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expenditures (1989) showed no significant differences between Black households and

non-Black households with respect to clothing expenditures.

Economic Foundations of Demand Theory

The present research basically focuses on demand analysis. The fundamental

framework of demand analysis is required to achieve the goals of this empirical work in

applied economics. Thus, the following sections briefly sketch the concepts of

neoclassical consumer demand theory and describe theoretical topics for empirical

demand estimation.

Utility Maximization and Consumer Demand

Neoclassical economic demand theory assumes that consumer demand is derived

from constrained utility maximization. The basic axiom of the utility maximization

process is that a rational consumer will always choose a most preferred bundle of goods

from the feasible set of  consumption bundles allowed by his budget.  The utility function

is denoted by  

u = u(q) 2.1

where q is a vector of the n goods demanded, subject to a linear budget constraint,

p q xk k
k

n

=
∑ =

1

k =1, . . . ,n 2.2

where qk is the quantity demanded of the k good, pk is the price of the k good, and x is

income or total expenditure. Mathematically, the consumer demand for a good derived

from utility maximization is found by the Lagrangian method:

Primal problem

Maximizing  u = u(q)       2.3

subject  to p q xk k
k

n

=
∑ =

1

,

L(q, λ) = u(q) + λ(x-Σpkqk)  2.4
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where λ is the Lagrangian multiplier interpreted as the marginal utility of income. Then,

the first-order conditions of  
∂
∂

L

q i

, for i = 1, . . . ,n, and 
∂
∂λ
L

 yield

i
i

p
q

)(u λ=
∂

∂ q
2.5

x-Σpkqk = 0.  2.6

Solving equations 2.5 and 2.6 with respect to qi,

qi = fi(p, x). 2.7

Equation 2.7 is a Marshallian or uncompensated demand function of good i. If equation

2.7 is substituted back into the problem 2.3, it yields the indirect utility function, which

expresses the maximum attainable utility given prices p and outlay x, that is

u* = v(p, x). 2.8

Cost Minimization and Consumer Demand

The dual to utility maximization is cost (expenditure) minimization. In the primal

problem, the objective function given by u =u(q) is maximized subject to the budget

constraint, Σ pkqk= x, and the optimal solution  is u*. In the dual problem setting, the

objective of the problem is cost minimization. Thus, the objective function is given by

Dual problem

Minimizing Σ pkqk= x 2.9

subject to the constraint       u = u(q).             2.10

Utilizing the same procedure as in the primal problem solving, optimal values of q are

obtained. In the dual problem, however, the determining variables are u and p, not x and

p as in Marshallian demands. The dual problem setting provides the same solution of q,

but is denoted by

 qi = hi(u, p). 2.11

This is the income-compensated demand, or Hicksian demand function; it implies how qi

is influenced by prices with utility held constant. If equation 2.11 is plugged into the dual

problem, p q xk k
k

n

=
∑ =

1

, then it provides a cost function which is the minimum cost of
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obtaining the given level of utility at prices p:

x = c(u, p). 2.12

The cost function can be inverted to the indirect utility function that is a function of x:

x = c(u, p) <---------- inversion -----------> u* = v(p, x)

Properties of Demand

Deaton and Muellbauer (1993) reviewed the properties of consumer demand

which provide reasonable restrictions to demand models. In many empirical works, these

restrictions have been tested to confirm the theoretical plausibility of estimated demand

functions. One of the most important, though trivial, properties is adding up, that is,

Σpkhk (u, p) = Σpxfk (p, x) = x. 2.13

The estimated total value of both the Hicksian and Marshallian demands is total

expenditures. In other words, the sum of the estimated expenditures on the different

goods equals the consumer’s total expenditures at any given time period. This property of

demand provides another reasonable restriction, the so-called adding-up restriction. The

adding-up restriction implies that (see Deaton & Muellbauer, 1993)

p
q

xk
k

k

∂
∂∑ = 1     and 2.14

w ek k
k

∑ = 1 2.15

where wk is the budget share of good k and ek is total expenditure elasticity. This implies

that the marginal propensities to consume should sum to one. The second property of

demand is homogeneity of degree zero in prices for Hicksian and uncompensated demand

and in total expenditures for uncompensated demand. If all prices and total expenditures

are changed by an equal proportion, the quantity demanded must remain unchanged. This

property is sometimes called “absence of money illusion”. The homogeneity property

provides the homogeneity restriction which implies that (see Deaton & Muellbauer,

