the lumped-parameter model of the harmonic base excitation problem given by 

Fig. 2.2a and Eq. (2.27) implicitly assumes the excitation component due to the damping coming 

from the external fluid to be sufficiently low when compared to the inertial excitation 

component. For the base excitation problem of cantilevers operating in viscous fluids or for 

micro-scale cantilevers for which the external damping effect becomes more significant, the 

representation given in Fig. 2.2b and Eq. (2.31) can be preferred.  

 

 
 

Fig. 2.3 Contribution of excitation from air (or external) damping to the total excitation term as a 

function of air damping ratio (for excitation at n  ) 

 

2.1.4 Comparison of the Distributed-parameter and the Lumped-parameter Model 

Predictions. Consider the expressions of the relative tip displacement response obtained by 

using the distributed-parameter (Euler-Bernoulli) model and the lumped-parameter model, which 

are Eqs. (2.26) and (2.31), respectively. As mentioned previously, for the case of light air 

(external) damping (i.e. for , 1a a
r   ) the excitation due to the inertia term dominates the 

numerators of Eqs. (2.26) and (2.31) and these equations can be reduced to 

  
 

2
0 2 2

1

cosh cos sinh sin
( , ) 2

2
r r r r r rj t
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r r r r r
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      

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



   
 

                (2.32) 



 22

    
2

02 2
( )

2
j t

n n

z t Y e
j


   


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                          (2.33) 

respectively. 

The tip displacement – to – base displacement ratio gives the relative displacement 

transmissibility function, which forms an appropriate dimensionless basis for comparing the 

Euler-Bernoulli and the lumped-parameter models. These relative displacement transmissibility 

functions can be extracted from Eqs. (2.32) and (2.33) as 

  
 

2

2 2
1

cosh cos sinh sin
( , ) 2

2
r r r r r rEB

rel r
r r r r r

T
j

     
  
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



   
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         (2.34) 
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2
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rel
n n

T
j

 
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
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      (2.35) 

where EB
relT  and LP

relT  are for the Euler-Bernoulli and the lumped-parameter models, respectively. 

Note that the Euler-Bernoulli and the lumped-parameter natural frequencies are not identical 

since the natural frequency prediction of the latter model (which is due to Eq. (2.30)) is slightly 

different from that of the former model (which is due to Eq. (2.14) for 1r  ). It should be noted 

from Eqs. (2.34) and (2.35) that these are also functions of the damping ratios. Therefore, it is 

required to compare the results of these transmissibility functions for different values of damping 

ratio. Here, we use three different values of damping ratio ( 1 0.01,  0.025,  0.05   ) for 

comparison of the models. The relative motion transmissibility functions given by Eqs. (2.34) 

and (2.35) are shown in Figs. 2.4a and 2.4b, respectively. For convenience, the excitation 

frequency   is normalized with respect to the fundamental natural frequency (of the Euler-

Bernoulli beam model as it is assumed to be the accurate one) and therefore the frequency axis is 

denoted by 1/   . As can be seen from Fig 2.4, the frequency of maximum relative 

displacement transmissibility corresponds to 1   in both models since the lumped-parameter 

approach gives a good estimate of the fundamental natural frequency (from Eq. (2.30)). 

However, it is not possible to draw the same conclusion from the amplitude-wise results. It is 

clear from Fig. 2.4 that the peak values for the same damping ratios are different for the 

distributed-parameter and the lumped-parameter model predictions. 
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Fig. 2.4 Relative motion transmissibility functions for the transverse vibrations of a cantilevered 

beam without a tip mass; (a) distributed-parameter model and (b) lumped-parameter model  

 

The percentage error in the lumped-parameter solution as a function of dimensionless 

frequency ratio is given by Fig. 2.5 (relative to the Euler-Bernoulli model). As can be seen from 

Fig 2.5, the relative error due to using the lumped-parameter approach in predicting the relative 

motion at the tip of the beam is very large. In the vicinity of the first natural frequency (i.e. for 

1  ), the error of the lumped-parameter model can be greater than 35 % regardless of the 

damping ratio. The interesting behavior in the relative error plot around the resonance is due to 

the 1.5 % error in the natural frequency predicted by the lumped-parameter approach. If the 

lumped-parameter natural frequency were taken to be identical to the first natural frequency of 

the  Euler-Bernoulli  model, one  would  obtain a smooth behavior in the error. Figure 2.5  shows 

 

 

Fig. 2.5 Error in the relative motion transmissibility due to using the lumped-parameter model 

for a cantilevered beam without a tip mass in transverse vibrations 

(a) (b)
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that the important error is in the prediction of the relative motion amplitude rather than the 

natural frequency. The error in the lumped-parameter model increases drastically at higher 

frequencies since higher vibration modes cannot be captured by the lumped-parameter approach. 

 

2.2 Correction of the Lumped-parameter Model for Transverse Vibrations 

 

2.2.1 Correction Factor for the Lumped-parameter Model. Since much of the vibration 

energy harvesting literature uses lumped-parameter modeling for design and optimization 

[2,3,8,10,13,16,22,27,28,31], a correction factor is presented for using the simplified lumped-

parameter model. Consider the relative motion transmissibility function of the Euler-Bernoulli 

model given by Eq. (2.34). If the beam is excited around its first natural frequency, taking only 

the first term in the summation sign (neglecting the terms for 2r  ) gives a good approximation 

for the resulting motion transmissibility. This reduced form of the Euler-Bernoulli model 

solution is denoted by EB
relT  : 
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               (2.36) 

which can reduced to  
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  
                         (2.37) 

where 1/    is used and 1  corrects the excitation amplitude for the first transverse 

vibration mode of a cantilevered Euler-Bernoulli beam without a tip mass (for predicting the 

vibration response at x L ). Using 1 1.87510407   and 1 0.734095514   obtained from Eqs. 

(2.11) and (2.12) gives the correction factor for the first mode as 

   1 1 1 1 1 1
1

1

2 cosh cos sinh sin
1.566

     



                       (2.38) 

It should be noted from Eqs. (2.35) and (2.36) that the reduced form of the Euler-Bernoulli 

solution for the first mode is indeed the correction factor 1  multiplied by the lumped-parameter 

solution (assuming that the lumped-parameter model natural frequency is accurate so that 

1/ / n      ). Therefore, 1  corrects the amplitude of the relative motion obtained from 

the lumped-parameter solution. The comparison of the relative motion transmissibility functions 
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obtained by using the Euler-Bernoulli model, the lumped-parameter model and the corrected 

lumped-parameter model are given in Fig. 2.6 for 0.05  . The agreement between the Euler-

Bernoulli model (Eq. (2.34)) and the corrected lumped-parameter model (Eq. (2.36)) is very 

good over a wide frequency range around the fundamental resonance frequency and the 

corrected lumped-parameter relative motion transmissibility function starts deviating close to the 

region of the second natural frequency. The original lumped-parameter model prediction with 

Eq. (2.35) underestimates the relative motion transmissibility amplitude considerably with an 

error of about at least 35 % (see Fig. 2.5). 

 

 

Fig. 2.6 Relative motion transmissibility functions obtained from the distributed-parameter, 

corrected lumped-parameter and the original lumped-parameter models for 0.05   

 

If the beam is to be excited not at the first natural frequency but at one of the higher mode 

frequencies, one can obtain the correction factor of the mode of interest (r-th mode) from the 

following relation 

   2 cosh cos sinh sinr r r r r r
r

r

     



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and then use it in the following expression of reduced relative motion transmissibility   

2

2
( , )

1 2
EB r r

rel r r
r r r

T
j




 
 

  
                (2.40) 

where the dimensionless frequency ratio is now /r r    and r  is the undamped natural 

frequency of the r-th mode obtained from Eq. (2.14) and r  is the modal damping ratio of the r-
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th mode. Note that, since the modal parameters r  and r  do not depend on the aspect ratio of 

the beam in the Euler-Bernoulli beam theory, the correction factor r  of the r-th mode is unique 

in the absence of a tip mass. That is, the correction factor for the fundamental mode is 1 1.566   

for any uniform cantilevered Euler-Bernoulli beam without a tip mass in transverse vibrations 

(so long as the beam aspect ratio justifies the Euler-Bernoulli beam assumptions).** However, the 

presence of a tip mass affects the correction factor which is discussed in the following section. 

 

2.2.2 Effect of a Tip Mass on the Correction Factor. In some cases, it is required to attach a 

tip mass (proof mass) to the beam in order to tune its fundamental natural frequency to the 

excitation frequency and to improve its dynamic flexibility. If the differential eigenvalue 

problem is solved for a uniform cantilevered beam with a tip mass of tM  rigidly attached at 

x L , the eigenfunctions can be obtained as†† 

( ) cos cosh sin sinhr r r r
r r rx C x x x x

L L L L

             
                       (2.41) 

where r  is obtained from 

  
 

 

sin sinh cos cosh
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r r r r r

r
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r r r r r
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    


    

  


  
                        (2.42) 

and rC  is a modal amplitude constant which should be evaluated by normalizing the 

eigenfunctions according to the following orthogonality conditions: 

                                                            
** In the discussion given here, the correction factor is defined to predict the motion exactly at the tip. It should be 

noted that distributed-parameter modeling allows predicting the motion transmitted from the base to any arbitrary 

point of the beam. In such a case the numerical value of the correction factor obviously changes (e.g. 
1

  takes a 

value lower that 1.566 for the fundamental mode) but it is still independent of the aspect ratio as long as the beam is 

sufficiently thin, geometrically and materially uniform and linear vibrations are considered. 
†† Here, it is assumed that the uniform thin beam with a tip mass can be approximated as a normal-mode system so 

that the eigenfunctions of the undamped problem can be used for modal analysis of the damped problem [38]. Banks 

et al. [43] pointed out the mathematical limitations of the normal-mode assumption for combined dynamical 

systems, i.e. distributed-parameter systems with discrete elements. 
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The natural frequency expression given by Eq. (2.14) still holds but the dimensionless 

eigenvalues ( r  for the r-th mode) should be obtained from 

 1 cos cosh cos sinh sin cosh 0tM
mL

                                    (2.44) 

where /tM mL  is a dimensionless parameter as it is the tip mass – to – beam mass ratio. In the 

above equations, the rotary inertia of the tip mass is neglected for convenience, i.e. the tip mass 

is assumed to be a point mass.  

 In addition to the modification of the eigenvalue problem in the presence of a tip mass, 

the forcing term due to base excitation also changes since the tip mass also contributes to the 

inertia of the structure. Equation (2.5) becomes 

     
4 5 2 2

4 4 2 2

( , ) ( , ) ( , ) ( , ) ( , )
( )rel rel rel rel b

s a t

w x t w x t w x t w x t w x t
YI c I c m m M x L

x x t t t t
    

      
     

    

(2.45) 

where ( )x  is the Dirac delta function and the forcing term due to external damping is neglected. 

The modal forcing function corresponding to the right hand side of Eq. (2.45) is then 

2 2 2 2

2 2 2 2
0 0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

L L

r r r t r

d g t d h t d g t d h t
f t m x dx x x dx M L L

dt dt dt dt
  

   
       

  
       (2.46)  

Expectedly, the foregoing modification results in variation of the correction factor 

defined in the previous section. Since the base is assumed to be not rotating (i.e. ( ) 0h t  ) in 

deriving the correction factor, one can extract the expression of the correction factor 1  in the 

presence of a tip mass as 

1 1 1 1

0

( ) ( ) ( )
L

tL M L m x dx   
 

  
 

                       (2.47) 

The variation of the correction factor 1  of the fundamental transverse vibration mode given by 

Eq. (2.47) with tip mass ( tM ) – to – beam mass ( mL ) ratio is shown in Fig. 2.7.  
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Fig. 2.7 Variation of the correction factor for the fundamental transverse vibration mode with tip 

mass – to – beam mass ratio 

 

It can be read from Fig. 2.7 that when there is no tip mass ( / 0tM mL  ), 1 1.566   as 

previously obtained, whereas as /tM mL  becomes larger ( /tM mL  ), 1  approaches to 

unity. The important conclusion drawn from Fig. 2.7 is that the uncorrected lumped-parameter 

model can be used safely only when the tip mass is sufficiently larger than the beam mass. From 

the physical point of view, if the tip mass is sufficiently large, the inertia of the tip mass 

dominates in the forcing function and the distributed inertia of the beam (as a component of 

excitation) becomes negligible. Table 2.1 shows the values 1  takes for different /tM mL  ratios. 

It should be noted that, for the uncorrected lumped-parameter formulation 1 1  , and therefore, 

the relative error in the motion at the tip of the beam predicted by the uncorrected lumped-

parameter model is estimated from  1 11 / 100   .  

The following quadratic polynomial ratio obtained by using the Curve Fitting Toolbox of 

MATLAB [44] gives an estimate of 1  with an error less than 39 10 % for all values of 

/tM mL : 

   
   

2

1 2

/ 0.603 / 0.08955

/ 0.4637 / 0.05718
t t

t t
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M mL M mL


 


 
            (2.48) 
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Table 2.1 Correction factor for the fundamental transverse vibration mode and the error in the 

uncorrected lumped-parameter model for different tip mass – to – beam mass ratios  
 

/tM mL  1  
Error in the uncorrected 

lumped-parameter model [%] 

0 1.56598351 -36.14 

0.1 1.40764886 -28.96 

0.5 1.18922917 -15.91 

1 1.11285529 -10.14 

5 1.02662125 -2.59 

10 1.01361300 -1.34 

 

2.3 Experimental Case Studies for Validation of the Correction Factor 

 

This section provides experimental demonstrations for the use of the correction factor in order to 

improve the predictions of the lumped-parameter base excitation model in the absence and 

presence of a tip mass. The bimorph cantilever discussed in the following is investigated 

extensively in Chapter 4 for validation of the distributed-parameter electromechanical models 

developed in Chapter 3. Detailed information regarding the cantilever and the experimental setup 

can therefore be found in Chapter 4. Here, only the motion transmissibility FRFs are considered 

in order to validate the amplitude correction factor derived in this chapter. Each one of the two 

cases presented here uses the measurement taken for an external electrical load close to short-

circuit conditions of the electrodes (very low external impedance). Therefore, the following cases 

can be considered as very close to being electromechanically uncoupled (i.e. having negligible 

piezoelectric shunt damping effect), in agreement with the formulation given in this chapter 

(where the purpose is to improve the mechanical aspect of the existing lumped-parameter 

electromechanical model). The electromechanically coupled distributed-parameter dynamics of 

these configurations are modeled and validated in Chapters 3 and 4, respectively.  

 

2.3.1 Cantilevered Beam without a Tip Mass under Base Excitation. The cantilever 

considered here is a T226-H4-203X type bimorph manufactured by Piezo Systems, Inc. [45]. 
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Detailed electromechanical analysis of this sample can be found in Section 4.1. Here, the 

experimental data for a 470  load resistance (close to short-circuit conditions) is considered to 

validate the corrected lumped-parameter base excitation relation given by Eq. (2.36) and to 

demonstrate the failure of the original relation given by Eq. (2.35) in predicting the vibration 

response. It should be noted from Table 4.1 that the overhang length, width and the thickness of 

the cantilever are 24.53 mm, 6.4 mm and 0.670 mm, respectively.  Therefore the overhang length 

– to – total thickness ratio of the bimorph cantilever is about 37.7 and the Euler-Bernoulli 

formulation can safely be used as far as the fundamental vibration mode is concerned.  

 

            
 

Fig. 2.8 Experimental setup used for the frequency response measurements of a uniform bimorph 

cantilever (photos by A. Erturk, 2009) 

 

The experimental setup used for the frequency response measurement is shown in Fig. 

2.8 (referred from Chapter 4). The bimorph cantilever is clamped onto a small electromagnetic 

shaker (TMC Model TJ-2 [46]). A small accelerometer (PCB Piezotronics Model U352C67 [47]) 

is attached via wax close to the root of the cantilever on the clamp. The tip velocity response of 

the cantilever is measured using a laser vibrometer (Polytec PDV100 [48]) by attaching a small 

reflector tape at the tip of the cantilever (see Fig. 2.9a for an enlarged view). Chirp excitation 

(burst type with five averages) is used for the frequency response measurement through the data 

acquisition system (SigLab Model 20-42) [49]. The ratio of the vibrometer measurement to the 

(1) 

(2)
(3) (4)

(5)
(6)

(1) 

(1) Shaker with a small 
accelerometer and the cantilever 
(2) Laser vibrometer  
(3) Fixed gain amplifier (power 
supply)  
(4) Charge amplifier 
(5) Data acquisition system 
(6) Frequency response analyzer 
(software) 
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acceleration measurement in the frequency domain defines the tip velocity – to – base 

acceleration FRF.  

 

          

Fig. 2.9 Close views of the cantilever tested under base excitation (a) without and (b) with a tip 

mass attachment (photos by A. Erturk, 2009) 

 

It is important to note that the laser vibrometer measures the velocity response at the 

center of the reflector tape that is attached near the tip of the cantilever (i.e. not exactly at x L ). 

If the point of the velocity measurement is vx L , Eq. (2.47) should be modified to  

*
1 1 1 1

0

( ) ( ) ( )
L

v tL M L m x dx   
 

  
 

                       (2.49) 

where *
1  is the modified form of the correction factor that accounts for the small distance of the 

point of velocity measurement from the tip. In the experiments, the position of the velocity 

measurement on the cantilever is 23vL  mm from the root (i.e. approximately 1.5 mm from the 

tip). For this point of velocity measurement, the variation of the correction factor with tip mass – 

to – beam mass ratio is given by Fig. 2.10. In the absence of a tip mass, the modified correction 

factor is *
1 1.431   and it can be used in Eq. (2.36) to predict the vibratory motion at vx L .  

It should also be noted at this stage that the theoretical discussion given so far is for the 

tip displacement – to – base displacement FRF. However, the measurements taken with this 

experimental setup are the tip velocity and the base acceleration of the cantilever. Moreover, the 

experimental velocity measurement is relative to the fixed frame, i.e. it is not the tip velocity of 

the cantilever relative to its moving base. One option for comparing the experimental data and 

the analytical predictions is to process the experimentally measured FRF to bring it to the form 

(a) (b)
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of Eqs. (2.35) and (2.36). The second option is to bring the analytical relative displacement 

transmissibility functions given by these equations to the form of the experimental measurement. 

The second option is preferred in order not to create a possible noise in the experimental data due 

to post-processing. The relative displacement transmissibility FRF (Eqs. (2.35) and  (2.36)) can 

be used in the following relation to give the absolute tip velocity – to – base acceleration FRF as  

2
0

( , )

1 ( , )
vx L rel

j t

w x t
t T

W e j

 
 




 




                                 (2.50) 

In addition, the experimental FRFs are given per gravitational acceleration ( 9.81g  m/s2), i.e. 

Eq. (2.50) should be multiplied by g in order to compare with the experimental data.  

 

 
 

Fig. 2.10 Variation of the modified correction factor for the fundamental transverse vibration 

mode with tip mass – to – beam mass ratio 

 

 Figure 2.11a shows the experimental frequency response measurement and its prediction 

by Eqs. (2.35) and (2.36) (when used in Eq. (2.50)). The undamped natural frequency of the 

cantilever (close to short-circuit conditions) is 502.5 Hz ( 3157.3n  rad/s) and the mechanical 

damping ratio identified in Section 4.1 is 0.874 % ( 0.00874  ). As can be seen in Fig. 2.11b, 

the coherence [50,51] of the measurement is very good (unity). Therefore the measurement is 

reliable for the frequency range of interest. 
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 Since the cantilever does not have a tip mass ( / 0tM mL  ), the modified amplitude 

correction factor is obtained from Eq. (2.49) or from Fig 2.10 as *
1 1.431  . It is observed from 

Fig. 2.11a that the corrected lumped-parameter model (due to Eq. (2.36)) is in very good 

agreement with the experimental FRF whereas the uncorrected lumped-parameter model (due to 

Eq. (2.35)) underestimates the vibration amplitude considerably (note that the vertical axis in 

Fig. 2.11a is given in log-scale).‡‡ Therefore, in agreement with the theoretical discussion given 

with Fig. 2.6, the commonly referred form of the lumped-parameter base excitation model results 

in significantly inaccurate prediction of the vibration response in the absence of a tip mass. The 

inaccurate prediction is in the form of underestimation of the vibration response amplitude. 

      

 
 

Fig. 2.11 (a) Tip velocity – to – base acceleration FRFs of a cantilever without a tip mass: 

experimental measurement, corrected lumped-parameter and uncorrected lumped-parameter 

model predictions; (b) coherence function of the experimental measurement 

 

2.3.2 Cantilevered Beam with a Tip Mass under Base Excitation. The second case study is 

given for the same cantilever after a tip mass of 0.239 grams is attached at the tip using a slight 

amount of wax (Fig. 2.9b). Detailed electromechanical analysis of the cantilever with a tip mass 

is given in Section 4.2. The demonstration given here aims to estimate the correction factor and 

                                                            
‡‡ The form of the uncorrected lumped-parameter equation given by Eq. (2.35) is originally defined to predict the tip 

motion but the experimental measurement belongs to the point 
v

x L . Nevertheless since this lumped-parameter 

expression underestimates the motion amplitude at 
v

x L  it would certainly underestimate the motion amplitude at 

the exact point of x L  where the vibration amplitude is larger for the fundamental mode. 

(a) (b)
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to verify the need for using it. For this tip mass ( 30.239 10tM   kg) and for the numerical data 

of the cantilever given with Table 4.4, the tip mass – to – beam mass ratio is / 0.291tM mL  . 

This ratio yields *
1 1.149   either using Eq. (2.49) or Fig. 2.10. As discussed theoretically, in 

the presence of a tip mass, predictions of the original lumped-parameter equation are not 

expected to be as inaccurate as the case when there is no tip mass. Recall that, in the extreme 

case of having a very large tip mass, the correction factor is not required. However, in this 

experimental case study, the tip mass is not large enough to ignore the excitation coming from 

the distributed mass of the cantilever.    

Figure 2.12a shows the experimental tip velocity – to – base acceleration FRF (for a 

470  load resistance) along with the predictions of Eqs. (2.35) and (2.36) when used in Eq. 

(2.50). As can be seen from the enlarged view in Fig. 2.11a, the uncorrected lumped-parameter 

model underestimates the experimental measurement but the error is not as large as in the case of 

Fig. 2.11a. The prediction of the corrected lumped-parameter equation (obtained using 

*
1 1.149   in Eq. (2.36)) agrees very well with the experimental data.  

 

 
 

Fig. 2.12 (a) Tip velocity – to – base acceleration FRFs of a cantilever with a tip mass: 

experimental measurement, corrected lumped-parameter and uncorrected lumped-parameter 

model predictions; (b) coherence function of the experimental measurement 

(a) (b)
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2.4 Base Excitation Problem for Longitudinal Vibrations and Correction of Its Lumped-

parameter Model 

 

So far the base excitation problem of a beam in transverse vibrations has been discussed in detail 

and experimental validations have been provided for its corrected lumped-parameter model. This 

section summarizes the same problem for longitudinal vibrations of a uniform cantilevered bar 

under base excitation (Fig. 2.13). As in the case of transverse vibrations, the electromechanically 

uncoupled problem is considered in order to correct the excitation amplitude of its lumped-

parameter model. 

 

 

Fig. 2.13 Cantilevered bar with a tip mass longitudinally excited by the translation of its base 

 

2.4.1 Analytical Modal Analysis and Steady-state Response to Harmonic Base Excitation. 

The uniform clamped-free bar shown in Fig. 2.13 is subjected to the arbitrary translation of its 

base, which is denoted by ( )bu t . The equation of motion for the longitudinal free vibrations of a 

uniform bar can be written as 

2 3 2

2 2 2

( , ) ( , ) ( , ) ( , )
0s a

u x t u x t u x t u x t
YA c A c m

x x t t t

   
   

    
                   (2.51) 

where YA is the axial stiffness (Y is the elastic modulus and A is the cross-sectional area) and m 

is the mass per unit length of the bar. The absolute longitudinal displacement at any point x can 

be represented by ( , ) ( ) ( , )b relu x t u t u x t  . The damping mechanism is again represented by two 

terms: sc  is due to internal (structural) friction and ac  accounts for external viscous (air) 

damping.§§ Proportional damping is assumed as it allows analytical modal analysis.  

                                                            
§§ Although the same notation is used for some of the terms (such as the damping coefficients) of the transverse 

vibrations case, they are not necessarily identical.    

z 

    x 

( )bu t

YA, m 

 0x  x L

tM
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After following steps similar to the derivation given for the transverse vibrations case in 

Section 2.1, the longitudinal vibration response of the bar relative to its moving base can be 

obtained as  

( )

1 0

( )
( , ) ( ) sin ( )r r

t
tr

rel r rd
r rd

x
u x t f e t d      




 



                   (2.52) 

Here, the modal forcing function is 

 
2

2
0

( )
( ) ( ) ( )

L
b

r r t r

d u t
f t m x dx M L

dt
 

 
   

 
               (2.53) 

where the forcing term due to air damping is neglected. It should be noted from Eq. (2.53) that 

the excitation coming from the tip mass is directly considered in the modal forcing.  

The undamped natural frequency r  of the r-th vibration mode is obtained from 

 
2r r

EA

mL
               (2.54) 

and rd  in Eq. (2.52) is the damped natural frequency given by 21rd r r     where r  is the 

modal damping ratio of the r-th vibration mode. The mass normalized eigenfunction ( )r x  of 

the r-th mode can be expressed as 
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   (2.55) 

Along with the geometric and natural boundary conditions at 0x   and x L , respectively, the 

eigenfunctions given by Eq. (2.55) satisfy the following orthogonality conditions: 

             0
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The eigenvalues ( r  for mode r) are the roots of the characteristic equation 

sin cos 0tM

mL
                       (2.57) 

For a harmonic base displacement input, 0( ) j t
bu t U e  , the steady-state displacement response 

relative to the moving base becomes 



 37

 

2
0

1 2 2 2

1 cos
sin sin

( , )
2 sin 2

sin 2
4

j ttr
r r

r
rel

r tr r
r r r r

r

M
U e

mL
u L t

M
j

mL

  


       






 
 

 
 

   
 

              (2.58) 

 

2.4.2 Correction Factor for Longitudinal Vibrations. The relative motion transmissibility 

between the tip of the bar and the moving base can be extracted from Eq. (2.58) as 
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is the correction factor for the lumped-parameter model of the r-th mode for longitudinal 

vibrations (to predict the vibratory motion at x L ). Note that, r  is a function of /tM mL  and 

r  due to Eq. (2.60), and r  is a function of /tM mL  from Eq. (2.57). Therefore, for a given 

vibration mode, the correction factor r  is a function of /tM mL  only. In the absence of a tip 

mass ( / 0tM mL  ), the correction factor for the fundamental mode can explicitly be obtained 

from Eqs. (2.57) and (2.60) as 1 4 / 1.273   . However, in the presence of a tip mass, the 

transcendental equation given by Eq. (2.57) should be solved numerically to obtain the 

correction factor. The variation of the correction factor of the fundamental mode ( 1 ) with 

/tM mL  is given in Fig. 2.14. 

As in the transverse vibrations case, the correction factor tends to unity as the tip mass to 

beam mass ratio increases, meaning that the uncorrected lumped-parameter model can be used 

only for bars whose tip mass is much larger than the bar mass. Table 2.2 shows the correction 

factor 1  for lumped-parameter modeling of the fundamental longitudinal vibration mode for 

different /tM mL  ratios. Note that the error in the relative motion relu  at the tip of the bar 

predicted by using the uncorrected lumped-parameter model is simply obtained from 

 1 11 / 100   .  
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Fig. 2.14 Variation of the correction factor for the fundamental longitudinal vibration mode with 

tip mass – to – beam mass ratio 

 

The following quadratic polynomial ratio obtained by using the Curve Fitting Toolbox of 

MATLAB [44]  represents the behavior of the correction factor shown in Fig. 2.14 successfully 

with a maximum error less than 24.5 10 % for all values of /tM mL : 

   
   
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1 2
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t t
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 


 
            (2.61) 

 

Table 2.2 Correction factor for the longitudinal vibration mode and the error in the uncorrected 

lumped-parameter model for different tip mass – to – bar mass ratios  
 

/tM mL  1  
Error in the uncorrected 

lumped-parameter model [%] 

0 1.27323954 -21.46 

0.1 1.26196259 -20.76 

0.5 1.17845579 -15.14 

1 1.11913201 -10.65 

5 1.03108765 -3.02 

10 1.01609422 -1.58 
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2.5 Correction Factor in the Electromechanically Coupled Lumped-parameter Equations 

and a Theoretical Case Study 

 

This section introduces the amplitude correction factor to the electromechanically coupled 

lumped-parameter piezoelectric energy harvester equations. The lumped-parameter 

electromechanical equations of a piezoelectric energy harvester are obtained by applying 

Newton’s second law (or d’Alembert’s principle) in the mechanical domain, Kirchhoff’s laws in 

the electrical domain and also including the electromechanical coupling effects coming from the 

piezoelectric constitutive relations [26]. 

 

2.5.1 An Electromechanically Coupled Lumped-parameter Model for Piezoelectric Energy 

Harvesting. Recently, a lumped-parameter piezoelectric energy harvester model was introduced 

by duToit et al. [16]. Figure 2.15 shows the schematic of their cantilevered energy harvester 

which is excited by the motion of its base in the longitudinal direction. Therefore, this model 

uses longitudinal vibrations of the piezoceramic for power generation. The design depicted in 

Fig. 2.15  for longitudinal vibrations (almost like an accelerometer) typically results in a very 

high fundamental natural frequency, which is not preferred for vibration energy harvesting as it 

will not match with typical ambient vibration frequencies. Nevertheless this lumped-parameter 

representation provides useful insight into the electromechanical problem for a simplified 

analysis of the coupled system dynamics.  

 

 

Fig. 2.15 A lumped-parameter piezoelectric energy harvester model with sample numerical 

values by duToit et al. [16] (reproduced by adapting the displacement variables to this text) 
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As the longitudinal strain and the electric field directions are the same, the device shown 

in Fig. 2.15 uses the 33-mode of piezoelectricity (and therefore the 33d  constant of the 

piezoceramic) where 3-direction (poling direction) is the longitudinal direction. The electrodes 

are connected to an equivalent resistive load eqR  (which is the parallel combination of the 

piezoelectric leakage resistance pR  and the load resistance lR  where l pR R  hence eq lR R ). 

The coupled lumped-parameter equations are given by duToit et al. [16] as*** 

2 2
2 2

332 2
2rel rel b

m n n rel n

d u du d u
u d v

dt dt dt
                       (2.62) 

2
33 0rel

eq p eq eq n

dudv
R C v m R d

dt dt
                    (2.63) 

where eqm  is the equivalent mass of the bar, m  is the mechanical damping ratio, n  is the 

natural frequency, 33d  is the piezoelectric constant, eqR  is the equivalent resistance, pC  is the 

capacitance, bu  is the harmonic base excitation, relu   is the relative displacement of the proof 

mass and v is the voltage output. One can then obtain the steady-state vibration response, voltage 

output and the power output FRFs (per base acceleration) by assuming 0( ) j t
bu t U e   as 
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where / n    is the dimensionless frequency, ek  is the lumped-parameter coupling 

coefficient and n eq pr R C  [16].  

 

2.5.2 Correction Factor in the Electromechanically Coupled Lumped-parameter Model 

and a Theoretical Case Study. From the theoretical discussion given in Section 2.4, it is known 

                                                            
*** Some of the variables have been adapted to the notation of this text. 
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that the right hand side of the mechanical equilibrium equation given by Eq. (2.62) should have a 

correction factor (to be valid for all values of the proof mass). Therefore the corrected form of 

Eq. (2.62) is 

   
2 2

2 2
33 12 2

2rel rel b
m n n rel n

d u du d u
u d v

dt dt dt
                           (2.67) 

Then the steady-state vibration response, voltage and the power output FRFs given by Eqs. 

(2.64)-(2.66) become 
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Note that the steady-state vibration response and the voltage response are linearly proportional to 

1 . However, since it is proportional to the square of the voltage, the power output is 

proportional to the square of 1 . Hence the inaccuracy of the predicted power output due to 

using Eq. (2.66) is expected to be more significant than that of the vibration amplitude or the 

voltage output.  

Using the numerical values given Fig. 2.15 (referred from duToit et al. [16]), the tip mass 

– to – bar mass ratio of this sample device is obtained as / 1.33tM mL  . From Eq. (2.61), the 

correction factor for the fundamental mode for this ratio is 1 1.0968  . If this factor is not used, 

the relative error in the predicted proof mass motion and the voltage output is about 8.83 % 

whereas the relative error in the estimated power output is about 16.9 %. Figure 2.16 shows the 

vibration and the power FRFs obtained using the uncorrected and the corrected equations for an 

arbitrary load resistance of 10 k  and a base acceleration of 9.81 m/s2.  

The inaccuracy due to ignoring the contribution of the distributed mass of the structure to 

the excitation amplitude is also the case in the lumped-parameter model given by Roundy et al. 

[6,7,15] for transverse vibrations (unless the tip mass is very large). 
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Fig. 2.16 Corrected and uncorrected (a) relative tip displacement and (b) power output FRFs 

obtained using the lumped-parameter electromechanical model for a load resistance of 10 k  

and a base acceleration of 9.81 m/s2 

 

2.6 Summary and Conclusions 

 

In this chapter, first the distributed-parameter modeling of the base excitation problem is 

reviewed for cantilevered thin-beams. The form of the base excitation assumed here is translation 

in the transverse direction with superimposed small rotation. After obtaining the distributed-

parameter displacement transmissibility function, it is compared with the well-known lumped-

parameter transmissibility function. Based on a dimensionless comparison, it is shown that the 

prediction of the lumped-parameter base excitation relation might have an error as high as 35 %. 

The error in the lumped-parameter model is due to the fact that it ignores the contribution of the 

distributed inertia to the excitation amplitude. A correction factor is introduced to correct the 

excitation amplitude in the lumped-parameter representation and the variation of the correction 

factor with tip mass – to – beam mass ratio is investigated. It is shown that the original form of 

the lumped-parameter base excitation model can be used only if the tip mass is much larger than 

the beam mass. Experimental validations of the corrected lumped-parameter model are given for 

a small cantilever in the absence and presence of a tip mass. Modeling of the base excitation 

problem is summarized for cantilevered bars under longitudinal vibrations and the lumped-

parameter model of the longitudinal vibration case is also corrected. Finally, the correction factor 

is introduced to the lumped-parameter electromechanical equations and a comparative case study 

is given. 

(a) (b)
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CHAPTER 3 

 

DISTRIBUTED-PARAMETER ELECTROMECHANICAL MODELING 

OF BIMORPH PIEZOELECTRIC ENERGY HARVESTERS – 

ANALYTICAL SOLUTIONS 

 

In this chapter, electromechanically coupled analytical solutions are given for symmetric 

bimorph piezoelectric energy harvester configurations with series and parallel connections of the 

piezoceramic layers. The base excitation acting on the bimorph cantilever is assumed to be 

translation in the transverse direction with superimposed small rotation. After describing the 

modeling assumptions and the bimorph configurations, the distributed-parameter thin beam 

equation (the Euler-Bernoulli beam equation) with piezoelectric coupling is derived and its 

modal analysis in short-circuit conditions is given. The electromechanically coupled circuit 

equation excited by infinitely many vibration modes is then derived based on the Gauss’s law 

and the plane-stress piezoelectric constitutive relation for a thin beam. The governing 

electromechanical equations are then reduced to ordinary differential equations in modal 

coordinates and eventually an infinite set of algebraic equations are obtained for the complex 

modal vibration response and the complex voltage response amplitudes of the energy harvester 

beam. For the series and parallel connections of the piezoceramic layers, the closed-form 

electromechanical expressions are first obtained for the steady-state response to harmonic 

excitation at arbitrary frequencies. The resulting analytical multi-mode expressions are then 

simplified to single-mode expressions by assuming modal excitation (i.e. excitation at or very 

close to a particular natural frequency), which is the main concern in vibration-based energy 

harvesting. The single-mode relations derived here are easier to use compared to the multi-mode 

solutions but they provide approximations only around the respective resonance frequency. The 

electromechanical FRFs which relate the voltage output and the vibration response of the 

bimorph to the translational and the rotational base acceleration components are extracted both 

for the multi-mode and single-mode solutions. A detailed theoretical case study is presented at 

the end of this chapter. Experimental validations of the analytical solutions derived here are 

presented in Chapter 4. 
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3.1 Fundamentals of the Electromechanically Coupled Distributed-parameter Model 

 

3.1.1 Modeling Assumptions and Bimorph Configurations. The symmetric bimorph 

cantilever configurations shown in Fig. 3.1 are modeled here as uniform composite beams based 

on the Euler-Bernoulli beam theory. This is a reasonable assumption since typical cantilevered 

piezoelectric energy harvesters are designed and manufactured as fairly thin beams and most of 

the commercially available bimorphs are also thin structures (e.g. the samples used in Chapter 4 

for model validation). Deformations are assumed to be small and the composite structure exhibits 

linear-elastic material behavior. The mechanical losses are represented by internal and external 

damping mechanisms as done in the electromechanically uncoupled discussion of Chapter 2. The 

internal damping mechanism is assumed to be in the form of strain-rate (or Kelvin-Voigt) 

damping and the effect of external (air) damping is considered with a separate damping 

coefficient. The piezoceramic and the substructure layers are assumed to be perfectly bonded to 

each other. The electrodes covering the opposite faces of piezoceramic layers are assumed to be 

very thin when compared to the overall thicknesses of the harvester so that their contribution to 

the thickness dimension is negligible. In the following formulation, therefore, only the 

substructure and piezoceramic layers are assumed to be present. However, presence of additional 

structural epoxy and Kapton layers can be handled easily.* 

The continuous electrode pairs covering the top and the bottom faces of the piezoceramic 

layers are assumed to be perfectly conductive so that a single electric potential difference can be 

defined across them. Therefore, the instantaneous electric fields induced in the piezoceramic 

layers are assumed to be uniform throughout the length of the beam. A resistive electrical load     

(denoted by lR  in Fig. 3.1) is considered in the circuit along with the internal capacitances of the 

piezoceramic layers. Note that, considering a resistive load in the electrical domain is a common 

practice in modeling of vibration-based energy harvesters [14-22]. As a consequence, it is 

assumed that the base motion input is persistent so that continuous electrical outputs can be 

extracted from the electromechanical system. The leakage resistance of the piezoceramic is 

ignored here as it is typically very large. It can easily be added as an additional resistance parallel 

                                                            
* With the inclusion of additional inactive layers, the bending stiffness and the mass per length terms will be altered. 

In addition, distance of the piezoceramic layers from the neutral axis will be modified, which changes the 

piezoelectric coupling terms in the derivation. 
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to the load resistance (as in the lumped-parameter model of duToit et al. [16] discussed in 

Section 2.5).  

 

 

Fig. 3.1 Bimorph piezoelectric energy harvester configurations with (a) series connection of 

piezoceramic layers, (b) parallel connection of piezoceramic layers and the (c) cross-sectional 

view of a uniform bimorph cantilever 

  

It is known from the literature of static sensing and actuation that, depending on the 

voltage or current requirements, the piezoceramic layers of a symmetric bimorph can be 

combined in series or in parallel (see, for instance, Wang and Cross [52]). This common practice 

of static sensing and actuation problems is valid for the dynamic piezoelectric energy harvesting 

problem as well. Each of the two bimorph configurations displayed in Figs. 3.1a and 3.1b 

undergoes bending vibrations due to the motion of its base. The piezoceramic layers are assumed 

to be identical and their conductive electrodes are assumed to be fully covering the respective 

surfaces of these layers (top and bottom). The instantaneous bending strain in the top and the 

bottom layers at an arbitrary position x over the beam length have the opposite sign (i.e. one is in 

(a) 

(b) 

(c) 
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tension whereas the other is in compression). As a consequence, since the piezoceramic layers of 

the bimorph shown in Fig. 3.1a are poled oppositely in the thickness direction (i.e. z-direction), 

this configuration represents the series connection of the piezoceramic layers. Likewise, Fig. 

3.1b represents the parallel connection of the piezoceramic layers because the layers are poled in 

the same direction. The configuration in Fig. 3.1a produces a larger voltage output whereas the 

one in Fig. 3.1b produces a larger current output under the optimal conditions.  

 

3.1.2 Coupled Mechanical Equation and Modal Analysis of Bimorph Cantilevers. As far as 

the purely mechanical aspect of the problem is concerned, the bimorph configurations shown in 

Figs. 3.1a and 3.1b are identical. That is, they have the same geometric and material properties. 

However, the backward piezoelectric coupling effect† in the beam equation due to piezoelectric 

constitutive relations is different for series and parallel connections of the piezoceramic layers, 

and expectedly, this affects the vibration response of the cantilever. In the following, the beam 

equations are derived for these two configurations and the analytical modal analysis relations are 

presented. 

The motion of the base for each of the cantilevers shown in Figs. 3.1a and 3.1b is 

represented by translation ( )g t  in the transverse direction with superimposed small rotation 

( ).h t  Therefore, the effective base displacement ( , )bw x t  in the transverse direction can be 

written as 

            ( , ) ( ) ( )bw x t g t xh t                                     (3.1) 

The partial differential equation governing the forced vibrations of a uniform cantilevered 

bimorph (with a tip mass) under base excitation is 

 
5 2 22

2 4 2 2

( , ) ( , ) ( , ) ( , )( , )
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s a t

w x t w x t w x t w x tM x t
c I c m m M x L

x x t t t t
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       
     

  (3.2) 

                                                            
† Throughout this text, the term backward coupling represents the electrical effect induced in the harvester structure 

due to the converse piezoelectric effect (feedback sent from the electrical domain to the mechanical domain due to 

power generation). Hence the forward coupling term (to be defined later) is the term in the circuit equation due to 

the direct piezoelectric effect.  
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where ( , )relw x t  is the transverse displacement of the beam (neutral axis) relative to its base at 

position x and time t, ac  is the viscous air damping coefficient, sc  is the strain-rate damping 

coefficient (appears as an effective term sc I  for the composite structure), m is the mass per unit 

length of the beam, tM  it is tip mass and ( )x  is the Dirac delta function and ( , )M x t  is the 

internal bending moment‡ (excluding the strain-rate damping effect). Recall from Eq. (2.7) that 

the effect of strain-rate damping is an internal bending moment, which, in Eq. (3.2), is directly 

written outside the undamped bending moment term ( , )M x t .  

The bimorph cantilevers shown in Fig. 3.1 are assumed to be proportionally damped so 

that these configurations are normal-mode systems. Hence the eigenfunctions of the respective 

undamped problem can be used for modal analysis. Indeed, instead of defining the damping 

coefficients in the physical equation of motion, one could consider the corresponding undamped 

equation (by setting 0s ac I c   in Eq. (3.2)) and introduce modal damping to the equation of 

motion in modal coordinates as a common practice in structural dynamics [55]. It is worth 

recalling that the foregoing consideration of the mechanical damping components results in an 

additional excitation term (peculiar to base excitation problems) due to external damping as 

shown in Section 2.1.1. For cantilevers operating in air, the external damping excitation is 

negligible when compared to the inertial excitation term (Fig. 2.3). Therefore the damping 

excitation term is directly omitted in Eq. (3.2) for simplicity. 

The internal bending moment term in Eq. (3.2) is the first moment of axial strain over the 

cross-section:
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    (3.3) 

where b  is the width, ph   is the thickness of each piezoceramic layer and sh  is the thickness of 

each substructure layer (Fig. 1c). Furthermore, 1
pT   and 1

sT   are the axial stress components in the 

piezoceramic and the substructure layers, respectively (1-direction is the longitudinal direction, 

i.e. x-direction), and they are given by the following constitutive relations: 

                                                            
‡ The convention for the bending moment is such that the positive bending moment creates negative curvature as in 

Sokolnikoff [53] and Dym and Shames [54], among others.    
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1 1
s s

sT Y S 
   ,   1 11 1 31 3

p E pT c S e E                                      (3.4) 

where sY  is the elastic modulus (i.e., Young’s modulus) of the substructure layer (which can be 

isotropic or orthotropic), 11
Ec  is the elastic modulus of the piezoceramic layer at constant electric 

field, 31e  is the effective piezoelectric stress constant and 3E  is the electric field component in 

the 3-direction (i.e. z-direction or the poling direction). Here and hereafter, the subscripts and 

superscripts p  and s  stand for the piezoceramic and the substructure layers, respectively. Based 

on the plane-stress assumption for a transversely isotropic thin piezoceramic beam (about the z-

direction), the elastic modulus component of the piezoceramic can be expressed as 11 111/E Ec s , 

where 11
Es  is the elastic compliance at constant electric field. Furthermore, based on the same 

assumption, 31e  can be given in terms of the more commonly used piezoelectric strain constant 

31d  as 31 31 11/ Ee d s  (Appendix A.2). The axial strain components in the piezoelectric and 

substructure layers are defined as 1
pS   and 1

sS  , respectively, and they are due to bending only. 

Hence the axial strain at a certain level (z) from the neutral axis of the symmetric composite 

beam is simply proportional to the curvature of the beam at that position (x):§ 

2

1 2

( , )
( , , ) relw x t

S x z t z
x


 


                          (3.5) 

The electric field component 3E  should be expressed in terms of the respective voltage 

term for each bimorph configuration (Figs. 3.1a and 3.1b). This is the point where the resulting 

mechanical equations for the series and parallel connections of the piezoceramic layers differ 

from each other. Since the piezoceramic layers are assumed to be identical, voltage across the 

electrodes of each piezoceramic layer is ( ) / 2sv t  in the series connection case (Fig. 3.1a). 

Expectedly, for the parallel connection case (Fig. 3.1b), voltage across the electrodes of each 

piezoceramic layer is ( )pv t . It is worth adding that 31e  has the opposite sign for the top and the 

bottom piezoceramic layers for the series connection case (due to opposite poling) so that the 

                                                            
§ An independent axial displacement variable (in x-direction) is not included in the strain expression since it 

decouples from the equation of motion for transverse vibrations due to the symmetric composite structure [56]. 

Since there is no excitation in the axial direction, there is no strain contribution from the decoupled axial 

displacement.  
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instantaneous electric fields are in the same direction (i.e. 3( ) ( ) / 2s pE t v t h    in both layers). For 

the configuration with parallel connection, since 31e  has the same sign in top and bottom 

piezoceramic layers, the instantaneous electric fields are in the opposite directions (i.e., 

3( ) ( ) /p pE t v t h    in the top layer and 3( ) ( ) /p pE t v t h   in the bottom layer). Another important 

point is that, for both configurations, the piezoelectric coupling term coming from Eq. (3.3) is a 

function of time only. Hence, before substituting Eq. (3.3) into Eq. (3.2), the electrical term must 

be multiplied by  ( ) ( )H x H x L  , where ( )H x  is the Heaviside function. Since the voltage 

outputs of the series and parallel connection cases are different, the piezoelectric coupling effect 

in the mechanical equation (Eq. (3.2)) is expected to be different. Thus, in the rest of this chapter, 

the mechanical response expressions of the series and parallel connection configurations are 

denoted by ( , )s
relw x t  and ( , )p

relw x t , respectively. Note that, here and hereafter, the subscripts and 

superscripts s and p, respectively, stand for the series and parallel connections of the 

piezoceramic layers (which should not be confused with  s  and p  formerly introduced for the 

substructure and the piezoceramic layers, respectively). The internal bending moment terms are 

then obtained from Eq. (3.3) as 

     
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where the coefficients of the backward coupling terms ( s  and p ) for the series and parallel 

connection cases can be expressed as  
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The bending stiffness term YI of the composite cross section for the constant electric field 

condition of the piezoceramic is 
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                                       (3.10) 

From Eq. (3.2), the coupled beam equation can be obtained for the series connection case 

(Fig. 3.1a) as follows: 
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(3.11) 

Similarly, one can obtain the equation of motion for the case (Fig. 3.1b) with the parallel 

connection of the piezoceramic layers as 
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(3.12) 

It is useful to notice at this stage that the n-th distributional derivative of the Dirac delta function 

satisfies [57,58] 
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where ( )x  is a smooth test function. The mass per unit length term m is simply 

             2s s p pm b h h                          (3.14) 

where s   and p   are the mass densities of the substructure and the piezoceramic, respectively.  

