Empirical Investigation of Sociotechnical Issues in Engineering Design

by

Joe W. Meredith

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Industrial and Systems Engineering

Dr. Brian M. Kleiner, Chairman
Dr. Yvan J. Beliveau
Dr. C. Patrick Koelling
Dr. Harold A. Kurstedt
Dr. Paul E. Torgersen

March 31, 1997

Blacksburg, Virginia

Sociotechnical Systems, Macroergonomics, Engineering Design, Teams

ABSTRACT

To compete in today’s global economy, organizations are under pressure to improve their product development processes. The engineering design process is an important component of the overall product development process. This research considers the relationship of both social and technical variables to the engineering design process. The theoretical foundation of this research is sociotechnical systems theory. This theory states that optimum performance is achieved by jointly considering the technical and the social subsystems. The application domain of the theory is called macroergonomics.

A technical variable considered by this research was engineering design process methodology. Two methodologies were considered: sequential engineering and concurrent engineering. Another technical construct considered by this research was the use of computer-supported cooperative work technology (CSCW) or groupware.

The social variable considered by this research was group size. Two sizes were considered: large groups of six people and small groups of three people. This research sought to determine the optimum combination of technical and social variables that would result in highest performance.
There were two phases of this research. In the first phase, a laboratory experiment was conducted using 180 engineering and building construction students as subjects. The experiment required that a system be conceived, designed, manufactured, and tested by student teams. The experimental design was a 2 x 2 x 2 factorial, between subjects design with five teams in each cell. In the second phase, the results of the first phase were provided to recognized industry and academic experts for their critique. This two-phased approach facilitated the identification of causal relationships among social and technical variables with higher external validity.

In the laboratory experiment, there was no significant difference in performance between concurrent engineering groups and sequential engineering processes. Small groups significantly outperformed large groups in all conditions. CSCW did not significantly improve the performance of large or small groups. Participants in the experiment were equally satisfied with all conditions. The external survey strongly endorsed the superiority of concurrent engineering as compared to sequential engineering.

There was no statistically significant optimal combination of variables that resulted in the highest design performance.
Dedication

This work is dedicated to my wife Susan
for her contribution and patience.
Acknowledgments

Any endeavor of this magnitude requires the council, patience, and tolerance of others. I am indebted to Dr. Paul Torgersen, who didn’t laugh when I asked if I might pursue a doctoral degree. Rather, he encouraged me and was supportive at every step of the way and served on my committee.

Dr. Brian Kleiner, chairman, friend, accepted the challenge of mentoring a non-traditional student through the process. I respect him. I am also grateful that he knew when to treat me as an adult and when to treat me as a student.

My other committee members also provided encouragement and guidance. I would still be looking for participants if Dr. Yvan Beliveau had not agreed to make his building construction students available to my experiment. Dr. Harold Kurstedt is one of the best teachers I’ve ever had in the classroom. I thoroughly enjoyed listening and learning from his lessons from his experience. Dr. Pat Koelling’s positive attitude and perspective on the research process was invaluable.

My family tolerated my unavailability and helped in numerous ways. My wife, Susan, learned how to do a SYMLOG analysis and then watched over 100 hours of videotape. She never complained and did a superb job. My daughters Andi, Kathy, and Sarah, helped conceive the experiment, participated in alpha testing, helped with participant recruiting, and edited some of the material.

The staff of the Corporate Research Center, especially Mr. Rodd Hall, Dr. Paul Fleming, and Ms. Linda Cridlin, also supported me in my absences, provided computer consulting when needed, and did their usual outstanding job of running the park.

I am also appreciative of Dr. Jeanne Gleason of New Mexico State University for providing a hundred videotapes for my use.

I also wish to thank Dr. Ann Echols for her help with statistics and statistics software.

My classmates who ran the laboratory were outstanding. Shane McLaughlin, Sam Thepvongs, and Arnoldo Cano kept the equipment and software running and were willing to drop what they were doing to come to the lab on a moments notice to fix whatever was broken.

Thanks are also due to Dr. Marla Hacker who set the pace and figured out the process.

I also want to acknowledge the last team that participated in my experiment. They braved snow and ice just because they knew that getting the last data were important to me. I appreciated their sacrifice.

