Chapter 3

Stochastic Learning Automata

An automaton is a machine or control mechanism designed to automatically follow a
predetermined sequence of operations or respond to encoded instructions. The term stochastic
emphasizes the adaptive nature of the automaton we describe here. The automaton described here
do not follow predetermined rules, but adapts to changes in its environment. This adaptation is
the result of the learning process described in this chapter.

“The concept of learning automaton grew out of a fusion of the work of
psychologists in modeling observed behavior, the efforts of statisticians to model the
choice of experiments based on past observations, the attempts of operation
researchers to implement optimal strategies in the context of the two-armed bandit
problem, and the endeavors of system theorists to make rational decisions in random
environments” [Narendra89].

In classical control theory, the control of a process is based on complete knowledge of the
process/system. The mathematical model is assumed to be known, and the inputs to the process
are deterministic functions of time. Later developments in control theory considered the
uncertainties present in the system. Stochastic control theory assumes that some of the
characteristics of the uncertainties are known. However, all those assumptions on uncertainties
and/or input functions may be insufficient to successfully control the system if changes. It is
then necessary to observe the process in operation and obtain further knowledge of the system,
i.e., additional information must be acquired on-line since a priori assumptions are not sufficient.
One approach is to view these as problems in learning.

Rule-based systems, although performing well on many control problems, have the
disadvantage of requiring modifications, even for a minor change in the problem space.
Furthermore, rule-based approach, especially expert systems, cannot handle unanticipated
situations. The idea behind designing a learning system is to guarantee robust behavior without
the complete knowledge, if any, of the system/environment to be controlled. A crucial advantage
of reinforcement learning compared to other learning approaches is that it requires no information
about the environment except for the reinforcement signal [Narendra89, Marsh93].

A reinforcement learning system is slower than other approaches for most applications
since every action needs to be tested a number of times for a satisfactory performance. Either the
learning process must be much faster than the environment changes (as is the case in our
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application), or the reinforcement learning must be combined with an adaptive forward model
that anticipates the changes in the environment [Peng93].

Learning' is defined as any permanent change in behavior as a result of past experience,
and a learning system should therefore have the ability to improve its behavior with time, toward
a final goal. In a purely mathematical context, the goal of a learning system is the optimization of
a functional not known explicitly [Narendra74].

In the 1960°s, Y. Z. Tsypkin [Tsypkin71] introduced a method to reduce the problem to
the determination of an optimal set of parameters and then apply stochastic hill climbing
techniques. M.L. Tsetlin and colleagues [Tsetlin73] started the work on learning automata during
the same period. An alternative approach to applying stochastic hill-climbing techniques,
introduced by Narendra and Viswanathan [Narendra72], is to regard the problem as one of finding
an optimal action out of a set of allowable actions and to achieve this using stochastic automata.
The difference between the two approaches is that the former updates the parameter space at
each iteration while the later updates the probability space.

The stochastic automaton attempts a solution of the problem without any information on
the optimal action (initially, equal probabilities are attached to all the actions). One action is
selected at random, the response from the environment is observed, action probabilities are
updated based on that response, and the procedure is repeated. A stochastic automaton acting as
described to improve its performance is called a learning automaton.

3.1 Earlier Works

The first learning automata models were developed in mathematical psychology. Early research in
this area is surveyed by Bush and Mosteller [Bush58] and Atkinson et al. [Atkinson65]. Tsetlin
[Tsetlin73] introduced deterministic automaton operating in random environments as a model of
learning. Most of the works done on learning automata theory has followed the trend set by
Tsetlin. Varshavski and VVorontsova [Varshavski63] described the use of stochastic automata
with updating of action probabilities which results in reduction in the number of states in
comparison with deterministic automata.

Fu and colleagues [Fu65a, Fu65b, Fu67, Fu69a, Fu69b, Fu71] were the first researchers
to introduce stochastic automata into the control literature. Applications to parameter estimation,
pattern recognition and game theory were initially considered by this school. Properties of linear
updating schemes and the concept of a ‘growing’ automaton are defined by McLaren
[McLaren66]. Chandrasekaran and Shen [Chand68,Chand69] studied nonlinear updating schemes,
nonstationary environments and games of automata. Narendra and Thathachar have studied the
theory and applications of learning autoamta and carried out simulation studies in the area. Their
book Learning Automata [Narendra89] is an introduction to learning automata theory which
surveys all the research done on the subject until the end of the 1980s.