1993), for i=1, . . ., n,

p
q

p
x

q

xk
i

kk

i∂
∂

∂
∂∑ + = 0 and 2.16
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e eik
k

i∑ + = 0 2.17

where e ik
k

∑ is the sum of the own price elasticity and cross price elasticities of good i,

and ei is total expenditure elasticity of good i. The third property of demand is symmetry

of the cross price derivatives of the Hicksian demands, that is,

∂hk(u, p)/∂pj = ∂hj(u, p)/∂pk for all i≠j. 2.18

The symmetry expressed in equation 2.18 can be proved through Shephard’s Lemma and

Young’s theorem: by Shephard’s Lemma

 hk(u, p) = ∂c(u, p)/∂pk            hj = ∂c(u, p)/∂pj     2.19

∂hk(u, p)/∂pj = ∂2c/∂pjpk ∂hj(u, p)/∂pk = ∂2c/pkpj 2.20

and by Young’s theorem, ∂2c/∂pjpk equals ∂2c/pkpj. The last property of demand is

negativity, which implies downward sloping compensated demand functions.

Two-Stage Budgeting and Separability

Multi-stage budgeting occurs when the consumer or household allocates its total

expenditures in sequential stages, and is represented as a utility tree. For example, in a

simple case of two-stage budgeting, the consumer can allocate his total current

expenditures to broad groups of products, such as durables, nondurables and service

goods at the first stage. At this first stage, the only information needed is total

expenditures and appropriately defined prices for each product class. At the second stage,

total expenditures on, for example, nondurables determined in the first stage are allocated

among the various classes of nondurable products, such as food, clothing and shoes,

gasoline and oil, fuel oil and coal, and other nondurables. The expenditures for individual

product classes are expressed as functions of the group expenditure on all nondurables, in

the example, allocated in the first stage and  of the prices within the group only. In such a

manner, the consumer can allocate the expenditures to the subgroups in sequential stages.

Because expenditure allocation to any good within a group can be written as a function

only of the total group expenditure and the prices of goods within that group, the demand

for any good belonging to the group must also be expressed as a function only of total

expenditures on the group and the prices of goods within the group. That is,
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qi = fG(pG, xG) 2.21

where pG is a vector of prices of goods within the group, and xG is total expenditures on

the group. In order to satisfy such a condition, certain assumptions must be made. A

necessary and sufficient condition for the second stage of two-stage budgeting is  “weak

separability”. The primary ideas of separability of preferences and two-stage budgeting

are tightly related to one another (Deaton & Muellbauer, 1993).

The basic concept of separability is that commodities can be partitioned into

groups so that preferences within the same group can be described independently of the

quantities in the other groups. Thus, the utility function can be expressed

u = u(q1, q2, q3, q4, q5, q6) = g[u1(q1, q2), u2(q3, q4), u3(q5, q6)]. 2.22

If the marginal rate of substitution between any two goods belonging to the same group is

independent of the consumption of goods within the other groups, we consider this as

weak separability of preferences. By contrast, if the marginal rate of substitution between

any two goods belonging to two different groups is independent of the consumption of

any good in any third group, this separability is called strong separability or block

additivity. A strongly separable utility function is written

u = f[g1(q1) + g2(q2) +g3(q3) + . . . . . +gm(qm)]. 2.23

Each group contains only one good. The above exposition of weak and strong

separability does not mean that the price changes of goods belonging to other groups do

not influence the consumption of goods in a group. The change in the demand for qmk

(quantity demanded of good k belonging to m commodity group), for example, induced

by a change in the price of good j in commodity group n (pnj) is proportional to the

change in demand for good mk caused by the change in total expenditures, that is, where

m≠n,

qmk = g(pm, xm(p, x))           pm = all the prices in group m

∂qmk/∂pnj = ∂g/∂xm ⋅ ∂xm/∂pnj pnj = price of good j in group n

∂qmk/∂x = ∂g/∂xm ⋅ ∂xm/∂x  xm = total expenditures on group m 

x = total expenditures.

Thus,
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∂qmk/∂pnj = 

∂
∂

∂
∂

∂
∂

x
p

x
x

q

x

m

nj

m

mk⋅  = µ
∂
∂m

mkq

x
⋅ 2.24

where µm is the factor of proportionality. As seen in the function 2.21, weak separability

allows us to express quantity demanded of a good as a function of its own price, the

prices of goods within the group, and the total expenditures on the group if a good is

“separable” from groups of other goods. The advantage of weak separability is in drastic

reduction of the number of independent variables required in estimation.

Aggregation

Consumer demand theory refers to the individual consumer’s demand for

individual goods. However, available time-series data tend to be aggregate in broad

classifications such as food, clothing, and entertainment, and this type of data refers to

large groups of consumers rather than individual consumers. Aggregate demand derived

from macro or aggregate data creates a problem as to whether this demand is consistent

with microeconomic theory under which demand estimations are based on individual

consumer behavior. This problem is referred to as the “aggregation problem” which

frequently presents obstacles to direct application of aggregate data to demand analysis.

To overcome the aggregation problem, certain conditions under which we can treat

aggregate demand estimations as resulting from the behavior of a single utility-

maximizing consumer (exact aggregation) are necessary.

One possibility is exact linear aggregation. In exact linear aggregation, individual

consumers or households are assumed to be only different in expenditures, but to meet

the same price factors; thus, aggregate demand can be written as a function of only prices

and aggregate or mean expenditure. That is,

qih = fih(xh, p) 2.25

where qih is the demand for good i of household h, xh is the total expenditures of the

household, and p is a price vector. If there are H households in the whole population, the

mean demand will be

q i  = qi(x1, . . . . ., xH, p) = 1/H Σh fih(xh, p). 2.26
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Exact linear aggregation is possible if 2.26 can be written as

),x(fq ii p= 2.27

where x = 1/HΣhxh, average total expenditure. Unlike 2.26, 2.27 does not depend on the

distribution of total expenditures xh across households. Expression 2.27 can only occur if

all individual households have identical marginal propensities to spend on each good; that

is, a change in the total expenditure distribution would not affect mean demand, and

clearly all individual demand equations must be linear in xh and have the same slope with

respect to xh . Generally, for some functions aih(p) and bi(p), the individual demand

equations must take the form (see Gorman, 1953, 1961)

qih = aih(p) + bi(p)xh. 2.28

If aggregated, then

q i = ai(p) + bi(p) x 2.29

where ai(p) is the average of the aih(p). The above demand equations, 2.28 and 2.29,

imply that qih and  q i  are proportional to xh and x , respectively. Deaton and Muellbauer

(1993) note that 2.29 is necessary and sufficient for 2.27 whether or not aggregate or

individual utility maximization is assumed. If individual households or consumers are

assumed to maximize utility, the individual cost (expenditure) functions have the form

ch(uh, p) = ah(p) + uhb(p) 2.30

where ch(uh, p) is the cost function of individual households or consumers h, with

uh=vh(xh, p). This specification is known as the Gorman polar form. The Gorman polar

form of a cost function implies linear Engel curves, for which quasi-homothetic

preferences are necessary and sufficient. Thus, this cost form has extremely restrictive

requirements for exact aggregation.

Muellbauer (1975, 1976) introduced exact aggregation with nonlinear Engel

curves to relax the restrictions of using average total expenditures in aggregate demand.

He defined exact aggregation: aggregation is over budget shares, rather than goods

quantities, of different consumers, and the aggregate budget share for good i, w i , is

defined to be a weighted average, rather than a simple average, of individual budget
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shares, wih, with weights equal to the share of each individual in total expenditure on the

good I; that is,

w i = [piΣhqih(xh, p)]/Σhxh= Σh[wih(xh/Σhxh] 2.31

and

w i = wi(u0, p) = ∂ln c(u0, p)/∂ln pi = Σh(xh/Σxh) ⋅ ∂ln ch(uh, p)/∂ln pi 2.32

where u0=v(p, x0), the indirect utility function of a representative consumer. This

representative budget share function shows that, although expenditure redistribution

happens among the consumers, the representative consumer utility function, u0, does not

change. Therefore, this function can capture the change of uh or different preferences

among consumers while keeping u0 constant (Deaton & Muellbauer, 1993). Muellbauer

(1975, 1976) reported that individual cost functions should take a particular form to

aggregate individual budget share equations into an aggregate equation which can be

regarded as being derived from the cost function of some representative utility

maximizing individual. It turns out that, for exact nonlinear aggregation, the

representative individual should have a cost function of the form

ch(p, uh) = λh[uh, a(p), b(p)] + δh(p) 2.33

where a(p), b(p), and δh(p) are linearly homogeneous functions of prices and λh is

linearly homogeneous in a and b. This cost function is called generalized Gorman polar

form (GL). In the special case where the representative expenditure depends only on the

distribution of total expenditures, it takes the forms of price independent generalized

linearity (PIGL) and price independent generalized log linearity (PIGLOG), that is,

log c(u0, p) = (1-u0)log a(p) + u0log b(p). 2.34

The Almost Ideal Demand System (AIDS) has a cost function that belongs to the PIGL

family; this system can generate exact nonlinear aggregation over individual consumers

or households.

