Characterization of IphP from *Nostoc commune* UTEX 584 and a Dual-Specificity Protein Phosphatase from *Anabaena* PCC 7120

by

L. Daniel Howell

A dissertation submitted to the faculty of Virginia Polytechnic Institute & State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Biochemistry

Peter J. Kennelly, Chair Malcolm Potts Timothy J. Larson Thomas O. Sitz Brenda Shirley

September 17, 1997 Blacksburg, Virginia

Characterization of IphP from *Nostoc commune* UTEX 584 and a Dual Specificity Protein Phosphatase from *Anabaena* PCC 7120

by L. Daniel Howell (Abstract)

Protein phosphorylation is utilized universally as a mechanism of signal transduction. However, the use of tyrosine phosphorylation by bacteria has been a matter of dispute. Conventional wisdom dictated that "prokaryotic phosphorylation" was typified by phosphorylation of histidine and aspartate residues of proteins, while "eukaryotic phosphorylation" was characterized by modification of serine, threonine, or tyrosine residues. Increasing numbers of reports have emerged challenging the traditional view of "prokaryotic" and "eukaryotic" phosphorylation. One of the strongest links unifying prokaryotic and eukaryotic protein phosphorylation to date is IphP, a genomically-encoded dual-specificity protein phosphatase from the cyanobacterium *Nostoc commune* UTEX 584 bearing the active-site signature sequence of eukaryotic tyrosine-specific and dual-specificity protein phosphatases.

The catalytic properties and substrate specificity of IphP were examined in detail. The enzyme was able to discriminate among a variety of exogenous peptides and proteins. Kinetic studies revealed that IphP favors protein / peptide substrates over low molecular weight compounds.

Heparin effected IphP activity in a substrate-dependent manner. Enzyme activity toward casein (P-Ser) and MAP kinase (P-Thr/P-Tyr) was stimulated in the presence of the polyanion, wheras activity was inhibited by heparin toward other protein substrates. Both stimulation and inhibition by heparin were dose-dependent. The ability to stimulate IphP activity toward select substrates was attributed to the ability of heparin recruit the enzyme and substrates to the same microenvironment.

To facilitate future genetic studies to examining the role of tyrosine phosphorylation in cyanobacteria, we searched for evidence of protein tyrosine phosphorylation in *Anabaena* PCC 7120. In a collaborative effort with the laboratory of Dr. Potts, tyrosine phosphorylated proteins were identified in *Anabaena* utilizing several approaches, including comparative labelling with [α]- vs [γ -³²P]-ATP, phosphoamino acid analysis, and selective hydrolysis with a tyrosine specific protein phosphatase. Together, these data unequivocally demonstrate the presence of tyrosine-phosphorylated proteins in *Anabaena* PCC 7120.

Extracts of *Anabaena* PCC 7120 were examined for protein tyrosine phosphatase. An apparent PTP activity was detected, partially purified, and characterized. The protein phosphatase, ~38kDa by SDS-PAGE and sucrose density gradient centrifugation that displayed dual-specificity protein phosphatase (DSP) activity *in vitro*. The enzyme was localized to the periplasm and was thus assigned the title PAD, for Periplasmic *Anabaena* DSP. Periplasmic phosphoproteins of ~120 and 55 kDa that had been radiolabelled *in vitro* were dephosphorylated by partially purified PAD. PAD activity varied *in vivo* ~5-fold in a rhthymic, seemingly diurnal manner. These and other proteins were also labelled *in vivo* and the degree of radiolabel incorporated into the periplasmic proteins varied inversely with PAD activity.

ACKNOWLEDGEMENTS

I would like to thank all of those people who played a crucial role in my success here at Virginia Tech., especially the members of my committee: Dr. Brenda Shirley, Dr. Timothy Larson, Dr. Thomas Sitz, Dr. Malcolm Potts, and Dr. Peter Kennelly. I would especially like to thank my advisor for allowing me the freedom to pursue my own ideas and passing on to me his tried-and-true philosophies about the "doing of science" -- May we always tell a good story.

In addition to the members of my committee, I would like to thank Dr. Neihaus for the use of his 12-liter fermentor (which will most likely be green forever), Dr. Story for teaching me via Email from Germany how to take pictures of my cultures with the CCD camera, Dr. John Cundiff for helping me keep life in perspective (btw, doesn't Carla look lovely today?) and Dr. Hess and Dr. Bevan for nominating me for Full Membership into Sigma Xi.

I am extremely grateful to the many members of the Kennelly lab with whom I was fortunate enough to work: Jie, Keith, Christina, Charmaine, Barb, Ronda, Tom, Ken, Danielle, and Liang. I especially thank Jie Leng for all the encouragement he provided during my early years in the lab and for the many insightful lunch conversations at "Wendy" and "Hardee", Ken Bischoff for his help interpreting results and designing experiments, and Liang Shi for his contageous enthusiasm for cyanobacteria!

