
A NEW DIGITAL RELAY FOR DISPERSED STORAGE

AND GENERATION (DSG) UNITS

By

Dewayne Randolph Brown

Dissertation submitted to the Faculty of Virginia Polytechnic Institute

and State University in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Electrical Engineering

Approved By

——————————

Dr. Phadke, Chairman

—————————— ——————————

Dr. Broadwater Dr. Liu

—————————— ——————————

Dr. De La Ree Dr. Greenberg

February 1997

Blacksburg, Virginia

A NEW DIGITAL RELAY FOR DISPERSED

STORAGE

AND GENERATION (DSG) UNITS

BY

Dewayne Randolph Brown

Arun G. Phadke,Chairman

ELECTRICAL ENGINEERING

(ABSTRACT)

A dispersed storage and generation system consists of both a source of energy for conver-

sion to electricity and a means to interconnect this unit to the electric utility system. Most

dispersed generators connected to the utility distribution system are less than 5 MW. A

new emerging problem arises when a utility circuit breaker is opened while a capacitor-bank

bus and load bus is energized very near a dispersed storage and generation unit. A new

resonant- detecting relay will be developed that has the ability to trip if dangerously high

off-nominal frequency voltages are produced at the capacitor-bank bus or load bus during

this condition (self-excitation). Self-excitation may lead to severe overvoltages, and may

induce undesirable transients in neighoring circuits (low power and control circuits being

particularly vulnerable) on the connected network. It can create harmonics that can fail

surge arrestors or cause transformer saturation. The new relay will be able to detect this

condition at the inter-tie and trip the cogeneration facility. In order to make this multi-

function relay cost effective, it includes protection functions for traditional relay functions

such as directional inverse time-delay overcurrent, directional instantaneous overcurrent,

islanding, loss-of- excitation, differential, overfrequency, underfrequency, overvoltage, un-

dervoltage, negative-sequence current, check-synchronism, and directional power. Also, the

new relay will have metering capability.

Keywords: Protection, Relays, Shunt Capacitor-Banks

DEDICATION

I dedicated this book to my mother who still is my best friend. I thank you mama for

listening to my sorrows and giving me advice when I needed it. I thank you for having

confidence in me and believing that I would make it even when the odds were against me.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Arun G. Phadke, for all his support and guidance

during my research. I would also like to thank my other committee members, Dr. Liu, Dr

Greenberg, Dr. Broadwater and Dr. De La Ree for their help while I pursued my graduate

degree. I would also like to acknowledge The Office of Naval Research for their financial

support. I want to thank Derrek Dunn and John Wicks for being my friends at Virginia

Tech. and providing me inspirational advice. Last but not least I would like to thank god

who stuck by me through it all.

v

Contents

1 INTRODUCTION 1

1.1 PROBLEM STATEMENT . 1

1.2 REVIEW OF DISPERSED STORAGE AND GENERATION 2

1.3 RESONANT OVERVOLTAGES . 5

1.4 SIGNIFICANCE OF TRANSFORMER ISOLATION 7

1.5 TYPES OF DSG ENERGY SOURCES . 8

1.6 PROTECTION OF THE DSG\UTILITY INTERFACE 10

1.6.1 INVERSE TIME-DELAY OVERCURRENT 11

1.6.2 INSTANTANEOUS OVERCURRENT 13

vi

CONTENTS vii

1.6.3 UNDERVOLTAGE\OVERVOLTAGE 14

1.6.4 NEGATIVE-SEQUENCE . 15

1.6.5 LOSS-OF-EXCITATION . 16

1.6.6 DIRECTIONAL GROUND FAULT 18

1.6.7 CHECK-SYNCHRONISM . 20

1.6.8 DIFFERENTIAL . 21

1.6.9 FREQUENCY . 22

1.6.10 DIRECTIONAL POWER . 24

1.6.11 SELF-EXCITATION . 25

2 SELF-EXCITATION 27

2.1 SWITCHING OF CAPACITOR BANKS 27

2.2 METHODS FOR CONTROLLING OVERVOLTAGES 28

2.2.1 UNCONTROLLED ENERGIZATION 29

2.2.2 PRE-INSERTION RESISTOR METHOD 29

CONTENTS viii

2.3 PRE-INSERTION INDUCTOR METHOD 31

2.3.1 SYNCHRONIZED CLOSING METHOD 34

2.4 OTHER METHODS OF CONTROLLING OVERVOLTAGES 36

2.5 SELF-EXCITATION METHOD . 37

2.5.1 DISCRETE FOURIER TRANSFORM (DFT) 37

2.5.2 FAST FOURIER TRANSFORM (FFT) 38

2.5.3 FORWARD TRANSFORM AND FREQUENCY INDEX 39

2.5.4 THEORY OF SELF-EXCITATION 40

2.6 EVALUATION OF THE CONTROL METHODS 42

3 DSG RELAY FUNCTIONS 43

3.1 OVERALL FUNCTION DIAGRAM FOR THE DSG RELAY 43

3.1.1 HIGH-FREQUENCY SAMPLER 46

3.1.2 ANTI-ALIASING . 46

3.1.3 ANALOG-TO-DIGITAL CONVERTERS 47

CONTENTS ix

3.2 PHASOR COMPUTATION . 49

3.3 CURRENT RELAY FUNCTION . 55

3.4 ISLANDING RELAY FUNCTION . 64

3.5 LOSS-OF-EXCITATION RELAY FUNCTION 66

3.6 DIFFERENTIAL RELAY FUNCTION . 71

3.7 FREQUENCY RELAY FUNCTION . 75

3.8 VOLTAGE RELAY FUNCTION . 77

3.9 NEGATIVE-SEQUENCE CURRENT RELAY FUNCTION 82

3.10 CHECK-SYNCHRONISM RELAY FUNCTION 85

3.11 DIRECTIONAL POWER RELAY FUNCTION 87

3.12 SELF-EXCITATION RELAY FUNCTION 91

3.13 METERING . 94

4 COMPUTER SIMULATION RESULTS 101

4.1 COMPUTER SIMULATION OF A SAMPLE SYSTEM 101

CONTENTS x

4.2 INPUT DATA FOR THE LOW FREQUENCY RELAYS 102

4.3 INPUT DATA FOR THE HIGH FREQUENCY RELAY 118

4.4 SAMPLE SYSTEM OUTPUT FOR RELAY MODULES 118

4.4.1 CURRENT RELAY OUTPUT . 122

4.4.2 ISLANDING RELAY OUTPUT . 126

4.4.3 LOSS-OF-EXCITATION RELAY OUTPUT 126

4.4.4 DIFFERENTIAL RELAY OUTPUT 129

4.4.5 FREQUENCY RELAY OUTPUT 132

4.4.6 VOLTAGE RELAY OUTPUT . 138

4.4.7 NEGATIVE-SEQUENCE RELAY OUTPUT 148

4.4.8 CHECK-SYNCHRONISM RELAY OUTPUT 152

4.4.9 DIRECTIONAL POWER RELAY OUTPUT 156

4.4.10 SELF-EXCITATION RELAY OUTPUT 156

4.5 SAMPLE SYSTEM OUTPUT FOR MULTIFUNCTION RELAY 158

4.5.1 UNBALANCED LOAD OUTPUT RESULTS 161

CONTENTS xi

4.5.2 THREE-PHASE FAULT OUTPUT RESULTS 165

4.5.3 LINE-TO-GROUND FAULT OUTPUT RESULTS 166

4.5.4 LINE-TO-LINE FAULT OUTPUT RESULTS 167

CONCLUSIONS 169

ADVANTAGES OF THE SELF-EXCITATION METHOD 169

RECOMMENDATIONS FOR FUTURE WORK 170

A SPFTTR ALGORITHM 172

B SPFTTC ALGORITHM 177

C SPFIRL ALGORITHM 182

D MULTIFUNCTIONAL RELAY PROGRAM 187

D.1 THE MULTIFUNCTIONAL RELAY MAIN PROGRAM 187

D.2 AUXILIARY PROGRAM A . 272

D.3 AUXILIARY PROGRAM B . 341

CONTENTS xii

D.4 AUXILIARY PROGRAM C . 346

D.5 AUXILIARY PROGRAM D . 348

D.6 AUXILIARY PROGRAM E . 355

D.7 AUXILIARY PROGRAM F . 361

BIBLIOGRAPHY 376

VITA 379

List of Figures

1.1 NETWORK SYSTEM CONTAINING A DSG UNIT 3

3.1 OVERALL FLOW DIAGRAM FOR THE DSG RELAY 45

3.2 IDEAL ANTI-ALIASING FILTER . 48

3.3 LOW-PASS RECTANGULAR FIR FILTER 50

3.4 PHASOR COMPUTATION FLOW DIAGRAM 56

3.5 CURRENT RELAY FLOW DIAGRAM 65

3.6 ISLANDING RELAY FLOW DIAGRAM 67

3.7 LOSS-OF-EXCITATION RELAY FLOW DIAGRAM 70

3.8 DIFFERENTIAL RELAY FLOW DIAGRAM 74

xiii

LIST OF FIGURES xiv

3.9 FREQUENCY RELAY FLOW DIAGRAM 78

3.10 VOLTAGE RELAY FLOW DIAGRAM . 81

3.11 NEGATIVE-SEQUENCE RELAY FLOW DIAGRAM 84

3.12 CHECK-SYNCHRONISM RELAY FLOW DIAGRAM 88

3.13 DIRECTIONAL POWER RELAY FLOW DIAGRAM 92

3.14 SELF-EXCITATION RELAY FLOW DIAGRAM 95

3.15 FLOW DIAGRAM OF THE METERING RELAY FUNCTION 100

4.1 ONE-LINE DIAGRAM OF A DSG DISTRIBUTION SYSTEM 103

4.2 SAMPLE VOLTAGE Va . 106

4.3 DIGITALLY FILTERED SAMPLE VOLTAGE Va 107

4.4 AMPLITUDE OF THE PHASOR VOLTAGE Va 108

4.5 SAMPLE IMPEDANCE Za . 109

4.6 DIGITALLY FILTERED SAMPLE IMPEDANCE Za 110

4.7 AMPLITUDE OF THE PHASOR IMPEDANCE Za 111

LIST OF FIGURES xv

4.8 SINGLE PHASE SAMPLE POWER Pa 112

4.9 DIGITALLY FILTERED SAMPLE POWER Pa 113

4.10 AMPLITUDE OF THE PHASOR POWER Pa 114

4.11 SAMPLE THREE PHASE POWER Pg 115

4.12 DIGITALLY FILTERED SAMPLE POWER Pg 116

4.13 AMPLITUDE OF THE PHASOR POWER Pg 117

4.14 HIGH FREQUENCY VOLTAGE Va . 119

4.15 SAMPLE HIGH FREQUENCY VOLTAGE Va 120

4.16 AMPLITUDE SPECTRUM OF HIGH FREQUENCY VOLTAGE Va . . . 121

4.17 PER UNIT MAXIMUM FAULT CURRENT 123

4.18 PER UNIT MINIMUM FAULT CURRENT 124

4.19 CURRENT RELAY OUTPUT STATUS 125

4.20 PER UNIT CHANGE IN POWER . 127

4.21 ISLANDING RELAY OUTPUT STATUS 128

4.22 IMPEDANCE FOR PHASE A . 130

LIST OF FIGURES xvi

4.23 LOSS-OF-EXCITATION RELAY OUTPUT 131

4.24 SENSITIVITY SLOPE FOR PHASE A 133

4.25 DIFFERENTIAL RELAY OUTPUT . 134

4.26 PHASE ANGLE AT THE KTH SAMPLE 136

4.27 FREQUENCY ESTIMATOR . 137

4.28 FREQUENCY RELAY OUTPUT FOR THE 65 Hz CASE 138

4.29 PHASE ANGLE AT THE KTH SAMPLE 139

4.30 FREQUENCY ESTIMATOR . 140

4.31 FREQUENCY RELAY OUTPUT FOR THE 55 Hz CASE 141

4.32 PHASE ANGLE AT THE KTH SAMPLE 142

4.33 FREQUENCY ESTIMATOR . 143

4.34 FREQUENCY RELAY OUTPUT FOR THE 60 Hz CASE 144

4.35 PHASE ANGLE AT THE KTH SAMPLE 145

4.36 FREQUENCY ESTIMATOR . 146

4.37 MIXED FREQUENCY RELAY OUTPUT CASE 147

LIST OF FIGURES xvii

4.38 PER UNIT RMS VOLTAGE FOR PHASE A 149

4.39 PER UNIT PEAK VOLTAGE FOR PHASE A 150

4.40 VOLTAGE RELAY OUTPUT . 151

4.41 PER UNIT NEGATIVE SEQUENCE CURRENT 153

4.42 INTEGRATED SUM OF THE NEGATIVE SEQUENCE CURRENT . . . 154

4.43 NEGATIVE-SEQUENCE RELAY OUTPUT 155

4.44 DIRECTIONAL POWER RELAY OUTPUT 157

4.45 PER UNIT PEAK HIGH FREQUENCY VOLTAGE FOR PHASE A . . . 159

4.46 SELF-EXCITATION RELAY OUTPUT 160

4.47 MULTIFUNCTION RELAY OUTPUT FOR UNBALANCED LOAD . . . 164

4.48 MULTIFUNCTION RELAY OUTPUT FOR THREE-PHASE FAULT . . 165

4.49 MULTIFUNCTION RELAY OUTPUT FOR SLG FAULT 166

4.50 MULTIFUNCTION RELAY OUTPUT FOR LINE-TO-LINE FAULT . . . 168

Chapter 1

INTRODUCTION

1.1 PROBLEM STATEMENT

As the number of dispersed storage and generation units connected to the power system

increases, the need to develop more multifunction relays at the utility-industrial tie that will

detect new emerging problems will become increasingly evident. Figure 1.1 shows a network

configuration that contains a dispersed storage and generation (DSG) unit. Multifunction

relays exist that can provide protection for overfrequency, underfrequency, overvoltage,

undervoltage, check-synchronism, negative-sequence, differential, and islanding functions

at the inter-tie. A new emerging problem arises when a utility circuit breaker is opened

while a capacitor-bank and load is energized very near a dispersed storage and generation

1

CHAPTER 1. INTRODUCTION 2

unit. The capacitor-bank may lead to severe off-nominal high frequency voltages due to

self-excitation of the DSG. In some instances, capacitor-banks may self-excite and create

harmonics that will damage surge arrestors and prevent relays from operating properly.

This may occur upon a trip of a breaker that causes islanding. The objective of this

research is to design a relay that detects these conditions and will trip the DSG unit. In

order to make this multifunction relay cost effective, it includes all the traditional relaying

functions and metering capability.

1.2 REVIEW OF DISPERSED STORAGE AND GEN-

ERATION

A dispersed storage and generation (DSG) system consists of both a source of energy for

conversion to electricity and a means to interconnect this unit to the electric utility system.

Most dispersed generators connected to the utility distribution system are less than 20 MW.

Installations of this size form the majority of DSG interconnections in the United States.

Larger DSG sytems are normally connected to utility transmission and subtransmission

circuits and with capacities up to several hundred megawatts.

Small power producers, cogenerators, and fossil-fuel-powered generators connected to elec-

tric distribution systems make up the DSG category. The term “small power producer” is

CHAPTER 1. INTRODUCTION 3

Figure 1.1: NETWORK SYSTEM CONTAINING A DSG UNIT

CHAPTER 1. INTRODUCTION 4

used by the Federal Energy Regulatory Commission (FERC) to describe power generation

from renewable resources.[1] Available resources include hydro, wind, solar, biomass, and

urban waste. Cogeneration refers to the simultaneous production of several forms of energy.

Most often, cogeneration denotes electric power and process steam.

The Public Utility Regulatory Policies Act (PURPA) of 1978, incorporates a section on

cogeneration which provides that the FERC shall prescribe rules requiring electric utilities

to offer to sell power to, or buy power from qualifying cogenerators. Under this idea,

an industrial cogeneration installation would be set up, for instance, to meet the entire

plant process heat requirement as well as to generate as much electric power as process

heat and fuel considerations allow. If the generated power exceeds the industrial demand,

the excess power flows to the electric utility which pays for these kilowatts according to

a negotiated power contract. In the past practices, recognized power flowed only into the

industry (radial system).

In recent years, the increasing use of customer owned generators (cogenerators), indepen-

dent power producers (IPPs) and feeder-to-feeder switching has resulted in the distribution

system protection taking on more of the characteristics of transmission protection.[2] Co-

generators, and IPPs, establish energy sources within the distribution system that result

in fault current that differ in magnitude and direction from the fault currents produced by

the utility sources. The free-flowing nature of cogeneration requires that the relays at the

CHAPTER 1. INTRODUCTION 5

distribution stations recognize the potential variations in short circuit current in the same

way as the relays in a networked or looped system.

Electric energy generated by cogenerators and small power producers may be directly con-

nected to a utility system, or indirectly connected through a device called a static power

converter (SPC). Directly connected synchronous generators must run at a synchronous

shaft speed so that the power output is electrically in sychronism with the utility system.

Directly connected induction generators are asynchronous (not in synchronism). Indirect

connection through a static power converter allows the electric energy source to operate

independently of the utility voltage and frequency.

1.3 RESONANT OVERVOLTAGES

Shunt capacitors, connected between line and neutral are commonplace on power systems.

Capacitors can correct lagging power factor conditions and can provide voltage support

for the system. In some applications they are switched in and out quite frequently as the

system load changes and the system voltage fluctuates. Overvoltages are never present

in normal operations, because the source impedance of a normal power grid connection is

too low and the source voltage is too well regulated to allow resonant conditions to occur.

During faults, resonance can occur between the capacitor bank and the inductance of the

dispersed generator to produce high voltages on the unfaulted phases.

CHAPTER 1. INTRODUCTION 6

The use of shunt capacitors for power factor compensation may result in resonance or

near resonance.[3] The worst case of overvoltage due to resonance occurred when shunt

capacitors were connected to the feeder at no load without a surge arrestor.[4] When load

was cogitated, the resonant problem was damped. Overvoltage could be several times

normal voltage if the generator becomes isolated in the faulted section of a three-phase

feeder with capacitor bank and load less than or equal to the capacity of the dispersed

generator.[4]

Surge arrestors are the principal defense against extreme overvoltages. There is some

concern that standard distribution class arrestors may not be adequate to withstand the

fault discharge energy, because it could be several cycles until the generator breaker opens.

Surge arrestors will continue to fire every half cycle or at least every cycle as long as the

DSG remained on the system during resonant conditions. If the arrestor does fire, it will

only clip the voltage for a half cycle. The voltage can recover to sparkover on the following

cycle. In some instances surge arrestors can increase the overvoltage frequency by ensuring

that the following peak would also reach surge arrestor sparkover, because the arrestor will

act like one more switch activating the resonant circuit.

CHAPTER 1. INTRODUCTION 7

1.4 SIGNIFICANCE OF TRANSFORMER ISOLA-

TION

To provide isolation and to reduce harmonic injection, some utilities require that DSG

units be connected to the utility system through a transformer. This transformer will be

helpful in the case of a three-phase generator, where isolation of the zero-sequence network

of the DSG from the zero-sequence network of the utility is necessary in order to properly

protect the DSG from damage due to utility ground faults. The delta\wye connection is

the most common arrangement, but delta\zig-zag and ungrounded-wye\delta\grounded-

wye connections are also employed. A delta-connected winding on the utility side permits

the DSG ground fault protection to be designed without restrictions based on the necessity

of coordinating with the utility. There was not a transformer connection that completely

eliminated the overvoltage conditions which could exist upon separation of a DSG unit

with a small portion of the feeder system.[5]

A grounded-wye winding on the utility side significantly reduces the overvoltages produced

during an island condition, particularly when the aggregate DSG capability in the island

exceeds the load. This has the disadvantage of desensitizing the utility ground relays, since

some ground fault current will be diverted from the substation breakers. A resistor or

reactor may be connected in series with the wye ground connection in order to limit the

flow of current during faults or unbalanced conditions. The actual value chosen for the

CHAPTER 1. INTRODUCTION 8

resistor or reactor will be determined by the sensitivity of available protective relays and

usually in practice it is assumed that the medium voltage system neutral is grounded under

all circumstances.

A grounded-wye on the DSG side may cause dangerous overvoltages when a fault occurs

between an energized phase conductor and ground, particularly if the substation trans-

former is the only zero-sequence current source on the circuit. Once the fault is detected

and cleared by the opening the station breaker, the circuit is no longer effectively grounded.

1.5 TYPES OF DSG ENERGY SOURCES

The operation of DSG power processors can be categorized into line-independent and line-

dependent devices, depending on whether they require an external source of excitation.

Synchronous generators and self-commutated inverters are line-independent devices that

can operate on stand-alone basis. Induction generators and line-commutated inverters are

line-dependent devices that need an external source of reactive power. It is possible for

shunt capacitors on a distribution feeder to supply enough reactive power to self-excite

line-dependent DSG devices, even when the utility supply is not connected.

Synchronous generators are alternating current machines in which the rotational speed of

normal operation is constant and in synchronism with the frequency of the electric utility

CHAPTER 1. INTRODUCTION 9

system to which it is connected. Synchronous generators can be run either stand alone or

interconnected with the utility. The advantages of synchronous generators are their ability

to provide power during utility outages and flexibilty in permitting the DSG owner to

control the power factor at his facility by adjusting the dc field current. The disadvantages

of synchronous generators are their requirement for more complex control than induction

generators, both to synchronize them and to control their field excitation. Synchronous

generators also requires special protective equipment to isolate them from the utility under

fault conditions.

Induction generators are asynchronous machines that requires an external source to provide

the magnetizing current necessary to establish the magnetic field across the air gap between

the generator rotor and stator. Without an external source, an induction generator cannot

supply electric power but must operate in parallel with a utility, a synchronous machine,

or a capacitor that can supply the reactive requirements of the induction generator. The

advantages of induction generators are their need for only a very basic control system, since

their operation is relatively simple. Induction generators do not require special procedures

to synchronize them with the electric utility. They will normally cease to operate when

a utility outage occurs. One of the disadvantages of induction generators is their ability

to draw reactive power from the utility system and this may adversely affect the voltage

regulation on the circuit to which they are connected. Another disadvantage is the poten-

tially damaging inrush currents and associated torques that can result when connecting

CHAPTER 1. INTRODUCTION 10

some types of induction generators to the utility at speeds significantly below synchronous

speed.

In certain instances, an induction generator may continue to generate electric power after

the utility source is removed. This condition is called self-excitation. It can occur when-

ever there is sufficient capacitance in parallel with the induction generator to provide the

necessary excitation.

The Wind Energy Conversion Systems (WECS) electric generators are usually one of four

types: induction, synchronous, variable frequency, or direct current. Induction generators

are commonly used in small (less than 100 KW) to intermediate capacity (between 100

KW to 1 MW) capacity WECS. Synchronous generators are used mostly in sizes from small

upward to large capacity (greater than 1 MW) WECS. In the case of variable frequency and

direct current, the WECS needs a static power converter (SPC) to connect and regulate

electric power into a form acceptable for interconnection to an electric distribution system.

1.6 PROTECTION OF THE DSG\UTILITY INTER-

FACE

There are four principles that should be considered when protecting the DSG\utility inter-

face, regardless of the type of DSG. These are dependability, security, selectivity, and speed.

CHAPTER 1. INTRODUCTION 11

In order to meet dependability, the protective devices should have a very high probability

of clearing faults that occur in the power system. In order to meet security, the protective

devices should have a low probability of interrupting the circuit unnecessarily. In order to

meet the selectivity, the protective devices should isolate only the faulted area of the power

system. The protective devices should operate as rapidly as possible and be consistent with

coordination requirement in order to minimize damage. A reliable relaying system must

be dependable and secure. Most protection systems are designed for high dependability.

As a relaying system becomes dependable, its tendency to become less secure increases. A

majority of relay mis-operations are unwanted trips caused by insecure relay operations.

This happens because of a bias toward making relays more dependable at the expense of

some degree of security.

1.6.1 INVERSE TIME-DELAY OVERCURRENT

The principal application of overcurrent relays is on radial systems where they provide

both the phase and ground protection. Overcurrents relays are also used in industrial

systems, and on subtransmission lines, which cannot justify more expensive protection

such as distance or pilot relays. Overcurrent protection involves the inclusion of a suitable

device in each phase, since the objective is to detect faults which may affect only one or two

phases. Where relays are used, they will usually be energized through current transformers.

CHAPTER 1. INTRODUCTION 12

A basic supplement of time-delay overcurrent relays would be two phase relays and one

ground relay. This arrangement will protect the equipment for all combinations of phase

and ground faults. This arrangement uses the minimum of relays. Complete backup

protection can be obtained if a third phase relay is added.

The first step in applying inverse time-delay overcurrent relays is to choose the pickup

setting of the relay, so that it will operate for all short circuits in its own line section. This

setting should provide backup for the next line section or adjoining equipment. The pickup

of a relay is defined as the minimum value of the operating current, voltage or other input

quantity reached by progressive increases of the operating parameter, that will cause the

relay to reach its completely operated state when started from the reset condition.

The time-delay setting of the relay is an independent variable that is obtained in a variety

of ways, depending on the design of the relay. For an electromechanical relay, a time dial is

provided that positions the moving contact relative to a fixed contact. The dial is marked

from a setting of one-half to ten, fastest to slowest operating times respectively. The speed

of the disc is determined by the operating current, and the time is determined by the

distance the moving contact has to travel before it reaches the fixed contact. Other time-

delay mechanisms include clock movements, bellows, or diaphragms, or electrical circuits

using R-L-C timing circuits. In the electromechanical design, this adjustment is continuous,

whereas in solid-state or digital relays this setting may be continuous or discrete.

CHAPTER 1. INTRODUCTION 13

For phase relays, it is necessary to establish a reasonable maximum load current and cal-

culate the minimum fault current for the system configuration. The relay should then be

set somewhere between twice maximum load current and one third of the minimum fault

current value.

A ground relay must “see” all phase-to-ground faults within its zone of protection, and

under conditions which give a minimum fault current. In calculating ground current (3I0),

it is the zero-sequence current that is of interest. There is no concern for load current,

but normal phase and load unbalance and CT errors must be considered and the relays

set above these values. The ground relay must be set between twice the “normal” ground

current and one third of the minimum fault value. In the absence of any other information,

the “normal” ground current may be taken to be 10% of the load current.

1.6.2 INSTANTANEOUS OVERCURRENT

In order to properly apply instantaneous overcurrent relays, there must be a significant

reduction of short circuit current as the fault is moved away from the relay toward the far

end of the line. The relay must be set not to overreach the bus at the remote end of the

line and there still must be enough of a difference in the fault current between the near

and far end faults to allow a setting for the near end fault.

The simple inverse time overcurrent relays cannot be used without backup from instan-

CHAPTER 1. INTRODUCTION 14

taneous relays because the closer the fault is to the source, the greater the fault current

magnitude, and the longer the tripping time. The instantaneous relay must not see beyond

its own line section, so the range of values for which it must operate are very much higher

than even emergency loads. Load is not usually a consideration for the instantaneous relay

setting.

1.6.3 UNDERVOLTAGE\OVERVOLTAGE

Low voltage prevents motors from reaching rated speed on starting or causes them to

lose speed and draw heavy overloads. While the overload relays will eventually detect

this condition in many installations, the low voltage may jeopardize production or affect

electronic or digital controls. Motors should be disconnected quickly in this case. A time-

delay undervoltage relay can detect these low voltages. These relays should be set at 0.9

per unit.[6]

The voltage at the terminals of a generator is a function of the excitation and speed. Over-

voltage may result in thermal damage to cores due to excessive high flux in the magnetic

circuits. Excessive flux saturates the core steel and flows into the adjacent structures caus-

ing high eddy current losses in the core and adjacent conductors. Severe overexcitation can

cause rapid damage and equipment failure.

The unit of measure for excitation is defined as per unit voltage divided by per unit fre-

CHAPTER 1. INTRODUCTION 15

quency (V\Hz). Overvoltage exists whenever the per unit voltage per Hz exceeds the design

limit. Overvoltage exists at 105% of rated voltage and per unit frequency or per unit volt-

age and 95% frequency. Transformers are designed to withstand 110% of rated voltage at

no-load and 105% at rated load with 80% power factor.[7]

For overvoltage protection, at least one overvoltage element per phase should be used to

detect a condition that might damage other loads and equipment on the feeder. If only one

relay is used it should be set at 1.1 per-unit.[6] If two relays are used per phase, the high

speed unit should be set anywhere from 1.3 to 1.5 per unit and the slow speed unit at 1.1

per unit.[6]

If the system conditions are such that the islanded system is prone to ferroresonance, the

voltage waveform at that time will be expected to be very rich in harmonics. At such time,

it is possible that the peak voltage of the sinusoidal wave will be dangerously high even

though the rms value of the same voltage remains in an acceptable range. The instantaneous

overcurrent relay will be set at 1.3 to 1.5 per unit with a short or minimum time delay,

especially at the higher value.

1.6.4 NEGATIVE-SEQUENCE

Unsymmetrical faults may produce more severe heating in machines than symmetrical faults

or balanced three-phase operation. The negative-sequence currents which flow during these

CHAPTER 1. INTRODUCTION 16

unbalanced faults induce rotor currents which tend to flow on the surface of the rotor forging

and in the non-magnetic rotor wedges and retaining rings.[2] The I2R loss quickly raises

the temperature. If the fault continues, the metal will melt, damaging the rotor.

For generators, the cause of system unbalance is very often the failure of the protection

or equipment external to the machine. The typical conditions that can give rise to the

unbalanced generator currents are: accidental single-phase tripping of the generator due to

open leads or buswork, unbalanced generator step-up transformer, unbalanced system fault

conditions and a failure of the relays or breakers, planned single-phase tripping without

rapid reclosing. When such an unbalance occurs, it is not uncommon to apply negative-

sequence relays, on the generator to warn the operator of this abnormal situation and allow

corrective action to be taken before removing the machine from service. For negative-

sequence protection, at least one relay should be used to compare the magnitude of the

currents flowing in the three phases.

1.6.5 LOSS-OF-EXCITATION

Rotor faults may be either to ground or between turns and may be caused by the severe

mechanical and thermal stresses acting upon the winding insulation. The field system

is normally connected to ground so that a single-ground fault does not give rise to any

fault current. However, a second single-ground fault would short circuit part of the field

CHAPTER 1. INTRODUCTION 17

winding and thereby produce an asymmetrical field system, and unbalanced forces on the

rotor. Such forces will cause excess pressure on bearing and shaft distortions, if not quickly

removed. Under the general heading of rotor faults can be included loss-of-excitation. This

may be caused by an open circuit in the main field or a failure elsewhere in the excitation

system.

Loss-of-excitation results in a generator, losing synchronism and running above synchronous

speed, since the power input to the machine is constant. The generator will operate as an

induction generator under this condition, producing its main flux from a wattless stator

current drawn from the power system to which it was still connected. Excitation under

these conditions requires components of reactive current which may well exceed the rating

of the generator and so overload the stator winding. The slip frequency currents induced

in the damper windings of the rotor would cause abnormal heating of the rotor. Operation

as an induction generator does not, therefore, damage the set immediately, but, as the

higher ratings of modern machines are obtained by advanced cooling techniques rather

than increased frame size, the short thermal time constants require the machine to be

deloaded and tripped in a matter of seconds.[8] This condition should not be allowed to

persist indefinitely and corrective action either to restore the field, or to off-load and shut

down the machine should be done.

When a generator loses synchronism, the quantity which changes most is its impedance

CHAPTER 1. INTRODUCTION 18

as measured at the stator terminals. Loss of field will cause the terminal voltage of the

generator to begin to fall, while the current begins to increase. The apparent impedance

of the machine will therefore be seen to decrease and its power factor changes. An offset

impedance measuring relay will detect the change of impedance from the normal load value

and provide protection against asynchronous operation resulting from the loss-of-excitation.

1.6.6 DIRECTIONAL GROUND FAULT

Stator fault involve the main current carrying conductors must be cleared quickly from

the power system. They may be faults to ground, between phases or between turns of a

phase, singly or in combination. The greatest danger from stator faults is the possibility of

damage to the laminations of the stator core and stator windings due to the heat generated

at the point of fault. If the damage so caused is other than trivial, the stator will be

destroyed, the damaged laminations and windings replaced and the stator rebuilt, all of

which is a lengthy and costly process. When a low value grounding resistance is used to

limit ground-fault current to 200 to 300 amperes, or when the generator is grounded through

a high resistance (limiting the maximum stator ground-fault current to approximately 10

amperes), the neutral ends of the stator windings are unprotected against ground faults

(typically the bottom 5-10% of the windings) and, although ground faults near the neutral

ends are unlikely to be caused by electrically stressing, faults due to mechanical stressing

CHAPTER 1. INTRODUCTION 19

cannot be ruled out and 100% winding protection is required.

