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Chapter IV

Solving Euclidean Distance Multifacility Location
Problems Using Conjugate Subgradient and Line-

Search Methods

As demonstrated in the previous chapters, the objective function of EMFLP has undefined

first partial derivatives whenever any new facility coincides with either an existing or

another new facility with which it interacts, and because of this feature, standard

differentiable optimization techniques cannot be directly applied.

In this chapter, we explore the use of conjugate or deflected subgradient techniques along

with suitable subgradient generation and line-search strategies in order to derive an

effective scheme for solving EMFLP.  The basic algorithmic framework that we employ is

the Variable Target Value Method (VTVM) of Sherali et al.(1995).  This method is a

general globally convergent approach for solving convex, nondifferentiable optimization

problems.  It assumes no prior knowledge regarding bounds on the optimal value, and it

manipulates a target that estimates the optimal value in order to induce convergence to an

optimum.  We employ this algorithmic framework because of its simplicity and its wide

flexibility in permitting the special design of both a strategy for computing step-lengths, as

well as a strategy for employing a subgradient deflection scheme, while preserving

convergence properties.  However, we modify the restart feature and the termination

criteria prescribed by this procedure in order to improve its performance for the class of

problems EMFLP.  Within this modified framework, we employ the Average Direction

Strategy (ADS) of Sherali and Ulular (1989) to generate deflected subgradient based

search directions.  The subgradients themselves are obtained using two methods.  In the

first method, zero values are assigned to contributions from the nondifferentiable terms in

the objective function.  The second method attempts to obtain improved search directions

by deriving a low-norm subgradient based on using valid contributions other than zeros for

the nondifferentiable terms.  We also test the use of an alternative step-size strategy
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known as the block-halving (BH) scheme (Sherali and Ulular, 1989) within the framework

of VTVM, and denote this by VTVM + BH.  In addition, motivated by the work of

Calamai and Conn (1987), and Overton (1983), a Newton- based inexact line-search

method is developed and tested in conjunction with both step-size strategies.  Our results

show that the modified VTVM algorithm when operated using the ADS deflection

approach in concert with a particular combination of the two subgradient generation

strategies and the proposed line-search technique, yields a computationally effective

procedure.  Furthermore, the results show that VTVM + BH also yields a competitive

performance, but more strongly requires the use of the proposed line-search technique to

be computationally effective.

The remainder of this chapter is organized as follows.  In Section 4.1 we present a our

proposed two subgradient generation strategies.  Section 4.2 describes our modification of

the VTVM approach including the use of the BH step-size scheme, and Section 4.3

develops our proposed inexact line-search method.  Finally, Section 4.4 presents some

computational results and comparisons using a collection of test problems.

4.1. Subgradient Generation Strategies

Charalambous (1985), Plastria (1992) and our proposed Lemma 1 of the previous chapter

present various equivalent characterizations for the set of subgradients of the objective

function f of EMFLP at any point ( , )x y .  Using this characterizartion, various

subgradient generation strategies can be designed based on the selection of ( , )ζ ζ
1 2

associated with the nondifferentiable terms in f x y( , ) .  We propose two different

strategies to be implemented in conjunction with a conjugate subgradient scheme within

VTVM.  The first strategy simply designates zero subgradients for the nondifferentiable

terms, i.e., it sets ζ1 = ζ2 = 0 whenever α ij = 0 for (i, j) ∈ ANE, or whenever βkl  = 0 for (k,

l) ∈ ANN.  The second strategy derives a low-norm subgradient of the overall objective

function by adopting the solution of a simple minimization problem associated with each

nondifferentiable term considered in a particular sequential fashion.  Note that a least norm
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subgradient is guaranteed to be a descent direction at a nonoptimal solution (see Bazaraa

et al., 1993, for example).  The following are the essential steps of this second strategy.

Low-Norm Subgradient Strategy

Step 1- Arrange the weights w and then v in nonincreasing order.( Naturally, this is

performed only once at the beginning of VTVM.)

Step 2-  Initialize the subgradient vectors ζx = ζy = 0 ∈ Rn, and consider the terms

wij {( xi- aj)
2 +( yi- bj)

2}1/2 and vkl {( xk- xl)
2 +( yk- yl)

2}1/ 2 for every pair (i, j) and (k, l) in

ANE and ANN, respectively.  For each differentiable term, add the corresponding gradient

component appropriately to ζx and ζy, and then proceed to Step 3.