Demographic Translating and Scaling

Demographic variables are major determinants of consumer consumption

patterns, and changes in demographic variables can cause shifts in demand structure.
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Although these shifts may be caused by changes in such non-economic factors as

psychological needs, attitudes, and sociological influences, demographic variables are

useful proxies when investigating the underlying shifts in demand and the differences in

consumption patterns among individuals.

Demographic translating and demographic scaling are generally used to

investigate the influences of demographic variables precisely. Demographic translating

replaces the original demand function by

qi(p, x) = di + fi(p, x - Σpkdk) 2.35

where the d’s are translating parameters that depend on the demographic variables and

are commonly taken to be expressed by a linear function,

di = f(A1, A2, . . . . . ., Ak) = ΣkRkiAk 2.36

or an exponential function,

           di = Πk A k
Rki 2.37

where Ak are demographic variables such as age, family size, and residence locations.

Translating, in the case of the Linear Expenditure System (LES), is sometimes interpreted

as allowing “necessary” or “subsistence” parameters of a demand system to depend on

demographic variables. If the original demand system is theoretically plausible, then the

translated one is also plausible (Pollak & Wales, 1992): the indirect utility function v(p,

x) = v (p, x- Σkpkdk) or equivalently the direct utility function, u(q) = u(q1-d1, . . . . . .,qn-

dn). Alternatively, demographic scaling replaces the original demand function by

qi(p, x) = mifi(p1m1, . . . . . ., pnmn, x) 2.38

where the m’s are scaling parameters that depend on the demographic variables, that is

mi = ΣkRkiAk  or  mi = Πk A k
Rki . 2.39

Since total expenditure remains unchanged, any change in the m’s implies a reallocation

of expenditure among the consumption categories. Thus, another interpretation is that the

change in demographic variables is equivalent to a change in the prices of goods

consumed. If the original demand system is theoretically plausible, so is the scaled

system (Pollak & Wales, 1992): the indirect utility function u(p, x) = v(p1m1, . . . . .,

pnmn, x) or equivalently the direct utility function, u(q) = u(q1/m1, . . . . . ., qn/mn). There
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are other alternatives in the treatment of demographic effects: the Gorman Specification

which includes first scaling and then translating the original demand function; the

Reverse Gorman Specification; and the Modified Prais-Houthakker procedure. The first

two are theoretically plausible, but the third one yields a theoretically plausible demand

system only if the original demand system corresponds to an additive direct utility

function (Pollak & Wales, 1992).

Functional Forms of Demand

Many efforts have been made to model the functional forms which satisfy

theoretical plausibility when a researcher ensures that a derived demand exactly came

from maximizing a utility function. For example, Stone’s Linear Expenditure System

(LES) was exactly derived from maximizing consumer’s utility by using the Stone-Geary

utility function. Imposing general restrictions on the functional forms has been one

typical approach to test demand theory. This approach really results in a reduction of the

number of parameters in the system of demand functions, and easily tests whether the

resulting functional forms satisfy basic properties of demand functions or not. If the

complete system of demand equations is considered, the degrees of freedom problem can

be reduced by use of the restrictions on the parameters in an equation which are implied

by consumer theory, as mentioned in earlier sections. This section reviews four major

demand functional forms: the LES,  Rotterdam Model, Indirect Translog Model, and

Almost Ideal Demand System (AIDS). The first two models are classified as linear

functional forms. The LES is assumed to take a particular utility function, but the

Rotterdam model is not. The latter two models are called  “flexible functional forms”

which do not require particular functional forms of utility functions.