The stator ground fault relay will monitor the amplitude current in the generator neutral

connection as drawn by the total system to ground capacitance (i.e. that of the generator

stator). The effect of a ground fault on the windings would reduce the system impedance

and so increase the level of injected current and trip the set if the deviation from the

datum level exceeded a predetermined value. Ground-fault currents on rural networks may

be of very low magnitude owing to long line lengths, the use of neutral grounding resistors,

and different grounding conditions. Such circumstances arise when an overhead conductor

breaks and falls on ground of high resistivity or a hedge or haystack.[9]

The residual voltage of the power system can be used to polarize directional relays. The

residual voltage is the vector of the three phase voltages, and may be derived from an open-

delta connected residual windings of three single-phase transformers. The residual voltage

is zero for balanced phase voltages, but during a ground fault on a system with a solidly

grounded neutral, it is equal to the voltage depression of the faulted phase, and is in this

way related to the fault current. When the system neutral is grounded through a resistance,

the fault current is less and does not cause as much collapse of the phase-to-neutral voltage.

The line at the point of fault is brought to ground potential and the neutral point is raised

above ground potential by the voltage drop on the grounding resistance due to the fault

current flowing in it. This displacement of the neutral potential is added to the voltage

CHAPTER 1. INTRODUCTION 20

on the two phases. This will cause the phase voltages to increase. The residual voltage is

the vector sum of all the phase voltages and may be quite high, approaching three times

the normal phase voltage. The residual voltage is the vector sum of all phase voltages and

may be quite high, approaching three times the normal phase voltage. When the voltage

transformer is not provided with a winding for open-delta connection, a residual voltage

can be extracted by a wye-open delta connected group of auxiliary voltage transformers.

If the residual voltage is too low, or if voltage transformers are not available, or not suitable

to supply residual voltage, the neutral current of a power transformer or of a grounding

transformer can be used to polarize directional relays. The directional ground fault relay

must have a low-impedance ‘current’ winding in place of the more usual ‘voltage’ winding.

The neutral current of a wye-delta transformer will always flow from the ground into the

system; residual current flows toward the fault and may pass through a group of line

current transformer secondaries. The relay can therefore discriminate between faults in the

alternate directions.

1.6.7 CHECK-SYNCHRONISM

There can exist the potentially disatrous scenario where the main source of supply could

be reconnected to the power island out-of-synchronism with the dispersed storage and

generation unit. Although the best practice is to avoid reclosing, it is very difficult for

CHAPTER 1. INTRODUCTION 21

utilities to disable all reclosing close to the dispersed storage and generation unit. Should

out-of-synchronism reclosure occur, there is a high probability that the dispersed storage

and generation unit will be damaged.

Check-synchronism relaying is required for the intertie breakers to ensure that the generator

is safely connected in parallel with the utility supply. These relays compare the relative

phase angle difference between the voltage on both sides of an open circuit breaker to

determine if the two voltages are in synchronism (that is, of the same phase relationships).[1]

The check-synchronism relays will execute circuit breaker closing. When the utility circuit

is deenergized, or the DSG is not synchronized with the utility, the relay will block closing.

1.6.8 DIFFERENTIAL

Differential comparison is a sensitive and effective method that can detect very small mag-

nitude of fault currents. The protection scheme requires currents from the extremities of a

zone of protection. This restricts the application of differential relays to power apparatus,

such as transformers, generators, motors, buses, capacitors, reactors, etc.

Currents and voltages in the power system have a sinusoidal waveform of the fundamental

power system frequency. During normal operations, generators may produce third order

harmonic voltages and currents (deviations from a pure sinusoid). During abnormal condi-

tions, energization of transformers create odd higher-order harmonics (fifth,seventh,ninth,etc.)

CHAPTER 1. INTRODUCTION 22

that are associated with transformer saturation. These abnormal conditions can be de-

tected by sensing the harmonic content through filters in electromechanical or solid-state

relays, or by calculation in digital relays. By selecting a proper weighting coefficient for

the harmonic component, it is possible to prevent the differential relay from tripping the

transformer during its energization, or tripping the generator during normal operations. A

substantial tripping current may be produced due to the magnetizing inrush current.

1.6.9 FREQUENCY

Islanding is the abnormal condition where a small section of the utility’s load network

remains connected to the dispersed storage and generation unit with no main source of

utility power (main power station, or a transmission supply point). Islanding can be caused

by a switching operation to clear a fault, load shedding, maintenance outages, or equipment

failure. However, for the islanding to persist, the load on the isolated section of the feeder

must closely match the power output of the dispersed generator connected to the feeder.

Continued energization of the isolated section of feeder by the dispersed generator may

cause damage to the DSG device and distribution line equipment if the voltages on the

isolated section of feeder are out-of-phase with the utility reference voltage at the instant

of reclosing.

Islanding requires that the DSG device be capable of self-excitation. If a capacitor bank is

CHAPTER 1. INTRODUCTION 23

insufficient to maintain excitation, then the voltage would gradually decrease as the DSG

generator begins to accelerate, causing the generator to self-excite for several cycles. If a

capacitor bank overexcites the DSG generator, then the voltage would gradually increase as

the generator begins to decelerate, causing self-excitation of the generator. This suggests,

that the generator’s reactive power requirement could be matched well enough to sustain

islanding for several seconds.

The principal objective for an islanding protection technique is to detect the condition

where the DSG unit is left connected to a portion of the utility’s load network, but dis-

connected from the main source of utility power following a switching operation. When an

islanding condition is detected, the protection should trip the inter-tie breaker between the

generator’s site and the utility. Once this has been done the presence of the DSG unit will

not impede the orderly restoration of the utility supply to the rest of the network. Since

the inter-tie breaker is used to connect two active systems, once the network supply has

been established, the DSG unit can be reconnected to the utility.

Reduced frequency results in reduced current; therefore operation at reduced frequency

should be at reduced KVA.[2] Operating precautions should be taken to stay within the

short time thermal rating of the generator rotor and stator.[10] Underfrequency is a system

condition that affects the turbine more than the generator, because the turbine develops

mechanical resonant stresses as a result of deviations from synchronous speed.

CHAPTER 1. INTRODUCTION 24

System load shedding is considered the primary turbine underfrequency protection because

appropriate load shedding will cause system frequency to return to normal before the

turbine trouble-free limit is reached. The amount of load shed varies with coordinating

regions and individual utilities but varies from 25% to 75%.

For underfrequency protection, at least one underfrequency element per phase should be

used to detect those cases where the self-excitation voltage of the dispersed generator is

between 0.9 and 1.1 per unit, and the feeder load causes a decrease in frequency. This relay

would normally be set at 59.5 Hz.[7]

For overfrequency protection, at least one frequency element per phase should be used to

detect those cases where the self-excitation voltage of the dispersed generator is between

0.9 and 1.1 per unit, and the feeder load causes an increase in frequency. The relay should

be set at 60.5 Hz, and would operate on the resulting increase in frequency.[7]

1.6.10 DIRECTIONAL POWER

Directional power relays are often used to alarm or trip the DSG when power flows into it.

This is useful, of course, only for cogenerators where the electrical loads are normally much

larger than the generated power. In this case, power into the dispersed generator indicates

an abnormal condition, such as the cogenerator having been islanded with the utility load.

CHAPTER 1. INTRODUCTION 25

Directional power relays can be used to trip turbine generators to prevent motoring of the

generator. Generator motoring would occur if, for example, the turbine is tripped but the

generator breaker does not. Generator motoring would cause damage to the prime mover

such as turbine overheating in steam turbines and cavitation due to low flow in hydro

turbines. These relays are sometimes used as backup to other relays in this situation, such

as a steam turbine or exhaust hood in a gas turbine.

Directional power relays operate under conditions of balanced load and relatively high

power factor. The voltage and current phasors are nearly in phase with each other and

of constant magnitude. These connections were chosen so that maximum torque in the

relay occurs under power factor load. The relay will then pickup for power flowing in one

direction and will reset for opposite direction of power flow.

1.6.11 SELF-EXCITATION

Self-excitation is a transient condition in which dangerously high off-nominal frequency

voltages are produced at the energized capacitor-bank or load when the utility breaker is

opened. The transient voltage phenomena occurring during energization of shunt capacitors

are due to prestrike and temporary interruption in the switching device of inrush currents.

The initial energization of the capacitor bank circuit will nearly always take place as a

prestrike across the contacts of the switching device prior to actual contact engagement.[5]

CHAPTER 1. INTRODUCTION 26

A prestrike is the tendency for the interconnect gap to breakdown and establish current

before the contacts physically touch, because of the voltage stress between them.[5] Self-

excitation can occur in both isolated bank switching as well as bank-to-bank switching.

Upon energizing an isolated capacitor bank (a single capacitor without other energized

capacitor banks on the bus), moderate inrush transients and severe voltage transients can

be generated. Depending on relative magnitude and distribution of lumped and inherent

L and C elements in the circuit, the overvoltage transients may reach substantial levels

in case of momentary interruption of the initial inrush current followed by a subsequent

prestrike.

When energizing a capacitor bank with other energized capacitor banks on the bus (bank-

to-bank switching), current transients can be more severe; however, the voltage transients

are soothed to some degree by the support given the bus voltage by the energized capacitor

banks. During a bank-to-bank switching operation, the first rapid transient brings about an

exchange of charge between the capacitors being switched. The capacitors are brought to a

common voltage since losses damp out the transients in practical installations. The common

voltage is different from the supply voltage, so a second transient follows during which the

two capacitor banks are restored to supply potential. The initial inrush transient and the

restoring transient can usually be treated separately, since the first is usually completed

before the second has really begun.

Chapter 2

SELF-EXCITATION

2.1 SWITCHING OF CAPACITOR BANKS

At the instant of energization, a fully discharged capacitor bank looks like a short circuit

and, therefore, causes a collapse of bus voltage. The capacitor bank charges then to the

system voltage in an oscillatory manner (with a possible overshoot). The frequency of these

off-nominal oscillations depends on the effective system inductance and the capacitance of

the bank (400 Hz-1000 Hz). Peak voltages of 2.0 per unit can be theoretically expected

for grounded banks, and 2.5 per unit for ungrounded banks. Lower voltage will, however,

result in practice due to system damping. If the switching device is slow, and contains

a good interrupting medium, it is possible for the device to prestrike, extinguish the arc

27

CHAPTER 2. SELF-EXCITATION 28

at one of the high frequency current zeros, and strike again with the capacitor charged in

opposite polarity to the system with even higher resultant overvoltages.

2.2 METHODS FOR CONTROLLING OVERVOLT-

AGES

There are three common methods for reducing transient phenomena on capacitor bank

switching. The surge impedance of the capacitor can be increased by adding a series

reactor. Resistance can be added to damp the oscillation. Another method is to use

synchronous switching which means closing the switching device at a selected point on the

cycle.

When pre-insertion impedances are used to control inrush currents, there are two tran-

sient periods. The first occurs when the capacitor bank is initially energized through the

pre-insertion impedance. The second occurs when the pre-insertion impedance is removed

from the circuit. The voltage transients associated with the initial energization of a capac-

itor bank through a pre-insertion impedance are much greater than the voltage transients

associted with the shorting out of the pre-insertion impedance. The first voltage transient

is driven by the full system voltage, while the second transient voltage is driven only by

the voltage drop across the pre-insertion impedance, typically on the order of 10% to 40%

CHAPTER 2. SELF-EXCITATION 29

of full system voltage.

2.2.1 UNCONTROLLED ENERGIZATION

At the instant of capacitor-bank energization, the bus voltage abruptly falls to zero, since

the capacitor bank instantaneously appears as a very low impedance. This abrupt change

of voltage injects a step-voltage wave into the transmission lines connected to the capacitor-

bank bus. After the initial drop to zero voltage, the phase voltage recover in a transient

oscillatory fashion. The frequency of this transient is due primarily to the surge impedance

of the transmission lines connected to the capacitor-bank bus. Some additional damping

may come from system load connected at the capacitor-bank bus. Because this transient

is under-damped, the transient voltage overshoots the source voltage.

2.2.2 PRE-INSERTION RESISTOR METHOD

Forty-ohm pre-insertion resistors have been in service many years on high-voltage switches

used to switch shunt capacitor banks. The forty-ohm resistor value was chosen to provide

optimum control of inrush currents in back-to-back switching. A lower resistance will

cause an increase in the inrush current during the first transient period. An increase

in resistance will increase the inrush current during the second transient period. Forty

ohms is an optimal value, yielding approximately the same inrush current for both periods.

CHAPTER 2. SELF-EXCITATION 30

Should the emphasis for the use of a pre-insertion resistor be placed solely on the control

of overvoltages, disregarding inrush currents, a higher resistance value would be more

appropriate.

When a 40-ohm pre-insertion resistor is inserted during the energization of the capacitor

bank, the bus voltage at the capacitor bank does not collapse to zero. The extent to which

the bus voltage collapses depends upon the ratio of the resistance of the pre-insertion resis-

tor to the resultant surge impedance of the transmission lines connected to the capacitor-

bank bus. The reduction in the collapse of bus voltage manifests itself as a reduction in

the step-voltage wave (approximately 63% of the magnitude for a phase-to-ground voltage

compared to the uncontrolled energized case) injected into the system. The pre-insertion

resistor results in the capacitor-bank transient oscillation being nearly critically damped,

so that very little overswing of the capacitor-bank voltage occurs. During the transient

period, there are small discontinuities in the bus voltage at the capacitor-bank. These

discontinuities occur because traveling waves returning from the remote bus will see the

40-ohm pre-insertion resistor rather than the very low surge impedance of the capacitor

bank.

There are three advantages of pre-insertion resistors. They yield the lowest phase-to-ground

voltages at the capacitor-bank. They also yield moderate phase-to-ground and phase-to-

phase voltages at remote, radially fed stations. The overvoltages are not significantly

CHAPTER 2. SELF-EXCITATION 31

affected by the system load, because the load does not signnificantly add to the damping

obtained from the resistor.

There are two disadvantages of pre-insertion resistors. The resistors are not effective in

reducing the very high rate of change of voltage associated with the energization of a ca-

pacitor bank. Additionally, pre-insertion resistors may have thermal-capability limitations.

Typically, pre-insertion resistors absorb large amounts of energy with each energization of

a capacitor bank. Depending upon the type of switching device utilized, the energy capa-

bility of the resistor can limit the size of the capacitor bank which can be switched, as well

as the frequency of switching operations.

2.3 PRE-INSERTION INDUCTOR METHOD

Pre-insertion inductors are favorable over the fixed inductors. Fixed inductors generally

must be designed to carry normal load current, to have a system BIL rating, and to

withstand system short-time currents. As a result, the fixed inductors are physically large,

relatively expensive, and may require costly mounting structures. Furthermore, the fixed

inductors losses add to the cost of utilizing the inductors. Because the pre-insertion inductor

is only inserted for a few cycles, the normal current, short-time current, and full BIL ratings

are not required.

CHAPTER 2. SELF-EXCITATION 32

An inductor of 10 milihenries was chosen for the pre-insertion inductor, such that it would

yield approximately the same initial inrush current as that for a 40-ohm pre-insertion

resistor. Because the impedance of the pre-insertion inductor is significantly lower at

supply system frequency, the inrush currents experienced during the second transient period

will be significantly lower than the initial inrush currents. There is a possibility that

the pre-insertion inductor could be further optimized for both inrush current control and

overvoltage control. Further reductions in inrush currents, as well as overvoltages, could

be obtained by a pre-insertion inductor with a higher inductance. Higher inductances used

to optimize inrush current and voltage control may be economically feasible.

When a 10-mH pre-insertion inductor is inserted during the energization of the capacitor-

bank, the extent to which voltage collapses at the capacitor-bank is reduced (approximately

54% of the magnitude for a phase-to-ground voltage and approximately 51% of the magni-

tude for a phase-to-phase voltage compared to the uncontrolled energization case). Because

the inductor has a very high surge impedance relative to the surge impedance of the lines

connected to the bus, there is no abrupt step change in bus voltage. The voltage initially

decays exponentially as determined by an LR circuit comprised of the inductance of the

pre-insertion inductor and the surge impedance of the lines connected to the capacitor-bank

bus. Since the pre-insertion inductor has a relatively small resistance, the transient oscil-

lation is not significantly damped as it is with the pre-insertion resistor. Also, transients

generated when energizing a capacitor-bank through an inductor generally have moderately

CHAPTER 2. SELF-EXCITATION 33

rising ramp voltages instead of fast-rising step voltages.

There is a significant benefit to the fact that the overvoltages produced by the use of a

pre-insertion inductor are characterized by a ramp function rather than a step function as

produced by an uncontrolled energization or energization through a pre-insertion resistor.

Step-rising wave forms may cause damaging internal resonances in transformers.[11] For a

steeply rising transient voltage wave, the voltage distribution across a transformer winding

will be initially determined by stray capacitances rather than the inductance of the winding,

creating stress concentrations in the first several turns of the winding.[12] Even without

high peak overvoltages, rapid changes in voltage, with their associated stress concentrations,

may be harmful to transformers. The lower rate of change of voltage produced by the pre-

insertion inductor will allow the voltage to be distributed more evenly across the initial

turns of the wingings of the transformers.

The main disadvantage of dealing with a fixed inductor or a pre-insertion inductor is that

the peak overvoltages are significantly affected by the system load during energization.

This is primarily because the peak overvoltages in this case are associated with slowly

rising ramp waveforms. The slow-changing transients can interact with loads which are

located beyond the leakage impedances of transformers.

CHAPTER 2. SELF-EXCITATION 34

2.3.1 SYNCHRONIZED CLOSING METHOD

Synchronous energization of a capacitor-bank can be an extremely effective means of con-

trolling overvoltages. To accomplish synchronous closing at or near a voltage zero, thereby

avoiding high prestrike voltages, it is necessary to apply a switching device which main-

tains a dielectric strength sufficient to withstand system voltage until its contacts touch.

Such ideal closing characteristics may be difficult to attain with present-day high-voltage

switches and circuit breakers. If the switching device has a closing consistency within (plus

or minus) 2 milliseconds, overvoltage magnitudes will be limited to acceptable values.[13]

Synchronous closing has the potential of being an ideal means of controlling overvoltages

and inrush currents associated with energizing capacitor banks. With the constraints of

practical switching devices, an ideal synchronized closing of capacitor-banks is unattain-

able. Performance of a controlled closing system, operating within an accuracy attainable

with present-day technology, will allow a degree of control of overvoltage similar to that ob-

tainable with a pre-insertion resistor, without the thermal disadvantage of the pre-insertion

resistor.

There is a fundamental difference between grounded and ungrounded systems when apply-

ing controlled synchronized closing. In a grounded system, closing of each phase should

occur at a phase-to-ground voltage zero, assuming an uncharged capacitor bank is being

energized. In an ungrounded system, energization of the first phase can occur at random.

CHAPTER 2. SELF-EXCITATION 35

The second phase should be closed when the phase-to-phase voltage between the second

phase and the first phase is zero, which occurs when both phase-to-ground voltages are

of the same polarity and have a magnitude of one-half per unit. The third phase is then

closed when its phase-to-ground voltage is zero. The optimum time for energizing a ca-

pacitor bank, therefore, is different for an ungrounded system than for a grounded system.

The overvoltages which result from errors in closing, i.e., not closing at the ideal time, are

also fundamentally different for grounded systems and ungrounded systems.

If the capacitor-bank neutral is grounded in a ground supply system, all three phases can

act independently. Thus, simultaneous closing of two phases should be highly unlikely.

With closely coupled phases on a grounded system, the transients experienced when one

phase is energized may induce a second phase to prestrike, thereby creating a simultaneous

closing of two phases.

If the capacitor bank or the supply system is ungrounded, a simultaneous energization

of the first two phases will occur. Under this assumption that the first two phases close

simultaneously, the overvoltages associated with the simultaneously closed phases are the

same for a grounded and an ungrounded capacitor-bank.

Peak overvoltages are not significantly affected by the system load during energization

through synchronous closing. The peak overvoltages in this case are associated with very

steeply rising waveforms. The fast-changing transients cannot interact with loads which

CHAPTER 2. SELF-EXCITATION 36

are located beyond the leakage impedances of transformers.

The main disadvantage of a controlled closing scheme is its complexity. Since the ideal time

to close is different for each case of the three phases, the switching device must have three

independent closing mechanisms or an accurate mechanical delay between the three poles.

The scheme also relies on accurately monitoring voltages, both at the capacitor-bank bus

and on the capacitor-bank. The reliability of controlled closing schemes may be less than

for a pre-insertion impedance control means.

2.4 OTHER METHODS OF CONTROLLING OVER-

VOLTAGES

It has been suggested that contact closing speed of the switching device could be an effective

means for overvoltage control. It is, of course, possible to avoid interruption of the low

frequency inrush current by giving the switch a contact speed such that the prestrike contact

gap is closed within one loop of the low frequency inrush current. The higher contact speed,

while curing one cause of overvoltages, may complicate the contact rebound problem and

thus enhance one of the conditions that were given as possible causes of the energization

surge. Moreover, even if the “cure” were acceptable, it could only be helpful without the

limits of an upper value of low frequency. Among the thousands of capacitor installations

CHAPTER 2. SELF-EXCITATION 37

in this country alone, there will be always some with a higher value than such a limiting

low frequency. Consequently interruption of the prestrike current and voltage escalation by

subsequent prestriking could still take place. The increased contact speed of the switching

device is no cure at all for the interruption of the high frequency inrush current. This

method is not totally acceptable.

Choice of contact material can increase the dielectric strength and reduce the prestrike gap

so as to avoid a current zero prior to physical contact engagement. This method is not a

totally acceptable solution.

2.5 SELF-EXCITATION METHOD

2.5.1 DISCRETE FOURIER TRANSFORM (DFT)

The DFT is a basic operation used in many different signal processing applications to

transform an ordered sequence of data samples, usually from the time domain into the

frequency domain, so that spectral information about the sequence can be known.[14] The

DFT is an ordered sequence of complex numbers, each number consisting of a real part

and an imaginary part. Suppose that a real data sequence consisting of N real samples of

a signal x(t), given by:

CHAPTER 2. SELF-EXCITATION 38

[xk] = [x0, x1, x2, ...xN−1] (2.1)

In this notation, k is usually a time index and ranges from 0 to N-1. When [xk] is a real

data sequence, the computed DFT of [xk] consists of (N
2

+ 1) complex samples (N is even

for simplicity), given by:

[Xm] = DFT [xk] = [X0, X1, X2, ...XN
2

] (2.2)

[Xm] is the DFT of [xk] and the index m designates the frequency of each component [Xm].

Since the DFT is complex, each [Xm] can be separated in polar form as Xm = |Xm|ejΘm .

In this notation, |Xm| is the amplitude of Xm, and a plot of |Xm| versus the frequency

index m is called the amplitude spectrum of [xk].

2.5.2 FAST FOURIER TRANSFORM (FFT)

The Fast Fourier Transform (FFT) is an algorithm for computing the DFT, and its output

are precisely the same set of complex values expressed in (2.2).[15] The FFT algorithm

eliminates most of the separated complex products in the DFT, so the execution time is

much shorter. The ratio of computing time is approximately:

CHAPTER 2. SELF-EXCITATION 39

FFT Computing Time

DFT Computing Time
=

log2 × N

2N
(2.3)

Using the FFT, one can also do the computation “in place” so that [Xm] in (2.2) replaces [xk]

in (2.1), with only a limited amount of auxiliary storage needed for work space. However,

the FFT algorithm is more complicated than the DFT and becomes lengthy when N, the

number of data samples, is not a power of two. DFT routines requires twice as much

storage as the FFT routines, because the FFT routines all replace data values with the

transform values, whereas the DFT routines do not.

2.5.3 FORWARD TRANSFORM AND FREQUENCY INDEX

The forward transform is the DFT (or FFT), which transforms [xk] in (2.1) into [Xm] in

(2.2). The relationship implemented by the forward transform between [xk] and [Xm] can

be expressed as:

Xm =
N−1∑
k=0

xk × e
−j(2π×k)

N (2.4)

where m = 0,1,...,N
2

and N is the even number of data samples.

In this formula for [Xm], the exponential function, e
−j(2π×k)

N , is a complex sinusoid and is

periodic. If e
−j(2π×k)

N , is thought of as a function of k, the time index, then its period is

CHAPTER 2. SELF-EXCITATION 40

seen to be N
m

; that is, when k goes through a range of N
m

, e
−j(2π×k)

N goes through one cycle.

When the real and imaginary parts of (2.4) is separated this is easier to see.

Xm =
N−1∑
k=0

xk cos(
2πm× k

N
)− j

N−1∑
k=0

xk sin(
2πm× k

N
) (2.5)

Thus, each part (real or imaginary) of each DFT component [Xm] is a correlation (summed

part) of the data sequence [xk] with a cosine or sine sequence having a period of N
m

data

sequences.

2.5.4 THEORY OF SELF-EXCITATION

In the self-excitation method, a real sequence consisting of N real sample voltages, [x0, x1, x2, ...xN−1]

will be transformed into a complex function of frequency voltages. The digital relay will

determine if the off-nominal frequency voltages violate its criteria. The details for the

digital relay operation of these functions will be discussed in Section 3.12.

In Brigham’s method, x(t) is a complex sequence of N
2

points: [15]

[x0, x1, x2, ...xN−1] = [v0, v1, v2, ...vN
2
−1] (2.6)

In the complex sequence [Vk], the real part of v0 is x0. The imaginary part of v0 is x1. The

CHAPTER 2. SELF-EXCITATION 41

real part of v1 is x2, and so on. The SPFFTR algorithm (see Appendix) is then used to

take the N
2

-point transform of [vk], replacing [xk] with [Vm].

[Vm] = [V0, V1, V2, ...VN
2
−1] (2.7)

The desired transform [Xm] can then be obtained from [Vm] in accordance with the following

formulas, which are expressions of Brigham’s formulas:

Xm = (
(1− Um)

2
×Vm) + (

(1 + Um)

2
× V∗N

2
−m) (2.8)

X∗N
2
−m = (

(1 + Um)

2
×Vm) + (

(1− Um)

2
× V∗N

2
−m) (2.9)

The formulas of equation (2.8) and equation (2.9) are needed in SPFFTR (see Appendix)

because [Xm] replaces [Vm] during the computation. Thus X0, and XN
2
−1 replace V1, and

VN
2
−1, and so on. Also, since [Vm] is a N

2
-point transform, VN

2
, which is not given in equation

(2.7) must equal V0 in accordance with equation (2.5). Thus, SPFFTR accomplishes the

transformation of [xk] using equations (2.8) and (2.9).

CHAPTER 2. SELF-EXCITATION 42

2.6 EVALUATION OF THE CONTROL METHODS

To varying degrees of efficiency, all control methods will limit peak switching-surge voltages,

both at the local capacitor-bank station and at remote stations. Without a control means,

the phase-to-phase switching overvoltage could be as high as 6.5 per unit.[16] Adding re-

sistance to the capacitor-bank bus will reduce this overvoltage to 4.0 per unit. Adding

inductance to the capacitor-bank bus will reduce this overvoltage to 3.3 per-unit. Synchro-

nized closing of the switching contacts can theoretically reduce this overvoltage to 1.7 per

unit.[16] The self-excitation relay will monitor the amplitude spectrum of the off-nominal

frequency voltages. If their per unit values are larger than 1.7 per unit, then it will trip

the cogeneration facility.

Chapter 3

DSG RELAY FUNCTIONS

3.1 OVERALL FUNCTION DIAGRAM FOR THE

DSG RELAY

The overall function diagram for the multifunctional digital relay is shown in Figure 3.1.

Ia, Ib, Ic, In, Va, Vb, and Vc are sample data of a phase A neutral current. The surge

filter will prevent equipment damage and loss of data from power surges. There are two

scenarios that will exist after the application of the surge filters. The traditional low

frequency functions are executed on the left hand side. The new high frequency function

is executed on the right hand side. On the left hand side, the anti-aliasing low-pass filters

43

CHAPTER 3. DSG RELAY FUNCTIONS 44

will remove unwanted harmonic content above the cut-off frequency 1 to accommodate a

sampling rate of 12 times per cycle. Digital anti-aliasing filters will reduce the bandwidth

of the input signals. The Analog-to-Digital converter will convert analog voltages and

currents to their digital representation. The sampling clock provides pulses at a sampling

frequency. Sampling frequencies in modern digital relays vary between 8-32 times the

fundamental power system frequency. A recursive phasor computation will be done in

order to determine the voltage and current phasors. A start-up block will be used to

prevent the relay from mis-operating, during its first two cycles. The low frequency relays

will accept the phasors as inputs, process them digitally, and make a decision resulting in

an output signal. The relay will provide a meter reading for each input. The metering

output will consist of total and phase apparent power, real power, and reactive power

flowing in the lines. The voltages and currents will be measured as well. On the right

hand side, the relaying program will use a high sampling-frequency on all phase voltages.

The high-frequency sampler will produce the desired frequency response for estimating

high frequency transients. The sampling A/D converter and clock will convert the analog

current and voltage signals to their digital form. A start-up block will be used again to

prevent relay tripping during the first two cycles. The high frequency relay will monitor

the amplitude spectrum of the high frequency voltages produced at the capacitor and load.

1The cut-off frequency is equal to one-half the sampling rate.

CHAPTER 3. DSG RELAY FUNCTIONS 45

Figure 3.1: OVERALL FLOW DIAGRAM FOR THE DSG RELAY

CHAPTER 3. DSG RELAY FUNCTIONS 46

3.1.1 HIGH-FREQUENCY SAMPLER

3.1.2 ANTI-ALIASING

An ideal anti-aliasing filter characteristic with a cut-off frequency fc is shown in Figure

3.2. A practical filter can only approximate the square shape, as shown by the dotted line

in Figure 3.2. The primary purpose of digital filtering is to alter the spectral information

contained in an input signal xk, thus producing an enhanced output signal yk.

yk =
L∑
n=0

bnxk−n (3.1)

In (3.1), the [bn] coefficients are generated by the SPFIRL algorithm (see Appendix). The

low-pass FIR filter design procedure will include the window function w(n):

bn = h(n) = hd(n)w(n) (3.2)

where 0 ≤ n ≤ L

hd(n) =
sin(Ωc(n− L

2
))

π(n− L
2
)

(3.3)

The bn coefficient are used to implement the difference equation in (3.1), hd(n) is the ideal

CHAPTER 3. DSG RELAY FUNCTIONS 47

impulse-response sequence in (3.3), and w(n) is any window function. The magnitude

response of the resulting filter will depend upon the shape of the window w(n).

The low-pass FIR filter designed via the rectangular window is shown in Figure 3.3. The

approximate realizable characteristic is shown by the dotted line. The cut-off frequency

fc was 360 Hz. The sample interval (T) is equal to 0.001 sec. The normalized cut-off

frequency must be between 0.0 and 0.5 Hertz− sec. This value is computed as FCN = fcT.

The normalized cut-off frequency (FCN) is equal to 0.36 Hz. The length of the filter (L) is

equal to 12.

3.1.3 ANALOG-TO-DIGITAL CONVERTERS

The Analog to Digital Converter (ADC) converts an analog voltage or current level to its

digital represention. The most important feature is its word length expressed in bits. This

will affect the ability of ADC to represent the analog signal with a sufficiently detailed

digital representation.

Consider an ADC with 12 bit word length, which is the most common word length com-

mercially available today.[17] Using a two’s complement notation, the binary number (0111

1111 1111 97ff in hexadecimal notation) represented by a 12 bit ADC, while 1000 0000

0000 (800 in hexadecimal notation) represents the smallest (negative) number. In decimal

notation, hexadecimal 7FF is equal to (211 − 1) = 2047, and hexadecimal 800 is equal to

CHAPTER 3. DSG RELAY FUNCTIONS 48

Figure 3.2: IDEAL ANTI-ALIASING FILTER

CHAPTER 3. DSG RELAY FUNCTIONS 49

−211 = −2048. If the analog input signal ranges between ±10 volts, then each bit of the

12 bit ADC word represents 10
2048

volts or 4.833 millivolts. Thus any input voltage can be

converted into its corresponding two’s complement or an equivalent decimal.

3.2 PHASOR COMPUTATION

The flow diagram of the phasor computation is shown in Figure 3.4. First, the voltage

and current waveforms were sampled. Second, the real and imaginary components of the

phasors were calculated at the k-th instant as follows:

Var[k] =
2

N
×

11∑
k=0

v1y × cos(k× π

6
) (3.4)

Vbr[k] =
2

N
×

11∑
k=0

v2y × cos(k× π

6
) (3.5)

Vcr[k] =
2

N
×

11∑
k=0

v3y × cos(k× π

6
) (3.6)

Iar[k] =
2

N
×

11∑
k=0

i1y × cos(k× π

6
) (3.7)

CHAPTER 3. DSG RELAY FUNCTIONS 50

Figure 3.3: LOW-PASS RECTANGULAR FIR FILTER

CHAPTER 3. DSG RELAY FUNCTIONS 51

Ibr[k] =
2

N
×

11∑
k=0

i2y × cos(k× π

6
) (3.8)

Icr[k] =
2

N
×

11∑
k=0

i3y × cos(k× π

6
) (3.9)

Vai[k] =
2

N
×

11∑
k=0

v1y × sin(k× π

6
) (3.10)

Vbi[k] =
2

N
×

11∑
k=0

v2y × sin(k× π

6
) (3.11)

Vci[k] =
2

N
×

11∑
k=0

v3y × sin(k× π

6
) (3.12)

Iai[k] =
2

N
×

11∑
k=0

i1y × sin(k× π

6
) (3.13)

Ibi[k] =
2

N
×

11∑
k=0

i2y × sin(k× π

6
) (3.14)

Ici[k] =
2

N
×

11∑
k=0

i3y × sin(k× π

6
) (3.15)

CHAPTER 3. DSG RELAY FUNCTIONS 52

v1y, v2y, and v3y were the filtered phase voltages for phases A, B, and C respectively. i1y,

i2y, and i3y were the filtered phase currents for phases A, B, and C respectively.