Based on the proportional damping (or modal damping) assumption, the vibration 

response relative to the base of the bimorph (Figs. 3.1a and 3.1b) can be represented as an 

absolutely and uniformly convergent series of the eigenfunctions as 
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

                         (3.15) 

where ( )r x  is the mass normalized eigenfunction of the r-th vibration mode, and ( )s
r t  and 

( )p
r t  are the modal mechanical response expressions of the series and parallel connection cases, 
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respectively. The eigenfunctions denoted by ( )r x  are the mass normalized eigenfunctions of the 

corresponding undamped free vibration problem: 

( ) cos cosh sin sinhr r r r
r r rx C x x x x

L L L L

             
                        (3.16) 

where r  is obtained from 
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                          (3.17) 

and rC  is a modal amplitude constant which should be evaluated by normalizing the 

eigenfunctions according to the following orthogonality conditions: 
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Here, tI  is the mass moment of inertia of the tip mass tM  about the free end and rs  is the 

Kronecker delta. Furthermore, r  is the undamped natural frequency of the r-th vibration mode 

in the short-circuit conditions (i.e. 0lR  ) given by  

           2
4r r

YI

mL
              (3.19) 

where the eigenvalues of the system ( r  for mode r) are obtained from 
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   (3.20) 

It should be mentioned that the foregoing modal analysis is given for the short-circuit 

conditions (i.e. for 0lR  ) so that the conventional form of the eigenfunctions given by Eq. 

(3.16) is obtained since 
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lim ( ) 0
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v t
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                                    (3.21) 
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in Eqs. (3.11) and (3.12), respectively (i.e. the voltage output vanishes for zero load resistance). 

Note that the short-circuit condition is indeed a constant electric field condition ( 3 0E   as 

0lR  ), in agreement with the piezoelectric constitutive relation used here.  

For a given bimorph, the form of the eigenfunctions given by ( )r x  and their mass 

normalization conditions are the same regardless of the series or parallel connections of the 

piezoceramic layers. For non-zero values of load resistance, the voltage terms in the mechanical 

equations take finite values, generating point moment excitations at the boundaries of the 

piezoceramic layer according to Eqs. (3.11) and (3.12), and yielding two different modal 

mechanical response functions for these equations as ( )s
r t  and ( )p

r t , respectively. The 

feedback received from the voltage response for a given load resistance alters the mechanical 

response as well as the resonance frequency of the energy harvester, as discussed theoretically 

here and validated experimentally in the next chapter.  

 

3.1.3 Coupled Electrical Circuit Equation of a Thin Piezoceramic Layer under Dynamic 

Bending. In order to derive the governing electrical circuit equations of the bimorph 

configurations for the series and parallel connections of the piezoceramic layers, one should first 

examine the electrical dynamics of a single layer under bending vibrations. Consider Fig. 3.2a, 

where the electrodes of a single layer are connected to a resistive electrical load. The deflections 

are exaggerated to highlight the space- and time-dependent radius of curvature at an arbitrary 

point x on the neutral axis at time t.  

 

 
 

Fig. 3.2 (a) Bimorph cantilever with a single layer connected to a resistive load and (b) the 

corresponding electrical circuit 

 

 

(a) (b) 
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Since the only source of mechanical strain is assumed to be the axial strain due to 

bending, the tensorial representation of the relevant piezoelectric constitutive relation [26] that 

gives the vector of electric displacements can be reduced to the following scalar equation 

(Appendix A.2): 

         3 31 1 33 3
p SD e S E                           (3.22) 

where 3D  is the electric displacement component and 33
S  is the permittivity component at 

constant strain with the plane-stress assumption for a beam  ( 2
33 33 31 11/S T Ed s    where 33

T  is the 

permittivity component at constant stress as given in Appendix A.2) .  

As the circuit admittance across the electrodes is 1/ lR , the electric current output can be 

obtained from the Gauss’s law [26] as  

   
( )

lA

d v t
dA

dt R

 
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 
D n                                      (3.23) 

where D  is the vector of electric displacement components in the piezoceramic layer, n  is the 

unit outward normal and the integration is performed over the electrode area A. As can be 

anticipated, the only contribution to the inner product of the integrand in Eq. (3.23) is from 3D , 

since the electrodes are perpendicular to 3-direction (i.e. z-direction). After expressing the 

average bending strain in the piezoceramic layer in terms of the curvature (see Eq. (3.5)) and the 

uniform electric field in terms of the electric potential difference ( 3( ) ( ) / pE t v t h   ), Eq. (3.22) 

can be used in equation Eq. (3.23) to obtain 

3
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                                   (3.24) 

where b , ph   and L  are the width, thickness and the length of the piezoceramic layer, 

respectively, and pch   is the distance between the neutral axis and the center of the piezoceramic 

layer ( ( ) / 2pc p sh h h    ). One can then substitute the modal expansion form of the transverse 

vibration response (relative to the base) given by 
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
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                                         (3.25) 

into Eq. (3.24) to obtain 
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                     (3.26) 

where r  is the modal coupling term in the electrical circuit equation: 
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The forward coupling term r  has important consequences as discussed in Chapter 7 

extensively. According to Eq. (3.24), which originates from the Gauss’s law given by Eq. (3.23), 

the excitation of the simple RC circuit considered here as well as that of more sophisticated 

energy harvesting circuit topologies [23-25] is proportional to the integral of the dynamic strain 

distribution over the electrode area. For vibration modes of a cantilevered beam other than the 

fundamental (first) vibration mode, the dynamic strain distribution over the beam length changes 

sign at the strain nodes. It is known from Eq. (3.5) that the curvature at a point is a direct 

measure of the bending strain. Hence, for modal excitations, strain nodes are the inflection points 

of the eigenfunctions and the integrand in Eq. (3.27) is the curvature eigenfunction. If the electric 

charge developed at the opposite sides of a strain node is collected by continuous electrodes for 

vibrations with a certain mode shape, cancellation occurs due to the phase difference in the 

mechanical strain distribution. Mathematically, the partial areas under the integrand function of 

the integral in Eq. (3.27) cancel each other over the domain of integration. As an undesired 

consequence, the excitation of the electrical circuit, and therefore the electrical outputs might 

diminish drastically. In order to avoid cancellations, segmented electrodes can be used in 

harvesting energy from the modes higher than the fundamental mode. The leads of the 

segmented electrodes can be combined in the circuit in an appropriate manner. Note that the r-th 

vibration mode of a clamped-free beam has 1r    strain nodes, and consequently, the first mode 

of a cantilevered beam has no cancellation problem. Some boundary conditions are more prone 

to strong cancellations. For instance, a beam with clamped-clamped boundary conditions has 

1r 
 
strain nodes for the r-th vibration mode. A detailed discussion related to the strain nodes of 

thin beams is given in Chapter 7. 

 Based on Eq. (3.26), it is very useful to represent the electrical domain of the coupled 

system by the simple circuit shown in Fig. 3.2b. It is known in the circuitry-based energy 

harvesting literature that a piezoelectric element can be represented as a current source in parallel 
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with its internal capacitance [23-25] (Norton equivalent**). Therefore, the simple circuit shown 

in Fig. 3.2b is the complete circuit of the electrical domain for a single resistive load case. Note 

that, this representation considers the electrical domain only and the electromechanical 

representation of the coupled system is actually a transformer because of the voltage feedback 

sent to the mechanical domain due to the piezoelectric coupling (which will be incorporated in 

the formulation here). The components of the circuit are the internal capacitance pC   of the 

piezoceramic layer, the resistive load lR  and the current source ( )pi t . In agreement with Fig. 

3.2a, the voltage across the resistive load is denoted by ( )v t . Then, the Kirchhoff laws can be 

applied to the electrical circuit shown in Fig. 3.2b to obtain 

 
( ) ( )

( )p p
l

dv t v t
C i t

dt R
                             (3.28) 

where the internal capacitance and the current source terms can be extracted by matching Eqs. 

(3.26) and (3.28) as  
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                         (3.29) 

Identification of the above terms (especially the current source term) has an important use 

for modeling of multi-morph piezoelectric energy harvesters. This way, for a given number of 

piezoceramic layers, there is no need to derive the electrical circuit equation by using the 

constitutive relation and the Gauss’s law given by equations Eqs. (3.23) and (3.24), respectively. 

Each piezoceramic layer will have a similar capacitance and current source term and the layers 

can be combined to the resistive electrical load(s) in a desired way.  

 

3.2 Series Connection of the Piezoceramic Layers 

 

Based on the fundamentals given in Section 3.1, this section presents the derivation of the 

closed-form expressions for the coupled voltage response ( )sv t  and vibration response ( , )s
relw x t  

of the bimorph configuration shown in Fig. 3.1a. First the coupled mechanical equation is given 

in modal coordinates and then the coupled circuit equation is derived. The resulting 

                                                            
** The alternative representation is the Thévenin equivalent (voltage source in series with its internal capacitance). 

See a discussion in Section 5.4.6 regarding a misuse of these representations to obtain the optimum load resistance.  
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electromechanical equations are then solved for the steady-state voltage response and vibration 

response for harmonic base motion inputs.    

 

3.2.1 Coupled Beam Equation in Modal Coordinates. After substituting Eq. (3.15a) into Eq. 

(3.11) and applying the orthogonality conditions of the eigenfunctions, the mechanical equation 

of motion in modal coordinates can be obtained as   
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d t d t
t v t f t

dt dt

                                       (3.30) 

where the modal electromechanical coupling term is†† 
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The modal mechanical forcing function can be expressed as 
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In Eq. (3.30), r  is the modal mechanical damping ratio that includes the combined 

effects of strain-rate and air damping. In the absence of a tip mass, how to relate the modal 

damping ratio to the strain-rate and air damping terms sc I  and ac  mathematically based on the 

assumption of proportional damping was described in Chapter 2. However, as a common 

experimental modal analysis practice, one can identify the modal damping ratio r  of a desired 

mode directly from the frequency response or time domain measurements (which avoids the 

requirement of defining and obtaining the physical damping terms sc I  and ac ). Chapter 5 

provides closed-form relations to identify modal mechanical damping ratio from 

electromechanical FRF measurements in the presence of a resistive electrical load. 

 

3.2.2 Coupled Electrical Circuit Equation. As described in Section 3.1.1, the piezoceramic 

layers of the bimorph configuration shown in Fig. 3.1a are connected in series. We know from 

the practice given in Section 3.1.3 that each piezoceramic layer can be represented as a current 

                                                            
†† Note that, here, Eq. (3.13) is used to obtain the modal backward coupling term s

r
  where the test function is the 

eigenfunction ( ( ) ( )
r

x x  ) multiplying the partial differential equation in the modal analysis solution procedure.  
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source in parallel with its internal capacitance. Therefore, Fig. 3.3 displays the series connection 

of the identical piezoceramic layers of the bimorph configuration shown in Fig. 3.1a. 

The Kirchhoff laws can be applied to the circuit depicted in Fig. 3.3 to obtain 

( ) ( )
( )

2
p ss s

p
l

C dv t v t
i t

dt R
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                           (3.33) 

where the internal capacitance and the current source terms of  the bimorph (for each layer) are   
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The modal electromechanical coupling term is then 
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where pch   (the distance between the neutral axis and the center of the piezoceramic layer) is 

expressed in terms of the piezoceramic and the substructure layer thicknesses ph   and sh  (Fig. 

3.1c). Hence, Eq. (3.34) is the electrical circuit equation of the bimorph cantilever for the series 

connection of the piezoceramic layers.  
  

 
 

Fig. 3.3 Electrical circuit representing the series connection of the piezoceramic layers 

 

3.2.3 Closed-form Voltage Response and Vibration Response at Steady State. Equations 

(3.31) and (3.33) constitute the coupled equations for the modal mechanical response ( )s
r t  of 

the bimorph and the voltage response ( )sv t  across the resistive load. In this section, the steady-

state solution of these terms for harmonic motion inputs is derived. If the translational and 

rotational components of the base displacement given by Eq. (3.1) are harmonic of the forms 

0( ) j tg t W e   and 0( ) j th t e  , where 0W  and 0  are the translational and the small rotational 
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displacement amplitudes of the base,   is the excitation frequency and j  is the unit imaginary 

number, then the modal forcing function given by Eq. (3.32) can be expressed as ( ) j t
r rf t F e   

where the amplitude rF  is 

 2
0 0 0 0

0 0

( ) ( ) ( )
L L

r r r t rF m W x dx x x dx M L W L     
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   

      (3.36) 

 For the harmonic base motions at frequency  , the steady-state modal mechanical 

response of the beam and the steady-state voltage response across the resistive load are assumed 

to be harmonic at the same frequency as ( )s s j t
r rt e     and ( ) j t

s sv t V e   (linear system 

assumption), respectively, where the amplitudes s
r  and sV  are complex valued. Therefore, Eqs. 

(3.30) and (3.33) yield the following two equations for s
r  and sV : 

     2 2 2 s s
r r r r r s rj V F                                         (3.37) 
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 The complex modal mechanical response amplitude s
r  can be extracted from Eq. (3.37) 

and it can be substituted into Eq. (3.38) to obtain the complex voltage amplitude sV  explicitly. 

The resulting complex voltage amplitude can then be used in ( ) j t
s sv t V e   to express the steady-

state voltage response as 

 
2 2

1

2 2
1

2
( )

1
2 2

r r

r j tr r r
s s

p r r

rl r r r

j F
j

v t e
C j

j
R j




    

 
    








 


 
 




                 (3.39) 

 The complex voltage amplitude sV  can be substituted into Eq. (3.37) to obtain the steady-

state modal mechanical response of the bimorph as   
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The transverse displacement response (relative to the base) at point x on the bimorph can 

be obtained in physical coordinates by substituting Eq. (3.40) into Eq. (3.15a):  
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 Note that the vibration response given by Eq. (3.41) is the displacement response of the 

beam relative to its moving base. If one is interested in the coupled beam displacement in the 

absolute physical coordinates (relative to the fixed frame), it is the superposition of the base 

displacement and the vibratory displacement relative to base:  

                                                    ( , ) ( , ) ( , )s s
b relw x t w x t w x t               (3.42) 

where ( , )bw x t  is the effective base displacement given by Eq. (3.1). 

 

3.3. Parallel Connection of the Piezoceramic Layers 

 

This section aims to derive the steady-state voltage response ( )pv t  and the vibration response 

( , )p
relw x t  of the bimorph configuration shown in Fig. 3.1b to harmonic base motions. The 

coupled beam equation in modal coordinates and the electrical circuit equations are derived and 

the closed-form solutions are obtained in the following.   

 

3.3.1 Coupled Beam Equation in Modal Coordinates. After substituting Eq. (3.15b) in Eq. 

(3.11), the partial differential equation given by Eq. (3.11) can be reduced to an infinite set of 

ordinary differential equations in modal coordinates as follows: 
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where the modal electromechanical coupling term is 

( )p r
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                     (3.44) 

and the modal mechanical forcing function is given by Eq. (3.32). The discussion regarding the 

mechanical damping ratio r  is the same as given in Section 3.2.1. Thus, Eq. (3.43) is the 

coupled beam equation in modal coordinates for the bimorph configuration with the parallel 

connection of the piezoceramic layers. 
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3.3.2 Coupled Electrical Circuit Equation. It was mentioned in Section 3.1.1 that the 

piezoceramic layers of the bimorph configuration shown in Fig. 3.1b are connected in parallel. 

Since each of the piezoceramic layers can be represented as a current source in parallel with its 

internal capacitance (Section 3.1.3), Fig. 3.4 represents the parallel connection of the identical 

top and bottom piezoceramic layers of the bimorph configuration shown in Fig. 3.1b. 

One can then derive the governing electrical circuit equation based on the Kirchhoff laws 

as follows: 

( ) ( )
( )

2
p p p
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l

dv t v t
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dt R
                             (3.45) 

where the internal capacitance and the current source terms for each layer are 
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The modal coupling term r  is given by Eq. (3.34). Equation (3.45) is the electrical circuit 

equation of the bimorph cantilever for the parallel connection of the piezoceramic layers. 
 

 
 

Fig. 3.4 Electrical circuit representing the parallel connection of the piezoceramic layers 

 

3.3.3 Closed-form Voltage Response and Vibration Response at Steady State. In order to 

solve for ( )p
r t  and ( )pv t  in Eqs. (3.43) and (3.45), the same procedure of Section 3.2 is 

followed by assuming the base excitation components in Fig. 3.1b to be harmonic as 

0( ) j tg t W e   and 0( ) j th t e  . For these harmonic base motion inputs of the same frequency, 

the modal forcing is harmonic as ( ) j t
r rf t F e   where the amplitude rF  is given by Eq. (3.36). 

 Based on the linear system assumption, the modal mechanical response ( )p
r t  and the 

voltage response ( )pv t  are assumed to be harmonic at the frequency of excitation such that 
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( )p p j t
r rt e     and ( ) j t

p pv t V e  , where the amplitudes p
r  and pV  are complex valued. Hence, 

Eqs. (3.43) and (3.45) yield the following equations for p
r  and pV : 

     2 2 2 p p
r r r r r p rj V F                                         (3.47) 
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p p r r
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j C V j
R
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

 
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 
                                (3.48) 

where p
r  and pV  can be obtained explicitly. Using the resulting complex voltage amplitude in 

( ) j t
p pv t V e   gives the steady-state voltage response as 
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                 (3.49) 

 Then the steady-state modal mechanical response of the bimorph can be obtained by 

using pV  in Eq. (3.47) as   
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          (3.50) 

The modal mechanical response expression can then be used in Eq. (3.15b) to obtain the 

transverse displacement response (relative to the base) at point x on the bimorph:  
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    (3.51) 

 Having obtained the vibration response relative to the moving base, one can easily use 

superimpose the base motion and the relative response to obtain the transverse displacement 

response at point x relative to the fixed frame as follows: 

                                                    ( , ) ( , ) ( , )p p
b relw x t w x t w x t               (3.52) 

where the base displacement ( , )bw x t  is given by Eq. (3.1). 
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3.4 Single-mode Electromechanical Expressions for Modal Excitations 

 

The steady-state voltage response and vibration response expressions obtained in Sections 3.2 

and 3.3 are valid for harmonic excitations at any arbitrary frequency  . That is, Eqs. (3.39) and 

(3.41) for the series connection of the piezoceramic layers (Fig. 3.1a) and Eqs. (3.49) and (3.51) 

for the parallel connection of the piezoceramic layers (Fig. 3.1b) are the multi-mode solutions as 

they include all vibration modes of the bimorph harvester. Hence, these equations can predict the 

coupled system dynamics at steady state not only for resonance excitation but also for excitations 

at the off-resonance frequencies of the energy harvester. 

 In order to obtain the maximum electrical response, it is preferable to excite a given 

energy harvester at its fundamental resonance frequency (or at one of the higher resonance 

frequencies). Most of the studies in the literature have focused on the resonance excitation at the 

fundamental resonance frequency in order to investigate the maximum power generation 

performance. Consequently, excitation of a bimorph at or very close to one of its natural 

frequencies is a very useful problem to investigate through the resulting equations derived here. 

This is the modal excitation condition and mathematically it implies r  . With this 

assumption for the excitation frequency, the major contribution in the summation terms of Eqs. 

(3.39), (3.41), (3.49) and (3.51) are from the r-th vibration mode. This approximation allows 

simplifications in the coupled voltage response and vibration response expressions.  

In the following, the reduced single-mode expressions are given for excitations at or very 

close to the r-th natural frequency, however, it should be noted that the fundamental mode is the 

main concern in the energy harvesting problem (which corresponds to 1r  ). 

 

3.4.1 Series Connection of the Piezoceramic Layers. If the bimorph configuration shown in 

Fig. 3.1a is excited at r  , the contribution of all vibration modes other than the r-th mode 

can be ignored in the summation terms. Then, the steady-state voltage response given by Eq. 

(3.39) can be reduced to   

  2 2

2
ˆ ( )

2 2 2

j t
l r r
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l p r r r l r r

j R F e
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j R C j j R

 
        


   

          (3.53) 

and the transverse displacement relative to the moving base is simply obtained from Eq. (3.41) as 
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 
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                       (3.54) 

where the relevant terms can be found in Section 3.2. Here and hereafter, a hat (^) denotes that 

the respective term is reduced from the full solution to a single mode for excitations very close to 

a natural frequency.  

 

3.4.2 Parallel Connection of the Piezoceramic Layers. Similarly, if the bimorph configuration 

displayed in Fig. 3.1b is excited at r  , the steady-state voltage response given by Eq. (3.49) 

can be reduced to   
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             (3.55) 

and the transverse displacement relative to the base is obtained from Eq. (3.51) as 
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                      (3.56) 

where the relevant terms can be found in Section 3.3.  

 

3.5 Multi-mode and Single-mode Electromechanical FRFs 

 

In the electromechanical model proposed here, the two excitation inputs to the system are the 

translation of the base in the transverse direction and its small rotation (Figs. 3.1a and 3.1b). For 

these two inputs, the resulting electromechanical outputs are the voltage response and the 

vibration response. Therefore, for harmonic base excitations, one can define four 

electromechanical FRFs between these two outputs and two inputs: voltage output – to – 

translational base acceleration, voltage output – to – rotational base acceleration, vibration 

response – to – translational base acceleration and vibration response – to – rotational base 

acceleration. This section extracts these FRFs from the multi-mode (for arbitrary frequency 

excitations) and single-mode (for modal excitations) steady-state solutions derived in the 

previous sections. 
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3.5.1 Multi-mode Electromechanical FRFs. Since the translational and the small rotational 

displacements of the base are given by 0( ) j tg t W e   and 0( ) j th t e  , the modal forcing 

function has the form of ( ) j t
r rf t F e   where rF  is given by Eq. (3.36). Before identifying the 

aforementioned FRFs, one should first rearrange the complex modal forcing amplitude given by 

Eq. (3.36) as follows: 

2 2
0 0r r rF W                                                            (3.57)

 
where 

 
0

( ) ( )
L

r r t rm x dx M L                                                   (3.58) 

0

( ) ( )
L

r r t rm x x dx M L L                                                 (3.59) 

 

3.5.1.1 Series Connection of the Piezoceramic Layers. The steady-state voltage response given 

by Eq. (3.39) can be written in terms of the translational and rotational base accelerations as 

     2 2
0 0( ) j t j t

s s sv t W e e                                    (3.60) 

where the FRF that relates the voltage output to the translational base acceleration is  
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               (3.61) 

and the voltage output per rotational base acceleration input can be given by 
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               (3.62) 

 Similarly, the steady-state vibration response relative to the base of the bimorph given by 

Eq. (3.41) can be expressed as 

     2 2
0 0( , ) , ,s j t j t

rel s sw x t x W e x e                              (3.63) 

where the relative transverse displacement response – to – translational base acceleration FRF is 
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    (3.64) 

The relative transverse displacement response and the rotational base acceleration are related by 
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    (3.65) 

 

3.5.1.2 Parallel Connection of the Piezoceramic Layers. It is possible to derive similar FRFs 

for the parallel connection of the piezoceramic layers. The steady-state voltage response given by 

Eq. (3.49) can be rearranged to yield 
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p p pv t W e e                                     (3.66) 

where the voltage output – to – translational base acceleration FRF is  
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                          (3.67) 

and the voltage output – to – rotational base acceleration FRF can be given by 
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                          (3.68) 

 From Eq. (3.51), the steady-state vibration response relative to the base of the bimorph 

can be expressed as 

     2 2
0 0( , ) , ,p j t j t

rel p pw x t x W e x e                              (3.69) 

where the relative transverse displacement response – to – translational base acceleration FRF is 

   

2 2
1

2 2
1

2 2
1

2 ( )
( , )

1 2
2 2

r r

rp r r r r
p r r p

r r r r r r
p

rl r r r

j
j x

x
j j

j C
R j

 
        

      
    











  
      
          






   (3.70) 
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and the relative transverse displacement response – to – rotational  base acceleration FRF is 
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   (3.71) 

 

3.5.2 Single-mode Electromechanical FRFs. In order to extract the respective FRFs of the 

single-mode expressions, one should use Eqs. (3.53)-(3.56) along with Eq. (3.57). In the 

following, Eq. (3.57) is substituted into each of Eqs. (3.53)-(3.56) and the relevant FRFs are 

extracted as done for the multi-mode solution case. Note that the single-mode electromechanical 

FRFs given here provide approximation of the full solution for modal excitations ( r  ) only. 

 

3.5.2.1 Series Connection of the Piezoceramic Layers. Equation (3.53) can be rearranged to 

give the single-mode steady-state voltage response as 
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s s sv t W e e                                    (3.72) 

where the single-mode FRF that relates the voltage output to the translational base acceleration is  
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and the single-mode voltage output – to – rotational base acceleration FRF is 
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                       (3.74) 

 The single-mode steady-state vibration response relative to the base of the bimorph given 

by Eq. (3.54) can be rearranged to give 

     2 2
0 0

ˆ ˆˆ ( , ) , ,s j t j t
rel s sw x t x W e x e                               (3.75) 

where the single-mode relative transverse displacement response – to – translational base 

acceleration FRF is 
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                       (3.76) 

and the single-mode relative transverse displacement response – to – rotational base acceleration 

FRF can be given by 
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3.5.2.2 Parallel Connection of the Piezoceramic Layers. The single-mode steady-state voltage 

response given by Eq. (3.55) can be expressed in terms of the translational and the rotational 

base accelerations as 
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Here, the single-mode FRF that relates the voltage output to the translational base acceleration is  
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and the single-mode FRF that relates the voltage output to the rotational base acceleration is 
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            (3.80) 

 Similarly, the single-mode steady-state vibration response relative to the base of the 

bimorph given by Eq. (3.56) can be rewritten as 
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rel p pw x t x W e x e                               (3.81) 

where the single-mode relative transverse displacement response – to – translational base 

acceleration FRF can be given by 

   

 
  2 2

1 2 ( )ˆ ( , )
1 2 2 2

l p r r

p p
l p r r r l r r

j R C x
x

j R C j j R

  
 

        




   




                      (3.82) 

and the single-mode relative transverse displacement response – to – rotational base acceleration 

FRF is 
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3.6 Equivalent Representation of the Series and Parallel Connection Expressions 

 

This section aims to obtain an equivalent (or a unified) representation of the distributed-

parameter analytical solutions derived for the series and the parallel connection cases. For this 
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purpose, the equivalent electromechanical coupling and the capacitance terms are obtained first 

and then the resulting equivalent representation is given.  

 

3.6.1 Modal Electromechanical Coupling Terms. A careful investigation of the coefficient of 

backward coupling term for the series connection case (Eq. (3.8)) yields 

              
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        (3.84) 

Then, Eq. (3.9) for the parallel connection case becomes 

             312 2p s pce bh            (3.85) 

From Eqs. (3.31) and (3.44), the backward modal coupling terms lead to 
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One can then notice the similarity of these expressions to the forward modal coupling term given 

by Eq. (3.35): 

    31
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3.6.2 Equivalent Capacitance for Series and Parallel Connections. The circuit equation for 

the series connection case given by Eq. (3.33) can be re-written as 

 

,
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where 
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                        (3.90) 

is the equivalent capacitance of two capacitors ( pC  ) connected in series.  

Likewise, the circuit equation for the parallel connection case given by Eq. (3.45) can be 

re-arranged to give 
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where 
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                        (3.92) 

is the equivalent capacitance of two capacitors ( pC  ) connected in parallel. Note that the 

difference between the representations of Eqs. (3.89) and (3.91) is a factor of two in the coupling 

terms, as in the backward coupling terms given by Eqs. (3.86) and (3.87). Indeed, from Eqs. 

(3.86)-(3.88), s
r r   and 2 p

r r  .  

 

3.6.3 Equivalent Representation of the Electromechanical Expressions. The equivalent 

electromechanical equations governing the modal mechanical response and the voltage response 

of a bimorph can be given by 
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where the modal electromechanical coupling term r  and the equivalent capacitance eq
pC   depend 

on the way piezoceramic layers are connected (Table 3.1). In Eqs. (3.93) and (3.94), ( )r t  is the 

modal mechanical response that gives the transverse displacement response of the cantilever 

relative to its moving base when used in Eq. (3.25) whereas ( )v t  is the voltage across the load 

resistance (i.e. ( ) ( )sv t v t  in Fig. 3.1a and ( ) ( )pv t v t  in Fig. 3.1b). 

As mentioned previously, for harmonic base displacement inputs of 0( ) j tg t W e   and 

0( ) j th t e  , the modal forcing function is harmonic of the form ( ) j t
r rf t F e   where the 

amplitude rF  is given by Eq. (3.36). Substituting the steady-state response expressions 

( ) j t
r rt e     and ( ) j tv t Ve   into Eqs. (3.93) and (3.94) gives 1  coupled linear algebraic 

equations for the complex amplitudes r  and V
 
(infinite mechanical degrees of freedom due to 

1...r    and one electrical degree of freedom):  
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Eventually one obtains the steady-state voltage response and the vibration response expressions 

as follows: 
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For modal excitations (i.e. r  ), Eqs. (3.97) and (3.98) reduce to  
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Table 3.1 Modal electromechanical coupling and equivalent capacitance of a bimorph energy 

harvester for the series and the parallel connections of the piezocermaic layers 
 

 Series connection Parallel connection 
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3.6.4 Equivalent Representation of the Multi-mode Electromechanical FRFs. Equation 

(3.97) can be re-expressed as 
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where the voltage output – to – translational base acceleration FRF is 
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and the voltage output – to – rotational base acceleration FRF can be given by 
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               (3.103) 

 Similarly, Eq. (3.98) can be written as 
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where the relative transverse displacement response – to – translational base acceleration FRF is 
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and the relative transverse displacement response – to – rotational  base acceleration FRF is 
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3.6.5 Equivalent Representation of the Single-mode Electromechanical FRFs. From Eq. 

(3.99): 
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where the single-mode voltage output – to – translational base acceleration FRF is  
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and the single-mode voltage output – to – rotational base acceleration FRF is 
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Likewise, from Eq. (3.100): 
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where the single-mode relative transverse displacement response – to – translational base 

acceleration FRF is 
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and the single-mode relative transverse displacement response – to – rotational base acceleration 

FRF can be given by 
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3.7 Theoretical Case Study 

 

This section presents theoretical demonstrations of the analytical model developed in this 

chapter. An extensive electromechanical analysis of a bimorph cantilever configuration is 

presented in the following subsections. First the series and the parallel connections of the 

piezoceramic layers are studied with a focus on multiple vibration modes. Then the electrical and 

mechanical response simulations of the multi-mode and single-mode FRFs are compared. The 

damping effect of piezoelectric power generation on the harvester beam is also investigated. 

 

3.7.1 Properties of the Bimorph Cantilever. The geometric properties of the bimorph 

cantilever investigated in this case study are given in Table 3.2. The overhang length – to – total 

thickness ratio of the harvester is about 85.7 which makes it reasonable to neglect the shear 

deformation and the rotary inertia effects for the practical vibration modes (in agreement with the 

Euler-Bernoulli beam theory). The substructure layer is assumed to be aluminum, the 

piezoceramic layer is taken to be PZT-5A and the configuration does not have a tip mass (i.e. 

0t tM I  ).  The material properties of the substructure and the piezoceramic layers are shown 

in Table 3.3. The elastic, piezoelectric and permittivity constants of PZT-5A are obtained from 



 73

Table B.2 in the Appendix (reduced constants for the Euler-Bernoulli beam theory). The analysis 

given here considers the frequency range of 0-5000 Hz. It can easily be shown that this 

cantilever has three vibration modes in this frequency range. The first three mechanically and 

electrically undamped natural frequencies of the bimorph cantilever (for 0lR  ) are 

1 185.1f  Hz, 2 1159.8f  Hz and 3 3247.6f  Hz (where / 2r rf   ). For the purpose of 

simulation, if one takes 1 0.010   and 2 0.012   as the mechanical damping ratios of the first 

two modes and assumes proportional damping based on the discussion of Chapter 2, the 

proportionality constants /sc I YI  and /ac m  are obtained from Eq. (2.17) (by using 1 , 2 , 1  

and 2 ) as 6/ 2.93 10sc I YI   s/rad and / 19.295ac m  rad/s. Closed-form identification of 

mechanical damping in the presence of an arbitrary load resistance based on the single-mode 

approximation is presented in Chapter 5. Here, it can be assumed that the damping ratios are 

identified by setting the electrical boundary condition to short circuit ( 0lR  ) and using 

conventional techniques (e.g. half-power points of the mechanical FRF [39]).  

Before the simulation results are presented and discussed, it is worth adding a few words 

regarding the assumption of proportional damping. The restriction about the proportional 

damping assumption is such that, once the proportionality constants are identified using the 

modal properties of two vibration modes, the rest of the damping ratios are not arbitrary and they 

are automatically set equal to the following numbers due to Eq. (2.17): 3 0.030  , 4 0.059  , 

5 0.097   and so on. It should be noted that the concept of proportional damping is a 

convenient mathematical modeling assumption (to force the system to be a normal-mode system) 

and the physical system may not agree with this assumption [36]. In other words, the damping 

ratios of higher modes identified experimentally from the physical system may not converge to 

the aforementioned values. Therefore, as a relaxation in the proportional damping assumption, 

one might prefer to use the identified damping ratios of the vibration modes of interest (to be 

used in the modal expressions) directly without obtaining /sc I YI  and /ac m  since the resulting 

electromechanical expressions developed here need only the r  values. This is the modal 

damping assumption and it is identical to starting with the respective undamped equation (the 

normal-mode problem by definition) and introducing damping in the modal domain. The 

proportional damping (in the form of Rayleigh damping) and modal damping assumptions are 
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often used in vibration engineering regardless of their practical limitations. As far as the problem 

of vibration energy harvesting is concerned, it is the fundamental vibration mode that has the 

highest importance and proportional damping (or modal damping) is a reasonable assumption to 

establish the bridge between the partial differential equation and its closed-form analytical 

solution given in this chapter.  

 

Table 3.2 Geometric properties of the bimorph cantilever 
 

 Piezoceramic Substructure 

Length ( L ) [mm] 30 30 

Width (b ) [mm] 5 5 

Thickness ( ph , sh ) [mm] 0.15 (each) 0.05 

 

Table 3.3 Material properties of the bimorph cantilever 
 

 Piezoceramic Substructure 

Material PZT-5A Aluminum 

Elastic modulus ( 11
Ec , sY  )  [GPa] 61 70 

Mass density ( p , s  ) [kg/m3] 7750 2700 

Piezoelectric constant ( 31e )  [C/m2] -10.4 - 

Permittivity constant ( 33
S ) [nF/m] 13.3 - 

 

3.7.2 Frequency Response of the Voltage Output. In the simulations given here, the base of 

the cantilever is assumed to be not rotating (i.e. ( ) 0h t   in Fig. 3.1) and the series connection 

case is considered first. The multi-mode voltage FRFs (per base acceleration) shown in Fig. 3.5 

are obtained from 
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where r  and eq
pC   are as given in the first column of Table 3.1 for the series connection of the 

piezoceramic layers. Note that, here and hereafter, the electromechanical FRFs are given in the 

modulus form and the base acceleration in the frequency response graphs is normalized with 

respect to the gravitational acceleration for a convenient representation (i.e. the voltage FRF 

given by the foregoing equation is multiplied by the gravitational acceleration, 9.81g  m/s2). 

The set of electrical load resistance considered here ranges from 100  to 10 M . As far as the 

fundamental vibration mode of this particular bimorph is concerned, the lowest resistance 

( 100lR   ) used here is very close to the short-circuit conditions whereas the largest load 

( 10 MlR   ) is very close to the open-circuit conditions.  

 

 
 

Fig. 3.5 Voltage FRFs of the bimorph for a broad range of load resistance (series connection of 

the piezoceramic layers) 

 

As the load resistance is increased from the short-circuit to the open-circuit conditions, 

the voltage output at each frequency increases monotonically. To be precise, the voltage output 

for the exact short-circuit condition with zero external resistance ( 0lR  ) would be zero, which 

would not allow defining a voltage FRF. Consequently, throughout this text, the short-circuit 

condition is defined as 0lR  . At the other extremum, the open-circuit condition ( lR  ), the 

voltage output at each frequency converges to its maximum value. Another important aspect of 

the voltage FRFs plotted in Fig. 3.5 is that, with increasing load resistance, the resonance 
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frequency of each vibration mode moves from the short-circuit resonance frequency ( sc
r  for 

0lR  ) to the open-circuit resonance frequency ( oc
r  for lR  ). The short-circuit and the 

open-circuit resonance frequencies of the first three modes read from Fig. 3.5 are listed in Table 

3.4 (where / 2sc sc
r rf    and / 2oc oc

r rf   ). The direct conclusion based on this observation is 

that the resonance frequency of a given piezoelectric energy harvester depends on the external 

load resistance. Moreover, depending on the external load resistance, the resonance frequency of 

each mode can take a value only between the short-circuit and the open-circuit resonance 

frequencies sc
rf  and oc

rf . Closed-form identification of the frequency shift ( oc sc
r r rf f f   ) 

based on the single-mode approximation is given in Chapter 5. Here, the data in Table 3.4 are 

read from the from the resulting frequency response graph given by Fig. 3.5.  

 

Table 3.4 First three short-circuit and open-circuit resonance frequencies read from the voltage 

FRF of the bimorph piezoelectric energy harvester 
 

Mode (r) sc
rf  [Hz] oc

rf  [Hz] 

1 185.1 191.1 

2 1159.7 1171.6 

3 3245.3 3254.1 

 

 Two enlarged views of the voltage FRFs with a focus of the first two vibration modes are 

shown in Fig. 3.6 in order to display the resonance frequency shift from the short-circuit to the 

open-circuit conditions clearly. Note that the voltage FRFs of the largest two values of load 

resistance are almost indifferent especially for the second vibration mode, implying a 

convergence of the curves to the open-circuit voltage FRF. That is, if the voltage FRF for 100 

M case was also plotted, it would not be any different from that of the 10 M  case. Again, 

these numbers are for this particular cantilever. For a different configuration, it might be the case 

that even a load of 100 k  might be sufficient to represent the open-circuit conditions. 
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Fig. 3.6 Voltage FRFs of the bimorph with a focus on the first two vibration modes: (a) mode 1 

and (b) mode 2 (series connection) 

 

 As far as the fundamental vibration mode is concerned, the short-circuit and the open-

circuit resonance frequencies are 185.1 Hz and 191.1 Hz, respectively. Excitation at these two 

frequencies will be of particular interest in this section as well as in the experimental validations 

to be discussed in the next chapter. Variation of the voltage output for excitations at the 

fundamental short-circuit resonance frequency and at the fundamental open-circuit resonance 

frequency are plotted in Fig. 3.7. As can be seen from the figure, for low values of load 

resistance, the voltage output at the short-circuit resonance frequency is larger since the system 

(i.e. the electrical boundary condition) is close to short-circuit conditions. With increasing load 

resistance, the curves intersect at a certain point (around 120 k ) and for the values of load 

resistance larger than the value at the intersection point, the voltage output at the open-circuit 

resonance frequency is larger. It is important at this stage to notice the linear asymptotic trends at 

the extrema of 0lR   and lR   (which will be proved mathematically in Chapter 5). The 

graph given here in log-log scale shows a linear increase in the voltage output with increasing 

load resistance for low values of load resistance (both for the short-circuit and the open-circuit 

resonance frequencies). The voltage output becomes less sensitive to the variations in the load 

resistance for its large values due to the horizontal asymptotes of the lR   extremum.  

 

(a) (b) 
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Fig. 3.7 Variation of the voltage output with load resistance for excitations at the short-circuit 

and the open-circuit resonance frequencies of the first vibration mode (series connection) 

 

3.7.3 Frequency Response of the Current Output. If the voltage FRF given by Eq. (3.113) is 

divided by the load resistance, the multi-mode current FRF is obtained as 
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The modulus of the current FRF is plotted against the frequency in Fig. 3.8. Unlike the 

voltage FRF shown in Fig. 3.5, the amplitude of the current at every frequency decreases with 

increasing load resistance. Indeed this is the opposite of the voltage behavior shown in Fig. 3.8 

but the behavior is still monotonic. For every excitation frequency, the maximum value of the 

current is obtained when the system is close to short-circuit conditions. The enlarged views of 

the current FRFs around the first two resonance frequencies are plotted in Fig. 3.9, showing the 

change in the resonance frequency with increasing load resistance. Moreover, being analogous to 

the behavior of voltage output close to open-circuit conditions, the current FRFs become 

indifferent close to short-circuit conditions. That is, if one plotted the current FRF of the 10   

case, the resulting graph would not look any different than that of the 100  case. 
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Fig. 3.8 Current FRFs of the bimorph for a broad range of load resistance (series connection of 

the piezoceramic layers) 

 

   
 

Fig. 3.9 Current FRFs of the bimorph with a focus on the first two vibration modes: (a) mode 1 

and (b) mode 2 (series connection) 

 

 Figure 3.10 shows the current output as a function of load resistance for excitations at the 

fundamental short-circuit and the open-circuit resonance frequencies. It is clear from Fig. 3.10 

that the current output is very insensitive to the variations of the region of low load resistance 

(i.e. the slope is almost zero for 0lR  ). In this region of relatively low load resistance, the 

current output is larger at the short-circuit resonance frequency, as in the case of the voltage 

output (in Fig. 3.7), since the system is close to short-circuit conditions. Then, the current output 

starts decreasing with increasing load resistance until the curves intersect at a certain value of 

(b) (a) 
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load resistance (around 120 k ). For the values of load resistance larger than the value at this 

intersection point, the current output at the open-circuit resonance frequency becomes larger 

since the system approaches the open-circuit conditions. As in the voltage vs. load resistance 

graph, the asymptotic trends for 0lR   and lR   appear to be linear. 

 

 
 

Fig. 3.10 Variation of the current output with load resistance for excitations at the short-circuit 

and the open-circuit resonance frequencies of the first vibration mode (series connection) 

 

3.7.4 Frequency Response of the Power Output. The expression for the multi-mode power 

FRF is obtained from Eq. (3.113) as 
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Therefore the power output is proportional to the square of the voltage output. As a result, the 

moduli of power FRFs plotted in Fig. 3.11 are normalized with respect to the square of base 

acceleration (i.e. g2). According to Eq. (3.115), the power output is a product of two FRFs 

(current and voltage) with the opposite trends against the load resistance. It is clear from Fig. 

3.11 that the power output FRF does not necessarily exhibit a monotonic behavior with 

increasing (or decreasing) load resistance for a given frequency. Among the sample values of the 

load resistance considered in this work, the maximum power output for the first vibration mode 
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corresponds to the load of 100 k  (see the enlarged view in Fig. 3.12a) at 187.5 Hz which is 

expectedly a frequency in between the fundamental short-circuit and open-circuit resonance 

frequencies. Considering the second vibration mode (see the second enlarged view in Fig. 

3.12b), one observes that the maximum power output is obtained for 10 k  at frequency 1161.9 

Hz. It should be noted that the values of the load resistance used in this analysis are taken 

arbitrarily to observe the general trends. Therefore, the maximum power outputs obtained from 

each vibration mode are for these sample values and they are not necessarily for the maximum 

possible (or the optimized) power outputs.‡‡ Another interesting aspect of the power FRFs given 

in Fig. 3.11 is that they intersect one another. These intersections are observed not only around 

the resonance frequencies (e.g. the curves of 10 k  and 1 M  intersect at 190.2 Hz and 193.9 

Hz in Fig. 3.12a) but also they are observed at the off-resonance frequencies (e.g. the curves of 

10 k  and 100 k  intersect at 723.7 Hz in Fig. 3.11). At these intersection frequencies, the two 

respective load resistance values yield the same power output.   

 

 
 

Fig. 3.11 Power FRFs of the bimorph for a broad range of load resistance (series connection of 

the piezoceramic layers) 

  

The behavior of power output with changing load resistance for excitations at the 

fundamental short-circuit and open-circuit resonance frequencies are given in Fig. 3.13. It can be 

                                                            
‡‡ Expressions of the optimum load resistance for modal excitations are given in Chapter 5. 
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recalled from Figs. 3.7 and 3.10 that the voltage and the current outputs obtained at the short-

circuit resonance frequency are larger than the ones obtained at the open-circuit resonance 

frequency up to a certain load resistance (approximately 120 k  in this case) after which the 

opposite is valid. Since the power output is simply the product of the voltage and current, this 

observation is valid for the power versus load resistance curves as well. As can be seen form Fig. 

3.13, the power output at the short-circuit resonance frequency is larger before the intersection 

point (at 120 k ) whereas the power output at the open-circuit resonance frequency is larger 

after this point. The asymptotic trends for 0lR   and lR   are again linear and they appear 

to have the same slope in log-log scale. 

 

   
 

Fig. 3.12 Power FRFs of the bimorph with a focus on the first two vibration modes: (a) mode 1 

and (b) mode 2 (series connection) 

 

Since the behavior of power with changing load resistance is not monotonic, both of the 

power graphs shown in Fig. 3.13 exhibit peak values, which correspond to the optimum values of 

load resistance at the fundamental short-circuit and open-circuit resonance frequencies. When the 

optimum values of load resistance are used for each of the cases (short-circuit and open-circuit 

excitations), both of them yield the same power output. Considering Figs. 3.7 and 3.10, it can be 

observed that neither the voltages nor the currents are identical at these optimum values of load 

resistance for excitations at the two special frequencies. Therefore, in practice, if one is flexible 

in terms of the excitation frequency within this narrow frequency band, the short-circuit 

resonance frequency is preferable for larger current whereas the open-circuit resonance 

frequency is preferable for larger voltage (both yielding the same power output). Another aspect 

(a) (b) 
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of Fig. 3.13 is that the optimum values of load resistance at these two frequencies are 

considerably different (around 36 k  for excitation at 185.1 Hz and around 405 k  for 

excitation at 191.1 Hz). From another perspective, therefore, if the load resistance is a constraint, 

one can select the frequency of operation accordingly for the maximum power output.  

 

 
 

Fig. 3.13 Variation of the power output with load resistance for excitations at the short-circuit 

and the open-circuit resonance frequencies of the first vibration mode (series connection) 

 

It is worth adding a few words on the advantage of using the fundamental vibration mode 

for energy harvesting compared to higher vibration modes. Figure 3.14 shows the power vs. load 

resistance curves obtained for excitation at the six frequencies listed in Table 3.4 (i.e. the short-

circuit and the open-circuit resonance frequencies of the first three modes). The maximum power 

for mode 1 excitation is around 0.23 mW/g2 at 185.1 Hz or at 191.1 Hz (for different optimum 

loads). For mode 2 excitation, the maximum power output is around 7.5  W/g2 (at 1159.7 Hz or 

at 1171.6 Hz). The maximum power output for mode 3 excitation is as low as 98 nW/g2 (at 

3245.3 Hz or at 3254.1 Hz). As the moduli of the voltage and current FRFs decay by one order 

of magnitude with increasing mode number according to Figs. 3.5 and 3.8, the modulus of the 

power FRF decays by around two orders of magnitude with the increasing mode number. 

