List of Figures

Title	Page
Chapter 1: Introduction 1.2.1. Effect of particle interactions on the zero shear viscosity of a suspension.	6
1.2.2. Potential energy versus distance between particles.	7
1.2.3. Homopolymer adsorption versus diblock copolymer adsorption.	9
1.2.4. Chemical structures of polymers.	12
1.2.5. Structure of PEI and modified PEI homopolymers.	13
1.2.6. Adsorption behavior of commercial nonionic polymeric surfactant on latex and SiO ₂ particles.	16
Chapter 2: Literature Review 2.1.1. Mechanisms for the origin of surface charges.	30
2.1.2. General appearance of the surface charge on oxides as a function of pH.	31
2.1.3. Double Layer models.	36
2.1.4. Typical forms of the total interaction free.	47
2.2.1. Adsorption isotherms for the adsorption of SDS onto carbon.	51
2.2.2. Isotherms for the adsorption of sodium alkylsulphonates from aqueous NaCl onto alumina.	53
2.2.3. Schematic representation of nonioinc surfactants adsorption.	54
2.3.1. Adsorption isotherm for poly(styrene sulphonate) absorbed onto negatively charged polystyrene latex at various ionic strengths.	56
2.3.2. Variation in δ_H with ionic strength for poly(styrene sulphonate) absorbed onto negatively charged and positively charged polystyrene latex.	57
2.3.3. Typical conformation of adsorbed homopolymer chain in a lattice.	61
2.3.4. Segmental conformations for polymer adsorbing on a surface.	66

	Trends for the plateau value of the adsorbed amount, Γ_p , as predicted by the SCF theory as a function of the degree of polymerization.	68
	Fractions of trains, loops and tails for an athermal solvent and a Ξ -solvent, as a function of the volume fraction in the bulk.	69
tl	SCF predictions for the hydrodynamic layer thickness as a function of he dimensionless adsorbed amount, at various values of the degree of polymerization.	70
	SCF predictions for the adsorbed amount as a function of the volume raction in the bulk for an athermal and Θ -solvent.	71
	Dimensionless adsorbed amount as a function of chain length and bulk volume fraction.	73
	SCF predictions on a hexagonal lattice for (a) the adsorbed amount and (b) the direct surface coverage as a function of χ_s for athermal and Θ -solvents.	76
	Schematic illustrating an AB copolymer adsorbed on a surface from a non-selective solvent.	79
2.3.12.	Illustration the anchor and buoy regimes of copolymer adsorption.	81
	Linear relationship of surface density versus N _A ⁻¹ for DMAEM-BMA adsorption onto Cab-O-Sil silica.	84
2.3.14.	Comparison of the adsorbed layer thickness versus $N_B N_A^{-1/3}$.	85
	Representative lattice construction for two A_3B_5 copolymers adsorbed on a surface.	87
	(a) Adsorbed amount for diblock copolymers versus the mole fraction of anchor segments. (b) The hydrodynamic layer thickness as a function of the size of the tail block for aethermal and Θ -solvents.	90
2.3.17.	Conformation of terminally attached chains.	94
	Adsorption behavior of commercial nonionic polymeric surfactant of latex and SiO ₂ particles.	104
3.2.1.	er 3: Adsorption Isotherms on selected Metal Oxides Chemical structures of PEOX, PEO, and PVOH used in adsorption isotherm experiments.	112

3.2.2. Structure of PEI and modified PEI homopolymers for adsorption isotherm experiments.	113
3.3.1. Concentration versus UV absorbance at $\lambda = 235$ nm PMAR calibration curve for PEO M _w = 12K.	117
3.4.1. Adsorption isotherm measurements for PEOX $M_w = 30K$ on SiO ₂ .	119
3.4.2. Adsorbed amount versus pH for PEOX $M_w = 30K$ on SiO ₂ .	122
3.4.3. Adsorption Isotherms for linear hydroxyl modified PEI polymers on SiO ₂ .	126
3.4.4 Adsorption Isotherms for linear hydroxyl modified PEI polymers on TiO ₂ .	128
3.4.5. Adsorption Isotherms for linear hydroxyl modified PEI polymers on Al_2O_3 .	130
3.4.6. Adsorption of P100G100 as a function of pH on SiO_2 and Al_2O_3 .	132
3.4.7. Atomic adsorption results for soluble Na and Al in Al_2O_3 water controls.	134
3.4.8. Effect of hydrophobic single C12 end-group on the adsorption properties of P20G100 homopolymer on SiO ₂ , TiO ₂ , and Al ₂ O ₃ .	135
Chapter 4: Adsorbed Layer Thickness Determination Streaming Potential	
Experiments 4.4.1. Schematic of Streaming Potential Instrument.	145
-	145 150
4.4.1. Schematic of Streaming Potential Instrument.4.5.1. Streaming potential determination of the hydrodynamic layer thickness	
 4.4.1. Schematic of Streaming Potential Instrument. 4.5.1. Streaming potential determination of the hydrodynamic layer thickness versus concentration for PEO. 4.5.2. Determination of the adsorbed layer thickness versus concentration for 	150
 4.4.1. Schematic of Streaming Potential Instrument. 4.5.1. Streaming potential determination of the hydrodynamic layer thickness versus concentration for PEO. 4.5.2. Determination of the adsorbed layer thickness versus concentration for several PEOX homopolymers. 4.5.3. Plot of streaming potential layer thickness versus the adsorbed amount 	150 153

5.2.1.	The four classes of macromolecular architecture.	162
5.2.2.	Structural elements of dendritic polymers.	164
5.2.3.	Divergent and convergent synthesis methods of dendrimer polymerization.	165
5.2.4.	Synthetic method for producing high molecular weight, low polydispersity dendrigraft polymers.	167
5.2.5.	Structure of trifunctional dendrimer from segregation study.	169
5.2.6.	"Phase Diagram" for Dendrimer adsorption on model surface.	171
5.5.1.	Adsorption isotherm for PA32G100 on SiO_2 as a function of pH.	176
5.5.2.	Adsorption isotherms behavior for dendritic versus linear polymers on SiO_2 .	178
5.5.3.	Adsorption isotherms behavior for dendritic versus linear polymers on TiO_2 .	181
5.5.4.	Adsorption isotherms behavior for dendritic versus linear polymers on Al_2O_3 .	183
5.5.5.	Relative sediment height, RSH, versus concentration of PA32G100 dendrimer and PA32G100/PEOX $M_w = 30K$ copolymer.	185
Chapt	er 6: Effect of Temperature on Nonionic Polymer Adsorption on	
6.2.1.	SiO ₂ in Aqueous Media (a) Illustration of commonly observed phase behavior of polymer solutions. (b) Cloud points for a the most common water-soluble polymers referenced to 25 °C.	191
6.2.2.	Cloud point temperature as a function of molecular weight for PEOX homopolymer in dilute solution.	194
6.3.1.	Structures of PEOX and hydroxyl modified PEI homopolymers.	196
6.5.1.	Elevated Temperature Adsorption Study of PEOX $M_w = 30K$ homopolymer on SiO ₂ .	198