Third, the new phasor components were calculated as:

Var new = Var old +
2

N
× (v1y[k]− v1y[k− N])× cos(k× π

6
) (3.16)

Vbr new = Vbr old +
2

N
× (v2y[k] − v2y[k − N])× cos(k× π

6
) (3.17)

Vcr new = Vcr old +
2

N
× (v3y[k]− v3y[k− N])× cos(k× π

6
) (3.18)

Iar new = Iar old +
2

N
× (i1y[k] − i1y[k− N])× cos(k× π

6
) (3.19)

Ibr new = Ibr old +
2

N
× (i2y[k]− i2y[k−N])× cos(k× π

6
) (3.20)

Icr new = Icr old +
2

N
× (i3y[k]− i3y[k−N])× cos(k× π

6
) (3.21)

CHAPTER 3. DSG RELAY FUNCTIONS 53

Vai new = Vai old +
2

N
× (v1y[k] − v1y[k− N])× sin(k× π

6
) (3.22)

Vbi new = Vbi old +
2

N
× (v2y[k]− v2y[k −N])× sin(k× π

6
) (3.23)

Vci new = Vci old +
2

N
× (v3y[k] − v3y[k −N])× sin(k× π

6
) (3.24)

Iai new = Iai old +
2

N
× (i1y[k]− i1y[k−N])× sin(k× π

6
) (3.25)

Ibi new = Ibi old +
2

N
× (i2y[k] − i2y[k− N])× sin(k× π

6
) (3.26)

Ici new = Ici old +
2

N
× (i3y[k]− i3y[k− N])× sin(k× π

6
) (3.27)

Since the process was recursive, Var old, Vai old, Vbr old, Vbi old, Vcr old, Vci old were

the previous voltage phasor components. Iar old, Iai old, Ibr old, Ibi old, Icr old, Ici old

were the previous current phasor components. N was the number of samples in one cycle

of the fundamental frequency 60 Hertz. k was the sample number.

Fourth, the magnitudes of the new phasor components were calculated.

CHAPTER 3. DSG RELAY FUNCTIONS 54

|Va| =
√

Var new2 + Vai new2 (3.28)

|Vb| =
√

Vbr new2 + Vbi new2 (3.29)

|Vc| =
√

Vcr new2 + Vci new2 (3.30)

|Ia| =
√

Iar new2 + Iai new2 (3.31)

|Ib| =
√

Ibr new2 + Ibi new2 (3.32)

|Ic| =
√

Icr new2 + Ici new2 (3.33)

Last, the phases of the new phasor components were calculated.

< Va =
180

π
× atan(

Vai new

Var new
) (3.34)

CHAPTER 3. DSG RELAY FUNCTIONS 55

< Vb =
180

π
× atan(

Vbi new

Vbr new
) (3.35)

< Vc =
180

π
× atan(

Vci new

Vcr new
) (3.36)

< Ia =
180

π
× atan(

Iai new

Iar new
) (3.37)

< Ib =
180

π
× atan(

Ibi new

Ibr new
) (3.38)

< Ic =
180

π
× atan(

Ici new

Icr new
) (3.39)

3.3 CURRENT RELAY FUNCTION

The flow diagram of the inverse time-delay and instantaneous overcurrent relay function is

shown in Figure 3.5. First, the current magnitudes were calculated as:

Ia f = |Ia max| (3.40)

CHAPTER 3. DSG RELAY FUNCTIONS 56

Figure 3.4: PHASOR COMPUTATION FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 57

Ib f = |Ib max| (3.41)

Ic f = |Ic max| (3.42)

Ia max, Ib max, and Ic max were the complex sample current data. Ia max consisted of

the real component (Iar new) and the imaginary component (Iai new). Ib max consisted

of the real component (Ibr new) and the imaginary component (Ibi new). Ic max consisted

of the real component (Icr new) and the imaginary component (Ici new).

Va max, Vb max, and Vc max were the complex sample voltage data. Va max consisted

of the real component (Var new) and the imaginary component (Vai new). Vb max con-

sisted of the real component (Vbr new) and the imaginary component (Vbi new). Vc max

consisted of the real component (Vcr new) and the imaginary component (Vci new).

Second, the current phase angles were computed.

< Theta Ia =
180

π
× atan

imag(Ia max)

real(Ia max)
(3.43)

< Theta Ib =
180

π
× atan

imag(Ib max)

real(Ib max)
(3.44)

CHAPTER 3. DSG RELAY FUNCTIONS 58

< Theta Ic =
180

π
× atan

imag(Ic max)

real(Ic max)
(3.45)

Third, the current transformer ratio (CT) was calculated.

CT =
iL
5

(3.46)

Fourth, the minimum fault current (I min) and the maximum fault current (I max) were

calculated. I min was the lowest magnitude value among Ia f, Ib f and Ic f. I max was

the highest magnitude value among Ia f, Ib f and Ic f. The equation for ground current

(I gnd) was:

I gnd = 0.1× iL (3.47)

Fifth, the phase relay pickup setting was computed.

IPICKP =
(i L

CT
× 2) +

I min
3

CT

CT
(3.48)

Sixth, the ground relay pickup setting was computed.

CHAPTER 3. DSG RELAY FUNCTIONS 59

IPICKG =
(0.1× i L)× 2

CT
(3.49)

Seventh, the instantaneous overcurrent phase relay setting was calculated.

IPEAKP = 1.35× IPICKP (3.50)

Eighth, the instantaneous overcurrent ground relay setting was computed.

IPEAKG = 1.35× IPICKG (3.51)

Ninth, the per unit current magnitudes were calculated.

Ia pu =
Ia f

I BASE
(3.52)

Ib pu =
Ib f

I BASE
(3.53)

Ic pu =
Ic f

I BASE
(3.54)

CHAPTER 3. DSG RELAY FUNCTIONS 60

I BASE was the base current. V BASE was the base voltage. S BASE was the base

power. The base current was calculated as follows:

I BASE =
S BASE√

3×V BASE
(3.55)

The inverse time and instantaneous overcurrent relay function were directional. The relay

will run its instantaneous overcurrent, and inverse time overcurrent subroutines, if any of

the following three equations were true.

−85.0 < Theta Ia < −15.0 (3.56)

−85.0 < Theta Ib < −15.0 (3.57)

−85.0 < Theta Ic < −15.0 (3.58)

The relay will trip for instantaneous overcurrent protection if:

Ia pu > I peak (3.59)

CHAPTER 3. DSG RELAY FUNCTIONS 61

Ib pu > I peak (3.60)

Ic pu > I peak (3.61)

The relay will trip for overcurrent protection if any of the three following equations were

true:

Ia pu > I high (3.62)

Ib pu > I high (3.63)

Ic pu > I high (3.64)

I peak, I high, and I low were user-defined values. I peak was the trip setting for the

instantaneous overcurrent relay. I high was the trip setting for the overcurrent relay.

The relay operating time for the phase and ground relay were represented by Tp, and Tg

respectively. Tp1 was sum of the first three terms of Tp. Tp2 was sum of the fourth and

fifth term of Tp. Tp3 was the sum of the last three terms of Tp. Tg1 was the sum of the

CHAPTER 3. DSG RELAY FUNCTIONS 62

first three terms of Tg. Tg2 was the sum of the fourth and fifth term of Tg. Tg3 was the

sum of the last three terms of Tg.

Tp = Tp1 + Tp2 + Tp3 (3.65)

Tp1 = C1 + C2 × (TDS) + C3 ×
(TDS)

(I multp− 1)
(3.66)

Tp2 = C4 ×
(TDS)2

(I multp− 1)
+ C5 ×

(TDS)2

(I multp− 1)2
(3.67)

Tp3 = C6 ×
(TDS)

(I multp− 1)3
+ C7 ×

(TDS)2

(I multp− 1)4
(3.68)

Tg = Tg1 + Tg2 + Tg3 (3.69)

Tg1 = C1 + C2 × (TDS) + C3 ×
(TDS)

(I multg − 1)
(3.70)

Tg2 = C4 ×
(TDS)2

(I multg − 1)
+ C5 ×

(TDS)2

(I multg − 1)2
(3.71)

CHAPTER 3. DSG RELAY FUNCTIONS 63

Tg3 = C6 ×
(TDS)

(I multg − 1)3
+ C7 ×

(TDS)2

(I multg − 1)4
(3.72)

C1, C2, C3, C4, C5, C6,and C7 were the constants obtained from the regression analysis

for the CO-9 Westinghouse relay. They were calculated by using the least error squares

technique. C1 = 0.0344, C2 = 0.0807, C3 = 1.9500, C4 = 0.0577, C5 = -0.0679, C6 =

-0.7000, and C7 = 0.01992[18]. I multp was the multiple of the pickup tap setting for the

phase relay. I multg was the multiple of the pickup tap setting for the ground relay. TDS

was the user-defined time dial setting.

I multp = |I max

I setp
| (3.73)

I multg = | I gnd

I setp
| (3.74)

I setp was the pickup current for the phase relay. I setg was the pickup current for the

ground relay.

If the instantaneous overcurrent relay tripped for phase protection:

I setp = (CT× Ipeakp) (3.75)

2These coefficients of a seven term model, were obtained for the CO-9 Westinghouse Relay.

CHAPTER 3. DSG RELAY FUNCTIONS 64

If the instantaneous overcurrent relay tripped for ground protection:

I setg = (CT× Ipeakg) (3.76)

If the inverse time overcurrent relay tripped for phase protection:

I setp = (CT× Ipickp) (3.77)

If the inverse time overcurrent relay tripped for ground protection:

I setg = (CT× Ipickg) (3.78)

3.4 ISLANDING RELAY FUNCTION

The flow diagram of the islanding relay is shown in Figure 3.6. First, the complex three

phase power (Pg) was calculated.

Pg = (|Va| × |Ia|) + (|Vb| × |Ib|) + (|Vc| × |Ic|) (3.79)

Second, the power while the DSG unit was connected to the utility (Pg pre) was calculated.

CHAPTER 3. DSG RELAY FUNCTIONS 65

Figure 3.5: CURRENT RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 66

Pg pre = Pg[k− N] (3.80)

Third, the power after the DSG unit was disconnected from the utility (Pg post) was

calculated.

Pg post = Pg[k] (3.81)

The islanding relay will trip if:

isl =
|Pg post− Pg pre|

S BASE
> ks (3.82)

isl was the per unit change in power. ks was a user-defined trip setting.

3.5 LOSS-OF-EXCITATION RELAY FUNCTION

The flow diagram for the loss-of-excitation relay is shown in Figure 3.7. First, the complex

sample impedance data (Za max,Zb max,Zc max) were calculated. Second, the impedance

magnitudes (Za,Zb,Zc) were calculated.

CHAPTER 3. DSG RELAY FUNCTIONS 67

Figure 3.6: ISLANDING RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 68

Za max =
Va max

Ia max
(3.83)

Zb max =
Vb max

Ib max
(3.84)

Zc max =
Vc max

Ic max
(3.85)

Za = |Za max| (3.86)

Zb = |Zb max| (3.87)

Zc = |Zc max| (3.88)

Third, the apparent impedance was calculated.

Zapp =
0.5× X d

Z BASE
(3.89)

CHAPTER 3. DSG RELAY FUNCTIONS 69

Z BASE was the base impedance. Xd was the user-defined machine impedance value 3.

The base impedance was calculated using the following equation:

Z BASE =
V BASE

I BASE
(3.90)

The loss-of-excitation relay will trip if any of the phase impedances were smaller than the

appparent impedance.

Za < Zapp (3.91)

Zb < Zapp (3.92)

Zc < Zapp (3.93)

3Xd can be the synchronous, transient, or sub-transient reactance of the machine.

CHAPTER 3. DSG RELAY FUNCTIONS 70

Figure 3.7: LOSS-OF-EXCITATION RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 71

3.6 DIFFERENTIAL RELAY FUNCTION

The flow diagram of the differential relay function is shown in Figure 3.8. The complex

sample current data Ia, Ib, and Ic were calculated first.

Ia = Ia max (3.94)

Ib = Ib max (3.95)

Ic = Ic max (3.96)

Second, the current magnitudes (Ia pre,Ib pre,Ic pre) for the dispersed generator were

computed.

Ia pre = Ia[k − N] (3.97)

Ib pre = Ib[k− N] (3.98)

CHAPTER 3. DSG RELAY FUNCTIONS 72

Ic pre = Ic[k −N] (3.99)

Ia pre was the current flowing in phase A with the dispersed generator connected to the

utility. Ib pre was the current flowing in phase B with the dispersed generator connected

to the utility. Ic pre was the current flowing in phase C with the dispersed generator

connected to the utility.

Third, the current magnitudes (Ia post,Ib post,Ic post) for the dispersed generator were

computed.

Ia post = Ia[k] (3.100)

Ib post = Ib[k] (3.101)

Ic post = Ic[k] (3.102)

Ia post was the current flowing in phase A with the dispersed generator disconnected

from the utility. Ib post was the current flowing in phase B with the dispersed generator

disconnected from the utility. Ic post was the current flowing in phase C with the dispersed

CHAPTER 3. DSG RELAY FUNCTIONS 73

generator disconnected from the utility.

Fourth, the per unit change in current for the three phases were calculated.

S 1 =
|Ia post− Ia pre|

I BASE
(3.103)

S 2 =
|Ib post− Ib pre|

I BASE
(3.104)

S 3 =
|Ic post− Ic pre|

I BASE
(3.105)

The differential relay will trip if any of the three conditions were met:

S 1 > S (3.106)

S 2 > S (3.107)

S 3 > S (3.108)

S was called the sensitivity slope and was a user-defined value.

CHAPTER 3. DSG RELAY FUNCTIONS 74

Figure 3.8: DIFFERENTIAL RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 75

3.7 FREQUENCY RELAY FUNCTION

The flow diagram of the frequency relay function is shown in Figure 3.9. First, the positive

sequence voltage phasor at the kth instant was calculated as:

Va 1 =
1

3
(Va max + a×Vb max + a2 × Vc max) (3.109)

Second, the positive sequence voltage phasor at the (kth-N) instant was calculated as:

Va1 del =
1

3
(Va del + a×Vb del + a2 ×Vc del) (3.110)

Va del, Vb del, and Vc del were the complex sample voltage data at the (kth-N) instant

from EMTP.

Third, the positive sequence voltage phase angle at the kth instant was calculated as:

theta =
180

π
× atan

imag(Va 1)

real(Va 1)
(3.111)

Fourth, the positive sequence voltage phase angle at the (kth-N) instant was calculated as:

theta del =
180

π
× atan

imag(Va1 del)

real(Va1 del)
(3.112)

CHAPTER 3. DSG RELAY FUNCTIONS 76

Fifth, the incremental frequency (freq del) was computed.

freq del =
1

360
× (theta− theta del)× freq nom (3.113)

freq nom was the nominal frequency value of 60 Hz.

Sixth, the frequency value (freq new) at the next kth instant was computed by using the

following equation:

freq new = freq nom + freq del (3.114)

The overfrequency relay will trip if:

freq new > high f (3.115)

The underfrequency relay will trip if:

freq new < low f (3.116)

high f and low f were user-defined values. high f was the trip setting for the overfrequency

relay. low f was the trip setting for the underfrequency relay.

CHAPTER 3. DSG RELAY FUNCTIONS 77

As the difference between theta and theta del becomes larger, the frequency estimates will

increase in noise. Several phasors could be used in order to increase accuracy, by using a

least squared polynominal to compute the frequency estimates.[19] This procedure was not

used in this work, because only two phasors were used.

3.8 VOLTAGE RELAY FUNCTION

The flow diagram of the voltage relay function is shown in Figure 3.10. First, the voltage

magnitudes (Va,Vb,Vc) were calculated exactly the same as for the loss-of-excitation relay

function. Second, the per unit rms voltage magnitudes (Vapu,Vbpu,Vcpu) were calculated.

Vapu =
Va

V BASE
(3.117)

s

Vbpu =
Vb

V BASE
(3.118)

Vcpu =
Vc

V BASE
(3.119)

Third, the per unit peak voltage magnitudes (Vinsta,Vinstb,Vinstc) were calculated.

CHAPTER 3. DSG RELAY FUNCTIONS 78

Figure 3.9: FREQUENCY RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 79

Vinsta =

√
2× Va

V BASE
(3.120)

Vinstb =

√
2× Vb

V BASE
(3.121)

Vinstc =

√
2× Vc

V BASE
(3.122)

The voltage relay will trip for peak overvoltage protection if:

Vinsta ≥ V peak (3.123)

Vinstb ≥ V peak (3.124)

Vinstc ≥ V peak (3.125)

The voltage relay will trip for rms overvoltage protection if:

Vapu ≥ V high (3.126)

CHAPTER 3. DSG RELAY FUNCTIONS 80

Vbpu ≥ V high (3.127)

Vcpu ≥ V high (3.128)

The voltage relay will trip for undervoltage protection if:

Vapu ≤ V low (3.129)

Vbpu ≤ V low (3.130)

Vcpu ≤ V low (3.131)

V peak,V high and V low were user-defined values. V peak was the trip setting for the

peak overvoltage relay. V high was the trip setting for the rms overvoltage relay. V low

was the trip setting for the undervoltage relay.

CHAPTER 3. DSG RELAY FUNCTIONS 81

Figure 3.10: VOLTAGE RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 82

3.9 NEGATIVE-SEQUENCE CURRENT RELAY FUNC-

TION

The flow diagram of the negative-sequence current relay function is shown in Figure 3.11.

First, the negative-sequence current (Ia 2) was calculated as:

Ia 2 =
1

3
(Ia max + a2 × Ib max + a× Ic max) (3.132)

The symbol a was the complex operator (-0.5+j0.866).

Second, the per unit negative-sequence current Ia2 pu was calculated as:

Ia2 pu = | Ia2

I BASE
| (3.133)

Third, the time dial setting was calculated.

Tdial = (Ia2 pu)2 × k (3.134)

dial sum =
max∑
i=0

Tdial (3.135)

CHAPTER 3. DSG RELAY FUNCTIONS 83

Tdial, the time dial setting at the kth instant, was the per unit negative-sequence current

squared multiplied by the sample number. dial sum was the integrated sum of the time dial

setting 4. The negative-sequence current relay can trip if the per unit negative-sequence

current exceeded a predetermined trip setting. The relay can also trip if the predetermined

trip setting of dial sum was exceeded.

The negative-sequence current relay will trip if any of the following equations were true:

Ia2 pu > I peak (3.136)

dial sum > T peak (3.137)

I peak and T peak were user-defined values. I peak was the trip setting for the per unit

negative-sequence current. T peak was the trip setting for the excessive heating element

(dial sum).

4This function was included, because it is a very efffective means to protect the dispersed generator

from excessive heating resulting from current unbalance.

CHAPTER 3. DSG RELAY FUNCTIONS 84

Figure 3.11: NEGATIVE-SEQUENCE RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 85

3.10 CHECK-SYNCHRONISM RELAY FUNCTION

The flow diagram of the check-synchronism relay function is shown in figure 3.12. First,

the voltage phase angles were calculated as:

Va angle =
180

π
× atan

imag(Va max)

real(Va max)
(3.138)

Vb angle =
180

π
× atan

imag(Vb max)

real(Vb max)
(3.139)

Vc angle =
180

π
× atan

imag(Vc max)

real(Vc max)
(3.140)

Second, the voltage phase angles (Va angi,Vb angi,Vc angi) were computed.

Va angi = Va angle[k− N] (3.141)

Vb angi = Vb angle[k−N] (3.142)

Vc angi = Vc angle[k− N] (3.143)

CHAPTER 3. DSG RELAY FUNCTIONS 86

Va angi was the utility’s voltage angle for phase A. Vb angi was the utility’s voltage angle

for phase B. Vc angi was the utility’s voltage angle for phase C.

Third, the voltage phase angles (Va angf,Vb angf,Vc angf) were computed.

Va angf = Va angle[k] (3.144)

Vb angf = Vb angle[k] (3.145)

Vc angf = Vc angle[k] (3.146)

Va angf was the dispersed generator’s voltage angle for phase A. Vb angf was the dispersed

generator’s voltage angle for phase B. Vc angf was the dispersed generator’s voltage angle

for phase C.

Fourth, the phase angle differences between the utility substation generator voltages and

the dispersed generator voltages were calculated as:

Theta 1 = |Va angf −Va angi| (3.147)

CHAPTER 3. DSG RELAY FUNCTIONS 87

Theta 2 = |Vb angf −Vb angi| (3.148)

Theta 3 = |Vc angf −Vc angi| (3.149)

The check-synchronism relay will trip if any of the following equations were true:

Theta 1 > crit ang (3.150)

Theta 2 > crit ang (3.151)

Theta 3 > crit ang (3.152)

crit ang was a user-defined value.

3.11 DIRECTIONAL POWER RELAY FUNCTION

The flow diagram of the directional power relay function is shown in Figure 3.13. First,

the complex sample power for each phase Pa max, Pb max, and Pc max were calculated.

CHAPTER 3. DSG RELAY FUNCTIONS 88

Figure 3.12: CHECK-SYNCHRONISM RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 89

Pa max = Va max× Ia max (3.153)

Pb max = Vb max× Ib max (3.154)

Pc max = Vc max× Ic max (3.155)

Second, the real sample power for each phase (Par,Pbr,Pcr) were calculated.

Par = cos(Pa max) (3.156)

Pbr = cos(Pb max) (3.157)

Pcr = cos(Pc max) (3.158)

Third, the reactive sample power for each phase (Pai,Pbi,Pci) were calculated.

Pai = sin(Pa max) (3.159)

CHAPTER 3. DSG RELAY FUNCTIONS 90

Pbi = sin(Pb max) (3.160)

Pci = sin(Pc max) (3.161)

Fourth, the total real power P t was calculated as:

P t = Par + Pbr + Pcr (3.162)

Fifth, the total reactive power Q t was calculated as:

Q t = Pai + Pbi + Pci (3.163)

Sixth, the power factor was calculated as:

PF =
P t√

(P t)2 + (Q t)2
(3.164)

The directional power relay will trip for reverse power protection if:

Par < crit pow (3.165)

CHAPTER 3. DSG RELAY FUNCTIONS 91

Pbr < crit pow (3.166)

Pcr < crit pow (3.167)

crit pow was a user-defined value.

3.12 SELF-EXCITATION RELAY FUNCTION

The flow diagram of the self-excitation relay function is shown in Figure 3.14. A Fast

Fourier Transform (FFT) high frequency sampler was used to transform the sample volt-

ages (Va,Vb,Vc) into their frequency components (Va[m],Vb[m],Vc[m]). Each of these

components had real and imaginary parts. The variable m was the frequency index.

The amplitude of the frequency components were calculated as follows:

Va f = |Va(m)| (3.168)

Vb f = |Vb(m)| (3.169)

CHAPTER 3. DSG RELAY FUNCTIONS 92

Figure 3.13: DIRECTIONAL POWER RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 93

Vc f = |Vc(m)| (3.170)

The per-unit amplitude of the frequency components were calculated as follows:

Va pu =
|Va f|

V BASE
(3.171)

Vb pu =
|Vb f|

V BASE
(3.172)

Vc pu =
|Vc f|

V BASE
(3.173)

The self-excitation relay will trip if:

Va pu > cap peak (3.174)

Vb pu > cap peak (3.175)

Vc pu > cap peak (3.176)

CHAPTER 3. DSG RELAY FUNCTIONS 94

cap peak was a user-defined value that represents the cutoff maximum value that the self-

excitation relay could operate without tripping.

3.13 METERING

The flow diagram of the metering function is shown in Figure 3.15. First, the magnitude

and angle of the phase voltages were calculated.

Va = |Va max| (3.177)

Vb = |Vb max| (3.178)

Vc = |Vc max| (3.179)

Va angle =
180

π
× atan

imag(Va max)

real(Va max)
(3.180)

Vb angle =
180

π
× atan

imag(Vb max)

real(Vb max)
(3.181)

CHAPTER 3. DSG RELAY FUNCTIONS 95

Figure 3.14: SELF-EXCITATION RELAY FLOW DIAGRAM

CHAPTER 3. DSG RELAY FUNCTIONS 96

Vc angle =
180

π
× atan

imag(Vc max)

real(Vc max)
(3.182)

Second, the magnitude and angle of the phase currents were calculated.

Ia = |Ia max| (3.183)

Ib = |Ib max| (3.184)

Ic = |Ic max| (3.185)

Ia angle =
180

π
× atan

imag(Ia max)

real(Ia max)
(3.186)

Ib angle =
180

π
× atan

imag(Ib max)

real(Ib max)
(3.187)

Ic angle =
180

π
× atan

imag(Ic max)

real(Ic max)
(3.188)

Third, the magnitude and angle of the single phase complex powers were calculated.

CHAPTER 3. DSG RELAY FUNCTIONS 97

|Sa| = |Va max× Ia max| (3.189)

|Sb| = |Vb max× Ib max| (3.190)

|Sc| = |Vc max× Ic max| (3.191)

Sa angle =
180

π
× atan

imag(Sa)

real(Sa)
(3.192)

Sb angle =
180

π
× atan

imag(Sb)

real(Sb)
(3.193)

Sc angle =
180

π
× atan

imag(Sc)

real(Sc)
(3.194)

Fourth, the real and reactive power of each phase were calculated.

Pa = Sa× cos θ (3.195)

CHAPTER 3. DSG RELAY FUNCTIONS 98

Pb = Sb× cos θ (3.196)

Pc = Sc× cos θ (3.197)

Qa = Sa× sin θ (3.198)

Qb = Sb× sin θ (3.199)

Qc = Sc× sin θ (3.200)

Fifth, the total apparent, real, and reactive power were calculated.

S t = Sa+ Sb+ Sc (3.201)

P t = Pa+ Pb+ Pc (3.202)

CHAPTER 3. DSG RELAY FUNCTIONS 99

Q t = Qa+Qb+Qc (3.203)

CHAPTER 3. DSG RELAY FUNCTIONS 100

Figure 3.15: FLOW DIAGRAM OF THE METERING RELAY FUNCTION

Chapter 4

COMPUTER SIMULATION

RESULTS

4.1 COMPUTER SIMULATION OF A SAMPLE SYS-

TEM

A simplified one-line diagram of a DSG distribution system is shown in Figure 4.1. The

utility substation voltage was 12.47 KV. The dispersed storage generator voltage was 4 KV.

The isolation transformer was represented by xfmr. The relay was tested at the dispersed

storage generator.

101

CHAPTER 4. COMPUTER SIMULATION RESULTS 102

The system in Figure 4.1 was simulated on EMTP (Electro-Magnetic Transient Program).[20]

After the utility circuit breaker was opened, the multifunction relay will monitor the am-

plitude spectrum of the high frequency voltages for the self-excitation relay using the high

sampling rate. Also, the multifunction relay will monitor the voltages, currents, and the

frequency at the cogeneration site.

4.2 INPUT DATA FOR THE LOW FREQUENCY

RELAYS

This section contains graphs of the input data used by the low frequency relays to produce

output results. A balanced three-phase load of 2 Ω per phase was used. The sample voltage

Va is shown in Figure 4.2. The digitally filtered sample voltage Va is shown in Figure 4.3.

Figure 4.4 shows the amplitude of the phasor voltage Va. The graphs for Vb, Vc, Ia, Ib,

and Ic looked very similar in form. The sample impedance Za is shown in Figure 4.5.

The digitally filtered sample impedance Za is shown in Figure 4.6. Figure 4.7 shows the

amplitude of the phasor impedance Za. The graphs for Zb, and Zc looked very similar

in form. The single phase sample power Pa is shown in Figure 4.8. The digitally filtered

sample power Pa is shown in Figure 4.9. Figure 4.10 shows the amplitude of the phasor

power Pa. The graphs for Pb, and Pc looked very similar in form. The sample three phase

CHAPTER 4. COMPUTER SIMULATION RESULTS 103

Figure 4.1: ONE-LINE DIAGRAM OF A DSG DISTRIBUTION SYSTEM

CHAPTER 4. COMPUTER SIMULATION RESULTS 104

power Pg is shown in Figure 4.11. The digitally filtered sample three phase power Pg is

shown in Figure 4.12. Figure 4.13 shows the amplitude of the three phase power Pg. All of

these waveforms were graphed for six cycles. The symbol k represented the sample number.

The nominal frequency was 60 Hz. The sampling frequency was 720 Hz. 1 The simulation

time was 100 ms. The time step was 1400µs. The total number of sample points was 72.

The equations for the sample voltages were:

Va = 100 sin(2π × 60t) (4.1)

Vb = 100 sin(2π × 60t− 120) (4.2)

Vc = 100 sin(2π × 60t + 120) (4.3)

The equations for the sample currents were:

Ia = 50 sin(2π × 60t) (4.4)

1The cut-off frequency was 360 Hz (12 times the fundamental 60 Hz frequency).

CHAPTER 4. COMPUTER SIMULATION RESULTS 105

Ib = 50 sin(2π × 60t− 120) (4.5)

Ic = 100 sin(2π × 60t + 120) (4.6)

The equations for the sample impedances were:

Za =
Va

Ia
(4.7)

Zb =
Vb

Ib
(4.8)

Zc =
Vc

Ic
(4.9)

The equations for the single phase sample powers were:

Pa = Va× Ia (4.10)

Pb = Vb× Ib (4.11)

CHAPTER 4. COMPUTER SIMULATION RESULTS 106

Figure 4.2: SAMPLE VOLTAGE Va

Pc = Vc× Ic (4.12)

The equation for the three phase sample power was:

Pg = (Va× Ia) + (Vb× Ib) + (Vc× Ic) (4.13)

CHAPTER 4. COMPUTER SIMULATION RESULTS 107

Figure 4.3: DIGITALLY FILTERED SAMPLE VOLTAGE Va

CHAPTER 4. COMPUTER SIMULATION RESULTS 108

Figure 4.4: AMPLITUDE OF THE PHASOR VOLTAGE Va

CHAPTER 4. COMPUTER SIMULATION RESULTS 109

Figure 4.5: SAMPLE IMPEDANCE Za

CHAPTER 4. COMPUTER SIMULATION RESULTS 110

Figure 4.6: DIGITALLY FILTERED SAMPLE IMPEDANCE Za

CHAPTER 4. COMPUTER SIMULATION RESULTS 111

Figure 4.7: AMPLITUDE OF THE PHASOR IMPEDANCE Za

CHAPTER 4. COMPUTER SIMULATION RESULTS 112

Figure 4.8: SINGLE PHASE SAMPLE POWER Pa

CHAPTER 4. COMPUTER SIMULATION RESULTS 113

Figure 4.9: DIGITALLY FILTERED SAMPLE POWER Pa

CHAPTER 4. COMPUTER SIMULATION RESULTS 114

Figure 4.10: AMPLITUDE OF THE PHASOR POWER Pa

CHAPTER 4. COMPUTER SIMULATION RESULTS 115

Figure 4.11: SAMPLE THREE PHASE POWER Pg

CHAPTER 4. COMPUTER SIMULATION RESULTS 116

Figure 4.12: DIGITALLY FILTERED SAMPLE POWER Pg

CHAPTER 4. COMPUTER SIMULATION RESULTS 117

Figure 4.13: AMPLITUDE OF THE PHASOR POWER Pg

CHAPTER 4. COMPUTER SIMULATION RESULTS 118

4.3 INPUT DATA FOR THE HIGH FREQUENCY

RELAY

This section contains graphs of the input data used by the high frequency relay to produce

output results. The actual high frequency voltage Va is shown in Figure 4.14. The sample

high frequency voltage Va is shown in Figure 4.15. The amplitude spectrum of Voltage Va

was plotted, in Figure 4.16. These waveforms were graphed for eight cycles. The amplitude

spectrums for Vb, and Vc looked very similar. The symbol m represented the frequency

index. The sampling frequency for the self-excitation relay (high-frequency function) was

3000 Hz.2 The EMTP simulation time was 347µs for the high frequency function. The

time step was 20µs. The total number of sample points was 96.

4.4 SAMPLE SYSTEM OUTPUT FOR RELAY MOD-

ULES

In this section, a variety of operating conditions are applied to the individual relay modules

that made up the multifunction relay. The phasors that were computed by the equations

in Section 3.2, and graphed in Section 4.2 will be used by the relays to develop an output

2The cut-off frequency was 1000 Hz for the high-frequency sampler.