Step 3- Using the order prescribed at Step 1, consider each nondifferentiable term

wij {( xi- aj)
2 +( yi- bj)

2}1/2, where (i, j) ∈ ANE and where currently, we have

 ( xi, yi) ≡ ( aj, bj).

Let p and q be the current components of ζx and ζy corresponding to xi and yi, respectively.

If p = q = 0, go to Step 4.  Else, choose ξ1 and ξ2 as the solution to

min {(p + wξ1)
2 + (q + wξ2)

2 : ξ1
2+ ξ2

2≤ 1}, where w ≡ wij.

This yields

ξ
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θ
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,

 where θ = max.{ w, p q2 2+ }.  Replace the components p and q of ζx and ζy by

p + w ξ1, q + w ξ2 , respectively.

Step 4- Using the order prescribed at Step 1, consider each nondifferentiable term

vkl { (xk- xl)
2 + (yk- yl)

2}1/ 2, (k, l) ∈ ANE.  Let 
p

q






  and 

r

s






 be the current components of ζx

and ζy , respectively, corresponding to { xk and xl}, and to {yk and yl}, respectively.

Choose ξ1 and ξ2 as the solution to

 min {(p + vξ1)
2 + (q - vξ1)

2 + (r + v ξ2)
2+ (s - v ξ2)

2 : ξ1
2+ ξ2

2 ≤ 1}, where v≡ vkl.
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As in Step 3, we obtain 
ξ

ξ
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( )
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q p

s r
,

where θ = max.{ 2v, ( ) ( )q p s r− + −2 2 }.

Replace the components p, q, r, and s of the vectors ζx and ζy by p+ v ξ1, q - v ξ1,

r + v ξ2, and s - v ξ2, respectively.  Stop at the end of this pass through all the

nondifferentiable terms.

4.2 Conjugate Subgradient Algorithm

This section briefly describes the conjugate subgradient algorithm VTVM of Sherali et al.

(1995) and its proposed variant VTVM + BH.  It also addresses our modification of

VTVM regarding the strategy of periodically restarting the algorithm with the current best

(incumbent) solution, and regarding the termination criteria, both of which contribute to

the acceleration of the convergence and the early stopping of the algorithm within an

acceptable percentage of optimality.  The developed VTVM method is operated and

tested in conjunction with each of the two subgradient generation strategies proposed in

Section 3, as well as with a combination thereof, in order to solve problem EMFLP.

4.2.1  VTVM Algorithm

The VTVM procedure generates a sequence of incumbent solutions whose corresponding

objective values converge to within any specified optimality tolerance ε > 0.  This is

achieved by employing two essential loops, the inner loop and the outer loop.  In the inner

loop of the algorithm, given an iterate z k ≡ (x k, y k), a direction of motion d k is selected as

either - g k or -g k + ψk  d k - 1, where g k is a subgradient of f at z k,  d k - 1 is the search

direction at the previous iteration, and where ψk is a deflection parameter selected via the

Average Direction Strategy (ADS) of Sherali and Ulular (1989).  A prescribed step-size
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λ β=
−

k

k
k

k

f z T

d

( )
2 (4.1)

is then computed, where 0 < βk < 2 is the step-size parameter and where Tk is the current

target value.  The new iterate z k+1 is then computed according to z k+1 = z k + λ d k.

Periodically, the algorithm is triggered to visit the outer loop where it adjusts the target

value and other related algorithmic parameters based on the information obtained from the

inner loop.  We modify the criterion used by VTVM to increase the target value due to

non-improvements to include the case when the objective value of the current iterate is

greater than twice the incumbent objective value. When this case is encountered, the

number of consecutive non-improvements permitted within the inner loop, which is

denoted byγ  and which is initialized asγ  = 10, is replaced by min{γ  + 5, 50} within the

outer loop, and the procedure is reset to the incumbent solution.  A second modification

used is in regard to the stopping criteria employed by the algorithm.  Besides using the

standard termination rule based on reaching a specified maximum number of iterations

kmax, the algorithm is allowed to terminate whenever gk f z< −10 3 ( *) , where z*
 is the

current incumbent solution.  Another stopping criterion that is employed by the original

VTVM algorithm is based on the relative accumulated improvement in the incumbent

value over the current set of inner loop iterations.  Whenever after 500 iterations, denoted

by kup, the algorithm has performed at least one decrease in the target value during a visit

to the outer loop, then if the aforementioned relative improvement is less than 0.05 over

four consecutive target increases in the outer loop step that are triggered by the inner loop

non-improvement step, the procedure terminates. We proposed a slight change to this

criterion by terminating the algorithm whenever after kup = 50 iterations the former

criterion is satisfied, without requiring that the algorithm must have performed at least one

decrease in the target value.