Finally, I would like to acknowledge my parents who always taught me that you can do anything that you want to.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION AND SCOPE OF RESEARCH</td>
<td>1</td>
</tr>
<tr>
<td>1.1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1. Engineering Design Methodology</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2. Group Size</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3. Computer-Supported Cooperative Work</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4. Sociotechnical Systems Theory / Macroergonomics</td>
<td>7</td>
</tr>
<tr>
<td>1.2. PROBLEM STATEMENT</td>
<td>8</td>
</tr>
<tr>
<td>1.3. RESEARCH PURPOSE</td>
<td>8</td>
</tr>
<tr>
<td>1.4. RESEARCH OBJECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>1.5. CONCEPTUAL AND RESEARCH MODELS</td>
<td>9</td>
</tr>
<tr>
<td>1.6. RESEARCH QUESTIONS AND HYPOTHESES</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1. Design Performance</td>
<td>12</td>
</tr>
<tr>
<td>1.6.1.1. Engineering Methodology</td>
<td>12</td>
</tr>
<tr>
<td>1.6.1.2. Group Size</td>
<td>12</td>
</tr>
<tr>
<td>1.6.1.3. Computer-Supported Cooperative Work</td>
<td>13</td>
</tr>
<tr>
<td>1.6.2. Process Time</td>
<td>13</td>
</tr>
<tr>
<td>1.6.2.1. Engineering Methodology</td>
<td>13</td>
</tr>
<tr>
<td>1.6.2.2. Group Size</td>
<td>13</td>
</tr>
<tr>
<td>1.6.2.3. Computer-Supported Cooperative Work</td>
<td>14</td>
</tr>
<tr>
<td>1.6.3. Process Cost</td>
<td>14</td>
</tr>
<tr>
<td>1.6.3.1. Engineering Methodology</td>
<td>14</td>
</tr>
<tr>
<td>1.6.3.2. Group Size</td>
<td>14</td>
</tr>
<tr>
<td>1.6.3.3. Computer-Supported Cooperative Work</td>
<td>14</td>
</tr>
<tr>
<td>1.6.4. Member Satisfaction</td>
<td>15</td>
</tr>
<tr>
<td>1.6.4.1. Engineering Methodology</td>
<td>15</td>
</tr>
<tr>
<td>1.6.4.2. Group Size</td>
<td>15</td>
</tr>
<tr>
<td>1.6.4.3. Computer-Supported Cooperative Work</td>
<td>15</td>
</tr>
<tr>
<td>1.6.5. Optimum Combination</td>
<td>15</td>
</tr>
<tr>
<td>1.7. PREMISES AND DELIMITATIONS</td>
<td>16</td>
</tr>
<tr>
<td>1.7.1. Premises</td>
<td>16</td>
</tr>
<tr>
<td>1.7.2. Delimitations</td>
<td>16</td>
</tr>
<tr>
<td>1.8. DESIRED OUTPUTS AND OUTCOMES</td>
<td>17</td>
</tr>
<tr>
<td>1.9. JUSTIFICATION FOR THIS RESEARCH</td>
<td>17</td>
</tr>
</tbody>
</table>
CHAPTER 2 REVIEW OF THE BODY OF KNOWLEDGE.. 19