' Webster defines ‘learning’ as “to gain knowledge or understanding of a skill by study, instruction, or experience.’
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The most recent (and second most comprehensive) book since the Narendra-Thathachar
collaboration on learning automata theory and applications is published by Najim and Pznyak in
1994 [Najim94]. This book also includes several applications and examples of learning automata.
Until recently, the applications of learning automata to control problems were rare.
Consequently, successful updating algorithms and theorems for advanced automata applications
were not readily available. Nario Baba’s work [Baba85] on learning behaviors of stochastic
automata under a nonstationary multi-teacher environment, and general linear reinforcement
schemes [Bush58] are taken as a starting point for the research presented in this dissertation.

Recent applications of learning automata to real life problems include control of
absorption columns [Najim91], bioreactors [Gilbert92], control of manufacturing plants
[Sequeria91], pattern recognition [Oommen94a], graph partitioning [Oommen94b], active vehicle
suspension [Marsh93, 95], path planning for manipulators [Naruse93], distributed fuzzy logic
processor training [Ikonen97], and path planning [Tsoularis93] and action selection [Aoki95] for
autonomous mobile robots.

Recent theoretical results on learning algorithms and techniques can be found in
[Najim91b], [Najim94], [Sastry93], [Papadimitriou94], [Rajaraman96], [Najim96], and
[Poznyak96].

3.2 The Environment and the Automaton

The learning paradigm the learning automaton presents may be stated as follows: a finite number
of actions can be performed in a random environment. When a specific action is performed the
environment provides a random response which is either favorable or unfavorable. The objective
in the design of the automaton is to determine how the choice of the action at any stage should be
guided by past actions and responses. The important point to note is that the decisions must be
made with very little knowledge concerning the “nature” of the environment. It may have time-
varying characteristics, or the decision maker may be a part of a hierarchical decision structure
but unaware of its role in the hierarchy. Furthermore, the uncertainty may be due to the fact that
the output of the environment is influenced by the actions of other agents unknown to the
decision maker.

The environment in which the automaton “lives” responds to the action of the automaton
by producing a response, belonging to a set of allowable responses, which is probabilistically
related to the automaton action. The term environment? is not easy to define in the context of
learning automata. The definition encompasses a large class of unknown random media in which
an automaton can operate. Mathematically, an environment is represented by a triple {a, ¢, b}
where a represents a finite action/output set, b represents a (binary) input/response set, and ¢ is
a set of penalty probabilities, where each element c;corresponds to one action a; of the set a.

The output (action) a(n) of the automaton belongs to the set a, and is applied to the
environment at time t = n. The input b(n) from the environment is an element of the set b and can

? Commonly refers to the aggregate of all the external conditions and influences affecting the life and development of
an organism.
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take on one of the values b, and b,. In the simplest case, the values b; are chosen to be 0 and 1,
where 1 is associated with failure/penalty response. The elements of c are defined as:

Prob{b() =1]a(n) =a, }=¢,  (i=12,..) (3.1)
Therefore ¢; is the probability that the action a; will result in a penalty input from the
environment. When the penalty probabilities c¢; are constant, the environment is called a
stationary environment.

There are several models defined by the response set of the environment. Models in
which the input from the environment can take only one of two values, 0 or 1, are referred to as
P-models®. In this simplest case, the response value of 1 corresponds to an “unfavorable”
(failure, penalty) response, while output of 0 means the action is “favorable.” A further
generalization of the environment allows finite response sets with more than two elements that
may take finite number of values in an interval [a, b]. Such models are called Q-models. When the
input from the environment is a continuous random variable with possible values in an interval [a,
b], the model is named S-model.

State f
Transition Function F
Input b Output Function G | Output a
Automaton
A  /

Environment

Penalty probabilities ¢

Figure 3.1. The automaton and the environment.