4.2.2  VTVM + BH Algorithm
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Sherali and Ulular (1989) describe a block-halving (BH) strategy to control the parameter

βk when using the prescribed step-size formula (4.1).  In the spirit of this BH scheme, we

divide the maximum number of inner loop iterations into blocks, each having an equal

number of iterations.  For the first block (k = 1), the procedure initializes with βk = 0.95.

Then, for each inner loop, the value of βk is re-initialized at the beginning of each

subsequent block at 0.25 less than the value of this parameter at the beginning of the

previous block.  Furthermore, within each block, if the number of consecutive non-

improvements in the objective value of the incumbent reaches the limit set by VTVM, the

current β - parameter is halved and the algorithm is reset to the incumbent solution.  In

order to avoid having near-zero step-sizes, the value of βk is not permitted to fall below

10-6 in this scheme.

4.3  Line-Search Strategy

Several researchers have considered using second-order line-search methods in their

algorithmic approaches for solving EMFLP.  Motivated by the algorithms developed by

Overton (1983) and Calamai and Conn (1987), we designed a new line-search technique

that exploits the structure of the problem in order to derive a procedure that combines

Newton’s method and the quadratic fit approach (see Bazaraa et al. (1993) for a

description of the latter procedure).  Details of this method are presented below.  We

mention here that we also studied four other line-search schemes including Overton’s

(1983) method, a procedure based on the hyperboloid approximation, an exact search

using the golden section method, and a direct application of an inexact quadratic fit

search.  In comparison, only the last of these methods gave competitive results with

respect to the procedure described below, and we provide some related computational

results in Section 4.5.

To present the proposed line-search, suppose that we are given some solution z and a

direction d that is detected to be a descent direction upon having implemented the

prescribed step-length λ  of Equation (4.1).  The purpose of the line-search scheme is to

solve the problem ( perhaps inexactly)
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Minimize
λ

λ λ
>

≡ +
0

F f z d( ) ( ). (4.2)

Toward this end, let M = { ANE ∪ ANN }, and let us refer to the various index pairs defining

M as simply t ∈ M.  Accordingly, we will let ut denote the positive interaction weight wij if

t ≡ ( i, j ) in ANE, and ut  =  vkl if t ≡ ( k, l ) in ANN.  Then, letting Aj ≡ (aj,bj) ∀ j = 1,.., m,

and denoting zi ≡ ( xi, yi) with the corresponding components of the direction vector d

being di ≡ (dix , diy) for each i = 1,..., n, we can rewrite the function F(λ) in (4.2) as

F t
t M

( ) ( )λ λ=
∈
∑ Φ ,

where

Φt

w z d A t i j A

v z d z d t k l A

ij i i j NE
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Note that whenever Φ t ( )λ ≠ 0, we have

′ =

⋅ + −
≡ ∈

− ⋅ + − −
≡ ∈










Φ
Φ

Φ

t

ij

i i i j

t
NE

kl
k l k k l l

t
NN

w
d z d A

t i j A

v
d d z d z d

t k l A

( )

( )

( )
( , )

( ) ( )

( )
( , ) ,

λ

λ

λ
λ λ
λ

2

2

    if

if

(4.4a)

[ ] [ ]

[ ] [ ]
′′ =

− ′
≡ ∈

− − ′
≡ ∈












Φ

Φ Φ Φ

Φ

Φ Φ Φ

Φ

t

ij

t i t t

t
NE

kl

t k l t t

t
NN

w
d

t i j A

v
d d

t k l A

( )

( ) ( ( )) ( )

[ ( )]
( , )

( ) ( ) ( ( )) ( )

[ ( )]
( , ) .