2.1. INTRODUCTION ... 19
2.2. THEORETICAL BASIS – SOCIOTECHNICAL SYSTEMS THEORY 21
 2.2.1. Historical Background .. 22
 2.2.2. Concepts of Sociotechnical Systems Theory .. 23
 2.2.2.1. Personnel System .. 23
 2.2.2.2. Technological System .. 24
 2.2.2.3. Environment ... 24
 2.2.2.4. Self-Regulating (Autonomous) Work Groups 25
 2.2.3. Principles of Sociotechnical Systems Design .. 26
 2.2.4. Case Studies ... 27
 2.2.5. Summary of Sociotechnical Systems Theory .. 28
2.3. APPLICATION OF THEORY --- MACROERGONOMICS ... 28
 2.3.1. Macroergonomics Subsystems ... 29
 2.3.1.1. Technological Subsystem .. 29
 2.3.1.2. Personnel Subsystem ... 30
 2.3.1.3. Environmental Subsystem ... 30
 2.3.1.4. Organizational Design Subsystem ... 30
 2.3.2. Macroergonomics Literature Review .. 31
 2.3.2.1. Engineering Design ... 31
 2.3.2.2. Group Size ... 31
 2.3.2.3. Computer Support .. 32
 2.3.3. Function Allocation ... 33
2.4. THE TECHNICAL SUBSYSTEM PART 1 - THE ENGINEERING PROCESS 33
 2.4.1. Engineering Decision-Making ... 35
 2.4.2. Sequential Engineering .. 39
 2.4.3. Concurrent Engineering (CE) .. 40
 2.4.3.1. Case Studies .. 42
 2.4.3.2. CE Tools and Techniques ... 43
 2.4.3.3. Current Research ... 44
 2.4.4. Summary of the Engineering Process .. 46
2.5. THE TECHNICAL SUBSYSTEM PART 2 - COMPUTER SUPPORT 47
 2.5.1. Computer-Supported Cooperative Work (CSCW) ... 47
 2.5.1.1. Performance ... 48
 2.5.1.2. Participation ... 49
 2.5.1.3. Consensus ... 49
 2.5.1.4. Member Reactions ... 50
 2.5.1.5. Leadership ... 50
 2.5.1.6. Satisfaction ... 50
 2.5.1.7. Group Size ... 51
2.6. THE ORGANIZATIONAL DESIGN SUBSYSTEM - GROUPS 52
 2.6.1. Group Theory ... 52
 2.6.1.1. Functional Theory .. 52
 2.6.1.2. Dramaturgical Theory .. 53
 2.6.1.3. Exchange Theory ... 53
 2.6.1.4. New Field Theory ... 53
 2.6.1.5. Time, Interaction, and Performance Theory ... 53
 2.6.2. Individuals Versus Groups ... 54
 2.6.2.1. Overview of Theory ... 54
CHAPTER 4 RESULTS ... 87

4.1. OVERVIEW OF EXPERIMENTAL PROCESS 87
4.2. DESIGN PERFORMANCE ... 87
 4.2.1. Engineering Methodology (EM) 88
 4.2.2. Group Size (GS) ... 88
 4.2.3. Computer-Supported Cooperative Work (C) 90
 4.2.4. System Effectiveness .. 90
 4.2.5. Life-Cycle Cost .. 92
4.3. PROCESS TIME ... 94
 4.3.1. Engineering Methodology (EM) 95
 4.3.2. Group Size (GS) ... 95
 4.3.3. Computer-Supported Cooperative Work (C) 96
4.4 PROCESS COST ... 96
 4.4.1. Engineering Methodology (EM) 97
 4.4.2. Group Size (GS) ... 97
 4.4.3. Computer-Supported Cooperative Work (C) 98
4.5. MEMBER SATISFACTION .. 99
 4.5.1. Engineering Methodology (EM) 100
 4.5.2. Group Size (GS) ... 100
 4.5.3. Computer-Supported Cooperative Work (C) 100
4.6. OPTIMUM COMBINATION ... 101

4.7. SUMMARY .. 101

CHAPTER 5 DISCUSSION .. 102

5.1. OVERVIEW ... 102
 5.1.1. Three-Way Interaction Effects 103
5.2. ENGINEERING METHODOLOGY 105
 5.2.1. Experimental Process ... 105
 5.2.1.1. Design Already Met Functional Goals 106
 5.2.1.2. Didn’t Care About Functional Goals 107
 5.2.1.3. Didn’t Advocate Functional Goals 107
 5.2.1.4. Abbreviation of Detail Design 108
 5.2.1.5. Summary ... 108
 5.2.2. Experimental Results Related to Engineering Methodology 108
 5.2.3. External Survey Results Related to Engineering Methodology 108
 5.2.4. Summary ... 109
5.3. GROUP SIZE .. 109
 5.3.1. System Effectiveness ... 110
 5.3.1.1. System Performance ... 114
 5.3.1.2. Producability .. 115
 5.3.1.3. Manufacturing Size .. 116
 5.3.1.4. Robustness ... 117
 5.3.2. Life-Cycle Cost ... 118
 5.3.2.1. Labor .. 118
 5.3.2.2. Material .. 120
 5.3.3. Process Time .. 120
 5.3.4. Process Cost .. 120
 5.3.5. Satisfaction .. 120
 5.3.6. External Survey ... 121
C.2.1. Sequential Engineering With and Without Computer Support ... 163
C.2.1.1. Conceptual Design ... 163
C.2.1.2. Exercises .. 167
C.2.1.3. Detail Design ... 168
C.2.1.4. Manufacturing ... 169
C.2.1.5. Testing .. 169
C.2.2. Concurrent Engineering With and Without Computer Support ... 170
C.2.2.1. Conceptual Design ... 170
C.2.2.2. Exercises .. 174
C.2.2.3. Detail Design ... 174
C.2.2.4. Manufacturing ... 175
C.2.2.5. Testing .. 176
C.3.1. Exercises ... 177
C.3.1.1. AutoCAD Exercise ... 177
C.3.1.2. Assembly Exercise .. 177
C.3.1.3. Life-Cycle Cost Exercise .. 177

