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Chapter 3. Mathematical Model of Electromagnetic

Brakes

3.1. Introduction

Precise mathematical models of the brakes are important for the

purpose of simulation and control.  In this chapter we review different models

available for electromagnetic brakes and propose a new model which has

better performance in least-squares sense.

3.2. General Description

The electromagnetic brake is a relatively primitive mechanism, yet it

employs complex electromagnetic and thermal phenomena.  As a result, the

calculation of brake torque is a complex task.  Both empirical and analytical

approaches have been applied.

To explain the magnetic function of an electromagnetic retarder, the

Maxwell principles may be applied to the following physical arrangement: a

ferro-magnetic disc with a permeability, µ , and an electric conductivity, ρ ,

rotates at the face of a ring of magnetic poles of alternate polarity.  Each pole

produces a magnetic excitation flux, N0, which is proportional to the excitation

current within  the coil as long as the core is not saturated.  The lines of

magnetic flux, N, form loops within the disc through the very small air gap which

is arranged between the discs and the poles.  When the disc rotates, as a first

approximation, this flux varies in a sinusoidal function of time at a given point

within the disc according to the following expression:
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where:

p = number of pairs of poles

N = revolutions per minute of the disc

t   = time variable in seconds

Alternating eddy currents are created within the disc with a strength

proportional to the flux, N, and these currents wind themselves around the lines

of flux (see Figure 3.1). The electric conductivity, D, of the disc material causes

these eddy currents to produce heat within the disc.  If a magnetic system is

rotated about an axis normal to a conducting sheet, the field of induced eddy

currents will set up a retarding torque on the system which is proportional to its

angular speed (Smythe 1989).  The braking torque is generally also a function

of the flux and the excitation current.  

 

3.3. Models Available in the Literature

There are three models proposed in the literature on eddy current

brakes (see Smythe 1942, Schiber 1974, Wouterse 1991).  The approaches to

solve the problem are different.    

3.3.1. W.R. Smythe’s Model

Smythe’s approach (Smythe 1942) is to treat the problem as a disc of

finite radius and obtained a closed-form solution of torque calculation by

means of  a reflection procedure (the magnetic field due to eddy currents which

appears from either side of the sheet, is modeled by a pair of images receding

with uniform velocity) specifically suited to the geometry of the problem.  The

first step is to calculate the magnetic induction, B, produced by the eddy
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currents induced in a rotating disk  by a long right circular cylinder pole piece.

The eddy currents are generated not only by the changes in the magnetic

induction of the external field, but also by the changes of the magnetic induction

of eddy currents elsewhere in the sheet.  After deriving the stream function of a

point, which is the current flowing through any cross section of the rotating disk

from the point to its edge,  the torque can be calculated by integrating the

product of the radial component of the current by the magnetic induction and by

the lever arm and integrating over the area of the pole piece.  Since there is a

demagnetizing effect such that permeable pole pieces of an electromagnet

short-circuit the flux of the eddy current, if we represent φ0 = the  flux  penetrating

the rotating disk, T = brake torque, ω = angular velocity, φ0 = flux  penetrating the

rotating disk at rest, D= constant coefficient, depending on pole arrangement, R

= reluctance of the electromagnet, β =  constant coefficient, γ=10-9/ρ and ρ is the

volume resistivity of the disk, the total flux when disk is in motion would be

φ φ β γ ω φ φ
β γ ω

= − =
+0

2 2 2 0
2 2 2R

R
R

(3.1)

and β γ ω φ2 2 2
R  represents the demagnetizing flux attained by dividing the

demagnetizing magnetomotive force by the reluctance of the electromagnet.

The final integration result of the brake torque is:

T     =  ωγφ2D = 
ωγR2φ0

2D

(R + β2γ 2ω2 )2
(3.2)

This model is good at low speed but torque decreases too fast in high

speed compared with the experimental curve (see Figure 3.2).  The asymptotic

behavior shows a fall-off of the torque more rapid than ω −1 in the high speed

region, which is in contradiction with experimental results.  Smythe pointed out

that this behavior could be due to other conditions, such as the degree of

saturation of the iron in the magnet which will upset the assumed relations
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between magnetomotive force and flux ( φ )  and may modify equations (3.1)

and (3.2).  