λ

λ λ λ

λ

λ λ λ

λ

2

2 2

2

2

2 2

2

if

if

(4.4b)

Observe that for any t ∈ M, if the corresponding coefficient of λ in (4.3) is zero,

then Φ t ( )λ  is invariant with λ.  Accordingly, let us define

′M  = { t ∈ M : di ≠ 0 if t ≡ ( i, j) ∈ ANE , and dk ≠ dl if t ≡ ( k, l ) ∈ ANN }. (4.5)

Then, we have that
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F(λ) = (constant) + Φt
t M∈ ′

∑ ( )λ  (4.6)

and so, the one-dimensional line-search problem is concerned with minimizing only the

variable part of (4.6) in order to find an (approximate) optimum λ*.  However, one

difficulty in minimizing (4.6) using standard derivative-based line-search approaches is that

F(λ) is not everywhere differentiable.  To circumvent this nondifferentiability problem, we

first determine a perturbed step-length λ
^

 (≥ 0) at which F is twice differentiable.  The

basic idea of our line-search is to then perform a standard Newton iteration at λ
^

 to

determine an unsafeguarded step, say s.  Next, if some specified conditions regarding the

absolute value of the derivative of F at λ
^

 and the positivity of the Newton step s are not

satisfied, the algorithm uses the available points such as 0, λ
^

, s and the prescribed step-

size λ  to establish a Three- Point-Pattern (TPP) ( see Bazaraa et al., 1993) in order to

perform one quadratic fit step (or more, if needed) in order to obtain the recommended

step-size λ*.

In this process, to find the point λ
^

 where F is twice differentiable and hence to determine

a Newton step s, we adopt Overton’s (1983) strategy, but we use M ′  in lieu of M, to

define

 J = { t ∈ ′M : Φt(0) ≤  ( machine epsilon) 3/4}    (4.7)

and its complement J  = ′M - J.  Note that if J is empty, then the direction d is not a

(sufficiently) descent direction, and we could then skip this line-search step.  Furthermore,

if J is empty, then F is twice differentiable at 0 itself, and hence we can set λ
^

 = 0.

Otherwise, noting the convexity of Φt(λ) for t ∈ J , we use a linear approximation at λ = 0

to obtain a lower bound on the step at which Φt might become zero for each t ∈ J , and
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we set λ
^

 to be half of the minimum of these estimated zeros of Φt(λ) for t ∈ J .

Consequently, at λ
^

, Φt(λ) ≠ 0 ∀  t ∈ ′M , and so F defined by (4.6) is then twice

differentiable at λ
^

.  The following is a formal statement of this procedure.

Statement of the Line-Search Procedure

Set the parameterε
0

 = 10-3, and let TOL be a termination tolerance on the length of the

interval of uncertainty ( we used TOL = 10-4).

Step 1  Derive each of the sets ′M , J and J as defined in Equations (4.5) and (4.7).

 If J = ϕ, then abort this line-search procedure.

Step 2  If J = ϕ, then set λ
^

 = 0, and otherwise, let λ
φ

φ

^
min

( )

( )
,=

−

′
∈













1

2

0

0
t

t
t J .

Step 3  Compute ′ = ′
∈ ′
∑F t

t M
(
^

) (
^

)λ λΦ  via Equations (4.4a) and (4.6). If  ′F ( )
^

λ  ≤ ε
0

,

then set λ* = λ
^

 and stop.  Otherwise, compute ′′ = ′′
∈ ′
∑F t

t M
(
^

) (
^

)λ λΦ via

Equations (4.4b) and (4.6), and determine the Newton step s
F

F

= −
′

′′

λ λ

λ

^ (
^

)

(
^

)

.

Step 4  If ′F (
^

)λ  > 0 then if s > 0, set λ* = s;

else, establish a TPP (θ1, θ2, θ3 )by appropriately selecting points from the values

0, λ
^

 and λ , and by suitably halving or doubling the values of λ
^

 or λ , as

necessary.  If (θ3 - θ1) ≤  TOL, pick λ* = θ2, and terminate. Otherwise, perform one

quadratic fit to find λ*.
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If ′F (
^

)λ  < 0 ( so that s > λ
^

 ), establish a TPP (θ1, θ2 , θ3 by using λ
^

, λ  and s, as

appropriate. If (θ3 - θ1) ≤  TOL, pick λ* = θ2, and terminate.  Otherwise, perform

one quadratic fit to find λ*.

 Step 5  If a quadratic fit has been performed at Step 4 and if the current best step-size λ*

is equal to λ  with (θ3 - θ1) > TOL, perform an additional quadratic fit step and

stop.

