GRAIN SORGHUM FIELD EMERGENCE AND SEED VIGOR TESTS

by

CEZAR ERNESTO DETONI

Drs. Ozzie Abaye and David Parrish, Co-chairs

ABSTRACT

Poor emergence of sorghum [(Sorghum bicolor (L) Moench] affects the stand and potential yields. The major objective of this research was to find correlations among field emergence data and laboratory seed vigor tests. Thirty-two and 30 hybrids of sorghum were planted at three Virginia locations in 1995 and 1996, respectively. Field emergence was subsequently compared with results from laboratory tests that included: 1) standard germination; 2) osmotic-stress using polyethylene glycol 8000 (mw); 3) heat-shock using 2 hr at 50°C stress; 4) electrical conductivity of steep water of germinating seeds; and 5) seed mass. Field emergence of grain sorghum differed among hybrids, years and locations. Mean emergence across years and locations was 67.5%, whereas mean germination in the laboratory was 87.8%. There were interaction between hybrid and location and between hybrid and year. Germination under optimal conditions (standard germination test) and with osmotic or heat-shock stress differed among hybrids. Regression analyses showed a weak correlation between laboratory germination (with or without stress) and field emergence in both years. The fresh weight of seedlings whether from standard germination or stress tests also differed among hybrids in both years, and the associations with field emergence were weakly correlated in 1996. Hybrids showed significant differences in radicle length when grown under laboratory stress in both years following standard germination. There was a weak correlation with field emergence and radicle length following heat-shock treatment in 1996. The measurement of electrical conductivity in the seed steep water showed significant differences among hybrids. A weak correlation with field emergence was seen in 1996. Conductivity values per gram of seed and per cm^2 of seed area revealed differences among hybrids. The correlation of these parameters with field emergence was higher than conductivity per seed. Seed mass varied among hybrids in both years, but was no correlation between seed mass and emergence. Of the laboratory parameters examined, germination proved to be the most consistent predictor of variations in field emergence of sorghum hybrids.

ACKNOWLEDGEMENTS

I wish to express my deep appreciation to my advisors Dr. Ozzie Abaye and Dr. David J. Parrish for their continuous guidance, encouragement, patience, and understanding throughout my graduate program. I am grateful to them for their interest shown in my development and promptness and thoroughness in reviewing this manuscript. I am very grateful to the members of my graduate committee Dr. Gregory Welbaum, Dr. Daniel Brann, and Dr. Dale Wolf for their support and encouragement throughout my graduate program. Dr. Welbaun is especially acknowledged for generously sharing his lab space and assistance during this work.

I am grateful to the faculty and staff of the Department of Crop and Soil Environmental Sciences. Special thanks are due to Ms. Elizabeth Bender for her assistance and guidance. I am also grateful to my fellow graduate students for their support, especially Shen Zhengxing, Marc Corrigan, and Helena de Marco.

I also would like to express thanks to EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria for financial support, and DOD/EMBRAPA staff for their assistance and support throughout my graduate program.

Many well deserved thanks are due my wife Dina, my son Pablo, and my daughter Cassia; "You are wonderful". Also all to the Brazilians friends that I meet here are thanked for their help, advice, and friendship, especially Willian Ferreira da Costa.

Table of Contents

Title Page	i
Abstract	ii
Acknowledgments	iv
Table of Contents	v
List of Tables	vii
List of Figures	xi
Chapter I,	
Introduction .	1
Chapter II,	
Literature Review	3
Grain sorghum lab performance and field emergence	3
Factors affecting sorghum seed emergence	4
Vigor Tests	6
Chapter III,	
Influence of Genotype and Location on Grain Sorghum Field Emergence	11
Introduction	11
Materials and Methods	11
Results and Discussion	14
Chapter IV,	

Use of Standard Germination Data and Seed Mass to Predict Field

Emergence of Sorghum	23
Introduction	23
Materials and Methods	23
Results and Discussion	27
Chapter V,	
Use of an Osmotic Stress Test to Predict Field Emergence of Sorghum	42
Introduction	42
Materials and Methods	42
Results and Discussion	44
Chapter VI,	
Use of a Heat Shock Stress Test to Predict Field emergence of Sorghum	60
Introduction	60
Materials and Methods	60
Results and Discussion	61
Chapter VII,	
Use of an Electrical Conductivity Test to Predict Field Emergence of Grain Sorghum	76
Introduction	76
Materials and Methods	76
Results and Discussion	78
Chapter VIII,	
General Summary and Conclusions	90

Chapter IX,

Literature Cited .	•	92
APPENDIX		
Daily rainfall and maximum and minimum temperatures during the emergence	period	
for field experiments at three locations and two years	••••	100
Vita		106