The automaton can be represented by a quintuple {F, a, b, F(,), H(*,*)} where:

* F isaset of internal states. At any instant n, the state f(n) is an element of the finite
set F ={fy,f,...fs}

+ a is a set of actions (or outputs of the automaton). The output or action of an
automaton an the instant n, denoted by a(n), is an element of the finite seta = {a; as,...,
a}

* b is a set of responses (or inputs from the environment). The input from the
environment b(n) is an element of the set b which could be either a finite set or an infinite

set, such as an interval on the real line:
b={b;,b,,.,b,} or b={(ab)} (3.2)

¥ We will follow the notation used in [Narendra89].
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* F(»*): F ~ b ® F isa function that maps the current state and input into the next
state. F can be deterministic or stochastic:

f (n+2) = F[f (n),b(n)] (3.3)
* H(s,*):F ~ b ® a is a function that maps the current state and input into the current
output. If the current output depends on only the current state, the automaton is referred
to as state-output automaton. In this case, the function H(e,*) is replaced by an output
function G(*): F ® a, which can be either deterministic or stochastic:

a(n) =G[f (n)] (3.4)
For our applications, we choose the function G(¢) as the identity function, i.e., the states
of the automata are also the actions.

3.3 The Stochastic Automaton

We now introduce the stochastic automaton in which at least one of the two mappings F and G is
stochastic. If the transition function F is stochastic, the elements f;> of F represent the
probability that the automaton moves from state f; to state f; following an input b*:

f0 =Pr{f (n+1) =f f()=f ;,b(n)=b} ij=12,.,5 b=byby..b, (35)
For the mapping G, the definition is similar:
g; =Prfa(n =a ff(n=Ff} ij=12,..r (3.6)

Since f;® are probabilities, they lie in the closed interval [a, b]>; and to conserve probability

measure we must have:
S

4 ff=1 foreachbandi. (3.7)
j=1
Example
States: fq, f, Inputs: b, ,b,
F(by) = @50 050y
y . V@25 075y
Transition matrices:
F(b )_é01 09 u
277 %75 025Y

* In Chapter 4, where we define our initial algorithm, the probabilities f;° will be the same for all inputs b and all
states i given a state f;. Furthermore, the output mapping G is chosen as identity mapping.
®[a, b]=[0, 1] in most cases.
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Transition Graphs:
0.50

= 0.50
b=b, 0.75

b=bh, 0.25

In the previous example, the conditional probabilities f;” were assumed to be constant,
i.e,, independent of the time step n, and the input sequence. Such a stochastic automaton is
referred to as a fixed-structure automaton. As we will discuss later, it is useful to update the
transition probabilities at each step n on the basis of the environment response at that instant.
Such an automaton is called variable-structure automaton.

Furthermore, in the case of variable-structure automaton, the above definitions of the
transition functions F and G are not used explicitly. Instead of transition matrices, a vector of
action probabilities p(n) is defined to describe the reinforcement schemes — as we introduce in
the next sections.

If the variable-structure automaton is a state-output automaton, and the probabilities of
transition from one state to another f;* do not depend on current state and environment input,
then the relation between the action probability vector and the transition matrices is as follows:

- Since the automaton is a state-output automaton, we omit the transition matrix G, and
only consider the transition matrix F.

- The transition does not depend on the environment response, therefore there is only
one state transition matrix F where the elements are f;. For example, we must have:

éf,  fu

F(b)=F(b,)° F = (3.8)

ef £ u

ela 22U
- Furthermore, the probability of being in one state (or generating one action) does not

depend on the initial/previous state of the automaton. Therefore, the transition matrix reduces to:

F= [f11 =fyof, f,=1,° fz]o p (3.9)
where vector p consists of probabilities p; of the automaton being in the i"" state (or choosing the
i output/action).

3.4 Variable Structure Automaton and Its Performance Evaluation

Before introducing the variable structure automata, we will introduce the definitions necessary to
evaluate the performance of a learning variable-structure automaton. A learning automaton
generates a sequence of actions on the basis of its interaction with the environment. If the
automaton is “learning” in the process, its performance must be superior to “intuitive” methods.
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To judge the performance of the automaton, we need to set up quantitative norms of behavior.
The quantitative basis for assessing the learning behavior is quite complex, even in the simplest
P-model and stationary random environments. To introduce the definitions for “norms of
behavior”, we will consider this simplest case. Further definitions for other models and non-
stationary environments will be given whenever necessary.