3.3.2. D. Schieber’s Model

Schieber adapted a general method of solution to a rotating system

which is different from Smythe’s approach (Schiber 1974).  The result is:

T     =     
1

2
σδωπr2m2BZ

2[1−
(r / a)2

{1− (m / a)2}2 ] (3.3)

where

σ =    electrical conductivity of the rotating disk

δ =   sheet thickness rotating disk

ω =   angular velocity

π =   constant coefficient

r =  radius of electromagnet

m = distance of disc axis from pole-face center

a = disk radius

Bz = z component of magnetic flux density, z axis is the direction of the center of

the electromagnetic pole

This formula is for low speed only.  Schieber found out that his result is

very close to Smythe’s result at low speed and that it is valid for a linearly

moving strip as well as a rotating disc.  Schieber did not investigate the high

speed region.

3.3.3. J.H. Wouterse’s Model

Based on the works of Schieber and Smythe, Wouterse tried to find the

global solution for the torque in the high-speed region as well as the low-
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speed region (Wouterse 1991).  He observed that when the disc of an eddy

current brake is moved, an electrical field E n B= ×  is induced perpendicular to

both the tangential speed of the rotating disk ν  and the magnetic induction B .

If the speed is low with respect to the critical speed where the maximum torque

occurred, the magnetic induction caused by the current pattern is negligible

compared with the original induction B 0  at zero velocity, and the magnetic

induction perpendicular to the plane of the disc may be assumed to be equal to

B 0 .  Based on this observation, Wouterse proposed the expression for low

speed:

Fe  =  
1

4

π
ρ

D2dB0
2cν

    c =
1

2
[1−

1

4

1

(1+
r1
A

)2)(
A − r1

D
)2

] (3.4)

where Fe is the braking force and v  is the tangential speed. The other

variables are parameters that can be evaluated based on different types of

eddy current brakes.  The formula completely agrees with Smythe’s result in

the low speed region.  

Wouterse observed the similarity between an eddy current disc brake

and a DC current-fed induction machine.  The original flux remains

uninfluenced by the rotor current-generated magnetic field for low speeds, and

a speed-proportional torque is generated.  The behavior is dominated by the

current source character of the rotor circuit for very high speed, pushing away

the original main flux into the leakage path, perpendicular to the teeth.

Wouterse’s study on the air gap magnetic field at different speeds produced

three remarkable phenomena:

- At very low speeds, the field differs only slightly from the field at zero  

speed.  

- At the speed at which the maximum dragging force is exerted, the

mean induction under the pole is already significantly less than B 0.



23

- At higher speeds, the magnetic induction tends to further decrease.  

Based on this observation,  Wouterse proposed the following solution at the

high speed region:

Fe(ν) = Fe
^ 2

kν
ν

+
ν
νk

with

Fe
^

=
1

µ0
(
c

ξ
)
π
4

D2B0
2 (

x

D
)

and

νk =
2

µ0
(

1

cξ
)
ρ
d

x

D
(3.5)

where

ρ = specific resistance of disc material

d = disc thickness

D = diameter of soft iron pole, for non-circular pole shape D denotes the

diameter of the circle with the same area as pole face

ξ = ratio of zone width, in asymptotic current distribution around poles, to air

gap

c = proportionality factor, ratio of total disk contour (outward curve)

resistance to resistance of disk contour (outward curve) part under pole

ν = tangential speed of the rotating disk, measured at center of pole

νk = critical speed, i.e., speed at which exerted force is maximum

B0 = air gap induction at zero speed

x = air gap between pole faces including disc thickness or coordinate

perpendicular to air gap

r1 = distance from center of disc to center of pole

Wouterse also made use of another known phenomenon of the high

speed region in his proposal: the drag force becomes proportional to ν−1.  He
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modified the model at the high speed to make this characteristic explicit.  The

model turns out to be much closer to the experimental result in the high speed

region.

3.4. Modified Model Proposed

While Wouterse’s model gives a global solution which is good at high

speed as well as at low speed, it has to use two different expressions for low-

speed and high-speed regions.  From a simulation or control perspective,

there are difficulties involved in determining the critical speed or transitional

region at which to split the low and high speed regions.  As Wouterse pointed

out in his paper, the proportionality factor ξ in equation (3.5) is not exactly

known.  It is estimated to have a value of about unity.  The 10-20% estimated

error of  ξ would cause about a 10% error on equation (3.5).  A uniform model

is needed to represent the function at both regions in one expression and

reduce the estimation error further.  