List of Tables

Table	Description	Page
3.1	Sorghum hybrids in the Virginia Sorghum Trials in 1995 and/or 1996	12
3.2	Location, planting date, and soils for each of the three locations of the Virginia Sorghum Trials used in field emergence studies	13
3.3	Fertilization, herbicide application, and rainfall during the emergence period at three 1995 locations of sorghum field emergence studies	13
3.4	Fertilization, herbicide application, and rainfall during the emergence period at three 1996 locations of sorghum field emergence studies	14
3.5	Field emergence of 32 sorghum hybrids tested at three locations of the Virginia Sorghum Trials in 1995	15
3.6	Analysis of variance of field emergence for 32 sorghum hybrids planted at three Virginia locations in 1995	16
3.7	Analysis of variance of field emergence for 32 sorghum hybrids planted at two Virginia locations (Warsaw and Blacksburg) in 1995	16
3.8	Field emergence of the 30 sorghum hybrids tested at three locations of the Virginia Sorghum Trials in 1996	18
3.9	Analysis of variance of field emergence of the 30 sorghum hybrid planted at three Virginia locations in 1996	19
3.10	Analysis of variance of field emergence of the 30 sorghum hybrid planted at two Virginia locations (Blacksburg and Warsaw) in 1996	19
3.11	Analysis of variance of field emergence of 17 hybrids planted at three Virginia locations in both 1995 and 1996	20
4.1	Sorghum hybrids from the Virginia Sorghum Trials that were tested in laboratory studies in 1995 and/or 1996	25
4.2	Germination, radicle length and fresh weight of 3-day-old seedlings, and	

	seed mass for 24 hybrids in the 1995 Virginia Sorghum Trials	31
4.3	Germination, radicle length and fresh weight of 3-day-old seedlings, and seed mass of the hybrids in the 1996 Virginia Sorghum Trials	36
4.4	Comparison between field emergence and "standard germination test" made by several researchers working with grain sorghum	37
4.5	Regression analysis of dry weight of the seeds, seedling fresh weight, and radicle length of the hybrids used in both years in Virginia Sorghum Trials	45
4.6	Contrasts between 1995 and 1996 seedlots for germination, radicle length of 3-day-old seedlings, and fresh weight of 3-day-old seedlings, and seed mass of 14 hybrids in the Virginia Sorghum Trials	40
5.1	Germination, radicle length, and fresh weight of 3-day-old seedlings grown under osmotic stress for the hybrids used in the 1995 Virginia Sorghum Trials	47
5.2	Germination, radicle length, and fresh weight of 3-day-old seedlings grown under osmotic stress for the hybrids used in the 1996 Virginia Sorghum Trials	51
5.3	Osmotic potentials of 21% PEG solution as prepared and at seed level after 2 days in ragdolls for germination under PEG treatment	52
5.4	Comparison between the standard germination and PEG treatment on the radicle length of 3-day-old sorghum seedlings	54
5.5	Means of the fresh weight of 3-day-old seedlings from standard germination and from PEG treatments for 1995 and 1996	55
5.6	F and P values of ANOVA contrasts between years for germination, fresh weight of seedlings, and radicle length of seedlings in PEG of 12 hybrids tested in both years	56
5.7	Sensitivity of germination, radicle length, and fresh weight of the sorghum hybrids to osmotic stress test [(standard - osmotic / standard) x 100] for the hybrids in 1995 Virginia Sorghum Trials	57
5.8	Sensitivity of germination, radicle length, and fresh weight of the sorghum hybrids to osmotic stress test [(standard - osmotic / standard) x 100] for the hybrids in 1996 Virginia Sorghum Trials	58

6.1	Germination and radicle length of 3-day-old seedlings following the heat-shock treatment of the hybrids in the 1995 Virginia Sorghum Trials	6
6.2	Germination, radicle length, and fresh weight of 3-day-old seedlings following heat-shock treatment for hybrids in the 1996 Virginia Sorghum Trials.	6
6.3	Comparison between germination in standard germination test and in heat- shock test for the hybrids in the 1995 and 1996 Virginia Sorghum Trials	6
6.4	Comparison between heat-shock and standard germination tests for radicle length of sorghum seedlings	7
6.5	Comparison between heat-shock and the standard germination tests for fresh weight of 3-day-old seedlings for hybrids in the 1996 Virginia Sorghum Trials	7
6.6	Contrasts of 1995 vs 1996 seedlots for germination and radicle length following heat-shock treatment	7
6.7	ANOVA for percent of reduction in germination, radicle length, and 3-day-old seedling fresh weight for the hybrids in the 1995 and 1996 Virginia Sorghum Trials.	7
6.8	Sensitivity of the sorghum hybrids to heat shock [(standard - heat shock / standard) x 100] for the hybrids in 1995 Virginia Sorghum Trials	7
6.9	Difference between standard germination and heat shock stress test (Δ) in percent germination, radicle length, and fresh weight of the 1996 Virginia Sorghum Trials hybrids.	7
7.1	Electrical conductivity per seed, per cm ² of seed area, and per gram of seed measured in the steep water of the seeds in the 1995 Virginia Sorghum Trials.	8
7.2	Mass, surface area, and volume of the seeds in the 1995 Virginia Sorghum Trials	8
7.3	Electrical conductivity per seed, per cm ² of seed area, and per gram of seed in the steep water of the seeds in the 1996 Virginia Sorghum Trials	8
7.4	Mass, surface area, and volume of the sorghum seeds of the 1996	