3.4.1 Norms of Behavior

If no prior information is available, there is no basis in which the different actions a; can be
distinguished. In such a case, all action probabilities would be equal — a “pure chance” situation.
For an r-action automaton, the action probability vector p(n) = Pr {a(n) = a;} is given by:

pi(n):—: i=12,..,r (3.10)

Such an automaton is called “pure chance automaton,” and will be used as the standard for
comparison. Any learning automaton must at least do better than a pure-chance automaton.
Consider a stationary random environment with  penalty probabilities

{cl,cz,..., cr} where ¢, = Pr{b(n) :1|a(n) =ai} . We define a quantity M(n) as the average
penalty for a given action probability vector:

M(n) = E[b(n)|p(n)] = Pr{b(n) =1p(n)}

=4 Pr{b(n) = (n) =a }Pria(n) =a } (3.11)
s
=acp(n
For the pure-chance automaton, M(n) is a constant denoted by M,:
1y
M, :Fa C (3.12)

Also note that:
E[M (n)]= E{E[b(n)[p(M]}

=E[b(n)]
i.e.,, E[M(n)] is the average input to the automaton. Using above definitions, we have the
following:

(3.13)

Definition 3.1: A learning automaton is expedient if limE[M (n)]< M, .

Since é_ p,(n) =1, we can write inf M(n) = infpm){é cp,(n)}=min{c}°c,.

Definition 3.2: A learning automaton is said to be optimal if:
limE[M (n)] =c (3.14)
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Optimality implies that the action a, is associated with the minimum penalty probability ¢, is
chosen asymptotically with probability one. In spite of efforts of many researchers, the general
algorithm which ensures optimality has not been found [Baba83, Kushner72, Narendra89]. It
may not be possible to achieve optimality in every given situation. In this case, a suboptimal
behavior is defined.

Definition 3.3: A learning automaton is e-optimal if:
Igg E[M(n)]=c¢, +e (3.15)

where eis arbitrarily small positive number.

Some automata satisfy the conditions stated in the definitions for specified initial
conditions and for certain sets of penalty probabilities. However, we may be interested in
automata that exhibit a desired behavior in arbitrary environments and for arbitrary initial
conditions. These requirements are partially met by an absolutely expedient automaton, which is
defined as:

Definition 3.4: A learning automaton is absolutely expedient if:

E[M(n+1) | p(n)] < M(n) (3.16)
foralln, all p(n) T (0, 1) and for all possible sets {cl,cz,..., cr} . Taking the expectations of both
sides, we can further see that:

E[M (n+1)] < E[M(n)] (3.17)

In the application of learning automata techniques to intelligent control, we are mainly
interested in the case where there is one “optimal” action a; with ¢; = 0° In such an environment,
a learning automaton is expected to reach a “pure optimal” strategy [Najim94]:

p(n) ® e; (3.18)

where €] is the unit vector with j" component equal to 1. In other words, the automaton will be

optimal since E[M(n)]= _é{lci p(n)® g.
i=

3.4.2 Variable Structure Automata

A more flexible learning automaton model can be created by considering more general stochastic
systems in which the action probabilities (or the state transitions) are updated at every stage
using a reinforcement scheme. In this section, we will introduce the general description of a
reinforcement scheme, linear and nonlinear. For simplicity, we assume that each state

® We will discuss the feasibility of the case later.
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corresponds to one action, i.e.,, the automaton is a state-output automaton. The simulation
examples in later chapters also use the same identity state-output mapping.
In general terms, a reinforcement scheme can be represented as follows:

p(n+1) =T,[p(n),a(n),b(n)] (3.193)
or
f0(n+1) =T,[ £ (n),f (n),f (n+1)b(n)] (3.19b)

where T, and T, are mappings. Again, a is the action, b is the input from environment, and f is
the state of the automaton. From now on, we will use the first mathematical description (3.19a)
for reinforcement schemes. If p(n+1) is a linear function of p(n), the reinforcement scheme is said
to be linear; otherwise it is termed nonlinear.

The simplest case
Consider a variable-structure automaton with r actions in a stationary environment with

b = {O, 1} . The general scheme for updating action probabilities is as follows:

Ifa(n)=a;
p,(1+2) = p,(M - G (p() forallj*

when b =0 pn+1) = p, () + & g, (p() (320)
p,@+1) = p, () +h,(p(r)) forall?

whenb =1

p(n+1) = p,(n) - & h (p(M))

k=1

kti
where g and hy (k=1,2,...,r) are continuous, nonnegative functions with the following
assumptions:

0< g, (p(n)) < pe ()
0< a [p.(n) +h (p(n))]<1 (3.21)

kti
for alli=1,2,...,r and all probabilities py in the open interval (0,1). The two constraints on update
functions guarantees that the sum of all action probabilities is 1 at every time step.

