A New Adaptive Array of Vibration Sensors

Hartono Sumali

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Mechanical Engineering

Harley H. Cudney, Chair
Chris R. Fuller
Daniel J. Inman
Larry D. Mitchell
Alfred L. Wicks

July 1997
Blacksburg, Virginia

Keywords: Modal Analysis, Algorithm, Eigenvectors
Copyright 1997, Hartono Sumali
A New Adaptive Array of Vibration Sensors

Hartono Sumali

(ABSTRACT)

The sensing technique described in this dissertation produces modal coordinates for monitoring and active control of structural vibration. The sensor array is constructed from strain-sensing segments. The segment outputs are transformed into modal coordinates by a sensor gain matrix.

An adaptive algorithm for computing the sensor gain matrix with minimal knowledge of the structure’s modal properties is proposed. It is shown that the sensor gain matrix is the modal matrix of the segment output correlation matrix. This modal matrix is computed using new algorithms based on Jacobi rotations. The procedure is relatively simple and can be performed gradually to keep computation requirements low.

The sensor system can also identify the mode shapes of the structure in real time using Lagrange polynomial interpolation formula.

An experiment is done with an array of piezoelectric polyvinylidene fluoride (PVDF) film segments on a beam to obtain the segment outputs. The results from the experiment are used to verify a computer simulation routine. Then a series of simulations are done to test the adaptive modal sensing algorithms. Simulation results verify that the sensor gain matrix obtained by the adaptive algorithm transforms the segment outputs into modal coordinates.
ACKNOWLEDGEMENTS

I would like to express my gratitude to all who have contributed to this research endeavor, especially the following individuals. I thank my major advisor Dr. Harley Cudney for his support throughout my years as a graduate student, both financially and personally. I have learned so much from him.

My special thanks are due to Dr. Larry Mitchell. I am grateful for the first-class education and training I received from him, especially during the final years of my graduate studies. I thank Dr. Dan Inman for his help, especially with my future career opportunities. I thank Dr. Al. Wicks for his advise on signal processing and modal analysis. I am grateful that I had a chance to learn first-hand information from Dr. Chris Fuller, a world-renowned expert in vibration and acoustics, whose insight into the physical meaning of every mathematical expression never ceases to amaze me.

I thank the agencies and companies which supported the various research projects I was involved in: ONR, Westinghouse, DARPA, Cessna, and ARO. I thank many people who helped me with experiments: Karsten Meissner, Rich Lomenzo, Ben Poe, and James Garcia. I thank those who helped me with their knowledge, advice and discussion: Dr. Ricardo Burdisso, Chris Niezrecki, Dr. Chul-Hue Park, Dr. Nesbitt Hagood, and many others. I thank my parents, friends, teachers, and above all, I thank God.
TABLE OF CONTENTS

1 Introduction .. 1

1.1 Modal Analysis and Modal Coordinates ... 1

1.2 The Quest for Modal Coordinate Sensors ... 2
 1.2.1 Modal Filtering in Time Domain ... 3
 1.2.2 Modal Filtering in Spatial Domain ... 3
 1.2.3 Segmentation of Modal Filtering Sensors ... 7
 1.2.4 Segmentation of Modal Filtering Sensors ... 7
 1.2.5 Modal Filtering Using Adaptive Algorithms ... 8

1.3 Conventional System Characterization and Mode Shape Extraction 10

1.4 On-line Modal Analyzer: a Novel Concept ... 13

1.5 Overview of Dissertation .. 14

2 Simulation Method and Sensor Model ... 17

2.1 Model of Variable Host Structure .. 17
 2.1.1 Description of Structure .. 17
 2.1.2 Eigen-properties of Structure .. 18
 2.1.3 Equation of Motion and Its State-Space Form ... 19

2.2 Simulation of Structure ... 20
 2.2.1 Sampling and Discrete-Time Model .. 20
 2.2.2 Discrete-Time Model of One Mode .. 21
 2.2.3 Discrete-Time Model of Multi-Mode Structures .. 22
 2.2.4 Selecting Sensor Configuration .. 23

2.3 Segmented Sensor Model .. 25
 2.3.1 Voltage Generated by Segment ... 25
 2.3.2 Array of Piezoelectric Film Segments on Beam .. 28
 2.3.3 Gain Matrix for Segmented Modal Sensor .. 31