Expectedly, the maximum power output is obtained for the fundamental vibration mode. For this 

reason, the focus is usually placed on this vibration mode in practical considerations (as well as 

in the experimental validations presented in the next chapter).  
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While considering the substantial difference between the moduli of the power FRFs for 

different vibration modes, one should also note that these FRFs are normalized with respect to 

base acceleration. A base acceleration input of 1g at 185.1 Hz implies a base displacement 

amplitude of 7.25 m . This base displacement amplitude, for instance, creates a base 

acceleration input of 39.3g at 1159.7 Hz (which may or may not be sustained by the brittle 

piezoceramic layers§§). As a result, one should define the electromechanical FRF according to 

the application and normalize with respect to the constant kinematic variable (displacement, 

velocity or acceleration). In short, part of the reason of diminishing moduli at higher vibration 

modes is that these FRFs are given here per base acceleration input (rather than displacement or 

velocity).   

 

 
 

Fig. 3.14 Variation of the power output with load resistance for excitations at the short-circuit 

and the open-circuit resonance frequencies of the first vibration mode (series connection) 

 

3.7.5 Frequency Response of the Relative Tip Displacement. The multi-mode expression for 

the tip displacement FRF (relative to the base) is 

                                                            
§§ Given the bending strength of the piezoceramic and a safety factor, one can obtain a critical stress FRF as a 

function of load resistance by using the displacement and electric fields in the reduced piezoelectric constitutive 

equation. This way, an estimate of the maximum acceleration level can be obtained for a given excitation frequency 

and load resistance. 
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This FRF differs from the solution of the electromechanically uncoupled vibration FRF due to 

the voltage output induced as a result of piezoelectric coupling. The solution of the uncoupled 

base excitation problem (addressed in Chapter 2) is obtained by neglecting the electrical term as 
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which is therefore identical to Eq. (3.116) for 0lR  . The feedback of piezoelectric power 

generation in the mechanical equation is associated with the r  term in Eq. (3.116) and it is 

basically a form of power dissipation due to Joule heating in the resistor. Therefore what happens 

to the beam response due to power generation with a non-zero and finite load resistance is 

damping of the structure, which has a relatively sophisticated form compared to conventional 

viscous damping and structural damping mechanisms as demonstrated in the following. 

 Figure 3.15 shows the tip displacement FRFs*** (per base acceleration) for the set of 

resistors and the frequency range of interest. One can see the three vibration modes in this figure 

but it is not possible to distinguish between the curves of different load resistance. The enlarged 

views of the first two vibration modes are shown in Fig. 3.16. The resistive shunt damping effect 

results in both frequency shift and vibration attenuation. With increasing load resistance, the 

electromechanical system moves from the short-circuit to the open-circuit conditions. In Fig. 

3.16a, the peak vibration amplitude of 566.4 m  for 100   (at 185.1 Hz) is attenuated to a peak 

amplitude of 214.7 m  for 100 k  (at 187.4 Hz), which means a damping effect by a factor of 

about 2.6. In the second vibration mode, the peak amplitude of 6.67 m  for 100   (at 1159 Hz) 

is attenuated to 4.97 m  for 10 k  (at 1160.8 Hz). One thing that is useful to mention is that, 

                                                            
*** The vibration FRFs investigated here are for the response at the tip of the cantilever ( x L ). However, the 

distributed-parameter solution given here allows obtaining the coupled vibration response at any point px  on the 

beam by setting px x  in the eigenfunction on the right hand side of Eq. (3.116). However, the motion at the tip of 

the beam is of practical interest since it is the position of maximum deflection in the most flexible mode. 
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since the forms of the voltage and tip displacement FRFs are different, the resonance frequencies 

in these FRFs are slightly different (Chapter 5). This is distinguishable only in the presence of 

large mechanical damping. For instance, the short-circuit and the open-circuit resonance 

frequencies of the third vibration mode in Fig. 3.15 are 3252.6 Hz and 3264.3 Hz, respectively. 

Compared to those of the voltage FRF given in Table 3.4 (3245.3 Hz and 3254.1 Hz) these 

numbers, respectively, are 0.2 % and 0.3 % larger. The difference is not considerable for the 

fundamental vibration mode. Since the main concern in energy harvesting is the electrical 

response, the short-circuit and the open-circuit resonance frequencies are defined here based on 

the voltage FRF (as listed in Table 3.4). 

 
 

Fig. 3.15 Tip displacement FRFs (relative to the vibrating base) of the bimorph for a broad range 

of load resistance (series connection of the piezoceramic layers) 
 

   
 

Fig. 3.16 Tip displacement FRFs of the bimorph with a focus on the first two vibration modes: 

(a) mode 1 and (b) mode 2 (series connection) 

(b) (a) 
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 It is important to notice from the behavior around the modal frequencies of the vibration 

FRFs that the form of damping caused by piezoelectric power generation (or power dissipation in 

the resistor due to Joule heating) is more sophisticated that of viscous damping (although 

oversimplification of the problem with the electrically induced viscous damping assumption has 

been made by several researchers [18-20,22] over the last decade). First, with increasing load 

resistance, the frequency of peak vibration amplitude changes considerably (and shifts to the 

right in the FRF, unlike the case of viscous damping). Secondly, with further increase in the load 

resistance, although the vibration amplitude at the original (short-circuit) resonance frequency is 

attenuated to a certain amplitude, the vibration amplitude at the open-circuit resonance frequency 

is amplified considerably. The reason is the frequency shift due to changing electrical boundary 

condition. Indeed if one changes the load from one extremum ( 0lR  ) to the other extremum 

( lR  ), the only modification in the energy harvester is a stiffness change. Physically, the 

elastic modulus of the piezoceramic increases from the constant electric field value to the 

constant electric displacement value and there is no overall energy dissipation. Only for non-zero 

and finite values of load resistance, there is power dissipation in the mechanical domain (and 

hence power generation in the electrical domain). All together with these, the resonance 

frequency shift (from the mechanically damped natural frequency) associated with the presence 

of a finite electrical resistance cannot be represented by a real-valued viscous damping ratio or 

loss factor. Having discussed the mechanism of power dissipation in the mechanical domain, it is 

worthwhile to point out the presence of a mechanical anti-resonance frequency between modes 2 

and 3. Just like the resonance frequencies, this anti-resonance frequency also exhibits a shift 

(from 2078.8 Hz to 2090.2 Hz) as the electrical load is changed from the short-circuit to the 

open-circuit condition. 

 The behavior of vibration response at the tip of the beam is further studied for excitations 

at the short-circuit and the open-circuit resonance frequencies of the fundamental vibration mode 

in Fig. 3.17. It is interesting to note that the trends are not completely monotonic. For instance, 

the minimum vibration amplitude at 185.1 Hz is obtained as 156.8 m  for an electrical load of 

about 500 k  and a further increase of load resistance up to 10 M   slightly amplifies the 

vibration amplitude at this frequency (to 162 m ). Likewise, before it is amplified due to the 

shift in the resonance frequency, the vibration amplitude at 191.1 Hz is slightly attenuated until 
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40 k  (from 162 m  to 157.7 m ). Then it is strongly amplified as the load resistance is 

further increased. It is also useful to note that these electrical loads of maximum vibration 

attenuation are not those of the maximum power generation. That is, the nature of 

electromechanical coupling is such that, for the electrical load of maximum power generation, 

the vibration amplitude at the tip of the beam does not necessarily take its minimum value. 
 

 
 

Fig. 3.17 Variation of the tip displacement (relative to the vibrating base) with load resistance for 

excitations at the short-circuit and the open-circuit resonance frequencies of the first vibration 

mode (series connection) 

 

3.7.6 Parallel Connection of the Piezoceramic Layers. In this section, the electromechanical 

coupling and the equivalent capacitance terms used in Eqs. (3.113)-(3.116) are replaced by those 

of the parallel connection case (from the second column in Table 3.1) and sample results are 

presented. Figures 3.18-3.21 display the voltage, current, power and tip displacement FRFs along 

with the enlarged views of the behavior around the fundamental vibration mode.   

 The short-circuit and the open-circuit resonance frequencies read from Fig. 3.18 for the 

parallel connection case are identical to those listed in Table 3.4. The mathematical justification 

is given in Chapter 5, where the single-mode approximation of the frequency shift 

( oc sc
r r rf f f   ) is shown to be proportional to 2 / eq

r pC 
 . As a result, from Table 3.1, the single-

mode approximation of the resonance frequency shift for the series and parallel connection cases 

are identical (in agreement with Figs. 3.18-3.21). 
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Fig. 3.18 (a) Voltage FRFs for the parallel connection of the piezoceramic layers and (b) an 

enlarged view around the first vibration mode 
 

   
 

Fig. 3.19 (a) Current FRFs for the parallel connection of the piezoceramic layers and (b) an 

enlarged view around the first vibration mode 
 

   
 

Fig. 3.20 (a) Power FRFs for the parallel connection of the piezoceramic layers and (b) an 

enlarged view around the first vibration mode 

(a) (b) 

(a) (b) 

(a) (b) 
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Fig. 3.21 (a) Tip displacement FRFs for the parallel connection of the piezoceramic layers and 

(b) an enlarged view around the first vibration mode 

 

Comparisons of the series and the parallel connection cases for excitation at the 

fundamental short-circuit resonance frequency are given in Fig. 3.22. As can be anticipated, the 

maximum power outputs of the series connection and parallel connection cases are identical but 

they correspond to different values of optimum load. A maximum of 0.23 mW/g2 is delivered to 

a resistive load of 36 k  in the series connection case whereas the same maximum power output 

is delivered to a resistive load of 9 k  in the parallel connection case. The series connection 

case generates this power with a current amplitude of 0.08 mA/g and a voltage amplitude of 2.8 

V/g. In the parallel connection case, the same power output is obtained with a current amplitude 

of 0.16 mA/g and a voltage amplitude of 1.4 V/g. Reasonably, series connection should be 

preferred for large voltage output whereas parallel connection should be used for large current 

output. The last graph in Fig. 3.22 shows that the resistive damping effect starts for lower values 

of load resistance in the parallel connection case, which agrees with the behavior of maximum 

power generation. 

Piezoelectric energy harvesters, as observed in this case study, are poor current 

generators.††† For instance, in the series connection case, for a base acceleration of 1g (achieved 

for the base displacement amplitude of 7.25 m at 185.1 Hz) the voltage output is around 2.8 V 

while the current associated with it is just 0.08 mA. While this voltage level is fairly good for 

                                                            
††† This fundamental fact about piezoelectric materials is indeed well known by the experimentalist vibration 

engineer. It is the particular reason that piezoelectric-based transducers (such as accelerometers and impulse 

hammers) are usually connected to a charge amplifier before the data acquisition system. 

(a) (b) 



 91

charging a small battery, it is the current output that will make the duration of charging 

substantially long (compared to a commercial battery charger). Several orders of magnitude 

difference between the voltage and the current outputs of the generator is a very typical case in 

piezoelectric energy harvesting. Therefore, if the purpose is to charge a battery using the 

piezoelectric power output, parallel connection of the piezoceramic layers can be preferred so 

long as the voltage limit for charging the battery is reached for a given excitation input. 

 

   
 

   
 

Fig. 3.22 Comparison of the series and the parallel connection cases for excitations at the short-

circuit resonance frequency of the first vibration mode: (a) voltage vs. load resistance; (b) current 

vs. load resistance; (c) power vs. load resistance; (d) tip displacement vs. load resistance  

 

3.7.7 Single-mode FRFs.  In the absence of base rotation, the single-mode voltage FRF can be 

expressed as 
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and the single-mode tip displacement FRF (relative to the base) is 
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In the following, the simulations of these single-mode expressions are compared with those of 

the multi-mode expressions for the first three vibration modes in the series connection case (i.e. 

r  and eq
pC   are read from the first column of Table 3.1). Figure 3.23 shows the single-mode 

FRFs obtained from Eq. (3.118) for 1r  , 2r   and 3r   along with the multi-mode solution 

for all values of load resistance considered here. As can be seen in this figure, the single-mode 

solutions agree with the multi-mode solution only around the resonance frequency of the 

respective mode of interest.  

 

 
 

Fig. 3.23 Comparison of the multi-mode and the single-mode voltage FRFs (series connection) 

 

Figures 3.24a and 3.24b, respectively, show the enlarged views of the single-mode and 

the multi-mode voltage FRF comparisons for the first two modes. The single-mode 

approximations work very well for all values of load resistance, yielding only slight 

overestimations of the resonance frequency and the voltage amplitude. The single-mode 

approximation for mode 1 shown in Fig. 3.24a predicts the short-circuit resonance frequency 

accurately as 185.1 Hz and it overestimates the open-circuit resonance frequency as 191.3 Hz 

(with an error of 0.1 %). In mode 2 prediction given by Fig. 3.24b, the short-circuit resonance 
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frequency is predicted as 1159.8 Hz (with an error of 0.009 %) whereas the open-circuit 

resonance frequency is predicted as 1171.9 Hz (with an error of 0.03 %). The single-mode 

voltage expression given by Eq. (3.118) can therefore successfully represent the resonance 

behavior of the multi-mode voltage expression given by Eq. (3.113) for a given mode of interest 

as a first approximation. The slight inaccuracy in the single-mode predictions is due to the 

residual effects of the neighboring modes, which are ignored in the single-mode representation 

given here. 

 

   
 

Fig. 3.24 Comparison of the multi-mode and single-mode voltage FRFs with a focus on the first 

two vibration modes: (a) mode 1 and (b) mode 2 (series connection) 

 

 The frequency response predictions of the single-mode tip displacement FRFs obtained 

from Eq. (3.119) (for 1r  , 2r   and 3r  ) are shown in Fig. 3.25 along with the multi-mode 

tip displacement FRFs. Again, the single-mode FRFs exhibit agreement with the multi-mode 

FRF around the modes of interest. The enlarged views for modes 1 and 2 are provided in Fig. 3. 

26 for a clear view of the quality of agreement. The slight overestimation of the resonance 

frequencies due to ignoring the neighboring vibration modes is the case here too and the error in 

the single-mode resonance frequencies is less than 0.1 % for these practical vibration modes.  

 

(a) (b) 
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Fig. 3.25 Comparison of the multi-mode and the single-mode tip displacement FRFs (series 

connection) 

 

   
 

Fig. 3.26 Comparison of the multi-mode and the single-mode tip displacement FRFs with a focus 

on the first two vibration modes: (a) mode 1 and (b) mode 2 (series connection) 

 

 As a final comparison of the single-mode and the multi-mode simulations, the focus is 

placed back on the fundamental vibration mode and variations of the electrical power and the 

vibration response with load resistance are plotted in Figs. 3.27a and 3.27b, respectively, for 

excitations at the fundamental short-circuit and open-circuit resonance frequencies. Note that the 

slightly overestimated open-circuit resonance frequency is used in the single-mode simulations. 

The predictions of the single-mode FRFs for this most important vibration mode are very 

(a) (b) 
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accurate. Therefore, Eqs. (3.118) and (3.119) can comfortably be used as a first approximation in 

modeling of a piezoelectric energy harvester beam for modal excitations.  

 

   
 

Fig. 3.27 Variations of the (a) power output and (b) tip displacement with load resistance for the 

multi-mode and the single mode-solutions (excitations at the fundamental short-circuit and open-

circuit resonance frequencies) 

 

3.8 Summary and Conclusions 

 

Analytical modeling of symmetric bimorph piezoelectric energy harvesters is presented in this 

chapter. The distributed-parameter electromechanical formulation is based on the Euler-

Bernoulli beam theory and it is valid for thin piezoelectric energy harvesters for the typical 

vibration modes of interest in practice. The major steps of the analytical formulation are given 

for the series and the parallel connection cases of the piezoceramic layers independently. An 

equivalent representation of the series and the parallel connections is then given in a single form. 

The distributed-parameter electromechanical equations are first obtained for excitation at any 

arbitrary frequency (including all vibration modes in the analytical solution). Then, for the 

practical problem of resonance excitation, the multi-mode solutions are reduced to the single-

mode expressions (which are approximately valid only around the resonance frequencies). 

Electromechanical FRFs relating the steady-state electrical and mechanical response to 

translational and rotational base acceleration components are extracted both from the multi-mode 

and single-mode solutions. A detailed theoretical case study is presented where simulations for 

the series and the parallel connection cases are given using both the multi-mode and the single-

(a) (b) 
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mode electromechanical FRFs. Accuracy of the single-mode FRFs in predicting the multi-mode 

FRFs for modal excitations is also shown. 
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CHAPTER 4 

 

EXPERIMENTAL VALIDATIONS OF THE ANALYTICAL SOLUTIONS 

FOR CANTILEVERED BIMORPH PIEZOELECTRIC ENERGY 

HARVESTERS  

 

This chapter presents experimental validations of the analytical electromechanical relations 

derived in Chapter 3. The first two experimental cases consider a brass-reinforced PZT-5H 

bimorph cantilever without and with a tip mass attachment in two separate sections.  The 

voltage, current, power and the tip velocity FRFs of the bimorph (per base acceleration input) are 

analyzed extensively for both configurations and the focus is placed on the fundamental 

vibration mode in the frequency range of 0-1000 Hz. The general trends in the FRFs are 

addressed and model predictions in the absence and presence of a tip mass are shown. 

Excitations at the fundamental short-circuit and open-circuit resonance frequencies are 

investigated in detail and the electrical performance diagrams at these two frequencies are 

extracted. The shunt damping effect of piezoelectric power generation on the cantilever is also 

studied based on the experimental measurements and model predictions. The effect of rotary 

inertia of the tip mass is demonstrated by comparing the model predictions with the experimental 

results (for the PZT-5H bimorph cantilever with a tip mass) including and excluding the rotary 

inertia of the tip mass attachment. The electrical performance results of the same bimorph 

without and with the tip mass are compared. The last case study investigates a brass-reinforced 

PZT-5A bimorph cantilever with a focus on a wider frequency range (0-4000 Hz) covering the 

first two vibration modes. The model predictions are compared with the experimental results 

both using the multi-mode and the single-mode analytical FRFs.  
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4.1 PZT-5H Bimorph Cantilever without a Tip Mass 

 

4.1.1 Experimental Setup. The first cantilever used for validation of the analytical model 

developed in Chapter 3 is a brass-reinforced bimorph (T226-H4-203X) manufactured by Piezo 

systems Inc. [45]. The experimental setup used for the electromechanical FRF measurements 

given in this chapter is shown in Fig. 4.1 and the enlarged views of the equipments used in the 

experiments are displayed in Fig. 4.2. A small electromagnetic shaker (TMC solution [46] TJ-2) 

is used for excitation of the bimorph cantilever and the acceleration at the base of the cantilever 

is measured by employing a small accelerometer (PCB Piezotronics [47] Model U352C67) 

attached onto the aluminum clamp of the cantilever using wax. The tip velocity of the cantilever 

in the transverse direction is measured using a laser vibrometer (Polytec [48] PDV100) by 

attaching a small reflector tape at the tip of the cantilever. The data acquisition box (SigLab [49] 

Model 20-42) has four input and two output channels. The base acceleration signal measured by 

the accelerometer is sent to the reference channel after being processed by a charge amplifier 

(PCB Piezotronics [47] Model 482A16). The reference channel automatically becomes the 

denominator of the resulting FRFs in the frequency response analyzer. Two of the remaining 

input channels are used for the laser vibrometer and the piezoelectric voltage output signals. 

Therefore the two FRFs obtained using these three signal outputs are the tip velocity – to – base 

acceleration FRF (or simply the tip velocity FRF) and the voltage output – to – base acceleration 

FRF (or simply the voltage FRF). Therefore, in all frequency response measurements provided 

here, the reference input is the base acceleration in agreement with the derivations of Chapter 3. 

Chirp excitation (burst type with five averages) is provided to the shaker from the output channel 

of the data acquisition box (which is connected to a Hewlett-Packard 6826A [59] fixed gain 

amplifier before the electromagnetic shaker).  

 The bimorph used in the first two sections of the experimental validations given here 

consists of two oppositely poled PZT-5H piezoelectric elements bracketing a brass substructure 

layer. The brass layer provides electrical conductivity between the bottom electrode of the top 

layer and the top electrode of the bottom layer. Therefore, collecting the charge output from the 

outermost electrodes becomes the series connection case described in Fig. 3.1a (and that is what 

is used here). The geometric and the material properties of the piezoceramic and the substructure 

layers in the cantilevered condition are given in Table 4.1. The data sheet of the manufacturer 
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provides limited information regarding the elastic properties of the piezoceramic. Therefore, 

typical properties of PZT-5H referred from the literature (Appendix B) are used here. The 

reduced (plane-stress) properties of the piezoceramic for the Euler-Bernoulli beam theory are 

referred from Table B.2 in Appendix B. Note that, in agreement with the formulation given in 

the previous chapter, the length described by L is the overhang length of the harvester, i.e. it is 

not the total free length (31.8 mm) of the bimorph as received from the manufacturer. The 

overhang length of the cantilever is measured as 24.53 mm. A reflector tape of negligible mass is 

attached close to the tip surface of the beam and the position of velocity measurement on the 

reflector is approximately 1.5 mm from the free end ( 23vL  mm). A close view of the bimorph 

cantilever with the reflector tape is given in Fig. 4.3 along with the resistive loads.  

 

            
 

Fig. 4.1 Experimental setup used for the electromechanical frequency response measurements  

(photos by A. Erturk, 2009)  

 

According to the geometric parameters in Table 4.1, the structure is assumed to be 

perfectly symmetric. The nickel electrodes are covering the surfaces of the piezoceramic layers 

are very thin and the thicknesses of the bonding layers are assumed to be neglibible. The total 

thickness of the beam is 0.67 mm and therefore the overhang length – to – thickness ratio is 

about 37.7. Since the focus in this case study (as well as in most energy harvesting applications) 

is placed on the fundamental vibration mode, shear deformation and rotary inertia effects are 

(1) Shaker with a small 
accelerometer and the cantilever 
(2) Laser vibrometer  
(3) Fixed gain amplifier (power 
supply)  
(4) Charge amplifier 
(5) Data acquisition system 
(6) Frequency response analyzer 
(software) 

(1) 

(2)
(3) (4)

(5)
(6)

(1) 
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assumed to be negligible. This is in agreement with the model presented in the previous chapter 

based on the Euler-Bernoulli beam assumptions.  

 

                                       

                   
 

Fig. 4.2 Equipments used in the experiments: (a) laser vibrometer, (b) charge amplifier,  

(c) accelerometer, (d) fixed-gain amplifier, (e) data acquisition system, (f) computer with a 

frequency response analyzer  (photos by A. Erturk, 2009) 

 

Table 4.1 Geometric and material properties of the PZT-5H bimorph cantilever without a tip 

mass 
 

 
Piezoceramic 

(PZT-5H)    

Substructure 

(brass) 

Length ( L ) [mm] 24.53 24.53 

Width (b ) [mm] 6.4 6.4 

Thickness ( ph , sh ) [mm] 0.265 (each) 0.140 

Tip mass ( ) [kg]tM  (none) 

Mass density ( p , s  ) [kg/m3] 7500 9000 

Elastic modulus ( 11
Ec , sY  )  [GPa] 60.6 105 

Piezoelectric constant ( 31e )  [C/m2]  -16.6 - 

Permittivity constant ( 33
S ) [nF/m] 25.55 - 

(b) (a) (c) 

(f) (e) (d) 
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Fig. 4.3 A view of the shaker, low-mass accelerometer, PZT-5H bimorph cantilever without a tip 

mass, its clamp and a set of resistors (photo by A. Erturk, 2009) 

 

 For a resistive load of 470 , the experimentally measured tip velocity and voltage 

output FRFs are shown in Fig. 4.4a. This resistive load is very close to the short-circuit 

conditions for this particular cantilever, therefore the resonance frequency of 502.5 Hz read from 

Fig. 4.4a is the fundamental short-circuit resonance frequency of the PZT-5H bimorph cantilever 

shown in Fig. 4.3 ( 1 502.5scf  Hz). It should be mentioned that, for the frequency range of 

measurement (0-1000 Hz), the data acquisition system automatically adjusts the frequency 

increment to 0.325 Hz (which is a device limitation). According to Fig. 4.4b, the coherence 

[50,51] of the tip velocity measurement is very good (unity) over the frequency range except for 

a slight reduction around 715 Hz. Around the resonance frequency, the voltage FRF also exhibits 

a perfect coherence, which decays away from the resonance. The relatively poor coherence of the 

voltage output – to – base acceleration measurement is expected and it is due to the low value of 

load resistance (deliberately chosen to realize a case close to the short-circuit conditions). For a 

load resistance of 470 , therefore, the system is close to short-circuit conditions so that the 

signal from the piezoceramic is an acceptable measurement output (i.e. it is identified to be due 

to the input) only around the resonance frequency. Indeed, for a resistance of 10 , the voltage 

coherence becomes extremely low almost for the entire frequency range since the piezoelectric 

voltage output turns out to be at the noise level of the input channel for such a low resistance. As 

can be anticipated, with increasing load resistance, the coherence of the voltage measurement 

becomes as good as that of the tip velocity measurement due to the level of the signal output.  

Resistive 
loads 

Electromagnetic 
shaker 

PZT-5H 
Bimorph 
cantilever 

Small 
accelerometer 
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Fig. 4.4 (a) Tip velocity and voltage output FRFs of the PZT-5H bimorph cantilever without a tip 

mass and (b) their coherence functions (for a load resistance of 470 ) 

 

 The sudden reduction in the coherence around 715 Hz in Fig. 4.4b is the case for both 

FRF measurements and it corresponds to a very small peak in the FRFs of Fig. 4.4a. As will be 

seen from the model predictions shortly, the bimorph is not expected to have a mode around that 

frequency. The fundamental resonance of the shaker itself (without the attachment on it) is not 

expected for frequencies less than 15 kHz according to the manufacturer [46]. Therefore, the 

only possible source of the low-amplitude peak around 715 Hz is the clamp of the bimorph that 

is attached onto the shaker with a screw. This is checked very easily by pointing the laser 

vibrometer to the clamp after attaching a reflector tape on it. Figure 4.5a shows the location of 

the velocity measurement on the clamp and Fig. 4.5b shows the FRF obtained using the laser 

vibrometer and the accelerometer measurements taken on the clamp. It can be seen from Fig. 

4.5b that the unexpected peak around 715 Hz in Fig. 4.4a is indeed due to the clamp itself. If the 

clamp behaved ideally for the purpose intended here (i.e. if all the points on it moved identically 

in the vertical direction with a rigid body translation), the velocity – to – acceleration 

measurement would be a monotonically decaying function of frequency without any peaks. More 

precisely, this decaying function would be 1/ j  (ratio of the velocity to acceleration in the 

frequency domain). This ideal behavior agrees with the measurement shown in Fig. 4.5b very 

well for all frequencies away from the unexpected peak around 715 Hz. The source of the peak 

in the clamp FRF might be a possible rotation of the clamp as a result of the joint flexibility at 

the clamp-shaker interface or it might be due to the dynamic interaction of the clamp 

components. In either case the small peak appearing in the FRFs around this frequency is not a 

(a) (b) 
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vibration mode of the bimorph cantilever. This imperfection will be ignored throughout this 

chapter since it is sufficiently away from the fundamental vibration mode of the bimorph (which 

is the main concern here).  

 

                                  
 

Fig. 4.5 (a) A close view of the clamp showing the point of velocity measurement (photo by A. 

Erturk, 2009) and (b) the clamp velocity – to – acceleration FRF capturing the clamp-related 

imperfection  

 

 Before the model predictions are compared with the experimental measurements, it is 

important to note that the tip velocity measurement taken by the laser vibrometer is the velocity 

response of the cantilever relative to the absolute reference frame. In other words, it is not the 

velocity response relative to the base of the beam. Therefore, the relative tip displacement FRF 

given by Eq. (3.105), ( , )x  , should be modified to express the velocity response at the tip of 

the beam relative to the absolute frame of reference: 

      

0
modified

2 2
0 0

( , )
( , ) 1

( , ) ( , )

j t

j t j t

w x t
W e w x t

t tx j x
W e W e j



    
  

        
 

                 (4.1) 

where vx L  (the point of velocity measurement) should be used to predict the measurement 

taken by the laser vibrometer. Note that, instead of modifying the analytical FRF expression 

given by by Eq. (3.105), one could as well process the experimental tip velocity FRF to obtain a 

relative tip displacement FRF. However, post-processing of the analytical data is preferable in 

order not to amplify any noise by further processing the experimental data. 

 The last item to mention on the experimental setup is regarding the resistance seen across 

the electrodes of the piezoceramic. A measurement taken on the input channel of the data 

Position of velocity 
measurement on the clamp 

(a) (b) 
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acquisition system (when nothing is connected) shows a device resistance of 995 k . Therefore, 

if the wires coming from the electrodes of the piezoceramic are directly connected to the data 

acquisition system in the experiments (without a probe), the effective load resistance seen across 

the electrodes of the piezoceramic is the equivalent resistance of the resistive load used and 995 

k  (which see each other in parallel): used 31/ (1/ 1/ 995 10 )l lR R   . This observation implies 

that the maximum resistance used in the experiments cannot exceed 995 k . As a consequence, 

the equivalent of the resistor used and the device resistance constitutes the lR
 
value to be used in 

the model and these effective values are listed in the second column of Table 4.2. Therefore the 

load resistance ( lR ) ranges from 470  (close to short-circuit conditions) to 995 k  (close to 

open-circuit conditions) in the experiments.  

 

Table 4.2 The resistors used in the experiment and their effective values due to the impedance of 

the data acquisition system 
 

Resistance of the 

resistor used 

[k ]  

Effective load 

resistance ( lR ) seen by 

the piezoceramic [k ]

0.470 0.470 

1.2 1.2 

6.7 6.7 

10 9.9 

22 21.5 

47 44.9 

100 90.9 

330 247.8 

470 319.2 

680 403.9 

1000 498.7 

Open 995.0 
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4.1.2 Validation of the Electromechanical FRFs for a Set of Resistors. In this first case study, 

the focus is placed on the fundamental vibration mode seen around 502.5 Hz for a load resistance 

of 470 . Since the performance of the harvester at resonance is the main concern, accurate 

identification of the modal mechanical damping ratio is very important. It is a common practice 

to extract the mechanical damping ratio from the first measurement in experimental structural 

dynamics. The model developed here allows identifying mechanical damping in the presence of 

an arbitrary load resistance. The FRFs of the resistance that are most close to 0lR   is used 

here for damping identification (i.e. the FRFs given by Fig. 4.4a for 470 ). The mechanical 

damping ratio identified graphically by matching the peaks of the experimental and analytical tip 

velocity FRFs in Fig. 4.6a is 1 0.00874  . For the numerical data given in Table 4.1, the 

analytical model predicts the fundamental short-circuit resonance frequency as 502.6 Hz with a 

relative error of 0.02 % compared to the experimental short-circuit resonance frequency (502.5 

Hz). If the electromechanical model is consistent, the analytical voltage FRF should predict the 

peak amplitude of the experimental voltage FRF for the damping ratio of 0.874 % accurately. 

This mechanical damping ratio identified from the velocity FRF is substituted into the voltage 

FRF expressed by Eq. (3.102) and the model prediction given in Fig. 4.6b is obtained. The 

agreement is very good considering the fact that the two FRFs of Figs. 4.6a and 4.6b are 

independent measurements (velocity and voltage) and the damping is identified from the former 

one. One could as well identify the mechanical damping ratio from the voltage FRF (Fig. 4.6b) 

since a piezoelectric energy harvester itself is a transducer. That is, the information of the 

velocity response of the cantilever is included in the voltage response due to piezoelectric 

coupling. As long as the linear electromechanical system assumption holds, analytical 

predictions of the voltage and tip velocity has to be in agreement with each other for a given load 

resistance.  

It is worth adding that, instead of identifying the modal mechanical damping ratio by 

matching the peak values of the experimental and the analytical electromechanical FRFs (or 

using the closed-form expressions of Chapter 5), one could as well follow a classic time domain 

procedure to identify mechanical damping. For instance, without worrying about the voltage 

output, one could set the electrical boundary condition as close to 0lR   as possible and 

perform a time domain damping identification (e.g. logarithmic decrement). However, it should 
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be mentioned that even a wire (that can be used to short the electrodes to realize 0lR  ) has a 

certain resistance. Therefore the demonstration here is given for the presence of a finite load 

resistance (that is still very close to 0lR  ), which is the general case. Indeed, using a resistive 

load that generates an acceptable voltage output (larger than the noise level) allows checking 

whether or not the analytical model can predict the voltage output when the same damping ratio 

is substituted into the voltage FRF (as done here in Fig. 4.6b). The upshot of this discussion is 

that the mechanical damping can be identified in the presence of an arbitrary load resistance 

using the electromechanical model. However, if one prefers to identify mechanical damping 

using conventional techniques (e.g. half-power points of the vibration FRF, logarithmic 

decrement in time domain, etc), the electrical boundary condition should be set to 0lR   as 

close as possible (which gives a noisy piezoelectric voltage output and does not allow checking 

the voltage prediction). The important point is that the conventional techniques of damping 

identification should not be used in the presence of arbitrary values of load resistance. In such a 

case, damping due to piezoelectric coupling contributes to the mechanical damping in the 

vibration response and the identified value would not be a pure mechanical damping ratio and it 

cannot be used as r  in the equations derived in this dissertation.  

 

 
 

Fig. 4.6 Measured and predicted (a) tip velocity and (b) voltage output FRFs of the PZT-5H 

bimorph cantilever without a tip mass for a load resistance of 470  

 

 Having identified the mechanical damping ratio for a certain electrical load resistance, 

the next step is to keep the damping ratio fixed and predict the tip velocity and voltage FRFs for 

(a) (b) 
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different values of load resistance. Figure 4.7 displays experimental measurements and model 

predictions for resistors of three different orders of magnitude: 1.2 k , 44.9 k  and 995 k . 

In all cases, the mechanical damping ratio is kept at 1 0.00874   and the model predictions are 

very good. Note that, among these three different values of load resistance, 44.9 k  results in 

the strongest attenuation of the peak vibration amplitude. The peak voltage amplitude, as 

expected from the theoretical case study of Chapter 3, increases monotonically with increasing 

load resistance. The peak voltage amplitude increases by two orders of magnitude as the load 

resistance is increased from 470   (Fig. 4.6b) to 995 k  (Fig. 4.7c).  

As the load resistance is increased from 470  to 995 k , the experimentally measured 

fundamental resonance frequency moves from the short-circuit value of 502.5 Hz to the open-

circuit value of 524.7 Hz. The analytical model predicts these two resonance frequencies as 

502.6 Hz and 524.5 Hz. Table 4.3 summarizes these results along with the errors in the model 

prediction compared to the experimental frequencies. It will be seen from the modal 

approximations given in Chapter 5 that the amount of the resonance frequency shift from the 

short-circuit to the open-circuit value is directly proportional to the square of the 

electromechanical coupling and is inversely proportional to the capacitance and the respective 

undamped natural frequency. Although the errors in Table 4.3 are negligible for most practical 

purposes, possible inaccuracies in the piezoelectric and permittivity constants contribute to the 

error. In addition, the fact that the undamped natural frequency is slightly overestimated results 

in underestimation of the open-circuit resonance frequency (as the frequency sift is inversely 

proportional to the undamped natural frequency). The experimental source of error might be 

more significant than all these, since the frequency increment is automatically set equal to 0.325 

Hz when the frequency range of interest is adjusted to 0-1000 Hz. 

 

Table 4.3 Fundamental short-circuit and open-circuit resonance frequencies of the PZT-5H 

bimorph cantilever without a tip mass 
 

Fundamental resonance frequency Experiment Model % Error 

1
scf (short circuit) [Hz] 502.5 502.6 +0.02 

1
ocf (open circuit) [Hz] 524.7 524.5 -0.04 
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Fig. 4.7 Measured and predicted tip velocity and voltage output FRFs of the PZT-5H bimorph 

cantilever without a tip mass for various resistors: (a) 1.2 k , (b) 44.9 k  and (c) 995 k  

  

The piezoelectric voltage output and tip velocity FRFs measured experimentally and 

predicted analytically for all resistors used here are given by Figs. 4.8 and 4.9, respectively. The 

gradual increase of the voltage output with increasing load resistance (Fig. 4.8) is associated with 

a gradual attenuation of the vibration amplitude at the short-circuit resonance frequency (Fig. 

(a) 

(b) 

(c) 
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4.9). However, after a certain value of load resistance, the vibration amplitude at the short-circuit 

resonance frequency get saturated and that at the open-circuit resonance frequency is amplified. 

Hence, if one focuses on the fundamental open-circuit resonance frequency, both the vibration 

amplitude and the voltage amplitude increase with increasing load resistance. Consequently, 

modeling the effect of piezoelectric coupling in the form of an electrically induced viscous 

damping  term [18-20,22] fails in predicting what happens to the piezoelectric energy harvester 

when it generates electricity (which also affects the electrical predictions in the coupled system).  
 

 
 

Fig. 4.8 Voltage output FRFs of the PZT-5H bimorph cantilever without a tip mass for 12 

different resistive loads (ranging from 470   to 995 k ) 
 

 
 

Fig. 4.9 Tip velocity FRFs of the PZT-5H bimorph cantilever without a tip mass for 12 different 

resistive loads (ranging from 470   to 995 k ) 
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 The enlarged views of the voltage, current, power and the tip velocity FRFs are given in 

Fig. 4.10 for all values of load resistance (in the 400-600 Hz region) with semi-log scale. It is 

clear from Fig. 4.10a that the voltage FRFs monotonically converge to a single open-circuit 

voltage FRF as the load resistance increases toward the lR   extremum. The current FRFs in 

Fig. 4.10b also behave monotonically and they become similar to a single short-circuit current 

FRF for the 0lR   extremum. The product of the voltage and the current FRFs gives the power 

FRF, which results in a relatively complicated picture when all 12 curves are plotted together in 

Fig. 4.10c. For a given frequency and range of load resistance, the behavior is not necessarily 

monotonic, resulting in the intersections of the curves. One can define  different  values  of  

 

 
 

 
 

Fig. 4.10 Enlarged views of the (a) voltage output, (b) current output, (c) power output and (d) 

tip velocity FRFs of the PZT-5H bimorph cantilever without a tip mass for 12 different resistive 

loads (ranging from 470   to 995 k ) 

 

(a) (b) 

(d) (c) 
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optimum load resistance at different frequencies. The short-circuit and the open-circuit resonance 

frequencies are of interest for the maximum power. Variation of the vibration response is also 

non-monotonic and the trend of the peak vibration amplitude with load resistance is shown in 

Fig. 4.10d. For a given excitation frequency, one can define an optimum load for the maximum 

vibration attenuation.   

 

4.1.3 Electrical Performance Diagrams at the Fundamental Short-Circuit and Open-

Circuit Resonance Frequencies. Focusing on the fundamental short-circuit and open-circuit 

resonance frequencies, the electrical performance diagrams are extracted next. These diagrams 

can be useful for the electrical engineer to obtain an idea about the maximum voltage, current 

and power output levels of the energy harvester as well as the optimum electrical load resistance 

to design a sophisticated energy harvesting circuit. Figure 4.11 shows the variation of the 

voltage amplitude at the fundamental short-circuit and open-circuit resonance frequencies. The 

model predictions are in very good agreement with the experimental data points (for 12 

resistors). The linear asymptotic trends can be noted from the experimental data as well. The 

model predicts the maximum voltage outputs ( lR  ) as 2.6 V/g and 12.8 V/g  for excitations 

at the fundamental short-circuit and open-circuit resonance frequencies, respectively.  

 

 
 

Fig. 4.11 Variation of the voltage output with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever without a 

tip mass 
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 Variations of the electric current passing through the resistor for excitations at the 

fundamental short-circuit and open-circuit resonance frequencies are plotted in Fig. 4.12. For 

excitations at the fundamental short-circuit and open-circuit resonance frequencies, the 

maximum current outputs ( 0lR  ) are predicted as 336 A/g  and 68 A/g . Just like the 

asymptotic voltage behavior for lR  , the asymptotic current trends are horizontal lines as 

0lR  .  

 

 
 

Fig. 4.12 Variation of the current output with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever without a 

tip mass 

 

 The final electrical performance diagram is the power versus load resistance diagram 

shown in Fig. 4.13. According to the model, for excitations at the fundamental short-circuit and 

open-circuit resonance frequencies, the maximum power output of about 0.22 mW/g2 is 

delivered to the optimum electrical loads of 7.6 k  and 189 k , respectively. Although these 

exact values of load resistance are not used in the experiments, the loads of 6.7 k  and 247.8 

k  are relatively close to these optimum ones. The resistive load of 6.7 k  yields an 

experimental power output of 0.218 mW/g2 at the fundamental short-circuit resonance frequency 

whereas the resistive load of 247.8 k  yields 0.212 mW/g2 at the fundamental open-circuit 

resonance frequency. The model predicts the power outputs for 6.7 k  and 247.8 k  as 0.217 
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mW/g2 and 0.215 mW/g2, respectively, with relative errors of -0.5 % and +1.4 % (compared to 

the experimental power amplitudes). 

 It is useful to report two normalized power measures: the power density and the specific 

power outputs. The former is defined as the power output divided by the overhang volume of the 

device whereas the latter is the power output divided by the total overhang mass. The overhang 

volume of the cantilever is obtained from the data in Table 4.1 as 0.105 cm3 and the overhang 

mass is 0.822 grams. Therefore the maximum power density of this configuration for resonance 

excitation is about 2.1 mW/(g2cm3). The maximum specific power output is about 0.27 

mW/(g2g).*  

 

 
 

Fig. 4.13 Variation of the power output with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever without a 

tip mass 

 

4.1.4 Vibration Response Diagrams at the Fundamental Short-Circuit and Open-Circuit 

Resonance Frequencies. Although the main concern in energy harvesting is the electrical 

performance outputs, it is interesting to summarize what happens to the piezoelectric energy 

harvester beam due to power generation. It was underlined while discussing the tip velocity FRF 

that the form of piezoelectric coupling is substantially different than conventional damping 

mechanisms such as viscous or structural damping.  

                                                            
* Here, g stands for “grams” and it should not be confused with the italic g for the gravitational acceleration. 
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Figure 4.14 shows that the vibration amplitude at the fundamental short-circuit resonance 

frequency is attenuated as the load resistance is increased. At the fundamental short-circuit 

resonance frequency, the experimental vibration amplitude of 0.240 (m/s)/g for 470   is 

attenuated to of 0.050 (m/s)/g as the load resistance is increased to 995 k . The model predicts 

these amplitudes as 0.240 (m/s)/g† and  0.051 (m/s)/g, respectively. As lR  , the vibration 

amplitude at this frequency converges to 0.052 (m/s)/g after a slight increase. For excitation at 

the fundamental open-circuit resonance frequency, the experimental vibration amplitude of 0.047 

(m/s)/g for 470   increases to of 0.210 (m/s)/g for 995 k . The model predicts these two 

amplitudes as 0.050 (m/s)/g and 0.223 (m/s)/g, respectively. As lR  , the vibration amplitude 

at the fundamental open-circuit resonance frequency settles to 0.265 (m/s)/g (from the model).   

 

 
 

Fig. 4.14 Variation of the tip velocity with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever without a 

tip mass 

 

4.2 PZT-5H Bimorph Cantilever with a Tip Mass 

 

4.2.1 Experimental Setup. In order to investigate the effect of a tip mass and to demonstrate the 

validity of the model in the presence of a tip mass, a cube-shaped rectangular mass of 0.239 

                                                            
† The mechanical damping ratio was identified for this data point as can be recalled from Fig. 4.6a.  
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grams is attached at the tip of the PZT-5H bimorph cantilever investigated in the previous 

section (Fig. 4.15). The experimental setup and the devices used for the measurements are as 

described in Section 4.1.1. The purpose here is to introduce the tip mass information to the 

model directly and check the accuracy of the model predictions without changing the overhang 

length of the beam (as well as the clamping condition).  

 

 
 

Fig. 4.15 A view of the experimental setup for the PZT-5H bimorph cantilever with a tip mass 

(photo by A. Erturk, 2009) 

 

A close view of the PZT-5H bimorph cantilever with the tip mass is shown in Fig. 4.16a 

and a schematic showing the configuration with the tip mass is given by Fig. 4.16b. Tip mass is 

attached to the tip of the cantilever with a slight amount of wax (with negligible mass) such that 

the center line of the cube is at the tip of the beam. Each edge of the tip mass (simply a rare-earth 

magnet [60]) is 0.125 inch long ( 3.2a  mm). As the center line of the tip mass lies on the tip of 

the cantilever, the mass moment of inertia about the center axis of the bimorph is obtained from 

22

6 2
s

t t p

a ha
I M h

      
   

              (4.2) 

where 30.239 10tM   kg (measured), the first term inside the parenthesis is for the mass 

moment of inertia about the center axis of the cube and the second term is due to the parallel axis 

theorem [61] to account for the offset of the tip mass to one side.‡ Substituting the numerical data 

                                                            
‡ Although the offset of the tip mass is taken into account in calculating the mass moment of inertia to improve the 

model predictions, it can still be argued that the structural symmetry of the bimorph is distorted as the model in the 

previous chapter is given for a symmetrically located tip mass. It should be noted that the tip mass is a mathematical 

PZT-5H 
bimorph 
cantilever 

Tip mass 
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into Eq. (4.2), the mass moment of inertia at the tip is calculated as 91.285 10 kg.m2. Therefore, 

the numerical values of the mass and the mass moment of inertia at the tip are the only additions 

to the data of the previous section as listed in Table 4.4. Following the same procedure, the first 

step is to obtain the experimental tip velocity and voltage output FRFs for the load resistance of 

470  . 
 

                                     
 

Fig. 4.16 (a) A close view of the PZT-5H bimorph cantilever with a tip mass (photo by A. 

Erturk, 2009) and (b) a schematic view showing the geometric detail of the cube-shaped tip mass 

 

Table 4.4 Geometric and material properties of the PZT-5H bimorph cantilever with a tip mass 
 

 
Piezoceramic 

(PZT-5H)    

Substructure 

(brass) 

Length ( L ) [mm] 24.53 24.53 

Width (b ) [mm] 6.4 6.4 

Thickness ( ph , sh ) [mm] 0.265 (each) 0.140 

Tip mass ( ) [kg]tM  30.239 10  

Mass moment of inertia at the tip 2( ) [kg m ]tI   91.285 10  

Mass density ( p , s  ) [kg/m3] 7500 9000 

Elastic modulus ( 11
Ec , sY  )  [GPa] 60.6 105 

Piezoelectric constant ( 31e )  [C/m2]  -16.6 - 

Permittivity constant ( 33
S ) [nF/m] 25.55 - 

                                                                                                                                                                                                
singularity at x L  (normally associated with the Dirac delta function) and the analytical model takes it into 

account through the eigenvalues and normalization of the eigenfunctions. Although the symmetry distortion is a 

singularity only at the tip, it might be significant for a very large tip mass. This configuration is studied here to 

check whether the formulation still works by comparing the model predictions with the experimental results.   

0
j tW e 

(a) (b) 
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 Figure 4.17a shows the tip velocity and the voltage FRFs of the PZT-5H bimorph 

cantilever with a tip mass for the same frequency range as before (0-1000 Hz) by connecting the 

outermost electrodes to a resistive load of 470  . The resonance frequency of the fundamental 

mode is measured for this low value of load resistance is 338.4 Hz. For this tip mass (which is 

about 29 % of the overhang mass of the beam), the reduction of the fundamental short-circuit 

resonance frequency compared to that of the configuration without a tip mass is about 33 %. The 

coherence of the velocity FRF is very good and the reduction of the coherence in the voltage 

FRF is due to the low value of resistance as in the previous case. The clamp-related imperfection 

(recall Fig. 4.5) appears in the tip velocity and the voltage FRFs and it is to be ignored as the 

resonance frequency is sufficiently away from it. The set of resistors used in the experiments is 

the same as the one given by Table 4.2. 