3.5 Reinforcement Schemes

The reinforcement scheme is the basis of the learning process for learning automata. These
schemes are categorized based on their linearity. A variety of linear, nonlinear and hybrid
schemes exists for variable structure learning automata [Narendra89]. The linearity characteristic
of a reinforcement scheme is defined by the linearity of the update functions g, and h, (see the
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examples in the next section). It is also possible to divide all possible algorithms for stochastic
learning automata into the following two classes [Najim94]:
nonprojectional algorithms, where individual probabilities are updated based on their previous
values:

p(n+1) = p, (n) +d %, (p; (n).a (n), b(n)) (3.22)
where d is a small real number and k; are the mapping functions for the update term.
projectional algorithms, where the probabilities are updated by a function which maps the
probability vector to a specific value for each element:

p, (n+1) = k; (p(n).a (n),b () (3.23)
where the functions k; are the mapping functions.

The main difference between these two subclasses is that nonprojectional algorithms can
only be used with binary environment response (i.e., in a P-model environment). Projectional
algorithms may be used in all environment types and are more complex. Furthermore,
implementation of projectional algorithms are computationally more tasking.

Early studies of reinforcement schemes were centered around linear schemes for reasons
of analytical simplicity. The need for more complex and efficient reinforcement schemes
eventually lead researchers to nonlinear (and hybrid) schemes. We will first introduce several
well-known linear schemes, and then close this section with absolutely expedient nonlinear
schemes.

3.5.1 Linear Reinforcement Schemes
For an r-action learning automaton, the general definition of linear reinforcement schemes can be
obtained by the substitution of the functions in Equation 3.20 as follows:

9, (p(n)) =axp, (n)

() = —= - b>p, () 3.24)

O<ab<l1
Therefore, the scheme corresponding to general linear schemes is given as:

Ifa(n) =a;,
hen b = 0 ip;(n+1l) = (L-a)xp;(n) forallj*i
e = ip(+D) = p,(n) +a{L- p ()]
‘ b
when b = 1 !pj(n +1) = —+(L-b)xp,(n) forall j i (3.25)

tpi(n+1) = (1-b)xp;(n)

As seen from the definition, the parameter a is associated with reward response, and the
parameter b with penalty response. If the learning parameters a and b are equal, the scheme is
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called the linear reward-penalty scheme Lgp [Bush58]. In this case, the update rate of the
probability vector is the same at every time step, regardless of the environment response. This
scheme is the earliest scheme considered in mathematical psychology.

For the linear reward-penalty scheme Lr_p, E[p(n)], the expected value of the probability
vector at time step n, can be easily evaluated, and, by analyzing eigenvalues of the resulting
difference equation, it can be shown that asymptotic solution of the set of difference equations
enables us to conclude [Narendra89]:

r
[¢}
a G
KL =, (3.26)

lim E[M(n)] = —— < k=L
n® ¥ 601 )/ r
er’ oK
Therefore, from Definition 3.1, the multi-action automaton using the Lr_p scheme is expedient for
all initial action probabilities and in all stationary random environments.

Expediency is a relatively weak condition on the learning behavior of a variable-structure
automaton. An expedient automaton will do better than a pure chance automaton, but it is not
guaranteed to reach the optimal solution. In order to obtain a better learning mechanism, the
parameters of the linear reinforcement scheme are changed as follows: if the learning parameter b
is set to 0, then the scheme is named the linear reward-inaction scheme Lg.;. This means that the
action probabilities are updated in the case of a reward response from the environment, but no
penalties are assessed.

For this scheme, it is possible to show that p,(n), the probability of the action a, with
minimum penalty probability ¢, monotonically approaches 1. By making the parameter a

arbitrarily small, we have Pr I|®rg p,(n) =1; as close to unity as desired. This makes the learning

automata e -optimal [Narendra89].