APPENDIX D EXPERIMENTAL FORMS ... 179

D.1. CONCEPTUAL DESIGN ... 179
D.1.1. System Performance Requirements Statement .. 179
D.1.2. Time Card and Exercise Log Form .. 181
D.1.3. LEGO Tutorial ... 182
D.1.3.1. LEGO DRAWINGS ... 183
D.1.3.2. AutoCAD LEGO Blocks .. 190
D.1.4. Conceptual Design Functional Goals ... 205
D.1.4.1. Design Goals ... 205
D.1.4.2. Manufacturing Goals .. 205
D.1.4.3. Support Goals .. 205
D.1.5. Design Concept Form ... 206
D.1.6. System Concept Diagram .. 207
D.1.7. Preliminary Design Review Form ... 208
D.2. TUTORIALS ... 210
D.2.1. AutoCAD Tutorial Instructions .. 210
D.2.2. Assembly Tutorial Instructions .. 212
D.2.3. Life-Cycle Cost Tutorial Instructions .. 213
D.3. DETAIL DESIGN .. 217
D.3.1. Detail Design Functional Goals .. 217
D.3.1.1. Design Goals ... 217
D.3.1.2. Manufacturing Goals .. 217
D.3.1.3. Support Goals .. 217
D.3.2. Final Design Review Form .. 218
D.4. MANUFACTURING .. 220
D.4.1. Design Errors and Defects Form .. 220
D.4.2. Test Readiness Review Form .. 221
D.5. TESTING ... 222
D.5.1. Life-Cycle Cost Form ... 222
D.5.2. Final Project Review Form .. 225
D.5.3. Individual Post Experiment Questionnaire ... 226
D.5.4. Team Post Experiment Questionnaire .. 228
D.6. OTHER FORMS ... 229
D.6.1. Researcher's Log 229
D.6.2. SYMLOG Adjective Rating Form 232
D.6.3. SYMLOG Key for Tabulation of Directional Profiles 233
D.6.4. SYMLOG Directional Profile 234
D.6.5. Videotape Log Form 235
D.6.6. LEGO Bill of Material 236
D.6.7. Completed Data Package Checklist 240
D.6.8. Building Construction Student Evaluation Form 241

APPENDIX E EXPERIMENTAL DATA .. 242

E.1. SEQUENTIAL ENGINEERING WITH COMPUTER SUPPORT .. 242
E.2. SEQUENTIAL ENGINEERING WITHOUT COMPUTER SUPPORT 245
E.3. CONCURRENT ENGINEERING WITH COMPUTER SUPPORT 248
E.4. CONCURRENT ENGINEERING WITHOUT COMPUTER SUPPORT 251
E.5. TABLE OF FEASIBLE IDEAS .. 254
E.6. RESULTS OF SURVEY QUESTIONNAIRES .. 256
 E.6.1. Preliminary Design Review Questionnaire Results 256
 E.6.1.1. Small and Large Group Groupware Analysis 261
 E.6.2. Final Design Review Questionnaire Results 262
 E.6.3. Test Readiness Review Questionnaire Results 266
 E.6.4. Individual Post-Experiment Questionnaire Results 268
 E.6.5. Team Post-Experiment Questionnaire Results 273
E.7. SATISFACTION DATA ANALYSIS ... 277
E.8. DEGREE DATA ANALYSIS .. 278
E.9. TEAM NATIONALITY ANALYSIS ... 280
E.10. TEAM GENDER ANALYSIS .. 281
E.11. TEAM ACADEMIC ANALYSIS .. 282
E.12. VIDEOTAPE LOG FORM ... 283