 

 
 

Fig. 4.17 (a) Tip velocity and voltage output FRFs of the PZT-5H bimorph cantilever with a tip 

mass and (b) their coherence functions (for a load resistance of 470 ) 

 

4.1.2 Validation of the Electromechanical FRFs for a Set of Resistors. When the tip mass and 

the moment of inertia data are used in the model for a resistive load of 470  (which is close to 

short-circuit conditions), the fundamental resonance frequency of the PZT-5H bimorph 

cantilever with a tip mass is obtained as 338.5 Hz (with an error of 0.03 % compared to the 

experimental resonance frequency). Therefore, the analytical model predicts the resonance 

frequency shift due to the addition of the tip mass very accurately as shown in Fig. 4.18a. Since 

this work does not aim to verify the stationarity or the overall behavior of mechanical damping, 

the damping ratio of the original configuration without the tip mass is slightly tuned to 

(a) (b) 
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1 0.00845   in order to better match the peak amplitude in Fig. 4.18a. This damping ratio is 

then used in the analytical voltage FRF expression and the experimental voltage FRF shown in 

Fig. 4.18b is predicted with very good accuracy. Therefore, the model exhibits consistency 

between the vibration response and the electrical response in the presence of a tip mass as well. 

 

  
 

Fig. 4.18 Measured and predicted (a) tip velocity and (b) voltage output FRFs of the PZT-5H 

bimorph cantilever with a tip mass for a load resistance of 470  

 

To further study the performance of the electromechanical model, three particular resistive loads 

are investigated next: 1.2 k , 44.9 k  and 995 k . Figure 4.19 shows the tip velocity and the 

voltage FRFs for these resistive loads (with fixed mechanical damping). The trend is very similar 

to the previous case (bimorph without a tip mass). Compared to Fig. 4.7, both the vibration and 

the voltage amplitudes are larger in Fig. 4.19. The main reason is the increased forcing amplitude 

for the same acceleration input since the force amplitude in the base excitation problem of a 

cantilever is proportional to the mass of the structure according to Eq. (3.36). Once again, among 

the loads used here, 44.9 k  results in a very strong attenuation of the peak vibration amplitude. 

The electromechanical FRFs for these three resistive loads are successfully predicted in Fig. 

4.19. The experimentally measured fundamental short-circuit and open-circuit resonance 

frequencies are 338.4 Hz and 356.3 Hz and the model predicts these frequencies as 338.5 Hz and 

355.4 as listed in Table 4.5. Once again, although the error levels are very low for practical 

purposes, the primary theoretical sources of the slight inaccuracy in predicting the frequency 

shift are the possible inaccuracies of the piezoelectric and permittivity constants. Overestimation 

of the short-circuit resonance also results in underestimation of the frequency shift as mentioned 

(a) (b) 



 119

earlier. As an experimental source of error, the frequency increment of the data acquisition 

system for frequency range of interest is 0.325 Hz. 

 

 
 

 
 

 
 

Fig. 4.19 Measured and predicted tip velocity and voltage output FRFs of the PZT-5H bimorph 

cantilever with a tip mass for various resistors: (a) 1.2 k , (b) 44.9 k  and (c) 995 k  

 

(a) 

(b) 

(c) 
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Table 4.5 Fundamental short-circuit and open-circuit resonance frequencies of the PZT-5H 

bimorph cantilever with a tip mass 
 

Fundamental resonance frequency Experiment Model % Error 

1
scf (short circuit) [Hz] 338.4 338.5 +0.03 

1
ocf (open circuit) [Hz] 356.3 355.4 -0.25 

  

Figures 4.20 and 4.21, respectively, display the tip velocity and the voltage output FRFs 

of the PZT-5H bimorph cantilever with a tip mass for all values of load resistance used here. 

Variation of the peak amplitudes and the resonance frequencies are successfully predicted in 

both figures. The enlarged views of the voltage, current, power and the tip velocity FRFs for the 

frequency range of 200-500 Hz are given in Fig. 4.22, where the variation of the resonance 

frequency with load resistance is better visualized. All together with these graphs, one can 

conclude that the model can successfully predict the amplitude-wise and the frequency-wise 

coupled system dynamics of the bimorph cantilever in the presence of a tip mass as well.  

 

 
 

Fig. 4.20 Tip velocity FRFs of the PZT-5H bimorph cantilever with a tip mass for 12 different 

resistive loads (ranging from 470   to 995 k ) 
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Fig. 4.21 Voltage output FRFs of the PZT-5H bimorph cantilever with a tip mass for 12 different 

resistive loads (ranging from 470   to 995 k ) 

 

 
 

 
 

Fig. 4.22 Enlarged views of the (a) voltage output, (b) current output, (c) power output and (d) 

tip velocity FRFs of the PZT-5H bimorph cantilever with a tip mass for 12 different resistive 

loads (ranging from 470   to 995 k ) 

(a) (b) 

(c) (d) 
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4.2.3 Electrical Performance Diagrams at the Fundamental Short-Circuit and Open-

Circuit Resonance Frequencies. In the electromechanical curves plotted in Fig. 4.22, the focus 

is placed on the amplitude-wise results for excitations at the fundamental short-circuit and open-

circuit resonance frequencies. 

 Variations of the voltage amplitude at these two frequencies are plotted in Fig. 4.23 along 

with the experimental data points for the 12 resistive loads. The analytical curve agrees very well 

with the experimental data points and the analytical asymptotes of lR   for excitations at the 

short-circuit and the open-circuit resonance frequencies are 4.2 V/g and 24.7 V/g, respectively.    

 

 
 

Fig. 4.23 Variation of the voltage output with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever with a tip 

mass 

 

 The current versus load resistance diagrams for excitations at the fundamental short-

circuit and open-circuit resonance frequencies are plotted in Fig. 2.24, where the asymptotes of 

0lR   for these frequencies are 435 A/g  and 75 A/g , respectively.  
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Fig. 4.24 Variation of the current output with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever with a tip 

mass 

 

 The analytical power versus load resistance diagrams are shown in Fig. 4.25 for 

excitations at the fundamental short-circuit and open-circuit resonance frequencies of the PZT-

5H bimorph with a tip mass. The analytical curves exhibit good agreement with the experimental 

data points and predict a peak power amplitude of 0.46 mW/g2 for the optimum resistive loads of 

9.7 k  and 331 k , respectively, at the fundamental short-circuit and open-circuit resonance 

frequencies. These exact values of the predicted optimum loads are not available in the set of 

resistors used here. The experimental results for the nearest resistive loads are 0.460 mW/g2 for 

9.9 k  at the short-circuit resonance frequency and 0.463 mW/g2 for 319.2 k  at the open-

circuit resonance frequency. These resistors are very close to the optimum ones and their power 

outputs are in good agreement with the predicted maximum power output. 

With the volume of the tip mass, the overhang volume of the cantilever becomes 0.137 

cm3 and the overhang mass becomes 1.061 grams. Therefore the maximum power density of this 

configuration for resonance excitation is about 3.4 mW/(g2cm3) and the maximum specific 

power output is about 0.43 mW/(g2g).  

 



 124

 
 

Fig. 4.25 Variation of the power output with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever with a tip 

mass 

 

4.2.4 Vibration Response Diagrams at the Fundamental Short-Circuit and Open-Circuit 

Resonance Frequencies. Variation of the tip velocity amplitude with load resistance for 

excitations at the short-circuit and the open-circuit resonance frequencies are plotted in Fig. 4.26. 

At the fundamental short-circuit resonance frequency, the experimental vibration amplitude of 

0.296 (m/s)/g for 470   is attenuated to 0.054 (m/s)/g as the load resistance is increased to 995 

k . The model predicts these amplitudes as 0.296 (m/s)/g§ and 0.055 (m/s)/g, respectively. For 

lR  , the vibration amplitude at the fundamental short-circuit resonance frequency converges 

approximately to the same amplitude: 0.055 (m/s)/g. For excitation at the open-circuit resonance 

frequency, the experimental vibration amplitude of 0.048 (m/s)/g for 470   increases to 0.242 

(m/s)/g for 995 k . The model predicts these two amplitudes as 0.051 (m/s)/g and 0.246 

(m/s)/g, respectively. As lR   in the model, the vibration amplitude at the fundamental open-

circuit resonance frequency reaches 0.327 (m/s)/g. 

 

                                                            
§ This is the data point that was used for the identification of modal mechanical damping.  



 125

 
 

Fig. 4.26 Variation of the tip velocity with load resistance for excitations at the fundamental 

short-circuit and open-circuit resonance frequencies of the PZT-5H bimorph cantilever with a tip 

mass 

 

4.2.5 Model Predictions with the Point Mass Assumption. In order to check the effect of the 

mass moment of inertia of the tip mass (therefore the rotary inertia of the tip mass), two 

fundamental simulations are performed using the model for the point mass assumption. That is, 

the mass of the tip attachment is considered in the model ( 30.239 10tM   kg), however, its 

mass moment of inertia is ignored ( 0tI  ). 

 Figures 4.27a and 4.27b, respectively, display the voltage FRFs and the tip velocity FRFs 

of the experimental measurements along with the model predictions including and excluding the 

rotary inertia of the tip mass. As can be expected, when the rotary inertia of the tip mass is 

neglected, the fundamental short-circuit resonance frequency is overestimated (as 340.2 Hz 

compared to the analytically obtained value of 338.5 in the presence of the rotary inertia and the 

experimental value of 338.4 Hz). Since the open-circuit resonance frequency was slightly 

underestimated for the case with the rotary inertia of the tip mass, it is now slightly 

overestimated with the point mass assumption. These data are given in Table 4.6. Once again, 

the frequency shift from the short-circuit to the open-circuit conditions depends on the 

piezoelectric and permittivity constants. Therefore the accuracy of the prediction with the point 

mass assumption should be checked considering the short-circuit resonance frequency. The 

short-circuit resonance frequency obtained from the analytical model with the point mass 
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assumption overestimates the experimentally measured short-circuit resonance frequency by 0.5 

%. This error is reduced to 0.03 % when the mass moment of inertia of the tip mass is included 

in the model. 

 

 
 

Fig. 4.27 Comparison of the voltage FRFs predicted with and without considering the rotary 

inertia of the tip mass 

 

 
 

Fig. 4.28 Comparison of the tip velocity FRFs predicted with and without considering the rotary 

inertia of the tip mass 
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Table 4.6 Fundamental short-circuit and open-circuit resonance frequencies of the PZT-5H 

bimorph cantilever with a tip mass in the presence and absence of the tip rotary inertia 
 

Fundamental resonance 

frequency 
Experiment 

Model  

(with rotary inertia) 

Model  

(with rotary inertia) 

1
scf (short circuit) [Hz] 338.4 338.5 340.2 

1
ocf (open circuit) [Hz] 356.3 355.4 357.0 

 

4.2.6 Performance Comparison of the PZT-5H Bimorph without and with the Tip Mass. 

The electrical performance comparisons of the PZT-5H bimorph cantilever without and with the 

tip mass are given in this section. Table 4.7 shows the detailed performance results for the 

maximum power output (along with the respective optimum values of load resistance), the 

maximum voltage (for lR  ) and the maximum current (for 0lR  ) outputs at the 

fundamental short-circuit and open-circuit resonance frequencies. The maximum power density 

and the specific power values are also given. It is observed that the maximum power output for 

resonance excitation increases by a factor of more than 2 for resonance excitation with the tip 

mass attachment. For both resonance frequencies (short-circuit and open-circuit), the optimum 

load that gives the maximum power output increases considerably in the presence of the tip 

mass. As will be seen in Chapter 5, the optimum load is inversely proportional to the undamped 

natural frequency for resonance excitation. Therefore, the increase in the optimum load due to 

the reduction in the resonance frequency is expected. It is worth noticing that the increase in the 

maximum values of the current output is not as substantial as the increase in the maximum 

voltage. The power density calculation accounts for the additional volume of the tip mass and it 

exhibits an increase of about 61% (from 2.1 mW/cm3g2 to 3.4 mW/cm3g2). The specific power 

calculation includes the additional mass of the tip attachment and it exhibits an increase of 59 % 

(from 0.27 mW/(g2g) to 0.43 mW/(g2g)).   
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Table 4.7 Electrical performance comparisons of the PZT-5H bimorph cantilever without and 

with a tip mass 
 

 Without the tip mass With the tip mass 

1
scf (experimental) [Hz] 502.5 338.4 

1
ocf (experimental) [Hz] 524.7 356.3 

Maximum power at 1
scf  [mW/g2] 0.22 0.46 

Optimum load at 1
scf  [k ] 7.6 9.7 

Maximum power at 1
ocf  [mW/g2] 0.22 0.46 

Optimum load at 1
ocf  [k ] 189 331 

Maximum voltage at 1
scf  [mV/g] 2.6 4.2 

Maximum voltage at 1
ocf  [mV/g] 12.8 24.7 

Maximum current at 1
scf  [ A/g ] 336 435 

Maximum current at 1
ocf  [ A/g ] 68 75 

Maximum power density [mW/(g2cm3)] 2.1 3.4 

Maximum specific power [mW/(g2g)] 0.27 0.43 

   

4.3 PZT-5A Bimorph Cantilever 

 

4.3.1 Experimental Setup. The last experimental case summarizes the analysis of a bimorph 

cantilever made of a different type of piezoceramic: PZT-5A. The brass-reinforced PZT-5A 

bimorph (T226-A4-203X) shown in Fig. 4.29 is manufactured by the same company [45]. It has 

the same overall geometric properties (Table 4.8) and it is also manufactured for the series 

connection of the oppositely poled layers (Fig. 3.1a). The main difference is due to the 

piezoceramic material. The reduced form of the typical PZT-5A properties are referred from 

Table B.2 in Appendix B (since the manufacturer provides limited data). The overhang length of 

the configuration shown in Fig. 4.29 is 25.35 mm and the laser vibrometer measures the response 

at a point that is approximately 23.2 mm away from the root ( 23.2vx L  mm in Eq. (4.1)). The 
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experimental setup used and the procedure followed for the frequency response measurements 

are identical to those of Section 4.1.1. The same set of resistors is used (Table 4.2). 

 

 
 

Fig. 4.29 A view of the experimental setup for the PZT-5A bimorph cantilever (photo by A. 

Erturk, 2009) 

 

 The two purposes of this section are to study a configuration with a different piezoelectric 

material (PZT-5A) and to investigate a wider frequency range to include a higher vibration mode 

(so that a demonstration using the single-mode FRFs can be presented). Therefore, the frequency 

bandwidth in the experiments is increased, which affects the frequency resolution (in an 

undesirable way) due to the limitations of the data acquisition system. For a frequency 

bandwidth of 0-5000 Hz, the frequency increment automatically becomes 1.5625 Hz (which 

should be taken into account as a source of error when comparing the model predictions).  

For a resistive load of 470  , the tip velocity and voltage FRFs of the bimorph cantilever 

are measured as shown in Fig. 4.30a. The FRFs are given in semi-log scale to view the second 

vibration mode (which has about an order of magnitude less amplitude compared to the first 

mode). The short-circuit resonance frequencies of the first and the second vibration modes are 

read from the voltage FRF as 456.6 Hz and 2921.9 Hz.  The coherence functions of these 

measurements are given in Fig. 4.30b. The coherence of the tip velocity measurements drops 

around the minimum between these vibration modes and after the second mode due to low 

amplitude vibration response (low signal from the laser vibrometer). The poor behavior of the 

coherence of the voltage measurement away from the resonance frequencies is due to the low 

PZT-5A 
bimorph 
cantilever 
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load resistance used deliberately to be close to short-circuit conditions. However, the frequencies 

around the peak values have acceptable coherence (close to unity). 
 

 
 

Fig. 4.30 (a) Tip velocity and voltage output FRFs of the PZT-5A bimorph cantilever and (b) 

their coherence functions (for a load resistance of 470 ) 

 

Table 4.8 Geometric and material properties of the PZT-5A bimorph cantilever 
 

 
Piezoceramic 

(PZT-5A)    

Substructure 

(brass) 

Length ( L ) [mm] 25.35 25.35 

Width (b ) [mm] 6.4 6.4 

Thickness ( ph , sh ) [mm] 0.265 (each) 0.140 

Tip mass ( ) [kg]tM  (none) 

Mass density ( p , s  ) [kg/m3] 7750 9000 

Elastic modulus ( 11
Ec , sY  )  [GPa] 61 105 

Piezoelectric constant ( 31e )  [C/m2]  -10.4 - 

Permittivity constant ( 33
S ) [nF/m] 13.3 - 

 

4.3.2 Validation of the Electromechanical FRFs for a Set of Resistors. When the numerical 

data given in Table 4.7 is used in the model, the tip velocity FRF of the 470   case is predicted 

as shown in Fig. 4.31a. The mechanical damping ratios of these two modes are identified using 

(a) (b) 
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the model as  1 0.00715   and 2 0.00740  . When these damping ratios are used in the 

voltage FRF expression, Fig. 4.31b is obtained. The voltage amplitude of the fundamental mode 

is predicted with good accuracy (as 0.12 V/g compared to the experimental value of 0.13 V/g) 

and that of the second mode is overestimated (as 0.036 V/g compared to the experimental value 

of 0.028 V/g) for the mechanical damping ratios identified from the tip velocity FRF. The short-

circuit resonance frequencies of the first and the second vibration modes are obtained using from 

the model as 466.2 Hz and 2921.3 Hz, respectively. Note that the noisy behavior in Figs. 4.31a 

and 4.31b away from the resonance frequencies correspond to the low coherence regions in Fig. 

4.30. The clamp-related imperfection is still in the FRFs (around 715 Hz) but it is sufficiently 

away from both vibration modes. 

 

 
 

Fig. 4.31 Measured and predicted (a) tip velocity and (b) voltage output FRFs of the PZT-5A 

bimorph cantilever for a load resistance of 470  

 

 For the set of resistors used in the experiments (Table 4.2), the voltage, current, power 

and the tip velocity FRFs are obtained as shown in Fig. 4.32. The overall analytical trends are in 

good agreement with the experimental measurements (similar to the theoretical case study given 

in Chapter 3). The amplitude-wise mismatch between the experimental and the analytical results 

is particularly around the second vibration mode of the electrical FRFs. It should be noted that 

the tip velocity FRF matches the experimental FRF better than the voltage FRF around the 

second mode. One reason of the mismatch around the second mode in the voltage FRF (and in 

the electrical FRFs derived from the voltage FRF) might be the low level of the voltage output 

from the second vibration mode in the experiments. Another experimental source of error might 

(a) (b) 
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be non-modeled imperfections in the bimorph that is more pronounced at high frequencies (since 

the low frequency voltage predictions match perfectly around the first mode), such as possible 

symmetry distortion in the structure or a relatively elastic behavior of the bonding layers that 

becomes more important with a mode shape of larger cross-section rotation (the second mode 

shape compared to the first mode shape).  

 

 
 

 
 

Fig. 4.32 Electromechanical FRFs of the PZT-5A bimorph cantilever: (a) voltage output, (b) 

current output, (c) power output and (d) tip velocity FRFs for 12 different resistive loads 

(ranging from 470   to 995 k ) 

 

The frequency-wise predictions for the PZT-5A bimorph cantilever are listed in Table 

4.9. The absolute value of the relative error in the model predictions is less than 0.6 %, meaning 

that the Euler-Bernoulli theory works well even around the second natural frequency of this thin 

structure. It should also be noted that for the large frequency band considered here, the 

(a) (b) 

(c) (d) 
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experimental frequency increment in the measured FRFs is relatively coarse (1.5625 Hz) for this 

data acquisition system as mentioned previously.  

 

Table 4.9 First two short-circuit and open-circuit resonance frequencies of the PZT-5A 

bimorph cantilever 
 

Resonance frequency Experiment Model % Error 

1
scf (short circuit) [Hz] 465.6 466.2 +0.13 

1
ocf (open circuit) [Hz] 484.4 481.7 -0.56 

2
scf (short circuit) [Hz] 2921.9 2921.3 -0.02 

2
ocf (open circuit) [Hz] 2954.7 2952.3 -0.08 

 

4.3.3 Comparison of the Single-mode and Multi-mode Electromechanical FRFs. It is a 

useful practice to check the performances of the single-mode electromechanical FRFs given by 

Eqs. (3.108) and (3.111) for modes 1 and 2 briefly. When 1r   is used in the single-mode 

voltage FRF given by Eq. (3.108), the experimental voltage behavior is predicted as shown in 

Fig. 4.33a. Substituting 2r   into the same expression gives the single-mode curves shown in 

Fig. 4.33b. Note that these two separate single-mode representations (for mode 1 and mode 2 

independently) are approximately valid around the respective resonance frequencies only. Figure 

4.33a lacks the information of all vibration modes other than the fundamental vibration mode 

whereas Fig. 4.33b has the information of the second vibration mode only.  

As discussed in the theoretical case study of Chapter 3, the effects of the neighboring 

modes are lost in the single-mode representations. The fundamental single-mode open-circuit 

resonance frequency is slightly overestimated as 484.3 Hz compared to the multi-mode case in 

Fig. 4.33a. The single-mode open-circuit resonance frequency of the second mode in Fig. 4.33b 

is also slightly overestimated compared to the multi-mode solution as 2953 Hz. In this case 

study, these open-circuit resonance frequencies of the single-mode prediction agree better with 

the experimental measurement compared to the multi-mode counterparts. However, one should 

note that the experimental results are not necessarily perfectly accurate. Secondly, it is very 

likely that the inaccuracy of the single-mode representation (due to excluding the residuals of the 
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neighboring modes) might be compensating the possible inaccuracy of the frequency shift 

prediction (which depends on the piezoelectric and the permittivity constants). 

 

 

 
 

Fig. 4.33 Prediction of the modal voltage frequency response using the single-mode FRFs for (a) 

mode 1 and (b) mode 2 of the PZT-5A bimorph cantilever 

  

Single-mode predictions of the tip velocity FRFs are shown in Fig. 4.34. As in the case of 

Fig. 4.33, the single-mode representations in Fig. 4.34a are valid strictly around the fundamental 

resonance frequency only whereas the single-mode representations in Fig. 4.34b are given for a 

narrow band around the resonance frequency of the second vibration mode only. 

 

(a) 

(b) 



 135

 

 
 

Fig. 4.34 Prediction of the single-mode tip velocity frequency response using the single-mode 

FRFs for (a) mode 1 and (b) mode 2 of the PZT-5A bimorph cantilever 

 

4.4 Summary and Conclusions 

 

The analytical solutions derived in the previous chapter are validated for various experimental 

cases. The first experimental case is given for a brass-reinforced PZT-5H bimorph cantilever 

without a tip mass. After validating the analytical model predictions using the voltage, current, 

power and the tip velocity FRFs for this configuration and providing an extensive 

electromechanical analysis, a tip mass is attached to create a configuration for the second case 

study. The variations of the fundamental short-circuit and open-circuit resonance frequencies 

after the attachment of the tip mass are successfully predicted by the model. Performance 

(b) 

(a) 
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diagrams for excitations at the fundamental short-circuit and open-circuit resonance frequencies 

are extracted for both configurations (without and with the tip mass) and comparisons are made. 

Improvement of the overall power output (as well as the power density and the specific power) 

due to the addition of a tip mass is shown. The analytical model predicts the electrical and the 

mechanical response with very good accuracy for all values of load resistance. Effect of the 

rotary inertia of the tip mass is also studied by providing further analytical simulations with the 

point mass assumption. It is shown that the resonance frequencies can be overestimated if the 

rotary inertia of the tip mass is neglected. The damping effect of piezoelectric power generation 

is discussed in detail based on the experimental measurements and the model predictions. The 

final case study is given for a PZT-5A bimorph cantilever and the frequency range of interest is 

increased to cover the second vibration mode as well. Predictions of the multi-mode and the 

single-mode FRFs are provided (for the first two modes independently) and good agreement is 

observed with the experimental results.   
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CHAPTER 5 

 

DIMENSIONLESS SINGLE-MODE ELECTROMECHANICAL 

EQUATIONS, ASYMPTOTIC ANALYSES AND CLOSED-FORM 

RELATIONS FOR PARAMETER IDENTIFICATION AND 

OPTIMIZATION 

 

In this chapter, mathematical analyses of the single-mode electromechanical equations are 

presented. Among the four FRF defined in Chapter 3, focus is placed on the voltage output and 

the vibration response FRFs per translational base acceleration. The single-mode relations are 

first expressed in the modulus-phase form and then they are represented with dimensionless 

terms for convenience. The asymptotic trends of the voltage output and the tip displacement 

FRFs are investigated and relations are obtained for the extreme conditions of load resistance. 

Using the asymptotic FRFs, the resonance frequencies of the voltage and the tip displacement 

FRFs are obtained and it is shown that they can be different. The linear asymptotes of the voltage 

and vibration response (at a fixed frequency) observed in the previously given theoretical and 

experimental case studies are mathematically verified here and the equations of these linear 

asymptotes are obtained. Closed-form expressions for the optimum electrical loads of the 

maximum power generation at the short-circuit and the open-circuit resonance frequencies at 

extracted. It is mathematically proven that, for excitations at these two frequencies, the 

intersections of the linear voltage asymptotes occur at the respective optimum load resistance. 

Using this result, a simple technique is introduced to identify the optimum load resistance of a 

piezoelectric energy harvester using a single resistive load with the open-circuit voltage 

measurement. The asymptotes of the vibration resonance are also studied and expressions are 

derived to estimate the percentage vibration attenuation/amplification at the short/open-circuit 

resonance frequency as the load resistance is increased from the short-circuit to the open-circuit 

conditions. An experimental case is visited to validate the major equations derived here. It should 

be noted that, all the derivations given here are based on the single-mode approximation and they 

are valid around the respective modal frequency (which is the fundamental natural frequency in 

most practical applications).  
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5.1 Equivalent Dimensionless Representation of the Single-mode Electromechanical FRFs 

 

5.1.1 Complex Forms. Recall from the equivalent representations of the single-mode 

electromechanical equations presented for bimorph energy harvesters given by Eqs. (3.107) and 

(3.110) that 
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Here, the electromechanical coupling term r  and the equivalent capacitance term eq
pC   are read 

from Table 3.1 for the series or parallel connection cases of the piezoceramic layers. According 

to Eqs. (5.1) and (5.2),  ̂  ,  ̂  , ˆ( , )x   and ˆ ( , )x  , respectively, are the single-mode 

voltage output – to – translational base acceleration, voltage output – to – rotational base 

acceleration, displacement response – to – translational base acceleration and the displacement 

response – to – rotational base acceleration FRF. These expressions are the complex forms of the 

single-mode electromechanical FRFs.  

For convenience, in the following, the focus is placed on the FRFs for the translational 

acceleration input (i.e.  ̂   and ˆ( , )x  ), and once can easily obtain the counterparts for 

 ̂   and ˆ ( , )x   simply by replacing r  with r . It is very important to note that, the single 

mode relations derived in the following are approximately valid only around the natural 

frequency ( r ) of the respective vibration mode. 
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5.1.2 Modulus-Phase Forms. The single-mode voltage FRF can be expressed in the modulus-

phase form as  

     ˆ ˆ je                 (5.7) 

where the modulus (magnitude) of the FRF is 
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and the phase (the argument) is the phase between the base acceleration and the voltage output 
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where sgn stands for the signum function. The single-mode tip displacement FRF is then 

( , )ˆ ˆ( , ) ( , ) j xx x e                 (5.10) 

where its modulus and the phase are
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5.1.3 Dimensionless Forms. Some of the terms in the modulus and phase of the voltage FRF can 

be put into a dimensionless form to give 
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Similarly, the modulus and the phase of the tip displacement FRF become 
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In Eqs. (5.13)-(5.16), the dimensionless terms are 
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Note that the voltage modulus given by Eq. (5.113) is dimensional due to /r   (with the unit of 

[Vs2/m]) whereas the tip displacement modulus given by Eq. (5.15) is dimensional due to 21/ r  

(and it has the unit of [s2]).  

 

5.2 Asymptotic Analyses, Resonance Frequencies and Closed-form Expressions for 

Parameter Identification and Optimization 

 

5.2.1 Short-circuit and Open-circuit Asymptotes of the Voltage FRF. Equation (5.13) can be 

rewritten as 
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Taking the limit as 0r   yields the following expression for very small values of load 

resistance:* 

                                                            
* Note that, 0

r
   implies 0

l
R   (close to short-circuit conditions) and 

r
    implies 

l
R    (close to 

open-circuit conditions) according to Eq. (5.17).  
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The limit as r   leads to the following relation for very large values of load resistance: 
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Here, subscripts sc and oc stand for the short-circuit and the open-circuit conditions. Equations 

(5.22) and (5.23) represent the moduli of the voltage FRF for the extreme cases of the load 

resistance ( 0lR   and lR  , respectively). It is useful to note that the short-circuit voltage 

asymptote depends on the load resistance linearly whereas the open-circuit voltage asymptote 

does not depend on the load resistance.†  

 

5.2.2 Short-circuit and Open-circuit Asymptotes of the Tip Displacement FRF. The modulus 

of the tip displacement FRF can be re-expressed to give 

 
 

    
1/22 2

1/22 22 2 2 3

( ) 1
ˆ ,

1 2 2 1

r r

r r r r r r

f x
x

 
 

          




          

 


    
          (5.24) 

The asymptotic FRF behaviors at the short-circuit and the open-circuit conditions are 

         

   
   

1/20 2 22 2

( )
ˆ ˆ, lim ,

1 2
r

r

sc

r r

f x
x x


   

   


 
    


 

 
                   (5.25) 

        

   
    1/22 22 2

( )
ˆ ˆ, lim ,

1 2
r

r

oc

r r r

f x
x x


   

    


 
    


 

 
                  (5.26) 

Note that the short-circuit and the open-circuit asymptotes obtained for the vibration response of 

the beam do not depend on the load resistance. 

 

                                                            
† The asymptotes of the current FRFs are not discussed here and they can easily be derived from the voltage 

asymptotes.  



 142

5.2.3 Short-circuit and Open-circuit Resonance Frequencies of the Voltage FRF. Having 

obtained the modulus of the voltage FRF for electrical loads close to short-circuit conditions, one 

can find its dimensionless resonance frequency ( res
vsc ) as 
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Therefore the dimensionless resonance frequency ( res
vsc ) of the voltage FRF for very low values 

of load resistance is simply unity.  

Similarly, the dimensionless resonance frequency ( res
voc ) of the voltage FRF for very large 

values of load resistance is obtained as  
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5.2.4 Short-circuit and Open-circuit Resonance Frequencies of the Tip Displacement FRF. 

Using the short-circuit asymptote of the tip displacement FRF, the dimensionless resonance 

frequency ( res
wsc ) of the tip displacement response for very low values of load resistance is 

obtained as 
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The dimensionless resonance frequency ( res
woc ) of the tip displacement FRF for very large 

values of load resistance is 
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
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   (5.30) 
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Note that, the dimensionless short-circuit resonance frequencies of the voltage and the tip 

displacement FRFs are not the same. The short-circuit resonance frequency of the voltage FRF 

does not depend on mechanical damping whereas the open-circuit resonance frequencies of both 

FRFs depend on mechanical damping.‡ Since the short-circuit and the open-circuit resonance 

frequencies are defined based on the voltage FRF in this work (where the focus is placed on the 

electrical response), one can express the single-mode approximations of these dimensionless 

frequencies as  

     

1sc
r                                        (5.31) 

         
 1/221 2oc

r r r                    (5.32) 

The dimensional forms are then 

      

sc
r r                              (5.33) 

          
 1/221 2oc

r r r r             (5.34) 

Therefore the resonance frequency shift in the voltage – to – base acceleration FRF as the load 

resistance is increased from 0lR   to lR   is 

         
 1/221 2 1oc sc

r r r r r              
       (5.35) 

According to Eq. (5.35), the resonance frequency shift from the short-circuit to the open-circuit 

conditions is proportional to r , which means from Eq. (5.18) that it is directly proportional to 

the square of the electromechanical coupling term ( 2

r ) and inversely proportional to the 

equivalent capacitance ( eq

pC  ) and square of the undamped natural frequency ( 2
r ). The resonance 

frequency shift is affected by the modal mechanical damping ratio ( r ) as well. 

 

5.2.5 Identification of Modal Mechanical Damping Ratio in the Presence of a Resistive 

Load. In the electromechanical system, one can identify the mechanical damping ratio either 

using the voltage FRF or using the vibration FRF. The following derivations provide closed-form 

expressions for the identification of mechanical damping at sc    in the presence of an 

                                                            
‡ The mechanically undamped short-circuit and open-circuit natural frequencies of the voltage and tip displacement 

FRFs, however, are identical, i.e. 1sc

r
   and  1/ 2

1oc

r r
    for 0

r
  .
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arbitrary load resistance using both approaches (which can also be given for oc
r    in a similar 

way). 

    In order to identify the modal mechanical damping ratio for an arbitrary but non-zero 

value of r , one can set 1   in the modulus of the voltage FRF given by Eq. (5.13) and obtain 

 
    1/22 2

/
ˆ 1

2 2

r r r r

r r r r r

   


    


 


         (5.36) 

where  ˆ 1  is known from the experimental measurement (i.e. it is the experimental data point 

used for damping identification). Equation (5.36) yields the following quadratic relation: 

   

2 0r rA B C                        (5.37) 

where 

   

2

2 2 24 1 ,  4 ,  
ˆ 1

r r r
r r r r r

r

A B C
      
 

 
       

 
                 (5.38) 

The positive root of Eq. (5.37) gives the modal mechanical damping ratio as 

  

 1/22 4

2r

B AC B

A


 
               (5.39) 

Although r  (the dimensionless measure of load resistance) is arbitrary in identifying the 

mechanical damping ratio from the mathematical point of view, physically, it should be large 

enough so that  ˆ 1  is a meaningful voltage measurement (i.e. not noise) with acceptable 

coherence (recall the discussions in Chapter 4).  

 Identification of the modal mechanical damping from the vibration measurement requires 

using Eq. (5.15). Let the frequency of interest be 1   again. Equation (5.15) becomes 

 

 
    

1/22

1/22 22

( ) 1
ˆ(1, )

2 2

r r

r r r r r r

f x
x




     




 


                (5.40) 

which yields the following alternative quadratic equation for r  

2 0r rA B C                      (5.41) 

where the coefficients are 
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2 2 2
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
    

 


    


          (5.42) 

The modal mechanical damping ratio is the positive root of Eq. (5.41) given by Eq. (5.39). Note 

that the value of ˆ(1, )x  at point x on the beam is the experimental data point used in the 

identification process (for  1  ). Unlike the case of mechanical damping identification using 

the voltage FRF, the external load resistance can be chosen very close to zero here (since such a 

load does not cause noise in the vibration FRF). Thus, for 0r  , Eq. (5.41) simplifies to the 

purely mechanical form of  

2

( )

ˆ2 (1, )

r

r

r

f x

x


 



                  (5.43) 

 

5.2.6 Electrical Power FRF. Using the dimensionless voltage FRF given by Eq. (5.13), the 

electrical power FRF is obtained as 

  

 
 

    

2

222 3

/ /
ˆ

1 1 2 2 1

r r r r l

r r r r r r

R   


        
 

          




  
  (5.44) 

For excitation at the short-circuit resonance frequency ( 1  ) the electrical power FRF is 

 

 
 

   

2

2 2

/ /
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r r r l

r r r r

R  

   
 

 


    (5.45) 

and for excitation at the open-circuit resonance frequency (  1/221 2r r     ), the electrical 

power FRF becomes 

    
      

2

1/22
2 22 2

/ /
ˆ 1 2

1 1 2 1 2 / 1 2 2 1

r r r r l
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r r r r r r r r r
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 

        
   

           


 (5.46) 

 

5.2.7 Optimum Values of Load Resistance at the Short-circuit and Open-circuit Resonance 

Frequencies. Equation (5.44) can be used in order to obtain the optimum load resistance for the 

maximum electrical power output at a given excitation frequency   (around the respective 
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resonance frequency). The problem of interest is the resonance excitation and one can use Eq. 

(5.31) for excitation at 1   to obtain 

    

 

 , 1

, 1
1/22

ˆ 1 1
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  
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



             (5.47) 

which is the optimum load resistance for excitation at the short-circuit resonance frequency. A 

similar practice can be followed for estimating the optimum load resistance for excitation at the 

open-circuit resonance frequency as 
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





 

(5.48) 

For excitations at the short-circuit and the open-circuit resonance frequencies, the optimum 

values of load resistance are inversely proportional to the capacitance and the undamped natural 

frequency. The electromechanical coupling and the mechanical damping ratio also affect the 

optimum load resistance. The optimum resistive loads obtained in Eqs. (5.47) and (5.48) can be 

back substituted into Eqs. (5.45) and (5.46) to obtain the maximum power expressions for 

excitations at these two frequencies. 

 

5.2.8 Vibration Attenuation from the Short-circuit to the Open-circuit Conditions. Consider 

the asymptotic vibration response FRFs defined for point x on the beam given by Eqs. (5.25) and 

(5.26). The ratio of the response amplitude at the open-circuit conditions to the response 

amplitude at the short-circuit conditions at frequency   is 
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                             (5.49) 

Therefore the percentage variation of the vibration amplitude as the load resistance is increased 

from 0lR   to lR   is 
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                         (5.50) 

For excitation at the short-circuit resonance frequency ( 1  ): 
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                                (5.51) 

yielding a percentage vibration attenuation of  
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The percentage of vibration amplification for excitation at the open-circuit resonance frequency 

(due to an increase of the load resistance from 0lR   to lR  ) can be obtained by 

substituting  1/221 2r r     into Eq. (5.49) as 
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               (5.53) 

Hence the percentage vibration amplification at the open-circuit resonance frequency is 
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                (5.54) 

 

5.3 Intersection of the Voltage Asymptotes and a Simple Technique for Identification of the 

Optimum Load Resistance from Experimental Measurements 

 

5.3.1 On the Intersection of the Voltage Asymptotes for Resonance Excitation. It was 

noticed both in the theoretical case study of Chapter 3 and in the experimental case studies of 

Chapter 4 that the asymptotic trends in the voltage FRF are linear, in agreement with Eqs. (5.22) 

and (5.23). This observation leads to an interesting result if one further examines these linear 

asymptotes at the short-circuit and the open-circuit resonance frequencies. 
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     Substituting 1   into the short-circuit voltage asymptote gives 
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                    (5.55) 

Similarly, substituting  1   into the open-circuit voltage asymptote yields 
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Clearly, these asymptotes intersect at a finite but non-zero value of the dimensionless load 

resistance  
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and the dimensional form of this load resistance is 
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which is nothing but the optimum load resistance for excitation at the short-circuit resonance 

frequency as derived from the power FRF in Eq. (5.47). 

 Substituting  1/221 2r r      into the short-circuit voltage asymptote gives 
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             (5.59) 

Likewise, using  1/221 2r r      in the open-circuit voltage results in 
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 (5.60) 

The intersection of the voltage asymptotes for excitation and the open-circuit resonance 

frequency gives 
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which has the dimensional form of 
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             (5.62) 

The load resistance of the intersection point given by Equation (5.62) is the optimum load 

resistance for excitation at the open-circuit resonance frequency as derived in Eq. (5.48). 

 

5.3.2 A Simple Technique for the Experimental Identification of the Optimum Load 

Resistance for Resonance Excitation. The observation given in the previous section leads to a 

very simple technique for identifying the optimum load from the experimental voltage 

measurements at 1   or at  1/221 2r r     . It is often required to do a resistor sweep to 

identify the optimum load resistance in the experiments. Either a variable resistor or a set of 

several resistors is used for this purpose (as done in Chapter 4). Based on the observation given 

in the previous section, a technique for identifying the optimum load resistance using only one 

resistor along with an open-circuit voltage measurement is proposed here.  

It is noted in the previous section is that the intersections of the voltage asymptotes for 

excitations at the short-circuit and the open-circuit resonance frequencies correspond to the 

respective optimum loads. Suppose that the experimentalist has fixed the excitation frequency to 

one of these two frequencies for identifying the optimum load resistance under a certain 

excitation amplitude. The horizontal asymptote of the open-circuit conditions is simply obtained 

from the open-circuit voltage measurement (a horizontal line with the amplitude of ocv ). Then, a 

low value of resistance is chosen ( *
lR ), and the respective voltage output ( *v ) is measured.§ Since 

the voltage output for zero load resistance (starting point of the short-circuit asymptote) is zero, 

one has the short-circuit asymptote, which has a slope of * */ lv R . The value of load resistance for 

which this line intersects the open-circuit voltage amplitude is the optimum load resistance. The 

                                                            
§ This test resistor of relatively low resistance should be on the linear asymptote. That is, it should be considerably 

lower than the optimum load (which is unknown). Usually, for configurations similar to the ones covered in the 

experimental cases of Chapter 4, a resistive load in the range of 10-100   is sufficiently low. One can check with 

two different (low-valued) resistive loads to guarantee that the slope ( * */
l

v R ) is the same (so that the measurements 

are noise-free and on the linear asymptote).  
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problem is reduced to a problem of two similar triangles as depicted in Fig. 5.1. The optimum 

load resistance is obtained from this schematic as 

       *
*

opt oc
l l

v
R R

v
          (5.63) 

For an accurate open-circuit voltage measurement and a resistor chosen in the region of the 

linear asymptote, the foregoing approach provides predictions with very good accuracy (both at 

the short-circuit and the open-circuit resonance frequencies). In order to check the accuracy, one 

can repeat the experiment for a second resistor and compare the results or do a fine tuning 

around the identified value.  

 

 

Fig. 5.1 Similar triangles describing the relationship between the voltage measurement ( *v ) at a 

low value of load resistance ( *
lR ), the open-circuit voltage output ( ocv ) and the optimum load 

resistance ( opt
lR ) for excitation at the short-circuit or open-circuit resonance frequency 

  

5.4 Experimental Validations for a PZT-5H Bimorph Cantilever  

 

This section revisits the case study for the PZT-5H bimorph cantilever of Section 4.1 (Fig. 5.2) 

for validation of the major single-mode relations derived in this chapter. Therefore the details 

related to this setup and the bimorph can be found in Chapter 4. Note that the following study 

focuses on the fundamental vibration mode ( 1r   in the single-mode equations). 
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Fig. 5.2 PZT-5H bimorph cantilever without a tip mass under base excitation (revisited – photo 

by A. Erturk, 2009) 

 

5.4.1 Identification of Mechanical Damping. As an alternative to identifying the mechanical 

damping ratio graphically by matching the peaks in the vibration FRF, here the voltage FRF is 

used along with the closed-form expression given by Eq. (5.39). For a resistive load of 470 , 

the experimental voltage amplitude at the short-circuit resonance frequency is 0.148 V/g. 

Therefore the experimental data point is  ˆ 1 0.148 / 9.81 0.0151   Vs2/m. For this resistive 

load and the remaining system parameters, the coefficients in Eq. (5.37) are 72.2857 10A   , 

899.097B  , and 71.5705 10C    . For these numbers, the modal mechanical damping ratio is 

obtained as 1 0.00880   which is very close to the one obtained in Section 4.1 by matching the 

peak amplitude of the vibration FRF using the multi-mode solution ( 1 0.00874  ).  

 

5.4.2 Fundamental Short-circuit and Open-circuit Resonance Frequencies. The fundamental 

short-circuit resonance frequency (or the voltage FRF) is simply the undamped natural frequency 

of the cantilever as obtained in Eq. (5.34):

 
1 1
sc  . The model predicts this frequency as 

1 502.6scf  Hz (where / 2sc sc
r rf   ). According to Eq. (5.34), the fundamental open-circuit 

resonance frequency depends on 1  in addition to 1 . For the given system parameters, one 

obtains 1 0.0940   from Eq. (5.18). The fundamental open-circuit resonance frequency is then 

1 525.7ocf  Hz (from 1 1.0459oc  ). This frequency overestimates the experimental value (524.7 

Resistive 
loads 

Electromagnetic 
shaker 

PZT-5H 
bimorph 
cantilever 

Small 
accelerometer 
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Hz) and the multi-mode analytical value (524.5 Hz). The reason single-mode solution deviates 

from the multi-mode solution is the effect of the residuals of the neighboring modes which are 

excluded in this approximation (and this is what makes the single-mode solution an 

approximation). The relative errors in the single-mode short-circuit and the open-circuit 

resonance frequencies are +0.02 % and +0.2 %, respectively.  

 

5.4.3 Amplitude and Phase of the Voltage FRF. The modulus and phase diagrams of the 

voltage FRFs for three different resistive loads (1.2 k , 44.9 k  and 995 k ) are obtained and 

compared against the experimental and the multi-mode model results. Figures 5.3a and 5.3b, 

respectively, are plotted using Eqs. (5.8) and (5.9) with the damping ratio identified using a 

single data point of the voltage FRF for 470  (Section 5.4.1). The modulus expression given by 

Eq. (5.8) predicts the experimental voltage amplitude successfully in Fig. 5.3a, and the slight 

inaccuracy is for the largest resistive load (due to the 0.2 % overestimation of the open-circuit 

resonance frequency). The phase diagrams of these curves are also predicted very well for all of 

these three resistive loads in Fig. 5.3b. It should be noted that these phase curves intersect each 

other at the fundamental short-circuit and open-circuit resonance frequencies. 

 

 
 

Fig. 5.3 (a) Amplitude and (b) phase diagrams of the voltage FRF for three different resistive 

loads: 1.2 k , 44.9 k  and 995 k  (experimental measurement, analytical multi-mode 

solution and analytical single-mode solution) 

 

5.4.4 Voltage Asymptotes for Resonance Excitation. For excitations the fundamental short-

circuit resonance frequency, the short-circuit and the open-circuit voltage asymptotes are 

(a) (b) 
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obtained using Eqs. (5.55) and (5.56), respectively. Variation of the single-mode voltage output 

with load resistance predicted using 1   in Eq. (5.21) is plotted in Fig. 5.4a along with the 

linear asymptotes. The prediction of the single-mode expressions agrees very well with the 

multi-mode solution and the experimental data. The short-circuit and the open-circuit asymptotes 

successfully represent the limiting trends as 0lR   and lR  . Equation (5.21) is plotted 

against load resistance for 1.0459   in Fig. 5.4b. The resulting single-mode curve exhibits 

good agreement with the multi-mode solution and the experimental data points. Both the single-

mode and multi-mode solutions as well as the experimental data points follow the single-mode 

asymptotes closely for 0lR   and lR  .  

  

 
 

Fig. 5.4 Voltage versus load resistance diagrams for excitations (a) at the short-circuit resonance 

frequency and (b) at the-open circuit resonance frequency (experimental measurements, 

analytical multi-mode solution, analytical single-mode solution and single-mode asymptotes) 

 

The accuracy of the single-mode prediction is better in Fig. 5.4a compared to its accuracy in Fig. 

5.4b (because the single-mode prediction of the open-circuit resonance is slightly more 

inaccurate). The values of load resistance at the intersections of the short-circuit and the open-

circuit asymptotes in Figs. 5.4a and 5.4b as 7.7 k  and 208 k , respectively. These are 

expected to be the single-mode estimates of the optimum load resistance for excitations at the 

fundamental short-circuit and open-circuit resonance frequencies as mathematically shown in 

Section 5.3.1.  