3.5.2 Nonlinear Learning Algorithms: Absolutely Expedient Schemes

Although early studies of automata learning were done mostly on linear schemes, a few attempts
were made to study nonlinear schemes [Vor65, Chand68, Shapiro69, Vis72]. Evolution of early
reinforcement schemes occurred mostly in a heuristic manner. For two-action automata, design
and evaluation of schemes was almost straight forward, since actually only one action was being
updated. Generalization of such schemes to multi-action case was not straightforward
[Narendra89]. This problem led to a synthesis approach toward reinforcement schemes.
Researchers started asking the question: “What are the conditions on the updating functions that
guarantee a desired behavior?” The problem viewed in the light of this approach resulted in a new
concept of absolute expediency. While searching for a reinforcement scheme that guarantees
optimality and/or absolute expediency, researchers eventually started considering schemes that
can be characterized as nonlinear. The update functions gy and h, are nonlinear functions of
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penalty probabilities. For example, the following update functions are defined by previous

researchers for nonlinear reinforcement schemes’:

g,(p(m) = hy(p() =—— p,(M(L- p; ()

This scheme is absolutely expedient for restricted initial conditions and for restricted
environments [Shapiro69].

19;(p(M) = p;(m- f(p(n))

i pi(n) - f(pi(n)

- h. =

£h; (p(n) —

wheref (x) =ax™(m = 2,3,...). Again, for expediency several conditions on the penalty

1 1
probabilities must be satisfied (e.g., ¢, <Ww and c; >ﬁ forjt 1). [Chand68]

}gj(p(n)) =af (py(n).1- p,()pS™(1- p;(n))*
1 h; (p(n) =bf (p,(n)1- p,(n))p§™(L- p;(n)°
where f (p,;,1- p,) =f (1- p,,p,)isanonlinear function which can be suitably selected, and
g 3 1. Parameters a and b must be chosen properly to satisfy the conditions in Equation
3.21. Sufficient conditions for ensuring optimality is given in [Vor65], but they are valid only

for two-action automata.

The general solution for absolutely expedient schemes is found in early 1970’s by
Lakshmivarahan and Thathachar [Lakshmivarahan73]. Absolutely expedient learning schemes are
presently the only class of schemes for which necessary and sufficient conditions of design are
available. This class of schemes can be considered as the generalization of the Ly, scheme.
Consider the general reinforcement scheme in Equation 3.20. A learning automaton using this
scheme is absolutely expedient if and only if the functions g(p) and hy(p) satisfy the following

conditions:
9:(P) _ %@ _ . 9@ _, (p)
D) 12 o= 1D

P P2 Pr
where | (p) and rr(p) are arbitrary functions satisfying?®:

" Again, a (n) =a; is assumed. We give only the updating functions for action probabilities other than the current

action; the function for current action can be obtained by using the fact that the sum of probabilities is equal to 1.
® The reason for the conditions on the update functions will be explained in detail in Chapter 6.
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0<I(p)<1

0<m(p < min {1 520
- =1,..., I’T 1- pjg
Detailed proof of this theorem is given in both [Baba84] and [Narendra89]. A similar proof (for a
new nonlinear absolutely expedient scheme) is given in Chapter 6.

3.6 Extensions of the Basic Automata-Environment Model
3.6.1 S-Model Environments
Up to this point we based our discussion of learning automata only on the P-model environment,
where the input to the automaton is either 0 or 1. We now consider the possibility of input
values over the unit interval [a, b]. Narendra and Thathachar state that such a model is very
relevant in control systems with a continuous valued performance index. In previous sections, the
algorithms (for P-model) were stated in terms of the functions g, and hy which are the reward and
penalty functions respectively. Since in S- (and Q-) models the outputs lie in the interval [0,1],
and therefore are neither totally favorable or totally unfavorable, the main problem is to
determine how the probabilities of all actions are to be updated. Narendra and Thathachar
[Narendra89] show that all the principal results derived for the P-model carry over the more
realistic S- and Q-models also. Here, we will not discuss the Q-model; all definitions for the Q-
model are similar to the P-model.

In the case where the environment outputs b, are not in the interval [0,1], but in [a, b] for
somea,b1 IR, itisalways possible to map the output into the unit interval using:

- b K- a
by = b- a

where a = min{{b} and b = max{b}°. Therefore, only the normalized S-model will be
considered.

The average penalty M(n) is still defined as earlier, but instead of ¢; 1 {0,1}, sil [0,1] are
used in the definition:

(3.29)

M(n) = E[b(n)|p(n)]

r

=& Eb@|pMma® =a e =a,] (3.30)
= éi Sy Py
where:
sq = Elb(nfa (n) =a,] (3.31)

° Note that this normalization procedure requires the knowledge of a and b.