2.4 Chapter Summary ... 32

3 Numerical Simulation and a Proof-of-Concept Experiment .. 34

3.1 Verification of Digital Filter Model and Gain Matrix Formula 34
 3.1.1 Verification of Digital Filter Model ... 34
 3.1.2 Verification of Gain Matrix Formula .. 41
 3.1.3 Modal Truncation and Spatial Aliasing ... 43

3.2 Proof-of-Concept Experiment ... 47
 3.2.1 Properties of Experimental Structure ... 47
3.2.2 Experimental Setup ... 49
3.2.3 Experiment Results ... 51
3.2.4 Discussions on Experiment Results .. 55
3.3 Chapter Summary ... 58

4 Adaptive Computation of Gain Matrices ... 59
4.1 Effects of Inaccurate Mode Shapes ... 60
4.2 Adaptive Design of Modal Sensors ... 62
4.2.1 Correlation between Modal Coordinates 62
4.2.2 Adaptive Computation of Sensor Gain Matrix 65
4.3 Numerical Example ... 67
4.4 Chapter Summary ... 75

5 Eigenvector Computing Algorithms ... 79
5.1 Jacobi Rotation Algorithm .. 79
5.2 Algorithm A, Convergence and Rotation Angle 85
5.3 Algorithm B .. 87
5.3.1 Development .. 87
5.3.2 Numerical Example .. 91
5.4 Algorithm C .. 95
5.4.1 Development .. 95
5.4.2 Numerical Example .. 100
5.4.3 Frequency-Domain Analysis ... 102
5.5 Limitations ... 112
5.6 Chapter Summary ... 113

6 A Mode Shape Sensing Technique ... 115
6.1 Sensor Gain Matrices and Mode Shapes ... 115
6.2 Lagrange Interpolation ... 117
6.3 A Numerical example .. 118
6.4 Chapter Summary ... 120

7 Conclusions and Future Direction ... 121
7.1 Conclusions ... 121
7.2 Future Directions .. 122
References .. 125

Appendix A LMS Computation of Gain Matrix ... 130

Appendix B LMS Algorithm .. 136

Appendix C A Control-Model Identification Procedure .. 138

Appendix D Stability of IIR Filters .. 142

Vita ... 146
LIST OF FIGURES

1.1 Modal filtering in time domain ... 3
1.2 Modal filtering in spatial domain ... 4
1.3 Mobility magnitudes at 4 points ... 5
1.4 Modal mobility magnitudes for modally combined sensors 6
1.5 Modal sensor in continuous spatial domain ... 6
1.6 Using an adaptive algorithm to create a modal sensor 8
1.7 Error signal history of adaptive modal filter ... 8
1.8 Typical control-model identification ... 12
1.9 Typical experimental modal analysis and modal filtering with conventional methods ... 14
1.10 Modal analysis and modal filtering with the new modal analyzer 15

2.1 Beam with pin and pin-with-torsion-spring boundary conditions 17
2.2 Continuous-time and sampled (discrete time) systems 21
2.3 Representing a high-order structure with a parallel bank of second-order digital filters 24
2.4 An infinitesimal piezoelectric element under strain 26
2.5 Strain in the film as a function of deflection of the beam 27
2.6 Piezoelectric film and zero-impedance signal conditioner 28
2.7 Spatial filters as modal sensors ... 30
2.8 Segment positions on beam ... 31

3.1 Mode shapes of beam .. 36
3.2 a)Z-plane poles, b)Denominator coefficients of the IIR-filter-equivalent of the beam 37
3.3 Comparison between beam’s driving-point mobility and digital filter’s FRF 38
3.4 Time-domain comparison between second-order digital filters and ideal modal coordinates: impulse response .. 40
3.5 Contribution of each mode to segment outputs .. 41
3.6 Gain matrix for modal sensors .. 42
3.7 Modal sensor output compared to ideal modal coordinates: impulse responses 44
3.8 Responses of a 10-mode filter to a 12-mode impulse excitation 45
3.9 Modal sensor output compared to ideal modal coordinates: impulse responses of modes 8 and 9 ... 46
3.10 Modal sensor output compared to ideal modal coordinates: FRF from force to sensor output and modal coordinates .. 46
3.11 Experiment setup ... 49
3.12 Schematic picture of experiment setup ... 50
3.13 FRF from force to segment outputs ... 51
3.14 Sensor gain matrix W for transforming 20 segment outputs into 8 modal coordinates 54
3.15 FRF’s from force to sensor outputs .. 55
3.16 FRF’s from force to sensor outputs, linear scale .. 57
3.17 End connection to approximate simple support ..58