 

(a) (b) 
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5.4.5 Power vs. Load Resistance Diagrams and the Optimum Loads. Variation of the single-

mode power prediction with load resistance for excitation at the fundamental short-circuit 

resonance frequency is obtained by using 1   in Eq. (5.44). Similarly, substituting 1.0459   

into the same equation gives the single-mode power prediction at the fundamental open-circuit 

resonance frequency. These predictions are plotted in Figs. 5.5a and 5.5b, respectively, and both 

of them exhibit good agreement with the multi-mode solutions and the experimental data points. 

The slight inaccuracy in Fig. 5.5b is relatively distinguishable and it is because the single-mode 

predictions around the open-circuit resonance are less accurate. 

 

 
 

Fig. 5.5 Voltage versus load resistance diagrams for excitations (a) at the short-circuit resonance 

frequency and (b) at the-open circuit resonance frequency (experimental measurements, 

analytical multi-mode solution, analytical single-mode solution, single-mode asymptotes) 

 

The optimum values of load resistance for excitations at the short-circuit and the open-circit 

resonance frequencies are calculated by using Eqs. (5.47) and (5.48) as 7.7 k  and 208 k , 

respectively. Therefore, for excitation at the fundamental short-circuit resonance frequency, the 

single-mode estimate of the optimum load resistance is 7.7 k  whereas for excitation at the 

fundamental open-circuit resonance frequency, the single-mode estimate of the optimum load 

resistance is 208 k . These values overestimate the multi-mode estimates of 7.6 k  and 189 

k , respectively (referred from Section 4.1.3). 

 

5.4.6 Comment on the Optimum Load Resistance obtained from the Norton and Thévenin 

Representations of a Piezoceramic Layer. A frequently referred expression for the optimum 

(a) (b) 
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load resistance ( 1/opt eq
l r pR C   , e.g. in references [9,18]) gives the optimum values of load 

resistance for this cantilever at the fundamental short-circuit and open-circuit resonance 

frequencies as 41.8 k  and 40.1 k  (which are highly inaccurate compared to multi-mode 

predictions of 7.6 k  and 189 k  or the single-mode predictions of 7.7 k  and 208 k , 

respectively). The reason of this inaccuracy is the thermodynamic inconsistency behind the 

equation 1/opt eq
l r pR C  . This expression is obtained for the simple electrical engineering 

representation of a piezoceramic layer as an electrical source: either a current source in parallel 

with its internal capacitance (Norton representation) or a voltage source in series with its 

internal capacitance (Thévenin representation). One should note that the Norton representation 

was reached in the derivations steps of the analytical model (Fig. 3.2b). In Fig. 3.2b, if one 

assumes a constant current amplitude oscillating at frequency r  (i.e. ( ) rj t
p pi t I e  ) and 

proceeds to obtain the optimum load for maximum power generation using the circuit equation, 

that load turns out to be 1/opt eq
l r pR C  . However, note that the electric current in Eq. (3.28) is a 

function of the velocity response of the structure due to Eq. (3.29). Therefore, the current source 

in this Norton representation is not constant and it strongly depends on the load resistance 

because the vibration response strongly depends on the load resistance as shown both 

theoretically and experimentally in Chapters 3 and 4. Therefore, using 1/opt eq
l r pR C   implies 

that there is no shunt damping effect in the structure, i.e. there is no converse piezoelectric effect 

although one generates electricity with the direct piezoelectric effect. A figure demonstrating the 

meaning of ignoring piezoelectric coupling in the mechanical equation is shown in Fig. 5.6 for 

excitation at the fundamental short-circuit resonance frequency of the cantilever discussed here. 

As the load resistance is changed from the smallest load to the largest load, the correct peak of 

the power in the FRF increases, moves to the right (on the frequency axis) and then decreases. 

This trend is completely due to the feedback received in the mechanical domain. If the electrical 

term in the mechanical domain was artificially set equal to zero to simulate the aforementioned 

inconsistent scenario, the dashed curves in Figs. 5.6a and 5.6b are obtained. Therefore, if the 

piezoelectric coupling in the mechanical equation is ignored, the power amplitude in Fig. 5.6a 

increases much more than the real case (and there is no frequency shift). Indeed, when the 

variation of the peak power with load resistance is plotted as shown in Fig. 5.6, the optimum load 
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resistance turns out to be this incorrect estimate ( 1/opt eq
l r pR C  ) and the peak power is orders of 

magnitude larger than the experimental measurement as well as the model prediction with 

backward coupling in the mechanical equation.  

 

 
 

Figure 5.6 Comparison of the coupled and uncoupled distributed-parameter model predictions; 

(a) electrical power FRFs for 4 different resistive loads and (b) variation of the electrical power 

amplitude with load resistance for resonance excitation 

 

5.5 Summary and Conclusions  

 

Detailed mathematical analyses of the single-mode electromechanical relations are presented. 

Focus is placed on the voltage output and vibration response FRFs per translational base 

acceleration input. The complex forms single-mode relations derived in Chapter 3 (based on the 

multi-mode solutions) are first expressed in the modulus-phase form and then they are 

represented with dimensionless terms. After expressing the asymptotic trends of the single 

voltage and tip displacement FRFs, closed-form expressions are obtained for their short-circuit 

and open-circuit resonance frequencies. It is shown that the short-circuit resonance frequencies 

of the voltage FRF and the tip displacement FRF are slightly different. The linear asymptotes of 

the voltage and tip displacement for the extreme conditions of the load resistance (observed in 

the previous chapters) are mathematically verified here. Closed-form expressions for the 

optimum electrical loads for the maximum power generation at the short-circuit and the open-

circuit resonance frequencies at extracted. It is shown that, for excitations at these two 

(b) (a) 
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frequencies, the intersections of the linear voltage asymptotes correspond to the respective 

optimum load resistance. Based on this observation, a simple technique is introduced to identify 

the optimum load resistance of a piezoelectric energy harvester using a single resistive load 

along with an open circuit voltage measurement. Relations are given to estimate the variation of 

the tip vibration response as the load resistance is changed between the two extreme conditions. 

The experimental case study for a PZT-5H bimorph is revisited and the major closed-form 

relations derived here are validated. An important issue related to estimation of the optimum load 

resistance from the Norton and Thévenin representations of the piezoceramic is clarified. 
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CHAPTER 6 

 

EFFECTS OF MATERIAL CONSTANTS AND MECHANICAL 

DAMPING ON PIEZOELECTRIC ENERGY HARVESTING  

– A COMPARATIVE STUDY 

 

This chapter investigates the effects of material constants and mechanical damping on 

piezoelectric energy harvesting. The discussion is given here with a focus on the most popular 

monolithic piezoceramics (PZT-5A and PZT-5H) and the novel single crystals (PMN-PT and 

PMN-PZT).* The motivation of the following analysis is to understand the effects of 

piezoelectric, elastic and dielectric constants as well as mechanical damping on piezoelectric 

power generation and to clarify whether or not the substantially large piezoelectric strain 

constants (particularly the d31 constant) of single crystals result in a substantially large power 

generation performance compared to commonly employed monolithic piezoceramics. It is 

therefore aimed to check whether the well-known d31 constant alone is a sufficient parameter to 

choose an active material for piezoelectric energy harvesting. The performance comparisons 

made for this purpose are presented for PZT-5A, PZT-5H, PMN-PT (with 30% PT), PMN-PT 

(with 33% PT) and PMN-PZT type piezoelectric materials. Piezoelectric, elastic and dielectric 

properties of these active materials differ from each other considerably. Individual effects of 

these properties are investigated using the analytical model developed in this dissertation. The 

reduced properties of these piezoelectric materials are obtained based on the plane-stress 

assumption for a thin beam. The plane-stress constants are compared and the importance of the 

elastic compliance as well as its effect on the reduced piezoelectric constant are highlighted. The 

effect of mechanical damping on piezoelectric power generation is also discussed. An 

experimental comparison between a PZT-5A bimorph and a PZT-5H bimorph is given in order 

to verify some of the conclusions drawn here based on the analytical model simulations.  

                                                            
* PMN stands for lead magnesium niobate. 
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6.1 Properties of Typical Monolithic Piezoceramics and Single Crystals   

 

Typical properties of monolithic PZT-5A and PZT-5H can be found in several sources on the 

web [62] or the literature [63] and their data are listed in Appendix B. At room temperature, 

PZT-5A has 31 171d   pm/V (piezoelectric constant), 11 16.4Es  pm2/N (elastic compliance) and 

33 0/ 1700T    (dielectric constant) whereas PZT-5A has 31 274d   pm/V, 11 16.5Es  pm2/N and 

33 0/ 3400T    (where 0 8.854  pF/m is the absolute permittivity of free space [26]).  

The single-crystal technology is relatively new compared to the conventional PZT-5A 

and PZT-5H monolithic piezoceramics which are widely used in engineering applications. 

Limited literature is available for the material data of single-crystal piezoceramics. Cao et al. 

[64] reported the relevant constants for a PMN-PT with 30% PT as 31 921d   pm/V, 

11 52Es  pm2/N and 33 0/ 7800T    whereas they reported 31 1330d   pm/V, 11 69Es  pm2/N and 

33 0/ 8200T    for a PMN-PT with 33% PT. Properties of a relatively new single crystal PMN-

PZT are reported by the manufacturer [65] as (product: CPSC200-115) as 31 2252d   pm/V, 

11 127Es  pm2/N and 33 0/ 5000T   .†  

The relevant piezoelectric, elastic and dielectric data of these five different piezoelectric 

materials (PZT-5A, PZT-5H, PMN-PT with 30% PT, PMN-PT with 33% PT and PMN-PZT) are 

listed in Tables 6.1 and 6.2 along with the average value of each property. The mass densities of 

these piezoceramics are also given in Table 6.2. The effective piezoelectric, elastic and dielectric 

terms for the plane-stress conditions of a thin beam are also obtained (Appendix A.2) since the 

reduced forms of the three-dimensional constants determine the performance of a thin generator.  

As can be seen in Fig. 6.1, the piezoelectric constant 31d  increases by more than an order 

of magnitude from PZT-5A to PMN-PZT. It is observed that the large 31d  constant comes with 

large elastic compliance as plotted in Fig. 6.2. Approximately an order of magnitude difference 

is seen between the elastic compliance values of PZT-5A to PMN-PZT. 

 

                                                            
† Composition of this PMN-PZT [65] is the company’s proprietary information. 
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Table 6.1 Piezoelectric and elastic properties of different piezoceramics 
 

 31d [pm/V] 11
Es  [pm2/N] 31e  [C/m2] 

PZT-5A -171 16.4 -10.4 

PZT-5H -274 16.5 -16.6 

PMN-PT (30% PT) -921 52 -17.7 

PMN-PT (33% PT) -1330 69 -19.3 

PMN-PZT -2252 127 -17.7 

Average -989.6 56.2 -16.3 

 

 

Table 6.2 Mass densities and dielectric constants of different piezoceramics 
 

  [kg/m3] 33 0/T   33
S [nF/m] 

PZT-5A 7750 1700 13.3 

PZT-5H 7500 3400 25.6 

PMN-PT (30% PT) 8040 7800 52.7 

PMN-PT (33% PT) 8060 8200 47.0 

PMN-PZT 7900 5000 4.34 

Average 7850 5220 28.6 

 

 

 
 

Fig. 6.1 Variation of the piezoelectric strain constant for different piezoceramics 
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Fig. 6.2 Variation of the elastic compliance for different piezoceramics 

 

6.2 Reduced Piezoelectric, Elastic and Permittivity Constants for a Thin Beam 

 

For the plane-stress conditions of a thin beam, the elastic modulus at constant electric field is 

obtained from 11 111/E Ec s  whereas the effective piezoelectric stress constant is obtained from 

31 31 11/ Ee d s  (Appendix A.2). It is important to note that 31e  is the piezoelectric constant that 

appears in the reduced (plane-stress) piezoelectric constitutive relations of the analytical model 

(Chapter 3). The elastic modulus at constant electric field is simply the reciprocal of the elastic 

compliance shown in Fig. 6.2 and it is plotted in Fig. 6.3 for different piezoceramics. Clearly, the 

single-crystal piezoceramics with large 31d  constants have low elastic moduli. Since it is the 

product of  31d  and  11
Ec  (which exhibit opposite trends in Figs. 6.1 and 6.3), the plane-stress 

piezoelectric constant 31e  for the piezoceramics considered here have values of the same order of 

magnitude (Fig. 6.4). For instance, even though the 31d  constant of PMN-PZT is more than 10 

times that of PZT-5A, its 31e  constant is only 1.7 times that of the latter. From the mathematical 

point of view, 31d  never appears alone in the formulation given in Chapter 3. It is the 31e  

constant that appears in the coupling terms (i.e. the multiplication of 31d  and 11
Ec  for a thin 

beam). For this reason, very large 31d  constants of single-crystal piezoceramics might not 

necessarily imply very large power generation performance as the stiffness of the piezoceramic 

affects the resulting electromechanical coupling. The PMN-PT with 33% PT has the largest 31e  

among the samples considered here. 
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Fig. 6.3 Variation of the reduced elastic modulus for different piezoceramics 

 

Variation of the plane-stress permittivity at constant strain (obtained from 2
33 33 31 11/S T Ed s   ) is 

also plotted for different piezoceramics (Fig. 6.5). The dielectric constant  ( 33 0/T  ) increases 

from PZT-5A until PMN-PT with 33% PT in Table 2. However, the permittivity component at 

constant strain ( 33
S ) decreases after PMN-PT with 30% PT. It is interesting to note that the 

permittivity of PMN-PZT at constant strain is lower than that of all the other piezoceramics 

considered here. Mass densities of these piezoceramics are very similar to each other as shown in 

Fig. 6.6.      

   

 
 

Fig. 6.4 Variation of the reduced piezoelectric stress constant for different piezoceramics 
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Fig. 6.5 Variation of the reduced permittivity constant for different piezoceramics 

 

 
 

Fig. 6.6 Variation of the mass density for different piezoceramics 

 

6.3 Theoretical Case Study for Performance Comparison of Various Monolithic 

Piezoceramics and Single Crystals 

 

6.3.1 Properties of the Bimorph Cantilevers.  In this section, power generation performances 

of bimorph cantilevers with identical dimensions and substrate materials using PZT-5A, PZT-

5H, PMN-PT (with 30% PT and with 33% PT) and PMN-PZT are compared. The piezoceramic 

layers of each bimorph cantilever are assumed to be connected in parallel (Fig. 3.1b). The 

substrate material in all cases is aluminum with identical dimensions and properties ( 70Y  GPa, 

2700  kg/m3). For all cases considered here, the dimensions of the bimorph cantilever are as 

given in Table 6.3. 

 



 164

Table 6.3 Geometric properties of the bimorph cantilevers 
 

 Piezoceramic Substructure 

Length ( L ) [mm] 40 40 

Width (b ) [mm] 6 6 

Thickness ( ph , sh ) [mm] 0.2 (each) 0.1 

 

The bimorph energy harvester model developed in Chapter 3 (experimentally validated in 

Chapter 4) is used here. As the electrical load resistance is increased from zero to infinity, the 

resonance frequencies of a bimorph shift from the short-circuit resonance frequencies to the 

open-circuit resonance frequencies. The short-circuit resonance frequency sc
r  (for 0lR  ) of 

the r-th mode in the voltage FRF is the undamped natural frequency r  as shown in Chapter 5. 

As lR  , the resonance frequency moves to the open-circuit resonance frequency ( oc
r ). The 

short-circuit and the open-circuit resonance frequencies of the fundamental vibration mode           

( 1r  ) of the five bimorphs with identical dimensions are listed in Table 6.4 (where / 2f   ). 

Recall from Chapter 5 that the resonance frequency shift from the short-circuit to the open-

circuit conditions is as a measure of electromechanical coupling. Among the piezoceramics 

considered here, with the second largest 31e  constant and the smallest 33
S  (as well as the smallest 

r
 

due to low stiffness), expectedly, PMN-PZT bimorph exhibits the largest relative resonance 

frequency shift (recall Eq. (5.18)). 

 

Table 6.4 Short-circuit and open-circuit resonance frequencies of the bimorph cantilevers 
  

 
1
scf

 
[Hz]      

(short circuit) 

1
ocf

 
[Hz]      

(open circuit) 

PZT-5A cantilever 151.9 157.0 

PZT-5H cantilever 153.8 160.5 

PMN-PT (30% PT) cantilever 84.7 90.7 

PMN-PT (33% PT) cantilever 73.8 82.2 

PMN-PZT cantilever 55.8 83.6 
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6.3.2 Performance Comparison of the Original Configurations. Figure 6.7a displays the 

power versus load resistance curves of these five bimorphs for excitation at the short-circuit 

resonance frequency of each bimorph. The outputs are normalized with respect to the base 

acceleration (in terms of the gravitation acceleration, g). Note that the modal mechanical 

damping ratio is assumed to be identical ( 1 0.01  ) for all bimorphs. The PMN-PZT 

bimorph gives the largest power output (1.73 2mW / g ) and it is followed by the PMN-PT 

bimorph with 33% PT (1.33 2mW / g ) and the PMN-PT bimorph with 30% PT (1.15 

2mW / g ). The PZT-5A bimorph generates 0.61 2mW / g  whereas the PZT-5H bimorph 

generates 0.59 2mW / g . The order of the power outputs might seem to agree with the order 

of the 31d  constants (Fig. 6.1). However, in spite of its larger 31d  constant, the PZT-5H 

bimorph gives slightly lower power output compared to the PZT-5A bimorph. Moreover, the 

largest power is less than only three times the smallest power (unlike the order of magnitude 

difference between the 31d  constants).  

Due to the large variance of the elastic compliance constants (Fig. 6.2), the natural 

frequencies of the bimorphs differ considerably, except for the PZT-5A and PZT-5H 

bimorphs, which have similar elastic compliances. Figure 6.7b shows the tip vibration 

response of the bimorphs in short-circuit conditions. Clearly, as it has the lowest stiffness 

(and therefore the lowest natural frequency), PMN-PZT bimorph exhibits the largest dynamic 

flexibility. The tip deflection of the PMN-PZT bimorph at resonance is about 7.5 times that 

of the PZT-5H bimorph for the same mechanical damping ratio (without any electrical 

damping, since 0lR   in Fig. 6.7b). Therefore, since the power curves in Fig. 6.7a are 

obtained for the resonance excitation of each bimorph, it is not possible to claim that the 

order of the maximum power outputs in Fig. 6.7a is due to the order of the 31d  constants. In 

addition, the PZT-5A bimorph has larger mass (which affects the forcing term in the base 

excitation problem), it exhibits slightly larger dynamic flexibility at its resonance than PZT-

5H in Fig. 6.7b, which might be the reason of its larger power output in spite of its smaller 

31d  and 31e  constants. 
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Fig. 6.7 (a) Power vs. load resistance curves for excitation at the fundamental short-circuit 

resonance frequency of each bimorph and the (b) vibration FRFs of the bimorphs for 0lR   

( 1 1%   for all bimorphs) 

 

6.3.3 On the Effect of Piezoelectric Strain Constant. In order to understand the role of the 31d  

constant in piezoelectric power generation, 31 989.6d   pm/V is assumed for all bimorphs 

(which is the average of the 31d  constants of these five piezoceramics as shown in Table 6.1). 

The geometry of the bimorph and the modal mechanical damping ratio are unchanged. Figure 6.8 

shows the simulation results for this artificial case. The optimum loads are highly affected (as 

the optimum electrical load depends on electromechanical coupling) but the maximum power 

outputs are affected very slightly and the order of the power outputs is the same for the 

bimorphs. This observation supports the idea that the large power outputs in Fig. 6.7a are due to 

large dynamic flexibilities (originating from the large elastic compliance values) of the 

respective bimorphs at their individual resonances rather than the substantial difference in the 

31d  constants. 

(a) 

(b) 
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Fig. 6.8 Power versus load resistance curves for excitation at the fundamental short-circuit 

resonance frequency of each bimorph ( 1 1%   and 31 989.6d    for all bimorphs) 

 

6.3.4 On the Effect of Elastic Compliance. It is a useful practice to assume that all these 

bimorphs have the average compliance ( 11 56.2Es  pm2/N) and average mass density 

( 7850  kg/m3) values shown in Tables 6.1 and 6.2. Then the fundamental short-circuit 

resonance frequencies of these bimorphs become identical in this second artificial case. Thus, the 

dynamic flexibilities of these bimorphs for resonance excitation are expected to be very similar 

in this case. Along with the remaining parameters, 31d  values are kept at their original values and 

the power curves in Fig. 6.9a are obtained for resonance excitation. Figure 6.9b verifies that the 

dynamic flexibilities of these samples are indeed very similar for 0lR  . The maximum power 

output is obtained with the PMN-PZT bimorph as 1.16 2mW / g  and the minimum power output 

is obtained with the PZT-5A bimorph as 0.94 2mW / g . Therefore, in this particular case where 

the natural frequencies and therefore the dynamic flexibilities are forced to be identical, the 

power outputs of the bimorphs are in the same order of magnitude and they are indeed very 

similar to each other (yet the optimum loads differ considerably). 
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Fig. 6.9 (a) Power versus load resistance curves for excitation at the fundamental short-circuit 

resonance frequency of each bimorph and (b) vibration FRFs of the bimorphs for 0lR   

( 1 1%  , 11 56.2Es   and 7850  kg/m3 for all bimorphs) 

 

The discussion so far shows that the order of magnitude difference in the electrical power 

outputs is not like the order of magnitude difference between the 31d  constants. The electrical 

power outputs differ in the same order of magnitude (just like the 31e  constants) and the dynamic 

flexibility of the cantilever plays an important role. 

 

6.3.5 On the Effect of Permittivity Constant. The last artificial case is to assume that the 

constant stress dielectric constants are identical and equal to the average value given in Table 6.2 

( 33 0/ 5220T   ) to study how the difference in the relative permittivity affects the results. As can 

be seen in Fig. 6.10, the qualitative order (in terms of the amplitude-wise results) is not changed 

considerably compared to the original graph given by Fig. 6.7a except for the PZT-5A and PZT-

5H bimorphs. Now the PZT-5H bimorph gives slightly larger power output. Thus, the slightly 

larger power output of the PZT-5A bimorph (compared to the PZT-5H bimorph) in the original 

(a) 

(b) 
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case (Fig. 6.7a) might partially be due to its smaller relative permittivity, in addition to its 

slightly larger mass and dynamic flexibility.     

 

 
 

Fig. 6.10 Power versus load resistance curves for excitation at the fundamental short-circuit 

resonance frequency of each bimorph ( 1 1%   and 33 0/ 5220T  
 

for all bimorphs) 

 

6.3.6 On the Effect of the Overhang Length. For the original piezoelectric, elastic and 

dielectric properties of these bimorphs (Tables 6.1 and 6.2), it is possible to obtain the same 

short-circuit natural frequencies for different overhang lengths. Suppose that one is interested in 

designing these bimorphs for an excitation frequency of 60 Hz and the length dimension can be 

varied for this purpose (all the other parameters are the original parameters in Tables 6.1-6.3). In 

order to obtain a short-circuit resonance frequency of 60 Hz for the identical cross-sectional 

geometry described in Table 6.3, the lengths of the bimorphs must be as given in Fig. 6.11a. 

Note that the vibration response amplitudes of the bimorphs to the same excitation input are 

almost identical (Fig. 6.11b). Note that the original picture (Fig. 6.7) for the identical lengths (of 

40 mm) is now reversed in Fig. 6.11a. In this particular design problem of tuning the resonance 

frequency of a bimorph cantilever to an excitation frequency (with design flexibility in the length 

dimension), the PZT-5A and PZT-5H bimorphs generate larger power. Similar to the discussion 

given in Section 6.3.4 (identical elastic compliances), this demonstration also agrees with the fact 

that the larger power outputs of the single crystals in the original case of Fig. 6.7a are indeed due 

to their larger dynamic flexibilities depicted in Fig. 6.7b. When the overhang lengths of the 

bimorphs with monolithic piezoceramics are increased to achieve the same dynamic flexibility, 

the monolithic piezoceramics generate larger power according to Fig. 6.11a. 
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Fig. 6.11 (a) Power versus load resistance curves for excitation at the fundamental short-circuit 

resonance frequency of each bimorph and (b) vibration FRFs of the bimorphs for 0lR   

( 1 1%   and the lengths are chosen to satisfy 1 60 Hzscf   for all bimorphs) 

 

6.3.7 On the Effect of Mechanical Damping. The final discussion in this section demonstrates 

the sensitivity of the performance results to mechanical damping (which is not very easy to 

predict and control in practice). For the original parameters of this case study (which yield Fig. 

6.7a), if one assumes the damping ratios shown in Fig. 6.12 (instead of 1 1%   for all 

bimorphs), identical maximum power outputs are obtained. Note that these damping ratios are 

typical values one can identify in practice. Although the individual loss factors of the 

piezoceramic and the substructure layers can provide some insight, adhesive layers and clamped 

interfaces are important sources of mechanical damping which can dominate the damping due to 

the loss factors of the individual layers of a generator. The particular reason for the sensitivity of 

the results to mechanical damping is because the electrical power outputs already have the same 

order of magnitude. For instance, the favorable power output of the flexible PMN-PZT bimorph 

in Fig. 6.7a can become worse than that of the PZT-5H bimorph if the bonding layer and/or the 

clamped boundary of the PMN-PZT bimorph causes larger mechanical damping.  

(a) 

(b) 
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Fig. 6.12 Power versus load resistance curves for excitation at the fundamental short-circuit 

resonance frequency of each bimorph showing the sensitivity of the power output to mechanical 

damping ratio 

 

6.4 Experimental Demonstration for PZT-5A and PZT-5H Cantilevers  

 

6.4.1 Experimental Setup. A PZT-5A bimorph and a PZT-5H bimorph are tested under base 

excitation as shown in Fig. 6.13. The setup used for base excitation is very similar to the one 

described in Section 4.1.1 and the focus is placed here directly on the voltage frequency response 

measurements per base acceleration input. The excitation is provided using an electromagnetic 

LDS [66] shaker and the base acceleration is measured with a small PCB [47] accelerometer. 

The PZT-5A and PZT-5H bimorphs (T226-A4-203X and T226-H4-203X models) are 

manufactured by Piezo Systems, Inc. [45] and the properties of PZT-5A and the PZT-5H 

piezoceramics are listed in Tables 6.1 and 6.2. The layers of each bimorph are oppositely poled 

and the brass substructure layer provides electrical conductivity (for the series connection of the 

piezoceramic layers). When clamping these cantilevers, the overhang lengths are adjusted to 

have similar short-circuit resonance frequencies. The PZT-5A cantilever is clamped with an 

overhang length of 24.20 mm whereas the PZT-5H is clamped with an overhang length of 24.39 

mm.  
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Fig. 6.13 (a) PZT-5A and (b) PZT-5H bimorph cantilevers under base excitation (photos by A. 

Erturk, 2009) 

 

Table 6.5 Geometric properties of the PZT-5A and PZT-5H bimorph cantilevers 
  

 PZT-5A cantilever PZT-5H cantilever  

Length ( L ) [mm] 24.20 24.39 

Width (b ) [mm] 6.4 6.4 

Thickness ( ph , sh ) [mm] 0.265 (each) 0.140 

 

6.4.2 Identification of Mechanical Damping and Model Predictions. The fundamental short 

circuit resonance frequencies of the PZT-5A and PZT-5H cantilevers are measured for a 100  

load resistance as 511.3 Hz and 508.1 Hz. For this lowest value of load resistance, the 

mechanical damping ratios of the fundamental vibration mode are identified for the PZT-5A and 

the PZT-5H cantilevers as 1 0.0091   and 1 0.0141  , respectively. The possible sources of 

the difference in these identified damping ratios might be difference between the overall loss 

factors of the composite structures as well as slightly different clamping conditions in the 

experiments. As can be seen from Fig. 6.13, both cantilevers have non-conductive black tapes‡ at 

their roots, which might act as a source of uneven mechanical damping in these two separate 

                                                            
‡ These non-conductive tapes are preferred in the experiments not only to avoid shorting of the electrodes but also to 

minimize the possible stress concentration due to the direct contact of the aluminum clamp and the brittle 

piezoceramic layers. 

(a) (b) 
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configurations. Therefore these identified damping ratios are not purposely tuned and they are 

not easy to control. No effort has been made to obtain a similar mechanical damping effect in the 

experiments. 

The voltage FRFs of the PZT-5A cantilever obtained for a set of resistive loads (ranging 

from 100  to 248 k ) are shown in Fig. 6.14. The fundamental short-circuit resonance 

frequency of the PZT-5A cantilever is predicted by the model as 511.5 Hz. As the load resistance 

is increased from 100  to 248 k , the experimental value of the resonance frequency in Fig. 

6.14 moves to 528.1 Hz and the analytical model predicts this frequency as 527.9 Hz. Note that, 

for the bandwidth of 0-2000 Hz, the frequency resolution of the SigLab [49] data acquisition 

system automatically adjust itself to give a frequency increment is 0.625 Hz. Therefore, both the 

short-circuit and the open-circuit resonance frequency readings from the FRFs include 

experimental error as in the cases discussed in Chapter 4.  

 

 
 

Fig. 6.14 Voltage FRFs of the PZT-5A cantilever for a set of resistive loads (experimental 

measurements and model predictions) 

 

For the same set of load resistance, the model predictions for the PZT-5H cantilever are 

plotted in Fig. 6.15 along with the experimental voltage FRFs. The model prediction of the 

fundamental short-circuit resonance frequency is 508.4 Hz. In Fig. 6.15, as the load resistance is 

increased from 100  to 248 k , the experimental value of the resonance frequency moves to 

530.6 Hz and the model predicts this frequency as 530.3 Hz.  The short-circuit and the open-
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circuit resonance frequencies of the PZT-5A and PZT-5H cantilevers are listed in Table 6.6. 

Predictions of the analytical model are very good in both cases. 

 

 
 

Fig. 6.15 Voltage FRFs of the PZT-5H cantilever for a set of resistive loads (experimental 

measurements and model predictions) 

 

Table 6.6 Fundamental short-circuit resonance frequencies of the PZT-5A and PZT-5H bimorph 

cantilevers 
  

 PZT-5A cantilever PZT-5H cantilever 

Experiment [Hz] 511.3 508.1 

Model [Hz] 511.5 508.4 

 

6.4.3 Performance Comparison of the PZT-5A and PZT-5H Cantilevers. Hereafter, the focus 

is placed on the fundamental short-circuit resonance frequencies of these cantilevers in order to 

compare their electrical performance results. For excitations at these frequencies, the variations 

of the voltage and current outputs with load resistance are shown in Figs. 6.16 and 6.17, 

respectively. Only for very low values of load resistance, the PZT-5H cantilever generates 

slightly larger voltage and current. For a wide range of load resistance, the PZT-5A cantilever 

generates considerably larger voltage and current. 
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Fig. 6.16 Voltage vs. load resistance curves of the PZT-5A and PZT-5H cantilevers for 

excitation at the fundamental short-circuit resonance frequency (experimental measurements and 

model predictions) 

 

 
 

Fig. 6.17 Current vs. load resistance curves of the PZT-5A and PZT-5H cantilevers for excitation 

at the fundamental short-circuit resonance frequency (experimental measurements and model 

predictions) 

 

Using the voltage data for excitations at the fundamental short-circuit resonance 

frequencies of the cantilevers, variations of the power output with load resistance are plotted in 

Fig. 6.18. The maximum experimental power output of the PZT-5A cantilever is obtained as 
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0.202 mW/g2 (for a load resistance of 17.8 k  - the optimum value among the resistors used). 

The maximum experimental power output of the PZT-5H cantilever is 0.140 mW/g2 (for a load 

resistance of 11.7 k  - the optimum value among the resistors used). Since the overhang 

volumes and masses of these cantilevers are slightly different, the power density and the specific 

power values are also reported in Table 6.7.  

 

 

 

Fig. 6.18 Power vs. load resistance curves of the PZT-5A and PZT-5H cantilevers for excitation 

at the fundamental short-circuit resonance frequency (experimental measurements and model 

predictions) 

 

As can be seen from Table 6.7, the maximum power density of the PZT-5A cantilever is 

about 45 % larger than that of the PZT-5H cantilever. If the maximum specific power outputs are 

compared, it is obtained that the PZT-5A cantilever generates 42 % larger specific power. 

Therefore, choosing the PZT-5H cantilever due to its larger 31d  constant (larger by 60 % 

compared to that of PZT-5A) could result in surprising results in terms of the power output as the 

mechanical damping can change the entire picture. Since the modal damping ratio of the PZT-5H 

cantilever turns out to be 55 % larger than that of the PZT-5A cantilever (in this particular 

experiment), the power output is controlled by mechanical damping. Recall from the theoretical 

discussion given with Fig. 6.7a that, for the same amount of mechanical damping, the power 

outputs of the PZT-5A and PZT-5H cantilevers are very similar. However, 55 % larger 

mechanical damping relative to the PZT-5A cantilever results in 45 % less power density for 
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resonance excitation of the PZT-5H cantilever. This simple practice shows the importance of 

mechanical damping in piezoelectric energy harvesting. Mechanical damping is probably the 

most difficult parameter to control in the system (as in several other vibration engineering 

problems) and it can change the entire picture regardless of the piezoelectric material of being 

used. 

 

Table 6.7 Maximum power outputs and identified mechanical damping ratios 
  

 PZT-5A cantilever PZT-5H cantilever 

Max. Power [mW/g2] 0.202 0.140 

Max. Power Density  [mW/(g2cm3)] 1.95 1.34 

Max. Specific Power  [mW/(g2g)]] 0.243 0.171 

Mechanical Damping [%] 0.91 1.41 

 

6.5 Summary and Conclusions  

 

In this chapter, the effects of materials constants and mechanical damping on the power 

generation performances of conventional piezoceramics (PZT-5A and PZT-5H) and novel single 

crystals (PMN-PT and PMN-PZT) are investigated. The material constants of interest are the 

piezoelectric, elastic and the dielectric constants. It is shown that the large piezoelectric strain 

constants of the commercially available single crystals are associated with very large elastic 

compliance and the combination of these two properties does not result in a substantial increase 

in the effective piezoelectric stress constant ( 31e ) for a thin energy harvester beam. Although the 

d31 constants can change by an order of magnitude from PZT-5A to PMN-PZT, the effective 

piezoelectric constants of these active materials are in the same order of magnitude. 

Consequently, the substantially large d31 constants of the commercially available single crystals 

do not necessarily imply substantially large power output in energy harvesting. The concepts of 

dynamic flexibility and mechanical damping are shown to be very important as far as the 

maximum power output is concerned. When geometrically identical bimorphs employing these 

piezoelectric materials are forced to have the same dynamic flexibility, the power outputs are 

observed to be very similar. It is also observed that the power output under resonance excitation 
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is extremely sensitive to mechanical damping (which is a very difficult parameter to control in 

practice). It is shown with an experimental case study using a PZT-5A bimorph and a PZT-5H 

bimorph that the former cantilever gives 45 % larger power density when the latter has 55 % 

larger mechanical damping ratio (although the d31 constant of PZT-5H is 60 % larger than that of 

PZT-5A). Therefore, designing and manufacturing the energy harvester beam to have less 

damping can be more important than the piezoelectric material being used. 
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CHAPTER 7 

 

EFFECTS OF STRAIN NODES AND ELECTRODE CONFIGURATION 

ON PIEZOELECTRIC ENERGY HARVESTING 

 

As briefly mentioned in the analytical derivations, vibration modes of a cantilevered beam other 

than the first mode have certain strain nodes where the dynamic strain distribution changes in the 

direction of the beam length. In this chapter, it is theoretically discussed and experimentally 

demonstrated that covering the strain nodes of vibration modes with continuous electrodes 

results in strong cancellation of the electrical outputs. After a brief review of the mathematical 

background, a detailed dimensionless analysis is given for predicting the locations of the strain 

nodes of a uniform thin cantilever in the absence of a tip mass. The dimensionless derivations 

and results are then presented for predicting the strain node positions and their variations in the 

presence of a tip mass. Since the cancellation problem is not peculiar to clamped-free boundary 

conditions, dimensionless data of modal strain nodes are tabulated for some other practical 

boundary condition pairs as well. The locations of strain nodes tabulated in this chapter are 

important also for applications of modal actuation since covering these positions with 

piezoelectric actuators might require dramatically high voltage inputs, yielding inefficient 

actuation processes. It is experimentally shown that the voltage output due to the second mode 

excitation can be increased substantially if segmented electrodes are used instead of continuous 

electrodes. The relationship between the discussion given here and a recent study on 

piezoelectric energy harvesting from the static deflection of a clamped circular plate is also 

explained.  The use of segmented electrode pairs to avoid cancellations is described for single-

mode and multi-mode vibrations of a cantilevered piezoelectric energy harvester. Alternative 

circuitry-based approaches can be investigated to handle the cancellation problem for multi-

mode excitations. 
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7.1 Mathematical Background 

 

Recall from Chapter 3 that the circuit equation of a piezoceramic layer under dynamic bending 

(such as the one shown in Fig. 3.2a) is obtained from the Gauss’s law as 
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where the electrodes are connected to a resistive load* of lR , ( )v t
 
is the voltage output, D  is the 

vector of electric displacements components in the piezoceramic layer, n  is the unit outward 

normal and the integration is performed over the electrode area A. Since the only non-zero 

component of the inner product in Eq. (7.1) is 3 3D n  due to the electrode placement on the thin 

layer (Appendix A.2), Eq. (7.1) reduces to†  
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As the vibration response is expanded in terms of the eigenfunctions of the undamped problem, 

Eq. (7.2) is expressed as a first order circuit equation excited by all vibration modes:  
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where the electromechanical coupling term is 
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Here, 31 pce bh     for the series connection and 312 pce bh     for the parallel connection of the 

piezoceramic layers for a bimorph (Table 3.1). The equivalent capacitance term also depends on 

the way the piezoceramic layers are connected as given in Table 3.1.  

                                                            
* If the circuit includes more linear elements than a resistive load, the 1 /

l
R  term on the right hand side is simply 

replaced by the electrical admittance seen across the electrodes. Note that this electrical admittance should exclude 

the admittance due to the inherent capacitance of the piezoceramic, which emerges from the electric displacement 

term. 
† In agreement with the analytical formulation given in Chapter 3, it is assumed that the widths of the substructure, 

piezoceramic and the electrodes are identical.  
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 In Eq. (7.3), the forcing function on the right hand side is a modal summation where the 

contribution from the r-th vibration mode is the product of r  and ( )rd t dt . The modal 

velocity response, ( )rd t dt , is also an output of the system to the base vibration input and it is 

indeed affected by the voltage response due to the backward electromechanical coupling 

(Chapter 3). A more critical term is the modal coupling term r , which is not only a function of 

geometric, material and piezoelectric parameters of the energy harvester beam but also the 

bending slope (cross-section rotation) eigenfunction evaluated at the boundaries of the 

electrodes. In the foregoing derivation, since each of the electrodes is assumed to be covering the 

entire respective surface of the piezoceramic layer (the top or the bottom) and since the slope at 

the clamped end of the beam is already zero, the contribution to the forcing function from the r-

th vibration mode simply depends on the slope at the free end as in Eq. (7.4). If the electrodes 

cover only a certain region 1 2x x x   over the piezoceramic (which is still structurally 

continuous), the boundaries of the integral in Eq. (7.5) change and the resulting expression for 

r  becomes‡ 
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According to Eq. (7.5), the modal electromechanical coupling term (which is a measure 

of the modal forcing function in the circuit equation) depends on the region covered by the 

electrodes on the surface of the piezoceramic. Therefore, the contribution to the forcing function 

in Eq. (7.3) from the r-th vibration mode will be large if the difference of the slopes at the 

boundaries of the electrodes for that particular mode is large and vice versa. As a consequence, 

depending on the locations of the electrodes, modal electromechanical coupling and therefore the 

contribution from certain vibration modes can be large or small. If it is aimed to harvest energy 

from a specific vibration mode (say, from the r-th mode) by exciting the system harmonically at 

the r-th natural frequency ( r ), the main contribution to the forcing function in the circuit will 

be from the r-th term at the right hand side of Eq. (7.3), yielding  

                                                            
‡ In Eq. (7.5), the eigenfunction term can be updated according to the piecewise-defined electrical boundary 

conditions (which will affect the elastic modulus of the piezoceramic) to be more precise. 
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where rj t
rA e   is the modal velocity response ( r rA j   in terms of the complex modal 

mechanical response r  defined in Chapter 3) and it is indeed a function of the voltage response 

given by ( )v t  as shown in the analytical derivations of Chapter 3. Therefore, if the beam vibrates 

under resonance excitation, the electrical circuit may or may not be excited very strongly 

depending on the respective mode shape. Clearly, one prefers a large r  for a stronger excitation 

of the circuit. 

 

7.2 Physical and Historical Backgrounds 

 

It turns out from the foregoing derivation that the bending slopes (cross-section rotations) at the 

boundaries of the electrodes constitute a strong parameter in piezoelectric energy harvesting 

problem. If the slopes at the boundaries of continuous electrodes are very close to each other for 

a particular mode shape, the contribution to the electrical output from that mode is very low. 

Furthermore, the above derivation also directly shows that certain boundary conditions are not 

useful for harvesting energy using continuous electrodes (e.g. clamped-clamped).  

The physics behind this discussion is related to the strain distribution throughout the 

length of the beam. If the strain distribution over the length of the beam changes sign (i.e. if its 

phase changes by 180 degrees) for a certain vibration mode, collecting the charge developed by 

using continuous electrodes results in cancellation of the electrical outputs in harvesting energy 

from that vibration mode. The mechanism of cancellation is more obvious in the first term of Eq. 

(7.4), where the integrand is the curvature eigenfunction (which is a measure of bending strain 

for a symmetric thin beam). Hence, if the curvature changes sign for a vibration mode, the net 

electric charge output is reduced due to cancellation of the positive and the negative areas under 

the curvature eigenfunction in integrating the electric displacement over the electrode area. 

Therefore a physical solution that allows handling the integration in a piecewise sense should be 

preferred to using continuous electrodes.  

The concept of strain nodes was formerly discussed in the literature of structural 

actuation. Crawley and de Luis [67] addressed the importance of strain nodes in their work 
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(which focuses on the converse piezoelectric effect for actuation) with the following words: 

“…the first mode has no strain nodes. Therefore, if this were the only mode to be excited, the 

actuators could be placed anywhere along the beam. For maximum effectiveness, they would be 

placed as near to the root as possible. The second mode has a strain node at x = 0.216L. The 

PZA's (piezoelectric actuators) must be placed away from this point, so that the strain applied 

over the entire length of the actuator has a constant phase with respect to the homogeneous 

strain in the beam in this mode. If not, the modal force produced by the actuator will be 

decreased, since one section of the actuator will be opposing the other… This reasoning also 

indicates why it is necessary to use segmented actuators for the control of flexible structures. For 

the second mode of a cantilevered beam, a PZA located at x<0.216 must be driven 180 deg out 

of phase with a PZA located at x>0.2l6L”. It should be noted that the results of the above 

formulation in the “direct sense” are in agreement with the observation of Crawley and de Luis 

[67] in the “converse sense” of using piezoceramics in actuation for structural excitation and 

control.  

Indeed, more than 60 years ago, Cady [68] discussed this phenomenon for (longitudinal) 

vibrations of crystals: “There is no external piezoelectric reaction due to longitudinal 

deformations when rods with full-length electrodes are excited at an even multiple of the 

fundamental frequency, since the effects of compressions and extensions in the various segments 

cancel exactly”. He adds in another section of the same book on piezoelectric resonators that “by 

the use of short (segmented) electrodes, however, intense vibrations, with correspondingly strong 

electric reactions, can be secured at any value of h (mode number), even or odd… Resonators 

with any number of pairs of electrodes can be prepared by silvering or evaporating a uniform 

metallic deposit on the opposite sides of the bar and then dissolving away metal in the proper 

regions to produce the desired number of pairs of separate electrodes”. Note that his reasoning 

on even and odd modes is for longitudinal vibrations and the boundary conditions he uses. 

However, the idea is the same and the “proper regions” he mentions are just the strain nodes. 

In harvesting energy from the bending vibrations of a cantilevered thin beam like the one 

shown in Fig. 3.1, the location of the electrodes and/or the piezoceramic layers can be very 

important. The positions on the beam where the bending strain distribution (at a constant level 

from the neutral axis) changes sign for a vibration mode are called the strain nodes. Since the 

bending strain at a point is proportional to the curvature in the thin-beam theory, strain nodes of a 



 184

vibration mode are simply the inflection points of the respective eigenfunction. For a 

cantilevered beam, all vibration modes other than the first mode have certain strain nodes. The 

following section presents the dimensionless strain nodes of a cantilevered thin-beam based on 

the Euler-Bernoulli beam theory. 

  

7.3 Strain Nodes of a Thin Cantilever without a Tip Mass 

 

For a symmetric cantilever, the curvature eigenfunction is a direct measure of bending strain 

distribution and it is simply the second derivative of the displacement eigenfunction given by Eq. 

(2.10). Therefore the case without a tip mass is considered first ( 0t tM I  ). Since the system is 

positive definite ( 0r  ), positions of the strain nodes are the roots of the following equation in 

the interval 0 1x  :  

      cosh cos sinh sin 0r r r r rx x x x                        (7.7) 

where /x x L  is the dimensionless position on the beam axis. Using Eq. (7.7) along with Eqs. 

(2.11) and (2.12) gives the dimensionless positions of the strain nodes over the length of the 

beam for the first five modes as shown in Table 7.1. For convenience, the frequency numbers of 

the first five vibration modes are also provided in Table 1 and they can be used in Eq. (3.19) to 

predict the undamped natural frequencies of the harvester beam in short-circuit conditions (i.e. 

for 0lR  ). As can be seen from Table 7.1, the r-th vibration mode has 1r   strain nodes and 

the only vibration mode of a cantilevered beam without strain nodes is the fundamental mode.  

 

Table 7.1 Frequency numbers and dimensionless positions of the strain nodes for a cantilevered 

thin beam without a tip mass for the first five vibration modes 
 

Mode Freq. Num. ( r ) Strain node positions on x-axis ( /x x L ) 

1 1.87510407 - - - - 

2 4.69409113 0.2165 - - - 

3 7.85475744 0.1323 0.4965 - - 

4 10.9955407 0.0944 0.3559 0.6417 - 

5 14.1371684 0.0735 0.2768 0.5001 0.7212 
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 The normalized displacement mode shapes and the strain mode shapes of the first three 

vibration modes of a cantilevered beam without a tip mass are displayed in Fig. 7.1. In 

agreement with Table 7.1, the strain node of the second vibration mode is located at 0.2165x  , 

and the third vibration mode has two strain nodes at 0.1323x   and 0.4965x  . These positions 

give an idea about how to locate the segmented electrodes for harvesting energy from these 

modes without cancellation. For instance, to avoid cancellation in harvesting energy from the 

second vibration mode, two electrode pairs should be used to cover the regions 0 0.2165x   

and 0.2165 1x   separately. The voltage outputs of these electrode pairs will be out of phase 

with each other by 180 degrees and they should be combined accordingly in the electrical circuit. 

Otherwise, as can be seen in Fig. 7.1b, if continuous electrodes cover the entire length of the 

beam ( 0 1x  ), the negative area ( 0 0.2165x  ) under the strain curve cancels a 

considerable portion of the positive area ( 0.2165 1x  ), yielding a reduced voltage output from 

the harvester.  

