
Appendix B 

Derivation of Basic Equations

B.1 Continuity Equation

Following White [36], inlet and outlet mass fluxes for a two-phase control volume can be

expressed as in Fig. B.1.  For a steady state analysis mass in must equal mass out.

Therefore, mass out subtracted from mass in yields:

∂
∂x(αρu)dxdydz + ∂

∂y(αρv)dxdydz + ∂
∂z(αρw)dxdydz = Γdxdydz (B.1)

Dividing out the dxdydz volume term, and converting from cartesian to cylindrical

coordinates yields,

1
r

∂
∂r(rαρvr) + 1

r
∂

∂θ(αρvθ) + ∂
∂z(αρvz) = Γ (B.2)

For axisymmetric coordinates, we eliminate the  component and slightly changeθ
nomenclature by defining x=z, u=vz, and u=vr:

1
r

∂
∂r(rαρv) + ∂

∂x(αρu) = Γ (B.3)

Multiplying by r gives the final equation for use in non-dimensionalization:

∂
∂r(rαρv) + ∂

∂x(rαρu) = rΓ (B.4)
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Figure B.1 - Control Volume for Derivation of Basic Equations



B.2 Momentum Equation

Again, following the procedure outlined in White [36], we write the basic momentum

expression  for an infinitesimal control volume with two phases present.Σ F = Mout − M in

The sum of the forces consists of surface stresses, pressure, and interfacial drag (gravity

and other body forces are being ignored).  The momentum flux terms consist of

momentum carried into and out of the control volume, as in single phase flow, but also an

interfacial momentum transfer due to mass transfer.  Assembling these terms in cartesian

coordinates yields:

∧
i 




∂
∂x

(ασxx) + ∂
∂y(ασyx) + ∂

∂z
(ασzx)


dxdydz

+
∧
j 


 ∂

∂x(ασxy) + ∂
∂y(ασyy) + ∂

∂z(ασzy)


dxdydz

+
∧
k 




∂
∂x

(ασxz) + ∂
∂y(ασyz) + ∂

∂z
(ασzz)


dxdydz

+ P∇αdxdydz +
→
F intdxdydz

= 

 ∂

∂x

αρu

→
V 

 + ∂
∂y


αρv

→
V 

 + ∂
∂z


αρw

→
V 




dxdydz

+ MAX[Γ, 0]
→
V other − MAX[−Γ, 0]

→
V dxdydz (B.5)

If the surface forces shown above are broken up into viscous and pressure forces, as

follows,

σxx = τxx − P σxy = τxy σxz = τxz

σyx = τyx σyy = τyy − P σyz = τyz

σzx = τzx σzy = τzy σzz = τzz − P (B.6)

then the momentum equation can be expressed as:
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∧
i ∂

∂x
(αP)−

∧
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(αP)−

∧
k ∂

∂z
(αP) + P∇α + Fint

= ∇ • 
αρ

→
V

→
V 

 − MAX[Γ, 0]
→
V other − MAX[−Γ, 0]

→
V (B.7)

Simplifying the above expression to the general tensor form yields:

∇ • 
αρ

→
V

→
V 

 = −α∇P + ∇ • 
ατij


 + Fint + MAX[Γ, 0]

→
V other − MAX[−Γ, 0]

→
V (B.8)

Now this equation can be expanded into any coordinate system.  For the z, or x, direction

in cylindrical coordinates it becomes:

1
r

∂
∂r(rαρvrvz) + 1

r
∂
∂θ(αρvθvz) + ∂

∂z

αρvz

2 


= −α∂P
∂z

+ 1
r

∂
∂r

(αrτrz) + 1
r

∂
∂θ

(ατθz) + ∂
∂z

(ατ zz)

+ Fint,z + MAX[Γ, 0]vz,other − MAX[−Γ, 0]vz (B.9)

Using the Stokes deformation law, the shear stresses can be expressed as functions of

viscosity and velocity gradient.  Note that in the following equations the term containing

the second coefficient of viscosity does not appear, as it is neglected:

τrr = 2µ∂vr
∂r

τθθ = 2µ


1
r

∂vθ
∂θ + vr

r

 τzz = 2µ∂vz

∂z
τrθ = τθr = µ


r ∂
∂r




vθ
r


 + 1

r
∂vr
∂θ




τθz = τzθ = µ


∂vθ
∂z

+ 1
r

∂vz
∂θ




τzr = τrz = µ


∂vz
∂r

+ ∂vr
∂z


 (B.10)

Making this substitution for the z-direction and neglecting  component terms yields theθ
following expression:
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