CHAPTER 4. COMPUTER SIMULATION RESULTS 119

Figure 4.14: HIGH FREQUENCY VOLTAGE Va

CHAPTER 4. COMPUTER SIMULATION RESULTS 120

Figure 4.15: SAMPLE HIGH FREQUENCY VOLTAGE Va

CHAPTER 4. COMPUTER SIMULATION RESULTS 121

Figure 4.16: AMPLITUDE SPECTRUM OF HIGH FREQUENCY VOLTAGE Va

CHAPTER 4. COMPUTER SIMULATION RESULTS 122

representing a system quantity. For each relay module, graphs of the critical operating

parameters and the relay logic will be obtained. A block signal will be represented by a

magnitude of zero on the relay output. A trip signal will be represented by a magnitude

of one on the relay output.

4.4.1 CURRENT RELAY OUTPUT

In the simulation run for the current relay, the following parameters were fixed:

i L = 100 A (4.14)

V BASE = 300 V (4.15)

S BASE = 15 KW (4.16)

I high = 1.1 p.u. (4.17)

I peak = 1.5 p.u. (4.18)

CHAPTER 4. COMPUTER SIMULATION RESULTS 123

Figure 4.17: PER UNIT MAXIMUM FAULT CURRENT

TDS =
1

2
(4.19)

The two variable parameters observed and plotted were: I maxpu, and I minpu. In Figure

4.17, the per unit values for the maximum fault current are plotted. In Figure 4.18, the

per unit values for the minimum fault current are plotted.

The current relay did not trip at all. The current relay output status is graphed in Figure

4.19.

CHAPTER 4. COMPUTER SIMULATION RESULTS 124

Figure 4.18: PER UNIT MINIMUM FAULT CURRENT

CHAPTER 4. COMPUTER SIMULATION RESULTS 125

Figure 4.19: CURRENT RELAY OUTPUT STATUS

CHAPTER 4. COMPUTER SIMULATION RESULTS 126

4.4.2 ISLANDING RELAY OUTPUT

In the simulation run for the islanding relay, the following parameters were fixed:

S BASE = 15 kW (4.20)

ks = 0.2 p.u. (4.21)

The DSG was disconnected from the utility at 0.15 sec. The variable parameter observed

was per-unit change in power (isl). It is plotted in Figure 4.20. The islanding relay did not

trip at all. The islanding relay output status is graphed in Figure 4.21.

4.4.3 LOSS-OF-EXCITATION RELAY OUTPUT

In the simulation run for the loss-of-excitation relay, the following parameters were fixed:

imped = 0.15 p.u. (4.22)

V BASE = 50 V (4.23)

CHAPTER 4. COMPUTER SIMULATION RESULTS 127

Figure 4.20: PER UNIT CHANGE IN POWER

CHAPTER 4. COMPUTER SIMULATION RESULTS 128

Figure 4.21: ISLANDING RELAY OUTPUT STATUS

CHAPTER 4. COMPUTER SIMULATION RESULTS 129

S BASE = 5 KW (4.24)

The three variable parameters observed were: Z a, Z b, and Z c. The variable parameter

Z a is plotted in Figure 4.22. The graphs for Z b, and Z c looked very similar in form. The

loss-of-excitation relay tripped at the twenty-third sample point. Za was equal to 0.000004

Ω, which is less than Zapp. Zapp is equal to 0.064952 Ω for this particular operating

condition. The loss-of-excitation relay tripped for the remaining portion of the simulation

run. The loss-of-excitation relay output status was graphed in Figure 4.23.

4.4.4 DIFFERENTIAL RELAY OUTPUT

In the simulation run for the differential relay, the following parameters were fixed:

V BASE = 350.0 V (4.25)

S BASE = 74.5 KW (4.26)

S = 0.2 p.u. (4.27)

CHAPTER 4. COMPUTER SIMULATION RESULTS 130

Figure 4.22: IMPEDANCE FOR PHASE A

CHAPTER 4. COMPUTER SIMULATION RESULTS 131

Figure 4.23: LOSS-OF-EXCITATION RELAY OUTPUT

CHAPTER 4. COMPUTER SIMULATION RESULTS 132

The three variable parameters observed were: S 1, S 2, and S 3. The variable parameter

S 1 is plotted in Figure 4.24. The graphs for S 2, and S 3 looked very similar in form. The

differential relay tripped at the twenty-sixth sample point. S 1 was equal to 0.200117 per

unit, which was greater than S. The differential relay resetted at the twenty-seventh sample

point. The differential relay tripped again at the thirty-second sample point. S 1 was equal

to 0.200100 per unit, which was greater than S. The differential relay resetted at the thirty-

third sample point. The differential relay tripped at the thirty-eighth sample point. S 1

was equal to 0.200079 per unit, which was greater than S. The differential relay resetted

at the thirty-ninth sample point. The differential relay tripped at the forty-fourth sample

point. S 1 was equal to 0.2001171 per unit, which was greater than S. The differential relay

resetted at the forty-fifth sample point. The differential relay tripped at the fiftieth sample

point. S 1 was equal to 0.20027 per unit, which was greater than S. The differential relay

resetted at the fifty-first sample point. The differential relay output is graphed in Figure

4.25.

4.4.5 FREQUENCY RELAY OUTPUT

In the first simulation run, the frequency was 65 Hz. The following parameters were fixed

for the frequency relay:

CHAPTER 4. COMPUTER SIMULATION RESULTS 133

Figure 4.24: SENSITIVITY SLOPE FOR PHASE A

CHAPTER 4. COMPUTER SIMULATION RESULTS 134

Figure 4.25: DIFFERENTIAL RELAY OUTPUT

CHAPTER 4. COMPUTER SIMULATION RESULTS 135

high f = 62.0 Hz (4.28)

low f = 58.0 Hz (4.29)

The three variable parameters observed were: theta, theta del, and freq new. The variable

parameter theta is plotted in Figure 4.26. The graph for theta del looked very similar. The

variable parameter freq new is plotted in Figure 4.27. The frequency relay tripped at the

twenty-third sample point. freq new was equal to 65 Hz, which was greater than high f.

The frequency relay output is graphed in Figure 4.28.

In the second simulation run, the frequency was 55 Hz. The variable parameter theta is

plotted in Figure 4.29. The variable parameter freq new is plotted in Figure 4.30. The

frequency relay tripped at the twenty-third sample point. freq new was equal to 55 Hz,

which was less than low f. The frequency relay output is graphed in Figure 4.31.

In the third simulation run, the frequency was 60 Hz. The variable parameter theta is

plotted in Figure 4.32. The variable parameter freq new is plotted in Figure 4.33. The

frequency relay did not trip at all. The frequency relay output is graphed in Figure 4.34.

In the fourth simulation run, the frequency was 60 Hz for the first three cycles. The

frequency switched from 60 Hz to 65 Hz for the last three cycles. The variable parameter

CHAPTER 4. COMPUTER SIMULATION RESULTS 136

Figure 4.26: PHASE ANGLE AT THE KTH SAMPLE

CHAPTER 4. COMPUTER SIMULATION RESULTS 137

Figure 4.27: FREQUENCY ESTIMATOR

CHAPTER 4. COMPUTER SIMULATION RESULTS 138

Figure 4.28: FREQUENCY RELAY OUTPUT FOR THE 65 Hz CASE

theta is plotted in Figure 4.35. The variable parameter freq new is plotted in Figure

4.36. The frequency relay tripped at the forty-second sample point. freq new was equal

to 62.192307 Hz, which was greater than high f. The frequency relay output is graphed in

Figure 4.37.

4.4.6 VOLTAGE RELAY OUTPUT

In the simulation run for the voltage relay, the following parameters were fixed:

V BASE = 100 V (4.30)

CHAPTER 4. COMPUTER SIMULATION RESULTS 139

Figure 4.29: PHASE ANGLE AT THE KTH SAMPLE

CHAPTER 4. COMPUTER SIMULATION RESULTS 140

Figure 4.30: FREQUENCY ESTIMATOR

CHAPTER 4. COMPUTER SIMULATION RESULTS 141

Figure 4.31: FREQUENCY RELAY OUTPUT FOR THE 55 Hz CASE

CHAPTER 4. COMPUTER SIMULATION RESULTS 142

Figure 4.32: PHASE ANGLE AT THE KTH SAMPLE

CHAPTER 4. COMPUTER SIMULATION RESULTS 143

Figure 4.33: FREQUENCY ESTIMATOR

CHAPTER 4. COMPUTER SIMULATION RESULTS 144

Figure 4.34: FREQUENCY RELAY OUTPUT FOR THE 60 Hz CASE

CHAPTER 4. COMPUTER SIMULATION RESULTS 145

Figure 4.35: PHASE ANGLE AT THE KTH SAMPLE

CHAPTER 4. COMPUTER SIMULATION RESULTS 146

Figure 4.36: FREQUENCY ESTIMATOR

CHAPTER 4. COMPUTER SIMULATION RESULTS 147

Figure 4.37: MIXED FREQUENCY RELAY OUTPUT CASE

CHAPTER 4. COMPUTER SIMULATION RESULTS 148

V peak = 1.5 p.u. (4.31)

V high = 1.1 p.u. (4.32)

V low = 0.9 p.u. (4.33)

The six variable parameters observed were: Vapu, Vbpu, Vcpu, Vinsta, Vinstb, and Vinstc.

The variable parameter Vapu is plotted in Figure 4.38. The graphs for Vbpu, and Vcpu

looked very similar in form. The variable parameter Vinsta is plotted in Figure 4.39. The

graphs for Vinstb, and Vinstc looked very similar. The voltage relay did not trip at all.

The voltage relay output is graphed in Figure 4.40.

4.4.7 NEGATIVE-SEQUENCE RELAY OUTPUT

In the simulation run for the negative-sequence relay, the following parameters were fixed:

V BASE = 200.0 V (4.34)

CHAPTER 4. COMPUTER SIMULATION RESULTS 149

Figure 4.38: PER UNIT RMS VOLTAGE FOR PHASE A

CHAPTER 4. COMPUTER SIMULATION RESULTS 150

Figure 4.39: PER UNIT PEAK VOLTAGE FOR PHASE A

CHAPTER 4. COMPUTER SIMULATION RESULTS 151

Figure 4.40: VOLTAGE RELAY OUTPUT

CHAPTER 4. COMPUTER SIMULATION RESULTS 152

S BASE = 1 KW (4.35)

I peak = 1.1 p.u. (4.36)

T peak = 4.66 p.u. (4.37)

The two variable parameters observed were: Ia2 pu, and dial sum. The variable parameter

Ia2 pu is plotted in Figure 4.41. The variable parameter dial sum is plotted in Figure 4.42.

The negative-sequence relay tripped at the fifty-fifth sample point. dial sum was equal

to 4.661115 which is greater than T peak. The negative-sequence relay output status is

graphed in Figure 4.43.

4.4.8 CHECK-SYNCHRONISM RELAY OUTPUT

In the simulation run for the check-synchronism relay, the following parameter was fixed:

crit ang = 60.0 (4.38)

Three variable parameters were observed: Theta 1, Theta 2, and Theta 3. The substation

CHAPTER 4. COMPUTER SIMULATION RESULTS 153

Figure 4.41: PER UNIT NEGATIVE SEQUENCE CURRENT

CHAPTER 4. COMPUTER SIMULATION RESULTS 154

Figure 4.42: INTEGRATED SUM OF THE NEGATIVE SEQUENCE CURRENT

CHAPTER 4. COMPUTER SIMULATION RESULTS 155

Figure 4.43: NEGATIVE-SEQUENCE RELAY OUTPUT

CHAPTER 4. COMPUTER SIMULATION RESULTS 156

generator and the dispersed generator were synchronized at the first sample point. Theta 1

was 7 degrees, Theta 2 was 4 degrees, and Theta 3 was 2 degrees at this sample point. All

the angles were less than 60 degrees.

4.4.9 DIRECTIONAL POWER RELAY OUTPUT

In the simulation run for the directional power relay, the following parameter was fixed:

crit pow = 0.0 W (4.39)

The three variable parameters observed were: P a, P b, and P c. The directional power

relay tripped at the twenty-third sample point. Par was equal to -47.035831 Watts, which

was less than crit pow. The directional power relay tripped for the remaining portion of

the simulation run. The directional power relay output status is graphed in Figure 4.44.

4.4.10 SELF-EXCITATION RELAY OUTPUT

In the operating condition for the self-excitation relay, the following parameters were fixed:

frequency = 1000.0 V (4.40)

CHAPTER 4. COMPUTER SIMULATION RESULTS 157

Figure 4.44: DIRECTIONAL POWER RELAY OUTPUT

CHAPTER 4. COMPUTER SIMULATION RESULTS 158

cap peak = 5.0 p.u. (4.41)

V BASE = 345 kV (4.42)

The three variable parameters observed were: Va pu, Vb pu, and Vc pu. The variable

parameter Va pu is plotted in Figure 4.45. The graphs for Vb pu, and Vc pu looked very

similar in form. The self-excitation relay tripped at the twenty-third sample point. Va pu

was equal to 94.914200 per unit, which was greater than cap peak. The relay naturally

resetted at the forty-second sample point. The self-excitation relay output status is graphed

in Figure 4.46.

4.5 SAMPLE SYSTEM OUTPUT FOR MULTIFUNC-

TION RELAY

Four cases were executed on EMTP for the multifunction relay. In the first case the three-

phase load was unbalanced. The load in phase A was fixed at 10 kΩ. The load in phase

B was 20 kΩ. 3 The load in phase C was 5 kΩ. 4 In the second case, a three-phase

3The load in phase B was increased by 50%.
4The load in phase C was decreased by 50%.

CHAPTER 4. COMPUTER SIMULATION RESULTS 159

Figure 4.45: PER UNIT PEAK HIGH FREQUENCY VOLTAGE FOR PHASE A

CHAPTER 4. COMPUTER SIMULATION RESULTS 160

Figure 4.46: SELF-EXCITATION RELAY OUTPUT

CHAPTER 4. COMPUTER SIMULATION RESULTS 161

fault ocurred at the terminals of the DSG. In the third case, a single-line-to-ground fault

ocurred at the terminals of the DSG. In the fourth case, a line-to-line fault ocurred at the

terminals of the DSG. For the low frequency relays, the nominal frequency was 60 Hz, and

the sampling frequency was 720 Hz. For the high frequency relay, the nominal frequency

was 1000 Hz, and the sampling frequency was 3000 Hz. The simulation time was 347 ms.

The time step was 20µs. The total number of sample points was 96.

4.5.1 UNBALANCED LOAD OUTPUT RESULTS

In the simulation run for the multifunction relay, the following parameters were fixed:

i L = 100 A (4.43)

V BASE = 2309.401 V (4.44)

S BASE = 15 MW (4.45)

I high = 1.1 p.u. (4.46)

CHAPTER 4. COMPUTER SIMULATION RESULTS 162

I peak = 1.5 p.u. (4.47)

TDS = 0.5 p.u. (4.48)

ks = 0.9 p.u. (4.49)

imped = 0.74 p.u. (4.50)

S = 0.2 p.u. (4.51)

high f = 62.0 Hz (4.52)

low f = 58.0 Hz (4.53)

freq nom = 60.0 Hz (4.54)

CHAPTER 4. COMPUTER SIMULATION RESULTS 163

V peak = 1.5 p.u. (4.55)

V high = 1.1 p.u. (4.56)

V low = 0.9 p.u. (4.57)

I peak = 1.1 p.u. (4.58)

T peak = 35.0 p.u. (4.59)

crit ang = 60.0 deg (4.60)

crit pow = 0.0 W (4.61)

cap peak = 1.7 p.u. (4.62)

CHAPTER 4. COMPUTER SIMULATION RESULTS 164

Figure 4.47: MULTIFUNCTION RELAY OUTPUT FOR UNBALANCED LOAD

The multifunction relay tripped at the twenty-third sample point. The frequency relay

criteria was violated. freq new was equal to 65.382904 Hz, which was greater than high f.

The relay continued to trip for the rest of the simulation, because freq new remained above

62.0 Hz. The multifunction relay output status is graphed in Figure 4.47.

CHAPTER 4. COMPUTER SIMULATION RESULTS 165

Figure 4.48: MULTIFUNCTION RELAY OUTPUT FOR THREE-PHASE FAULT

4.5.2 THREE-PHASE FAULT OUTPUT RESULTS

In the simulation run for the three-phase fault, the variable ks was changed to 0.1 per

unit. The rest of the parameters were fixed at the same values used in the first case. The

multifunction relay tripped at the twenty-third sample point. The islanding relay criteria

was violated. isl was equal to 1.945400 per unit, which was greater than ks. The relay

continued to trip for islanding protection for the rest of the simulation. The multifunction

relay output status for the three-phase fault is graphed in Figure 4.48.

CHAPTER 4. COMPUTER SIMULATION RESULTS 166

Figure 4.49: MULTIFUNCTION RELAY OUTPUT FOR SLG FAULT

4.5.3 LINE-TO-GROUND FAULT OUTPUT RESULTS

In the simulation run for the single line-to-ground (SLG) fault case, all the fixed parameters

used in the unbalanced load case remained the same in this case. The multifunction relay

tripped at the twenty-third sample point, because the loss-of-excitation relay criteria was

violated. Zb was equal to 0.01659 Ω, which was less than Zapp. Zapp was equal to 0.227861

Ω for this particular operating condition. The relay continued to trip for the complete eight

cycles. The multifunction relay output status for the SLG fault is graphed in Figure 4.49.

CHAPTER 4. COMPUTER SIMULATION RESULTS 167

4.5.4 LINE-TO-LINE FAULT OUTPUT RESULTS

In the simulation run for the line-to-line fault case, all the fixed parameters remained the

same as for the single line-to-ground fault case and the unbalanced load case.

The multifunction relay tripped at the twenty-third sample point, because its differential

relay criteria was violated. S 2 was equal to 0.805229 per unit, which was greater than

the trip setting variable S. The relay continued to trip for the rest of the simulation run,

because its differential relay criteria was violated. The multifunction relay output status

for the line-to-line fault case is graphed in Figure 4.50.

CHAPTER 4. COMPUTER SIMULATION RESULTS 168

Figure 4.50: MULTIFUNCTION RELAY OUTPUT FOR LINE-TO-LINE FAULT

CONCLUSION

A new multifunction digital relay will be developed for the DSG/utility interface. This relay

will be able to provide relay requirements for the DSG/utility interface such as overcur-

rent, overvoltage, undervoltage, negative-sequence, loss-of-excitation, check-synchronism,

differential, islanding, overfrequency, underfrequency, and self-excitation. This new relay

will have metering capabilities. It will measure current, voltage, real power, and reactive

power.

ADVANTAGES OF THE SELF-EXCITATION METHOD

The Self-excitation method has several advantages over the other control methods. Under

this method, the relay can reduce the very high rate-of-change of voltage associated with

the energization of a capacitor-bank. It does not suffer from thermal-capability limitations

compared to the pre-insertion resistor method. It does not cause damaging internal res-

169

CHAPTER 4. COMPUTER SIMULATION RESULTS 170

onances in transformers. It does not suffer from system damping problems compared to

the pre-insertion inductor method. The self-excitation method has a higher reliability than

any of the other methods.

RECOMMENDATIONS FOR FUTURE WORK

In order for digital relays to be the preferred protective system of the future, there are

some very real problems that must be resolved. Among them, the effect of mixing of

digital and analog relays within a common overall protection system and a lack of stan-

dardization of computer relay interfaces, so that different manufacturer’s equipment can

be integrated in one protection system. [2] Substantial periods of experience with actual

commercial field installations is needed in order to know how a harsh environment (temper-

ature,humidity,pollution,EMI) could effect relays located in an electric utility substation.

Work is still needed in order for the higher level languages (Fortran,Pascal,C etc.) to

replace much of the assembly language programming in computer relaying. The problem

with assembly language is that it is not transportable between computers of different types.

Some transportability between different computer models of the same family may exist, but

even here it is generally desirable to develop new software in order to take advantage of

differing capabilities among the different models.[2] The higher level languages are easy to

transport between computers. The higher level languages tend to be insufficient for relay-

CHAPTER 4. COMPUTER SIMULATION RESULTS 171

ing applications, because of slow computer instruction time. Since computer instruction

time is becoming faster, there is a higher probability that the higher level languages will

completely replace the assembly language programming in computer relaying.

Appendix A

SPFTTR ALGORITHM

/* SPFFTR 11/12/85 */

/* FFT ROUTINE FOR REAL TIME SERIES (X) WITH N=2**K SAMPLES. */

/* COMPUTATION IS IN PLACE, OUTPUT REPLACES INPUT. */

/* INPUT: REAL VECTOR X(0:N+1) WITH REAL DATA SEQUENCE IN FIRST N */

/* ELEMENTS; ANYTHING IN LAST 2. NOTE: X MAY BE DECLARED */

/* REAL IN MAIN PROGRAM PROVIDED THIS ROUTINE IS COMPILED */

/* SEPARATELY ... COMPLEX OUTPUT REPLACES REAL INPUT HERE. */

/* OUTPUT: COMPLEX VECTOR XX(O:N/2), SUCH THAT X(0)=REAL(XX(0)),X(1)= */

/* IMAG(XX(0)), X(2)=REAL(XX(1)), ..., X(N+1)=IMAG(XX(N/2). */

172

APPENDIX A. SPFTTR ALGORITHM 173

/* IMPORTANT: N MUST BE AT LEAST 4 AND MUST BE A POWER OF 2. */

#ifndef KR

void r_cnjg(complex *r, complex *z)

#else

void r_cnjg(r, z)

complex *r, *z;

#endif

{

r->r = z->r;

r->i = -z->i;

}

#ifndef KR

void spfftr(complex *x, long *n)

#else

void spfftr(x, n)

long *n;

APPENDIX A. SPFTTR ALGORITHM 174

complex *x;

#endif

{

/* Builtin functions */

// void r_cnjg();

//double temp_re,temp_im;

/* Local variables */

// void spfftc();

long m, tmp_int;

complex u, tmp, tmp_complex;

float tpn, tmp_float;

long neg_i1 = -1;

tpn = (float) (2.0 * M_PI / (double) *n);

tmp_int = *n / 2;

spfftc(x, &tmp_int, &neg_i1);

x[*n / 2].r = x[0].r;

APPENDIX A. SPFTTR ALGORITHM 175

x[*n / 2].i = x[0].i;

for (m = 0 ; m <= (*n / 4) ; ++m)

{

u.r = (float) sin((double) m * tpn);

u.i = (float) cos((double) m * tpn);

r_cnjg(&tmp_complex, &x[*n / 2 - m]);

// temp_re = real(&tmp_complex);

// temp_im = imag(&tmp_complex);

tmp.r = (((1.0 + u.r) * x[m].r - u.i * x[m].i)

+ (1.0 - u.r) * tmp_complex.r - -u.i * tmp_complex.i) / 2.0;

tmp.i = (((1.0 + u.r) * x[m].i + u.i * x[m].r)

+ (1.0 - u.r) * tmp_complex.i + -u.i * tmp_complex.r) / 2.0;

tmp_float = ((1.0 - u.r) * x[m].r - -u.i * x[m].i

+ (1.0 + u.r) * tmp_complex.r - u.i * tmp_complex.i) / 2.0;

x[m].i = ((1.0 - u.r) * x[m].i + -u.i * x[m].r

APPENDIX A. SPFTTR ALGORITHM 176

+ (1.0 + u.r) * tmp_complex.i + u.i * tmp_complex.r) / 2.0;

x[m].r = tmp_float;

r_cnjg(&x[*n / 2 - m], &tmp);

}

return;

} /* spfftr */

Appendix B

SPFTTC ALGORITHM

/* SPFFTC 02/20/87 */

/* FAST FOURIER TRANSFORM OF N=2**K COMPLEX DATA POINTS USING TIME */

/* DECOMPOSITION WITH INPUT BIT REVERSAL. N MUST BE A POWER OF 2. */

/* X MUST BE SPECIFIED COMPLEX X(0:N-1)OR LARGER. */

/* INPUT IS N COMPLEX SAMPLES, X(0),X(1),...,X(N-1). */

/* COMPUTATION IS IN PLACE, OUTPUT REPLACES INPUT. */

/* ISIGN = -1 FOR FORWARD TRANSFORM, +1 FOR INVERSE. */

/* X(0) BECOMES THE ZERO TRANSFORM COMPONENT, X(1) THE FIRST, */

/* AND SO FORTH. X(N-1) BECOMES THE LAST COMPONENT. */

177

APPENDIX B. SPFTTC ALGORITHM 178

#ifndef KR

void spfftc(complex *x, long *n, long *isign)

#else

void spfftc(x, n, isign)

long *n, *isign;

complex *x;

#endif

{

/* Builtin functions */

// void complex_exp();

/* Local variables */

long i, l, m, mr,tmp_int;

complex t, tmp_complex, tmp;

float pisign;

pisign = (float) ((double) *isign * M_PI);

mr = 0;

APPENDIX B. SPFTTC ALGORITHM 179

for (m = 1 ; m < *n ; ++m)

{

l = *n;

l /= 2;

while (mr + l >= *n)

{

l /= 2;

}

mr = mr % l + l;

if (mr > m)

{

t.r = x[m].r;

t.i = x[m].i;

x[m].r = x[mr].r;

x[m].i = x[mr].i;

x[mr].r = t.r;

APPENDIX B. SPFTTC ALGORITHM 180

x[mr].i = t.i;

}

}

l = 1;

while (l < *n)

{

for (m = 0 ; m < l ; ++m)

{

tmp_int = l * 2;

for (i = m ; tmp_int < 0 ? i >= (*n - 1) : i < *n ;

i += tmp_int)

{

tmp.r = 0.0;

tmp.i = (float) m * pisign / (float) l;

complex_exp(&tmp_complex, &tmp);

APPENDIX B. SPFTTC ALGORITHM 181

t.r = x[i + l].r * tmp_complex.r - x[i + l].i * tmp_complex.i;

t.i = x[i + l].r * tmp_complex.i + x[i + l].i * tmp_complex.r;

x[i + l].r = x[i].r - t.r;

x[i + l].i = x[i].i - t.i;

x[i].r = x[i].r + t.r;

x[i].i = x[i].i + t.i;

}

}

l *= 2;

}

return;

} /* spfftc */

Appendix C

SPFIRL ALGORITHM

The SPFIRL algorithm computed the digital filter coefficients for the FIR lowpass filter

using windowed Fourier Series.

#include <math.h>

/* SPFIRL 10/15/90 */

/* FIR LOWPASS FILTER DESIGN USING WINDOWED FOURIER SERIES */

/* L=FILTER SIZE SUCH THAT F(Z) = B(0) + B(1)*Z**(-1) +...+ B(L)*Z**(-L) */

/* FCN=NORMALIZED CUT-OFF FREQUENCY IN HERTZ-SECONDS */

/* IWNDO=WINDOW USED TO TRUNCATE FOURIER SERIES */

/* 1-RECTANGULAR; 2-TAPERED RECTANGULAR; 3-TRIANGULAR */

182

APPENDIX C. SPFIRL ALGORITHM 183

/* 4-HANNING; 5-HAMMING; 6-BLACKMAN */

/* B(0:L)=DIGITAL FILTER COEFFICIENTS RETURNED */

/* IERROR=0 NO ERRORS DETECTED */

/* 1 INVALID FILTER LENGTH (L<=0) */

/* 2 INVALID WINDOW TYPE IWNDO */

/* 3 INVALID CUT-OFF FCN; <=0 OR >=0.5 */

#define M_PI 3.14159265358979323846

#ifndef KR

void spfirl(long *l, float *fcn, long *wndo, float *b, long *error)

#else

void spfirl(l, fcn, wndo, b, error)

long *l, *wndo, *error;

float *fcn, *b;

#endif

{

/* Local variables */

// double spwndo(long*, long*, long*);

long i, lim, tmp_int;

float wcn, dly;

APPENDIX C. SPFIRL ALGORITHM 184

if (*l <= 0)

{

*error = 1;

return;

}

if (*wndo < 1 || *wndo > 6)

{

*error = 2;

return;

}

if (*fcn <= 0.0 || *fcn >= 0.5)

{

*error = 3;

return;

}

for (i = 0 ; i <= *l ; ++i)

{

b[i] = 0.0;

APPENDIX C. SPFIRL ALGORITHM 185

}

wcn = (float) (2.0 * M_PI * *fcn);

dly = (float) *l / 2.0;

lim = *l / 2;

if (dly == (float) (*l / 2))

{

--lim;

b[*l / 2] = (float) (wcn / M_PI);

}

for (i = 0 ; i <= lim ; ++i)

{

tmp_int = 1+ *l;

b[i] = (float) (sin((double) (wcn * ((float) i - dly)))

/ (M_PI * ((float) i - dly))

* spwndo(wndo, &tmp_int, &i));

b[*l - i] = b[i];

}

APPENDIX C. SPFIRL ALGORITHM 186

*error = 0;

return;

} /* spfirl */

Appendix D

MULTIFUNCTIONAL RELAY

PROGRAM

D.1 THE MULTIFUNCTIONAL RELAY MAIN PRO-

GRAM

The multifunctional relay program executed the modules for each of its relay functions and

returned a output signal of block or trip. It also computed metering output at each sample

point.

