Appendix B

Derivation of Basic Equations

B.1 Continuity Equation

Following White [36], inlet and outlet mass fluxes for a two-phase control volume can be
expressed as in Fig. B.1. For a steady state analysis mass in must equal mass out.

Therefore, mass out subtracted from massin yields:

1 Al Al =
T (ar u)dxdydz + T (arv)dxdydz + 1 (ar wydxdydz = Gdxdydz (B.1)

Dividing out the dxdydz volume term, and converting from cartesian to cylindrica

coordinates yields,
%%(rar V) +%ﬂ—111(ar vq) +%(ar v,) =G (B.2)

For axisymmetric coordinates, we eiminate the g component and dightly change
nomenclature by defining x=z, u=v_, and u=v:

11 I =
r ﬂr(rar V) + ﬂx(ar u)=G (B.3)
Multiplying by r gives the fina equation for use in non-dimens onalization:

%(rar V) + %(rar u) =rG (B.4)
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Figure B.1 - Control Volume for Derivation of Basic Equations
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B.2 Momentum Equation

Again, following the procedure outlined in White [36], we write the basic momentum
expression S F =My - M;, for an infinitesmal control volume with two phases present.
The sum of the forces consists of surface stresses, pressure, and interfacial drag (gravity
and other body forces are being ignored). The momentum flux terms consist of
momentum carried into and out of the control volume, as in single phase flow, but aso an
interfacial momentum transfer due to mass transfer. Assembling these terms in cartesian

coordinates yields:
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If the surface forces shown above are broken up into viscous and pressure forces, as

follows,

Sxx =txx- P Sxy:txy Sxz =tz
Syx = lyx Syy =ty - P Syz =1y
Szx:tzx Szy:tzy Szz:tzz' P (36)

then the momentum equation can be expressed as.
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Simplifying the above expression to the genera tensor form yields:
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N - g%r VV = aNP+N - f%tmwmt + {MAX[G; O] V osher - MAX[- G, 0] V} (B.8)
Now this equation can be expanded into any coordinate system. For the z, or X, direction

in cylindrical coordinates it becomes:

—1(rar Vpvz) + ll(ar vqvz) + 13%” vzij
= 11111’ Fok(art )+ rﬂ.lll(at qz) + “ Tat=)
+ant,z +MAX[Ga O]Vz,other MAX[ Ga O]VZ (Bg)

Using the Stokes deformation law, the shear stresses can be expressed as functions of
viscosity and velocity gradient. Note that in the following equations the term containing

the second coefficient of viscosity does not appear, asit is neglected:
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Making this substitution for the z-direction and neglecting g component terms yields the
following expression:
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