Dedication

To my parents

Kee-Ho Song

and

Soon-G Lee
Acknowledgments

I would like to first thank Dr. S. B. Desu for his continual guidance and endless patience during my entire work in Virginia Tech. I am grateful to him for allowing me to follow my own research interests while providing me with essential advice. Without his encouragement and support, I would have not finished this work. I also would like to express my sincere appreciation to my advisory committee members Dr. Bill Reynolds, Dr. William Curtin, Dr. Alex Huang, and Dr. G. Q. Lu for providing invaluable suggestions and remarks in their already heavy loads of responsibility. I wish to thank Dr. Hyo-duk Nam and Dr. Sa-gong Geon for their caring and concerns about my research and living in Blacksburg.

It was also lots of fun to work with lab colleagues. I absolutely enjoyed working with Ryu, Sukku, Vedula, Chandra, Vikto, Shanky, Dr. Bhutt, June Key Lee, Prof. Alouk, Prof. Lee, Zhu, Xubai, Dr. Hwang, Dr. Cho, and Dr. Joshi. I also express my greatest thanks to my wonderful long-time roommate, Younsoo Kang, and new mate, Hongman Kim. My sincere thanks go to many friends for their support and encouragement. My life in Blacksburg was full of fun especially due to Keangyoung Kang, Kyeahwan Oh, Kyeangsik Kang, Yuri Lee, Joonwon Choi, Dr. Jae-Cheul Bang and other Korean colleagues.

I dedicate this small achievement to my parents, my brother and his new full-time partner, and my special friend, Namyoung Park. My deepest appreciation is expressed to her for her love, understanding, and inspiration. Without their blessings and encouragement, I would not have been able to finish this work. I know it is impossible to sufficiently describe their supports and love that they have shown me over the years.
Table of Contents

Chapter 1. Introduction 1

1.1 Ferroelectric Materials 1
1.2 Ferroelectric Memories 4
1.3 Basic Operation 8

1.3.1 Destructive Read-out FRAM 8
1.3.2 Non-Destructive Read-out FRAM 10
1.4 Purpose of Research 12
1.5 Objectives of Research 17
1.6 References 17

Chapter 2. Low Temperature Processing 19

2.1 Introduction 19
2.2 Low Temperature Processing by a Electrode Template Layer 19

2.2.1 Formation Kinetics of PZT Films 20
2.2.2 Review of Seeding Process 22
2.2.3 Low Temperature Transformation by a Electrode Template Layer 23

2.2.4 Structural and Electrical Properties at Low Processing Temperature 30

2.2.5 The Effect of Electrode Template Layer 36

2.3 Modified Sol-Gel Processing 36

2.3.1 Overview 38
2.3.2 Sol-Gel Precursor Solution 39
2.3.3 Experimental Procedures 40
List of Figures

Figure 1.1	ABO$_3$ perovskite unit cell.	2
Figure 1.2	Hysteresis loop of a ferroelectric material.	3
Figure 1.3	Reading procedure of DRO FRAM devices.	9
Figure 1.4	Schematic view of NDRO FRAM structure.	11
Figure 1.5	Cross sections of DRO FRAM cell structure in	
a) low density device and b) high density device.	13	
Figure 2.1	The dependence of PZT refractive index and thickness on annealing temperature.	21
Figure 2.2	The cross-sectional view of the PZT sample prepared by a seeding process.	24
Figure 2.3	a) XRD patterns of PZT53/47 films without a seeding layer.	25
Figure 2.3	b) XRD patterns of PZT53/47 with a seeding layer.	26
Figure 2.4	The lattice matching between the intermetallic compound Pt$_3$Ti and (111) PZT.	28
Figure 2.5	The cross-sectional view of the substrate with Pt$_3$Ti electrode template layer.	29
Figure 2.6	XRD patterns of PZT53/47 films as a function of annealing temperature.	31
Figure 2.7	AFM pictures of PZT53/47 films annealed at a) 550 °C and b) 600 °C.	32
Figure 2.8	Dielectric properties of PZT53/47 films annealed at 550 °C.	34
Figure 2.9 P-E hysteresis loop of PZT53/47 films annealed at 550 °C.

Figure 2.10 XRD patterns of PZT53/47 at 550 °C on various substrates:
 a) Pt/Ti/SiO$_2$/Si, b) Pt/glass, c) Pt-RhO$_x$/Pt-Rh/Pt-RhO$_x$, and d) Pt/TiO$_2$/SiO$_2$/Si.

Figure 2.11 Reaction of acetic acid with precursors.

Figure 2.12 Flow chart of the original sol-gel process.

Figure 2.13 Flow chart of the modified sol-gel process.

Figure 2.14 XRD patterns of PZT53/47 films at 550 °C prepared from different precursor solutions.

Figure 3.1 Phase diagram of lead zirconate titanate.

Figure 3.2 Lattice parameters of PZT bulk and thin films.

Figure 3.3 A test structure of ferroelectric capacitor in high density DRO FRAM devices.

Figure 3.4 a) XRD patterns of PZT40/60 films as a function of annealing temperature.

Figure 3.4 b) XRD patterns of PZT30/70 films as a function of annealing temperature.