#include <stdio.h>

187

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 188

#include <math.h>

#include <complex.h>

#include <iostream.h>

#define PI 3.14159

#define M 96

#define B 84

#define N 12

void main()

{

int i,k;

float Iar_new,Iai_new,Ibr_new,Ibi_new,Icr_new,Ici_new;

float Var_new,Vai_new,Vbr_new,Vbi_new,Vcr_new,Vci_new;

float Zar_new,Zai_new,Zbr_new,Zbi_new,Zcr_new,Zci_new;

float Par_new,Pai_new,Pbr_new,Pbi_new,Pcr_new,Pci_new;

float Pgr_new,Pgi_new;

float Vaf,Vbf,Vcf,Va1_ang,Va1_del,decision;

float psv_ang[96],psv_del[96];

float Va_freq[96],Vb_freq[96],Vc_freq[96],rel_sig;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 189

float V_BASE,S_BASE,I_BASE,Z_BASE;

complex va_m[96],vb_m[96],vc_m[96];

complex za_m[96],zb_m[96],zc_m[96];

complex pa_m[96],pb_m[96],pc_m[96];

complex ia_m[96],ib_m[96],ic_m[96],pg_m[96];

double x_va,y_va,x_vb,y_vb,x_vc,y_vc;

double za_x,za_y,zb_x,zb_y,zc_x,zc_y;

double pa_x,pa_y,pb_x,pb_y,pc_x,pc_y;

double x_ia,y_ia,x_ib,y_ib,x_ic,y_ic,pg_x,pg_y;

char choice,answer;

FILE *fp,*fp1,*fp2,*fp3,*fp4,*fp5,*fp6,*fp7;

FILE *fp8,*fp9,*fp10,*fp11,*fp12,*fp13,*fp14;

FILE *fp15,*fp16,*fp17,*rel_file,*file;

if ((fp = fopen("va.m","r")) == NULL)

printf("Data file va.m not found\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 190

for (i=0;i< M;i++)

{

fscanf(fp,"%le,%le\n",&x_va,&y_va);

va_m[i]=complex(x_va,y_va);

}

fclose(fp);

if ((fp1 = fopen("vb.m","r")) == NULL)

printf("Data file vb.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp1,"%le,%le\n",&x_vb,&y_vb);

vb_m[i]=complex(x_vb,y_vb);

}

fclose(fp1);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 191

if ((fp2 = fopen("vc.m","r")) == NULL)

printf("Data file vc.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp2,"%le,%le\n",&x_vc,&y_vc);

vc_m[i]=complex(x_vc,y_vc);

}

fclose(fp2);

if ((fp3 = fopen("ia.m","r")) == NULL)

printf("Data file ia.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp3,"%le,%le\n",&x_ia,&y_ia);

ia_m[i]=complex(x_ia,y_ia);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 192

}

fclose(fp3);

if ((fp4 = fopen("ib.m","r")) == NULL)

printf("Data file ib.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp4,"%le,%le\n",&x_ib,&y_ib);

ib_m[i]=complex(x_ib,y_ib);

}

fclose(fp4);

if ((fp5 = fopen("ic.m","r")) == NULL)

printf("Data file ic.m not found\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 193

for (i=0;i< M;i++)

{

fscanf(fp5,"%le,%le\n",&x_ic,&y_ic);

ic_m[i]=complex(x_ic,y_ic);

}

fclose(fp5);

if ((fp6 = fopen("va1_ang.m","r")) == NULL)

printf("Data file va1_ang.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp6,"%f\n",&psv_ang[i]);

}

fclose(fp6);

if ((fp7 = fopen("va1_del.m","r")) == NULL)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 194

printf("Data file va1_del.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp7,"%f\n",&psv_del[i]);

}

fclose(fp7);

if ((fp8 = fopen("Va_mag.m","r")) == NULL)

printf("Data file Va_mag.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp8,"%e\n",&Va_freq[i]);

}

fclose(fp8);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 195

if ((fp9 = fopen("Vb_mag.m","r")) == NULL)

printf("Data file Vb_mag.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp9,"%e\n",&Vb_freq[i]);

}

fclose(fp9);

if ((fp10 = fopen("Vc_mag.m","r")) == NULL)

printf("Data file Vc_mag.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp10,"%e\n",&Vc_freq[i]);

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 196

fclose(fp10);

if ((fp11 = fopen("pg.m","r")) == NULL)

printf("Data file pg.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp11,"%le,%le\n",&pg_x,&pg_y);

pg_m[i]=complex(pg_x,pg_y);

}

fclose(fp11);

if ((fp12 = fopen("za.m","r")) == NULL)

printf("Data file za.m not found\n");

for (i=0;i< M;i++)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 197

{

fscanf(fp12,"%le,%le\n",&za_x,&za_y);

za_m[i]=complex(za_x,za_y);

}

fclose(fp12);

if ((fp13 = fopen("zb.m","r")) == NULL)

printf("Data file zb.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp13,"%le,%le\n",&zb_x,&zb_y);

zb_m[i]=complex(zb_x,zb_y);

}

fclose(fp13);

if ((fp14 = fopen("zc.m","r")) == NULL)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 198

printf("Data file zc.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp14,"%le,%le\n",&zc_x,&zc_y);

zc_m[i]=complex(zc_x,zc_y);

}

fclose(fp14);

if ((fp15 = fopen("pa.m","r")) == NULL)

printf("Data file pa.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp15,"%le,%le\n",&pa_x,&pa_y);

pa_m[i]=complex(pa_x,pa_y);

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 199

fclose(fp15);

if ((fp16 = fopen("pb.m","r")) == NULL)

printf("Data file pb.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp16,"%le,%le\n",&pb_x,&pb_y);

pb_m[i]=complex(pb_x,pb_y);

}

fclose(fp16);

if ((fp17 = fopen("pc.m","r")) == NULL)

printf("Data file pc.m not found\n");

for (i=0;i< M;i++)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 200

{

fscanf(fp17,"%le,%le\n",&pc_x,&pc_y);

pc_m[i]=complex(pc_x,pc_y);

}

fclose(fp17);

for (k = N; k < M; k++)

{

Var_new = real(va_m[k]);

Vai_new = imag(va_m[k]);

Vbr_new = real(vb_m[k]);

Vbi_new = imag(vb_m[k]);

Vcr_new = real(vc_m[k]);

Vci_new = imag(vc_m[k]);

Iar_new = real(ia_m[k]);

Iai_new = imag(ia_m[k]);

Ibr_new = real(ib_m[k]);

Ibi_new = imag(ib_m[k]);

Icr_new = real(ic_m[k]);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 201

Ici_new = imag(ic_m[k]);

Par_new = real(pa_m[k]);

Pai_new = imag(pa_m[k]);

Pbr_new = real(pb_m[k]);

Pbi_new = imag(pb_m[k]);

Pcr_new = real(pc_m[k]);

Pci_new = imag(pc_m[k]);

Pgr_new = real(pg_m[k]);

Pgi_new = imag(pg_m[k]);

Zar_new = real(za_m[k]);

Zai_new = imag(za_m[k]);

Zbr_new = real(zb_m[k]);

Zbi_new = imag(zb_m[k]);

Zcr_new = real(zc_m[k]);

Zci_new = imag(zc_m[k]);

Va1_ang = psv_ang[k];

Va1_del = psv_del[k-N];

Vaf = Va_freq[k];

Vbf = Vb_freq[k];

Vcf = Vc_freq[k];

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 202

V_BASE = 2309.401;

S_BASE = 15.0E+6;

I_BASE = (S_BASE/((sqrt(3))*(V_BASE)));

Z_BASE = V_BASE/I_BASE;

char relay1;

char inverse(float, float, float, float, float, float, float, int);

relay1 = inverse(Iar_new,Iai_new,Ibr_new,Ibi_new, Icr_new,Ici_new,I_BASE,k);

char relay2;

char island(float, float, float, int);

relay2 = island(Pgr_new,Pgi_new,S_BASE,k);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 203

char relay3;

char loss(float, float, float, float, float, float, float, int);

relay3 = loss(Zar_new,Zai_new,Zbr_new,Zbi_new, Zcr_new,Zci_new,Z_BASE,k);

char relay4;

char diff(float, float, float, float, float,float, float, int);

relay4 = diff(Iar_new,Iai_new,Ibr_new,Ibi_new,Icr_new,Ici_new,I_BASE,k);

char relay5;

char freq(float, float, int);

relay5 = freq(Va1_ang, Va1_del, k);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 204

char relay6;

char voltage(float, float, float, float,float, float, float, int);

relay6 = voltage(Var_new,Vai_new,Vbr_new,Vbi_new,Vcr_new,Vci_new,V_BASE,k);

char relay7;

char negative(float, float, float, float, float, float,float, int);

relay7 = negative(Iar_new,Iai_new,Ibr_new,Ibi_new,Icr_new,Ici_new,I_BASE, k);

char relay8;

char check(float, float, float, float, float, float,int);

relay8 = check(Var_new,Vai_new,Vbr_new,Vbi_new,Vcr_new,Vci_new,k);

char relay9;

char power(float, float, float, float, float, float, int);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 205

relay9 = power(Par_new,Pai_new,Pbr_new,Pbi_new,Pcr_new,Pci_new,k);

char relay10;

char cap(float,float,float,float,int);

relay10 = cap(Vaf,Vbf,Vcf,V_BASE,k);

if (relay1== ’t’)

{

printf("The relay output signal is trip.\n");

printf("The undercurrent\n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay1== ’u’)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 206

{

printf("The relay output signal is trip.\n");

printf("The overcurrent\n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay1== ’z’)

{

printf("The relay output signal is trip.\n");

printf("The instantaneous overcurrent\n");

printf("relay criteria was violated.\n");

answer = ’z’;

}

else if (relay2 == ’t’)

{

printf("The relay output signal is trip.\n");

printf("The islanding\n");

printf("relay criteria was violated.\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 207

answer = ’t’;

}

else if (relay3 == ’t’)

{

printf("The relay output signal is trip.\n");

printf("The loss-of-excitation\n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay4== ’t’)

{

printf("The relay output signal is trip.\n");

printf("The differential\n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay5== ’t’)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 208

{

printf("The relay output signal is trip.\n");

printf("The overfrequency \n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay5== ’z’)

{

printf("The relay output signal is trip.\n");

printf("The underfrequency \n");

printf("relay criteria was violated.\n");

answer = ’z’;

}

else if (relay6== ’t’)

{

printf("The relay output signal is trip.\n");

printf("The undervoltage\n");

printf("relay criteria was violated.\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 209

answer = ’t’;

}

else if (relay6== ’u’)

{

printf("The relay output signal is trip.\n");

printf("The overvoltage\n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay7== ’t’)

{

printf("The relay output signal is trip.\n");

printf("The negative sequence\n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay8== ’b’)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 210

{

printf("The substation generator and the\n");

printf("dispersed generator are\n");

printf("synchronized at this sample point.\n");

answer = ’t’;

}

else if (relay9== ’t’)

{

printf("The relay output signal is trip.\n");

printf("The directional power\n");

printf("relay criteria was violated.\n");

answer = ’t’;

}

else if (relay10== ’t’)

{

printf("The relay output signal is trip.\n");

printf("The self-excitation\n");

printf("relay criteria was violated.\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 211

answer = ’t’;

}

else

{

printf("The relay output signal is block.\n");

printf("None of the relay criteria was violated.\n");

}

char relay11;

char meter(float, float, float, float, float, float,

float, float, float, float, float, float,

float, float, float, float, float, float,int);

relay11 = meter(Iar_new,Iai_new,Ibr_new,Ibi_new,

Icr_new,Ici_new,Var_new,Vai_new, Vbr_new,

Vbi_new,Vcr_new,Vci_new, Par_new,Pai_new,

Pbr_new,Pbi_new,Pcr_new,Pci_new,k);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 212

if (k < 24)

{

decision = 0.0;

}

else if (answer == ’t’)

{

decision = 1.0;

}

else if (answer == ’u’)

{

decision = 1.0;

}

else if (answer == ’z’)

{

decision = 1.0;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 213

}

else

{

decision = 0.0;

}

rel_file = fopen("fun_rel.m","a");

fprintf(rel_file, "%f\n",decision);

fclose(rel_file);

printf("Do you want the next sample[y/n]?");

scanf("%c",&choice);

cin >> choice;

if ((choice==’n’) || (choice==’N’))

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 214

{

printf("C++ stop.");

break;

}

}

}

char inverse(float Iar, float Iai, float Ibr, float Ibi,float Icr, float Ici,

float I_base, int j)

{

int i;

float i_L,CT,Ipickp,Ipickg,I_setp,I_setg;

float Ipeakp,Ipeakg;

float I_multp,I_multg,Tp,Tg;

float Tp_new,Tg_new,T_value[2],TDS;

float C1,C2,C3,C4,C5,C6,C7;

float Theta_Ia,Theta_Ib,Theta_Ic;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 215

float Ia_f,Ib_f,Ic_f,I_high,I_peak;

float I_minpu,I_maxpu;

float I_min,I_max;

float Ipickg_t,I_gnd;

char value,t,b,z,s,u,v,relay_type;

complex a(-0.5,0.866);

complex Ia_max(Iar,Iai),Ib_max(Ibr,Ibi),Ic_max(Icr,Ici);

i_L = 100.0;

I_high = 1.1;

I_peak = 1.5;

Ia_f = abs(Ia_max);

Ib_f = abs(Ib_max);

Ic_f = abs(Ic_max);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 216

if ((real(Ia_max) == 0) && (real(Ib_max) == 0) && (real(Ic_max) == 0))

{

Theta_Ia = -(180.0/PI)*(PI/2.0);

Theta_Ib = -(180.0/PI)*(PI/2.0);

Theta_Ic = -(180.0/PI)*(PI/2.0);

}

else if ((real(Ia_max) == 0) || (real(Ib_max) == 0) || (real(Ic_max) == 0))

{

if ((real(Ia_max) == 0) && (real(Ib_max) == 0))

{

Theta_Ia = -(180.0/PI)*(PI/2.0);

Theta_Ib = -(180.0/PI)*(PI/2.0);

Theta_Ic = (180.0/PI)*atan2(imag(Ic_max), real(Ic_max));

}

else if ((real(Ia_max) == 0) && (real(Ic_max) == 0))

{

Theta_Ia = -(180.0/PI)*(PI/2.0);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 217

Theta_Ib = (180.0/PI)*atan2(imag(Ib_max), real(Ib_max));

Theta_Ic = -(180.0/PI)*(PI/2.0);

}

else if ((real(Ib_max) == 0) && (real(Ic_max) == 0))

{

Theta_Ia = (180.0/PI)*atan2(imag(Ia_max), real(Ia_max));

Theta_Ib = -(180.0/PI)*(PI/2.0);

Theta_Ic = -(180.0/PI)*(PI/2.0);

}

else if (real(Ia_max) == 0)

{

Theta_Ia = -(180.0/PI)*(PI/2.0);

Theta_Ib = (180.0/PI)*atan2(imag(Ib_max), real(Ib_max));

Theta_Ic = (180.0/PI)*atan2(imag(Ic_max), real(Ic_max));

}

else if (real(Ib_max) == 0)

{

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 218

Theta_Ia = (180.0/PI)*atan2(imag(Ia_max), real(Ia_max));

Theta_Ib = -(180.0/PI)*(PI/2.0);

Theta_Ic = (180.0/PI)*atan2(imag(Ic_max), real(Ic_max));

}

else if (real(Ic_max) == 0)

{

Theta_Ia = (180.0/PI)*atan2(imag(Ia_max), real(Ia_max));

Theta_Ib = (180.0/PI)*atan2(imag(Ib_max), real(Ib_max));

Theta_Ic = -(180.0/PI)*(PI/2.0);

}

}

else

{

Theta_Ia = (180.0/PI)*atan2(imag(Ia_max), real(Ia_max));

Theta_Ib = (180.0/PI)*atan2(imag(Ib_max), real(Ib_max));

Theta_Ic = (180.0/PI)*atan2(imag(Ic_max), real(Ic_max));

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 219

/*

The current ratio (CT)is based upon load.

A CT ratio will be selected that will give

5.0 amperes secondary current for the maximum

load.

*/

if (i_L/5.0 <= 20.0)

{

CT = (20.0/1.0);

}

else if (i_L/5.0 <= 40.0)

{

CT = (40.0/1.0);

}

else if (i_L/5.0 <= 60.0)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 220

{

CT = (60.0/1.0);

}

else if (i_L/5.0 <= 80.0)

{

CT = (80.0/1.0);

}

else if (i_L/5.0 <= 100.0)

{

CT = (100.0/1.0);

}

else if (i_L/5.0 <= 120.0)

{

CT = (120.0/1.0);

}

else if (i_L/5.0 <= 160.0)

{

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 221

CT = (160.0/1.0);

}

else if (i_L/5.0 <= 180.0)

{

CT = (180.0/1.0);

}

else if (i_L/5.0 <= 200.0)

{

CT = (200.0/1.0);

}

else if (i_L/5.0 <= 240.0)

{

CT = (240.0/1.0);

}

else

{

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 222

printf("A compatible standard current");

printf("transformer ratio was not found.");

}

if ((Ia_f > Ib_f) && (Ia_f > Ic_f))

{

I_max = Ia_f;

}

else if ((Ib_f > Ia_f) && (Ib_f > Ic_f))

{

I_max = Ib_f;

}

else

{

I_max = Ic_f;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 223

if ((Ia_f < Ib_f) && (Ia_f < Ic_f))

{

I_min = Ia_f;

}

else if ((Ib_f < Ia_f) && (Ib_f < Ic_f))

{

I_min = Ib_f;

}

else

{

I_min = Ic_f;

}

/*

PHASE RELAY PICKUP SETTING

Ipickp = ((((i_L/CT)*2)+((I_min/3)/CT))/2)

*/

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 224

if (((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0) <= 1.0)

{

Ipickp=1.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=1.2)

{

Ipickp=1.2;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=1.5)

{

Ipickp=1.5;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=2.0)

{

Ipickp=2.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 225

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=2.5)

{

Ipickp=2.5;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=3.0)

{

Ipickp=3.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=3.5)

{

Ipickp=3.5;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=4.0)

{

Ipickp=4.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 226

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=4.5)

{

Ipickp=4.5;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=5.0)

{

Ipickp=5.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=6.0)

{

Ipickp=6.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=7.0)

{

Ipickp=7.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 227

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=8.0)

{

Ipickp=8.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=9.0)

{

Ipickp=9.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=10.0)

{

Ipickp=10.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=11.0)

{

Ipickp=11.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 228

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=12.0)

{

Ipickp=12.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=14.0)

{

Ipickp=14.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=16.0)

{

Ipickp=16.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=18.0)

{

Ipickp=18.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 229

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=20.0)

{

Ipickp=20.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=25.0)

{

Ipickp=25.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=30.0)

{

Ipickp=30.0;

}

else if(((((i_L/CT)*2.0)+((abs(I_min)/3.0)/CT))/2.0)<=40.0)

{

Ipickp=40.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 230

else

{

printf("The pickup current for the phase\n");

printf("relay is more than 40 amperes.\n");

Ipickp=40.0;

}

I_gnd = 0.1*i_L;

Ipickg_t = ((((0.1)*(i_L))*2.0)/CT);

/*

GROUND RELAY PICKUP SETTING

Ipickg=((((0.1)*(i_L))*2)/CT);

*/

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 231

if (Ipickg_t<=1.2)

{

Ipickg=1.2;

}

else if (Ipickg_t<=1.5)

{

Ipickg=1.5;

}

else if (Ipickg_t<=2.0)

{

Ipickg=2.0;

}

else if (Ipickg_t<=3.0)

{

Ipickg=3.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 232

else if (Ipickg_t<=4.0)

{

Ipickg=4.0;

}

else if (Ipickg_t<=5.0)

{

Ipickg=5.0;

}

else if (Ipickg_t<=6.0)

{

Ipickg=6.0;

}

else if (Ipickg_t<=7.0)

{

Ipickg=7.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 233

else if (Ipickg_t<=8.0)

{

Ipickg=8.0;

}

else if (Ipickg_t<=9.0)

{

Ipickg=9.0;

}

else if (Ipickg_t<=10.0)

{

Ipickg=10.0;

}

else if (Ipickg_t<=11.0)

{

Ipickg=11.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 234

else if (Ipickg_t<=12.0)

{

Ipickg=12.0;

}

else if (Ipickg_t<=14.0)

{

Ipickg=14.0;

}

else if (Ipickg_t<=16.0)

{

Ipickg=16.0;

}

else if (Ipickg_t<=18.0)

{

Ipickg=18.0;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 235

else if (Ipickg_t<=20.0)

{

Ipickg=20.0;

}

else if (Ipickg_t<=40.0)

{

Ipickg=40.0;

}

else

{

printf("The pickup current for the ground\n");

printf("relay is more than 40 amperes.\n");

Ipickg=40.0;

}

Ipeakp = (1.35*Ipickp);

Ipeakg = (1.35*Ipickg);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 236

I_minpu = I_min/I_base;

I_maxpu = I_max/I_base;

if ((Theta_Ia < -25.0) && (Theta_Ia > -85.0)

|| (Theta_Ib < -25.0) && (Theta_Ib > -85.0)

|| (Theta_Ic < -25.0) && (Theta_Ic > -85.0))

{

if (I_minpu > I_peak)

{

value=’z’;

I_setp=(CT*Ipeakp);

I_setg=(CT*Ipeakg);

}

else if (I_minpu > I_high)

{

I_setp=(CT*Ipickp);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 237

I_setg=(CT*Ipickg);

value=’u’;

}

else

{

I_setp=(CT*Ipickp);

I_setg=(CT*Ipickg);

value=’b’;

}

}

else

{

I_setp=(CT*Ipickp);

I_setg=(CT*Ipickg);

value=’b’;

}

C1 = 0.0344;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 238

C2 = 0.0807;

C3 = 1.9500;

C4 = 0.0577;

C5 = -0.0679;

C6 = -0.7000;

C7 = 0.0199;

TDS = 0.5;

I_multp = (abs(I_max)/I_setp);

I_multg = (abs(I_gnd)/I_setg);

relay_type = ’s’;

if (relay_type == ’s’)

{

// THE TYPE C0-9 RELAY

// COURTESY OF WESTINGHOUSE

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 239

// 7 TERM MODEL

Tp = ((C1) + (C2*(TDS)) + (C3*(TDS/(pow((I_multp-1.0),2))))

+ (C4*(pow(TDS,2)/(I_multp-1)))

+ (C5*(pow(TDS,2)/(pow((I_multp-1.0),2))))

+ (C6*(TDS/(pow((I_multp-1.0),3))))

+ (C7*(pow(TDS,2)/(pow((I_multp-1.0),4)))));

Tg = ((C1) + (C2*(TDS)) + (C3*(TDS/(pow((I_multg-1.0),2))))

+ (C4*(pow(TDS,2)/(I_multg-1)))

+ (C5*(pow(TDS,2)/(pow((I_multg-1.0),2))))

+ (C6*(TDS/(pow((I_multg-1.0),3))))

+ (C7*(pow(TDS,2)/(pow((I_multg-1.0),4)))));

}

return (value);

}

char island (float Pgr, float Pgi, float S_base, int j)

{

int m;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 240

float Pg[84],Pg_pre,Pg_post,ks,isl;

char value,t,b,z;

complex Pg_max(Pgr,Pgi);

ks=0.9;

m=j-N;

Pg[m] = abs(Pg_max);

Pg_post = Pg[m];

Pg_pre = Pg[0];

isl =(abs(Pg_post - Pg_pre))/S_base;

if (isl>ks)

{

value=’t’;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 241

else

{

value=’b’;

}

return (value);

}

char loss(float Zar, float Zai, float Zbr, float Zbi,

float Zcr, float Zci, float Z_base, int j)

{

double Zapp,X_d;

double Za,Zb,Zc,imped;

char value,t,b;

complex Za_max(Zar,Zai),Zb_max(Zbr,Zbi),Zc_max(Zcr,Zci);

imped = 0.74;

Za = abs(Za_max);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 242

Zb = abs(Zb_max);

Zc = abs(Zc_max);

X_d = imped;

Zapp = (0.5*X_d)*(Z_base);

if (Za < Zapp)

{

value=’t’;

}

else if (Zb < Zapp)

{

value=’t’;

}

else if (Zc < Zapp)

{

value=’t’;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 243

else

{

value=’b’;

}

return (value);

}

char diff(float Iar, float Iai, float Ibr, float Ibi,float Icr, float Ici,

float I_base, int j)

{

int m;

float Ia_post,Ib_post,Ic_post,Ia_pre,Ib_pre,Ic_pre;

float Ia[84],Ib[84],Ic[84];

float S_1,S_2,S_3,S;

float theta;

char value,t,b;

complex Ia_max(Iar,Iai),Ib_max(Ibr,Ibi),Ic_max(Icr,Ici);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 244

m=j-N;

S = 0.2;

Ia[m] = abs(Ia_max);

Ib[m] = abs(Ib_max);

Ic[m] = abs(Ic_max);

Ia_post = Ia[m];

Ib_post = Ib[m];

Ic_post = Ic[m];

Ia_pre = Ia[0];

Ib_pre = Ib[0];

Ic_pre = Ic[0];

S_1 = fabs((Ia_post - Ia_pre)/I_base);

S_2 = fabs((Ib_post - Ib_pre)/I_base);

S_3 = fabs((Ic_post - Ic_pre)/I_base);

if (S_1 > S)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 245

{

value=’t’;

}

else if (S_2 > S)

{

value=’t’;

}

else if (S_3 > S)

{

value=’t’;

}

else

{

value=’b’;

}

return (value);

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 246

char freq(float va1_ang, float va1_del, int j)

{

int i;

float freq_nom;

float high_f,low_f;

float theta,theta_del,freq_new,freq_del;

char value,t,b,z;

freq_nom = 60.0;

high_f = 66.0;

low_f = 58.0;

theta = va1_ang;

theta_del = va1_del;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 247

freq_del = ((1.0/(2.0*PI))*((theta - theta_del)*(PI/180.0)))

*freq_nom;

freq_new = (freq_nom + freq_del);

if (freq_new > high_f)

{

value=’t’;

}

else if (freq_new < low_f)

{

value=’z’;

}

else

{

value=’b’;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 248

return (value);

}

char voltage(float Var, float Vai, float Vbr, float Vbi,

float Vcr, float Vci, float V_base, int j)

{

float Vapu,Vbpu,Vcpu;

float Vinsta,Vinstb,Vinstc;

char value,t,b;

complex Va_max(Var,Vai),Vb_max(Vbr,Vbi),Vc_max(Vcr,Vci);

float Va,Vb,Vc,V_peak,V_high,V_low;

Va = abs(Va_max);

Vb = abs(Vb_max);

Vc = abs(Vc_max);

V_peak = 1.5;

V_high = 1.1;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 249

V_low = 0.9;

Vapu = (Va/V_base);

Vbpu = (Vb/V_base);

Vcpu = (Vc/V_base);

Vinsta = ((sqrt(2)*(Va))/V_base);

Vinstb = ((sqrt(2)*(Vb))/V_base);

Vinstc = ((sqrt(2)*(Vc))/V_base);

if (Vinsta >= V_peak)

{

value=’z’;

}

else if (Vinstb >= V_peak)

{

value=’z’;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 250

else if (Vinstc >= V_peak)

{

value=’z’;

}

else if (Vapu >= V_high)

{

value=’u’;

}

else if (Vbpu >= V_high)

{

value=’u’;

}

else if (Vcpu >= V_high)

{

value=’u’;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 251

else if (Vapu <= V_low)

{

value=’t’;

}

else if (Vbpu <= V_low)

{

value=’t’;

}

else if (Vcpu <= V_low)

{

value=’t’;

}

else

{

value=’b’;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 252

return (value);

}

char negative(float Iar, float Iai, float Ibr, float Ibi,float Icr,

float Ici, float I_base, int j)

{

int i;

float Ia2_pu,data[84];

float T_peak,Tdial,dial_sum,I_peak;

char value,t,b;

complex a(-0.5,0.866);

complex Ia2;

complex Ia_max(Iar,Iai),Ib_max(Ibr,Ibi),Ic_max(Icr,Ici);

FILE *s_file;

I_peak = 1.1;

T_peak = 50.0;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 253

Ia2 = (0.3333)*(Ia_max+(pow(a,2)*(Ib_max))+(a*(Ic_max)));

Ia2_pu = abs(Ia2/I_base);

if ((s_file = fopen("tdial_su.m","r")) == NULL)

printf("Data file tdial_su.m not found\n");

for (i=0;i< B;i++)

{

fscanf(s_file,"%f\n",&data[i]);

}

fclose(s_file);

dial_sum = data[j-N];

if (Ia2_pu > I_peak)

{

value=’t’;

}

else if (dial_sum > T_peak)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 254

{

value=’t’;

}

else

{

value=’b’;

}

return (value);

}

char check(float Var, float Vai, float Vbr, float Vbi, float Vcr, float Vci, int j)

{

int m;

char value,t,b;

float Va_angi,Vb_angi,Vc_angi,Va_angf,Vb_angf,Vc_angf;

float Va_angle[84],Vb_angle[84],Vc_angle[84];

float Theta_1,Theta_2,Theta_3,crit_ang;

complex Va_max(Var,Vai),Vb_max(Vbr,Vbi),Vc_max(Vcr,Vci);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 255

m = j-N;

crit_ang = 60.0;

if ((real(Va_max) == 0) && (real(Vb_max) == 0) && (real(Vc_max) == 0))

{

Va_angle[m] = (180.0/PI)*(PI/2.0);

Vb_angle[m] = (180.0/PI)*(PI/2.0);

Vc_angle[m] = (180.0/PI)*(PI/2.0);

}

else if ((real(Va_max) == 0) || (real(Vb_max) == 0) || (real(Vc_max) == 0))

{

if ((real(Va_max) == 0) && (real(Vb_max) == 0))

{

Va_angle[m] = (180.0/PI)*(PI/2.0);

Vb_angle[m] = (180.0/PI)*(PI/2.0);

Vc_angle[m] = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 256

else if ((real(Va_max) == 0) && (real(Vc_max) == 0))

{

Va_angle[m] = (180.0/PI)*(PI/2.0);

Vb_angle[m] = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle[m] = (180.0/PI)*(PI/2.0);

}

else if ((real(Vb_max) == 0) && (real(Vc_max) == 0))

{

Va_angle[m] = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

Vb_angle[m] = (180.0/PI)*(PI/2.0);

Vc_angle[m] = (180.0/PI)*(PI/2.0);

}

else if (real(Va_max) == 0)

{

Va_angle[m] = (180.0/PI)*(PI/2.0);

Vb_angle[m] = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle[m] = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 257

}

else if (real(Vb_max) == 0)

{

Va_angle[m] = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

Vb_angle[m] = (180.0/PI)*(PI/2.0);

Vc_angle[m] = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

}

else if (real(Vc_max) == 0)

{

Va_angle[m] = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

Vb_angle[m] = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle[m] = (180.0/PI)*(PI/2.0);

}

}

else

{

Va_angle[m] = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 258

Vb_angle[m] = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle[m] = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

}

Va_angi = Va_angle[0];

Vb_angi = Vb_angle[0];

Vc_angi = Vc_angle[0];

Va_angf = Va_angle[m];

Vb_angf = Vb_angle[m];

Vc_angf = Vc_angle[m];

Theta_1 = abs(Va_angf - Va_angi);

Theta_2 = abs(Vb_angf - Vb_angi);

Theta_3 = abs(Vc_angf - Vc_angi);

if (Theta_1 > crit_ang)

{

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 259

value=’t’;

}

else if (Theta_2 > crit_ang)

{

value=’t’;

}

else if (Theta_3 > crit_ang)

{

value=’t’;

}

else

{

value=’b’;

}

return (value);

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 260

char power(float Par, float Pai, float Pbr, float Pbi, float Pcr, float Pci, int j)

{

complex S_power;

float P_t,Q_t,Pa,Pb,Pc,PF,crit_pow;

char value,t,b;

complex Pa_max(Par,Pai),Pb_max(Pbr,Pbi),Pc_max(Pcr,Pci);

crit_pow = 0.0;

S_power = (Pa_max + Pb_max + Pc_max);

P_t = real(S_power);

Q_t = imag(S_power);

PF = (P_t / (sqrt((pow(P_t,2)) + (pow(Q_t,2)))));

if (Par < crit_pow)

{

value=’t’;

}

else if (Pbr < crit_pow)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 261

{

value=’t’;

}

else if (Pcr < crit_pow)

{

value=’t’;

}

else

{

value=’b’;

}

return (value);

}

char cap(float Va_f, float Vb_f, float Vc_f, float V_base, int j)

{

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 262

int i;

char value,t,b;

float Va_pu,Vb_pu,Vc_pu;

float cap_peak;

cap_peak = 1.7;

Va_pu = Va_f/V_base;

Vb_pu = Vb_f/V_base;

Vc_pu = Vc_f/V_base;

if (Va_pu > cap_peak)

{

value=’t’;

}

else if (Vb_pu > cap_peak)

{

value=’t’;

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 263

else if (Vc_pu > cap_peak)

{

value=’t’;

}

else

{

value=’b’;

}

return (value);

}

char meter(float Iar, float Iai, float Ibr, float Ibi,

float Icr, float Ici, float Var, float Vai,

float Vbr, float Vbi, float Vcr, float Vci,

float Par, float Pai, float Pbr, float Pbi,

float Pcr, float Pci, int j)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 264

{

char value;

float Va,Vb,Vc,Ia,Ib,Ic,Sa_max,Sb_max,Sc_max;

complex Va_max(Var,Vai),Vb_max(Vbr,Vbi),Vc_max(Vcr,Vci);

complex Ia_max(Iar,Iai),Ib_max(Ibr,Ibi),Ic_max(Icr,Ici);

complex Pa_max(Par,Pai),Pb_max(Pbr,Pbi),Pc_max(Pcr,Pci);

complex Sa,Sb,Sc,St;

float Va_angle,Vb_angle,Vc_angle,Ia_angle;

float Ib_angle,Ic_angle,Sa_angle,Sb_angle;

float Sc_angle;

float Pa,Pb,Pc,Qa,Qb,Qc;

float Pt,Qt;

Va = abs(Va_max);

Vb = abs(Vb_max);

Vc = abs(Vc_max);

Ia = abs(Ia_max);

Ib = abs(Ib_max);

Ic = abs(Ic_max);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 265

if ((real(Va_max) == 0) && (real(Vb_max) == 0) && (real(Vc_max) == 0))

{

Va_angle = (180.0/PI)*(PI/2.0);

Vb_angle = (180.0/PI)*(PI/2.0);

Vc_angle = (180.0/PI)*(PI/2.0);

}

else if ((real(Va_max) == 0) || (real(Vb_max) == 0) || (real(Vc_max) == 0))

{

if ((real(Va_max) == 0) && (real(Vb_max) == 0))

{

Va_angle = (180.0/PI)*(PI/2.0);

Vb_angle = (180.0/PI)*(PI/2.0);

Vc_angle = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

}

else if ((real(Va_max) == 0) && (real(Vc_max) == 0))

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 266

{

Va_angle = (180.0/PI)*(PI/2.0);

Vb_angle = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle = (180.0/PI)*(PI/2.0);

}

else if ((real(Vb_max) == 0) && (real(Vc_max) == 0))

{

Va_angle = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

Vb_angle = (180.0/PI)*(PI/2.0);

Vc_angle = (180.0/PI)*(PI/2.0);

}

else if (real(Va_max) == 0)

{

Va_angle = (180.0/PI)*(PI/2.0);

Vb_angle = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 267

else if (real(Vb_max) == 0)

{

Va_angle = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

Vb_angle = (180.0/PI)*(PI/2.0);

Vc_angle = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

}

else if (real(Vc_max) == 0)

{

Va_angle = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

Vb_angle = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle = (180.0/PI)*(PI/2.0);

}

}

else

{

Va_angle = (180.0/PI)*atan2(imag(Va_max),real(Va_max));

Vb_angle = (180.0/PI)*atan2(imag(Vb_max),real(Vb_max));

Vc_angle = (180.0/PI)*atan2(imag(Vc_max),real(Vc_max));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 268

}

if ((real(Ia_max) == 0) && (real(Ib_max) == 0) && (real(Ic_max) == 0))

{

Ia_angle = (180.0/PI)*(PI/2.0);

Ib_angle = (180.0/PI)*(PI/2.0);

Ic_angle = (180.0/PI)*(PI/2.0);

}

else if ((real(Ia_max) == 0) || (real(Ib_max) == 0) || (real(Ic_max) == 0))

{

if ((real(Ia_max) == 0) && (real(Ib_max) == 0))

{

Ia_angle = (180.0/PI)*(PI/2.0);

Ib_angle = (180.0/PI)*(PI/2.0);

Ic_angle = (180.0/PI)*atan2(imag(Ic_max),real(Ic_max));

}

else if ((real(Ia_max) == 0) && (real(Ic_max) == 0))

{

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 269

Ia_angle = (180.0/PI)*(PI/2.0);

Ib_angle = (180.0/PI)*atan2(imag(Ib_max),real(Ib_max));

Ic_angle = (180.0/PI)*(PI/2.0);

}

else if ((real(Ib_max) == 0) && (real(Ic_max) == 0))

{

Ia_angle = (180.0/PI)*atan2(imag(Ia_max),real(Ia_max));

Ib_angle = (180.0/PI)*(PI/2.0);

Ic_angle = (180.0/PI)*(PI/2.0);

}

else if (real(Ia_max) == 0)

{

Ia_angle = (180.0/PI)*(PI/2.0);

Ib_angle = (180.0/PI)*atan2(imag(Ib_max),real(Ib_max));

Ic_angle = (180.0/PI)*atan2(imag(Ic_max),real(Ic_max));

}

else if (real(Ib_max) == 0)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 270

{

Ia_angle = (180.0/PI)*atan2(imag(Ia_max),real(Ia_max));

Ib_angle = (180.0/PI)*(PI/2.0);

Ic_angle = (180.0/PI)*atan2(imag(Ic_max),real(Ic_max));

}

else if (real(Ic_max) == 0)

{

Ia_angle = (180.0/PI)*atan2(imag(Ia_max),real(Ia_max));

Ib_angle = (180.0/PI)*atan2(imag(Ib_max),real(Ib_max));

Ic_angle = (180.0/PI)*(PI/2.0);

}

}

else

{

Ia_angle = (180.0/PI)*atan2(imag(Ia_max),real(Ia_max));

Ib_angle = (180.0/PI)*atan2(imag(Ib_max),real(Ib_max));

Ic_angle = (180.0/PI)*atan2(imag(Ic_max),real(Ic_max));

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 271

Sa = Pa_max;

Sb = Pb_max;

Sc = Pc_max;

Sa_max = abs(Sa);

Sb_max = abs(Sb);

Sc_max = abs(Sc);

Sa_angle = (180.0/PI)*arg(Sa);

Sb_angle = (180.0/PI)*arg(Sb);

Sc_angle = (180.0/PI)*arg(Sc);

Pa = real(Sa);

Pb = real(Sb);

Pc = real(Sc);

Qa = imag(Sa);

Qb = imag(Sb);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 272

Qc = imag(Sc);

St = (Sa + Sb + Sc);

Pt = (Pa + Pb + Pc);

Qt = (Qa + Qb + Qc);

value = ’b’;

return(value);

}

D.2 AUXILIARY PROGRAM A

The purpose of the auxiliary program A was to calculate the phasors for voltage, current,

impedance and power.