Cem Unsal Chapter 3. Stochastic Learning Automata 42

In the S-model, s, plays the same role as the penalty probabilities in the P-model, and are
called penalty strengths. Again, for a pure-chance automaton with all the action probabilities
equal, the average penalty M, is given by:

I
as (332)
i=1
The definitions of expediency, optimality, e -optimality, and absolute expediency are the
same, except the fact that c;’s are replaced by s;’s. Now, consider the general reinforcement
scheme (Equation 3.20). The direct generalization of this scheme to S-model gives:

pi(n+1)=p(n)- (1- b(n)g; (p(n) +b(mh; (p(n)) ifa(n)* a;

M, =

=l

(3.33)
pi(n+1)=p(n)+(1- b(n))é’l g;(p(n) - b(n)p,d h;(p(n) if a(n)=a,
i jri
The previous algorithm (Equation 3.20) can easily be obtained from the above definition
by substituting b(n) = 0and 1. Again, the functions g; and h; can be associated with reward and
penalty respectively. The value 1- b(n)is an indication of how far b(n) is away from the
maximum possible value of unity, and is maximum when b(n) is 0. The functions g; and h; have to

satisfy the conditions for Equation 3.21 for p;j(n) to remain in the interval [0,1] at each step. The
non-negativity condition on g; and h; maintains the reward-penalty character of these functions,
though it is not necessary.

For example the Lg.p reinforcement scheme (Equation 3.25) can be rewritten for S-model

(SLg.p) as:
p(n+1) = p,(n) - [1- b(M]axp, () +b () {— - axp(m] if a(m)* a,

(3.35)
pi(n+1) = p,(n) +[1- b(N)]xaxL- p,(N)]- b(n)>axp,(n) if a(n)=a,
Similarly, the asymptotic value of the average penalty is:
lim E[M(n)] = — (3.36)
n® ¥

Thus, the SLg.p scheme has analogous properties to the Lg_p sScheme. It is expedient in all
stationary random environments and the limiting expectations of the action probabilities are
inversely proportional to the corresponding s;. The conditions of Equations 3.27 and 3.28 for
absolute expediency also applies to updating algorithms for S-model environment.

3.6.2 Nonstationary Environments
Thus far we have considered only the automaton in a stationary environment. However, the need
for learning and adaptation in systems is mainly due to the fact that the environment changes
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with time. The performance of a learning automaton should be judged in such a context. If a
learning automaton with a fixed strategy is used in a nonstationary environment, it may become
less expedient, and even non-expedient. The learning scheme must have sufficient flexibility to
track the better actions. The aim in these cases is not to evolve to a single action which is
optimal, but to choose the actions to minimize the expected penalty. As in adaptive control
theory, the practical justification for the study of stationary environments is based on the
assumption that if the convergence of a scheme is sufficiently fast, then acceptable performance
can be achieved in slowly changing environments.

An environment is nonstationary if the penalty probabilities ¢; (or s;) vary with time. The
success of the learning procedure then depends on the environment changes as well as the prior
information we have about the environment. From an analytic standpoint, the simplest case is the
one in which penalty probability vector c(n) can have a finite number of values. We can visualize
this situation as an automaton operating in a finite set of stationary environments, and assign a
different automaton A, to each environment E;. If each automaton uses an absolutely expedient
scheme, then e -optimality can be achieved asymptotically for the overall system. However, this
method requires that the system be aware of the “environmental changes” in order to assign the
“correct” automaton, and the number of environments must not be large. Furthermore, since the
automaton A; is updated only when the environment is E;, updating strategies may happen
infrequently so that the corresponding action probabilities do not converge [Narendra89]. In our
application, a similar approach is employed as explained in Chapter 4.

There are two classes of environments that have been analytically investigated:
Markovian switching environments, and state-dependent nonstationary environments. If we
assume that the environments E; are states of a Markov chain described by a state transition
matrix, then it is possible to view the variable-structure automaton in the Markovian switching
environment as a homogeneous Markov chain. Therefore, analytical investigations are possible.
Secondly, there are four different situations wherein the states of the nonstationary environment
vary with the step n, and analytical tools developed earlier are adequate to obtain a fairly
complete descriptions of the learning process. These are:

+ Fixed-structure automata in Markovian environments

+ Variable-structure automata in state-dependent nonstationary environments
+ Hierarchy of automata