4.4  Computational Experience

In this section, we discuss the computational experiments that we have conducted to study

the effect of the two subgradient generation strategies on the performance of each of the

developed VTVM and VTVM + BH algorithms, as well as on using the proposed line-

search procedure along with these two algorithms.  In these experiments we used 8 test

problems (TP).  The first 4 problems are the same standard test problem that we used in

the previous chapter whereas the other test problems were generated randomly.  Table 1

gives the sizes of these test problems.

Table 1: Size of the Randomly Generated Test Problems.

TP n m

5 10 20

6 20 30

7 20 10

8 30 50

All the algorithms tested were coded in FORTRAN and run on an IBM RS/6000

computer, with a fixed set of parameter values as prescribed or recommended by the

original VTVM algorithm (see Sherali et al., 1995), except that the limit on the maximum

number of iterations was set to kmax = 400.  The block size in the VTVM + BH algorithm

was chosen to be equal to 100 iterations.  Also, the ADS deflection strategy was used in
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all the runs.  In the tables given below, the total execution time (in seconds) of the

algorithm is denoted by cpu, and the percentage of optimality is denoted by OPT(%) and

is computed as f(xexact)*100/ f(xbest), where xexact and xbest are the known exact solution and

the best solution found by the algorithm upon termination, respectively.  In all of the test

problems, the starting solution has been chosen to be the optimum to the corresponding

squared Euclidean distance problem (see Francis et al., 1991)

Run 1 and Run 3 correspond to algorithm VTVM and VTVM + BH, respectively, when

the first subgradient strategy is used.  Notationally, we will denote these algorithmic runs

by VTVM1 and VTVM1 + BH, respectively.  Run 2 and Run 4 correspond to algorithm

VTVM and VTVM + BH, respectively, when the second (low-norm) subgradient strategy

is used, and we will similarly denote these two algorithms by VTVM2 and VTVM2 + BH.

In each of these four runs, we let the algorithm terminate only when the maximum number

of iterations is reached.  The additional modified stopping criteria prescribed in Section 3

are tested subsequently.  Moreover, in order to exhibit the improvement behavior of the

incumbent solution, we record the iteration number at which the final incumbent solution

was found, and denote this by k*.  Table 2 gives the results obtained.
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Table 2: Comparative Test Results for VTVM and VTVM + BH Using the Two

Subgradient Strategies.

TP Run 1:
VTVM1

Run 2:
VTVM2

Run 3:
VTVM1 + BH

Run 4:
VTVM2 + BH

OPT(%) k* OPT(%) k* OPT(%) k* OPT(%) k*

1 99.99 375 99.86 32 23.6 399 23.15 399
2 99.97 356 92.86 1 97.92 400 92.86 1
3 99.96 364 97.4 1 99.35 206 97.4 1
4 99.99 386 99.99 308 99.99 199 99.99 98
5 99.90 364 99.57 376 99.83 216 99.52 353
6 99.96 386 98.58 249 99.69 226 98.72 307
7 99.98 392 99.38 381 99.57 231 98.84 399
8 99.97 371 70.0 397 91.03 400 66.16 399

When we compare the results of Run1 and Run 3, we observe that if the first subgradient

strategy is adopted ( and no line-search is performed), then our modification of VTVM

attains a percentage of optimality within 99.9% for all of the test problems , while VTVM

in conjunction with the BH scheme attains unsatisfactory accuracy in some cases as for the

test problems 1, 2 and 8.  Furthermore, if we compare the results of Runs 2 and 4

corresponding to the second subgradient strategy, we observe that both VTVM and

VTVM in conjunction with the BH scheme exhibit an inadequate performance in certain

instances as seen from the results for problems 2, 3 and 8, in particular.  Note that

problems 2 and 3 did not detect any descent direction based on the prescribed step-size

(4.1).  On the other hand, sometimes, better quality solutions appear to be detected earlier

using this second subgradient strategy.  On an overall comparison, when no line-search is

performed, VTVM yields the best performance when operated in conjunction with the first

subgradient strategy.

Next, we attempted to use the early improvement- based stopping criteria discussed in

Section 3 in conjunction with VTVM.  Table 3 presents the results obtained.  Run 5 is the

same as Run 1, but under the activation of the stopping criteria, and Run 6 is similar to

Run 5, but with the modification that after 150 iterations, the algorithm switches over to

using the second low- norm subgradient strategy.  In Table 3, Iters represents the total
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number of iterations executed, and the values of S.C, given within parentheses, represent

the type of stopping criteria that caused the termination.  These values are designated as

follows.

