Appendix 5b Proofs for Part 5b

Proof of Lemma 5.b.1: Observe that

\[
\left\| \hat{f} - \hat{g}_{LL} \right\| = \left\| (\hat{f} - f) + (\Theta - \hat{g}_{LL}) + (f - \Theta) \right\|
\leq \left\| \hat{f} - f \right\| + \left\| \Theta - \hat{g}_{LL} \right\| + \left\| f - \Theta \right\|
= O_p(n^{-5}) + O_p(\tau_n^5 n^{-5}) + \left\| f - \Theta \right\|
= \begin{cases}
O_p(1), & \text{if } \lim_{n \to \infty} \delta_n \neq 0 \\
O_p(\tau_n^5 n^{-5}), & \text{if } \delta_n = 0
\end{cases}
\]

as desired.//.

Proof of Lemma 5.b.2: Note that

\[
|1 - \lambda^{*T}| = \left| \frac{\langle \hat{f} - \hat{g}_{LL}, \hat{f} - \hat{g}_{LL} - (\Theta - \hat{g}_{LL}) \rangle}{\left\| \hat{f} - \hat{g}_{LL} \right\|^2} \right|
= \left| \frac{\langle \hat{f} - \hat{g}_{LL}, \hat{f} - \Theta \rangle}{\left\| \hat{f} - \hat{g}_{LL} \right\|^2} \right|
\]

Then using the Burman and Chaudhuri (1992) proof of Lemma 5.2, and replacing \(\gamma_i \) by \(\tau_i^5 n^{-5} \),
the result is proved.//.

Proof of Lemma 5.b.3: Note that

\[
(\lambda^{*T} - \lambda^{*T}) = \frac{\langle \hat{f} - \hat{g}_{LL}, Y - \hat{g}_{LL} \rangle - \langle \hat{f} - \hat{g}_{LL}, \Theta - \hat{g}_{LL} \rangle}{\left\| \hat{f} - \hat{g}_{LL} \right\|^2}
= \frac{\langle (\hat{f} - \hat{g}_{LL}), (Y - \Theta) \rangle}{\left\| \hat{f} - \hat{g}_{LL} \right\|^2}
= \sum_{i=1}^{n} \frac{(\hat{f}_i - \hat{g}_{LL})\epsilon_i}{n\left\| \hat{f} - \hat{g}_{LL} \right\|^2}.
\]
Next observe that

\[
\frac{\sum_{i=1}^{n} (\hat{f}_i - \hat{g}_{\text{LLI}}) \epsilon_i}{n} = \frac{\sum_{i=1}^{n} (\hat{f}_i - f_i) \epsilon_i}{n} + \frac{\sum_{i=1}^{n} (f_i - \Theta) \epsilon_i}{n} + \frac{\sum_{i=1}^{n} (\Theta - \hat{g}_{\text{LLI}}) \epsilon_i}{n} = T_1 + T_2 + T_3 \ (\text{say}).
\]

(A5.B.1)

We will give asymptotic results for each of the terms T2, T3 and T1 (in that order).

Observe that \(E(T2) = 0 \), and that \(E(T2^2) = V(T2^2) \)

\[
= n^{-2} E\left(\left(\sum_{i=1}^{n} (f_i - \Theta) \epsilon_i \right)^2 \right)
\leq cn^{-2} \left(\sum_{i=1}^{n} (f_i - \Theta)^2 \right)
\]

(for some constant \(c \in \mathbb{R} \), by Whittle’s Inequality (Whittle (1960)))

\[
= \delta_x^2 O_p(n^{-1}).
\]

So that

\[
T_2 = \delta_x O_p(n^{-5}).
\]

Recall that T3 =

\[
\frac{\sum_{i=1}^{n} (\Theta - \hat{g}_{\text{LLI}}) \epsilon_i}{n}
\leq \frac{\sum_{i=1}^{n} \left| (\Theta - \hat{g}_{\text{LLI}}) \right| \epsilon_i}{n}
\leq \frac{\sum_{i=1}^{n} c(\tau_n^5 n^{-5}) \epsilon_i}{n}
\]