#include <stdio.h>

#include <math.h>

#include <complex.h>

#include <iostream.h>

#define PI 3.14159

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 273

#define M 96

#define N 12

#define O 12

#define Q 96

#define T 96

void main()

{

int i,k;

float v1y[96],v2y[96],v3y[96];

float i1y[96],i2y[96],i3y[96];

float z1y[96],z2y[96],z3y[96];

float p1y[96],p2y[96],p3y[96],pgy[96];

float Varr = 0,Vaii = 0,Vbrr = 0,Vbii = 0,Vcrr = 0,Vcii = 0;

float Iarr = 0,Iaii = 0,Ibrr = 0,Ibii = 0,Icrr = 0,Icii = 0;

float Zarr = 0,Zaii = 0,Zbrr = 0,Zbii = 0,Zcrr = 0,Zcii = 0;

float Parr = 0,Paii = 0,Pbrr = 0,Pbii = 0,Pcrr = 0,Pcii = 0;

float Pgrr = 0,Pgii = 0;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 274

float Var,Vai,Vbr,Vbi,Vcr,Vci;

float Iar,Iai,Ibr,Ibi,Icr,Ici;

float Zar,Zai,Zbr,Zbi,Zcr,Zci;

float Par,Pai,Pbr,Pbi,Pcr,Pci,Pgr,Pgi;

float Var_new,Var_old,Vai_new,Vai_old,Vbr_new,Vbr_old,Vbi_new,Vbi_old;

float Vcr_new,Vcr_old,Vci_new,Vci_old,Iar_new,Iar_old,Iai_new,Iai_old;

float Ibr_new,Ibr_old,Ibi_new,Ibi_old,Icr_new,Icr_old,Ici_new,Ici_old;

float Zar_new,Zar_old,Zai_new,Zai_old,Zbr_new,Zbr_old,Zbi_new,Zbi_old;

float Zcr_new,Zcr_old,Zci_new,Zci_old,Par_new,Par_old,Pai_new,Pai_old;

float Pbr_new,Pbr_old,Pbi_new,Pbi_old,Pcr_new,Pcr_old,Pci_new,Pci_old;

float Pgr_new,Pgr_old,Pgi_new,Pgi_old;

float Var_del,Vai_del,Vbr_del,Vbi_del,Vcr_del,Vci_del;

float Var_past,Vai_past,Vbr_past,Vbi_past,Vcr_past,Vci_past;

float data[96],data1[96],data2[96],data3[96];

float data4[96],data5[96],data6[96],data7[96],data8[96];

float data9[96],data10[96],data11[96],data12[96],filter[12];

char choice;

FILE *fp,*fp1,*fp2,*fp3,*fp4,*fp5;

FILE *fp6,*fp7,*fp8,*fp9,*fp10,*fp11,*fp12;

FILE *infile_1,*infile_2,*infile_3,*infile_4,*infile_5,*infile_6,*infile_7;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 275

FILE *infile_8,*infile_9,*infile_10,*infile_11,*infile_12,*infile_13;

FILE *outfile_1,*outfile_2,*outfile_3,*outfile_4,*outfile_5;

FILE *outfile_6,*outfile_7,*outfile_8,*outfile_9,*outfile_10;

FILE *outfile_11,*outfile_12,*outfile_13;

FILE *infile,*x_outfile,*y_outfile,*z_outfile;

if ((fp = fopen("v1.m","r")) == NULL)

printf("Data file v1.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp,"%e\n",&data[i]);

}

fclose(fp);

if ((fp1 = fopen("v2.m","r")) == NULL)

printf("Data file v2.m not found\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 276

for (i=0;i< M;i++)

{

fscanf(fp1,"%e\n",&data1[i]);

}

fclose(fp1);

if ((fp2 = fopen("v3.m","r")) == NULL)

printf("Data file v3.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp2,"%e\n",&data2[i]);

}

fclose(fp2);

if ((fp3 = fopen("i1.m","r")) == NULL)

printf("Data file i1.m not found\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 277

for (i=0;i< M;i++)

{

fscanf(fp3,"%e\n",&data3[i]);

}

fclose(fp3);

if ((fp4 = fopen("i2.m","r")) == NULL)

printf("Data file i2.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp4,"%e\n",&data4[i]);

}

fclose(fp4);

if ((fp5 = fopen("i3.m","r")) == NULL)

printf("Data file i3.m not found\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 278

for (i=0;i< M;i++)

{

fscanf(fp5,"%e\n",&data5[i]);

}

fclose(fp5);

if ((fp6 = fopen("z1.m","r")) == NULL)

printf("Data file z1.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp6,"%e\n",&data6[i]);

}

fclose(fp6);

if ((fp7 = fopen("z2.m","r")) == NULL)

printf("Data file z2.m not found\n");

for (i=0;i< M;i++)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 279

{

fscanf(fp7,"%e\n",&data7[i]);

}

fclose(fp7);

if ((fp8 = fopen("z3.m","r")) == NULL)

printf("Data file z3.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp8,"%e\n",&data8[i]);

}

fclose(fp8);

if ((fp9 = fopen("p1.m","r")) == NULL)

printf("Data file p1.m not found\n");

for (i=0;i< M;i++)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 280

{

fscanf(fp9,"%e\n",&data9[i]);

}

fclose(fp9);

if ((fp10 = fopen("p2.m","r")) == NULL)

printf("Data file p2.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp10,"%e\n",&data10[i]);

}

fclose(fp10);

if ((fp11 = fopen("p3.m","r")) == NULL)

printf("Data file p3.m not found\n");

for (i=0;i< M;i++)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 281

{

fscanf(fp11,"%e\n",&data11[i]);

}

fclose(fp11);

if ((fp12 = fopen("pow_gen.m","r")) == NULL)

printf("Data file pow_gen.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp12,"%e\n",&data12[i]);

}

fclose(fp12);

if ((infile = fopen("f5.out","r")) == NULL)

printf("Data file f5.out not found\n");

for (i=0;i < O;i++)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 282

{

fscanf(infile,"%e\n",&filter[i]);

}

fclose(infile);

/* Beginning of Phasor Computation */

for (k = 0; k < N; k++)

{

if (k==0)

{

v1y[k] = (filter[0]*data[0]);

v2y[k] = (filter[0]*data1[0]);

v3y[k] = (filter[0]*data2[0]);

i1y[k] = (filter[0]*data3[0]);

i2y[k] = (filter[0]*data4[0]);

i3y[k] = (filter[0]*data5[0]);

z1y[k] = (filter[0]*data6[0]);

z2y[k] = (filter[0]*data7[0]);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 283

z3y[k] = (filter[0]*data8[0]);

p1y[k] = (filter[0]*data9[0]);

p2y[k] = (filter[0]*data10[0]);

p3y[k] = (filter[0]*data11[0]);

pgy[k] = (filter[0]*data12[0]);

}

else if (k==1)

{

v1y[k] = ((filter[0]*data[1]) + (filter[1]*data[0]));

v2y[k] = ((filter[0]*data1[1]) + (filter[1]*data1[0]));

v3y[k] = ((filter[0]*data2[1]) + (filter[1]*data2[0]));

i1y[k] = ((filter[0]*data3[1]) + (filter[1]*data3[0]));

i2y[k] = ((filter[0]*data4[1]) + (filter[1]*data4[0]));

i3y[k] = ((filter[0]*data5[1]) + (filter[1]*data5[0]));

z1y[k] = ((filter[0]*data6[1]) + (filter[1]*data6[0]));

z2y[k] = ((filter[0]*data7[1]) + (filter[1]*data7[0]));

z3y[k] = ((filter[0]*data8[1]) + (filter[1]*data8[0]));

p1y[k] = ((filter[0]*data9[1]) + (filter[1]*data9[0]));

p2y[k] = ((filter[0]*data10[1]) + (filter[1]*data10[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 284

p3y[k] = ((filter[0]*data11[1]) + (filter[1]*data11[0]));

pgy[k] = ((filter[0]*data12[1]) + (filter[1]*data12[0]));

}

else if (k==2)

{

v1y[k] = ((filter[0]*data[2]) + (filter[1]*data[1])+ (filter[2]*data[0]));

v2y[k] = ((filter[0]*data1[2]) + (filter[1]*data1[1])+ (filter[2]*data1[0]));

v3y[k] = ((filter[0]*data2[2]) + (filter[1]*data2[1])+ (filter[2]*data2[0]));

i1y[k] = ((filter[0]*data3[2]) + (filter[1]*data3[1])+ (filter[2]*data3[0]));

i2y[k] = ((filter[0]*data4[2]) + (filter[1]*data4[1])+ (filter[2]*data4[0]));

i3y[k] = ((filter[0]*data5[2]) + (filter[1]*data5[1])+ (filter[2]*data5[0]));

z1y[k] = ((filter[0]*data6[2]) + (filter[1]*data6[1])+ (filter[2]*data6[0]));

z2y[k] = ((filter[0]*data7[2]) + (filter[1]*data7[1])+ (filter[2]*data7[0]));

z3y[k] = ((filter[0]*data8[2]) + (filter[1]*data8[1])+ (filter[2]*data8[0]));

p1y[k] = ((filter[0]*data9[2]) + (filter[1]*data9[1])+ (filter[2]*data9[0]));

p2y[k] = ((filter[0]*data10[2]) + (filter[1]*data10[1])+ (filter[2]*data10[0]));

p3y[k] = ((filter[0]*data11[2]) + (filter[1]*data11[1])+ (filter[2]*data11[0]));

pgy[k] = ((filter[0]*data12[2]) + (filter[1]*data12[1])+ (filter[2]*data12[0]));

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 285

else if (k==3)

{

v1y[k] = ((filter[0]*data[3]) + (filter[1]*data[2])

+ (filter[2]*data[1]) + (filter[3]*data[0]));

v2y[k] = ((filter[0]*data1[3]) + (filter[1]*data1[2])

+ (filter[2]*data1[1]) + (filter[3]*data1[0]));

v3y[k] = ((filter[0]*data2[3]) + (filter[1]*data2[2])

+ (filter[2]*data2[1]) + (filter[3]*data2[0]));

i1y[k] = ((filter[0]*data3[3]) + (filter[1]*data3[2])

+ (filter[2]*data3[1]) + (filter[3]*data3[0]));

i2y[k] = ((filter[0]*data4[3]) + (filter[1]*data4[2])

+ (filter[2]*data4[1]) + (filter[3]*data4[0]));

i3y[k] = ((filter[0]*data5[3]) + (filter[1]*data5[2])

+ (filter[2]*data5[1]) + (filter[3]*data5[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 286

z1y[k] = ((filter[0]*data6[3]) + (filter[1]*data6[2])

+ (filter[2]*data6[1]) + (filter[3]*data6[0]));

z2y[k] = ((filter[0]*data7[3]) + (filter[1]*data7[2])

+ (filter[2]*data7[1]) + (filter[3]*data7[0]));

z3y[k] = ((filter[0]*data8[3]) + (filter[1]*data8[2])

+ (filter[2]*data8[1]) + (filter[3]*data8[0]));

p1y[k] = ((filter[0]*data9[3]) + (filter[1]*data9[2])

+ (filter[2]*data9[1]) + (filter[3]*data9[0]));

p2y[k] = ((filter[0]*data10[3]) + (filter[1]*data10[2])

+ (filter[2]*data10[1]) + (filter[3]*data10[0]));

p3y[k] = ((filter[0]*data11[3]) + (filter[1]*data11[2])

+ (filter[2]*data11[1]) + (filter[3]*data11[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 287

pgy[k] = ((filter[0]*data12[3]) + (filter[1]*data12[2])

+ (filter[2]*data12[1]) + (filter[3]*data12[0]));

}

else if (k==4)

{

v1y[k] = ((filter[0]*data[4]) + (filter[1]*data[3])

+ (filter[2]*data[2]) + (filter[3]*data[1])+ (filter[4]*data[0]));

v2y[k] = ((filter[0]*data1[4]) + (filter[1]*data1[3])

+ (filter[2]*data1[2]) + (filter[3]*data1[1])+ (filter[4]*data1[0]));

v3y[k] = ((filter[0]*data2[4]) + (filter[1]*data2[3])

+ (filter[2]*data2[2]) + (filter[3]*data2[1])+ (filter[4]*data2[0]));

i1y[k] = ((filter[0]*data3[4]) + (filter[1]*data3[3])

+ (filter[2]*data3[2]) + (filter[3]*data3[1])+ (filter[4]*data3[0]));

i2y[k] = ((filter[0]*data4[4]) + (filter[1]*data4[3])

+ (filter[2]*data4[2]) + (filter[3]*data4[1])+ (filter[4]*data4[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 288

i3y[k] = ((filter[0]*data5[4]) + (filter[1]*data5[3])

+ (filter[2]*data5[2]) + (filter[3]*data5[1])+ (filter[4]*data5[0]));

z1y[k] = ((filter[0]*data6[4]) + (filter[1]*data6[3])

+ (filter[2]*data6[2]) + (filter[3]*data6[1])+ (filter[4]*data6[0]));

z2y[k] = ((filter[0]*data7[4]) + (filter[1]*data7[3])

+ (filter[2]*data7[2]) + (filter[3]*data7[1])+ (filter[4]*data7[0]));

z3y[k] = ((filter[0]*data8[4]) + (filter[1]*data8[3])

+ (filter[2]*data8[2]) + (filter[3]*data8[1])+ (filter[4]*data8[0]));

p1y[k] = ((filter[0]*data9[4]) + (filter[1]*data9[3])

+ (filter[2]*data9[2]) + (filter[3]*data9[1])+ (filter[4]*data9[0]));

p2y[k] = ((filter[0]*data10[4]) + (filter[1]*data10[3])

+ (filter[2]*data10[2]) + (filter[3]*data10[1])+ (filter[4]*data10[0]));

p3y[k] = ((filter[0]*data11[4]) + (filter[1]*data11[3])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 289

+ (filter[2]*data11[2]) + (filter[3]*data11[1])+ (filter[4]*data11[0]));

pgy[k] = ((filter[0]*data12[4]) + (filter[1]*data12[3])

+ (filter[2]*data12[2]) + (filter[3]*data12[1])+ (filter[4]*data12[0]));

}

else if (k==5)

{

v1y[k] = ((filter[0]*data[5]) + (filter[1]*data[4])

+ (filter[2]*data[3]) + (filter[3]*data[2])

+ (filter[4]*data[1]) + (filter[5]*data[0]));

v2y[k] = ((filter[0]*data1[5]) + (filter[1]*data1[4])

+ (filter[2]*data1[3]) + (filter[3]*data1[2])

+ (filter[4]*data1[1]) + (filter[5]*data1[0]));

v3y[k] = ((filter[0]*data2[5]) + (filter[1]*data2[4])

+ (filter[2]*data2[3]) + (filter[3]*data2[2])

+ (filter[4]*data2[1]) + (filter[5]*data2[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 290

i1y[k] = ((filter[0]*data3[5]) + (filter[1]*data3[4])

+ (filter[2]*data3[3]) + (filter[3]*data3[2])

+ (filter[4]*data3[1]) + (filter[5]*data3[0]));

i2y[k] = ((filter[0]*data4[5]) + (filter[1]*data4[4])

+ (filter[2]*data4[3]) + (filter[3]*data4[2])

+ (filter[4]*data4[1]) + (filter[5]*data4[0]));

i3y[k] = ((filter[0]*data5[5]) + (filter[1]*data5[4])

+ (filter[2]*data5[3]) + (filter[3]*data5[2])

+ (filter[4]*data5[1]) + (filter[5]*data5[0]));

z1y[k] = ((filter[0]*data6[5]) + (filter[1]*data6[4])

+ (filter[2]*data6[3]) + (filter[3]*data6[2])

+ (filter[4]*data6[1]) + (filter[5]*data6[0]));

z2y[k] = ((filter[0]*data7[5]) + (filter[1]*data7[4])

+ (filter[2]*data7[3]) + (filter[3]*data7[2])

+ (filter[4]*data7[1]) + (filter[5]*data7[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 291

z3y[k] = ((filter[0]*data8[5]) + (filter[1]*data8[4])

+ (filter[2]*data8[3]) + (filter[3]*data8[2])

+ (filter[4]*data8[1]) + (filter[5]*data8[0]));

p1y[k] = ((filter[0]*data9[5]) + (filter[1]*data9[4])

+ (filter[2]*data9[3]) + (filter[3]*data9[2])

+ (filter[4]*data9[1]) + (filter[5]*data9[0]));

p2y[k] = ((filter[0]*data10[5]) + (filter[1]*data10[4])

+ (filter[2]*data10[3]) + (filter[3]*data10[2])

+ (filter[4]*data10[1]) + (filter[5]*data10[0]));

p3y[k] = ((filter[0]*data11[5]) + (filter[1]*data11[4])

+ (filter[2]*data11[3]) + (filter[3]*data11[2])

+ (filter[4]*data11[1]) + (filter[5]*data11[0]));

pgy[k] = ((filter[0]*data12[5]) + (filter[1]*data12[4])

+ (filter[2]*data12[3]) + (filter[3]*data12[2])

+ (filter[4]*data12[1]) + (filter[5]*data12[0]));

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 292

else if (k==6)

{

v1y[k] = ((filter[0]*data[6]) + (filter[1]*data[5])

+ (filter[2]*data[4]) + (filter[3]*data[3])

+ (filter[4]*data[2]) + (filter[5]*data[1])

+ (filter[6]*data[0]));

v2y[k] = ((filter[0]*data1[6]) + (filter[1]*data1[5])

+ (filter[2]*data1[4]) + (filter[3]*data1[3])

+ (filter[4]*data1[2]) + (filter[5]*data1[1])

+ (filter[6]*data1[0]));

v3y[k] = ((filter[0]*data2[6]) + (filter[1]*data2[5])

+ (filter[2]*data2[4]) + (filter[3]*data2[3])

+ (filter[4]*data2[2]) + (filter[5]*data2[1])

+ (filter[6]*data2[0]));

i1y[k] = ((filter[0]*data3[6]) + (filter[1]*data3[5])

+ (filter[2]*data3[4]) + (filter[3]*data3[3])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 293

+ (filter[4]*data3[2]) + (filter[5]*data3[1])

+ (filter[6]*data3[0]));

i2y[k] = ((filter[0]*data4[6]) + (filter[1]*data4[5])

+ (filter[2]*data4[4]) + (filter[3]*data4[3])

+ (filter[4]*data4[2]) + (filter[5]*data4[1])

+ (filter[6]*data4[0]));

i3y[k] = ((filter[0]*data5[6]) + (filter[1]*data5[5])

+ (filter[2]*data5[4]) + (filter[3]*data5[3])

+ (filter[4]*data5[2]) + (filter[5]*data5[1])

+ (filter[6]*data5[0]));

z1y[k] = ((filter[0]*data6[6]) + (filter[1]*data6[5])

+ (filter[2]*data6[4]) + (filter[3]*data6[3])

+ (filter[4]*data6[2]) + (filter[5]*data6[1])

+ (filter[6]*data6[0]));

z2y[k] = ((filter[0]*data7[6]) + (filter[1]*data7[5])

+ (filter[2]*data7[4]) + (filter[3]*data7[3])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 294

+ (filter[4]*data7[2]) + (filter[5]*data7[1])

+ (filter[6]*data7[0]));

z3y[k] = ((filter[0]*data8[6]) + (filter[1]*data8[5])

+ (filter[2]*data8[4]) + (filter[3]*data8[3])

+ (filter[4]*data8[2]) + (filter[5]*data8[1])

+ (filter[6]*data8[0]));

p1y[k] = ((filter[0]*data9[6]) + (filter[1]*data9[5])

+ (filter[2]*data9[4]) + (filter[3]*data9[3])

+ (filter[4]*data9[2]) + (filter[5]*data9[1])

+ (filter[6]*data9[0]));

p2y[k] = ((filter[0]*data10[6]) + (filter[1]*data10[5])

+ (filter[2]*data10[4]) + (filter[3]*data10[3])

+ (filter[4]*data10[2]) + (filter[5]*data10[1])

+ (filter[6]*data10[0]));

p3y[k] = ((filter[0]*data11[6]) + (filter[1]*data11[5])

+ (filter[2]*data11[4]) + (filter[3]*data11[3])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 295

+ (filter[4]*data11[2]) + (filter[5]*data11[1])

+ (filter[6]*data11[0]));

pgy[k] = ((filter[0]*data12[6]) + (filter[1]*data12[5])

+ (filter[2]*data12[4]) + (filter[3]*data12[3])

+ (filter[4]*data12[2]) + (filter[5]*data12[1])

+ (filter[6]*data12[0]));

}

else if (k==7)

{

v1y[k] = ((filter[0]*data[7]) + (filter[1]*data[6])

+ (filter[2]*data[5]) + (filter[3]*data[4])

+ (filter[4]*data[3]) + (filter[5]*data[2])

+ (filter[6]*data[1]) + (filter[7]*data[0]));

v2y[k] = ((filter[0]*data1[7]) + (filter[1]*data1[6])

+ (filter[2]*data1[5]) + (filter[3]*data1[4])

+ (filter[4]*data1[3]) + (filter[5]*data1[2])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 296

+ (filter[6]*data1[1]) + (filter[7]*data1[0]));

v3y[k] = ((filter[0]*data2[7]) + (filter[1]*data2[6])

+ (filter[2]*data2[5]) + (filter[3]*data2[4])

+ (filter[4]*data2[3]) + (filter[5]*data2[2])

+ (filter[6]*data2[1]) + (filter[7]*data2[0]));

i1y[k] = ((filter[0]*data3[7]) + (filter[1]*data3[6])

+ (filter[2]*data3[5]) + (filter[3]*data3[4])

+ (filter[4]*data3[3]) + (filter[5]*data3[2])

+ (filter[6]*data3[1]) + (filter[7]*data3[0]));

i2y[k] = ((filter[0]*data4[7]) + (filter[1]*data4[6])

+ (filter[2]*data4[5]) + (filter[3]*data4[4])

+ (filter[4]*data4[3]) + (filter[5]*data4[2])

+ (filter[6]*data4[1]) + (filter[7]*data4[0]));

i3y[k] = ((filter[0]*data5[7]) + (filter[1]*data5[6])

+ (filter[2]*data5[5]) + (filter[3]*data5[4])

+ (filter[4]*data5[3]) + (filter[5]*data5[2])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 297

+ (filter[6]*data5[1]) + (filter[7]*data5[0]));

z1y[k] = ((filter[0]*data6[7]) + (filter[1]*data6[6])

+ (filter[2]*data6[5]) + (filter[3]*data6[4])

+ (filter[4]*data6[3]) + (filter[5]*data6[2])

+ (filter[6]*data6[1]) + (filter[7]*data6[0]));

z2y[k] = ((filter[0]*data7[7]) + (filter[1]*data7[6])

+ (filter[2]*data7[5]) + (filter[3]*data7[4])

+ (filter[4]*data7[3]) + (filter[5]*data7[2])

+ (filter[6]*data7[1]) + (filter[7]*data7[0]));

z3y[k] = ((filter[0]*data8[7]) + (filter[1]*data8[6])

+ (filter[2]*data8[5]) + (filter[3]*data8[4])

+ (filter[4]*data8[3]) + (filter[5]*data8[2])

+ (filter[6]*data8[1]) + (filter[7]*data8[0]));

p1y[k] = ((filter[0]*data9[7]) + (filter[1]*data9[6])

+ (filter[2]*data9[5]) + (filter[3]*data9[4])

+ (filter[4]*data9[3]) + (filter[5]*data9[2])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 298

+ (filter[6]*data9[1]) + (filter[7]*data9[0]));

p2y[k] = ((filter[0]*data10[7]) + (filter[1]*data10[6])

+ (filter[2]*data10[5]) + (filter[3]*data10[4])

+ (filter[4]*data10[3]) + (filter[5]*data10[2])

+ (filter[6]*data10[1]) + (filter[7]*data10[0]));

p3y[k] = ((filter[0]*data11[7]) + (filter[1]*data11[6])

+ (filter[2]*data11[5]) + (filter[3]*data11[4])

+ (filter[4]*data11[3]) + (filter[5]*data11[2])

+ (filter[6]*data11[1]) + (filter[7]*data11[0]));

pgy[k] = ((filter[0]*data12[7]) + (filter[1]*data12[6])

+ (filter[2]*data12[5]) + (filter[3]*data12[4])

+ (filter[4]*data12[3]) + (filter[5]*data12[2])

+ (filter[6]*data12[1]) + (filter[7]*data12[0]));

}

else if (k==8)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 299

{

v1y[k] = ((filter[0]*data[8]) + (filter[1]*data[7])

+ (filter[2]*data[6]) + (filter[3]*data[5])

+ (filter[4]*data[4]) + (filter[5]*data[3])

+ (filter[6]*data[2]) + (filter[7]*data[1])

+ (filter[8]*data[0]));

v2y[k] = ((filter[0]*data1[8]) + (filter[1]*data1[7])

+ (filter[2]*data1[6]) + (filter[3]*data1[5])

+ (filter[4]*data1[4]) + (filter[5]*data1[3])

+ (filter[6]*data1[2]) + (filter[7]*data1[1])

+ (filter[8]*data1[0]));

v3y[k] = ((filter[0]*data2[8]) + (filter[1]*data2[7])

+ (filter[2]*data2[6]) + (filter[3]*data2[5])

+ (filter[4]*data2[4]) + (filter[5]*data2[3])

+ (filter[6]*data2[2]) + (filter[7]*data2[1])

+ (filter[8]*data2[0]));

i1y[k] = ((filter[0]*data3[8]) + (filter[1]*data3[7])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 300

+ (filter[2]*data3[6]) + (filter[3]*data3[5])

+ (filter[4]*data3[4]) + (filter[5]*data3[3])

+ (filter[6]*data3[2]) + (filter[7]*data3[1])

+ (filter[8]*data3[0]));

i2y[k] = ((filter[0]*data4[8]) + (filter[1]*data4[7])

+ (filter[2]*data4[6]) + (filter[3]*data4[5])

+ (filter[4]*data4[4]) + (filter[5]*data4[3])

+ (filter[6]*data4[2]) + (filter[7]*data4[1])

+ (filter[8]*data4[0]));

i3y[k] = ((filter[0]*data5[8]) + (filter[1]*data5[7])

+ (filter[2]*data5[6]) + (filter[3]*data5[5])

+ (filter[4]*data5[4]) + (filter[5]*data5[3])

+ (filter[6]*data5[2]) + (filter[7]*data5[1])

+ (filter[8]*data5[0]));

z1y[k] = ((filter[0]*data6[8]) + (filter[1]*data6[7])

+ (filter[2]*data6[6]) + (filter[3]*data6[5])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 301

+ (filter[4]*data6[4]) + (filter[5]*data6[3])

+ (filter[6]*data6[2]) + (filter[7]*data6[1])

+ (filter[8]*data6[0]));

z2y[k] = ((filter[0]*data7[8]) + (filter[1]*data7[7])

+ (filter[2]*data7[6]) + (filter[3]*data7[5])

+ (filter[4]*data7[4]) + (filter[5]*data7[3])

+ (filter[6]*data7[2]) + (filter[7]*data7[1])

+ (filter[8]*data7[0]));

z3y[k] = ((filter[0]*data8[8]) + (filter[1]*data8[7])

+ (filter[2]*data8[6]) + (filter[3]*data8[5])

+ (filter[4]*data8[4]) + (filter[5]*data8[3])

+ (filter[6]*data8[2]) + (filter[7]*data8[1])

+ (filter[8]*data8[0]));

p1y[k] = ((filter[0]*data9[8]) + (filter[1]*data9[7])

+ (filter[2]*data9[6]) + (filter[3]*data9[5])

+ (filter[4]*data9[4]) + (filter[5]*data9[3])

+ (filter[6]*data9[2]) + (filter[7]*data9[1])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 302

+ (filter[8]*data9[0]));

p2y[k] = ((filter[0]*data10[8]) + (filter[1]*data10[7])

+ (filter[2]*data10[6]) + (filter[3]*data10[5])

+ (filter[4]*data10[4]) + (filter[5]*data10[3])

+ (filter[6]*data10[2]) + (filter[7]*data10[1])

+ (filter[8]*data10[0]));

p3y[k] = ((filter[0]*data11[8]) + (filter[1]*data11[7])

+ (filter[2]*data11[6]) + (filter[3]*data11[5])

+ (filter[4]*data11[4]) + (filter[5]*data11[3])

+ (filter[6]*data11[2]) + (filter[7]*data11[1])

+ (filter[8]*data11[0]));

pgy[k] = ((filter[0]*data12[8]) + (filter[1]*data12[7])

+ (filter[2]*data12[6]) + (filter[3]*data12[5])

+ (filter[4]*data12[4]) + (filter[5]*data12[3])

+ (filter[6]*data12[2]) + (filter[7]*data12[1])

+ (filter[8]*data12[0]));

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 303

else if (k==9)

{

v1y[k] = ((filter[0]*data[9]) + (filter[1]*data[8])

+ (filter[2]*data[7]) + (filter[3]*data[6])

+ (filter[4]*data[5]) + (filter[5]*data[4])

+ (filter[6]*data[3]) + (filter[7]*data[2])

+ (filter[8]*data[1]) + (filter[9]*data[0]));

v2y[k] = ((filter[0]*data1[9]) + (filter[1]*data1[8])

+ (filter[2]*data1[7]) + (filter[3]*data1[6])

+ (filter[4]*data1[5]) + (filter[5]*data1[4])

+ (filter[6]*data1[3]) + (filter[7]*data1[2])

+ (filter[8]*data1[1]) + (filter[9]*data1[0]));

v3y[k] = ((filter[0]*data2[9]) + (filter[1]*data2[8])

+ (filter[2]*data2[7]) + (filter[3]*data2[6])

+ (filter[4]*data2[5]) + (filter[5]*data2[4])

+ (filter[6]*data2[3]) + (filter[7]*data2[2])

+ (filter[8]*data2[1]) + (filter[9]*data2[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 304

i1y[k] = ((filter[0]*data3[9]) + (filter[1]*data3[8])

+ (filter[2]*data3[7]) + (filter[3]*data3[6])

+ (filter[4]*data3[5]) + (filter[5]*data3[4])

+ (filter[6]*data3[3]) + (filter[7]*data3[2])

+ (filter[8]*data3[1]) + (filter[9]*data3[0]));

i2y[k] = ((filter[0]*data4[9]) + (filter[1]*data4[8])

+ (filter[2]*data4[7]) + (filter[3]*data4[6])

+ (filter[4]*data4[5]) + (filter[5]*data4[4])