 

 
 

Fig. 7.1 (a) Normalized displacement and (b) normalized strain mode shapes of a cantilevered 

thin beam without a tip mass for the first three vibration modes   

(a) 

(b) 
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The discussion so far has focused on a cantilevered beam without a tip mass. In some 

energy harvesting applications, it is required to use a tip mass to tune the fundamental natural 

frequency of the harvester beam to a dominant excitation frequency or just to reduce its natural 

frequencies and increase its dynamic flexibility especially in micro-scale applications. The effect 

of a tip mass on the strain nodes of a cantilever is investigated in the following section. 

  

7.4 Effect of Using a Tip Mass on the Strain Nodes of a Thin Cantilever 

 

If a tip mass tM  of negligible rotary inertia ( 0tI  ) is attached rigidly at x L  to the 

cantilevered beam shown in Fig. 3.1, the eigenfunctions and the eigenvalues are referred from 

Eqs. (2.41) and (2.44), respectively. The curvature eigenfunction is the second derivative of Eq. 

(2.41) with respect to x. It is then possible to study the effect of a tip mass on the strain nodes in 

a dimensionless basis. As an example, Fig. 7.2a shows the variation of the displacement mode 

shape whereas Fig. 7.2b displays the variation of the strain distribution of the second vibration 

mode with increasing /tM mL . The shift of the strain node position due to increasing /tM mL  is 

shown in Fig. 7.2b. As the /tM mL  ratio goes from 0 to 10, the strain node of the second mode 

moves from 0.2165x   to 0.2632x  . 

Figure 7.3a shows the strain node positions of the second and the third vibration modes 

versus /tM mL  ratio. As the /tM mL  ratio increases from 0 to 10, the only strain node of the 

second mode moves from 0.2165x   to 0.2632x   whereas the two strain nodes of the third 

vibration mode move from  0.1323x   and 0.4965x   to 0.1468x  and 0.5530x  , 

respectively. It is also useful to investigate the variation of the frequency numbers with the 

/tM mL  ratio which is given in Fig. 7.3b for the first five vibration modes. Note that these 

frequency numbers give the natural frequencies when they are used in Eq. (3.19). As can be seen 

from Figs. 7.3a and 7.3b, the strain nodes move toward the free end of the beam and the 

frequency numbers decrease with increasing /tM mL  ratio. The positions of the strain nodes are 

more sensitive to the variations in /tM mL  ratio in the relatively low /tM mL  region (i.e. for 

0 / 1tM mL  ). 
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Fig. 7.2 Variation of the (a) normalized displacement and (b) normalized strain mode shapes of 

the second vibration mode with tip mass – to – beam mass ratio   

 

As far as the frequency numbers given in Fig. 7.3b are concerned, other than the 

frequency number of the first vibration mode, all the frequency numbers converge to a nonzero 

value as /tM mL . A careful investigation shows that, as /tM mL , the frequency 

number of the r-th mode of a clamped-free beam with a tip mass converges to that of the ( 1)r  -

th mode of a clamped-pinned beam without a tip mass§ (except for the first frequency number 

1 , which goes to zero with a very slow rate). That the boundary conditions of a cantilevered 

harvester beam with a tip mass shift from clamped-free to clamped-pinned as /tM mL  

makes sense, as the rotary inertia of the tip mass is neglected. Therefore, the direct consideration 

                                                            
§ The dominating term in Eq. (2.44) for /tM mL   is the characteristic equation of a clamped-pinned beam: 

tanh tan 0    (because the system is positive definite, 0   in the dominating term).  

(a) 

(b) 
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of the strain nodes of a clamped-pinned beam should give a good estimate of the strain nodes (of 

modes 2r  ) for very large values of /tM mL  in modes other than the first mode. However, if 

the rotary inertia of the tip mass is not negligible and if it increases uniformly as /tM mL , 

the boundary conditions shift from clamped-free to clamped-clamped and it becomes more 

reasonable to estimate the strain node positions (of modes 2r  ) from the eigenfunctions of a 

clamped-clamped beam for large values of /tM mL . Hence, it is also insightful to examine the 

characteristic equation of a thin cantilevered beam where the rotary inertia ( tI ) of the tip mass is 

also considered (Eq. (3.20)). 

 

 
 

Fig. 7.3 (a) Variation of the strain node positions of the second and the third vibration modes and 

(b) variation of the frequency numbers of the first five vibration modes with tip mass – to – beam 

mass ratio   

 

(a) 

(b) 
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In Eq. (3.20), the rotary inertia of the tip mass can be normalized with respect to the 

rotary inertia of the free rigid beam about its centroid (or that of a rigid pendulum about its pivot) 

and a similar dimensionless analysis can be performed. As can be seen from Eq. (3.20), the 

rotary inertia of the tip mass introduces two additional terms to Eq. (2.44). The form of the 

eigenfunction expression given by Eq. (2.41) is still the same; however, the eigenvalues to be 

used in this equation should be extracted from Eq. (2.44). As mentioned before, for a large tip 

mass and tip rotary inertia, the free end of the beam also acts as a clamped end. This fact is also 

evident from the dominating term in Eq. (3.20) for   3/ /t tM mL I mL  , which is the 

characteristic equation of a uniform thin-beam beam with clamped-clamped boundary conditions 

(1 cos cosh 0   ). Clamped-clamped boundary conditions may cause strong cancellations in 

the electrical outputs if full electrodes are used for covering the piezoceramic layer(s). Therefore, 

employing a large tip mass for reducing the natural frequencies of a cantilevered harvester has 

the side effect of drastically reducing the electrical response of the vibration modes other than 

the fundamental mode. If higher vibrations of a cantilevered energy harvester are to be excited in 

a practical application (which is the case for the ambient vibration energy with random, varying 

frequency or impulse-type excitation characteristics), addition of a tip mass results in a trade-off, 

as it has an undesired effect on the vibration modes other than the first mode.  

 

7.5 Strain Nodes for Other Boundary Conditions 

 

Since the literature of energy harvesting [25,69] and the literature dealing with piezoelectric 

beams [70] have considered boundary conditions other than clamped-free as well, the numerical 

data of the strain node positions for some other practical boundary conditions are tabulated in 

this section. The boundary condition pairs investigated in this section are pinned-pinned, 

clamped-clamped and clamped-pinned pairs. Tables 7.2-7.4 display the positions of the strain 

nodes for the first five vibration modes of uniform thin beams with these three boundary 

condition pairs. The frequency numbers are also provided and they can be used in Eq. (3.19) to 

predict the undamped natural frequencies (which are the resonance frequencies of the voltage 

FRF in short-circuit conditions as shown in Chapter 5).  

 

 



 190

 Since the pinned-pinned (Table 7.2) and clamped-clamped (Table 7.3) boundary 

conditions are symmetric boundary conditions (yielding symmetric and antisymmetric mode 

shapes for odd and even modes, respectively), the positions of the strain nodes (inflection points 

of the mode shapes) are symmetric with respect to the center 0.5x   of the beam. However, for 

the clamped-pinned boundary conditions (Table 7.4), no such symmetry exists. It should be 

noted that it is safe to cover the entire surface with continuous electrodes for harvesting energy 

from the first vibration mode of a pinned-pinned beam. The rule for the pinned-pinned case is the 

same as the clamped-free case, i.e. the r-th vibration mode has 1r   strain nodes (Table 7.2). 

However, a beam with clamped-clamped boundary conditions has two strain nodes in the first 

vibration mode. According to Table 7.3, the r-th vibration mode of a clamped-clamped beam has 

1r   strain nodes. Hence, three electrode pairs (with discontinuities at 0.2242x   and at 

0.7758x  ) can be used to extract the electrical outputs of a clamped-clamped energy harvester 

without cancellation for vibrations with the first mode shape. Table 7.4 shows that the r-th 

vibration mode has r  strain nodes for a clamped-pinned beam. Thus, two electrode pairs (with a 

discontinuity at 0.2642x  ) can handle the cancellation issue for the fundamental mode 

excitation of a harvester beam with clamped-pinned boundary conditions. Note that, in the 

clamped-pinned case, the clamped boundary is the 0x   point. 

  Among the boundary conditions investigated here, the clamped-clamped boundary 

condition pair constitutes a unique case. Theoretically, for excitations at all vibration modes of a 

clamped-clamped beam, the modal forcing term r  in the electrical equation and therefore the 

voltage response is zero, if full (continuous) electrodes cover the entire beam surface (see Eq. 

(7.5)). A similar issue (of total cancellation) is expected for the even vibration modes 

( 2,4,6,..., 2r n  where n is an integer) of the pinned-pinned case, if full electrodes cover the 

entire beam length. For the even modes of a beam with pinned-pinned boundary conditions, the 

slopes at the pinned boundaries are not zero, but they are equal to each other, yielding a total 

cancellation at these modes due to Eq. (7.5).  
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Table 7.2 Strain nodes of a thin beam with pinned-pinned boundary conditions 
 

Mode Freq. Num. ( r ) Strain node positions on x-axis ( /x x L ) 

1   - - - - 

2 2  1/ 2  - - - 

3 3  1/ 3  2 / 3  - - 

4 4  1/ 4  1/ 2  3 / 4  - 

5 5  1/ 5  2 / 5  3 / 5  4 / 5  

 

 

Table 7.3 Strain nodes of a thin beam with clamped-clamped boundary conditions 
 

Mode Freq. Num. ( r ) Strain node positions on x-axis ( /x x L ) 

1 4.73004074 0.2242 0.7758 - - - - 

2 7.85320462 0.1321 0.5000 0.8679 - - - 

3 10.9956079 0.0944 0.3558 0.6442 0.9056 - - 

4 14.1371655 0.0735 0.2768 0.5000 0.7232 0.9265 - 

5 17.2787597 0.0601 0.2265 0.4091 0.5909 0.7735 0.9399 

 

 

Table 7.4 Strain nodes of a thin beam with clamped-pinned boundary conditions 
 

Mode Freq. Num. ( r ) Strain node positions on x-axis ( /x x L ) 

1 3.92660231 0.2642 - - - 

2 7.06858275 0.1469 0.5536 - - 

3 10.2101761 0.1017 0.3832 0.6924 - 

4 13.3517688 0.0778 0.2931 0.5295 0.7647 

5 16.4933614 0.0630 0.2372 0.4286 0.6190 
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The data provided in Tables 7.1-7.4 are also useful for modal actuation of beams with these 

boundary conditions because the coupling term r  (given by Eq. (7.5)) appears in the modal 

equation for the beam response (Section 3.6). According to Table 4.1, the fundamental mode of a 

clamped-free beam can be excited by locating the piezoelectric actuator(s) at anywhere along the 

beam. One should prefer a location close to the clamped end (see the strain distribution in Fig. 

7.2b) in order to minimize the required actuation input as previously discussed by Crawley and 

de Luis [67]. However, excitation of the fundamental mode of a clamped-clamped beam is more 

critical as the piezoelectric actuators should not cover the positions 0.2242x   and 0.7758x   

(Table 7.4). Covering one of these strain nodes with an actuator might require dramatically high 

voltage inputs for actuating the fundamental mode of a clamped-clamped beam piezoelectrically. 

 

7.6 Experimental Demonstration  

 

The cantilevered beam shown in Fig. 7.4 is used in order to demonstrate the effect of strain 

nodes on the voltage output briefly. The length, width and the height of the steel beam are 600 

mm, 19.1 mm and 3.05 mm, respectively. An electromagnetic shaker with a stinger is used to 

excite the cantilevered beam at its first two natural frequencies. Since the main purpose is to 

demonstrate the importance of the strain nodes on energy harvesting by using cantilevered beams 

with piezoceramic layers/patches, the dimensions of the beam are selected arbitrarily and the 

importance is given only to justify the Euler-Bernoulli beam assumptions (i.e. the thin-beam 

theory). Hence, although the demonstration is given for a configuration that would not typically 

be used as an energy harvester, the results of the following study are valid for all micro-scale and 

macro-scale cantilevered piezoelectric energy harvesters which can be modeled based on the 

Euler-Bernoulli beam assumptions. 
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Fig. 7.4 Experimental setup for demonstration of the effect of strain nodes on the voltage output 

(photos by A. Erturk, 2009)  

 

The first two vibration modes are considered for a simple demonstration of the voltage 

cancellation at higher vibration modes. Note that the experimental validations of the analytical 

model have already been given for several cases in Chapter 4. Hence the experimental 

demonstration of cancellation given here does not aim to verify the electrical circuit equations 

given in Section 7.1 quantitatively. The goal of this section is to provide a qualitative verification 

of voltage cancellation at higher modes excitations, which is expected from the theory. For 

convenience, small PZT-5A patches are used instead of covering the entire surface of the beam. 

Since the first vibration mode has no strain nodes, we focus on the strain node of the second 

mode, which is at 0.2165x L  as given in Table 7.1. Therefore, theoretically, the distance of 

this strain node is approximately 130 mm from the clamped end of the beam. Two PZT-5A 

patches of dimensions 72 mm 19.1 mm 0.265 mm   are obtained from a PZT-5A sheet by Piezo 

Systems Inc. [45] (as the width of the beam is 19.1 mm and the lengths of the PZT-5A sheets are 

restricted with 72 mm by the manufacturer). The piezoceramic sheets come from the 

manufacturer with continuous nickel electrodes. Therefore, in order to realize the segmented-

electrodes configuration, one should either etch the electrodes from the surface of the 

piezoceramic at the desired location or cut the piezoceramic directly to remove the electrical 

conductivity of the electrodes at the strain node of the beam. The second option is preferred for 

convenience and one of the two patches is cut into two identical parts to obtain two patches of 

dimensions 36 mm 19.1 mm. First the small patches (PZT1 and PZT2) are attached onto the 

x = 0.2165L 

Shaker 
with a 
stinger 

          PZT3 (lower face) 

  PZT1    PZT2 

  PZT1 
  PZT2 
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opposite sides of the strain node on the upper surface of the beam (Fig. 7.4). Then, the longer 

patch (PZT3) is attached to the lower face of the beam such that the strain node coincides with 

the center of this patch as shown in Fig. 7.4. Hence, approximately the same region 

(94 166x   mm) is covered on the upper and the lower surfaces of the beam, and theoretically, 

the strain node of the second mode is around the center of this region (at 130x   mm).** 

Therefore, the piezoceramic and the electrodes are continuous on the lower surface whereas they 

are discontinuous on the upper surface at the theoretically predicted location of the strain node. 

In the following discussion, the open circuit voltage across the electrodes is measured in all cases 

without connecting the electrodes to an energy harvesting circuit ( lR   in the theoretical 

discussion). For shaker excitations at both vibration modes, the voltage input to the 

electromagnetic shaker is kept the same (at 0.8 volts).  

If the beam vibrates with its first mode shape, there is no strain node throughout the 

length of the beam. Although the excitation frequency is the first natural frequency (which is 

measured to be 7.1 Hz), slight contributions to the response are expected from the neighboring 

modes in response to excitation at the tip with the stinger of the shaker. In other words, the 

response of the beam is not perfectly the first mode shape; however, the major contribution to the 

response is from the first mode shape. Therefore, the dynamic strain distribution in PZT3 is 

expected to be in phase throughout its length. Hence the amplitude of the voltage response across 

the electrode pair of PZT3 should be identical to the combined amplitude of the voltage 

responses across the individual electrode pairs of PZT1 and PZT2. The voltage histories across 

the electrode pairs of PZT1 and PZT2 are shown in Figs. 7.5a and 7.5b, respectively. It is clear 

from Fig. 7.5 that the voltage responses of PZT1 and PZT2 are in phase and their amplitudes are 

also very close to each other. 

 

                                                            
** As an approximation, it is assumed that the attachment of the thin piezoceramic patches onto the uniform steel 

beam does not change the inflection point of the second mode shape considerably.  
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Fig. 7.5 Voltage responses across the electrodes of (a) PZT1 and (b) PZT2 for excitation at the 

first natural frequency of the beam 

 

Figure 7.6 shows the voltage response of PZT3 along with the summation of the voltage 

responses of PZT1 and PZT2 for excitation at the first natural frequency. As expected, the 

voltage amplitude of PZT3 (which has the continuous electrode pair) is approximately identical 

to the summation of the voltage amplitudes across the electrode pairs of PZT1 and PZT2 as they 

are in phase. Also, the voltage response of PZT3 is 180 degrees out of phase with the summation 

of PZT1 and PZT2 since the lower face of the beam is in tension when the upper face is in 

compression, and vice versa. The slight difference in the amplitudes (Fig. 7.6) is expected to be 

due to experimental imperfections. The PZTs were cut by hand and there is a finite spacing 

between PZT1 and PZT2 as shown in Fig. 7.4 (so that the region covered by PZT1+PZT2 

exceeds 94 166x   mm slightly). Figure 7.6 is therefore a verification of the fact that the 

piezoceramic patches with continuous electrodes can be used safely for harvesting energy from 

the first vibration mode since the strain distribution is always in phase over the length of a 

cantilevered beam. 

  

(a) (b) 
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Fig. 7.6 Voltage response across the continuous electrodes of PZT3 and the maximum voltage 

response obtained by combining the electrodes of PZT1 and PZT2 for excitation at the first 

natural frequency 

 

 If the beam is excited at its second natural frequency (which is measured as 40.8  Hz), the 

dominant vibration mode in the response is the second mode. The voltage outputs of PZT1 and 

PZT2 are displayed in Fig.7.7 for excitation at the second natural frequency. Unlike the voltage 

outputs for excitation at the first natural frequency, as expected, the voltage outputs of these 

patches are now 180 degrees out of phase with each other. During the vibratory motion, when 

PZT1 is in compression, PZT 2 is in tension, and vice versa. The phase difference in the 

mechanical domain determines the phase difference in the voltage outputs. Note that the voltage 

amplitudes of PZT1 and PZT2 are not identical, which means that the strain distributions at 

different sides of 130x   mm are not identical for excitation at the second natural frequency. 

 

 
 

Fig. 7.7 Voltage responses across the electrodes of (a) PZT1 and (b) PZT2 for excitation at the 

second natural frequency of the beam 

 

(a) (b) 
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The continuous electrodes of PZT3 cover the entire region on the strain node of the 

second mode. For excitation at the second natural frequency, the voltage response across the 

electrodes of PZT3 is shown in Fig. 7.8 along with appropriate combination of PZT1 and PZT2 

outputs for maximum voltage output. Since the charge developed in PZT3 is collected by 

continuous electrodes, the phase difference in the strain distribution at opposite sides of the 

second mode results in cancellation. Therefore the voltage output of PZT3 is less than even the 

individual outputs of PZT1 and PZT2 for the same mechanical input (compare the solid line in 

Fig. 7.8 with Figs. 7.7a and 7.7b). Clearly, it is not preferable to cover the strain node of a 

harvester beam with continuous electrodes. In order to obtain the maximum voltage output from 

this sample region (94 166x   mm) for excitation at the second natural frequency, one should 

collect the electric charge developed in regions 94 130x   mm and 130 166x   mm with 

separate electrode pairs to obtain the individual voltage outputs given in Fig. 7.7. These voltage 

outputs can then be combined by considering the phase difference (mathematically, by 

subtracting the voltage outputs: PZT1-PZT2) to obtain the maximum voltage amplitude (dashed 

line Fig. 7.8). The physical combination of these voltage outputs (i.e. realization of the 

subtraction PZT1-PZT2) is done by combining the correct leads coming from the respective 

segmented electrode pairs. According to Fig. 7.8, the voltage amplitude of the preferable 

combination of PZT1 and PZT2 is more than 4 times the amplitude of the voltage response of 

PZT3.  

 

 
 

Fig. 7.8 Voltage response across the continuous electrodes of PZT3 and the maximum voltage 

response obtained by combining the electrodes of PZT1 and PZT2 for excitation at the second 

natural frequency  
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In this simple example, the continuous electrode pair covering the strain node yielded 

some voltage output because there is no total cancellation at the opposite sides of 130x   mm 

for PZT3 (since PZT1 and PZT2 outputs do not have the same amplitude in Fig. 7.7). It is worth 

adding that the position of the strain node ( 130x   mm) is predicted theoretically (for the 

geometrically uniform configuration without the patches) and the patches were located on the 

beam according to this position. Scanning the second mode shape of the beam experimentally 

and locating the patches according to the exact position of the strain node of the experimental 

mode shape would give more accurate results. In addition, the piezoceramics were cut by hand 

and the region covered by PZT1+PZT2 is not identical to that covered by PZT3 due to the 

discontinuity between PZT1 and PZT2. Regardless of these experimental imperfections, the 

qualitative results discussed based on this simple experiment are in perfect agreement with the 

theory. In conclusion, depending on how they are located on the harvester beam, using 

continuous electrodes may result in dramatically lower voltage outputs in piezoelectric energy 

harvesting from cantilevered beams at higher vibration modes. Although the experimental 

demonstration is given here for clamped-free boundary conditions, the cancellation problem for 

other boundary conditions (see Section 7.5) can be solved a similar manner.  

 

7.7 Relationship with the Energy Harvesting Literature 

 

Recently, Kim et al. [71,72] studied energy harvesting from a clamped circular plate due to a 

pressure drop in an air chamber. Even though their system was not a beam and although they 

considered the deflection of the plate due to a uniform static pressure rather than its vibrations, 

Kim et al. [71,72] also observed the cancellation of the electrical outputs when continuous 

electrodes are used. Based on their theoretical analysis which uses the energy method, Kim et al. 

[71] found that no net charge output is obtained if their unimorph circular plate is fully covered 

by continuous electrodes. They obtained theoretically that, if the electrodes were “regrouped” 

after 0.707r  (where r is the radius of the plate), the optimum electrical output could be extracted 

from the deflection of the piezoceramic due to constant static pressure. Although Kim et al. [71] 

also mentioned that the problem can be handled by collecting the charge developed in different 

regions separately and reversing the leads in the electrical circuit, they used the concept of 

“patterned poling” by changing the direction of polarization of the outer piezoceramic region 
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(that is the region outside a specific radius) in their experimental work [72]. Changing the poling 

direction implies etching the electrodes at a specific region (at 0.5r  and 0.75r  in two separate 

cases of their work) and then applying a very high electric field in the desired portion of the 

piezoceramic (in general, at a temperature above the Curie temperature of the piezoelectric 

material). After the patterned poling process is completed, Kim et al. [72] used a conductive pen 

to reconstruct the electrodes at the etched regions. Finally, the electric charge is collected using 

the reconstructed full electrodes and improved results are obtained. They observed 

experimentally that patterned poling after 0.75r  gave the best results when compared to the 

cases of patterned poling after 0.5r  and the original case with full electrodes and unmodified 

polarization (in agreement with their theoretical work [71] which predicted the optimum radius 

as 0.707r  which is close to 0.75r ). It should also be added that the unmodified case with full 

electrodes still gave some nonzero electric charge output in the order of magnitude of the other 

cases, most likely because of some physical imperfections, such as the difficulty in realization of 

the clamped boundary [72].  

Although the approach preferred by Kim et al. [72] appears to be a relatively complicated 

way of solving the cancellation problem, it is worthwhile to relate it to our discussion on 

cantilevered beams. The optimum location for etching the electrodes is where the electric 

displacement changes sign and it corresponds to a strain node line in our study on cantilevered 

harvesters. Once patterned polarization process is completed, continuous electrodes can be used 

for collecting the charge output. Mathematically, as far as our relevant equations for beams are 

concerned, the piezoelectric constant ( 31e ) changes sign in the modified region after the 

patterned polarization process. The issue of cancellation in the integral given by Eq. (7.2) was 

due to the opposite sign of the curvature at the opposite sides of the strain nodes when 31e  had 

the same sign throughout the length of the beam. The new polarization at one side of the strain 

node makes the sign of the product of the piezoelectric constant and the curvature the same at the 

opposite sides of the strain node. Hence no cancellation takes place during the integration of the 

electric displacement over the continuous electrode area. Briefly, in order to avoid the 

cancellation, either the polarization at one side of the strain node must be reversed (by patterned 

poling) so that continuous electrodes can be used or the electrodes must be discontinuous at the 

strain node if the polarization is to be kept the same over the length of the beam (as demonstrated 

in the previous section).  
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 Although the patterned polarization approach solved the static deflection problem of Kim 

et al. [72] permanently, it may not be a flexible approach as far as the dynamic (vibration) 

problem is concerned, since the deflection pattern changes with vibration modes. For a simple 

explanation, consider the second vibration mode of a cantilevered energy harvester. If the 

polarization of the harvester is reversed at one side of the strain node (which is located at 

0.2165x  ), one can use continuous electrodes (covering 0 1x  ) to collect the charge 

developed in the piezoceramic and this avoids the cancellation in the integral of Eq. (7.4) for 

vibrations with the second mode shape. After patterned poling, if the beam with continuous 

electrodes is used for harvesting energy at the first vibration mode, one ends up with a strong 

cancellation although there is no strain node in the first vibration mode. Even though the 

curvature has the same sign throughout the beam length for the first mode shape (Fig. 7.1b), the 

change in the sign of 31e  at 0.2165x   makes it necessary to consider the integral in Eq. (7.4) in 

two parts where a drastic cancellation occurs between the two areas ( 0 0.2165x   and 

0.2165 1x  ) as far as the resultant of the inner product in Eq. (7.1) is concerned. Therefore, in 

the dynamic problem, the patterned poling process can be favorable for a single vibration mode 

only. Otherwise, one has to repeat the patterned poling process again in order to use the same 

harvester beam (which was patterned poled for a certain mode shape) for excitations with 

another mode shape.  

 Based on the above discussion, it is reasonable to claim that switching the leads of the 

segmented electrodes (as demonstrated in Section 7.6) is more flexible and reversible compared 

to the patterned poling process in the vibration-based energy harvesting problem. The patterned 

poling process can be useful for static problems as a permanent solution since (for a given 

loading) a single deflection pattern exists in linear static problems, unlike the vibration problems 

(where the deflection pattern depends on the vibration mode). Using segmented electrodes is 

easier to implement as the cancellation problem is mainly solved in the electrical circuit by 

combining the leads of the electrodes accordingly. Moreover, considering the fact that most 

piezoceramic patches come with integrated electrodes from the manufacturer, one may not have 

to apply an etching process to obtain a discontinuity at the strain node of the harvester. In most 

cases, it might be possible to cut the piezoceramic patch (and therefore its electrodes) as done in 

the simple experimental demonstration of the previous section. The following section discusses a 
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first approach for handling of the cancellation issue in the electrical circuit for harvesting energy 

from multiple vibration modes with the same cantilevered harvester.   

 

7.8 Avoiding Cancellation in the Electrical Circuit with Segmented Electrodes 

 

The configuration shown in Fig. 7.9 is the commonly employed [23-25] AC-to-DC conversion 

circuit through a full-wave rectifier as a primary step in the electrical engineering design and 

analysis for implementing piezoelectric energy harvesting in order to charge a battery or a 

capacitor. The electrodes bracketing the piezoceramic layers are connected to a diode bridge to 

remove the sign alternation of the electrical output. In general, a smoothing capacitor is used at 

the DC side in order to bring the pulsating rectified voltage to a relatively constant value for the 

purpose of battery/capacitor charging. Usually a DC-to-DC converter (step-up or step-down) is 

also required to adjust the voltage level after the rectifier and the smoothing capacitor to the 

voltage level required to charge a given battery or a capacitor. These electrical engineering 

aspects are beyond the scope of this dissertation and the particular interest here is to avoid the 

cancellation of the alternating voltage output of the piezoceramic (which is the source to the 

circuit) before it is supplied to a simple or a sophisticated harvesting circuit. Hence, for 

convenience, the leads of the DC side are left open in Fig. 7.9. In addition, let the piezoceramic 

layers of the bimorph in Fig. 7.9 be poled in the opposite directions so that this configuration is 

the series connection case (Fig. 3.1a). 

As mentioned previously, if the harvester beam vibrates with the first mode shape, the 

strain distribution (and therefore the electric displacement distribution) is in phase throughout the 

length of the beam. Hence, it is possible to collect the charge developed in the piezoceramic with 

continuous electrodes without any cancellation. Considering the strain mode shape of the first 

mode in Fig. 7.1b, it can be observed that the main contribution to the electrical output is from 

the region which is close to the clamped end of the beam. However, covering the entire (top and 

bottom) faces of the piezoceramic with a continuous electrode pair gives the maximum electrical 

output and this classical configuration with continuous electrodes (Fig. 7.9) can safely be used as 

the first vibration mode has no strain nodes. 

 



 202

 

Fig. 7.9 Continuous electrodes are connected to a full-wave rectifier for harvesting energy from 

the first vibration mode (causes cancellation in mode 2) 

 

 If the harvester beam vibrates with the second mode shape, using the configuration with 

continuous electrodes (Fig. 7.9) results in cancellation of the electrical outputs as theoretically 

discussed and experimentally demonstrated in this paper. In order to avoid the cancellation in a 

simple manner, segmented electrodes can be used. Figure 7.10 shows two segmented electrode 

pairs used for collecting the electric charge developed in 0 0.2165x L   and 0.2165L x L   

separately. Note that the bottom electrodes are connected to each other whereas the top 

electrodes are connected to the diode bridge. This configuration prevents cancellation in 

harvesting energy from the second vibration mode because the polarization of the electrodes in 

these two regions is the opposite of each other all the time during the vibratory motion (i.e. when 

the top electrode in 0 0.2165x L   is ( ) , the bottom electrode in 0.2165L x L   is also ( ) , 

and vice versa). However, if one intends to use the segmented electrode configuration shown in 

Fig. 7.10 for harvesting energy from the first vibration mode, cancellation occurs because of the 

way the voltage outputs of 0 0.2165x L   and 0.2165L x L   are combined. Therefore, the 

configuration displayed in Fig. 7.10 is suitable for vibrations with the second mode shape but it 

is not preferable for vibrations with the first mode shape.    

 The configuration given in Fig. 7.9 is suitable for harvesting energy from the first mode 

(but it causes cancellation in the second mode) whereas the configuration of Fig. 7.10 is suitable 

for harvesting energy from the second mode (and it is causes cancellation in the first mode). 

However, it is not difficult to combine the outputs of the segmented electrode pairs in Fig. 7.10 

to come up with a configuration that can be used both for the first mode and second mode 
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vibrations. In the configuration of Fig. 7.11, the electrode pairs are connected to two separate 

diode bridges so that cancellation is prevented regardless of the instantaneous polarization in 

0 0.2165x L   and 0.2165L x L   regions.  

 

 
 

Fig. 7.10 Segmented electrode pairs are connected to a full-wave rectifier for harvesting energy 

from the second vibration mode (causes cancellation in mode 1) 

  

 

      
 

Fig. 7.11 Segmented electrode pairs are connected to two separate full-wave rectifiers for 

harvesting energy from the first or the second vibration modes (avoids cancellation both in  

mode 1 and mode 2) 
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 The foregoing approach of avoiding the cancellation issue appears to be easier and more 

flexible than the patterned poling technique [72]. Here, the only requirements are the removal of 

electrodes at the strain nodes and simple considerations in the electrical circuit. The idea 

described here is not limited to the first two vibration modes and it can easily be extended to 

higher vibration modes and other boundary conditions. Alternative circuitry-based approaches 

can be investigated to handle the cancellation problem for multi-mode excitations with less 

number of diodes as the presence of diodes creates losses in the electrical circuit.  

 

7.9 Summary and Conclusions  

 

The positions of the beam where the dynamic strain distribution changes sign are called the 

strain nodes. It is theoretically discussed and experimentally demonstrated that covering the 

strain nodes of vibration modes with continuous electrodes results in cancellation of the 

electrical outputs in piezoelectric energy harvesting. A detailed dimensionless analysis is given 

for predicting the locations of the strain nodes of a thin cantilever in the absence of a tip mass. 

Dimensionless derivations and results are then presented for predicting the strain node positions 

and their variations in the presence of a tip mass. As the cancellation issue is not peculiar to 

clamped-free boundary conditions, dimensionless data of modal strain nodes are tabulated for 

some other practical boundary condition pairs as well. The locations of strain nodes tabulated in 

this work are important also for applications of modal actuation since covering these positions 

with piezoelectric actuators might require very high voltage inputs. It is experimentally 

demonstrated that the voltage output due to the second mode excitation can be increased 

dramatically if segmented electrodes are used instead of continuous electrodes. The relationship 

between the discussion given here and a recent study on piezoelectric energy harvesting from the 

static deflection of a clamped circular plate is also explained. The use of segmented electrode 

pairs to avoid cancellations is described for single-mode and multi-mode vibrations of a 

cantilevered harvester and alternative circuitry-based approaches can be investigated to handle 

the cancellation problem for multi-mode excitations. 
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CHAPTER 8 

 

APPROXIMATE DISTRIBUTED-PARAMETER MODELING OF 

PIEZOELECTRIC ENERGY HARVESTERS USING THE 

ELECTROMECHANICAL ASSUMED-MODES METHOD 

 

This chapter covers the approximate distributed-parameter formulation of cantilevered 

piezoelectric energy harvester beams under base excitation. Since the closed-form analytical 

solutions for bimorph configurations were obtained in Chapter 3, this chapter provides 

derivations with a focus on the unimorph configuration (Fig. 8.1). The technique used here is an 

electromechanical version of the assumed-modes method*, which is based on the extended 

Hamilton’s principle for electromechanical media. After obtaining the distributed-parameter 

energy expressions, extended Hamilton’s principle is used to derive the discretized 

electromechanical Lagrange equations. In order to model the asymmetric unimorph structure 

precisely, an axial displacement variable is introduced to account for coupling of axial and 

transverse displacement variables due to asymmetric laminates. The derivations are given in this 

chapter in three parts: (1) the Euler-Bernoulli formulation, (2) the Rayleigh formulation and (3) 

the Timoshenko formulation. The first type of formulation neglects the rotary inertia and the 

transverse shear deformation effects whereas the second type includes the rotary inertia effect 

but neglects the transverse shear deformation. The third solution type accounts for the influences 

of both the transverse shear deformation and rotary inertia on the resulting electromechanical 

behavior. Therefore the Euler-Bernoulli solution is valid for thin beams whereas the Timoshenko 

solution is valid for moderately thick beams (and the Rayleigh solution lies in between). 

Experimental validations are given for the thin-beam case by comparing the assumed-modes 

predictions with the experimental and analytical results for different number of modes. 

                                                            
* As discussed by Meirovitch [41], the assumed-modes method for distributed-parameter systems is closely related 

to the Rayleigh-Ritz method. Indeed the resulting discretized equations obtained in both methods are identical for 

the same admissible functions. The difference is that the Rayleigh-Ritz method is concerned with spatial 

discretization of the differential eigenvalue problem whereas the assumed-modes method directly begins with spatial 

discretization of the boundary-value problem in an implicit manner. 
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8.1 Unimorph Piezoelectric Energy Harvester Configuration  

 

Consider the piezoelectric energy harvester configuration shown in Fig. 8.1. The configuration 

has a single piezoceramic layer bonded onto a substructure layer, therefore it is a unimorph 

cantilever. The perfectly conductive electrode pair (of negligible thickness) fully covers the 

upper and the lower faces of the piezoceramic and is connected to a resistive electrical load. The 

layers are perfectly bonded to each other so there is no relative sliding at the interface. The 

purpose is to find the voltage output of the piezoceramic ( ( )pv t ) across the load resistance in 

response to imposed base excitation. As done in Chapter 3 (where the analytical solutions for 

symmetric bimorph configurations were given), the base motion is represented as translation in 

the transverse direction with superimposed small rotation. Deformations are assumed to be small 

and the material behavior is assumed to be linear elastic. Note that the x, y and z directions, 

respectively, are coincident with the 1, 2 and 3 directions of piezoelectricity (y-direction is into 

the page). These directional subscripts are used interchangeably as the former is preferred for 

mechanical derivations whereas the latter is used in the piezoelectric constitutive relations 

(Appendix A). Note that the following Euler-Bernoulli, Rayleigh and Timoshenko type 

derivations can handle modeling of beams with varying cross-section and changing material 

properties in x-direction. The coupling between the axial and transverse displacement 

components due to structural asymmetry is taken into consideration in all cases. The harvester 

beam shown in Fig. 8.1 has no tip mass. The effect of a tip mass (with mass moment of inertia) 

on the following formulation is discussed after the basic derivations (in Section 8.6). 

 

 

Fig. 8.1 Unimorph piezoelectric energy harvester with varying cross-section 
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8.2 Electromechanical Euler-Bernoulli Model with Axial Deformations  

 

8.2.1 Distributed-parameter Electromechanical Energy Formulation. The effective base 

displacement acting on the beam is given by Eq. (3.1) as 

( , ) ( ) ( )bw x t g t xh t                       (8.1) 

where ( )g t  is the translation in the transverse direction and ( )h t  is the superimposed small 

rotation.  

The displacement field in the beam relative to the moving base can be given by 

0
0 ( , )

( , , ) ( , )
w x t

u x z t u x t z
x


 


                         (8.2) 

( , , ) 0v x z t               (8.3) 

0( , , ) ( , )w x z t w x t                   (8.4) 

where 0 ( , )u x t  and 0 ( , )w x t  are the axial displacement and transverse displacement of the neutral 

axis at point x and time t relative to the moving base.†  

The vector form of the displacement field is 

0
0 0( , )
( , ) 0 ( , )

t
w x t

u x t z w x t
x

 
   

u            (8.5) 

where superscript t stands for transpose (otherwise it is time). From this displacement field, the 

only non-zero strain component can be extracted as 

0 2 0

2

( , , ) ( , ) ( , )
( , , )xx

u x z t u x t w x t
S x z t z

x x x

  
  

  
               (8.6) 

The total potential energy in the structure is 

    
1

2
s p

t t
s p

V V

U dV dV
 
  
 
 
 S T S T                  (8.7) 

where S  is the vector of engineering strain components,  T  is the vector of engineering stress 

components, the subscripts s and p stand for substructure and piezoceramic, respectively, and the 

integrations are performed in the volume (V ) of the respective material.   

                                                            
† The subscript rel (used to denote the relative motion) used in Chapters 2 and 3 has been removed here to avoid 

notation complexity. These terms are defined relative to the moving base throughout this chapter.  
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The isotropic substructure obeys Hooke’s law: 

( , , ) ( , , )xx s xxT x z t Y S x z t           (8.8) 

where sY  is the elastic modulus of the substructure layer. 

The constitutive relation for the stress component in the piezoceramic is (Appendix A.2) 

 1 11 1 31 3 11 31

( )
( , , ) ( , , ) pE E

xx xx
p

v t
T x z t T c S e E c S x z t e

h
              (8.9) 

Here, the electric field is given in terms of the voltage across the load (i.e. 3( ) ( ) /p pE t v t h   

where ( )pv t  is the voltage across the electrodes and ph  is the thickness of the piezoceramic), the 

reduced elastic modulus, piezoelectric stress constant and the permittivity constant expressions 

are 11 111/E Ec s , 31 31 11/ Ee d s  and 2
33 33 31 11/S T Ed s   , respectively (Appendix A.2).  

Equation (8.7) becomes 
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


       (8.10) 

The total kinetic energy of the system can be given by 

   
1

2
s p

t t
m m m m

s s p p

V V

T dV dV
t t t t

 
      
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 

u u u u
               (8.11) 

where s  and p  are the mass densities of the substructure and piezoceramic layers, and mu  is 

the modified displacement vector that is the superposition of the base displacement input given 

by Eq. (8.1) and the displacement vector u :‡ 

0
0 0( , )
( , ) 0 ( , ) ( , )

t

m b

w x t
u x t z w x t w x t

x

 
    

u                 (8.12) 

                                                            
‡ Note that the external forcing on the structure is due to the base motion. Since the total kinetic energy is written for 

the velocity field of the beam relative to the absolute reference frame, the forcing function on the beam (in terms of 

( , )
b

w x t ) will emerge from this kinetic energy expression. Alternatively, one could express the total kinetic energy 

relative to the moving base and include the (virtual) work done by the inertial excitation term (due to base 

displacement ( , )
b

w x t ) as a non-conservative effect.  
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Then the total kinetic energy becomes 
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The total potential energy can be re-expressed as follows: 
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The total kinetic energy in the expanded form is 
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where the kinetic energy contributions from the rotary inertia are neglected but the terms which 

might cause inertial coupling between the axial and transverse displacement components due to 

asymmetric laminates are kept. Here, the zero-th, first and the second moments of area for the 

substructure and piezoceramic cross-sections at an arbitrary point x are 

    2, , 1, ,s s s

s

A H I z z dydz                 (8.16) 

   2, , 1, ,p p p

p

A H I z z dydz               (8.17) 
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where sH  and pH  vanish for a structure that is symmetric with respect to the neutral axis of the 

beam (just like a bimorph or any symmetric multi-morph). Therefore, for a symmetric structure, 

there is no coupling between 0 ( , )u x t  and 0 ( , )w x t . As a result, in a symmetric structure, the axial 

displacement 0 ( , )u x t  cannot be excited by the imposed base displacement ( , )bw x t , which 

simplifies the problem (and allows analytical solutions as in Chapter 3). It is worth adding that, 

in the foregoing expressions as well as in the following, ( )s sA A x , ( )p pA A x , ( )s sH H x , 

( )p pH H x , ( )s sI I x  and ( )p pI I x  are allowed. 

The terms related to piezoelectric coupling are 

      31
p

pp

e
B dydz

h
                     (8.18) 

     31
p

pp

e
J zdydz

h
                       (8.19) 

where  pB  couples the voltage and the extension component and pJ  couples the voltage and the 

curvature component according to Eq. (8.14).  

The internal electrical energy in the piezoceramic layer is 
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t
ie p

V

W dV  E D         (8.20) 

where E  is the vector of electric field components and D  is the vector of electric displacement 

components. Substituting the respective terms (the non-zero electric field and the electric 

displacement components from Appendix A.2) gives 
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Here, pC  is the internal capacitance of the piezoceramic given by 

    33
pS

p
p

A
C

h
                (8.22) 

where pA  is the electrode area. 
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In order to account for mechanical damping, Rayleigh’s dissipation function [41] can be 

used. Alternatively, a damping matrix proportional to the resulting mass and stiffness matrices 

can be introduced later (i.e. after the system is discretized in the assumed-modes solution 

procedure). The second approach is preferred here for simplicity.  

The extended Hamilton’s principle [30] with the internal electrical energy is 

     
2

1

0
t

ie nc

t

L W W dt                    (8.23) 

where L is the Lagrangian, 

       L T U                   (8.24) 

Here, L  and ieW  are the first variations [54] of the Lagrangian and the inertial electrical 

energy, and ncW  is the virtual work of the non-conservative mechanical force and electric 

charge components. Since the effect of base excitation is considered in the total kinetic energy 

term and the mechanical damping effect is to be introduced later, the only non-conservative 

virtual work is due to the electric charge output ( ( )Q t ): 

    ( ) ( )nc nce pW W Q t v t                    (8.25) 

Following the regular procedure of the assumed-modes method [41], the next step is to discretize 

the components of the extended Hamilton’s principle, which are the Lagrangian, internal 

electrical energy and the virtual work of the non-conservative electric charge. 

 

8.2.2 Spatial Discretization of the Energy Equations. The distributed-parameter variables in 

the mechanical domain are 0 ( , )w x t  and 0 ( , )u x t  while the electrical variable is ( )pv t . Let the 

following two finite series represent the two components of vibration response: 
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            (8.26) 
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        (8.27) 

where ( )r x  and ( )r x  are the kinematically admissible trial functions which satisfy the 

respective essential boundary conditions (Appendix D.1), ( )ra t  and ( )rb t  are the unknown 

generalized coordinates. Using Eqs. (8.26) and (8.27) in Eq. (8.14), the total potential energy 

equation becomes 
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where a prime represents ordinary differentiation with respect to space (variable x). Similarly, 

the total kinetic energy expression given by Eq. (8.15) can be discretized to give 
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  

 



(8.29) 

where an over-dot represents ordinary differentiation with respect to time (variable t). 

Substituting Eqs. (8.26) and (8.27) into Eq. (8.21), the internal electrical energy 

expression becomes 

2

1 0 0

1
( ) ( ) ( ) ( ) ( )

2

L LN

ie r p p r r p p r p p
r

W b v t B x dx a v t J x dx C v t 


 
        

 
       (8.30) 

Equations (8.28)-(8.30) can be written as 

 
1 1

1
2

2

N N
aa bb ab a b

r l rl r l rl r l rl r p r r p r
r l

U a a k b b k a b k a v b v 
 

                  (8.32) 

   
2

1 1 0

( , )1
2 2

2

LN N
aa bb ab b

r l rl r l rl r l rl r r s s p p
r l

w x t
T a a m b b m a b m a p A A dx

t
 

 

         
        (8.31) 

     2

1

1

2

N
a b

ie r p r r p r p p
r

W a v b v C v 


               (8.33) 

Here, 

  
0

( ) ( )
L

aa
rl s s p p r lm A A x x dx                      (8.34) 

 
0

( ) ( )
L

bb
rl s s p p r lm A A x x dx                      (8.35) 
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 
0

( ) ( )
L

ab
rl s s p p r lm H H x x dx           (8.36) 

 
0

( , )
( )

L
b

r s s p p r

w x t
p A A x dx

t
   

 
                   (8.37) 

 11

0

( ) ( )
L

aa E
rl s s p r lk Y I c I x x dx                   (8.38) 

 11

0

( ) ( )
L

bb E
rl s s p r lk Y I c I x x dx                   (8.39) 

  11

0

( ) ( )
L

ab E
rl s s p r lk Y H c H x x dx          (8.40) 

 
0

( )
L

a
r p rJ x dx                  (8.41) 

0

( )
L

b
r p rB x dx                  (8.42) 

where 1,...,r N  and 1,...,l N . 

 

8.2.3 Electromechanical Lagrange Equations. The electromechanical Lagrange equations 

based on the extended Hamilton’s principle given by Eq. (8.23) are (Appendix E) 

    0ie

i i i i

Wd T T U

dt a a a a

    
        

                 (8.43) 

    0ie

i i ii

Wd T T U

dt b b bb

    
        

                 (8.44) 

    ie

p p p p

Wd T T U
Q

dt v v v v

    
         

                  (8.45) 

where Q  is the electric charge output of the piezoceramic layer. Recall that the mechanical 

forcing function due to base excitation is expected to come out from the total kinetic energy and 

the mechanical dissipation effects will be introduced in the form of proportional damping later in 

this section. 