APPENDIX F EXTERNAL SURVEY .. 284

F.1. ADDRESSES ... 284
 F.1.1. Industry Experts .. 284
 F.1.2. Academic Experts .. 286
F.2. LETTER ... 289
F.3. SURVEY QUESTIONNAIRE .. 290
F.4. EXTERNAL SURVEY RESULTS ... 292

VITA ... 297
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overview of Hypotheses</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Feature Use in Sociotechnical Experiments (Adapted from Pasmore, Francis, and Haldeman, 1982)</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Knowledge-Based Technology Classes (Adapted from Perrow, 1967)</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Schrage's (1993) Ten Characteristics</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>An Organizing Framework for CE (Adapted from Gerwin and Susman, 1996)</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Types of Teams (Adapted from Van Aken, 1995)</td>
<td>57</td>
</tr>
<tr>
<td>2.6</td>
<td>Performance as a Function of Group Size (Adapted from Nunamaker, et. al., 1990)</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Relative Strengths and Weaknesses of Standard Research Methodologies</td>
<td>74</td>
</tr>
<tr>
<td>3.2</td>
<td>Data Element List</td>
<td>81</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison with Blanchard and Fabrycky’s Model</td>
<td>83</td>
</tr>
<tr>
<td>4.1</td>
<td>Values of Cost Effectiveness by Condition</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Design Performance ANOVA Table</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Values for System Effectiveness by Condition</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>System Effectiveness ANOVA Table</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>Values for Life-Cycle Cost by Condition</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Life-Cycle Cost ANOVA Table</td>
<td>93</td>
</tr>
<tr>
<td>4.7</td>
<td>Values of Process Time by Condition</td>
<td>94</td>
</tr>
<tr>
<td>4.8</td>
<td>Values of Process Cost by Condition</td>
<td>96</td>
</tr>
<tr>
<td>4.9</td>
<td>Process Cost ANOVA Table</td>
<td>98</td>
</tr>
<tr>
<td>4.10</td>
<td>Values for Satisfaction by Condition</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview of Research Results</td>
<td>103</td>
</tr>
<tr>
<td>5.2</td>
<td>Design Performance ANOVA Table with Two-Way Interactions</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Life-Cycle Cost ANOVA Table with Two-Way Interactions</td>
<td>104</td>
</tr>
<tr>
<td>5.4</td>
<td>Process Cost ANOVA Table with Two-Way Interactions</td>
<td>105</td>
</tr>
<tr>
<td>5.5</td>
<td>Feasible Ideas by Condition</td>
<td>113</td>
</tr>
<tr>
<td>5.6</td>
<td>Feasible Idea ANOVA Table with Three-Way Interactions</td>
<td>113</td>
</tr>
<tr>
<td>5.7</td>
<td>Feasible Idea ANOVA Table with Two-Way Interactions</td>
<td>114</td>
</tr>
<tr>
<td>5.8</td>
<td>Robustness Values by Condition</td>
<td>117</td>
</tr>
<tr>
<td>5.9</td>
<td>Direct Labor ANOVA Table with Three-Way Interactions</td>
<td>119</td>
</tr>
<tr>
<td>5.10</td>
<td>Direct Labor ANOVA Table with Two-Way Interactions</td>
<td>119</td>
</tr>
<tr>
<td>5.11</td>
<td>Conceptual Design Time ANOVA Table with Three-Way Interactions</td>
<td>123</td>
</tr>
<tr>
<td>5.12</td>
<td>Conceptual Design Time ANOVA Table with Two-Way Interactions</td>
<td>123</td>
</tr>
<tr>
<td>5.13</td>