S.C =

(1) if the algorithm stops because  

(2) if the algorithm stops based on the cumulative relative improvement criterion,

 

if the algorithm stops becuase (= 400)  iterations have been 

   performed.

gk f z

k

< −













10 3

3

( *),

( )
max

Table 3: Test Results Using the Modified Stopping Criteria and a Combination of the Two

Subgradient Strategies in VTVM.

TP Run 5:
(VTVM1 + stopping criteria)

Run 6:
( Run 5 + using the low-norm
subgradient strategy after 150

iterations)

cpu Iters S. C Opt(%) cpu Iters S. C Opt(%)
1 .253 146 (2) 99.96 .253 146 (2) 99.96
2 .013 93 (2) 99.96 .013 93 (2) 99.96
3 .079 198 (2) 99.87 .08 199 (2) 99.62
4 .033 30 (1) 99.98 .033 30 (1) 99.98
5 .298 130 (2) 99.78 .298 130 (2) 99.78
6 1.612 204 (2) 99.47 1.706 219 (2) 99.77
7 1.272 400 (3) 99.97 .765 261 (2) 99.58
8 4.189 207 (2) 99.53 4.127 207 (2) 99.53

By comparing the results of Runs 5 and 6 in Table 3, we see that when the low-norm

subgradient strategy is activated after 150 iterations, in most of the test problems, the

convergence of the algorithm either stays the same or accelerates as in the case of test

problem 7.  A comparison of these two runs with Run 1 demonstrates the efficiency of the

proposed stopping criteria in terminating the algorithm significantly earlier while having

yet attained a solution within 99.5% of the optimality.  For example, stopping criterion (1)

caused the early termination of test problem 4 with a solution that attains 99.98% of

optimality after only 30 iterations.
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For the sake of demonstrating the effect of our proposed line-search procedure on the

convergence performance of both VTVM and VTVM + BH, we considered Runs 7, 8

and 9 as described in Table 4.  Here, line-search 1 refers to the procedure discussed in

Section 4.  In these runs, a line-search is invoked whenever a descent direction of motion

d is encountered and when
f z f z

d
g

k k
k( ) ( )

.
+ −







 ≤ −

1

08
λ

, where zk+1 = zk + λ  d.  This

latter condition is similar to Powell’s (1977) criterion for restarting conjugate gradient

methods in smooth optimization, and its intent here is to avoid a line-search if the rate of

descent is not sufficient.  We also used a block-size of 50 for the BH strategy, and

TOL=10-4 for the line-search procedure.

Table 4: Comparative Test Results on Using the Proposed Line-Search Procedure.

TP Run 7 :
 VTVM1+ BH + SC + line-search 1

Run 8 :
VTVM1 + SC + line-search 1

cpu Iters S.C Opt(%) cpu Iters S.C Opt(%)
1 .007 19 (1) 99.99 .037 165 (2) 99.92
2 .159 400 (2) 99.58 .015 89 (2) 99.54
3 .088 185 (2) 99.8 .052 114 (2) 97.49
4 .030 16 (1) 99.99 .044 22 (1) 99.99
5 .595 144 (1) 99.93 .467 153 (2) 99.8
6 2.25 184 (2) 99.91 1.705 186 (2) 99.33
7 3.488 400 (3) 98.99 .721 195 (2) 99.34
8 5.43 164 (2) 99.56 3.113 122 (2) 98.91

TP Run 9 :
Run 6 + line-search 1

cpu Iters S.C Opt(%)
1 .037 165 (2) 99.92
2 .015 89 (2) 99.45
3 .052 114 (2) 97.49
4 .044 22 (1) 99.99
5 .472 153 (2) 99.81
6 1.645 174 (2) 99.2
7 .695 198 (2) 98.02
8 3.11 122 (2) 98.9
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From Run 7 of Table 4 and Run 3 of Table 2, we can see that under the proposed line-

search, the performance of VTVM1 + BH is significantly enhanced, particularly for test

cases 1 and 8, and also to some extent for test problem 2.  Moreover, Run 7 terminates in

test problems 1, 4 and 5 due to stopping criterion (1) with very accurate solutions, and in

particular, having consumed fewer iterations and less cpu time than VTVM1 of Run 8 for

test problems 1 and 4.  However, Run 8 yields a better performance than Run 7 for the

larger problem instances 6, 7, and 8.  Furthermore, when we compare the results of Runs

5 and 6 with those of Runs 8 and 9, we observe that the latter runs again yield an

improved performance for the larger test problems 6, 7, and 8.  This comparison indicates

that the incorporation of the proposed line-search procedure improves the convergence

performance of VTVM1, particularly for the larger sized test problems.