The non-zero components of Eq. (8.43) are 
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   
1 1

1 1 1

1
2 2

2

1
2 2

2

N N
aa ablr r r

l r rl l rl r
r li i i i i

N N N
aa ab aa ab

ri l li r rl ri l rl ri r il l il l i
r l l

aa a aT
a a m b m p

a a a a a

a a m b m p m a m b p   

 

  

    
           

        



 

   
    

   
          (8.46) 

   
1 1

1 1 1

1
2

2

1 1
2

2 2

N N
aa ab alr r r

l r rl l rl p r
r li i i i i

N N N
aa ab a aa ab a

ri l li r rl ri l rl ri p r il l il l i p
r l l

aa a aU
a a k b k v

a a a a a

a a k b k v k a k b v



     

 

  

    
           

        



 



 
       (8.47) 

   
1 1

1 1 1

2 2 2

N N
a a aie r

p r ri p r i p
r ri i

W a
v v v

a a
   

 

 
     

             (8.48) 

Then the first set of Lagrange equations (for the generalized coordinate la ) become  

     
1

0
N

aa ab aa ab a
il l il l il l il l i p i

l

m a m b k a k b v f


             (8.49) 

where if  is the forcing component due to base excitation 

      

 

   

2

2
0

2 2

2 2
0 0

( , )
( )

( ) ( )
( ) ( )

L
i b

i s s p p i

L L

s s p p i s s p p i

p w x t
f A A x dx

t t

d g t d h t
A A x dx A A x x dx

dt dt

  

     

 
    

 

    



 
           (8.50) 

Similarly, the non-zero components in Eq. (8.44) are 

 

   
1 1

1 1 1

1
2

2

1
2

2

N N
bb ablr r

l r rl l rl
r li i i i

N N N
bb ab bb ab

ri l li r rl ri l rl il l il l
r l l

bb bT
b b m a m

b b b b

b b m a m m b m a  

 

  

   
          

      



 

      

   
           (8.51) 

   
1 1

1 1 1

1
2

2

1 1
2

2 2

N N
bb ab blr r r

l r rl l rl p r
r li i i i i

N N N
bb ab b bb ab b

ri l li r rl ri l rl ri p r il l il l i p
r l l

bb b bU
b b k a k v

b b b b b

b b k a k v k b k a v



     

 

  

    
           

        



 



 
       (8.52) 

  
1 1

1 1 1

2 2 2

N N
b b bie r

p r ri p r i p
r ri i

W b
v v v

b b
   

 

 
     

                      (8.53) 

The Lagrange equation for the generalized coordinate lb  is 
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   
1

0
N

bb ab bb ab b
il l il l il l il l i p

l

m b m a k b k a v


                   (8.54) 

The non-zero components on the left hand side of Eq. (8.45) are 

     
1

1

2

N
a b

r r r r
rp

U
a b

v
 




 

                (8.55) 

       
1

1

2

N
a bie

p p r r r r
rp

W
C v a b

v
 




  

             (8.56) 

yielding  

     
1

0
N

a b
p p r r r r

r

C v Q a b 


                      (8.57) 

Taking the time derivative of Eq. (8.57) gives 

     
1

0
N

a b
p p r r r r

r

C v Q a b 


                       (8.58) 

where the time rate of change of charge is the electric current passing through the resistor:   

          p

l

v
Q

R
        (8.59) 

The Lagrange equation for pv  becomes 

     
1

0
N

p a b
p p r r r r

rl

v
C v a b

R
 



             (8.60) 

The first two Lagrange equations (Eqs. (8.49) and (8.54)) can be given in the matrix form as 

    pv
         

          
          

aa ab aa ab a

ab bb ab bb b

a a fm -m k -k θ
+ + =

b b 0-m m -k k θ


            (8.61) 

Introducing Rayleigh damping to represent the dissipative electromechanical system as a normal-

mode system: 

 pv
             

              
              

aa ab aa ab aa ab a

ab bb ab bb ab bb b

a a a fm -m d -d k -k θ
+ + + =

b b b 0-m m -d d -k k θ

 
             (8.62) 

where the damping matrix is  

     
     

      
     

aa ab aa ab aa ab

ab bb ab bb ab bb

d -d m -m k -k

-d d -m m -k k
       (8.63) 

Here,   and   are the constants of mass and stiffness proportionality, respectively.  
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The electrical circuit equation given by Eq. (8.60) becomes 

    0
t tp

p p
l

v
C v

R
   a bθ a θ b                (8.64) 

Equations (8.62) and (8.64) are the discretized equations of the distributed-parameter 

electromechanical system. Here, the 1N   vectors of generalized coordinates are 

 1 2 ...
t

Na a aa  ,  1 2 ...
t

Nb b bb            (8.65) 

and the 1N   vectors of electromechanical coupling are 

1 2 ...
ta a a

N     
aθ    , 1 2 ...

tb b b
N     

bθ                   (8.66) 

and the mass, stiffness and damping sub-matrices ( aam , bbm , abm , aak , bbk , abk , aad , bbd  and 

abd ) are N N  matrices and the forcing vector f  is an 1N   vector whose elements are given 

by Eq. (8.50). 

 

8.2.4 Solution of the Electromechanical Lagrange Equations. The electromechanical 

Lagrange equations given by Eqs. (8.62) and (8.64) can be re-expressed as 

pvaa ab aa ab aa ab am a - m b + d a - d b + k a - k b +θ = f                (8.67) 

pvab bb ab bb ab bb b-m a + m b - d a + d b - k a + k b +θ = 0                  (8.68) 

   t tp
p p

l

v
C v

R
  a bθ a θ b                         (8.69) 

If the base displacement is harmonic of the form 0( ) j tg t W e   and 0( ) j th t e  , then the 

components of the forcing vector become 

j te f F                           (8.70) 

Here, 

   
2 2

0 0r r rF W                                                         (8.71)

 
where 

  
 

0

( )
L

r s s p p rA A x dx                                         (8.72) 

  
 

0

( )
L

r s s p p rA A x x dx                                                 (8.73) 
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Based on the linear electromechanical system assumption, the generalized coordinates and the 

voltage output at steady state are j te a A , j te b B  and j t
p pv V e   (where 

 1 2 ...
t

NA A AA ,  1 2 ...
t

NB B BB  and pV  are complex valued). Equations (8.67)-

(8.69) become 

   2 2
pj j V           aa aa aa ab ab ab am d k A m d k B θ F    (8.74) 

      2 2
pj j V            ab ab ab bb bb bb bm d k A m d k B θ 0        (8.75) 

      1 t t

p p
l

j C V j
R

 
         

a bθ A + θ B                       (8.76) 

From Eq. (8.76): 

      
1

1 t t

p p
l

V j j C
R

 


         
a bθ A + θ B               (8.77) 

Substituting Eq. (8.77) into Eqs. (8.74) and (8.75) gives 

     aa abΓ A Γ B F        (8.78) 

       ba bbΓ A Γ B 0           (8.79) 

where 

    
1

2 1 t

p
l

j j j C
R

   


 
      

 
aa aa aa aa a aΓ m d k θ θ            (8.80) 

     
1

2 1 t

p
l

j j j C
R

   


 
      

 
bb bb bb bb b bΓ m d k θ θ              (8.81) 

    
1

2 1 t

p
l

j j j C
R

   


 
      

 
ab ab ab ab a bΓ m d k θ θ             (8.82) 

    
1

2 1 t

p
l

j j j C
R

   


 
      

 
ba ab ab ab b aΓ m d k θ θ             (8.83) 

From Eq. (8.79): 

       1
 bb baB Γ Γ A          (8.84) 

Substituting Eq. (8.84) into Eq. (8.78) gives the complex generalize coordinate amplitudes rA : 
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 
11     

aa ab bb baA Γ Γ Γ Γ F              (8.85) 

Back substitution of Eq. (8.85) into Eq. (8.84) gives the complex generalized coordinate 

amplitudes rB : 

     
11 1      

bb ba aa ab bb baB Γ Γ Γ Γ Γ Γ F            (8.86) 

Eventually, the complex voltage amplitude pV  is obtained from Eq. (8.77) as 

       
1

11 11 t t

p p
l

V j j C
R

 


                
a b bb ba aa ab bb baθ + θ Γ Γ Γ Γ Γ Γ F         (8.87) 

Substituting the elements of A  and B  into Eqs. (8.26) and (8.27) gives the transverse 

displacement and axial displacement response expressions at steady state as 

    

0

1

( , ) ( )
N

j t
r r

r

w x t A e x 



 
                       (8.88) 

    

0

1

( , ) ( )
N

j t
r r

r

u x t B e x 



    

         (8.89) 

The steady-state voltage response is 

         
1

11 11
( )

t t
j t

p p
l

v t j j C e
R

 


                
a b bb ba aa ab bb baθ + θ Γ Γ Γ Γ Γ Γ F     (8.90) 

Following the procedure of Chapter 3, one can use the split form of the base excitation given by 

Eq. (8.71) ( 2 2
0 0W    F σ τ ) and define 6 electromechanical FRFs for the 3 steady-state 

response expressions given by Eqs. (8.88)-(8.90) per base acceleration components. These FRFs 

are 

0 0 0 0

2 2 2 2 2 2
0 0 0 0 0 0

( ) ( )( , ) ( , ) ( , ) ( , )
,  ,  ,  ,  ,  p p

j t j t j t j t j t j t

v t v tw x t u x t w x t u x t

W e W e W e e e e                    
         (8.91) 

It is worth mentioning that the short-circuit and the open-circuit natural frequencies of the system 

can be obtained from the homogeneous form of Eqs. (8.78) and (8.79) by setting the mechanical 

damping terms equal to zero ( d 0 ) and considering the 0lR   and lR   cases, 

respectively: 

    
     
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aa ab

ba bb
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B 0-Γ Γ
             (8.92) 
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The characteristic equation is obtained from the determinant 

       0
aa ab

ba bb

Γ -Γ

-Γ Γ
         (8.93) 

After removing the mechanical damping terms in the sub-matrices aaΓ , abΓ , baΓ ,  bbΓ , if one 

sets 0lR  , the electrical coupling terms simply vanish and the resulting natural frequencies 

obtained from Eq. (8.93) are the short-circuit natural frequencies (natural frequencies at the 

constant electric field condition). If one sets lR  , the resulting natural frequencies are the 

open-circuit natural frequencies (natural frequencies at the constant electric displacement 

condition) as the effective stiffness increases due to electromechanical coupling.  

 

8.3 Electromechanical Rayleigh Model with Axial Deformations  

 

8.3.1 Distributed-parameter Electromechanical Energy Formulation. The form of the total 

potential energy is the same as that of the Euler-Bernoulli formulation: 
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The main difference in the Rayleigh formulation is that the rotary inertia terms are kept in the 

total kinetic energy expression: 
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20 2 0 2 0( , ) ( , ) ( , )

2 p p

u x t w x t w x t
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t t x t x

              
    (8.95) 

The internal electrical energy and the non-conservative work of the charge output are also the 

same as in the previous discussion: 
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    ( ) ( )nc nce pW W Q t v t                    (8.97) 

 

8.3.2 Spatial Discretization of the Energy Equations. The assumed vibration response 

expressions are given by Eqs. (8.26) and (8.27), which discretize Eqs. (8.94)-(8.96) into 
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where  

     
0

( ) ( ) ( ) ( )
L

aa
rl s s p p r l s s p p r lm A A x x I I x x dx                          (8.101) 

and the rest of the mass, stiffness and damping terms are as given by Eqs. (8.35)-(8.42). 

Therefore, the rotary inertia effect modifies aa
rlm  only.  

 

8.3.3 Electromechanical Lagrange Equations. Since the discretized form of the 

electromechanical equations does not change (other than the modification in the aa
rlm  term), the 

resulting Lagrange equations are   

      pvaa ab aa ab aa ab am a - m b + d a - d b + k a - k b +θ = f        (8.102) 

 pvab bb ab bb ab bb b-m a + m b - d a + d b - k a + k b +θ = 0                (8.103) 
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     t tp
p p

l

v
C v

R
  a bθ a θ b                         (8.104) 

 

8.3.4 Solution of the Electromechanical Lagrange Equations. For harmonic base excitation 

( 0( ) j tg t W e   and 0( ) j th t e   so that j te f F ), the vectors of complex generalized coordinate 

amplitudes are 

         
11     

aa ab bb baA Γ Γ Γ Γ F        (8.105) 

      
11 1      

bb ba aa ab bb baB Γ Γ Γ Γ Γ Γ F             (8.106) 

The complex voltage amplitude is 
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 
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                
a b bb ba aa ab bb baθ + θ Γ Γ Γ Γ Γ Γ F       (8.107) 

Equations (8.105)-(8.107) can be used in Eqs. (8.88)-(8.90) to express the steady-state response 

of the system. The discussion related to obtaining the short-circuit and the open-circuit natural 

frequencies is the same as in the Euler-Bernoulli formulation. Hence, the only difference in the 

foregoing equations is due to aa
rlm  which includes the rotary inertia effect based on the Rayleigh 

formulation. 

 

8.4 Electromechanical Timoshenko Model with Axial Deformations  

 

8.4.1 Distributed-parameter Electromechanical Energy Formulation. The displacement 

field in the Timoshenko formulation is 

0 0( , , ) ( , ) ( , )u x z t u x t z x t                       (8.108) 

 ( , , ) 0v x z t            (8.109) 

0( , , ) ( , )w x z t w x t                 (8.110) 

where 0 ( , )u x t  and 0 ( , )w x t  are the axial displacement and transverse displacement at point x on 

the neutral axis relative to the moving base and 0 ( , )x t  is the cross-section rotation.  

The vector form of the displacement field is then 



 222

    0 0 0( , ) ( , ) 0 ( , )
t

u x t z x t w x t   u           (8.111) 

The two non-zero strain components based on the given displacement field are 
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       (8.113) 

where ( , , )xxS x z t  is the axial strain component and ( , )xzS x t  is the transverse engineering shear 

strain component. 

The isotropic substructure has the following constitutive relations: 

( , , ) ( , , )xx s xxT x z t Y S x z t                             (8.114) 

     ( , ) ( , )xz s xzT x t G S x t                     (8.115) 

where   is the cross-section dependent shear correction factor introduced by Timoshenko 

[73,74] and it accounts for the non-uniform distribution of the shear stress over the cross-section 

[73-83].§ Moreover, sG  is the shear modulus of the substructure layer and it is related to the 

elastic modulus of the substructure layer through 

 2 1
s

s
s

Y
G





                      (8.116) 

where s  is the Poisson’s ratio for the substructure layer.  

The constitutive relation for the piezoceramic layer is (Appendix A.3) 

 1 11 1 31 3 11 31

( )
( , , ) ( , , ) pE E

xx xx
p

v t
T x z t T c S e E c S x z t e

h
                     (8.117) 

                                                            
§ Various expressions [73-83] for the shear correction factor   have been derived in the literature since 

Timoshenko’s beam theory [73] was established in 1921. A review of the shear correction factors proposed in 1921-

1975 was presented by Kaneko [78], concluding that the expressions derived by Timoshenko [74] should be 

preferred. For rectangular cross-sections, Timoshenko [74] derived (5 5 ) / (6 5 )
s s

      theoretically whereas 

Mindlin [75,76] obtained 2 / 12   experimentally (for crystal plates). Cowper’s [77] solution is also widely used 

and it differs slightly from Timoshenko’s solution: (10 10 ) / (12 11 )
s s

     . The effect of width-to-depth ratio 

of the cross-section has been taken into account by Stephen [80,81] and more recently by Hutchinson [82]. Recently, 

an experimental study on the effect of width-to-depth ratio of the cross-section has been presented by Puchegger et 

al. [83].  
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      5 55 5 55( , , ) ( , )E E
xz xzT x z t T c S c S x t                        (8.118) 

where 55
Ec  is the shear modulus of the piezoceramic ( 55 551/E Ec s ). 

The total potential energy in the structure is 
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yielding 
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       (8.120) 

The total kinetic energy of the system can be given by 
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where the modified displacement vector (including the base displacement) is 

0 0 0( , ) ( , ) 0 ( , ) ( , )
t

m bu x t z x t w x t w x t    u             (8.122) 

Then the total kinetic energy becomes 
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Equations (8.120) can be written as 
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            (8.124) 

where pB  and pJ  are as given by Eqs. (8.18) and (8.19), respectively.  

Equations (8.123) becomes 
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where the kinetic energy contributions from the rotary inertia are kept. The area moments in the 

foregoing equations are as given by Eqs. (8.16) and (8.17) and the argument related to 

decoupling of 0 ( , )u x t  from the equations mentioned in the Euler-Bernoulli formulation is still 

valid. That is, for a symmetric structure, 0s pH H   and 0 ( , )u x t  is not excited due to the 

transverse vibrations of the beam.  

The internal electrical energy in the piezoceramic layer is 
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     (8.126) 

where the internal capacitance of the piezoceramic is given by Eq. (8.22). 

As done in Section 8.2, the mechanical dissipation effects will be included in the form of 

proportional damping after the equations are discretized. Therefore the only virtual work of non-
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conservative forces in the extended Hamilton’s principle given by Eq. (8.23) is that of the 

electric charge given by Eq. (8.25). 

 

8.4.2 Spatial Discretization of the Energy Equations. The distributed-parameter variables in 

the mechanical domain are 0 ( , )w x t , 0 ( , )u x t  and 0 ( , )x t  and the electrical variable is ( )pv t . Let 

the following finite series represent the components of vibration response: 
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         (8.129) 

where ( )r x , ( )r x  and ( )r x  are the kinematically admissible trial functions which satisfy the 

essential boundary conditions (Appendix D.2), ( )ra t , ( )rb t  and ( )rc t  are the unknown 

generalized coordinates. Using Eqs. (8.127)-(8.129) in Eq. (8.124), the total potential energy 

equation becomes 
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(8.130) 

Similarly, the total kinetic energy expression is discretized into 
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    
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The discretized internal electrical energy is then 

2
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        

 
      (8.132) 

Equations (8.130)-(8.132) can be written as 

   
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2
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(8.134) 
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Here, 

   
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rl s s p p r lm A A x x dx         (8.136) 

 
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bb
rl s s p p r lm A A x x dx                   (8.137) 

 
0

( ) ( )
L

cc
rl s s p p r lm I I x x dx                  (8.138) 

 
0
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L

bc
rl s s p p r lm H H x x dx                     (8.139) 

 
0

( , )
( )

L
b

r s s p p r

w x t
p A A x dx

t
   

 
         (8.140) 
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 55
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rl s s p r lk G A c A x x dx                   (8.144) 

  11
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L

bc E
rl s s p r lk Y H c H x x dx                   (8.145) 

      
0
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L

b
r p rB x dx          (8.146) 

      
0

( )
L

c
r p rJ x dx           (8.147) 

where 1,...,r N  and 1,...,l N . 

 

8.4.3 Electromechanical Lagrange Equations. The electromechanical Lagrange equations are 

expressed based on the extended Hamilton’s principle as 

      0ie

i i i i

Wd T T U

dt a a a a
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                 (8.148) 

      0ie
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      ie
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                   (8.151) 

where Q  is the electric charge output and the forcing component due to base excitation will be 

obtained from the total kinetic energy (more precisely from / iT a   ).  

The non-zero components of Eq. (8.148) are 

  

   
1 1

1 1 1

1
2

2

1
2

2

N N
aalr r

l r rl r
r li i i i

N N N
aa aa

ri l li r rl ri r il l i
r l l

aa aT
a a m p

a a a a

a a m p m a p  

 

  

   
         

      



 

  
   

  
                 (8.152) 



 228

   
1 1

1 1 1

1
2

2

1
2

2

N N
aa aclr r

l r rl l rl
r li i i i

N N N
aa ac aa ac

ri l li r rl ri l rl il l il l
r l l

aa aU
a a k c k

a a a a

a a k c k k a k c  

 

  

   
         

      



 
        (8.153) 

Then the first set of Lagrange equations (for the generalized coordinate la ) become  
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where the forcing component due to base excitation is 
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The non-zero components in Eq. (8.149) are 
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The Lagrange equation for the generalized coordinate lb  is 
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The non-zero components in Eq. (8.150) are 
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Hence the Lagrange equation for the generalized coordinate lc  is 

    
1

0
N

cc bc cc ac bc c
il l il l il l il l il l i p

l

m c m b k c k a k b v


           (8.163) 

The non-zero components on the left hand side of Eq. (8.151) are 
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yielding  
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Taking the time derivative of Eq. (8.166) and using /p lQ v R  gives the Lagrange equation for 

pv  as 
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The first three Lagrange equations can be given in the matrix form as 

pv
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


             (8.168) 

Rayleigh damping is introduced to account for the mechanical dissipative effects by preserving 

the normal-mode system: 
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(8.169) 

Here the damping matrix is  

     
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     (8.170) 

where   and   are the constants of mass and stiffness proportionality.  

Equation (8.167) can be expressed as 
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Equations (8.169) and (8.171) are the discretized equations of the distributed-parameter 

electromechanical system where the 1N   vectors of generalized coordinates are 

 1 2 ...
t

Na a aa  ,  1 2 ...
t

Nb b bb ,  1 2 ...
t

Nc c cc             (8.172) 

and the 1N   vectors of electromechanical coupling are 

1 2 ...
tb b b
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cθ                 (8.173) 

 

8.4.4 Solution of the Electromechanical Lagrange Equations. Rewriting the discretized 

equations of the electromechanical system as 

   aa aa ac aa acm a + d a - d c + k a - k c = f                  (8.174) 

       pvbb bc bb bc bb bc bm b - m c + d b - d c + k b - k c +θ = 0         (8.175) 

pvbc cc ac bc cc ac bc cc c-m b + m c - d a - d b + d c - k a - k b + k c +θ = 0             (8.176) 

       t tp
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v
C v

R
  b cθ b θ c               (8.177) 

For harmonic base displacement of the form 0( ) j tg t W e   and 0( ) j th t e  , the components of 

the forcing vector become 

       j te f F                      (8.178) 
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Here, 

        
2 2

0 0r r rF W                                                       (8.179)

 
where 
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r s s p p rA A x x dx                                               (8.181) 

The steady-state generalized coordinates and the voltage output are j te a A , j te b B , 

j te c C  and j t
p pv V e   (where the elements of A , B  and C  as well as pV  are complex 

valued).  

The steady-state form of Eqs. (8.174)-(8.177) are then 

   2 j j       aa aa aa ac acm d k A d k C F                       (8.182) 

   2 2 0pj j V           bb bb bb bc bc bc bm d k B m d k C θ            (8.183) 

     2 2
pj j j V               ac ac bc bc bc cc cc cc cd k A m d k B m d k C θ 0  (8.184) 

         1 t t

p p
l

j C V j
R

 
         

b cθ B + θ C                       (8.185) 

From Eq. (8.185): 

      
1

1 t t

p p
l

V j j C
R

 


         
b cθ B + θ C                       (8.186) 

Substituting Eq. (8.186) into Eqs. (8.182)-(8.184) gives 

      aa acΓ A -Γ C = F                  (8.187) 

      bc bb-Γ C +Γ B = 0        (8.188) 

         ca cb cc-Γ A -Γ B +Γ C = 0               (8.189) 

where 

2 j   aa aa aa aaΓ = m d k                               (8.190) 

  
1

2 1 t

p
l

j j j C
R

   


 
      

 
bb bb bb bb b bΓ m d k θ θ                      (8.191) 
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 
1

2 1 t

p
l

j j j C
R

   


 
      

 
cc cc cc cc c cΓ m d k θ θ                        (8.192) 

j  ac ca ac acΓ Γ d k                                                (8.193) 

   
1

2 1 t

p
l

j j j C
R

   


 
      

 
bc bc bc bc b cΓ m d k θ θ                       (8.194) 

 
1

2 1 t

p
l

j j j C
R

   


 
      

 
cb bc bc bc c bΓ m d k θ θ                       (8.195) 

From Eq. (8.188): 

    1bb bcB = Γ Γ C               (8.196) 

Substituting Eq. (8.196) into Eq. (8.189) gives    

      1 1     
ca cc cb bb bcA Γ Γ -Γ Γ Γ C                 (8.197) 

Using Eq. (8.197) in Eq. (8.187) gives the vector of complex generalized coordinate amplitudes 

C  as 

          1
1 1

  
  

aa ca cc cb bb bc acC = Γ Γ Γ -Γ Γ Γ -Γ F                 (8.198) 

which can be substituted into Eq. (8.196) to give vector B : 

       1
1 1 1

   
  

bb bc aa ca cc cb bb bc acB = Γ Γ Γ Γ Γ -Γ Γ Γ -Γ F         (8.199) 

Similarly, the vector of complex generalized coordinate amplitudes A  is obtained as 

               1
1 1 1 1

             
ca cc cb bb bc aa ca cc cb bb bc acA Γ Γ -Γ Γ Γ Γ Γ Γ -Γ Γ Γ -Γ F    (8.200) 

and the complex voltage amplitude is  

             
1 1

1 1 11 t t

p p
l

V j j C
R

 
                 

b bb bc c aa ca cc cb bb bc acθ Γ Γ + θ Γ Γ Γ -Γ Γ Γ -Γ F   

             (8.201) 

Substituting the elements of A , B  and C  into Eqs. (8.127)-(8.129) gives the transverse 

displacement, axial displacement and the cross-section rotation response at steady state as 

     

0

1

( , ) ( )
N

j t
r r

r

w x t A e x 



 
            (8.202) 
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0

1

( , ) ( )
N

j t
r r

r

u x t B e x 



 
            (8.203) 

      

0

1

( , ) ( )
N

j t
r r

r

x t C e x 



               

        (8.204) 

The steady-state voltage response is 

          
1 1

1 1 11 t t
j t

p p
l

V j j C e
R

 
                 

b bb bc c aa ca cc cb bb bc acθ Γ Γ + θ Γ Γ Γ -Γ Γ Γ -Γ F   

                 (8.205) 

One can use the form of the base excitation given by Eq. (8.179) ( 2 2
0 0W    F σ τ ) and 

define the following 8 electromechanical FRFs for the 4 steady-state response expressions given 

by Eqs. (8.202)-(8.205) 

0 0 0 0 0 0

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0

( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )
,  ,  ,  ,  ,  ,  ,  p p

j t j t j t j t j t j t j t j t

v t v tw x t u x t x t w x t u x t x t

W e W e W e W e e e e e       

 
                       

     

(8.206) 

The short-circuit and the open-circuit natural frequencies of the system can be obtained by 

setting the mechanical damping terms equal to zero ( d 0 ) and considering the 0lR   and 

lR   cases, respectively, in the following characteristic equation obtained from the free 

vibration ( F 0 ) problem: 




 

aa ac

bb bc

ca cb cc

Γ 0 Γ

0 Γ Γ = 0

Γ Γ Γ

                 (8.207) 

 

8.5 Modeling of Symmetric Configurations 

 

8.5.1 Euler-Bernoulli and Rayleigh Models. For a geometrically symmetric configuration (i.e. 

symmetric laminates) such as the bimorph configurations shown in Fig. 3.1, the sH  and pH  

terms causing the coupling between the transverse displacement and axial displacement vanish, 

reducing the governing discretized equations of the system (given by Eqs. (8.67)-(8.69)) to 

 pvaa aa aa am a + d a + k a +θ = f             (8.208) 
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  tp
p p

l

v
C v

R
  aθ a                            (8.209) 

This simplest form is similar to the symmetric thin bimorph equations derived using the 

Rayleigh-Ritz technique [16,21].  Following the well-known procedure with the assumption of 

harmonic excitation ( j te f F ), the steady-state response expressions are harmonic of the forms 

j te a A  and j t
p pv V e  , yielding 

     2
pj V   aa aa aa am d k A +θ = F                    (8.210) 

      
1

1 t

p p
l

V j j C
R

 


 
  

 
aθ A                         (8.211) 

which give the complex generalized coordinate vector A and the complex voltage amplitude as 

  1aaA = Γ F                               (8.212) 

     
1

11 t

p p
l

V j j C
R

 


 
  

 
a aaθ Γ F                  (8.213) 

 

8.5.2 Timoshenko Model. For a symmetric bimorph cantilever, Eq. (8.175) decouples from the 

electromechanical equations of the system: 

 aa aa ac aa acm a + d a - d c + k a - k c = f                (8.214) 

pvcc ac cc ac cc cm c - d a + d c - k a + k c +θ = 0                   (8.215) 

   tp
p p

l

v
C v

R
  cθ c                             (8.216) 

With the assumption of harmonic excitation ( j te f F ) the steady-state response expressions are 

j te a A , j te c C  and j t
p pv V e  . One obtains from Eqs. (8.214)-(8.216) that 

         
11 1      

ca cc aa ca cc acA Γ Γ Γ Γ Γ -Γ F                 (8.217) 

  
11  

  
aa ca cc acC = Γ Γ Γ -Γ F                      (8.218) 

           
1

111 t

p p
l

V j j C
R

 


         
c aa ca cc acθ Γ Γ Γ -Γ F             (8.219) 
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8.6 Presence of a Tip Mass in the Euler-Bernoulli, Rayleigh and Timoshenko Models 

 

If the energy harvester configuration shown in Fig. 8.1 has a tip mass of tM  with a mass 

moment of inertia of tI , the total kinetic energy expressions should be modified in the 

electromechanical models derived in this chapter. 

 In the Euler-Bernoulli and Rayleigh models, the total kinetic energy expression with the 

kinetic energy contribution of a tip mass located at x L  becomes 
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      
                
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I

t x


 
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        (8.220) 

which modifies the sub-matrix aa
rlm  in the Euler-Bernoulli model to 

    
0

( ) ( ) ( ) ( ) ( ) ( )
L

aa
rl s s p p r l t r l t r lm A A x x dx M L L I L L                (8.221) 

and the sub-matrix aa
rlm  in the Rayleigh model becomes 

      
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L

aa
rl s s p p r l s s p p r l t r l t r lm A A x x I I x x dx M L L I L L                       

      (8.222) 

In both Euler-Bernoulli and Rayleigh models, the term rp  derived from the total kinetic energy 

expression becomes 

  
0

( , ) ( , )
( ) ( )

L
b b

r s s p p r t r
x L

w x t w x t
p A A x dx M L

t t
   



 
  

           (8.223) 

which alters the effective force due to base excitation as follows  
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 

   

2 2

2 2
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2 2

2 2
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( ) ( )
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L
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r s s p p r t r

x L

L L

s s p p r t r s s p p r t r

w x t w x tp
f A A x dx M L

t t t

d g t d h t
A A x dx M L A A x x dx M L L

dt dt
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

 
     

  

   
         

   



 
 

(8.224) 

and it modifies the r  and r  terms accordingly in the split representation of  the forcing term 

( 2 2
0 0r r rF W       ). 

With the inclusions of the tip mass, the total kinetic energy expression in the Timoshenko 

model becomes 
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    (8.225) 

The sub-matrices altered in the Timoshenko model due to this modification are aa
rlm  and cc

rlm : 

   
0

( ) ( ) ( ) ( )
L

aa
rl s s p p r l t r lm A A x x dx M L L                        (8.226) 

    
0

( ) ( ) ( ) ( )
L

cc
rl s s p p r l t r lm I I x x dx I L L             (8.227) 

The base excitation related terms derived from the total kinetic energy take the forms given by 

Eqs. (8.223) and (8.224) (identical in Euler-Bernoulli, Rayleigh and Timoshenko models). 

 

8.7 Comments on the Kinematically Admissible Trial Functions  

 

8.7.1 Euler-Bernoulli and Rayleigh Models. The essential boundary conditions of a clamped-

free beam in the Euler-Bernoulli and Rayleigh models are given in Appendix D.1. According to 

the kinematic boundary conditions at the clamped end, the admissible functions in Eqs. (8.26) 

and (8.27) should satisfy 
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(0) 0r 

 
              (8.228) 

       
(0) 0r 

 
                 (8.229) 

                   
(0) 0r 

              
                 (8.230) 

For the admissible functions ( )r x  of the transverse displacement, one can use the 

eigenfunctions of the respective symmetric structure given in Chapter 3. Therefore, 

     
( ) cos cosh sin sinhr r r r

r rx x x x x
L L L L

          
 

                     (8.231) 

where r  is obtained from 

    
 

 

sin sinh cos cosh

cos cosh sin sinh

t
r r r r r

r
t

r r r r r

M

mL
M

mL

    


    

  


  
                      (8.232) 

Here, r  is the r-th root of the transcendental equation  

   

   

 

3

3

4

2 4

1 cos cosh cos sinh sin cosh cosh sin sinh cos

1 cos cosh 0

t t

t t
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M I

m L


          


 

    

  
(8.233) 

where m is the mass per length of the beam: 

     
0

L

s s p pm A A dx                       (8.234) 

The foregoing expressions simplify considerably in the absence of a tip mass ( 0t tM I  ). 

Indeed, even in the presence of a tip mass, one can use the form of the ( )r x  for 0t tM I  ,  

          

sin sinh
( ) cos cosh sin sinh

cos cosh
r r r r r r

r
r r

x x x x x
L L L L

     
 

        
              (8.235) 

which is still kinematically admissible with r  obtained from 

1 cos cosh 0                   (8.236) 

However, in the presence of a tip mass, using the eigenvalues obtained from Eq. (8.233) might 

lead to faster convergence (with less number of modes) in the discretized system. Note that the 

foregoing admissible functions become the eigenfunctions for a symmetric structure.  
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 If one prefers to avoid the hyperbolic functions appearing in the eigenfunctions of the 

symmetric structure, the following is a typical admissible function used for clamped-free 

boundary conditions [84]: 

       

 2 1
( ) 1 cos

2r

r x
x

L




 
   

 
                           (8.237) 

which satisfies Eqs. (8.228) and (8.229). Polynomial forms and static solutions can also be used 

to satisfy Eqs. (8.228) and (8.229). 

 Similarly, the eigenfunctions of the symmetric structure under longitudinal vibrations can 

be used as the admissible functions of the asymmetric structure here. From Chapter 2, 

 ( ) sin r
r x x

L

              (8.238) 

where r  is the r-th root of the transcendental equation  

sin cos 0t
r r r

M

mL
                      (8.239) 

Alternatively, the roots of cos 0r   (i.e. (2 1) / 2r r   , 1, 2,...,r N ) can be used in Eq. 

(8.238) for simplicity. 

 

8.7.2 Timoshenko Model. The essential boundary conditions of a clamped-free Timoshenko 

beam are given in Appendix D.2. Based on the kinematic boundary conditions, the admissible 

functions in Eqs. (8.127)-(8.129) should satisfy 

       
(0) 0r 

 
               (8.240) 

      
(0) 0r 

 
                (8.241) 

                   
(0) 0r 

              
                 (8.242) 

According to Eq. (8.240), one can use the form of ( )r x  given by Eq. (8.231) since it satisfies 

Eq. (8.240). However, it is useful to note that (0) 0r   implies zero shear strain at the root (due 

to (0) 0r  ), which is not realistic for a clamped boundary. A simple trigonometric function 

similar to Eq. (8.238) could be a better alternative compared to Eq. (8.231). Equations (8.241) 

and (8.242) also accept trigonometric forms. However, using similar trigonometric functions 

might result in cancellations of the cross-integrals in Eqs. (8.136)-(8.147) due to the 

orthogonality of trigonometric functions. Polynomial forms can be employed as an alternative. 
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Several other alternatives exist in the literature, such as implementations of the Chebyshev 

polynomials [85] and static solutions [86].  

 

8.8 Experimental Validations of the Assumed-Modes Solution for a Bimorph Cantilever 

 

8.8.1 PZT-5H Bimorph Cantilever without a Tip Mass. The experimental case study given for 

the PZT-5H bimorph cantilever with a tip mass in Section 4.1 is revisited here for validation of 

the electromechanical assumed-modes solution. The assumed-modes counterpart of the 

analytical thin-beam solution given in Chapter 4 is the Euler-Bernoulli formulation given in 

Section 8.2. Note that the structure is thin enough to neglect the effects of shear deformation and 

rotary inertia in modeling. For a device with moderate thickness, the Timoshenko formulation 

should be used. According to the geometric and materials properties of the cantilever given in 

Table 4.1, the coupling between the transverse and the longitudinal displacement components 

vanishes (i.e. due to the structural symmetry, 0s pH H  ). The admissible function used in all 

simulations is the trigonometric admissible function given by Eq. (8.237) (therefore the exact 

eigenfunction, although is available, is not used). All the comparisons here are given against the 

experimental measurements and the analytical solutions for the entire set of resistors used in 

Section 4.1. 

 Figure 8.2 shows the assumed-modes prediction with only one mode ( 1N  ). Both the 

voltage and the tip velocity predictions are highly inaccurate (especially in terms of the 

resonance frequency). If the number of modes in the assume-modes procedure is increased to 

3N  , the predictions are improved substantially as observed in Fig. 8.3 (see Table 8.1). Further 

increase in the number of modes up to 5N   (Fig. 8.4) and then to 10N   (Fig. 8.5) provides 

uniform convergence to the analytical frequencies (but not as dramatic as the improvement from 

3 modes to 10 modes). Although increasing the number of modes does not seem to be improving 

the model prediction considerably, including more number of modes improve the predictions of 

higher vibration modes which are not discussed here.  

Note that, the fundamental natural frequency estimated using this technique gives an 

upper bound of the lowest natural frequency [41] (as in the Rayleigh-Ritz method) and 

approximate fundamental natural frequency cannot underestimate the analytical value regardless 

of the number of modes used. 
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Fig. 8.2 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever without a tip mass against the experimental data and the analytical solution  

(1 mode is used in the assumed-modes solution) 

 

 

   
 

Fig. 8.3 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever without a tip mass against the experimental data and the analytical solution  

(3 modes are used in the assumed-modes solution) 

 

 

 

 

 

(a) (b) 

(a) (b) 
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Fig. 8.4 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever without a tip mass against the experimental data and the analytical solution   

(5 modes are used in the assumed-modes solution) 

 

 

   
 

Fig. 8.5 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever without a tip mass against the experimental data and the analytical solution   

(10 modes are used in the assumed-modes solution) 

 

 

 

 

 

(a) (b) 

(b) (a) 
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Table 8.1 Assumed-mode predictions of the short-circuit and the open-circuit resonance 

frequencies of the voltage FRF for the PZT-5H bimorph cantilever without a tip mass 
 

 1
scf  [Hz] 1

ocf  [Hz] 

Experimental 502.5 524.7 

Analytical 502.6 524.5 

Assumed-modes ( 1N  ) 523.8 555.3 

Assumed-modes ( 3N  ) 503.2 525.5 

Assumed-modes ( 5N  ) 502.7 524.7 

Assumed-modes ( 10N  ) 502.6 524.5 

 

8.8.2 PZT-5H Bimorph Cantilever with a Tip Mass. The configuration in Section 4.2 (the 

same cantilever of Section 8.8.1 with a tip mass attachment) is revisited next. The only 

difference in the formulation (compared to that of Section 8.8.1) is due to the contribution of the 

tip mass information and its mass moment of inertia to the mass matrix and the forcing vector as 

discussed in Section 8.6. Therefore, Eqs. (8.221) and (8.223) should be used in order to calculate 

the sub-matrix aa
rlm  and the forcing vector rp  in the assume-modes solution procedure of Section 

8.2. Again, all resistors are considered in the comparisons against the analytical solutions and the 

experimental results. The same admissible function given by Eq. (8.237) is used in the assumed-

modes simulations. 

 The assumed-modes prediction for only one mode ( 1N  ) gives highly inaccurate 

predictions as shown in Fig. 8.6 (as in the previous case). Just like in the previous case (without 

the tip mass), if two mode modes added to the solution (so that 3N  ), the predictions are 

improved substantially as given in Fig. 8.7 which can also been seen from the predictions of the 

short-circuit resonance and the open-circuit resonance frequency predictions in Table 8.2. 

Further increase in the number of modes results in uniform convergence to the analytical 

frequencies as shown in Figs. 8.8 and 8.9.  
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Fig. 8.6 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever with a tip mass against the experimental data and the analytical solution       

(1 mode is used in the assumed-modes solution) 

 

 

   
 

Fig. 8.7 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever with a tip mass against the experimental data and the analytical solution       

(3 modes are used in the assumed-modes solution) 

 

 

(a) (b) 

(a) (b) 
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Fig. 8.8 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever with a tip mass against the experimental data and the analytical solution       

(5 modes are used in the assumed-modes solution) 

 

 

   
 

Fig. 8.9 Comparison of the (a) voltage FRFs and the (b) tip velocity FRFs of the PZT-5H 

bimorph cantilever with a tip mass against the experimental data and the analytical solution       

(10 modes are used in the assumed-modes solution) 

 

(b) (a) 

(a) (b) 
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Table 8.2 Assumed-mode predictions of the short-circuit and the open-circuit resonance 

frequencies of the voltage FRF for the PZT-5H bimorph cantilever with a tip mass 
 

 1
scf  [Hz] 1

ocf  [Hz] 

Experimental 338.4 356.3 

Analytical 338.5 355.4 

Assumed-modes ( 1N  ) 344.6 365.3 

Assumed-modes ( 3N  ) 338.7 355.8 

Assumed-modes ( 5N  ) 338.5 355.5 

Assumed-modes ( 10N  ) 338.5 355.4 

 

8.9 Summary and Conclusions 

 

Approximate distributed-parameter modeling of cantilevered piezoelectric energy harvesters is 

given in this chapter. An electromechanical version of the assumed-modes method of structural 

dynamics is used to discretize the energy equations into electromechanical Lagrange equations 

derived from the extended Hamilton’s principle. The derivations are given based on the Euler-

Bernoulli, Rayleigh and Timoshenko beam theories. In all cases, an axial displacement variable 

is defined to capture its coupling with the transverse displacement variable due to structural 

asymmetry. To demonstrate modeling of an asymmetric configuration, focus is placed on the 

unimorph configuration. Simplification of the governing equations for symmetric bimorph 

configurations is also shown and the effect of a tip mass on the resulting formulation is 

discussed. A short discussion regarding the kinematically admissible functions to be used in the 

models derived here is also provided. Finally the experimental case studies for a thin cantilever 

(without and with a tip mass) are revisited for validation of the assumed-modes solution using 

different number of admissible trigonometric functions. The predictions of the assumed-modes 

solution are also compared with the analytical solution and a very good agreement is observed. 

The approximate formulations given in this chapter can be used to predict the electromechanical 

response of cantilevers with asymmetric laminates, moderately thick cantilevers as well as 

cantilevers with varying cross-section. 
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CHAPTER 9 

 

A NON-CONVENTIONAL BROADBAND VIBRATION ENERGY 

HARVESTER USING A BI-STABLE PIEZO-MAGNETO-ELASTIC 

STRUCTURE 

 

A primary issue in resonant vibration energy harvesters discussed in the previous chapters is that 

the best performance of the device is limited to resonance excitation. That is, if the excitation 

frequency slightly deviates from the fundamental resonance frequency of the energy harvester, 

the power out is drastically reduced. In order to overcome this issue of the conventional resonant 

cantilever configuration, a non-resonant piezo-magneto-elastic energy harvester is introduced in 

this chapter. The magneto-elastic configuration is well known from the literature of nonlinear 

dynamics as a mechanical structure that exhibits chaotic strange attractor motions. Here, 

piezoelectric coupling is introduced to the structure in order to obtain a piezo-magneto-elastic 

configuration for vibration energy harvesting. First the lumped-parameter electromechanical 

equations describing the nonlinear system are given along with theoretical simulations to 

demonstrate the existence of high-energy orbits at different frequencies. It is shown that, over a 

range of frequencies, one can generate much larger voltage from the substantially large 

amplitude oscillations on these orbits. An experimental prototype is built and the presence of 

such high-energy orbits at several frequencies below the post-buckled natural frequency of the 

structure is verified. In qualitative agreement with the theory, the experiments show that the 

transient chaotic vibrations of the generator can turn into large-amplitude oscillations on a high-

energy orbit, which can also be realized by applying a disturbance to the structure oscillating on 

a low-energy orbit around one of its foci. It is shown experimentally that, for the same excitation 

input, the open-circuit voltage output of the piezo-magneto-elastic energy harvester can be three 

times that of the conventional piezo-elastic cantilever configuration, yielding an order of 

magnitude larger power output over a range of frequencies.  
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9.1 Piezo-magneto-elastic Energy Harvester 

 

9.1.1 Lumped-parameter Electromechanical Equations Describing the Nonlinear System 

Dynamics. The magneto-elastic structure shown in Fig. 9.1a was first investigated by Moon and 

Holmes [87] as a mechanical structure that exhibits strange attractor* motions [88]. The device 

consists of a ferromagnetic cantilevered beam with two permanent magnets located 

symmetrically near the free end and it is subjected to harmonic base excitation. The bifurcations 

of the static problem are described by a butterfly catastrophe [91] in the catastrophe theory with 

a sixth order magneto-elastic potential. Therefore, depending on the magnet spacing, the 

ferromagnetic beam may have five (with three stable), three (with two stable) or one (stable) 

equilibrium positions. For the case with three equilibrium positions (the bi-stable configuration), 

the governing lumped-parameter equation of motion has the form of the Duffing equation: 

 21
2 1 cos

2
x x x x f t                            (9.1) 

where x  is the dimensionless tip displacement of the beam in the transverse direction,   is the 

mechanical damping ratio,   is the dimensionless excitation frequency, f  is the dimensionless 

excitation force due to base acceleration ( 2
0f X  where 0X  is the dimensionless base 

displacement amplitude) and an over-dot represents differentiation with respect to dimensionless 

time. The three equilibrium positions obtained from Eq. (9.1) are    , 0,0x x   (a saddle) and 

   , 1,0x x    (two centers). Detailed nonlinear analysis of the magneto-elastic structure shown 

in Fig. 9.1a can be found in the papers by Moon and Holmes [87,92]. 

In order to use this device as a piezoelectric energy harvester, we attach two 

piezoceramic layers onto the root of the cantilever and obtain a bimorph generator as depicted in 

Fig. 9.1b. The piezoceramic layers are connected to an electrical load (a resistor for simplicity) 

                                                            
* Although the main focus of this chapter is not the chaotic vibrations of the magneto-elastic configuration, it is 

worth recalling that the term strange attractor in chaos theory refers to a fractal set to which a dynamical system 

evolves after sufficiently long time. According to Lorenz [89], one of the pioneers best known for his early work on 

the nonlinear atmospheric phenomena [90], “a strange attractor, when it exists, is truly the heart of a chaotic 

system…” [89]. A concrete example of such an attractor with a practical value follows: “…For one special 

complicated chaotic system – the global weather – the attractor is simply the climate, that is, the set of weather 

patterns that have at least some chance of occasionally occurring.” 
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and the voltage output of the generator across the load due to seismic excitation is the primary 

interest in energy harvesting. Introducing piezoelectric coupling into Eq. (9.1) and applying the 

Kirchhoff laws to the circuit with a resistive load (Fig. 9.1b) leads to the following 

electromechanical equations describing the system dynamics: 

 21
2 1 cos

2
x x x x v f t                            (9.2) 

0v v x                    (9.3) 

where v  is the dimensionless voltage across the load resistance,   is the dimensionless 

piezoelectric coupling term in the mechanical equation,   is the dimensionless piezoelectric 

coupling term in the electrical circuit equation and   is the reciprocal of the dimensionless time 

constant ( 1/ l pR C   where lR  is the load resistance and pC  is the equivalent capacitance of the 

piezoceramic layers). Note that the possible nonlinearity coming from piezoelectric coupling is 

ignored in Eqs. (9.2) and (9.3), assuming the standard form of the linear piezoelectric 

constitutive relations [26] (Appendix A).  

 

 
 

Fig. 9.1  Schematics of the (a) magneto-elastic structure investigated by Moon and Holmes [87] 

and the (b) piezo-magneto-elastic energy harvester proposed here 

 

The state-space form of Eqs. (9.2) and (9.3) can be expressed as 

 
2

1
2

2 2 1 1 3

3
3 2

1
2 1 cos
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   
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


               (9.4) 

(a) (b) 
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where the state variables are 1u x ,  2u x   and 3u v . The electromechanically coupled 

equations given by Eq. (9.4) can be used in an ordinary differential equation solver for numerical 

simulations (the ode45 command of MATLAB [44] is used here).  

 

9.1.2 Time-domain Numerical Simulations of the Electromechanical Response. The time-

domain voltage simulations shown in Figs. 9.2 and 9.3 are obtained using Eq. (9.4) with 

0.8  , 0.01  , 0.05  , 0.5   and 0.05   (close to open-circuit conditions). In the 

first case (Fig. 9.2a), the forcing term is 0.083f   and the motion starts with an initial 

deflection at one of the stable equilibrium positions ( (0) 1x   with zero initial velocity and 

voltage: (0) (0) 0x v  ). The resulting vibratory motion is on a chaotic strange attractor 

(yielding the chaotic voltage history shown in Fig. 9.2a) and the Poincaré map of this strange 

attractor motion is shown in Fig. 9.2b on its phase portrait.  