Figure 3.4 c) XRD patterns of PZT20/80 films as a function of annealing temperature.
Figure 3.5 XRD patterns of PZT40/60, 30/70, and 20/80 films at an annealing temperature of 500 °C.

Figure 3.6 a) Hysteresis loop of PZT40/60 annealed at 500 °C.

Figure 3.6 b) Hysteresis loop of PZT30/70 annealed at 500 °C.

Figure 3.6 c) Hysteresis loop of PZT20/80 annealed at 500 °C.

Figure 3.7 The dependence of \(P_r \) on the annealing temperature.

Figure 3.8 The variation of \(P_r \) as a function of Zr/Ti ratio.

Figure 3.9 The variation of \(E_c \) as a function of Zr/Ti ratio.

Figure 3.10 The composition dependence of \(\varepsilon_r \) for PZT films at various annealing temperatures.

Figure 3.11 The variation of \(\varepsilon_r \) for PZT films as a function of Zr/Ti ratio.

Figure 3.12 Fatigue test profiles of PZT30/70 films as a function of processing temperature.

Figure 3.13 Fatigue test profiles of various PZT films annealed at 600 °C.

Figure 3.14 Leakage current density of various PZT films as a function of applied voltage.

Figure 3.15 a) Hysteresis loop of PZT30/70 films processed on Pt/TiN_x/TiSi_2/poly-Si at 500 °C by contacting between top Pt and bottom Pt.

Figure 3.15 b) Hysteresis loop of PZT30/70 films processed on Pt/TiN_x/TiSi_2/poly-Si at 500 °C by contacting between top Pt and bottom poly-Si.
Figure 4.1 Schematic of the proposed electrode-barrier multi-layer structure for high temperature processing.

Figure 4.2 XRD patterns of Pt/IrO$_2$/Ir/poly-Si substrates with different IrO$_2$ thickness.

Figure 4.3 XRD patterns of PZT53/47 films at 600 °C on Pt/IrO$_2$/Ir/poly-Si substrates with different IrO$_2$ thickness.

Figure 4.4 Hysteresis loops of PZT53/47 films at 600 °C on Pt/IrO$_2$/Ir/poly-Si with various IrO$_2$ thickness.

Figure 4.5 The dependence of P_r and E_c of PZT53/47 films on the IrO$_2$ thickness.

Figure 4.6 Auger microprobe data for fatigued PZT films with Pt and Au electrodes.

Figure 4.7 Polarization fatigue behaviors of PZT53/47 films on Pt/IrO$_2$/Ir/poly-Si substrates with various IrO$_2$ thickness.

Figure 4.8 (a) Auger depth profile of PZT53/47 films on Pt/IrO$_2$(30 nm)/Ir/poly-Si substrates.

Figure 4.8 (b) Auger depth profile of PZT53/47 films on Pt/IrO$_2$(90 nm)/Ir/poly-Si substrates.

Figure 4.8 (c) Auger depth profile of PZT53/47 films on Pt/Ti/SiO$_2$/Si substrates.

Figure 5.1 Schematic of 1-transistor memory cell using (a) MFS structure and (b) MFMIS structure.

Figure 5.2 Unit cell of A$_2$B$_2$O$_7$.

Figure 5.3 Flow chart of preparing SNO and LTO solutions.
Figure 5.4 XRD patterns of SNO films on (a) Pt/Ti/SiO$_2$/Si at 850 °C and (b) Si(100) substrates at various temperatures.

Figure 5.5 XRD patterns of LTO films on (a) Pt/Ti/SiO$_2$/Si at 850 °C and (b) Si(100) substrates at various temperatures.

Figure 5.6 AFM pictures of SNO films on Pt/Ti/SiO$_2$/Si at 850 °C.

Figure 5.7 AFM pictures of LTO films on (a) Pt/Ti/SiO$_2$/Si at 850 °C and (b) Si(100) substrates at 850 °C.

Figure 5.8 (a) Dielectric properties of SNO films on Pt/Ti/SiO$_2$/Si at 850 °C.

Figure 5.8 (b) Dielectric properties of LTO films on Pt/Ti/SiO$_2$/Si at 850 °C.

Figure 5.9 XRD patterns of STN ceramics sintered at 1500 °C as a function of Nb content.

Figure 5.10 XRD patterns of STN ceramics sintered at 1500 °C.

Figure 5.11 The dependence of grain size and grain orientation on the STN composition.

Figure 5.12 SEM pictures of STN ceramics at 1500 °C. as a function of Nb content.

Figure 5.13 XRD patterns of STN films on Si(100) substrate annealed at 850 °C.

Figure 5.14 Dielectric constants of STN bulk and thin films.
List of Tables

Table 1.1 State of the Art in Nonvolatile Memory Technologies 6
Table 1.2 Prospects for Integrated Ferroelectrics 7
Table 2.1 Dependence of structural and electrical properties on [Acet]/[Ti] molar ratio 47
Table 5.1 Characteristics of Sr$_2$(Ta$_{1-x}$Nb$_x$)$_2$O$_7$ bulk ceramics sintered at 1500 °C 135