Motivated by the above observed improvement in VTVM1 + BH when employing line-

searches, we investigated the convergence behavior of this algorithm using another inexact

line-search procedure based on performing two quadratic fits, neglecting

nondifferentiability issues.  Here, the initial interval of uncertainty is determined by

sequentially doubling λ  until a TPP is established.  Next, the line-search algorithm

performs two quadratic fit steps in order to obtain the prescribed step-size λ* and then

terminates.  However, in case λ* turns out to be equal to λ  and the length of the interval

of uncertainty is greater than a specified tolerance TOL ( we used TOL = 10 -3), the

algorithm performs an additional quadratic fit step before termination.  Let this procedure

be denoted by line-search 2.

Table 5 gives the results for Run 10 that substitutes line-search 2 for line-search 1 in Run

7.  Comparing Runs 7 and 10, we see that the results are roughly competitive, but that

Runs 8 and 9 continue to dominate the overall performance.
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Table 5: Test Results for the Two-Quadratic Fit Line-Search Procedure.

Run 10 : VTVM1 + BH + S.C + line-
search 2

TP cpu Iters S.C Opt(%)
1 .012 46 (1) 99.99
2 .088 263 (2) 99.88
3 .053 124 (2) 99.6
4 .039 18 (1) 99.99
5 .708 175 (2) 99.94
6 1.975 128 (2) 99.89
7 1.356 197 (2) 99.57
8 6.160 157 (2) 99.74

Therefore, we conclude that the modified variant of VTVM that either employs the first or

the combined subgradient strategy, and uses the proposed line-search procedure (Runs 8

and 9), yields the best overall performance in our experiments.  The competing BH step-

size strategy more strongly requires the use of line-searches to yield good quality results,

and affords an alternative second choice for solving the Euclidean multifacility location

problem.

In order to present some additional comparative results for the approaches developed in

the previous and the present chapter for solving Problem EMFLP, we employed the

algorithm of Run 8, which performed as one of the best conjugate subgradient methods

developed in this chapter, and compared its results with those of using MINOS to solve

the differentiable reformulations REMFLP and DEMFLP of chapter 3.  Table 6 provides

the results obtained using 8 test problems.  Among these are the 4 test problems obtained

from the literature that we have used in the runs presented in the present and the previous

chapters.  The other 4 test problems are randomly generated, and the data for these test

problems are provided in the Appendix.

Observe that due to the developed stopping criterion (2), Run 8 performs quite efficiently

in attaining a near optimal solution.  However, with respect to the number of iterations,

REMFLP appears to be faster as the size of the problem increases, while with respect to

accuracy, DEMFLP yields the most accurate results in relatively acceptable cpu time.



72

We conclude from these experiments that the conjugate subgradient method consumes the

least cpu time while providing fairly accurate solutions, and the differentiable

reformulations REMFLP and DEMFLP provide somewhat more accurate solutions with

slightly additional efforts, although still within acceptable cpu time.

Table 6.  Comparative Results for the Algorithm of Chapters 3 and 4 on Additional Test

Problems.

TP (n, m) Run 8 REMFLP

fbest S.C Iters cpu

sec

fbest Iters cpu

sec

 1 (2,5) 67.292 (2) 165 .037 67.681 24 .190

 2 (2,3) 173.0416 (2) 89 .015 172.256 20 .180

 3 (5,3) 40.004 (2) 114 .052 39.000 5 .220

 4 (9,5) 201.891 (1) 22 .044 201.872 7 .440

 5 (3,40) 14086.02 (1) 32 .0642 14081.492 25 .580

 6 (5,20) 11512.885 (2) 152 .2744 11512.331 26 .550

 7 (7,15) 2886.232 (2) 115 .239 2878.714 139 .550

8 (10,15) 16896.596 (2) 142 .4623 1687.978 33 .820

TP DEMFLP

fbest Iters cpu sec

 1 67.239 110 .160

 2 172.256 9 .160

 3 39.000 6 .191

 4 201.872 312 .320

 5 14080.899 60 .380

 6 11511.841 63 .380

 7 2876.142 1085 .420

.8 16878.404 310 .540