(A5.B.2)

for some constant \(c \in \mathbb{R}^+ \), with probability approaching 1 (by choice of \(c \)), by the proof of Lemma 5.a.1, and the definition of convergence in distribution.
Next notice that the terms in A5.B.2 are stochastically independent (since the bandwidth
is a function of \(n \) which is independent of \(\varepsilon_i \) for all \(i \)) so that we may employ Whittle’s Inequality
(Whittle (1960)). Since \(E(T3) = \)
\[
O_p(\tau_n^{-5}n^{-5}),
\]
we also have that asymptotically \(V(T3) = E(T3^2) \)
\[
\leq E \left(\left(\frac{\sum_{i=1}^{n} c(\tau_n^{5}n^{-5})|\varepsilon_i|}{n} \right)^2 \right)
\]
(for some constant \(c \in \mathbb{R}^+ \), with probability approaching 1 (by choice of \(c \)), by inequality A5.B.2)
\[
= c^2 (\tau_n n^{-1}) E \left(\left(\frac{\sum_{i=1}^{n} |\varepsilon_i|}{n} \right)^2 \right)
\]
\[
\leq c_2 (\tau_n n^{-2})
\]
(for some constant \(c_2 \in \mathbb{R}^+ \), by Whittle’s Inequality (Whittle (1960)). Then by definition of
convergence in distribution, it follows that
\[
T3 = O_p(\tau_n^{-5} n^{-1}) .
\]
Finally, observe that by assumption A1, \(T1 = \)
\[
\frac{\sum_{i=1}^{n} ((\hat{f}_i - f_i) \varepsilon_i)}{n}
\]
\[
= \frac{\sum_{i=1}^{n} (n^{-1} \sum_{j=1}^{n} W_i(x_i, x_j) \varepsilon_j) + O_p(n^{-1}) \varepsilon_i}{n}
\]
\[
= \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_i(x_i, x_j) \varepsilon_i \varepsilon_j}{n^2} + O_p(n^{-1.5})
\]
\[
= T11 + O_p(n^{-1.5}) \text{ (say)}.
\]
We also have that \(E(T_{11}) \)
\[
\leq \sum_{i=1}^{n} \frac{25W_i(x_i, x_i)}{n^2}
= O_p(n^{-1}).
\]
Then, as before, asymptotically \(V(T_{11}) = E(T_{11}^2) \)
\[
\leq \frac{c \sum_{i=1}^{n} \sum_{j=1}^{n} W_i^2(x_i, x_j)}{n^2}
\leq \frac{c_2}{n^3}
\]
(for some constant \(c \in \mathbb{R} \), by Whittle’s Inequality (Whittle (1960))
\[
= O_p(n^{-3}).
\]
(for some constant \(c_2 \in \mathbb{R} \), by condition A1)
\[
= O_p(n^{-3}).
\]
So that
\[
T_{11} = O_p(n^{-1.5}),
\]
and consequently
\[
T_1 = O_p(n^{-1.5}).
\]
Thus A5.B.1 becomes
\[
O_p(n^{-1.5}) + \delta_n O_p(n^{-5}) + O_p(\tau_n^{-5} n^{-1}). \quad \text{(A5.B.3)}
\]
Finally, combining A5.B.3 with Lemma 5.b.1 we have \(\hat{\Lambda}^{*L} - \lambda^{*L} \)
\[
= \begin{cases}
O_p(\tau_n^5 n^{-1}) + O_p(n^{-5}), & \text{if } \lim_{n \to \infty} \delta_n \neq 0 \\
O_p(\tau_n^{-5}), & \text{if } \delta_n = 0
\end{cases}
\]
as desired. //.
Proof of Theorem 5.B.1: Observe that

\[
\| \lambda^* L \hat{f} + (1 - \lambda^* L) \hat{g}_{LL} - \Theta \|
\]

\[
= \| \lambda^* L \hat{f} - \lambda^* L \Theta + (1 - \lambda^* L) \hat{g}_{LL} - (1 - \lambda^* L) \Theta \|
\]

\[
= \| \lambda^* L (\hat{f} - \Theta) + (1 - \lambda^* L) (\hat{g}_{LL} - \Theta) \|
\]

\[
\leq \| \lambda^* L (\hat{f} - \Theta) \| + \| (1 - \lambda^* L) (\hat{g}_{LL} - \Theta) \|
\]

(by the Triangle Inequality)

\[
\leq |\lambda^* L| \| (\hat{f} - f) \| + \| (f - \Theta) \| + |(1 - \lambda^* L) \| \| (\hat{g}_{LL} - \Theta) \|
\]

(by the Cauchy-Schwarz Inequality)

\[
\leq |\lambda^* L| \| (\hat{f} - f) \| + \| (f - \Theta) \| + |1 - \lambda^* L| \| (\hat{g}_{LL} - \Theta) \|
\]

(by the Triangle Inequality)

\[
= |\lambda^* L| \left(O_p(n^{-5}) + \delta_n \right) + |1 - \lambda^* L| \left(O_p(\tau_n^5 n^{-5}) \right)
\]

(A5.B.4)

by Lemmas 5.a.1, 5.a.3 and by definition of δ_n. Then using Lemma 5.b.2 we have that A5.B.4

\[
= \begin{cases}
O_p(\tau_n^5 n^{-5}), & \text{if } \lim_{n \to \infty} \delta_n \neq 0 \\
O_p(n^{-5}), & \text{if } \delta_n = 0
\end{cases}
\]

and the theorem is proved. //.