+ Nonstationary environments with fixed optimal actions

The fundamental concepts such as expediency, optimality, and absolute expediency have
to be re-examined for nonstationary environments, since, for example, the optimal action can
change with time. Here, we again consider the P-model for purposes of stating the definitions.
The average penalty M(n) becomes:

M(n) = & ci(n)pi(n) (3.37)

i=1
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The pure-chance automaton has an average penalty M, as a function of time:

19
My(n) = -4 ¢i(n) (338)
i=1
Using these descriptions, we now have the following:

Definition 3.5: A learning automaton in nonstationary environment is expedient if there exists a
n, such that for all n > n,, we have:

E[M(n)]- M,(n) <0 (3.39)
The previous concept of optimality can be applied to some specific nonstationary
environments. For example, if there exists a fixed | such that ¢,(n) < ¢i(n) forall i=1,2,...,r,i * I,

and for all n (or at least for all n > n; for some n,), then a, is the optimal action; the original
definitions of optimality ande -optimality still hold. In general, we have:

Definition 3.6: In a nonstationary environment where there is no fixed optimal action, an
automaton can be defined as optimal if it minimizes:

14
Jim = r:’;:11E[b(n)] (3.40)

The definition of absolute expediency can be retained as before, with time-varying
penalty probabilities and the new description in Equation 3.37.

3.6.3 Multi-Teacher Environments
All the learning schemes and behavior norms discussed up to this point have dealt with a single
automaton in a single environment. However, it is possible to have an environment in which the
actions of an automaton evoke a vector of responses due to multiple performance criteria. We
will describe such environments as multi-teacher environments. Then, the automata have to
“find” an action that satisfies all the teachers.

In a multi-teacher environment, the automaton is connected to N teachers (or N single-
teacher environments). Then, a single-teacher environment is described by the action set a, the

output set Q‘ ={0,1} (for a P-model), and a set of penalty probabilities {c{,czi,--.,cr‘}where
c} = Pr{bi (n)= ]l a(n) :aj}. The action set of the automaton is of course the same for all

teachers/environments. Baba discussed the problem of a variable-structure automaton operating
in a multi-teacher environment [Baba85]. Conditions for absolute expediency are given in his
works (see also Chapter 6 for new nonlinear reinforcement schemes).

Some difficulty may arise while formulating a mathematical model of the learning
automaton in a multi-teacher environment. Since we have multiple responses, the task of
“interpreting” the output vector is important. Are the outputs from different teachers to be
summed after normalization? Can we introduce weight factors associated with specific teachers?
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If the environment is of a P-model, how should we combine the outputs? In the simplest case
that all teachers agree on the ordering of the actions, i.e., one action is optimal for all
environments, the updating schemes are easily defined. However, this will not be the case in our
application.

The elements of the environment output vector must be combined in some fashion to
form the input to the automaton. One possibility is to use to use an AND-gate as described in
[Thathachar77]. Another method is taking the average, or weighted average of the all responses
[Narendra89, Baba85]. This is valid for Q- or S-model environments. Our application uses logic
gates (OR) and additional if-then conditions as described in Chapters 4 and 5.

3.6.4 Interconnected Automata

Although we based our discussion to a single automaton, it is possible that there are more than
one automata in an environment. If the interaction between different automata is provided by the
environment, the case of multi-automata is not different than a single automaton case. The
environment reacts to the actions of multiple automata, and the environment output is a result of
the combined effect of actions chosen by all automata. If there is direct interaction between the
automata, such as the hierarchical (or sequential) automata models, the actions of some automata
directly depend on the actions of others.

It is generally recognized that the potential of learning automata can be increased if
specific rules for interconnections can be established. There are two main interconnected
automata models: synchronous and sequential. An important consequence of the synchronous
model is that the resulting configurations can be viewed as games of automata with particular
payoff structures. In the sequential model, only one automaton acts at each time step. The action
chosen determines which automaton acts at the next time step. Such a sequential model can be
viewed as a network of automata in which control passes from one automaton to another. At
each step, one decision maker controls the state transitions of the decision process, and the goal
of the whole group is to optimize some overall performance criterion.

In Chapters 4 and 5, the interconnection between automata is considered. Since each
vehicle’s planning layer will include two automata — one for lateral, the other for longitudinal
actions — the interdependence of these two sets of actions automatically results in an
interconnected automata network. Furthermore, multiple autonomous vehicles with multiple
automata as path controllers constitute a more complex automata system as described in Chapter
1.



