
CHAPTER 6
A MODE SHAPE SENSING TECHNIQUE

In this chapter we discuss the development of a method to extract the mode shapes of  structures
using the adaptive modal filter.

6.1 Sensor Gain Matrices and Mode Shapes

The sensor gain matrix in Fig. 1.2 in the Introduction give an idea that the sensor gain matrix of a
spatial modal filter is closely related to the mode shapes of the structure to which the sensors are
attached. Figures 3.1 and 3.13 Indicates that the rows of the sensor gain matrix are similar to the
mode shapes of the structure. These examples suggest that structural mode shapes can be
recovered from sensor gain matrices.

In this chapter we assume that the sensor gain matrix of the adaptive modal filter has converged
to the ideal gain matrix. Only then can we compute the mode shape function using the procedure
developed below. Notice that the mth row of the sensor gain matrix W contains the information on
the mth mode shape function, φm. This information is in discrete form, i.e., if we use a sensor with
N segments, each row of the sensor gain matrix contains only N numbers whose relationship to
the mode shape function is not always obvious. In most cases where we need mode shape
functions, what we need is the values of the mode shape functions at given positions on the
structure.

The problem now is how to process the sensor gain matrix (for example, the one in Fig. 6.1) to
extract mode shapes as continuous functions of positions on the structure (for example, functions
shown in Fig. 6.2).
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Figure 6.1  Sensor gain matrix .
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Figure 6.2  Mode shapes of beam, φ x).
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6.2 Lagrange Interpolation

Based on the observation of the above sensor gain matrix and the mode shape functions, we can
make an approximating assumption that the mode shape functions are related to the rows of the
sensor gain matrix. Under this approximation, we assume that the mth row of the sensor gain
matrix are the values of the mth mode shape at points cn in the middle of the segments for n = 1,
… N. These positions are shown in Fig. 6.3. Additionally, we know from the boundary conditions
in this example that the values of the mode shapes at the ends of the beam are equal to zero.

Figure 6.3  Beam with strain sensor segments.

We only have a limited amount of (discrete) data, i.e., the third row of the sensor gain matrix,
while the domain of the mode shape function φ(x) is continuous, i.e., it has an infinite number of
possible values. For structures in general φ(x) is not known to take the form of any specific
function. Therefore, we can only estimate the deflection. The quality of our estimation depends on
the function we assume for the deflection. In static cases, the deflection is often a polynomial
function of x. In many cases, polynomials provide close approximation to other functions
provided that the polynomials are of sufficiently high order. Therefore, we choose polynomials as
approximating functions. The estimated mode shapes will be inherently biased. However, if the
estimate is good, the bias can be made negligibly small for many purposes.

For simplicity and easier understanding, we limit our discussion to the extraction of the third
mode shape function (m = 3) of the beam. We will use the third row of the sensor gain matrix
accordingly. Of course, the method we will develop can be applied to other mode shapes as well.
For m = 3, we assume that the value of the mode shape function in the middle of the nth segment
is equal to the nth element of the third row of the sensor gain matrix, that is,

φ χ3 3( ) ,n n= W (6.1)

PVDF segments

x

c0 = 0
c1

Wm,n

cN+1 = L
cN

Segment gain



118

We can estimate the mode shape function between the above points by interpolating the known
N+1)  order polynomial from N+

interpolation formula. (For explanation of this formula, see Burden and Faires, 1985).
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(6.2)

In this example the mode shape functions at the ends of the beam are zero, so

( ) ( )φ φ3 30 0= =L , (6.3)

In the implementation of the segmented sensors to simulate a mode shape sensor at any given x,
we shall pre-compute the ratios in Eqs. (6.2) to form the appropriate shape sensor weight
coefficients. Therefore, as soon as the sensor gain matrices are available from the adaptive modal
filters, the only real-time computation required to obtain the slope and the shape is multiplication
of the sensor gain matrices by the pre-computed weight coefficients. The above formula results in
a single (scalar) number for each position x. To obtain the mode shape function at an array of
positions, we can enter a vector of values of desired positions.

6.3 Numerical Example

As an example, we will estimate the third mode shape of the beam, φ3(x), using the third row of
the sensor gain matrix, W3,n, where n = 1, …, 10 denotes the segment number. This row is shown
in Fig. 6.4.
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Figure 6.4  Third row of sensor gain matrix.

We apply Eq. (6.3) to the above W3,n with an array of 65 points equally spaced between x = 0 and
x = L as an example. (The equal spacing is not necessary, since the mode shape value at any point
can be evaluated.) The result of the reconstructed mode shape agrees well with the analytical
mode shape calculated using Eq. (2.4). This agreement is shown in Fig. 6.5. The analytical mode
shape has been normalized to a maximum value of 1 using Eq. (2.6). To make comparison easier,
the recovered mode shape is also normalized so that its maximum absolute value = 1.
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Figure 6.5  Reconstructed mode shape.

6.4 Chapter Summary

The mth row of the sensor gain matrix W provides discrete spatial information that can be
interpolated to recover the mth mode shape of the structure. We used Lagrange interpolation
formula to create a matrix that premultiplies the sensor gain matrix W to recover a mode shape of
the structure. The recovered mode shape agrees well with the analytical mode shape.