Proof of Theorem 5.B.2: Observe that

\[
\| \lambda^* L \hat{f} + (1 - \lambda^* L) \hat{g}_{LL} - \Theta \|^2 - \| \lambda^* L \hat{f} + (1 - \lambda^* L) \hat{g}_{LL} - \Theta \|^2
\]

\[
= \sum_{i=1}^n (\lambda^* L \hat{f} + (1 - \lambda^* L) \hat{g}_{LL} - \Theta)^2 - \sum_{i=1}^n (\lambda^* L \hat{f} + (1 - \lambda^* L) \hat{g}_{LL} - \Theta)^2
\]

\[
= \frac{\sum_{i=1}^n (t_i^2 - \Theta)}{n} - \frac{\sum_{i=1}^n (t_i^2 - \Theta)}{n} \text{ (say)}
\]

\[
= \frac{\sum_{i=1}^n ((t_i^2 - t_i^2) - 2\Theta(t_i^2 - t_i))}{n}
\]

117
\[
\sum_{i=1}^{n} \frac{((t_1 - t_2)(t_1 + t_2 - 2\Theta))}{n}
\]

\[
= \sum_{i=1}^{n} \frac{((t_1 - t_2)(t_1 - t_2 + 2t_2 - 2\Theta))}{n}
\]

\[
= \sum_{i=1}^{n}(t_1 - t_2)^2 \frac{n}{n} + \sum_{i=1}^{n}(t_1 - t_2)2(t_2 - \Theta)
\]

\[
= \sum_{i=1}^{n} \frac{(\hat{\lambda}^L - \lambda^*)^2}{n} (\hat{f} - \hat{g}_{LL})^2 + 2\sum_{i=1}^{n} (\hat{\lambda}^L - \lambda^*)(\hat{f} - \hat{g})(\lambda^*) \left(\hat{f} + (1 - \lambda^*)\hat{g}_{LL} - \Theta \right)
\]

\[
\leq (\hat{\lambda}^L - \lambda^*)^2 \|\hat{f} - \hat{g}_{LL}\|^2 + 2|\hat{\lambda}^L - \lambda^*| \|\hat{f} - \hat{g}_{LL}\|\|\lambda^* \hat{f} + (1 - \lambda^*)\hat{g}_{LL} - \Theta\|
\]

by the Cauchy-Schwarz Inequality. Then

\[
\left\|\hat{\lambda}^L \hat{f} + (1 - \hat{\lambda}^L)\hat{g}_{LL} - \Theta\right\|^2
\]

\[
\leq (\hat{\lambda}^L - \lambda^*)^2 \|\hat{f} - \hat{g}_{LL}\|^2 + 2|\hat{\lambda}^L - \lambda^*| \|\hat{f} - \hat{g}_{LL}\|\|\lambda^* \hat{f} + (1 - \lambda^*)\hat{g}_{LL} - \Theta\| + \left\|\lambda^* \hat{f} + (1 - \lambda^*)\hat{g}_{LL} - \Theta\right\|^2
\]

so that

\[
\left\|\hat{\lambda}^L \hat{f} + (1 - \hat{\lambda}^L)\hat{g}_{LL} - \Theta\right\|
\]

\[
\leq (\hat{\lambda}^L - \lambda^*) \|\hat{f} - \hat{g}_{LL}\| + (2|\hat{\lambda}^L - \lambda^*| \|\hat{f} - \hat{g}_{LL}\|\|\lambda^* \hat{f} + (1 - \lambda^*)\hat{g}_{LL} - \Theta\|)^5
\]

\[
+ \left\|\lambda^* \hat{f} + (1 - \lambda^*)\hat{g}_{LL} - \Theta\right\|.
\]

(A5.B.5)

Using Lemmas 5.b.1, 5.b.3 and Theorem 5.B.1 along with A5.B.5, we have that

\[
\left\|\hat{\lambda}^L \hat{f} + (1 - \hat{\lambda}^L)\hat{g}_{LL} - \Theta\right\| = \begin{cases} O_p(\tau^5 n^{-5}), & \text{if } \lim_{n \to \infty} \delta_n \neq 0 \\ O_p(n^{-5}), & \text{if } \delta_n = 0 \end{cases}
\]

as desired.//.