Our approach is to modify Smythe’s model according to Wouterse’s

observation.  As Smythe himself pointed out, his model gives too rapid a roll-off

at high speeds because the degree of saturation of the iron in the magnet

upset many of his assumptions.  To overcome this problem, we treat

reluctance (R in formula (3.1)) as a function of speed instead of as a constant

for representing the aggregate result of all those side effects that upset

Smythe’s assumptions to deduct his formula.  This aggregate effect can be

called “reluctance effect.”  The expression of reluctance should also reflect

Wouterse’s observations on the high speed region:

(a) The drag force becomes proportional to ν−1;

(b) The original magnetic induction under the pole tends to be canceled

by the current induced around it in the disc.    
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We found that to satisfy all these observations, the reluctance of the

electromagnet has to be  proportional to ω asymptotically.  To take this

requirement into consideration and keep number of parameters limited.  We

found that to represent reluctance as R C C C
C

= + +
+

1 2 3 3
1 4 2

ω ω
ω

 is a good

approximation which satisfies the above requirement.  The estimation of the Ci

values for a specific type of electromagnetic brake has to been done with the

close cooperation of the brake manufacturers.

Substituting this reluctance function in Smythe’s formula, we are

proposing the following uniform model which conforms to the experimental

values (see Smythe 1942, Schiber 1974, Wouterse 1991, Omega

Technologies 1996) for the electromagnetic brake operation at low as well as

high speed:

T     =
k1ω

(1+
k2ω

2 + k3ω
4

1 + k4ω + k5ω
3 )2

(3.6)

This model is much closer to the experimental result and agrees with all the

proposed models except for the high velocity range of Smythe’s formula, which

is inaccurate anyway.  This model represents the correct behavior at high

speeds.  Parameters k1-k5 can be evaluated for specific types of

electromagnetic brakes.

3.5. Comparison of Models

Different models have been evaluated based on data chart given by

Omega Technologies (see Figure 3.3). A specific type, CC 250, is randomly

selected to do the evaluation.  

Since the modified model is a nonlinear function of angular speed and

five unknown parameters need to be determined, the least squares method  is
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used to get the values of k1-k5 for our modified model.  Given a set of

experimental data (Omega Technologies, 1996), we want to summarize the

data by fitting them into the modified model that depends on the parameters k1-

k5.  We use the least squares as a maximum likelihood estimator.  Suppose

that we are fitting N data points ( , )ωi Ti to the model that has five adjustable

parameters k i, k =1,...,5 (see equation (3.5)).  The model predicts a functional

relationship between the measured independent and dependent variables,

T( T( k kω ω) ; ... )= 1 5 , where the dependence on the parameters is indicated

explicitly on the right-hand side.  The objective function of the least squares fit

is:

minimize over k k1 5... : [ ( ; ...k )]Ti T k
i

N
−

=
∑ ω 1 5

1

2  

Since we do not have the facility to evaluate the parameters for Smythe’s

model and Wouterse’s model based on their formula, these parameters are

assumed to be unknown and estimated by using least squares method.  By

applying the least squares method on the new modified model, Smythe’s

model,  and J.H. Wouterse’s model (at high speed) by using the same set of

data (CC250, Omega Technologies), we obtain the results shown in Figure

3.1.  It can be seen that the new model has better performance in

approximating the original curve in the least-squares sense.

How to solve the parameters for the new modified model analytically is

still an unsolved problem because we do not have the necessary equipment to

do the measurement and test.  Detailed test and analysis on “reluctance effect”

have to be performed to make analytic solution feasible.  Modified model

should have better performance because it represent the reluctance as a

changing value instead of a constant.  Modified model is also a “global”

solution which is suitable for simulation and control application.

3.6. Summary
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A new model is proposed in this section that has better performance in a

least-squares sense compared with all the models available in the literature.

While the parameters for the new models can be estimated based on a least-

squares fit, how to estimate the parameters analytically is open for further

research.  For simulation and control purposes of this thesis, the new model

can be used.
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Figure 3.1. Eddy Currents Distribution Diagram for Electromagnetic Brake

(Smythe, 1942)
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Figure 3.2. Performance Comparison among Different Static Models.

(“*” curve -- Experimental data (from Omega Technologies);

dark curve -- proposed model;

thin curves -- Smythe’s Model and Wouterse’s Model;

(Smythe’s model has a higher peak)
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Figure 3.3.  Torque Versus Speed Diagram for CC250 type Electromagnetic Brake.

(Omega Technologies, 1996)