<td>Conceptual Design Process Cost ANOVA Table with Three-Way Interactions</td>
<td>124</td>
</tr>
<tr>
<td>5.14</td>
<td>Conceptual Design Process Cost ANOVA Table with Two-Way Interactions</td>
<td>124</td>
</tr>
<tr>
<td>5.15</td>
<td>Comparison of Means by Strategy</td>
<td>127</td>
</tr>
<tr>
<td>5.16</td>
<td>Cost Effectiveness ANOVA Table</td>
<td>127</td>
</tr>
<tr>
<td>5.17</td>
<td>Process Time ANOVA Table</td>
<td>128</td>
</tr>
<tr>
<td>5.18</td>
<td>Satisfaction ANOVA Table</td>
<td>128</td>
</tr>
<tr>
<td>5.19</td>
<td>Means for Various Variables</td>
<td>129</td>
</tr>
<tr>
<td>5.20</td>
<td>Cost Effectiveness ANOVA Table</td>
<td>129</td>
</tr>
<tr>
<td>5.21</td>
<td>Life-Cycle Cost ANOVA Table</td>
<td>130</td>
</tr>
<tr>
<td>5.22</td>
<td>Process Time ANOVA Table</td>
<td>130</td>
</tr>
<tr>
<td>5.23</td>
<td>Detail Design ANOVA Table</td>
<td>131</td>
</tr>
<tr>
<td>5.24</td>
<td>Satisfaction ANOVA Table</td>
<td>131</td>
</tr>
<tr>
<td>5.25</td>
<td>Suggested Class For Experiment</td>
<td>134</td>
</tr>
<tr>
<td>5.26</td>
<td>Concepts Learned from the Experiment</td>
<td>135</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1. A Comparison of Sequential and Concurrent Engineering (Adapted from Carlson and Ter-Minassian, 1997) ... 5
Figure 1.2. Suh’s Overall Conceptual Model of the Design Process (1990) 9
Figure 1.3. Conceptual Model Adapted from McGrath (1994) and from Kraemer and Pinnonneault (1990) ... 10
Figure 1.4. Research Model ... 11
Figure 2.1. Organization of Chapter 2 ... 21
Figure 2.2. Analytical Model of Sociotechnical Systems (Adapted from Trist, 1993) 23
Figure 2.3. Kurstedt’s (1993) Engineering Process .. 35
Figure 2.4. Design as a Mapping of FRs to DPs (Adapted from Suh, 1990) 36
Figure 2.5. Categories of Design (Adapted from Sriram, 1989) 37
Figure 2.6. Performance as a Function of Group Size (Adapted from Nunamaker, 1990) 52
Figure 2.7. The SYMLOG Three-Dimensional Space (Adapted from Bales and Cohen, 1979) ... 65
Figure 3.1. Experimental Design .. 69
Figure 3.2. Experimental Setup ... 70
Figure 3.3. Actual Laboratory Setup .. 70
Figure 3.4. Photo of Macroergonomics and Group Decision Systems Laboratory 73
Figure 3.5. Definition of Design Tasks and Products .. 77
Figure 4.1. Ranges for Cost Effectiveness by Condition .. 88
Figure 4.2. Graph of Main Effect of Group Size on Cost Effectiveness 89
Figure 4.3. Ranges of System Effectiveness by Condition ... 91
Figure 4.4. System Effectiveness Interaction Graph ... 92
Figure 4.5. Ranges for Life-Cycle Cost by Condition .. 93
Figure 4.6. Main Effect of Group Size on Life-Cycle Cost .. 94
Figure 4.7. Ranges of Process Time by Condition .. 95
Figure 4.8. Ranges of Process Cost by Condition .. 97
Figure 4.9. Group Size and Computer Support Effects on Process Cost 98
Figure 4.10. Ranges for Satisfaction by Condition ... 99
Figure 5.1. Feasible Solution Chart .. 111
Figure 5.2. Typical Catapult Design .. 112
Figure 5.3. Typical Winch Design .. 112
Figure 5.4. Typical Slingshot Design .. 112
Figure 5.5. Distribution of Team Scores for Successful Tests ... 115
Figure 5.6. Distribution of Team Scores for Producability .. 116
Figure 5.7. Distribution of Team Scores for Manufacturing Size 117
Figure 5.8. Ranges of Life-Cycle Costs for Each Solution ... 118
Figure 5.9. Conceptual Design Process Cost Interaction .. 125