The Linear Expenditure System (LES)

The LES is derived from the Klein-Rubin utility function, which is also referred

to as the Stone-Geary utility function written as

u = ln u = Σiβiln(qi-γi) 2.40
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where qi is the quantity of good i, 0<βi<1, Σiβi = 1, γi>0, and qi - γI>0. Maximizing the

utility function expressed in 2.40 subject to the budget constraint Σipiqi=x, yields the

demand function

qi=γi+βi[(x-Σjpjγj)/pi]            (i, j = 1, . . ., n) 2.41

where γi is referred to as the subsistence level of good i. The Engel expenditure function

is obtained by multiplying equation 2.41 by price pi . It is written as follows:

piqi=piγi+βi(x-Σjpjγj) (i, j = 1, . . . . , n) 2.42

where 0<βi<1, Σiβi=1, qi>γi, and x is total expenditures; piγi is the minimum expenditure

to attain a minimal subsistence level, and x-Σjpjγj is ‘supernumerary expenditure’ which

is allocated between the goods in the fixed proportions βi. Equation 2.42 is known as the

Linear Expenditure System (Stone, 1954). It represents the transformation of the original

equation 2.41 into a theoretically acceptable form without losing its linearity: adding-up,

homogeneity, symmetry, and negativity hold in LES (Phlips, 1983). If adding-up,

homogeneity, and symmetry are imposed, the n2 + n original parameters being estimated

reduce to (n-1)(n/2 +1).

The Rotterdam Model

The Rotterdam model of Theil (1965) and Barten (1966) is expressed by a

double-logarithmic system of infinitesimal changes, but it does not use any explicit utility

functional form. The Rotterdam model is derived by totally differentiating a double

logarithmic demand function, ln qi = αi + Σkeik ln pk + eiln x, so that

dln qi = Σj∂ln qi/∂lnpj ⋅ dln pj + ∂ln qi/∂ln x ⋅ dln x = Σjeij dln pj + ei dln x 2.43

where eij is uncompensated cross price elasticity, and ei is total expenditure elasticity. The

Slutsky equation can be written as

eij = e*
ij - eiwj 2.44

where e*
ij is compensated cross price elasticity and wj is the budget share of good j.

Substituting 2.44 into 2.43 yields

dln qi =ei (dln x - Σjwj dln pj) + e*
ij dln pj.    2.45
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For imposition of symmetry, multiply equation 2.45 by the budget share wi, so that the

final equation is derived as

wi dln qi = eiwi(dln x - Σjwjdln pj) + Σje
*
ijwidln pj 2.46

wi dln qi = bi(dln x - Σjwjdln pj) + Σj cijdln pj (i, j = 1, . . . , n). 2.47

In practice, wi is estimated by the mean of wi, w i = (wit-wit-1)/2. Equation 2.47 shows that

bi=wiei is the marginal propensity to spend on the good i, and cij estimates the net effect

of a price change. Adding-up requires Σkbk = 1, and Σkckj= 0. The Rotterdam model will

be homogeneous if Σkcjk= 0. Symmetry is simply cij=cji.

The Indirect Translog Model

In order to derive the indirect translog demand model, first, an indirect utility

function should be approximated by the translog second-order Taylor approximation.

Approximating the indirect utility function log u = f(log p1, . . . . ., log pn, log x) in

second order results in the following utility function:

log u = α0 + Σiαilog(pi/x) + ½ΣiΣjβijlog(pi/x)log(pj/x) 2.48

where α0, α, and β are parameters. The equation 2.48 is a second-order Taylor

approximation to any arbitrary utility function, which was developed by Christensen,

Jorgenson, and Lau (1975). By applying Roy’s identity to equation 2.48, the equation

provides the system of demand equations

wi = 

α β

α β

i
j

j

j ij
i

ijj

p

x
p

x

+

+

∑

∑∑∑

ij log( )

log
(i, j =1, . . , n). 2.49

The additivity, homogeneity, and symmetry restrictions for the indirect translog model

can be found. Major limitations of this model for estimating a demand system are the

number of structural parameters required and the accuracy of the approximation only in

the locality of some point, that is, at a particular value of x or p, not over an entire

sampling period nor over an entire sample (Deaton & Muellbauer, 1993; Phlips, 1983).

The Almost Ideal Demand System (AIDS) Model

Deaton and Muellbauer (1980) proposed a demand system that they call the
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“almost ideal demand system (AIDS)”. This system allows exact nonlinear aggregation in

demand estimations, as discussed in the previous section on aggregation. The merit of the

representation of market demands as if they were the outcome of decisions by a rational

representative consumer has made for extensive application of the AIDS model to many

demand system estimations. The AIDS can be derived from the PIGLOG class of cost

functions. Deaton and Muellbauer (1980) defined a cost function (see Deaton and

Muellbauer for details),

log c(u, p) = (1-u) log{a(p)} + u log{b(p)} 2.50

where a(p) and b(p) are functions of prices, p is a vector of prices, and u denotes utility.