 

    
 

Fig. 9.2  (a) Theoretical voltage history exhibiting the strange attractor motion for and (b) its 

Poincaré map ( (0) 1x  , (0) 0x  , (0) 0v  , 0.083f  , 0.8  ) 

 

If the excitation amplitude is increased by keeping the same initial conditions, the transient 

chaotic behavior is followed by large-amplitude oscillations on a high-energy orbit with 

improved voltage response (Fig. 9.3a). More importantly, Fig. 9.3b shows that this type of large-

amplitude voltage response can be obtained with the original excitation amplitude (of Fig. 9.2a) 

and different initial conditions (simply by imposing an initial velocity condition so that (0) 1x  , 

(0) 1.2x  , (0) 0v  ).  

(a) (b) 
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Fig. 9.3  Theoretical voltage histories: (a) Large-amplitude response due to the excitation 

amplitude ( (0) 1x  , (0) 0x  , (0) 0v  , 0.115f  , 0.8  ); (b) Large-amplitude response due to 

the initial conditions for a lower excitation amplitude ( (0) 1x  , (0) 1.2x  , (0) 0v  , 0.083f  , 

0.8  ) 

 

9.1.3 Performance Comparison of the Piezo-magneto-elastic and the Piezo-elastic 

Structures in the Phase Space. Having observed the large-amplitude electromechanical 

response obtained on high-energy orbits of the piezo-magneto-elastic energy harvester 

configuration described by Eqs. (9.2) and (9.3), a simple comparison can be made against the 

conventional piezo-elastic configuration (which is the linear cantilever configuration without the 

magnets causing the bi-stability).  

The lumped-parameter equations of the linear piezo-elastic configuration are 

2 cosx x x v f t                       (9.5) 

0v v x                               (9.6) 

which can be given in the state-space form as 

 
1 2

2 2 1 3

3 3 2

2 cos

u u

u u u u f t

u u u

 
 

   
           
       





                    (9.7) 

For the same numerical input ( 0.8  , 0.01  , 0.05  , 0.5   and 0.05  ), initial 

conditions and the forcing amplitude of Fig. 9.3b ( (0) 1x  , (0) 1.2x  , (0) 0v  , 0.083f  ), 

one can simulate the voltage response of the piezo-elastic configuration using Eq. (9.7).  

(b) (a) 
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Figure 9.4a shows the velocity vs. displacement phase portrait of the piezo-magneto-

elastic and the piezo-elastic configurations. As can be seen from the steady-state orbits appearing 

in this figure, for the same excitation amplitude, system parameters and the forcing amplitude, 

the steady-state vibration amplitude of the piezo-magneto-elastic configuration can be much 

larger than that of the piezo-elastic configuration. Expectedly, the large-amplitude response on 

the high-energy orbit is also observed in the velocity vs. voltage phase portrait† shown in Fig. 

9.4b.  

 

 
 

Fig. 9.4  Comparison of the (a) velocity vs. displacement and the (b) velocity vs. voltage phase 

portraits of the piezo-magneto-elastic and piezo-elastic configurations 

( (0) 1x  , (0) 1.2x  , (0) 0v  , 0.083f  , 0.8  ) 

 

The superiority of the piezo-magneto-elastic configuration over the piezo-elastic configuration 

can be shown by plotting these trajectories at several other frequencies except for the resonance 

( 1  ) case of the linear problem for which the piezo-elastic configuration generates more 

voltage. However, at several other frequencies (e.g. 0.6  , 0.7  , 0.9  ), a substantially 

                                                            
† For the system parameters used in these simulations, the phase between the voltage and the velocity is 

approximately 90 degrees because the system is close to open-circuit conditions. Therefore, in open-circuit 

conditions, it is reasonable to plot the velocity vs. voltage output as the electromechanical phase portrait (as an 

alternative to the conventional velocity vs. displacement phase portrait). From the experimental point of view, it is 

advantageous to plot these two independent measurements (voltage output of the piezoceramic vs. the velocity 

signal from the laser vibrometer) rather than integrating the experimental velocity history (as it typically results in a 

non-uniform drift).     

(a) (b) 
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amplified response similar to the case of 0.8   can be obtained. The velocity vs. open-circuit 

voltage phase portraits of the piezo-magneto-elastic and the piezo-elastic configurations are 

plotted for 0.7   and 0.9   in Figs. 9.5a and 9.5b, respectively.  

 

  
 

Fig 9.5  Comparison of the velocity vs. voltage phase portraits of the piezo-magneto-elastic and 

piezo-elastic configurations for (a) 0.7  and (b) 0.9   

( (0) 1x  , (0) 1.2x  , (0) 0v  , 0.083f  ) 

 

The three-dimensional voltage vs. velocity phase-space trajectories are given for the 

frequency range of 0.5 1    in Fig. 9.6. In all cases, the system parameters, initial conditions 

and the forcing amplitude‡ are the identical. In Fig. 9.6a, the electrical output of the piezo-

magneto-elastic configuration is not considerably larger because the trajectory oscillates around 

one of its foci. That is, the forcing amplitude cannot overcome the attraction of the magnetic 

force at the respective focus. As a result, the piezo-magneto-elastic configuration oscillates on a 

low-energy orbit and its electrical response amplitude is indeed comparable to that of the piezo-

elastic configuration. In Figs. 9.6b-9.6e, over the frequency range of 0.6 0.9   , the piezo-

magneto-elastic configuration shows a very large amplitude electromechanical response on a 

high-energy orbit compared to the orbit of the piezo-elastic configuration. Note that the response 

amplitude of the piezo-elastic configuration grows as one moves close to the resonance ( 1  ) 

                                                            
‡ Notice from the discussions in Chapter 3 that the forcing amplitude in the base excitation problem is proportional 

to the square of the frequency ( 2

0
f X  ). Keeping the forcing amplitude f constant at different frequencies 

implies keeping the base acceleration amplitude the same. Hence the base displacement amplitudes are different.   

(a) (b) 
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of the piezo-elastic configuration. Yet the piezo-magneto-elastic configuration generates 

dramatically larger steady-state voltage output in this frequency range ( 0.6 0.9   ).  

 

   

   

   
 

 

Fig. 9.6  Comparison of the voltage vs. velocity phase portraits of the piezo-magneto-elastic and 

piezo-elastic configurations for (a) 0.5  , (b) 0.6  , (c) 0.7  , (d) 0.8  ,  

(e) 0.9  , (f) 1  ( (0) 1x  , (0) 1.2x  , (0) 0v  , 0.083f  ) 

 

(c) (d) 

(e) (f) 

(a) (b) 
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Expectedly, at 1  , the response amplitude of the piezo-elastic configuration is larger (Fig. 

9.6f). It is worth adding that, at this particular frequency where the resonant configuration 

generates more voltage, the difference in the response amplitudes is not as dramatic as at other 

frequencies where the non-resonant configuration is much superior.  

Experimental verifications of the concept (i.e. the presence of these high-energy orbits to 

utilize for piezoelectric energy harvesting) are given in the following sections.  

 

9. 2 Experimental Setup and Performance Results 

 

9.2.1 Experimental Setup. The piezo-magneto-elastic energy harvester and the setup used in the 

first set of experiments are shown in Fig. 9.7. Harmonic base excitation is provided by a seismic 

shaker (Acoustic Power Systems [93] APS-113), the acceleration at the base of the cantilever is 

measured by a small accelerometer (PCB Piezotronics [47] Model U352C67) and the velocity 

response of the cantilever is recorded by a laser vibrometer (Polytec [10] OFV303 laser head 

with OFV3001 vibrometer). The time history of the base acceleration, voltage and vibration 

responses are recorded by a National Instruments [94] NI cDAQ-9172 data acquisition system 

(with a sampling frequency of 2000 Hz). The ferromagnetic beam (made of tempered blue steel) 

is 145 mm long (overhang length), 26 mm wide and 0.26 mm thick. A lumped mass of 14 grams 

is attached close to the tip for improved dynamic flexibility. Two PZT-5A piezoceramic layers 

(QP16N, Midé Corporation [95]) are attached onto both faces of the beam at the root using a 

high – shear strength epoxy and they are connected in parallel. The spacing between the 

symmetrically located circular rare earth magnets is 50 mm (center to center) and this distance is 

selected to realize the three equilibrium case described by Eqs. (9.2) and (9.3). The tip deflection 

of the magnetically buckled beam in the static case to either side is approximately 15 mm 

relative to the unstable equilibrium position. The post-buckled fundamental resonance frequency 

of the beam is around 10.6 Hz (at both focus points) whereas the fundamental resonance 

frequency of the unbuckled beam (when the magnets are removed) is 7.4 Hz (both under the 

open-circuit conditions of piezoceramics – i.e. at constant electric displacement). 
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Fig. 9.7 (a) A view of the experimental setup and (b) the piezo-magneto-elastic energy harvester 

(photos by A. Erturk, 2009) 

 

9.2.2 Performance Results. For a harmonic base excitation amplitude of 0.5g (where g is the 

gravitational acceleration: g = 9.81 m/s2) at 8 Hz with an initial deflection at one of the stable 

equilibrium positions (15 mm to the shaker side), zero initial velocity and voltage, the chaotic 

open-circuit voltage response shown in Fig. 9.8a is obtained. The Poincaré map of the strange 

attractor motion is displayed in Fig. 9.8b. These figures are obtained from a measurement taken 

for about 15 minutes (1,784,400 data points due to a sampling frequency of 2000 Hz) and they 

exhibit very good qualitative agreement with the theoretical strange attractor given by Fig. 9.2.  

 

      
 

Fig. 9.8 (a) Experimental voltage history exhibiting the strange attractor motion for and (b) its 

Poincaré map (excitation: 0.5g at 8 Hz) 

 

If the excitation amplitude is increased to 0.8g (at the same frequency), the structure goes 

from transient chaos into a large-amplitude periodic motion with a strong improvement in the 

voltage response as shown in Fig. 9.9a (i.e. the attractor is no longer a strange attractor). A 

(a) (b) 

(a) (b) 
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similar improvement is obtained in Fig. 9.9b where the excitation amplitude is kept as the 

original one (0.5g) and a disturbance (hand impulse) is applied at 11t  s (as a simple alternative 

to creating a velocity initial condition). Such a disturbance can be realized in practice by 

applying an impulse type voltage input through one of the piezoceramic layers for once. The 

experimental evidence given with Fig. 9.9 is in agreement with the theoretical discussion given 

with Fig. 9.3. Noticing the large-amplitude steady-state voltage response obtained at an off-

resonance frequency in Fig. 9.9, the broadband performance of the device is investigated and 

comparisons against the piezo-elastic configuration are given in the next section. 

 

   
 

Fig. 9.9 Experimental voltage histories: (a) Large-amplitude response due to the excitation 

amplitude (excitation: 0.8g at 8 Hz); (b) Large-amplitude response due to a disturbance at 11t  s 

for a lower excitation amplitude (excitation: 0.5g at 8 Hz) 

 

9.3 Broadband Voltage Generation Using the Piezo-magneto-elastic Energy Harvester 

 

9.3.1 Comments on the Chaotic and the Large-amplitude Regions in the Response. Before 

the comparisons of the piezo-magneto-elastic and piezo-elastic§ configurations are given over a 

frequency range, reconsider the voltage history of Fig. 9.9b in two parts. The time history until 

the instant of the disturbance is chaotic, which would yield a strange attractor motion similar to 

what was shown in Fig. 9.8 if no disturbance was applied. After the disturbance is applied at 

11t  s, the large-amplitude response on a high-energy orbit is obtained as the steady-state 

                                                            
§ In the experiments, the piezo-elastic configuration is obtained simply by removing the magnets of the piezo-

magneto-elastic configuration after the experiments the latter are completed. 

(a) (b) 
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response. In order to understand the advantage of the second region in the response history of 

Fig. 9.9b, the open-circuit voltage histories of the piezo-magneto-elastic and piezo-elastic 

configurations are compared for the same harmonic input (0.5g at 8 Hz). Figure 9.10a shows the 

acceleration input to the piezo-magneto-elastic and the piezo-elastic configurations at an 

arbitrary instant of time. The voltage input to the seismic shaker is identical for both 

configurations, yielding very similar base acceleration amplitudes (according to the signal output 

of the accelerometer) for a fair comparison. Figure 9.10b displays the comparison of the piezo-

magneto-elastic and the piezo-elastic configurations where the former exhibits chaotic response 

and the latter has already reached its harmonic steady-state response amplitude at the input 

frequency. As a rough comparison, from Fig. 9.10b, it is not possible to claim that the chaotic 

response of the piezo-magneto-elastic configuration has any advantage over the harmonic 

response of the piezo-elastic configuration as their amplitudes look very similar (a more accurate 

comparison can be made through the RMS –root mean square [50,51] – amplitudes). Besides, 

one would definitely prefer a periodic signal to a chaotic signal when it comes to processing the 

harvested energy using an efficient energy harvesting circuit [23-25]. Figure 9.10c shows the 

voltage histories of these configurations some time after the disturbance is applied to the piezo-

magneto-elastic configuration and the large-amplitude response is obtained. Obviously if the 

same disturbance is applied to the piezo-elastic configuration, the trajectory (in the phase space) 

returns to the same low-amplitude orbit after some transients. Therefore the response amplitude 

of the piezo-elastic configuration is identical in Figs. 9.10b and 9.10c. Although the chaotic 

response of the piezo-magneto-elastic structure has no considerable advantage according to Fig. 

9.10b, the large-amplitude response of this structure can give more than 3 times larger RMS 

voltage output according to Fig. 9.10.c.  

 

9.3.2 Comparison of the Piezo-magneto-elastic and Piezo-elastic Configurations for Voltage 

Generation. Figure 9.11a compares the velocity vs. voltage phase portraits of the piezo-

magneto-elastic and piezo-elastic configurations for excitation at 8 Hz with 0.5g, showing the 

advantage of the large-amplitude orbit clearly. This figure is therefore analogous to the 

theoretical demonstration given by Fig. 9.4b (additional harmonics are present in the 

experimental data of the distributed-parameter piezo-magneto-elastic structure). The three-

dimensional view of the electromechanical trajectory in the phase space is shown in Fig. 9.11b in 
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it shows good qualitative agreement with its simplified theoretical counterpart based on the 

lumped-parameter model (Fig. 9.6). The next step is to investigate different frequencies to see if 

similar high-energy orbits can be reached at other frequencies as well (as in the theoretical case).  

 

 

 

 
 

Fig. 9.10 Comparison of the input and the output time histories of the piezo-magneto-elastic and 

piezo-elastic configurations: (a) Input acceleration histories; (b) Voltage outputs in the chaotic 

response region of the piezo-magneto-elastic configuration; (c) Voltage outputs in the large-

amplitude region of the piezo-magneto-elastic configuration (excitation: 0.5g at 8 Hz) 

(a) 

(b) 

(c) 
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Fig. 9.11 (a) Two-dimensional and (b) three-dimensional comparison of the electromechanical 

(velocity vs. open-circuit voltage) phase portraits of the piezo-magneto-elastic and piezo-elastic 

configurations (excitation: 0.5g at 8 Hz) 

 

For a harmonic base excitation amplitude of 0.5g (yielding an RMS acceleration of 

0.35g), experiments are conducted at 4.5 Hz, 5 Hz, 5.5 Hz, 6 Hz, 6.5 Hz, 7 Hz, 7.5 Hz and 8 Hz. 

At each frequency, a large-amplitude response is obtained the same way as in Fig. 9.9b by 

applying a disturbance around 11t  s. Then the magnets are removed for comparison of the 

device performance with that of the conventional piezo-elastic configuration and the base 

excitation tests are repeated for the same frequencies with approximately the same input 

acceleration. The open-circuit RMS voltage outputs of the piezo-magneto-elastic and piezo-

elastic configurations at each frequency are obtained considering the steady-state response in the 

80s-100s time interval. The RMS values of the input base acceleration are also extracted for the 

same time interval.  

Figure 9.12a shows that the excitation amplitudes of both configurations are indeed very 

similar (with an average RMS value of approximately 0.35g). The broadband voltage generation 

performance of the piezo-magneto-elastic energy harvester is shown in Fig. 9.12b. The resonant 

piezo-elastic device gives larger voltage output only when the excitation frequency is at or very 

close to its resonance frequency (7.4 Hz) whereas the voltage output of the piezo-magneto-elastic 

device can be 3 times that of the piezo-elastic device at several other frequencies below its post-

buckled resonance frequency (10.6 Hz). It should be noted that power output is proportional to 

the square of the voltage. Hence an order of magnitude larger power output over a frequency 

range can be expected with this device.  

(a) (b) 
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Fig. 9.12 (a) RMS acceleration input at different frequencies (average value: 0.35g); (b) Open-

circuit RMS voltage output over a frequency range showing the broadband advantage of the 

piezo-magneto-elastic energy harvester 

 

9. 4 Broadband Power Generation Performance and Comparisons against the Piezo-elastic 

Configuration  

 

9.4.1 Experimental Setup. After the first set of experiments, another setup was prepared to 

compare the power generation performance of the piezo-magneto-elastic configuration with that 

of the piezo-elastic configuration to verify the order of magnitude increase in the power output. 

This section also aims to investigate whether or not the presence of a resistive load (which is 

known to create shunt damping effect as discussed in Chapters 3 and 4) considerably reduces the 

performance of the piezo-magneto-elastic configuration by modifying the attraction of the high-

energy orbit discussed here. The experimental setup used for this purpose is shown in Fig. 9.13a 

and it is similar to the former setup shown in Fig. 9.7. These experiments have been conducted 

two months after the previous ones and the cantilever was unclamped and the magnets were 

removed in between (which is usually undesired). Therefore, effort has been made to clamp the 

beam with the same overhang length and to relocate the magnets in a similar way to stay in the 

same frequency range.  

Figures 9.13b and 9.13c, respectively, display the piezo-magneto-elastic and piezo-elastic 

configurations tested for power generation under base excitation. A harmonic base excitation 

amplitude of 0.5g (yielding an RMS value of approximately 0.35g) is applied at frequencies of 5 

(a) (b) 
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Hz, 6 Hz, 7 Hz and 8 Hz. From the previous discussion related to the open-circuit voltage output 

given with Fig. 9.12b, it is expected to obtain an order of magnitude larger power with the piezo-

magneto-elastic device at three of these frequencies (5 Hz, 6 Hz and 8 Hz). However, it is 

anticipated to obtain larger power from the piezo-elastic configuration around its resonance and 

7 Hz is close to the resonance frequency of this linear system (as can be noted from Fig. 9.12b).  

 

                     
 

Fig. 9.13 (a) Experimental setup used for investigating the power generation performance of the 

piezo-magneto-elastic energy harvester; (b) Piezo-magneto-elastic configuration; (c) Piezo-

elastic configuration (photos by A. Erturk, 2009) 

 

9.4.2 Comparison of the Electrical Power Outputs. Figure 9.14 shows the comparison of the 

average steady-state power vs. load resistance graphs of the piezo-magneto-elastic and piezo-

elastic configurations at the frequencies of interest. Note that the excitation amplitudes (i.e. the 

base acceleration) of both configurations are very similar in all cases. As anticipated, the piezo-

magneto-elastic energy harvester gives an order of magnitude larger power at 5 Hz, 6 Hz and 8 

Hz whereas the piezo-elastic configuration gives larger power only at 7 Hz (by a factor of 2.3). 

The average power outputs read from these graphs for the optimum values of load resistance are 

listed in Table 9.1.  

(a) (b) (c) 
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 Fig. 9.14 Comparison of the acceleration input and power output of the piezo-magneto-

elastic and piezo-elastic configurations at steady state for a range of excitation frequencies:  

(a) 5 Hz; (b) 6 Hz; (c) 7 Hz; (d) 8 Hz  

(a) 

(b) 

(c) 

(d) 
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 Table 9.1 Comparison of the average power outputs of the piezo-magneto-elastic and piezo-

elastic energy harvester configurations 
 

Excitation frequency [Hz]  5 6 7 8 

Piezo-magneto-elastic configuration [mW]  1.57 2.33 3.54 8.45 

Piezo-elastic configuration [mW]  0.10 0.31 8.23 0.46 

 

Variation of the average electrical power outputs of both configurations with the 

excitation frequency is plotted in Fig. 9.15 (including the frequencies 5.5 Hz, 6.5 Hz and 7.5 Hz). 

It is important to notice in this figure is that, at several frequencies, the non-resonant piezo-

magneto-elastic energy harvester can indeed generate one order of magnitude more power for the 

same input. The resonant piezo-elastic energy harvester can generate larger power only within a 

narrow band around its fundamental resonance frequency. However, this power is not an order of 

magnitude larger than that of the piezo-magneto-elastic configuration (in qualitative agreement 

with Fig. 9.6).  

 

 
 

Fig. 9.15 Comparison of the average power output of the piezo-magneto-elastic and piezo-elastic 

energy harvester configurations (RMS acceleration input: 0.35g) 

 

From to Fig. 9.15, it can be concluded that the piezo-magneto-elastic configuration 

exhibits a much better broadband power generation performance provided that the input 

excitation results in oscillations on its high-energy orbits in the frequency range of interest. 
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Given the frequency range and the amplitude of harmonic base excitation at these frequencies, 

the piezo-magneto-elastic energy harvester should be designed to catch these high-energy orbits 

at steady state. 

 

9.5 Summary and Conclusions 

 

In this chapter, a non-resonant piezo-magneto-elastic energy harvester is introduced for 

broadband vibration energy harvesting. The magneto-elastic configuration is known from the 

literature of chaos theory in structural mechanics. Here, piezoelectric coupling is introduced to 

the structure and a piezo-magneto-elastic vibration energy harvester is obtained. The lumped-

parameter electromechanical equations describing the nonlinear system are given along with 

theoretical simulations. The existence of high-energy orbits at different frequencies is 

demonstrated. It is shown that, over a range of frequencies, one can obtain much larger voltage 

from the large amplitude oscillations on these orbits (compared to the conventional piezo-elastic 

configuration). An experimental prototype is built and the presence of such high-energy orbits at 

several frequencies below the post-buckled natural frequency of the structure is verified. It is 

shown experimentally that, the open-circuit voltage output of the piezo-magneto-elastic energy 

harvester can be three times that of the conventional piezo-elastic cantilever configuration, 

yielding an order of magnitude larger power output over a range of frequencies (for the same 

base acceleration input). The substantial broadband power generation performance of the 

magneto-elastic configuration is discussed here for piezoelectric energy harvesting and it can 

easily be extended to electromagnetic, electrostatic and magnetostrictive energy harvesting 

techniques as well as to their hybrid combinations. 
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CHAPTER 10 

 

SUMMARY AND CONCLUSIONS 

 

In the first chapter, distributed-parameter modeling of the base excitation problem is reviewed 

for cantilevered thin beams. The distributed-parameter displacement transmissibility function is 

compared with the well-known lumped-parameter transmissibility function and it is shown that 

the prediction of the lumped-parameter base excitation relation might have an error as high as   

35 % in predicting the tip motion for a given base excitation input. The error in the lumped-

parameter model is due to ignoring the contribution of the distributed inertia to the excitation 

amplitude. A correction factor is introduced to improve the predictions of the lumped-parameter 

representation and the variation of the correction factor with tip mass – to – beam mass ratio is 

investigated. It is shown that the original form of the lumped-parameter base excitation model 

can be used only if the tip mass is much larger than the beam mass (so that the contribution of 

the distributed mass to the excitation amplitude becomes negligible). Experimental validations of 

the corrected lumped-parameter model are given for a small cantilever in the absence and 

presence of a tip mass. Modeling of the base excitation problem is summarized for cantilevered 

bars under longitudinal vibrations and the lumped-parameter model of the longitudinal vibration 

case is also corrected. The correction factor is then introduced to the lumped-parameter 

electromechanical equations for energy harvesting and a theoretical case study is given. 

Analytical modeling of bimorph piezoelectric energy harvesters with symmetric 

laminates is presented in the second chapter. The distributed-parameter electromechanical 

formulation is based on the Euler-Bernoulli beam theory and it is valid for thin piezoelectric 

energy harvesters for the typical vibration modes of interest in practice. The major steps of the 

analytical formulation are given for the series and parallel connection cases of the piezoceramic 

layers independently. An equivalent representation of the series and parallel connections is then 

given in a single form. The distributed-parameter electromechanical equations are first obtained 

for excitation at any arbitrary frequency by including all vibration modes in the analytical 

solution. Then, for the practical problem of resonance excitation, the multi-mode solutions are 

reduced to single-mode expressions (which are approximately valid only around the respective 
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resonance frequency). The electromechanical FRFs relating the steady-state electrical and 

mechanical response to the translational and rotational base acceleration components are 

extracted both from the multi-mode and single-mode solutions. A detailed theoretical case study 

is presented where simulations for the series and parallel connection cases are given using both 

multi-mode and single-mode electromechanical FRFs.  

The analytical solutions derived in the Chapter 3 are validated for various experimental 

cases in Chapter 4. The first experimental case is given for a brass-reinforced PZT-5H bimorph 

cantilever without a tip mass. After validating the analytical model predictions using the voltage, 

current, power and the tip velocity FRFs for this configuration and providing an extensive 

electromechanical analysis, a tip mass is attached to create a configuration for the second case 

study. The variations of the fundamental short-circuit and open-circuit resonance frequencies 

after the attachment of the tip mass are successfully predicted by the model. Performance 

diagrams for excitations at the fundamental short-circuit and open-circuit resonance frequencies 

are extracted for both configurations (without and with the tip mass) and comparisons are made. 

Improvement of the overall power output (as well as the power density and the specific power) 

due to the addition of a tip mass is verified. Effect of the rotary inertia of the tip mass is also 

studied by providing further analytical simulations with the point mass assumption. It is shown 

that the resonance frequencies can be overestimated if the rotary inertia of the tip mass is 

neglected. The damping effect of piezoelectric power generation is discussed in detail based on 

the experimental measurements and the model predictions. The final case study is given for a 

brass-reinforced PZT-5A bimorph cantilever and the frequency range of interest is increased to 

cover the second vibration mode as well. Predictions of the multi-mode and the single-mode 

FRFs are provided (for the first two modes independently) and a very good agreement is 

observed with the experimental results. 

In Chapter 5, detailed mathematical analyses of the single-mode electromechanical 

relations are presented. Focus is placed on the voltage output and vibration response FRFs per 

translational base acceleration. The single-mode relations derived in Chapter 3 (based on the 

multi-mode solutions) are first expressed in the modulus-phase form and then they are 

represented with dimensionless terms. After expressing the asymptotic trends of the single 

voltage and tip displacement FRFs, closed-form expressions are obtained for their short-circuit 

and open-circuit resonance frequencies. It is shown that the short-circuit resonance frequencies 
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of the voltage FRF and the tip displacement FRF are slightly different. The linear asymptotes of 

the voltage output and the tip displacement for the extreme conditions of load resistance 

(observed in the previous chapters) are mathematically verified here. Closed-form expressions 

for the optimum electrical loads for the maximum power generation at the short-circuit and the 

open-circuit resonance frequencies are extracted. It is shown that, for excitations at these two 

frequencies, the intersections of the linear voltage asymptotes correspond to the respective 

optimum load resistance. Based on this observation, a simple technique is introduced to identify 

the optimum load resistance of a piezoelectric energy harvester using a single resistive load 

along with an open-circuit voltage measurement. Relations are given to estimate the variation of 

the tip vibration response as the load resistance is changed between the two extreme conditions. 

The experimental case study for a PZT-5H bimorph is revisited and the major closed-form 

relations derived here are validated. An important issue related to estimation of the optimum load 

resistance from the Norton and Thévenin representations of the piezoceramic is clarified. 

In Chapter 6, the effects of materials constants and mechanical damping on the power 

generation performances of conventional piezoceramics (PZT-5A and PZT-5H) and novel single 

crystals (PMN-PT and PMN-PZT) are investigated. It is shown that the large d31 strain constants 

of the commercially available single crystals are associated with very large elastic compliance 

and the combination of these two properties does not result in a substantial increase in the 

effective piezoelectric stress constant ( 31e ) for a thin energy harvester beam. Although the d31 

constants can change by an order of magnitude from PZT-5A to PMN-PZT, the effective 

piezoelectric constants of these active materials are in the same order of magnitude. 

Consequently, the substantially large d31 constants of the commercially available single crystals 

do not necessarily imply substantially large power output in energy harvesting. The concepts of 

dynamic flexibility and mechanical damping are shown to be very important as far as the 

maximum power output is concerned. When geometrically identical bimorphs using these 

piezoelectric materials are forced to have the same dynamic flexibility, the power outputs are 

observed to be very similar. It is also observed that the power output under resonance excitation 

is extremely sensitive to mechanical damping (which is very difficult parameter control in 

practice). It is shown with an experimental case study using a PZT-5A bimorph and a PZT-5H 

bimorph that the former cantilever gives 45 % larger power density when the latter has 55 % 

larger mechanical damping ratio (although the d31 constant of PZT-5H is 60 % larger than that of 
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PZT-5A). Therefore, designing and manufacturing the energy harvester beam to have less 

damping can be more important than the piezoelectric material being used. 

The concept of strain nodes and its effect on energy harvesting is discussed in Chapter 7. 

It is theoretically discussed and experimentally demonstrated that covering the strain nodes of 

vibration modes with continuous electrodes results in cancellation of the electrical outputs in 

energy harvesting. A detailed dimensionless analysis is given for predicting the locations of the 

strain nodes of a thin cantilever in the absence of a tip mass. Dimensionless derivations and 

results are then presented for predicting the strain node positions and their variations in the 

presence of a tip mass. Dimensionless data of modal strain nodes are tabulated for some other 

practical boundary condition pairs as well. It is experimentally demonstrated using a cantilever 

that the voltage output due to the second mode excitation can be increased dramatically if 

segmented electrodes are used instead of continuous electrodes. The relationship between the 

discussion given here and a recent study on piezoelectric energy harvesting from the static 

deflection of a clamped circular plate is also explained. The use of segmented electrode pairs to 

avoid cancellations is described for single-mode and multi-mode vibrations of a cantilevered 

harvester and alternative circuitry-based approaches can be investigated to handle the 

cancellation problem for multi-mode excitations. 

In Chapter 8, approximate distributed-parameter modeling of cantilevered piezoelectric 

energy harvesters is given. An electromechanical version of the assumed-modes method of 

structural dynamics is used to discretize the energy equations into electromechanical Lagrange 

equations derived from the extended Hamilton’s principle. The derivations are given based on 

the Euler-Bernoulli, Rayleigh and Timoshenko beam theories. In all cases, an axial displacement 

variable is defined to capture its coupling with the transverse displacement variable in the 

presence of structural asymmetry. To demonstrate modeling of an asymmetric configuration, 

focus is placed on the unimorph configuration. Simplification of the resulting equations for 

symmetric bimorph configurations is also shown and the effect of a tip mass on the resulting 

formulation is discussed. A short discussion regarding the kinematically admissible functions to 

be used in the models derived here is also provided. Finally the experimental case studies for a 

thin cantilever (without and with a tip mass) are revisited for validation of the assumed-modes 

solution using different number of admissible trigonometric functions. The predictions of the 

assumed-modes solution are also compared with the analytical solution and a very good 
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agreement is observed. The approximate formulations given in Chapter 8 can be used to predict 

the electromechanical response of asymmetric cantilevers, moderately thick cantilevers as well 

as cantilevers with varying cross-section. 

In Chapter 9, a piezo-magneto-elastic energy harvester is introduced for broadband 

vibration energy harvesting. The magneto-elastic configuration is known from the literature of 

chaos theory in nonlinear structural mechanics. Here, piezoelectric coupling is introduced to the 

structure and a piezo-magneto-elastic vibration energy harvester is obtained. The lumped-

parameter electromechanical equations describing the nonlinear system are given along with 

theoretical simulations. The existence of high-energy orbits at different frequencies is 

demonstrated. It is shown that, over a range of frequencies, one can generate much larger voltage 

from the large amplitude oscillations on these orbits (compared to the conventional piezo-elastic 

configuration). An experimental prototype is built and the presence of such high-energy orbits at 

several frequencies below the post-buckled natural frequency of the structure is verified. It is 

shown experimentally that, the open-circuit voltage output of the piezo-magneto-elastic energy 

harvester can be three times that of the conventional piezo-elastic cantilever configuration, 

yielding an order of magnitude larger power output over a range of frequencies. The substantial 

broadband power generation performance of the magneto-elastic configuration is discussed here 

for piezoelectric energy harvesting and it can easily be extended to other vibration energy 

harvesting techniques (e.g. electromagnetic, electrostatic, magnetostrictive) as well as to their 

hybrid combinations. 

Each dissertation produced in the Department of Engineering Science and Mechanics at 

Virginia Tech must address the social impact. While harvesting energy at the level discussed 

here does not have a major impact on reducing the world's energy demands (compared to well-

known forms of green energy, e.g. wind energy and solar energy) it does have the potential for 

substantially reducing the world's reliance on chemical batteries, thereby reducing the amount of 

chemical waste produced by conventional batteries.  

Future applications of vibration energy harvesting that eliminate the requirement of 

battery replacement and the relevant maintenance efforts can lead to durable wireless sensor 

networks and similar low-power electronic components. It should be noted that the energy 

required to keep such wireless low-power systems running include the maintenance costs as well, 

which can be dramatically large in applications such as wireless damage detection systems in 
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critical civil engineering structures at remote locations. In addition, even though the power 

outputs are not in the same order of magnitude, vibration energy is often available when/where 

solar energy and wind energy are not available.  

One of the limitations regarding the use of piezoelectric materials is their present cost, 

which can be reduced in mass production as the technology becomes mature. An environmental 

issue related to using PZT-based piezoceramics is the lead content in piezoelectric materials. 

There is ongoing research in the materials science domain of the problem for developing lead-

free piezoceramics [96,97].  
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APPENDIX A 

 

CONSTITUTIVE EQUATIONS FOR A MONOLITHIC PIEZOCERAMIC 

 

A.1 Three-dimensional Form of the Piezoelectric Constitutive Equations  

 

In general, poled monolithic piezoceramics are transversely isotropic materials. To be in 

agreement with the IEEE Standard on Piezoelectricity [26], the plane of isotropy is defined here 

as the 12-plane (or the xy-plane). The piezoelectric material therefore exhibits symmetry about 

the 3-direction (or the z-direction), which is the poling direction of the material. The field 

variables are the stress components ( ijT ), strain components ( ijS ), electric field components ( kE ) 

and the electric displacement components ( kD ).  

The standard form of the piezoelectric constitutive equations can be given in four 

different forms by taking either two of the four field variables as the independent variables. 

Consider the tensorial representation of the strain – electric displacement form [26] where the 

independent variables are the stress components and the electric field components: 

 E
ij ijkl kl kij kS s T d E             (A.1) 

    T
i ikl kl ik kD d T E           (A.2) 

which is the preferred form of the piezoelectric constitutive relations for bounded media (to 

eliminate some of the stress components depending on the geometry and some of the electric 

field components depending on the placement of the electrodes). Equations (A.1) and (A.2) can 

be given in the matrix form as 

E t

T

    
    

    

S Ts d

D Ed ε
         (A.3) 

where superscripts E and T represent that the respective constants are evaluated at constant 

electric field and constant stress, respectively, and superscript t stands for the transpose. The 

expanded form of Eq. (A.3) is 



 281

1 11 12 13 31

2 12 11 13 31

3 13 13 33 33

4 55 15

5 55 15

6 66

1 15 11

2 15 11

3 31 31 33 33

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

E E E

E E E

E E E

E

E

E

T

T

T

S s s s d

S s s s d

S s s s d

S s d

S s d

S s

D d

D d

D d d d






 
 
 
 

 
    
 
 
 
 
 
   

1

2

3

4

5

6

1

2

3

T

T

T

T

T

T

E

E

E

  
  
  
  

   
                          

            (A.4) 

where the contracted notation (i.e. Voigt’s notation: 11 1 , 22 2 , 33 3 , 23 4 , 13 5 , 

12 6 ) is used so that the vectors of strain and stress components are 
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3 33

4 23

5 13
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           (A.5) 

Therefore the shear strain components in the contracted notation are the engineering shear 

strains. It should be noted from the elastic, piezoelectric and dielectric constants in Eq. (A.4) that 

the poled piezoceramic considered here is a monolithic piezoceramic so that the symmetries of 

transversely isotropic material behavior ( 11 22
E Es s , 31 32d d , etc) are directly applied. 

 

A.2 Reduced Equations for a Thin Beam  

 

If the piezoelastic behavior of the thin monolithic structure is to be modeled as a thin beam based 

on the Euler-Bernoulli beam theory or Rayleigh beam theory, the only non-zero stress 

component is 1T  (stress component in the axial direction) so that 

 2 3 4 5 6 0T T T T T                           (A.6) 

Along with this simplification, if an electrode pair covers the faces perpendicular to 3-direction, 

Eq. (A.4) becomes 
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1 111 31

3 331 33

E

T

S Ts d

D Ed 
    

    
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                               (A.7) 

which can be written as 

1 31 111

3 33 331

10

01

E
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T d Ss

D Ed 
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             
                            (A.8) 

Therefore the stress – electric displacement form of the reduced constitutive equations for a thin 

beam is 

 1 111 31

3 331 33

E

S

T Sc e

D Ee 
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                                 (A.9) 

where the reduced matrix of elastic, piezoelectric and dielectric constants is 

  

1

3111 31 11

3331 33 31
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E E
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dc e s
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C                     (A.10) 

Here and hereafter, an over-bar denotes that the respective constant is reduced from the three-

dimensional form to the plane-stress condition. In Eq. (A.10),  

11
11

1E
E

c
s

 , 31
31

11
E

d
e

s
 , 

2
31

33 33
11

S T
E

d

s
                           (A.11) 

where superscript S denotes that the respective constant is evaluated at constant strain.  

 

A.3 Reduced Equations for a Moderately Thick Beam  

 

If the piezoelasticity of the monolithic structure is to be modeled as a moderately thick beam 

based on the Timoshenko beam theory, the only non-zero stress components are 1T  (stress 

component in the axial direction) and 5T  (transverse shear stress) so that 

 2 3 4 6 0T T T T                               (A.12) 

is applied in Eq. (A.4). Then, 

1 11 31 1
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                              (A.13) 

which can be written as 
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                    (A.14) 

Therefore the stress – electric displacement form of the reduced constitutive equations is 
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Here, the reduced matrix of elastic, piezoelectric and permittivity constants are 

1
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where 
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Note that the transverse shear stress in Eq. (A.15) is corrected due to Timoshenko [73,74] 

  5 55 5
ET c S               (A.18) 

where   is the shear correction factor [73-83].  

 

A.4 Reduced Equations for a Thin Plate  

 

If the thin monolithic structure is to be modeled as a thin plate (i.e. Kirchhoff plate), the normal 

stress through the thickness of the piezoceramic and the respective transverse shear stress 

components vanish: 

3 4 5 0T T T                (A.19) 

Equation (A.4) becomes 
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               (A.20) 

which can be rearranged to give 
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The stress – electric displacement form of the reduced constitutive equations becomes 
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where 
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Here, the reduced elastic, piezoelectric and permittivity constants are 
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For one-dimensional bending vibration of a thin plate without any torsional mode (due to the 

base excitation of a cantilever that is symmetric with respect to the central axis in x-direction), 

the relevant terms are Eqs. (A.24), (A.27) and (A.28).*  
                                                            
* Theoretically, the thin-plate parameters should be preferred for large width-to-thickness ratios to account for the 

Poisson effect. In the experimental case studies of this dissertation (Chapter 4), the thin-beam parameters given in 

Section A.2 are used as they exhibit substantially better agreement with the experimental results. 
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APPENDIX B 

 

NUMERICAL DATA FOR MONOLITHIC PZT-5A AND PZT-5H 

PIEZOCERAMICS  

 

PZT-5A and PZT-5H piezoceramics are the most commonly used engineering piezoceramics. 

Their typical three-dimensional piezoelastic properties can be found on the web [62] or in the 

literature [63] as given in Table B.1.  

 

Table B.1 Three-dimensional properties of PZT-5A and PZT-5H 
 

 PZT-5A PZT-5H 

11
Es   [pm2/N] 16.4 16.5 

12
Es  [pm2/N] -5.74 -4.78 

13
Es  [pm2/N] -7.22 -8.45 

33
Es  [pm2/N] 18.8 20.7 

55
Es  [pm2/N] 47.5 43.5 

66
Es  [pm2/N] 44.3 42.6 

31d  [pm/V] -171 -274 

33d  [pm/V] 374 593 

15d  [pm/V] 584 741 

11 0/T    1730 3130 

33 0/T    1700 3400 

 

In addition to these data, the mass densities of PZT-5A and PZT-5H are reported [62,63] as 7750 

kg/m3 and 7500 kg/m3, respectively. The permittivity components at constant stress are given in 

Table B.1 in the form of the dielectric constants ( 11 0/T  , 33 0/T  ) where the permittivity of free 
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space is 0 8.854  pF/m [26]. The reduced constants for the Euler-Bernoulli and Rayleigh beam 

theories are obtained using Eq. (A.11) as listed in Table B.2 whereas those for the Timoshenko 

beam theory are obtained from Eqs. (A.17) as in Table B.3.  

 

Table B.2 Reduced properties of PZT-5A and PZT-5H for the Euler-Bernoulli and Rayleigh 

beam theories 
 

 PZT-5A PZT-5H 

11
Ec   [MPa] 61.0 60.6 

31e  [C/m2] -10.4 -16.6 

33
S  [nF/m] 13.3 25.55 

 

Table B.3 Reduced properties of PZT-5A and PZT-5H for the Timoshenko beam theory 
 

 PZT-5A PZT-5H 

11
Ec   [MPa] 61.0 60.6 

55
Ec   [MPa] 21.1 23.0 

31e  [C/m2] -10.4 -16.6 

33
S  [nF/m] 13.3 25.6 

 

Table B.4 Reduced properties of PZT-5A and PZT-5H for the Kirchhoff plate theory 
 

 PZT-5A PZT-5H 

11
Ec   [MPa] 69.5 66.2 

12
Ec   [MPa] 24.3 19.2 

66
Ec   [MPa] 22.6 23.5 

31e  [C/m2] -16.0 -23.4 

33
S  [nF/m] 9.57 17.3 
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APPENDIX C 

 

CONSTITUTIVE EQUATIONS FOR AN ISOTROPIC SUBSTRUCTURE 

 

C.1 Three-dimensional Form of the Constitutive Equations for an Isotropic Material  

 

The tensorial representation of the three-dimensional constitutive law for an isotropic 

substructure material is [53] 

  1
1ij s ij s kk ij

s

S T T
Y

                    (C.1) 

where sY  is the elastic modulus and s  is the Poisson’s ratio (subscript s denotes the 

substructure). The expanded form of Eq. (C.1) can be given as 
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 
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
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     
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                 
    
    

        

                (C.2) 

where the contracted notation is used and the shear strains are the engineering shear strains 

defined in Eq. (A.5). 

 

C.2 Reduced Equations for a Thin Beam  

 

If the elastic behavior of the thin substructure is to be modeled as a thin beam based on the 

Euler-Bernoulli or Rayleigh beam theory, the only non-zero stress component is 1T  so that 

       2 3 4 5 6 0T T T T T                       (C.3) 

Therefore, Eq. (C.2) simply reduces to  

       1 1sT Y S                                (C.4) 
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C.3 Reduced Equations for a Moderately Thick Beam  

 

If the elasticity of the thin substructure is to be modeled as a moderately thick beam (based on 

the Timoshenko beam theory), the conditions on the stress are 

 2 3 4 6 0T T T T                                  (C.5) 

Equation (C.2) can be rearranged to give 

        1 1

5 5

0

0
s

s

T Y S

T G S

     
    

     
                              (C.6) 

Here, the shear modulus is defined in terms of the elastic modulus and the Poisson’s ratio as 

       
 2 1s

s

Y
G





                                   (C.7) 

and the transverse shear stress in its corrected form [73-83] is   

  5 5sT G S                  (C.8) 

 

C.4 Reduced Equations for a Thin Plate  

 

If the elastic behavior of the substructure is modeled as a thin plate, the following stress 

components vanish: 

3 4 5 0T T T                  (C.9) 

Equation (C.2) simplifies to 
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                (C.10) 

which can be rearranged to give stress components in terms of strain components as  

 

1 1

2 22

6 6

1 0

1 0
1

0 0 1 / 2

s

s
s

s
s

T S
Y

T S

T S







    
                

                  (C.11) 

As far as one-dimensional bending vibration of a thin plate without any torsional mode is 

concerned (due to base excitation of a cantilever that is symmetric with respect to the central axis 

in x-direction), the relevant elastic term is the first element in Eq. (C.11).  
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APPENDIX D 

 

ESSENTIAL BOUNDARY CONDITIONS FOR CANTILEVERED BEAMS  

 

D.1 Euler-Bernoulli and Rayleigh Beam Theories 

 

If the beam is clamped at 0x   and free at x L , the essential boundary conditions are defined 

at the clamped boundary as 

0 (0, ) 0w t                                              (D.1) 

0

0

( , )
0

x

w x t

x






                                    (D.2) 

 0 (0, ) 0u t                                              (D.3) 

where 0 ( , )w x t  is the transverse displacement and 0 ( , )u x t  is the axial displacement of the neutral 

axis. 

 

D.2 Timoshenko Beam Theory  

 

The essential boundary conditions are given at the clamped end ( 0x  ) of a cantilevered 

Timoshenko beam as 

0 (0, ) 0w t                                               (D.4) 

 0 (0, ) 0t                                                (D.5) 

 0 (0, ) 0u t                                               (D.6) 

where 0 ( , )x t  is the cross-section rotation.  
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APPENDIX E 

 

ELECTROMECHANICAL LAGRANGE EQUATIONS BASED ON THE 

EXTENDED HAMILTON’S PRINCIPLE 

 

This section summarizes derivation of the electromechanical Lagrange’s equations from the 

extended Hamilton’s principle. For the most general case [41], the total kinetic energy is given as 

a function of the generalized coordinates and their time derivatives: 

 1 2 1 2, ,..., , , ,...,n nT T q q q q q q                             (E.1) 

The total potential energy and the internal electrical energy are functions of generalized 

coordinates only† 

  1 2, ,..., nU U q q q                           (E.2) 

 1 2, ,...,ie ie nW W q q q                           (E.3) 

The first variations of Eqs. (E.1)-(E.3) are 

1

n

k k
k k k

T T
T q q

q q
  



  
    
 


                            (E.4) 

1

n

k
k k

U
U q

q
 






                                (E.5) 

1

n
ie

ie k
k k

W
W q

q
 






                                  (E.6) 

The virtual work done by the generalized non-conservative forces ( kQ ) is 

1

n

nc k k
k

W Q q 


                                (E.7) 

The extended Hamilton’s principle becomes 

 
2 2

1 1
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0
t t n

ie
ie nc k k k
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T U W W dt Q q q dt

q q q q
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  


     (E.8) 

                                                            
† In the electromechanical Lagrange formulation given here, one of the generalized coordinates is the electrical 

across variable, i.e. the voltage output across the load. 
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with the auxiliary conditions 0kq   ( 1, 2,...,k n  ) at 1t t  and 2t t . Integration by parts is 

applied to the last term to give 

 
  22 2 2 2

1 1 1 11
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Using Eq. (E.9) in Eq. (E.8) gives 
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For the extended Hamilton’s principle to hold for arbitrary virtual displacements, Eq. (E.10) 

reduces to the electromechanical Lagrange equations:  

ie
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k k k k
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dt q q q q
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                         (E.11) 

where the dissipative effects can be represented as generalized non-conservative terms.    

 