+ (filter[6]*data4[3]) + (filter[7]*data4[2])

+ (filter[8]*data4[1]) + (filter[9]*data4[0]));

i3y[k] = ((filter[0]*data5[9]) + (filter[1]*data5[8])

+ (filter[2]*data5[7]) + (filter[3]*data5[6])

+ (filter[4]*data5[5]) + (filter[5]*data5[4])

+ (filter[6]*data5[3]) + (filter[7]*data5[2])

+ (filter[8]*data5[1]) + (filter[9]*data5[0]));

z1y[k] = ((filter[0]*data6[9]) + (filter[1]*data6[8])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 305

+ (filter[2]*data6[7]) + (filter[3]*data6[6])

+ (filter[4]*data6[5]) + (filter[5]*data6[4])

+ (filter[6]*data6[3]) + (filter[7]*data6[2])

+ (filter[8]*data6[1]) + (filter[9]*data6[0]));

z2y[k] = ((filter[0]*data7[9]) + (filter[1]*data7[8])

+ (filter[2]*data7[7]) + (filter[3]*data7[6])

+ (filter[4]*data7[5]) + (filter[5]*data7[4])

+ (filter[6]*data7[3]) + (filter[7]*data7[2])

+ (filter[8]*data7[1]) + (filter[9]*data7[0]));

z3y[k] = ((filter[0]*data8[9]) + (filter[1]*data8[8])

+ (filter[2]*data8[7]) + (filter[3]*data8[6])

+ (filter[4]*data8[5]) + (filter[5]*data8[4])

+ (filter[6]*data8[3]) + (filter[7]*data8[2])

+ (filter[8]*data8[1]) + (filter[9]*data8[0]));

p1y[k] = ((filter[0]*data9[9]) + (filter[1]*data9[8])

+ (filter[2]*data9[7]) + (filter[3]*data9[6])

+ (filter[4]*data9[5]) + (filter[5]*data9[4])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 306

+ (filter[6]*data9[3]) + (filter[7]*data9[2])

+ (filter[8]*data9[1]) + (filter[9]*data9[0]));

p2y[k] = ((filter[0]*data10[9]) + (filter[1]*data10[8])

+ (filter[2]*data10[7]) + (filter[3]*data10[6])

+ (filter[4]*data10[5]) + (filter[5]*data10[4])

+ (filter[6]*data10[3]) + (filter[7]*data10[2])

+ (filter[8]*data10[1]) + (filter[9]*data10[0]));

p3y[k] = ((filter[0]*data11[9]) + (filter[1]*data11[8])

+ (filter[2]*data11[7]) + (filter[3]*data11[6])

+ (filter[4]*data11[5]) + (filter[5]*data11[4])

+ (filter[6]*data11[3]) + (filter[7]*data11[2])

+ (filter[8]*data11[1]) + (filter[9]*data11[0]));

pgy[k] = ((filter[0]*data12[9]) + (filter[1]*data12[8])

+ (filter[2]*data12[7]) + (filter[3]*data12[6])

+ (filter[4]*data12[5]) + (filter[5]*data12[4])

+ (filter[6]*data12[3]) + (filter[7]*data12[2])

+ (filter[8]*data12[1]) + (filter[9]*data12[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 307

}

else if (k==10)

{

v1y[k] = ((filter[0]*data[10]) + (filter[1]*data[9])

+ (filter[2]*data[8]) + (filter[3]*data[7])

+ (filter[4]*data[6]) + (filter[5]*data[5])

+ (filter[6]*data[4]) + (filter[7]*data[3])

+ (filter[8]*data[2]) + (filter[9]*data[1])

+ (filter[10]*data[0]));

v2y[k] = ((filter[0]*data1[10]) + (filter[1]*data1[9])

+ (filter[2]*data1[8]) + (filter[3]*data1[7])

+ (filter[4]*data1[6]) + (filter[5]*data1[5])

+ (filter[6]*data1[4]) + (filter[7]*data1[3])

+ (filter[8]*data1[2]) + (filter[9]*data1[1])

+ (filter[10]*data1[0]));

v3y[k] = ((filter[0]*data2[10]) + (filter[1]*data2[9])

+ (filter[2]*data2[8]) + (filter[3]*data2[7])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 308

+ (filter[4]*data2[6]) + (filter[5]*data2[5])

+ (filter[6]*data2[4]) + (filter[7]*data2[3])

+ (filter[8]*data2[2]) + (filter[9]*data2[1])

+ (filter[10]*data2[0]));

i1y[k] = ((filter[0]*data3[10]) + (filter[1]*data3[9])

+ (filter[2]*data3[8]) + (filter[3]*data3[7])

+ (filter[4]*data3[6]) + (filter[5]*data3[5])

+ (filter[6]*data3[4]) + (filter[7]*data3[3])

+ (filter[8]*data3[2]) + (filter[9]*data3[1])

+ (filter[10]*data3[0]));

i2y[k] = ((filter[0]*data4[10]) + (filter[1]*data4[9])

+ (filter[2]*data4[8]) + (filter[3]*data4[7])

+ (filter[4]*data4[6]) + (filter[5]*data4[5])

+ (filter[6]*data4[4]) + (filter[7]*data4[3])

+ (filter[8]*data4[2]) + (filter[9]*data4[1])

+ (filter[10]*data4[0]));

i3y[k] = ((filter[0]*data5[10]) + (filter[1]*data5[9])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 309

+ (filter[2]*data5[8]) + (filter[3]*data5[7])

+ (filter[4]*data5[6]) + (filter[5]*data5[5])

+ (filter[6]*data5[4]) + (filter[7]*data5[3])

+ (filter[8]*data5[2]) + (filter[9]*data5[1])

+ (filter[10]*data5[0]));

z1y[k] = ((filter[0]*data6[10]) + (filter[1]*data6[9])

+ (filter[2]*data6[8]) + (filter[3]*data6[7])

+ (filter[4]*data6[6]) + (filter[5]*data6[5])

+ (filter[6]*data6[4]) + (filter[7]*data6[3])

+ (filter[8]*data6[2]) + (filter[9]*data6[1])

+ (filter[10]*data6[0]));

z2y[k] = ((filter[0]*data7[10]) + (filter[1]*data7[9])

+ (filter[2]*data7[8]) + (filter[3]*data7[7])

+ (filter[4]*data7[6]) + (filter[5]*data7[5])

+ (filter[6]*data7[4]) + (filter[7]*data7[3])

+ (filter[8]*data7[2]) + (filter[9]*data7[1])

+ (filter[10]*data7[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 310

z3y[k] = ((filter[0]*data8[10]) + (filter[1]*data8[9])

+ (filter[2]*data8[8]) + (filter[3]*data8[7])

+ (filter[4]*data8[6]) + (filter[5]*data8[5])

+ (filter[6]*data8[4]) + (filter[7]*data8[3])

+ (filter[8]*data8[2]) + (filter[9]*data8[1])

+ (filter[10]*data8[0]));

p1y[k] = ((filter[0]*data9[10]) + (filter[1]*data9[9])

+ (filter[2]*data9[8]) + (filter[3]*data9[7])

+ (filter[4]*data9[6]) + (filter[5]*data9[5])

+ (filter[6]*data9[4]) + (filter[7]*data9[3])

+ (filter[8]*data9[2]) + (filter[9]*data9[1])

+ (filter[10]*data9[0]));

p2y[k] = ((filter[0]*data10[10]) + (filter[1]*data10[9])

+ (filter[2]*data10[8]) + (filter[3]*data10[7])

+ (filter[4]*data10[6]) + (filter[5]*data10[5])

+ (filter[6]*data10[4]) + (filter[7]*data10[3])

+ (filter[8]*data10[2]) + (filter[9]*data10[1])

+ (filter[10]*data10[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 311

p3y[k] = ((filter[0]*data11[10]) + (filter[1]*data11[9])

+ (filter[2]*data11[8]) + (filter[3]*data11[7])

+ (filter[4]*data11[6]) + (filter[5]*data11[5])

+ (filter[6]*data11[4]) + (filter[7]*data11[3])

+ (filter[8]*data11[2]) + (filter[9]*data11[1])

+ (filter[10]*data11[0]));

pgy[k] = ((filter[0]*data12[10]) + (filter[1]*data12[9])

+ (filter[2]*data12[8]) + (filter[3]*data12[7])

+ (filter[4]*data12[6]) + (filter[5]*data12[5])

+ (filter[6]*data12[4]) + (filter[7]*data12[3])

+ (filter[8]*data12[2]) + (filter[9]*data12[1])

+ (filter[10]*data12[0]));

}

else if (k==11)

{

v1y[k] = ((filter[0]*data[11]) + (filter[1]*data[10])

+ (filter[2]*data[9]) + (filter[3]*data[8])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 312

+ (filter[4]*data[7]) + (filter[5]*data[6])

+ (filter[6]*data[5]) + (filter[7]*data[4])

+ (filter[8]*data[3]) + (filter[9]*data[2])

+ (filter[10]*data[1]) + (filter[11]*data[0]));

v2y[k] = ((filter[0]*data1[11]) + (filter[1]*data1[10])

+ (filter[2]*data1[9]) + (filter[3]*data1[8])

+ (filter[4]*data1[7]) + (filter[5]*data1[6])

+ (filter[6]*data1[5]) + (filter[7]*data1[4])

+ (filter[8]*data1[3]) + (filter[9]*data1[2])

+ (filter[10]*data1[1]) + (filter[11]*data1[0]));

v3y[k] = ((filter[0]*data2[11]) + (filter[1]*data2[10])

+ (filter[2]*data2[9]) + (filter[3]*data2[8])

+ (filter[4]*data2[7]) + (filter[5]*data2[6])

+ (filter[6]*data2[5]) + (filter[7]*data2[4])

+ (filter[8]*data2[3]) + (filter[9]*data2[2])

+ (filter[10]*data2[1]) + (filter[11]*data2[0]));

i1y[k] = ((filter[0]*data3[11]) + (filter[1]*data3[10])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 313

+ (filter[2]*data3[9]) + (filter[3]*data3[8])

+ (filter[4]*data3[7]) + (filter[5]*data3[6])

+ (filter[6]*data3[5]) + (filter[7]*data3[4])

+ (filter[8]*data3[3]) + (filter[9]*data3[2])

+ (filter[10]*data3[1]) + (filter[11]*data3[0]));

i2y[k] = ((filter[0]*data4[11]) + (filter[1]*data4[10])

+ (filter[2]*data4[9]) + (filter[3]*data4[8])

+ (filter[4]*data4[7]) + (filter[5]*data4[6])

+ (filter[6]*data4[5]) + (filter[7]*data4[4])

+ (filter[8]*data4[3]) + (filter[9]*data4[2])

+ (filter[10]*data4[1]) + (filter[11]*data4[0]));

i3y[k] = ((filter[0]*data5[11]) + (filter[1]*data5[10])

+ (filter[2]*data5[9]) + (filter[3]*data5[8])

+ (filter[4]*data5[7]) + (filter[5]*data5[6])

+ (filter[6]*data5[5]) + (filter[7]*data5[4])

+ (filter[8]*data5[3]) + (filter[9]*data5[2])

+ (filter[10]*data5[1]) + (filter[11]*data5[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 314

z1y[k] = ((filter[0]*data6[11]) + (filter[1]*data6[10])

+ (filter[2]*data6[9]) + (filter[3]*data6[8])

+ (filter[4]*data6[7]) + (filter[5]*data6[6])

+ (filter[6]*data6[5]) + (filter[7]*data6[4])

+ (filter[8]*data6[3]) + (filter[9]*data6[2])

+ (filter[10]*data6[1]) + (filter[11]*data6[0]));

z2y[k] = ((filter[0]*data7[11]) + (filter[1]*data7[10])

+ (filter[2]*data7[9]) + (filter[3]*data7[8])

+ (filter[4]*data7[7]) + (filter[5]*data7[6])

+ (filter[6]*data7[5]) + (filter[7]*data7[4])

+ (filter[8]*data7[3]) + (filter[9]*data7[2])

+ (filter[10]*data7[1]) + (filter[11]*data7[0]));

z3y[k] = ((filter[0]*data8[11]) + (filter[1]*data8[10])

+ (filter[2]*data8[9]) + (filter[3]*data8[8])

+ (filter[4]*data8[7]) + (filter[5]*data8[6])

+ (filter[6]*data8[5]) + (filter[7]*data8[4])

+ (filter[8]*data8[3]) + (filter[9]*data8[2])

+ (filter[10]*data8[1]) + (filter[11]*data8[0]));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 315

p1y[k] = ((filter[0]*data9[11]) + (filter[1]*data9[10])

+ (filter[2]*data9[9]) + (filter[3]*data9[8])

+ (filter[4]*data9[7]) + (filter[5]*data9[6])

+ (filter[6]*data9[5]) + (filter[7]*data9[4])

+ (filter[8]*data9[3]) + (filter[9]*data9[2])

+ (filter[10]*data9[1]) + (filter[11]*data9[0]));

p2y[k] = ((filter[0]*data10[11]) + (filter[1]*data10[10])

+ (filter[2]*data10[9]) + (filter[3]*data10[8])

+ (filter[4]*data10[7]) + (filter[5]*data10[6])

+ (filter[6]*data10[5]) + (filter[7]*data10[4])

+ (filter[8]*data10[3]) + (filter[9]*data10[2])

+ (filter[10]*data10[1]) + (filter[11]*data10[0]));

p3y[k] = ((filter[0]*data11[11]) + (filter[1]*data11[10])

+ (filter[2]*data11[9]) + (filter[3]*data11[8])

+ (filter[4]*data11[7]) + (filter[5]*data11[6])

+ (filter[6]*data11[5]) + (filter[7]*data11[4])

+ (filter[8]*data11[3]) + (filter[9]*data11[2])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 316

+ (filter[10]*data11[1]) + (filter[11]*data11[0]));

pgy[k] = ((filter[0]*data12[11]) + (filter[1]*data12[10])

+ (filter[2]*data12[9]) + (filter[3]*data12[8])

+ (filter[4]*data12[7]) + (filter[5]*data12[6])

+ (filter[6]*data12[5]) + (filter[7]*data12[4])

+ (filter[8]*data12[3]) + (filter[9]*data12[2])

+ (filter[10]*data12[1]) + (filter[11]*data12[0]));

}

Var =(v1y[k]*(cos(k*(PI/6))));

Varr +=((2.0/12.0)*(Var));

Vai =(v1y[k]*(sin(k*(PI/6))));

Vaii +=((-2.0/12.0)*(Vai));

Vbr =(v2y[k]*(cos(k*(PI/6))));

Vbrr +=((2.0/12.0)*(Vbr));

Vbi =(v2y[k]*(sin(k*(PI/6))));

Vbii +=((-2.0/12.0)*(Vbi));

Vcr =(v3y[k]*(cos(k*(PI/6))));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 317

Vcrr +=((2.0/12.0)*(Vcr));

Vci =(v3y[k]*(sin(k*(PI/6))));

Vcii +=((-2.0/12.0)*(Vci));

Iar =(i1y[k]*(cos(k*(PI/6))));

Iarr +=((2.0/12.0)*(Iar));

Iai =(i1y[k]*(sin(k*(PI/6))));

Iaii +=((-2.0/12.0)*(Iai));

Ibr =(i2y[k]*(cos(k*(PI/6))));

Ibrr +=((2.0/12.0)*(Ibr));

Ibi =(i2y[k]*(sin(k*(PI/6))));

Ibii +=((-2.0/12.0)*(Ibi));

Icr =(i3y[k]*(cos(k*(PI/6))));

Icrr +=((2.0/12.0)*(Icr));

Ici =(i3y[k]*(sin(k*(PI/6))));

Icii +=((-2.0/12.0)*(Ici));

Zar =(z1y[k]*(cos(k*(PI/6))));

Zarr +=((2.0/12.0)*(Zar));

Zai =(z1y[k]*(sin(k*(PI/6))));

Zaii +=((-2.0/12.0)*(Zai));

Zbr =(z2y[k]*(cos(k*(PI/6))));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 318

Zbrr +=((2.0/12.0)*(Zbr));

Zbi =(z2y[k]*(sin(k*(PI/6))));

Zbii +=((-2.0/12.0)*(Zbi));

Zcr =(z3y[k]*(cos(k*(PI/6))));

Zcrr +=((2.0/12.0)*(Zcr));

Zci =(z3y[k]*(sin(k*(PI/6))));

Zcii +=((-2.0/12.0)*(Zci));

Par =(p1y[k]*(cos(k*(PI/6))));

Parr +=((2.0/12.0)*(Par));

Pai =(p1y[k]*(sin(k*(PI/6))));

Paii +=((-2.0/12.0)*(Pai));

Pbr =(p2y[k]*(cos(k*(PI/6))));

Pbrr +=((2.0/12.0)*(Pbr));

Pbi =(p2y[k]*(sin(k*(PI/6))));

Pbii +=((-2.0/12.0)*(Pbi));

Pcr =(p3y[k]*(cos(k*(PI/6))));

Pcrr +=((2.0/12.0)*(Pcr));

Pci =(p3y[k]*(sin(k*(PI/6))));

Pcii +=((-2.0/12.0)*(Pci));

Pgr =(pgy[k]*(cos(k*(PI/6))));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 319

Pgrr +=((2.0/12.0)*(Pgr));

Pgi =(pgy[k]*(sin(k*(PI/6))));

Pgii +=((-2.0/12.0)*(Pgi));

outfile_1 = fopen("v1y.m","a");

fprintf(outfile_1, "%le\n",v1y[k]);

fclose(outfile_1);

outfile_2 = fopen("v2y.m","a");

fprintf(outfile_2, "%le\n",v2y[k]);

fclose(outfile_2);

outfile_3 = fopen("v3y.m","a");

fprintf(outfile_3, "%le\n",v3y[k]);

fclose(outfile_3);

outfile_4 = fopen("i1y.m","a");

fprintf(outfile_4, "%le\n",i1y[k]);

fclose(outfile_4);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 320

outfile_5 = fopen("i2y.m","a");

fprintf(outfile_5, "%le\n",i2y[k]);

fclose(outfile_5);

outfile_6 = fopen("i3y.m","a");

fprintf(outfile_6, "%le\n",i3y[k]);

fclose(outfile_6);

outfile_7 = fopen("z1y.m","a");

fprintf(outfile_7, "%le\n",z1y[k]);

fclose(outfile_7);

outfile_8 = fopen("z2y.m","a");

fprintf(outfile_8, "%le\n",z2y[k]);

fclose(outfile_8);

outfile_9 = fopen("z3y.m","a");

fprintf(outfile_9, "%le\n",z3y[k]);

fclose(outfile_9);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 321

outfile_10 = fopen("p1y.m","a");

fprintf(outfile_10, "%le\n",p1y[k]);

fclose(outfile_10);

outfile_11 = fopen("p2y.m","a");

fprintf(outfile_11, "%le\n",p2y[k]);

fclose(outfile_11);

outfile_12 = fopen("p3y.m","a");

fprintf(outfile_12, "%le\n",p3y[k]);

fclose(outfile_12);

outfile_13 = fopen("pgy.m","a");

fprintf(outfile_13, "%le\n",pgy[k]);

fclose(outfile_13);

infile_1 = fopen("va.m","a");

fprintf(infile_1, "%le, %le\n",Varr,Vaii);

fclose(infile_1);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 322

infile_2 = fopen("vb.m","a");

fprintf(infile_2, "%le, %le\n",Vbrr,Vbii);

fclose(infile_2);

infile_3 = fopen("vc.m","a");

fprintf(infile_3, "%le, %le\n",Vcrr,Vcii);

fclose(infile_3);

infile_4 = fopen("ia.m","a");

fprintf(infile_4, "%le, %le\n",Iarr,Iaii);

fclose(infile_4);

infile_5 = fopen("ib.m","a");

fprintf(infile_5, "%le, %le\n",Ibrr,Ibii);

fclose(infile_5);

infile_6 = fopen("ic.m","a");

fprintf(infile_6, "%le, %le\n",Icrr,Icii);

fclose(infile_6);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 323

infile_7 = fopen("za.m","a");

fprintf(infile_7, "%le, %le\n",Zarr,Zaii);

fclose(infile_7);

infile_8 = fopen("zb.m","a");

fprintf(infile_8, "%le, %le\n",Zbrr,Zbii);

fclose(infile_8);

infile_9 = fopen("zc.m","a");

fprintf(infile_9, "%le, %le\n",Zcrr,Zcii);

fclose(infile_9);

infile_10 = fopen("pa.m","a");

fprintf(infile_10, "%le, %le\n",Parr,Paii);

fclose(infile_10);

infile_11 = fopen("pb.m","a");

fprintf(infile_11, "%le, %le\n",Pbrr,Pbii);

fclose(infile_11);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 324

infile_12 = fopen("pc.m","a");

fprintf(infile_12, "%le, %le\n",Pcrr,Pcii);

fclose(infile_12);

infile_13 = fopen("pg.m","a");

fprintf(infile_13, "%le, %le\n",Pgrr,Pgii);

fclose(infile_13);

x_outfile = fopen("va_del.m","a");

fprintf(x_outfile, "%le, %le\n",Varr,Vaii);

fclose(x_outfile);

y_outfile = fopen("vb_del.m","a");

fprintf(y_outfile, "%le, %le\n",Vbrr,Vbii);

fclose(y_outfile);

z_outfile = fopen("vc_del.m","a");

fprintf(z_outfile, "%le, %le\n",Vcrr,Vcii);

fclose(z_outfile);

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 325

/*The recursion process will return here*/

Var_old = Varr;

Vai_old = Vaii;

Var_past = Varr;

Vai_past = Vaii;

Vbr_old = Vbrr;

Vbi_old = Vbii;

Vbr_past = Vbrr;

Vbi_past = Vbii;

Vcr_old = Vcrr;

Vci_old = Vcii;

Vcr_past = Vcrr;

Vci_past = Vcii;

Iar_old = Iarr;

Iai_old = Iaii;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 326

Ibr_old = Ibrr;

Ibi_old = Ibii;

Icr_old = Icrr;

Ici_old = Icii;

Zar_old = Zarr;

Zai_old = Zaii;

Zbr_old = Zbrr;

Zbi_old = Zbii;

Zcr_old = Zcrr;

Zci_old = Zcii;

Par_old = Parr;

Pai_old = Paii;

Pbr_old = Pbrr;

Pbi_old = Pbii;

Pcr_old = Pcrr;

Pci_old = Pcii;

Pgr_old = Pgrr;

Pgi_old = Pgii;

for (k = N; k < Q; k++)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 327

{

v1y[k] = ((filter[0]*data[k]) + (filter[1]*data[k-1])

+ (filter[2]*data[k-2]) + (filter[3]*data[k-3])

+ (filter[4]*data[k-4]) + (filter[5]*data[k-5])

+ (filter[6]*data[k-6]) + (filter[7]*data[k-7])

+ (filter[8]*data[k-8]) +(filter[9]*data[k-9])

+ (filter[10]*data[k-10])+(filter[11]*data[k-11]));

v2y[k] = ((filter[0]*data1[k]) + (filter[1]*data1[k-1])

+ (filter[2]*data1[k-2]) + (filter[3]*data1[k-3])

+ (filter[4]*data1[k-4]) + (filter[5]*data1[k-5])

+ (filter[6]*data1[k-6]) + (filter[7]*data1[k-7])

+ (filter[8]*data1[k-8]) +(filter[9]*data1[k-9])

+ (filter[10]*data1[k-10])+(filter[11]*data1[k-11]));

v3y[k] = ((filter[0]*data2[k]) + (filter[1]*data2[k-1])

+ (filter[2]*data2[k-2]) + (filter[3]*data2[k-3])

+ (filter[4]*data2[k-4]) + (filter[5]*data2[k-5])

+ (filter[6]*data2[k-6]) + (filter[7]*data2[k-7])

+ (filter[8]*data2[k-8]) +(filter[9]*data2[k-9])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 328

+ (filter[10]*data2[k-10])+(filter[11]*data2[k-11]));

i1y[k] = ((filter[0]*data3[k]) + (filter[1]*data3[k-1])

+ (filter[2]*data3[k-2]) + (filter[3]*data3[k-3])

+ (filter[4]*data3[k-4]) + (filter[5]*data3[k-5])

+ (filter[6]*data3[k-6]) + (filter[7]*data3[k-7])

+ (filter[8]*data3[k-8]) +(filter[9]*data3[k-9])

+ (filter[10]*data3[k-10])+(filter[11]*data3[k-11]));

i2y[k] = ((filter[0]*data4[k]) + (filter[1]*data4[k-1])

+ (filter[2]*data4[k-2]) + (filter[3]*data4[k-3])

+ (filter[4]*data4[k-4]) + (filter[5]*data4[k-5])

+ (filter[6]*data4[k-6]) + (filter[7]*data4[k-7])

+ (filter[8]*data4[k-8]) +(filter[9]*data4[k-9])

+ (filter[10]*data4[k-10])+(filter[11]*data4[k-11]));

i3y[k] = ((filter[0]*data5[k]) + (filter[1]*data5[k-1])

+ (filter[2]*data5[k-2]) + (filter[3]*data5[k-3])

+ (filter[4]*data5[k-4]) + (filter[5]*data5[k-5])

+ (filter[6]*data5[k-6]) + (filter[7]*data5[k-7])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 329

+ (filter[8]*data5[k-8]) +(filter[9]*data5[k-9])

+ (filter[10]*data5[k-10])+(filter[11]*data5[k-11]));

z1y[k] = ((filter[0]*data6[k]) + (filter[1]*data6[k-1])

+ (filter[2]*data6[k-2]) + (filter[3]*data6[k-3])

+ (filter[4]*data6[k-4]) + (filter[5]*data6[k-5])

+ (filter[6]*data6[k-6]) + (filter[7]*data6[k-7])

+ (filter[8]*data6[k-8]) +(filter[9]*data6[k-9])

+ (filter[10]*data6[k-10])+(filter[11]*data6[k-11]));

z2y[k] = ((filter[0]*data7[k]) + (filter[1]*data7[k-1])

+ (filter[2]*data7[k-2]) + (filter[3]*data7[k-3])

+ (filter[4]*data7[k-4]) + (filter[5]*data7[k-5])

+ (filter[6]*data7[k-6]) + (filter[7]*data7[k-7])

+ (filter[8]*data7[k-8]) +(filter[9]*data7[k-9])

+ (filter[10]*data7[k-10])+(filter[11]*data7[k-11]));

z3y[k] = ((filter[0]*data8[k]) + (filter[1]*data8[k-1])

+ (filter[2]*data8[k-2]) + (filter[3]*data8[k-3])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 330

+ (filter[4]*data8[k-4]) + (filter[5]*data8[k-5])

+ (filter[6]*data8[k-6]) + (filter[7]*data8[k-7])

+ (filter[8]*data8[k-8]) +(filter[9]*data8[k-9])

+ (filter[10]*data8[k-10])+(filter[11]*data8[k-11]));

p1y[k] = ((filter[0]*data9[k]) + (filter[1]*data9[k-1])

+ (filter[2]*data9[k-2]) + (filter[3]*data9[k-3])

+ (filter[4]*data9[k-4]) + (filter[5]*data9[k-5])

+ (filter[6]*data9[k-6]) + (filter[7]*data9[k-7])

+ (filter[8]*data9[k-8]) +(filter[9]*data9[k-9])

+ (filter[10]*data9[k-10])+(filter[11]*data9[k-11]));

p2y[k] = ((filter[0]*data10[k]) + (filter[1]*data10[k-1])

+ (filter[2]*data10[k-2]) + (filter[3]*data10[k-3])

+ (filter[4]*data10[k-4]) + (filter[5]*data10[k-5])

+ (filter[6]*data10[k-6]) + (filter[7]*data10[k-7])

+ (filter[8]*data10[k-8]) +(filter[9]*data10[k-9])

+ (filter[10]*data10[k-10])+(filter[11]*data10[k-11]));

p3y[k] = ((filter[0]*data11[k]) + (filter[1]*data11[k-1])

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 331

+ (filter[2]*data11[k-2]) + (filter[3]*data11[k-3])

+ (filter[4]*data11[k-4]) + (filter[5]*data11[k-5])

+ (filter[6]*data11[k-6]) + (filter[7]*data11[k-7])

+ (filter[8]*data11[k-8]) +(filter[9]*data11[k-9])

+ (filter[10]*data11[k-10])+(filter[11]*data11[k-11]));

pgy[k] = ((filter[0]*data12[k]) + (filter[1]*data12[k-1])

+ (filter[2]*data12[k-2]) + (filter[3]*data12[k-3])

+ (filter[4]*data12[k-4]) + (filter[5]*data12[k-5])

+ (filter[6]*data12[k-6]) + (filter[7]*data12[k-7])

+ (filter[8]*data12[k-8]) +(filter[9]*data12[k-9])

+ (filter[10]*data12[k-10])+(filter[11]*data12[k-11]));

Var_new = Var_old + ((2.0/12.0)*((v1y[k]-v1y[k-N])*(cos((k)*(PI/6)))));

Vai_new = Vai_old - ((2.0/12.0)*((v1y[k]-v1y[k-N])*(sin((k)*(PI/6)))));

Var_del = Var_past + ((2.0/12.0)*((v1y[k]-v1y[k-N])*(cos((k-N)*(PI/6)))));

Vai_del = Vai_past - ((2.0/12.0)*((v1y[k]-v1y[k-N])*(sin((k-N)*(PI/6)))));

Vbr_new = Vbr_old + ((2.0/12.0)*((v2y[k]-v2y[k-N])*(cos((k)*(PI/6)))));

Vbi_new = Vbi_old - ((2.0/12.0)*((v2y[k]-v2y[k-N])*(sin((k)*(PI/6)))));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 332

Vbr_del = Vbr_past + ((2.0/12.0)*((v2y[k]-v2y[k-N])*(cos((k-N)*(PI/6)))));

Vbi_del = Vbi_past - ((2.0/12.0)*((v2y[k]-v2y[k-N])*(sin((k-N)*(PI/6)))));

Vcr_new = Vcr_old + ((2.0/12.0)*((v3y[k]-v3y[k-N])*(cos((k)*(PI/6)))));

Vci_new = Vci_old - ((2.0/12.0)*((v3y[k]-v3y[k-N])*(sin((k)*(PI/6)))));

Vcr_del = Vcr_past + ((2.0/12.0)*((v3y[k]-v3y[k-N])*(cos((k-N)*(PI/6)))));

Vci_del = Vci_past - ((2.0/12.0)*((v3y[k]-v3y[k-N])*(sin((k-N)*(PI/6)))));

Iar_new = Iar_old + ((2.0/12.0)*((i1y[k]-i1y[k-N])*(cos((k)*(PI/6)))));

Iai_new = Iai_old - ((2.0/12.0)*((i1y[k]-i1y[k-N])*(sin((k)*(PI/6)))));

Ibr_new = Ibr_old + ((2.0/12.0)*((i2y[k]-i2y[k-N])*(cos((k)*(PI/6)))));

Ibi_new = Ibi_old - ((2.0/12.0)*((i2y[k]-i2y[k-N])*(sin((k)*(PI/6)))));

Icr_new = Icr_old + ((2.0/12.0)*((i3y[k]-i3y[k-N])*(cos((k)*(PI/6)))));

Ici_new = Ici_old - ((2.0/12.0)*((i3y[k]-i3y[k-N])*(sin((k)*(PI/6)))));

Zar_new = Zar_old + ((2.0/12.0)*((z1y[k]-z1y[k-N])*(cos((k)*(PI/6)))));

Zai_new = Zai_old - ((2.0/12.0)*((z1y[k]-z1y[k-N])*(sin((k)*(PI/6)))));

Zbr_new = Zbr_old + ((2.0/12.0)*((z2y[k]-z2y[k-N])*(cos((k)*(PI/6)))));

Zbi_new = Zbi_old - ((2.0/12.0)*((z2y[k]-z2y[k-N])*(sin((k)*(PI/6)))));

Zcr_new = Zcr_old + ((2.0/12.0)*((z3y[k]-z3y[k-N])*(cos((k)*(PI/6)))));

Zci_new = Zci_old - ((2.0/12.0)*((z3y[k]-z3y[k-N])*(sin((k)*(PI/6)))));

Par_new = Par_old + ((2.0/12.0)*((p1y[k]-p1y[k-N])*(cos((k)*(PI/6)))));

Pai_new = Pai_old - ((2.0/12.0)*((p1y[k]-p1y[k-N])*(sin((k)*(PI/6)))));

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 333

Pbr_new = Pbr_old + ((2.0/12.0)*((p2y[k]-p2y[k-N])*(cos((k)*(PI/6)))));

Pbi_new = Pbi_old - ((2.0/12.0)*((p2y[k]-p2y[k-N])*(sin((k)*(PI/6)))));

Pcr_new = Pcr_old + ((2.0/12.0)*((p3y[k]-p3y[k-N])*(cos((k)*(PI/6)))));

Pci_new = Pci_old - ((2.0/12.0)*((p3y[k]-p3y[k-N])*(sin((k)*(PI/6)))));

Pgr_new = Pgr_old + ((2.0/12.0)*((pgy[k]-pgy[k-N])*(cos((k)*(PI/6)))));