	Virginia Sorghum Trials	88
A-1	Daily rainfall at three Virginia locations during May and June in 1995	100
A-2	Daily rainfall at three Virginia locations during May and June in 1996	101
A-3	Maximum and minimum temperatures at three Virginia locations in May 1995	101
A-4	Maximum and minimum temperatures at three Virginia locations in June 1995	103
A-5	Maximum and minimum temperatures at three Virginia locations in May 1996	104
A-6	Maximum and minimum temperatures at three Virginia locations in June 1996	105

LIST OF FIGURES

Figure	Description	Page
4.1	Linear regression of laboratory germination and field emergence for 24 hybrids in the 1995 Virginia Sorghum Trials	27
4.2	Linear regression (ns) of 3-day-old seedling radicle length and field emergence for 24 hybrids in the 1995 Virginia Sorghum Trials	28
4.3	Linear regression (ns) of 3-day-old seedling fresh weight and field emergence of 24 hybrids in the 1995 Virginia Sorghum Trials	29
4.4	Linear regression (ns) of seed weight and field emergence of 24 hybrids in the 1995 Virginia Sorghum Trials	30
4.5	Linear regression of laboratory germination and field emergence for the hybrids in the 1996 Virginia Sorghum Trials	32
4.6	Linear regression (ns) of 3-day-old seedling radicle length and field emergence of the hybrids in the 1996 Virginia Sorghum Trials	33
4.7	Linear regression of 3-day-old seedling fresh weight and field emergence of the hybrids in the 1996 Virginia Sorghum Trials	34
4.8	Linear regression (ns) of seed weight and field emergence from the 1996 Virginia Sorghum Trials	35
5.1	Linear regression of germination of the seeds under osmotic stress and field emergence of hybrids in the 1995 Virginia Sorghum Trials	44
5.2	Linear regression (ns) of radicle length of 3-day-old seedlings under osmotic stress and field emergence of hybrids in the 1995 Virginia Sorghum Trials	46
5.3	Linear regression of fresh weight of 3-day-old seedlings under osmotic stress and field emergence of hybrids in the 1995 Virginia Sorghum Trials	47
5.4	Linear regression of germination under osmotic stress and field emergence of hybrids in the 1996 Virginia Sorghum Trials	48

5.5	Linear regression (ns) of radicle length of 3-day-old seedlings under osmotic stress and field emergence of the hybrids in the 1996 Virginia Sorghum Trials	49
5.6	Linear regression of fresh weight of 3-day-old seedlings under osmotic stress and field emergence of hybrids in the 1996 Virginia Sorghum Trials	50
6.1	Linear regression of field emergence and germination following heat-shock treatment for hybrids in the 1995 Virginia Sorghum Trials	62
6.2	Linear regression (ns) of field emergence and average radicle length of 3-day-old seedlings following heat-shock treatment for hybrids in the 1995 Virginia Sorghum Trials	63
6.3	Linear regression of field emergence and germination following heat-shock treatment for hybrids in the 1996 Virginia Sorghum Trials	65
6.4	Linear regression of field emergence and radicle length of 3-day-old seedlings following heat-shock treatment for hybrids in the 1996 Virginia Sorghum Trials.	66
6.5	Linear regression of field emergence percent and fresh weight of 3-day-old seedlings following heat-shock treatment of hybrids in the 1996 Virginia Sorghum Trials.	67
7.1	Linear regression (ns) of field emergence and electrical conductivity per seed for hybrids in the 1995 Virginia Sorghum Trials	79
7.2	Linear regression (ns) of field emergence and electrolyte leakage per cm ² of seed area for hybrids in the 1995 Virginia Sorghum Trials	80
7.3	Linear regression (ns) of electrical conductivity per gram of seed for the hybrids in the 1995 Virginia Sorghum Trials	81
7.4	Linear regression (ns) of field emergence and electrical conductivity per seed for hybrids in the 1996 Virginia Sorghum Trials	84
7.5	Linear regression of field emergence and electrical conductivity per cm ² of the seeds of hybrids in the 1996 Virginia Sorghum Trials	85

7.6	Linear regression of field emergence and electrical conductivity per gram	
	of seed for the hybrids in the 1996 Virginia Sorghum Trials	86