Many others outside of Virginia Tech contributed to my general well-being throughout graduate school. I would like to thank my best friend Stuart Whitaker for the hours of stimulating conversation we shared and for teaching me to appreciate a good fire. I thank my parents, Larry and Neoma, and my sister, Angela Teter, for their constant love and support throughout the years. And finally, my deepest appreciation goes to my wife, Carla, who's taught me more about life than any biochemistry text ever could. I love you.

J'aime Dieu, ma femme, ma famille, et mon métier. J'espère que je serai toujours satisfait avec ces cadeaux et que je n'ai jamais envie de plus.

"Thanks be to God in all things"

ACKNOWLEDGMENTS		
LIST OF FIGURES	viii	
LIST OF TABLES	X	
LIST OF ABBREVIATIONS	xi	
CHAPTER 1: INTRODUCTION	1	
Protein Phosphorylation	1	
Protein Phosphorylation in the Bacteria	5	
The Cyanobacteria	14	
Protein Phosphorylation in the Cyanobacteria	17	
Thesis Objectives	25	
CHAPTER 2: MATERIALS AND METHODS	27	
Materials	27	
Procedures	27	
SDS-PAGE	27	
IEF / 2D-PAGE	27	
Electroblotting to PVDF Membranes	28	
Media Formulations	28	
Growth of Cyanobacteria		
Preparation of Cyanobacterial Extracts		
Expression and Isolation of IphP	30	
Expression and Purification of p56 ^{lyn} kinase	30	
Expression and Purification of MAP kinase	31	
Preparation of ³² P-phosphotyrosyl-RCM-lysozyme	31	
Preparation of ³² P-phosphotyrosyl-casein	31	
Preparation of ³² P-phosphoseryl-casein	32	
Preparation of ³² P-phosphoseryl-RCM-lysozyme	32	
Phosphatase assays	32	
Radiolabelling Cyanobacterial Phosphoproteins	34	
Phosphoamino Acid Analysis	34	
Molybdic Acid Extraction	36	
Sucrose Density Gradient Ultracentrifugation	36	
Heparin-agarose Affinity Chromatography	37	

TABLE OF CONTENTS

CHAPTER 3: SUBSTRATE SPECIFICITY & CATALYTIC	
PROPERTIES OF IPHP	3
Objectives	3
Rationale	3
Relative IphP Activity toward Potential Protein / Peptide	
Substrates	1
IphP displays selectivity among potential peptide and	
protein substrates	-
IphP favors protein/peptide substrates vs low molecular	
weight organophosphates in vitro	
IphP Dephosphorylates P-Tyr of MAPK faster than	
P-Thr	
Heparin Affects IphP Activity in a Substrate-Specific	
Manner	
Heparin lowers the apparent K_M of IphP toward	
MAPK	4
MAPK (P-Thr/P-Tyr), Casein (P-Ser), and IphP associate	
with heparin	4
Proteins with high pI values block enhancement by	
heparin	
Membrane lipids do not mimic heparin enhancement	4
CHAPTER 4: DETECTION OF TYROSINE-PHOSPHORYLATED PROTEINS IN ANABAENA PCC 7120	4
Objectives	-
Rationale	
Phosphorylation vs Nucleotidylation	
Phosphoamino Acid Analysis of Radiolabelled	
Phosphoproteins	
Dephosphorylation of Radiolabelled Phosphoproteins by	
PTP1B	
CHAPTER 5: PARTIAL PURIFICATION AND CHARACTER- IZATION OF A SOLUBLE 38kDa DSP	
Objectives	
Rationale	
Detection of PTP Activities Extracts of Anabaena PCC	
7120	
Partial Purification of a Soluble PTP	
Is the Enzyme in the DE52 Fraction a PTP?	
15 UIC LILLYING IN UIC DLJ2 I IACUUN a I II (

In Vitro Characterization of the Soluble PTP	59
Subcellular Localization of the DSP	60
PAD Activity In Vivo is Rhythmic	61
Dephosphorylation of a Periplasmic Phosphoprotein by	
PAD	62
CHAPTER 6: DISCUSSION	85
Specificity and Catalytic Properties of IphP	85
Detection of Phosphotyrosyl-phosphoproteins in Anabaena	
PCC 7120	86
Characterization of a DSP from Anabaena PCC 7120	87
Conclusions	89
VITA	90

List of Figures

Figure 1.1	Modification of a protein by phosphorylation	2
Figure 1.2	A schematic diagram of a typical cyanobacterial vegetative cell	16
Figure 1.3	The photosynthetic apparatus of a typical cyanobacterium	19
Figure 2.1	Depiction of a TLE plate for phosphoamino acid analysis	35
Figure 3.1	IphP dephosphorylates P-Tyr from MAPK (P-Thr/P-Tyr) faster than P-Thr	47
Figure 3.2	Enhancement of IphP activity toward casein (P-Ser) and MAPK (P-Thr/P-Tyr) by heparin is concentration- dependent	48
Figure 3.3	Associative model for the enhancement of IphP activity toward MAPK (P-Thr/P-Tyr) by heparin	49
Figure 3.4	Sucrose gradient ultracentrifugation of heparin-protein complexes	50
Figure 3.5	Proteins with high pI values block heparin enhancement	51
Figure 4.1	Cyanobacterial proteins are phosphorylated by endogenous protein kinases	54
Figure 4.2	Phosphoamino acid analyses of cyanobacterial phospho- proteins	55
Figure 4.3	PTP1B, IphP, and alkaline phosphatase liberate ³² P from radiolabelled <i>Anabaena</i> phosphoproteins	56
Figure 5.1	PTP activities in Anabaena PCC 7120	68
Figure 5.2	DEAE chromatography of the soluble fraction	69
Figure 5.3	Cellulose phosphate chromatography of the DE52 fraction	70