Utility lies between 0 (subsistence) and 1 (bliss) so that the positive linearly

homogeneous functions a(p) and b(p) can be regarded as the costs of subsistence and

bliss, respectively. Second-order approximation of Taylor series in equation 2.50 results

in a cost function of a flexible functional form, so that a(p) and b(p) are defined by

log a(p) = α0 + Σkαk log pk + ½ΣkΣjγkjlog pklog pj 2.51

log b(p) = log a (p) + β0Πkpk
βk (j, k = 1, . . . . , n) 2.52

where α, β, and γ are parameters, and β0Πkpk
βk is a geometric price index. βk is the

weighted parameter of the price of good k. Thus, at any single point, derivatives of  βk

can be set equal to the derivatives of an arbitrary cost function. Substituting equation 2.51

and 2.52 into 2.50 yields the AIDS cost function

log c(u, p) = α0 + Σkαklog pk + 1/2ΣkΣjγkjlog pklog pj + uβ0ΠkPk
βk. 2.53

The demand functions can be derived directly from equation 2.53. Taking the price

derivative of 2.53 provides the quantities demanded, ∂c(u, p)/∂pi=qi. Multiplying both

sides by pi/c(u, p), the budget share of good i, wi, is obtained. Logarithmic differentiation

of  2.53 gives the budget shares as a function of price and utility:

wi = αi + Σjγijlog pj +βiuβ0ΠkPk
βk 2.54

where u is indirect utility which can be derived by inversion of  the cost function of

equation 2.53. Substituting the result of the inversion into 2.54, we finally obtain the

AIDS:



57

wi = αi + Σjγijlog pj +βilog (x/P) 2.55

where α, β, and γ are parameters, and P is a price index defined by

log P = α0 + Σkαklog pk + 1/2ΣjΣkγkjlog pklog pj. 2.56

Equations 2.55 and 2.56 define a system of demand equations. The theoretical restrictions

are defined by

Adding-up: Σiαi = 1; Σiγij = Σiβi = 0 2.57

Homogeneity: Σiγij = 0 2.58

Symmetry: γij = γji. 2.59

Deaton and Muellbauer (1980) suggest approximating log P by using Stone’s price index:

log P = Σiwi log pi. 2.60

Thus, equation 2.55 becomes

wi =  αi + Σjγijlog pj +βilog (x/P*) 2.61

where P* is Stone’s price index. Equation 2.61 is referred to as the Linearized AIDS

(LAIDS) model.

Summary

Besides changes in income, prices and expenditures for clothing, shoes, and other

commodities, the demographic structure of the population of the United States is clearly

changing. These changes are likely to have major impacts on aggregate demands for

clothing and shoes. Some elements of the demographic structure are changing at a faster

rate than others. The increase in the proportion of women in the labor force has been

particularly rapid over the past decades. Other factors such as changes in the age

distribution of the U.S. population occur at a slower pace, but are nonetheless of major

significance for any long term forecasting. The aging of the population, increased female

labor force participation rates, and changes in racial composition have all been identified

as important aspects of the demographic structure in the U.S. which are likely to affect

the composition of demand for clothing and shoes. These demographic factors are

therefore incorporated in the model which is developed in Chapter 4. During World War

II, U.S. government regulations and clothing shortages tremendously restricted the
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consumption of clothing items and shoes. Thus, World War II might have had a major

impact on clothing consumption and demand during the wartime.

Many studies have investigated factors affecting the consumption of clothing

products in the United States. The majority of these studies have focused on clothing

expenditure analyses with single equation models. The literature contains relatively few

time-series studies of the demand for clothing categories and shoes in the U.S. within the

framework of demand systems. Fewer still are the time-series studies which also take into

account the effects of demographic variables.

Economists have developed many functional forms for demand estimation.

Among those which are “flexible functional forms” are the Almost Ideal Demand

Systems (AIDS) developed by Deaton and Muellbauer (1980) and the Transcendental

Logarithmic (Translog) model developed by Christensen, Jorgenson and Lau (1975). A

functional form is considered flexible if it can reasonably approximate a true unknown

direct utility function, indirect utility function or cost function, no matter what form that

unknown function might take. Exact aggregation and the two-stage budgeting procedure

are possible with the AIDS model, and the model satisfies the microeconomic theory of

demand.  Specifications of the AIDS for the present study are discussed in more detail in

Chapter 4. 