4.1 Magnitudes of the responses of the sensor on the $T^*=1$ structure and on the $T^*=10$ structure ..60
4.2 Phases of the responses of the sensor on the $T^*=1$ structure and on the $T^*=10$ structure ..61
4.3 Real parts of the responses of the sensor on the $T^*=1$ structure and on the $T^*=10$ structure ..62
4.4 Modal responses to random excitation ..63
4.5 Mode-1 coordinate, Mode-3 coordinate, product of mode-1 and mode-3 coordinates, average of product of mode-1 and mode-3 coordinates ..64
4.6 Adjusting sensor gain matrix to diagonalize correlation matrix ..66
4.7 Sensor gain matrix adjustment using eigenvector matrix of segment output correlations68
4.8 Sensor gain matrix computed with 16 sets of time data (W_{16})68
4.9 Ideal sensor gain matrix ...69
4.10 Sensor output correlation matrix using $W(16)$..70
4.11 Sensor gain matrix $W(256)$...71
4.12 Sensor output correlation matrix resulting from $W(256)$..72
4.13 Sensor gain matrix calculated using 32768 time data points ..72
4.14 Sensor output correlation matrix resulting from $W(32768)$..73
4.15 Sensor gain matrix calculated using 49152 data points ..74
4.16 Sensor output correlation matrix resulting from $W(49152)$..74
4.17 Magnitudes of adaptive sensor outputs and ideal modal coordinates76

5.1 Jacobi rotation example ..83
5.2 Result of first sweep ..84
5.3 Result of second sweep ...84
5.4 Algorithm A ...86
5.5 Typical rotation angle history of Algorithm A ...87
5.6 Sensor output correlation matrix, Algorithm B, 256 time steps92
5.7 Sensor output correlation matrix, Algorithm B, 32768 time steps92
5.8 Rotation angle history, Algorithm B ..93
5.9 Sensor gain matrix (Algorithm B), 32768 time steps ..93
5.10 Normalized magnitude responses of modal filter (Algorithm B) after 32768 time steps.....93
5.11 Input connections to Algorithm C ..99
5.12 Rotation angle history, Algorithm C ..100
5.13 Sensor gain matrix (Algorithm C), after 32768 time steps ..101
5.14 Sensor output correlation matrix (Algorithm C) after 32768 time steps101
5.15 Normalized magnitude response of modal filter with performance feedback: Mode 1 ...102
5.16 Normalized magnitude response of modal filter with performance feedback: Mode 2 ...103
5.17 Normalized magnitude response of modal filter with performance feedback: Mode 3 ...103
5.18 Normalized magnitude response of modal filter with performance feedback: Mode 4 ...104
5.19 Normalized magnitude response of modal filter with performance feedback: Mode 5 104
5.20 Normalized magnitude response of modal filter with performance feedback: Mode 6 105
5.21 Normalized magnitude response of modal filter with performance feedback: Mode 7 105
5.22 Normalized magnitude response of modal filter with performance feedback: Mode 8 106
5.23 Normalized magnitude response of modal filter with performance feedback: Mode 9 106
5.24 Normalized magnitude response of modal filter with performance feedback: Mode 10 ... 107
5.25 Normalized magnitude response of modal filter with performance feedback: Mode 1 102
5.26 Normalized magnitude response of modal filter with performance feedback: Mode 2 108
5.27 Normalized magnitude response of modal filter with performance feedback: Mode 3 108
5.28 Normalized magnitude response of modal filter with performance feedback: Mode 4 109
5.29 Normalized magnitude response of modal filter with performance feedback: Mode 5 109
5.30 Normalized magnitude response of modal filter with performance feedback: Mode 6 110
5.31 Normalized magnitude response of modal filter with performance feedback: Mode 7 110
5.32 Normalized magnitude response of modal filter with performance feedback: Mode 8 111
5.33 Normalized magnitude response of modal filter with performance feedback: Mode 9 111
5.34 Normalized magnitude response of modal filter with performance feedback: Mode 10 ... 112

6.1 Sensor gain matrix W .. 116
6.2 Mode shapes of beam, $\phi(x)$.. 116
6.3 Beam with strain sensor segments ... 117
6.4 Third row of sensor gain matrix ... 119
6.5 Reconstructed mode shape ... 120
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Physical properties of beam</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Eigenvalues of beam</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Natural frequencies of beam</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Gain matrix for modal sensor</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Physical properties of beam</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Analytical natural frequencies of beam</td>
<td>48</td>
</tr>
</tbody>
</table>