Figure 5.4	Molybdic acid extraction of inorganic [³² P]phosphate	71
Figure 5.5	In-gel assay of soluble, DE52, and CP fractions	72
Figure 5.6	Native molecular weight determination of the soluble PTP	73
Figure 5.7	Catalytic activity of the soluble phosphatase as a function of pH	74
Figure 5.8	Determination of the isoelectric point of the 38kDa PTP	75
Figure 5.9	RCML (P-Tyr) and RCML (P-Ser) are both dephos- phorylated by the DE52 fraction	76
Figure 5.10	The effect of known phosphatase inhibitors on the soluble DSP	77
Figure 5.11	Assay of isocitrate dehydrogenase activity in subcellular fractions of <i>Anabaena</i>	78
Figure 5.12	Total PTP activities in subcellular fractions of Anabaena	79
Figure 5.13	In-gel assay of subcellular fractions of Anabaena	80
Figure 5.14	PAD activity <i>in vivo</i> is rhythmic	81
Figure 5.15	Rhythmic PAD activity is independent of light cycle	82
Figure 5.16	Soluble fraction and periplasmic fraction phosphoproteins are dephosphorylated by PAD	83
Figure 5.17	Incorporation of ³² P into periplasmic phosphoproteins <i>in vivo</i> varies inversely with PAD activity	84

List of Tables

Table 1.1	Bacterial phosphotyrosyl-phosphoproteins	10
Table 3.1	Relative activity of IphP toward peptide and protein substrates	42
Table 3.2	Kinetic parameters of IphP toward selected substrates	43
Table 3.3	The effect of various polyanions of IphP activity	44
Table 3.4	Affinity of IphP and substrates toward heparin-agarose	45
Table 3.5	Effect of membrane & sheath components of IphP activity	46
Table 5.1	Purification of the soluble PTP	64
Table 5.2	Low molecular organophosphate hydrolase activity in the DE52 fraction	65
Table 5.3	The effect of monovalent, divalent, or trivalent metal chlorides on the soluble PTP activity	66
Table 5.4	The effect of key metabolites on PAD activity in vitro	67

List of Abbreviations

	1 . 11 .
BSA	bovine serum albumin
CAPS	3-(cyclohexylamino)-1-propane sulfonic acid
casein (32 P-Ser)	[³² P]phosphoseryl casein
casein (³² P-Tyr)	[³² P]phosphotyrosyl casein
СР	cellulose phosphate
CPM	counts per minute
DEAE	diethylaminoethyl
DSK	Dual-Specificity Protein Kinase
DSP	dual-specificity phosphatase
DTT	dithiothreotol
EDTA	ethylenediaminetetraacetic acid
EGTA	ethylenedioxydiethylenedinitrolo tetraacetic acid
ERK	extracellular-regulated protein kinase
g	acceleration due to gravity
GST	glutathione-S-transferase
HMB	<i>p</i> -hydroxymercuribenzoate
HMPSA	<i>p</i> -hydroxymercuriphenyl sulfuric acid
IAA	iodoacetic acid
IEF	isoelectric focusing
IPTG	isopropylthio-β-D-galactoside
MAPK	mitogen-activated protein kinase
MBP	myelin basic protein
NEM	N-ethylmaleimide
P-Ser or PS	phosphoserine
P-Thr or PT	phosphothreonine
P-Tyr or PY	phosphotyrosine
PAA	phosphoamino acid analysis
PAD	Periplasmic Anabaena DSP
PAGE	polyacrylamide gel electrophoresis
PBP	phycobiliprotein
PCC	Pasteur Culture Collection
pH	log H ⁺ concentration
\mathbf{P}_i	inorganic phosphate
PKA	protein kinase A
РКС	protein kinase C
PMSF	phenylmethylsulfonyl fluoride
pNPP	p-nitrophenyl phosphate
PS-I	photosystem I
PS-II	photosystem II
	× •

РТК	protein tyrosine kinase
PTP	protein tyrosine phosphatase
PVDF	polyvinylidene difluoride
RCML (³² P-Ser)	[³² P]phosphoseryl RCM-lysozyme
RCML	reduced, carboxymethylated, and maleylated lysozyme
RCML (³² P-Tyr)	[³² P]phosphotyrosyl RCM-lysozyme
SDS	sodium dodecyl sulfate
ssDNA	single-stranded DNA
TCA	trichloroacetic acid
TLE	thin-layer electrophoresis
Tris	tris (hydroxymethyl) aminomethane
UTEX	University of Texas Culture Collection
YINAS	peptide ENDYINASL