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Chapter III

Equivalent Primal and Dual Differentiable
Reformulations of the

Euclidean Multifacility Location Problem

As introduced earlier, the Euclidean Multifacility Location Problem (EMFLP) seeks to

locate n new facilities at some points (xi, yi), i = 1, .., n  in R
2 , in the presence of some m

existing facilities located at specified points (aj, bj), j = 1, .., m, given certain interaction

weights wij > 0 between designated pairs (i, j) of new and existing facilities in some index-

pair set A
NE

, as well as certain interaction weights vkl > 0  between designated pairs (k, l),

k < l, of new facilities themselves in some index-pair set ANN.  The cost for each pair of

interacting facilities is assumed to be directly proportional to the interaction weight and

the Euclidean distance that separates these facilities.  This problem may be mathematically

stated as follows:
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According to our discussion on EMFLP in Chapter 1, the objective function (3.1) is

convex and nondifferentiable.  The points of nondifferentiability of the objective function

occur when new and existing facility locations coincide, as well as on linear subspaces

where the new facility locations themselves coincide.  One popular global strategy to

overcome the difficulties posed by this feature of the problem is to employ the hyperboloid

approximation procedure (HAP) due to Eyster et al. (1973) in which a differentiable

hyperboloid ε -approximation of the objective function is employed.  However, this
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approach suffers from ill-conditioning effects if the point of convergence is

nondifferentiable (Charalambous, (1985).

In this chapter, we present two equivalent, differentiable, convex reformulations for

EMFLP to which standard nonlinear programming algorithms that are designed for

smooth problems can be applied  The first of these is constructed directly in the primal

variable space.  Here, although certain individual constraints are nonconvex, we show that

the overall feasible region is in fact a convex set.  Furthermore, in order for the Karush-

Kuhn-Tucker (KKT) conditions for this problem to be able to closely (but not exactly)

conform with the general necessary and sufficient optimality conditions for EMFLP, we

show that our reformulation needs to incorporate certain implied linear inequalities.  This

is conformance important for enabling standard nonlinear programming algorithms that are

guaranteed to converge to KKT solutions to more readily recover an optimum to EMFLP.

The second differentiable formulation derived in this chapter is based on a standard

Lagrangian dual approach (see Bazaraa et al., 1993, for example), through the use of a

transformation that is related to the optimization of a linear function over a unit ball

(circle).  The resulting formulation turns out to be precisely the dual to EMFLP that is

considered by Francis and Cabot (1972) and Xue et al. (1996).  Hence, not only does this

analysis recover all the theoretical relationships between EMFL and its dual via the

standard, rich Lagrangian duality theory, but it also reveals possible algorithmic

approaches for recovering the primal locational decisions via this dual problem.  In

particular, we show that any nonlinear programming algorithm for smooth problems that

also produces optimal Lagrange multiplier values, can be used to directly yield an optimal

solution for EMFLP as part of this set of multipliers.

The remainder of this chapter is organized as follows.  As a preliminary to our analysis, we

first present in Section 3.1 a characterization of subgradients of the objective function f

given by (3.1), and state the associated necessary and sufficient optimality conditions for

EMFLP.  Based on this, we present in Sections 3.2 and 3.3 the aforementioned

differentiable reformulations of EMFLP in the primal and dual spaces, respectively.

Finally, Section 3.4 presents some preliminary computational results along with

suggestions for further research on this topic.
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3.1  Characterization of Subgradients and Optimality Conditions

Since EMFLP is an unconstrained, convex, nondifferentiable optimization problem, we

know that ( x , y )  solves EMFLP if and only if there exists a zero of the subgradient of the

objective function f at ( x , y )  (see Bazaraa et al., 1993, or Rockafellar, 1970, for

example).  Lemma 1 below provides a characterization of the subgradients of the

components of f, and as a direct consequence, Theorem 1 then states the readily obtained

necessary and sufficient optimality conditions for EMFLP.  Plastria (1992) has used a

related approach to derive optimality conditions for a general distance norm location

problem, and the stated specialized conditions have also been derived by Charalambous

(1985) by using an ε -limiting form argument based on the hyperboloid approximation

method.  Our analysis is simpler and more direct, and sets the stage for the discussion to

follow.
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Proof.  When α 
ij

≠ 0 , g
ij

 is differentiable at ( x 
i
, y 

i
)  and its gradient (ζ1, ζ2) defined by

(3.2) is the unique subgradient of gij at ( x 
i
, y 

i
) .  Otherwise, if α 

ij
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ij
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gij (xi, yi) ≥ + − − ⋅g x y x x y yij i i i i i i( , ) ( , ) (ζ1, ζ2)    ∀ ( , )x yi i

i.e. gij (xi, yi) ≡ {( xi - aj)
2 +( yi - bj)

2}1/2  ≥ − + −ζ ζ1 2( ) ( )x a y bi j i j     ∀  (xi, yi). (3.4)

Denoting  Xi ≡  (xi - aj) and Yi ≡  (yi - bj), this is true if and only if
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unique corresponding subgradient.  Otherwise, if 
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First, note that we must have  ζ1  +  ζ3  =  0 or else, if ζ1  +  ζ3 ≠  0, then by selecting yk =

yl = µ, and x xk = = + +l ζ ζ σ1 3 , (3.5) would yield ( )ζ ζ1 3
2 0+ ≤ , a contradiction.

Similarly, we must have ζ2  +  ζ4  =  0.  Consequently, (3.5) reduces to

{( xk - xl)
2 + ( yk - yl)

2}1/2 ≥ − + −ζ ζ1 2( ) ( )x x y yk kl l     ∀  (xk , yk, xl , yl). (3.6)

Noting the analogy with (3.4), we can similarly show that (3.6) is true if and only if

ζ ζ1
2

2
2 1+ ≤ , which establishes (3.3b).  This completes the proof.   ��

Theorem 1.  Given ( x , y ) , let α ij  ∀ ( i , j ) ∈ A
NE

 and 
  
β 

kl
 
  
∀ ( k , l) ∈ A

NN
 be as

defined in Lemma 1, and define the vectors
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where   
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where ζ x
 and ζ y  are given by (3.7a) and (3.7b), respectively.

Proof.  Evident from Lamma 1 noting that ( x , y )  solves the convex program EMFLP if

and only if there exist a zero subgradient of the objective function at the solution ( x , y ) .�


