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(Abstract)

Protein phosphorylation is utilized universally as a mechanism of signal transduction.
However, the use of tyrosine phosphorylation by bacteria has been a matter of dispute.
Conventional wisdom dictated that "prokaryotic phosphorylation" was typified by
phosphorylation of histidine and aspartate residues of proteins, while "eukaryotic
phosphorylation" was characterized by modification of serine, threonine, or tyrosine
residues.  Increasing numbers of reports have emerged challenging the traditional view of
"prokaryotic" and "eukaryotic" phosphorlyation.  One of the strongest links unifying
prokaryotic and eukaryotic protein phosphorylation to date is IphP, a genomically-encoded
dual-specificity protein phosphatase from the cyanobacterium Nostoc commune UTEX 584
bearing the active-site signature sequence of eukaryotic tyrosine-specific and dual-specificity
protein phosphatases.

The catalytic properties and substrate specificity of IphP were examined in detail.
The enzyme was able to discriminate among a variety of exogenous peptides and proteins.
Kinetic studies revealed that IphP favors protein / peptide substrates over low molecular
weight compounds.

Heparin effected IphP activity in a substrate-dependent manner.  Enzyme activity
toward casein (P-Ser) and MAP kinase (P-Thr/P-Tyr) was stimulated in the presence of the
polyanion, wheras activity was inhibited by heparin toward other protein substrates.  Both
stimulation and inhibition by heparin were dose-dependent.  The ability to stimulate IphP
activity toward select substrates was attributed to the ability of heparin recruit the enzyme
and substrates to the same microenvironment.

To facilitate future genetic studies to examining the role of tyrosine phosphorylation
in cyanobacteria, we searched for evidence of protein tyrosine phosphorylation in Anabaena
PCC 7120.  In a collaborative effort with the laboratory of Dr. Potts, tyrosine phosphorylated
proteins were identified in Anabaena utilizing several approaches, including comparative
labelling with ["]- vs [(- P]-ATP, phosphoamino acid analysis, and selective hydrolysis32

with a tyrosine specific protein phosphatase.  Together, these data unequivocally demonstrate
the presence of tyrosine-phosphorylated proteins in Anabaena PCC 7120.

Extracts of Anabaena PCC 7120 were examined for protein tyrosine phosphatase.
An apparent PTP activity was detected, partially purified, and characterized.  The protein
phosphatase, ~38kDa by SDS-PAGE and sucrose density gradient centrifugation that
displayed dual-specificity protein phosphatase (DSP) activity in vitro.  The enzyme was
localized to the periplasm and was thus assigned the title PAD, for Periplasmic Anabaena
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DSP.    Periplasmic phosphoproteins of ~120 and 55 kDa that had been radiolabelled in vitro
were dephosphorylated by partially purified PAD.  PAD activity varied in vivo ~5-fold in a
rhthymic, seemingly diurnal manner.  These and other proteins were also labelled in vivo and
the degree of radiolabel incorporated into the periplasmic proteins varied inversly with PAD
activity.
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