Pgi_new = Pgi_old - ((2.0/12.0)*((pgy[k]-pgy[k-N])*(sin((k)*(PI/6)))));

/* The end of Phasor Computation */

outfile_1 = fopen("v1y.m","a");

fprintf(outfile_1, "%le\n",v1y[k]);

fclose(outfile_1);

outfile_2 = fopen("v2y.m","a");

fprintf(outfile_2, "%le\n",v2y[k]);

fclose(outfile_2);

outfile_3 = fopen("v3y.m","a");

fprintf(outfile_3, "%le\n",v3y[k]);

fclose(outfile_3);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 334

outfile_4 = fopen("i1y.m","a");

fprintf(outfile_4, "%le\n",i1y[k]);

fclose(outfile_4);

outfile_5 = fopen("i2y.m","a");

fprintf(outfile_5, "%le\n",i2y[k]);

fclose(outfile_5);

outfile_6 = fopen("i3y.m","a");

fprintf(outfile_6, "%le\n",i3y[k]);

fclose(outfile_6);

outfile_7 = fopen("z1y.m","a");

fprintf(outfile_7, "%le\n",z1y[k]);

fclose(outfile_7);

outfile_8 = fopen("z2y.m","a");

fprintf(outfile_8, "%le\n",z2y[k]);

fclose(outfile_8);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 335

outfile_9 = fopen("z3y.m","a");

fprintf(outfile_9, "%le\n",z3y[k]);

fclose(outfile_9);

outfile_10 = fopen("p1y.m","a");

fprintf(outfile_10, "%le\n",p1y[k]);

fclose(outfile_10);

outfile_11 = fopen("p2y.m","a");

fprintf(outfile_11, "%le\n",p2y[k]);

fclose(outfile_11);

outfile_12 = fopen("p3y.m","a");

fprintf(outfile_12, "%le\n",p3y[k]);

fclose(outfile_12);

outfile_13 = fopen("pgy.m","a");

fprintf(outfile_13, "%le\n",pgy[k]);

fclose(outfile_13);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 336

infile_1 = fopen("va.m","a");

fprintf(infile_1, "%le, %le\n",Var_new,Vai_new);

fclose(infile_1);

infile_2 = fopen("vb.m","a");

fprintf(infile_2, "%le, %le\n",Vbr_new,Vbi_new);

fclose(infile_2);

infile_3 = fopen("vc.m","a");

fprintf(infile_3, "%le, %le\n",Vcr_new,Vci_new);

fclose(infile_3);

infile_4 = fopen("ia.m","a");

fprintf(infile_4, "%le, %le\n",Iar_new,Iai_new);

fclose(infile_4);

infile_5 = fopen("ib.m","a");

fprintf(infile_5, "%le, %le\n",Ibr_new,Ibi_new);

fclose(infile_5);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 337

infile_6 = fopen("ic.m","a");

fprintf(infile_6, "%le, %le\n",Icr_new,Ici_new);

fclose(infile_6);

infile_7 = fopen("za.m","a");

fprintf(infile_7, "%le, %le\n",Zar_new,Zai_new);

fclose(infile_7);

infile_8 = fopen("zb.m","a");

fprintf(infile_8, "%le, %le\n",Zbr_new,Zbi_new);

fclose(infile_8);

infile_9 = fopen("zc.m","a");

fprintf(infile_9, "%le, %le\n",Zcr_new,Zci_new);

fclose(infile_9);

infile_10 = fopen("pa.m","a");

fprintf(infile_10, "%le, %le\n",Par_new,Pai_new);

fclose(infile_10);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 338

infile_11 = fopen("pb.m","a");

fprintf(infile_11, "%le, %le\n",Pbr_new,Pbi_new);

fclose(infile_11);

infile_12 = fopen("pc.m","a");

fprintf(infile_12, "%le, %le\n",Pcr_new,Pci_new);

fclose(infile_12);

infile_13 = fopen("pg.m","a");

fprintf(infile_13, "%le, %le\n",Pgr_new,Pgi_new);

fclose(infile_13);

x_outfile = fopen("va_del.m","a");

fprintf(x_outfile, "%le, %le\n",Var_del,Vai_del);

fclose(x_outfile);

y_outfile = fopen("vb_del.m","a");

fprintf(y_outfile, "%le, %le\n",Vbr_del,Vbi_del);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 339

fclose(y_outfile);

z_outfile = fopen("vc_del.m","a");

fprintf(z_outfile, "%le, %le\n",Vcr_del,Vci_del);

fclose(z_outfile);

Var_old = Var_new;

Vai_old = Vai_new;

Var_past = Var_del;

Vai_past = Vai_del;

Vbr_old = Vbr_new;

Vbi_old = Vbi_new;

Vbr_past = Vbr_del;

Vbi_past = Vbi_del;

Vcr_old = Vcr_new;

Vci_old = Vci_new;

Vcr_past = Vcr_del;

Vci_past = Vci_del;

Iar_old = Iar_new;

Iai_old = Iai_new;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 340

Ibr_old = Ibr_new;

Ibi_old = Ibi_new;

Icr_old = Icr_new;

Ici_old = Ici_new;

Zar_old = Zar_new;

Zai_old = Zai_new;

Zbr_old = Zbr_new;

Zbi_old = Zbi_new;

Zcr_old = Zcr_new;

Zci_old = Zci_new;

Par_old = Par_new;

Pai_old = Pai_new;

Pbr_old = Pbr_new;

Pbi_old = Pbi_new;

Pcr_old = Pcr_new;

Pci_old = Pci_new;

Pgr_old = Pgr_new;

Pgi_old = Pgi_new;

}

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 341

D.3 AUXILIARY PROGRAM B

The purpose of the auxiliary program B was to calculate the integrated valued of the

negative sequence current multiplied by time at each new sample for the negative sequence

relay.

#include <stdio.h>

#include <math.h>

#include <complex.h>

#include <iostream.h>

#define PI 3.14159

#define M 96

#define N 12

void main()

{

int i,k;

float Iar_new,Iai_new,Ibr_new,Ibi_new,Icr_new,Ici_new;

complex ia_m[96],ib_m[96],ic_m[96];

double x_ia,y_ia,x_ib,y_ib,x_ic,y_ic;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 342

char choice;

FILE *fp,*fp1,*fp2;

if ((fp = fopen("ia.m","r")) == NULL)

printf("Data file ia.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp,"%le,%le\n",&x_ia,&y_ia);

ia_m[i]=complex(x_ia,y_ia);

}

fclose(fp);

if ((fp1 = fopen("ib.m","r")) == NULL)

printf("Data file ib.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp1,"%le,%le\n",&x_ib,&y_ib);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 343

ib_m[i]=complex(x_ib,y_ib);

}

fclose(fp1);

if ((fp2 = fopen("ic.m","r")) == NULL)

printf("Data file ic.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp2,"%le,%le\n",&x_ic,&y_ic);

ic_m[i]=complex(x_ic,y_ic);

}

fclose(fp2);

for (k = N; k < M; k++)

{

Iar_new = real(ia_m[k]);

Iai_new = imag(ia_m[k]);

Ibr_new = real(ib_m[k]);

Ibi_new = imag(ib_m[k]);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 344

Icr_new = real(ic_m[k]);

Ici_new = imag(ic_m[k]);

char dial_set;

char time_set(float, float, float, float, float, float,int);

dial_set = time_set(Iar_new,Iai_new,Ibr_new,Ibi_new,

Icr_new,Ici_new,k);

}

}

char time_set(float Iar, float Iai, float Ibr, float Ibi,

float Icr, float Ici, int j)

{

int i;

float V_BASE,S_BASE,I_BASE,Ia2_pu;

float neg_volt,Tdial;

char value,t,b;

complex a(-0.5,0.866);

complex Ia2;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 345

complex Ia_max(Iar,Iai),Ib_max(Ibr,Ibi),Ic_max(Icr,Ici);

FILE *s_file1;

V_BASE = 2309.401;

S_BASE = 15E+6;

I_BASE = (S_BASE/((sqrt(3))*(V_BASE)));

Ia2 = (0.3333)*(Ia_max+(pow(a,2)*(Ib_max))+(a*(Ic_max)));

Ia2_pu = abs(Ia2/I_BASE);

Tdial = ((pow(Ia2_pu,2))*(j/96.0));

printf("This is Tdial %f\n",Tdial);

s_file1 = fopen("tdial.m","a");

fprintf(s_file1, "%f\n",Tdial);

fclose(s_file1);

value=’b’;

return (value);

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 346

D.4 AUXILIARY PROGRAM C

The purpose of the auxiliary program C was to calculate the accumulated integrated valued

of the negative sequence current versus time.

#include <stdio.h>

#include <math.h>

#include <complex.h>

#include <iostream.h>

#define PI 3.14159

#define B 84

#define N 12

void main()

{

int I;

float Tdial[84],dial_sum = 0;

FILE *fp,*fp1;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 347

if ((fp = fopen("tdial.m","r")) == NULL)

printf("Data file tdial.m not found\n");

for (i=0;i< B;i++)

{

fscanf(fp,"%e\n",&Tdial[i]);

}

fclose(fp);

for (i=0;i< B;i++)

{

dial_sum += Tdial[i];

fp1 = fopen("tdial_su.m","a");

fprintf(fp1, "%f\n",dial_sum);

fclose(fp1);

}

}

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 348

D.5 AUXILIARY PROGRAM D

Auxiliary program D calculated the positive sequence voltage at each new sample for the

frequency relay.

#include <stdio.h>

#include <math.h>

#include <complex.h>

#include <iostream.h>

#define PI 3.14159

#define M 96

#define N 12

void main()

{

int i,k;

float Var_new,Vai_new,Vbr_new,Vbi_new,Vcr_new,Vci_new;

float Var_del,Vai_del,Vbr_del,Vbi_del,Vcr_del,Vci_del;

complex va_m[96],vb_m[96],vc_m[96];

complex va_d[96],vb_d[96],vc_d[96];

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 349

double x,y,x1,y1,x2,y2;

double xa_del,ya_del,xb_del,yb_del,xc_del,yc_del;

char choice;

FILE *fp,*fp1,*fp2;

FILE *fp3,*fp4,*fp5;

if ((fp = fopen("va.m","r")) == NULL)

printf("Data file va.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp,"%le,%le\n",&x,&y);

va_m[i]=complex(x,y);

}

fclose(fp);

if ((fp1 = fopen("vb.m","r")) == NULL)

printf("Data file vb.m not found\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 350

for (i=0;i< M;i++)

{

fscanf(fp1,"%le,%le\n",&x1,&y1);

vb_m[i]=complex(x1,y1);

}

fclose(fp1);

if ((fp2 = fopen("vc.m","r")) == NULL)

printf("Data file vc.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp2,"%le,%le\n",&x2,&y2);

vc_m[i]=complex(x2,y2);

}

fclose(fp2);

if ((fp3 = fopen("va_del.m","r")) == NULL)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 351

printf("Data file va_del.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp3,"%le,%le\n",&xa_del,&ya_del);

va_d[i]=complex(xa_del,ya_del);

}

fclose(fp3);

if ((fp4 = fopen("vb_del.m","r")) == NULL)

printf("Data file vb_del.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp4,"%le,%le\n",&xb_del,&yb_del);

vb_d[i]=complex(xb_del,yb_del);

}

fclose(fp4);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 352

if ((fp5 = fopen("vc_del.m","r")) == NULL)

printf("Data file vc_del.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp5,"%le,%le\n",&xc_del,&yc_del);

vc_d[i]=complex(xc_del,yc_del);

}

fclose(fp5);

for (k = 0; k < M; k++)

{

Var_new = real(va_m[k]);

Vai_new = imag(va_m[k]);

Vbr_new = real(vb_m[k]);

Vbi_new = imag(vb_m[k]);

Vcr_new = real(vc_m[k]);

Vci_new = imag(vc_m[k]);

Var_del = real(va_d[k]);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 353

Vai_del = imag(va_d[k]);

Vbr_del = real(vb_d[k]);

Vbi_del = imag(vb_d[k]);

Vcr_del = real(vc_d[k]);

Vci_del = imag(vc_d[k]);

char relay5;

char freq(float, float, float, float, float, float,

float, float, float, float, float, float, int);

relay5 = freq(Var_new,Vai_new,Vbr_new,Vbi_new,

Vcr_new,Vci_new,Var_del,Vai_del,

Vbr_del,Vbi_del,Vcr_del,Vci_del,k);

}

}

char freq(float var_new, float vai_new, float vbr_new,

float vbi_new, float vcr_new, float vci_new,

float var_del, float vai_del, float vbr_del,

float vbi_del, float vcr_del, float vci_del, int j)

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 354

{

int i;

complex a(-0.5,0.866);

complex Va1,Va1_del;

char value,t,b,z;

complex Va_max(var_new,vai_new),Vb_max(vbr_new,vbi_new);

complex Vc_max(vcr_new,vci_new),Va_del(var_del,vai_del);

complex Vb_del(vbr_del,vbi_del),Vc_del(vcr_del,vci_del);

FILE *u_file;

Va1 = (0.3333)*((Va_max)+(a*(Vb_max))+

(pow(a,2)*(Vc_max)));

Va1_del = (0.3333)*((Va_del)+(a*(Vb_del))+

(pow(a,2)*(Vc_del)));

u_file = fopen("va1.m","a");

fprintf(u_file,"%f %f\n",real(Va1), imag(Va1));

fclose(u_file);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 355

value = ’b’;

return (value);

}

D.6 AUXILIARY PROGRAM E

Auxiliary program E computed the positive sequence voltage angle at each new sample.

x=[0.000000 0.000000

-0.224260 -0.198150

2.461992 0.044931

-1.436295 4.087055

-12.065984 9.399324

-2.080023 -98.172441

51.327437 -264.780450

214.199019 -332.372507

379.842856 -255.881695

431.912729 -81.501870

338.013116 74.154234

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 356

159.508326 109.258539

13.697067 0.819597

-3.820159 -179.670648

115.410834 -314.592531

300.960065 -318.881582

433.773109 -190.017157

406.594139 98.199015

207.824189 373.546804

-133.171120 406.628220

-392.969834 175.143766

-393.575954 -173.174767

-136.299402 -407.639693

210.297527 -374.807400

418.805615 -96.271942

352.745015 245.205535

55.500071 425.910042

-278.049205 327.324083

-429.178015 14.244580

-298.984639 -308.085417

27.188036 -428.413699

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 357

335.423603 -267.844754

423.717500 68.228836

234.270728 359.533689

-108.726981 415.091684

-380.350683 198.551896

-402.619652 -148.085259

-160.967429 -397.610770

186.150107 -386.427763

411.179725 -121.954647

366.660012 222.419834

81.784878 420.948272

-256.637982 343.511580

-426.786435 40.923230

-317.163025 -288.452817

0.347578 -428.682415

317.578519 -287.896006

426.595268 41.580909

255.956861 343.765487

-82.428349 420.566798

-366.737488 221.679544

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 358

-410.625394 -122.487675

-185.339244 -386.309513

161.400001 -396.874559

402.290474 -147.291477

379.448177 198.816465

107.886525 414.551254

-234.362677 358.521951

-422.952472 67.500541

-334.271006 -267.725556

-26.496199 -427.418944

298.597823 -306.920172

427.923078 14.752379

276.731547 326.707781

-55.842391 424.469511

-351.772748 243.992235

-417.079266 -96.397585

-208.995949 -373.557899

136.047488 -405.814195

391.871394 -172.058708

390.790848 174.442681

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 359

133.543353 406.556901

-211.206438 372.155112

-417.469712 93.809966

-350.071226 -245.990406

-53.218561 -424.498108

278.480629 -324.733522

427.589060 -12.128838

296.392975 308.389846

-29.064842 426.723844

-335.433768 265.324437

-421.901500 -69.968452

-231.808544 -359.351840

110.206017 -413.155679

379.929042 -196.139820

400.576664 149.418325

158.653286 396.986594

-187.240809 384.297519

-410.363591 119.712558

-364.468473 -223.309324

-79.680354 -419.920835

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 360

257.291893 -341.257201

425.571434 -38.914073

314.876174 288.889864

-2.209388 427.284370

-317.808815 285.587447];

m =96;

for i = 1:1:m

if x(i,1) == 0

P(i) = (180/3.14)* 0;

else

P(i) = (180/3.14)*atan(x(i,2)/x(i,1));

end

infile = fopen(’va1_ang.m’,’a’);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 361

fprintf(infile, ’%f\n’,P(i));

fclose(infile);

outfile = fopen(’va1_del.m’,’a’);

fprintf(outfile, ’%f\n’,P(i));

fclose(outfile);

end

i=1:1:96;

plot(i,P(i));

D.7 AUXILIARY PROGRAM F

Auxiliary program F calculated the high frequency voltages for the self-excitation relay.

#include <stdio.h>

#include <math.h>

#include <iostream.h>

#define PI 3.14159

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 362

#define M 96

#define N 12

#define O 12

#define P 36

#define Q 3

#include "spaincl.h"

#include "spfftc.h"

#include "spfirl.h"

#include "spgain.h"

#include "spplot.h"

void main()

{

float data[96],data1[96],data2[96];

float Va_freq,Vb_freq,Vc_freq;

long neg_i1 = -1;

long pos_i1 = 1;

long pos_i4 = 4;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 363

long i, m;

complex fft[96];

complex fft1[96];

complex fft2[96];

FILE *fp,*fp1,*fp2;

FILE *outfile12,*outfile13,*outfile14;

FILE *infile1,*infile2,*infile3;

if ((fp = fopen("vaf.m","r")) == NULL)

printf("Data file vaf.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp,"%e\n",&data[i]);

}

fclose(fp);

if ((fp1 = fopen("vbf.m","r")) == NULL)

printf("Data file vbf.m not found\n");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 364

for (i=0;i< M;i++)

{

fscanf(fp1,"%e\n",&data1[i]);

}

fclose(fp1);

if ((fp2 = fopen("vcf.m","r")) == NULL)

printf("Data file vcf.m not found\n");

for (i=0;i< M;i++)

{

fscanf(fp2,"%e\n",&data2[i]);

}

fclose(fp2);

complex x1[96] ={ { data[0], 0.0 },{data[1], 0.0 },

{data[2], 0.0 },{data[3], 0.0 },

{ data[4], 0.0 },{data[5], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 365

{ data[6], 0.0 },{data[7], 0.0 },

{ data[8], 0.0 },{data[9], 0.0 },

{ data[10], 0.0 },{data[11], 0.0 },

{ data[12], 0.0 },{data[13], 0.0 },

{ data[14], 0.0 },{data[15], 0.0 },

{ data[16], 0.0 },{data[17], 0.0 },

{ data[17], 0.0 },{data[18], 0.0 },

{ data[20], 0.0 },{data[21], 0.0 },

{ data[22], 0.0 },{data[23], 0.0 },

{ data[24], 0.0 },{data[25], 0.0 },

{ data[26], 0.0 },{data[27], 0.0 },

{ data[28], 0.0 },{data[29], 0.0 },

{ data[30], 0.0 },{data[31], 0.0 },

{ data[32], 0.0 },{data[33], 0.0 },

{ data[34], 0.0 },{data[35], 0.0 },

{ data[36], 0.0 },{data[37], 0.0 },

{ data[38], 0.0 },{data[39], 0.0 },

{ data[40], 0.0 },{data[41], 0.0 },

{ data[42], 0.0 },{data[43], 0.0 },

{ data[44], 0.0 },{data[45], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 366

{ data[46], 0.0 },{data[47], 0.0 },

{ data[48], 0.0 },{data[49], 0.0 },

{ data[50], 0.0 },{data[51], 0.0 },

{ data[52], 0.0 },{data[53], 0.0 },

{ data[54], 0.0 },{data[55], 0.0 },

{ data[56], 0.0 },{data[57], 0.0 },

{ data[58], 0.0 },{data[59], 0.0 },

{ data[60], 0.0 },{data[61], 0.0 },

{ data[62], 0.0 },{data[63], 0.0 },

{ data[64], 0.0 },{data[65], 0.0 },

{ data[66], 0.0 },{data[67], 0.0 },

{ data[68], 0.0 },{data[69], 0.0 },

{ data[70], 0.0 },{data[71], 0.0 },

{ data[72], 0.0 },{data[73], 0.0 },

{ data[74], 0.0 },{data[75], 0.0 },

{ data[76], 0.0 },{data[77], 0.0 },

{ data[78], 0.0 },{data[79], 0.0 },

{ data[80], 0.0 },{data[81], 0.0 },

{ data[82], 0.0 },{data[83], 0.0 },

{ data[84], 0.0 },{data[85], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 367

{ data[86], 0.0 },{data[87], 0.0 },

{ data[88], 0.0 },{data[89], 0.0 },

{ data[90], 0.0 },{data[91], 0.0 },

{ data[92], 0.0 },{data[93], 0.0 },

{ data[94], 0.0 },{data[95], 0.0 } };

complex x2[96] ={ { data1[0], 0.0 },{data1[1], 0.0 },

{data1[2], 0.0 },{data1[3], 0.0 },

{ data1[4], 0.0 },{data1[5], 0.0 },

{ data1[6], 0.0 },{data1[7], 0.0 },

{ data1[8], 0.0 },{data1[9], 0.0 },

{ data1[10], 0.0 },{data1[11], 0.0 },

{ data1[12], 0.0 },{data1[13], 0.0 },

{ data1[14], 0.0 },{data1[15], 0.0 },

{ data1[16], 0.0 },{data1[17], 0.0 },

{ data1[17], 0.0 },{data1[18], 0.0 },

{ data1[20], 0.0 },{data1[21], 0.0 },

{ data1[22], 0.0 },{data1[23], 0.0 },

{ data1[24], 0.0 },{data1[25], 0.0 },

{ data1[26], 0.0 },{data1[27], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 368

{ data1[28], 0.0 },{data1[29], 0.0 },

{ data1[30], 0.0 },{data1[31], 0.0 },

{ data1[32], 0.0 },{data1[33], 0.0 },

{ data1[34], 0.0 },{data1[35], 0.0 },

{ data1[36], 0.0 },{data1[37], 0.0 },

{ data1[38], 0.0 },{data1[39], 0.0 },

{ data1[40], 0.0 },{data1[41], 0.0 },

{ data1[42], 0.0 },{data1[43], 0.0 },

{ data1[44], 0.0 },{data1[45], 0.0 },

{ data1[46], 0.0 },{data1[47], 0.0 },

{ data1[48], 0.0 },{data1[49], 0.0 },

{ data1[50], 0.0 },{data1[51], 0.0 },

{ data1[52], 0.0 },{data1[53], 0.0 },

{ data1[54], 0.0 },{data1[55], 0.0 },

{ data1[56], 0.0 },{data1[57], 0.0 },

{ data1[58], 0.0 },{data1[59], 0.0 },

{ data1[60], 0.0 },{data1[61], 0.0 },

{ data1[62], 0.0 },{data1[63], 0.0 },

{ data1[64], 0.0 },{data1[65], 0.0 },

{ data1[66], 0.0 },{data1[67], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 369

{ data1[68], 0.0 },{data1[69], 0.0 },

{ data1[70], 0.0 },{data1[71], 0.0 },

{ data[72], 0.0 },{data[73], 0.0 },

{ data[74], 0.0 },{data[75], 0.0 },

{ data[76], 0.0 },{data[77], 0.0 },

{ data[78], 0.0 },{data[79], 0.0 },

{ data[80], 0.0 },{data[81], 0.0 },

{ data[82], 0.0 },{data[83], 0.0 },

{ data[84], 0.0 },{data[85], 0.0 },

{ data[86], 0.0 },{data[87], 0.0 },

{ data[88], 0.0 },{data[89], 0.0 },

{ data[90], 0.0 },{data[91], 0.0 },

{ data[92], 0.0 },{data[93], 0.0 },

{ data[94], 0.0 },{data[95], 0.0 } };

complex x3[96] ={ { data2[0], 0.0 },{data2[1], 0.0 },

{data2[2], 0.0 },{data2[3], 0.0 },

{ data2[4], 0.0 },{data2[5], 0.0 },

{ data2[6], 0.0 },{data2[7], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 370

{ data2[8], 0.0 },{data2[9], 0.0 },

{ data2[10], 0.0 },{data2[11], 0.0 },

{ data2[12], 0.0 },{data2[13], 0.0 },

{ data2[14], 0.0 },{data2[15], 0.0 },

{ data2[16], 0.0 },{data2[17], 0.0 },

{ data2[17], 0.0 },{data2[18], 0.0 },

{ data2[20], 0.0 },{data2[21], 0.0 },

{ data2[22], 0.0 },{data2[23], 0.0 },

{ data2[24], 0.0 },{data2[25], 0.0 },

{ data2[26], 0.0 },{data2[27], 0.0 },

{ data2[28], 0.0 },{data2[29], 0.0 },

{ data2[30], 0.0 },{data2[31], 0.0 },

{ data2[32], 0.0 },{data2[33], 0.0 },

{ data2[34], 0.0 },{data2[35], 0.0 },

{ data2[36], 0.0 },{data2[37], 0.0 },

{ data2[38], 0.0 },{data2[39], 0.0 },

{ data2[40], 0.0 },{data2[41], 0.0 },

{ data2[42], 0.0 },{data2[43], 0.0 },

{ data2[44], 0.0 },{data2[45], 0.0 },

{ data2[46], 0.0 },{data2[47], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 371

{ data2[48], 0.0 },{data2[49], 0.0 },

{ data2[50], 0.0 },{data2[51], 0.0 },

{ data2[52], 0.0 },{data2[53], 0.0 },

{ data2[54], 0.0 },{data2[55], 0.0 },

{ data2[56], 0.0 },{data2[57], 0.0 },

{ data2[58], 0.0 },{data2[59], 0.0 },

{ data2[60], 0.0 },{data2[61], 0.0 },

{ data2[62], 0.0 },{data2[63], 0.0 },

{ data2[64], 0.0 },{data2[65], 0.0 },

{ data2[66], 0.0 },{data2[67], 0.0 },

{ data2[68], 0.0 },{data2[69], 0.0 },

{ data2[70], 0.0 },{data2[71], 0.0 },

{ data[72], 0.0 },{data[73], 0.0 },

{ data[74], 0.0 },{data[75], 0.0 },

{ data[76], 0.0 },{data[77], 0.0 },

{ data[78], 0.0 },{data[79], 0.0 },

{ data[80], 0.0 },{data[81], 0.0 },

{ data[82], 0.0 },{data[83], 0.0 },

{ data[84], 0.0 },{data[85], 0.0 },

{ data[86], 0.0 },{data[87], 0.0 },

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 372

{ data[88], 0.0 },{data[89], 0.0 },

{ data[90], 0.0 },{data[91], 0.0 },

{ data[92], 0.0 },{data[93], 0.0 },

{ data[94], 0.0 },{data[95], 0.0 } };

spfftc(x1, &pos_i4, &neg_i1);

for (m = 0 ; m < M ; ++m)

{

fft[m].r = x1[m].r;

fft[m].i = x1[m].i;

outfile12 = fopen("fft_va.m","a");

fprintf(outfile12, "%e, %e\n",fft[m].r,fft[m].i);

fclose(outfile12);

}

spfftc(x1, &pos_i4, &pos_i1);

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 373

spfftc(x2, &pos_i4, &neg_i1);

for (m = 0 ; m < M ; ++m)

{

fft1[m].r = x2[m].r;

fft1[m].i = x2[m].i;

outfile13 = fopen("fft_vb.m","a");

fprintf(outfile13, "%le, %le\n",fft1[m].r,fft1[m].i);

fclose(outfile13);

}

spfftc(x2, &pos_i4, &pos_i1);

spfftc(x3, &pos_i4, &neg_i1);

for (m = 0 ; m < M ; ++m)

{

fft2[m].r = x3[m].r;

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 374

fft2[m].i = x3[m].i;

outfile14 = fopen("fft_vc.m","a");

fprintf(outfile14, "%le, %le\n",fft2[m].r,fft2[m].i);

fclose(outfile14);

}

spfftc(x3, &pos_i4, &pos_i1);

for (m = 0 ; m < M ; ++m)

{

Va_freq = sqrt((pow((fft[m].r),2)) + (pow((fft[m].i),2)));

infile1 = fopen("Va_mag.m","a");

fprintf(infile1, "%le\n",Va_freq);

fclose(infile1);

Vb_freq = sqrt((pow((fft1[m].r),2)) + (pow((fft1[m].i),2)));

infile2 = fopen("Vb_mag.m","a");

APPENDIX D. MULTIFUNCTIONAL RELAY PROGRAM 375

fprintf(infile2, "%le\n",Vb_freq);

fclose(infile2);

Vc_freq = sqrt((pow((fft2[m].r),2)) + (pow((fft2[m].i),2)));

infile3 = fopen("Vc_mag.m","a");

fprintf(infile3, "%le\n",Vc_freq);

fclose(infile3);

}

}

Bibliography

[1] ANSI/IEEE Standard 1001-1988, “IEEE Guide for Interfacing Dispersed Storage and

Generation Facilities with Electric Utility Systems,” IEEE, New York, 1989.

[2] Arun G. Phadke and Stanley H. Horowitz, Power System Relaying, John Wiley &

Sons Inc, New York 1992.

[3] L. A. Kraft and G.T. Heydt, “A Method to Analyze Voltage Resonance in Power

Systems”, Trans. IEEE Vol.PAS-103, No.5, May 1984, pp. 1033-1037.

[4] Roger C. Dugan and Dwight T. Rizy, “Electric Distribution Protection Problems Asso-

ciated with the Interconnection of Small Dispersed Generation Devices”, Trans. IEEE

Vol.PAS-103, No.6, June 1984, pp. 1121-1127.

[5] Herbert M. Pflanz and George N. Lester, “Control of Overvoltages on Energizing

Capacitor Banks”, Trans. IEEE, Vol.PAS-92, No.3, May/June 1973, pp. 907-915.

376

BIBLIOGRAPHY 377

[6] C.L. Wagner, W.E. Feero, W.B. Gish, “Relay Performance in DSG Islands”, IEEE

Transactions on Power Delivery, Vol.4, No.1, January 1989, pp.122-131.

[7] W.E. Feero and W.B.Gish, “Overvoltages caused by DSG Operation: Synchronous

and Induction Generators”, Trans. IEEE, Vol.PWRD-1, 1986, pp.258-264.

[8] J. Rushton and K. Mewes, Power System Protection 3, A. Wheaton & Co., Ltd.,

Exeter, England 1981.

[9] J. W. Hodgkiss, Power System Protection 2, A. Wheaton & Co., Ltd., Exeter, England

1981.

[10] H. S. Petch and J. Rushton, Power System 1, A. Wheaton & Co., Ltd., Exeter, Eng-

land, 1981.

[11] IEEE Guide for Transformer Impulse Tests, IEEE No.93, June 1968/ANSI C57.37.

[12] R. S. Bayless, J. D. Delman, D.E. Truax, and W.E. Reid, “Capacitor Switching and

Transformer Transients”, IEEE Paper 86 SM 419-6, presented at the IEEE Power

Engineering Society Meeting, July 1986.

[13] R. W. Alexander, “Synchronous Closing Control for Shunt Capacitors”, IEEE Trans-

actions on Power Apparatus & Systems, Vol.PAS-104, pages 2619-2626, February 1985.

[14] Samuel D. Stearns and Ruth A. David, Signal Processing Algorithms in Fortran and

C, PTR Prentice Hall Inc., Englewood Cliffs, New Jersey, 1993.

BIBLIOGRAPHY 378

[15] E. O. Brigham, The Fast Fourier Transform, Prentice Hall Inc., Englewood Cliffs,

New Jersey, 1974.

[16] R.P. O’Leary and R.H. Harner, “Evaluation of Methods for Controlling the Overvolt-

ages Produced by Energization of a Shunt Capacitor Bank,” CIGRE Report No. 13-05

(1988).

[17] Arun G. Phadke and James S. Thorp, Computer Relaying for Power Systems, John

Wiley & Sons Inc, New York 1988.

[18] M. J. Damborg, R. Ramaswami, S. S. Venkata, and J. M. Postforoosh, “Computer

Aided Transmission Protection System Design Part I”, IEEE Transactions on Power

Apparatus & Systems, Vol.PAS-103, pages 51-57, January 1984.

[19] Jian Chen, Accurate Frequency Estimation with Phasor Angles, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia 1994.

[20] M.G. Lauby, Electromagnetic Transients Program (EMTP) Revised Rule Book Version

2.0, Electric Power Research Institute, California 1989.

VITA

Dewayne Randolph Brown is originally from Florence, South Carolina. He graduated from

South Florence High School in 1984. After high school, he attended the University of South

Carolina. He received his Bachelor of Science Degree in Electrical Engineering in 1990.

After his undergraduate education, he attended North Carolina A & T State University.

He received his Master of Science Degree in Electrical Engineering in 1992. In August of

1992 he attended Virginia Polytechnic Institute and State University to pursue his Doctor

of Philosophy in Electrical Engineering. He is a member of IEEE and a recipient of the

Office of Naval Research Fellowship.

379

