5.3 Other Features of the Lower Bounding Problem.

In this section, we present some other features of the lower bounding problem such as the procedures that we have developed for computing various information required to generate some of the constraints of RLT(Ω), and the strategies for updating these values at every intermediate node of the branch-and-bound algorithm. We also discuss the construction of the aforementioned surrogate constraint. First, we present an algorithm that determines the extreme points of the convex hull of the existing facilities of EDLAP problem, and constructs the inequalities that define its facets. The facets are used in constructing constraint (5.25k) of Problem RLT(Ω). Using this algorithm, we solve an illustrative example that demonstrates its steps. Second, we discuss the scheme that we employ for computing the value of \(\bar{v} \) and the flow \(\bar{w} \) that are used to formulate constraint (5.25e), and the procedure that is used to update this constraint once it is introduced.

5.3.1 Algorithmic Approach for Obtaining the Extreme Points and the Facetial Inequalities of the Convex Hull of the Existing Facility Locations.

Let \(m \) be the number of the existing facilities, and let \(X \) be the set of the existing facility locations, i.e., \(X = \{ z_j \equiv (x_j, y_j) \equiv (a_j, b_j), \ for \ j = 1, \ldots, m \} \). (Note that in this section, for notational convenience, \(z_j \equiv (x_j, y_j) \equiv (a_j, b_j) \) is used to refer to the existing facility location, and is not related to the coordinates of the new facilities.)

Define

\[
\begin{align*}
\z_1^{\text{Base}} &= \arg\max_{z \in X} \{ y, -x \}, \\
\z_1^{\text{Next}} &= \arg\max_{z \in X} \{ -x, y \}, \\
\z_2^{\text{Base}} &= \arg\max_{z \in X} \{ -x, -y \}, \\
\z_2^{\text{Next}} &= \arg\max_{z \in X} \{ -y, -x \},
\end{align*}
\]
\[z_{3\text{Base}} = \arg\max_{z \in X} \{-y, x\}, \]
\[z_{3\text{Next}} = \arg\max_{z \in X} \{x, -y\}, \]
\[z_{4\text{Base}} = \arg\max_{z \in X} \{x, y\}, \]
\[z_{4\text{Next}} = \arg\max_{z \in X} \{y, x\}. \]

(5.45)

For convenience, we will denote \(z_k^{\text{Base}} \) by \(z_k^B \) and \(z_k^{\text{Next}} \) by \(z_k^N \) for \(k = 1, ..., 4 \). The locations of \(z_k^B \) and \(z_k^N \) for \(k = 1, ..., 4 \) are depicted in Figure 3 below.

Figure 3. Depiction of notation for the convex hull constraints.

Also, let the corners of the rectangle bounded by \(\min \{x: z \in X\} \leq x \leq \max \{x: z \in X\} \) and \(\min \{y: z \in X\} \leq y \leq \max \{y: z \in X\} \) be designated as in Figure 3 by \(z_k^{\text{Corner}} \equiv z_k^C \) for \(k = 1, ..., 4 \). Note that if the volume of the rectangle is zero (bounds on either \(x \) or \(y \) coincide), then Conv \((X) \) is trivially determined. Hence, suppose that this is not the case. Note that we, could however, have coincident Base and Next points, as shown in Figure 4, for example.
Figure 4. Coincident Base and Next points.

The schema of the algorithm is given by the flowchart depicted in Figure 6. Let X_k for $k = 1, ..., 4$ be a subset of X defined as follows:

$$X_k = \begin{cases}
 z_j \in X \text{ s.t. } x_j^N < x_j^B \text{ and } y_j^N < y_j^B \text{ if } K = 1 \text{ and } z_j^B \neq z_j^N \\
 z_j \in X \text{ s.t. } x_j^B < x_j^N \text{ and } y_j^N < y_j^B \text{ if } K = 2 \text{ and } z_j^B \neq z_j^N \\
 z_j \in X \text{ s.t. } x_j^B < x_j^N \text{ and } y_j^N < y_j^B \text{ if } K = 3 \text{ and } z_j^B \neq z_j^N \\
 z_j \in X \text{ s.t. } x_j^B < x_j^N \text{ and } y_j^N < y_j^B \text{ if } K = 4 \text{ and } z_j^B \neq z_j^N \\
 \Phi \text{ if not given as above}
\end{cases}$$

Now, for any k and for any subset $\overline{X} \subset X_k \subseteq X$, given a current point $z_p \in X_k$ the angle θ_i to a point $z_i \in \overline{X}$ is measured as the anticlockwise sweep of the vertical upward ray through z_p to the direction $z_i - z_p$, as shown in Figure 5.
Figure 5. Depiction of the angle θ_i.

Given any choice of k and $z_p \in X_k$, the algorithm will need to compute this angle θ_i only for those $z_i \equiv (x_i, y_i) \in X_k$ for which

$$
\begin{align*}
&x_i < x_p \text{ and } y_i < y_p \quad \text{if } k = 1 \\
&x_i > x_p \text{ and } y_i < y_p \quad \text{if } k = 2 \\
&x_i > x_p \text{ and } y_i > y_p \quad \text{if } k = 3 \\
&x_i < x_p \text{ and } y_i > y_p \quad \text{if } k = 4.
\end{align*}
$$

Accordingly, θ_i is given as follows:

$$
\theta_i = \begin{cases}
\pi/2 + \tan^{-1}\left(\frac{y_p - y_i}{x_p - x_i}\right) & \text{if } k = 1 \\
3\pi/2 - \tan^{-1}\left(\frac{y_p - y_i}{x_i - x_p}\right) & \text{if } k = 2 \\
3\pi/2 + \tan^{-1}\left(\frac{y_i - y_p}{x_i - x_p}\right) & \text{if } k = 3 \\
\tan^{-1}\left(\frac{x_p - x_i}{y_i - y_p}\right) & \text{if } k = 4.
\end{cases}
$$
Initialization. Put $k = 1$, $z_p = z_k^h$, $X_E = \{ Z_k^h, Z_k^N \}$ for $k = 1, \ldots , 4$ \equiv current set of variables of conv (X) (eliminating duplications), F \equiv current set of facets of conv $(X) \equiv \{ y \leq y_i^h \text{ if } Z_i^h \neq Z_i^N , -x \leq -x_i^N \text{ if } Z_i^N \neq Z_i^h \text{, and } x \leq x_i^N \text{ if } Z_i^N \neq Z_i^h \}$.

Figure 6. Flowchart for determining the convex hull of existing facility locations.
Example 5.1

Consider the existing facility locations exhibited in Figure 7.

Let the coordinates of the locations of the existing facilities 1 - 9 be (5, 8), (1, 3), (3,0), (6,0), (7,1), (7,3), (3.5, 6.5), (2, 5), respectively, with other existing facilities as shown by dots in Figure 7. For this problem, we have $z_{b1} = z_{n4} = (5,8)$, $z_{n1} = z_{b2} = (1,3)$, $z_{n2} = (3,0)$, $z_{b3} = (6,0)$, $z_{n3} = (7,1)$, and $z_{b4} = (7,3)$.

By employing our developed algorithm, we initialize at $k = 1$ with $z_p = z_{b1}$ and $X_E = \{(5,8), (1,3), (3,0), (6,0), (7,1), (7,3)\}$. Since, $z_{b1} = z_{n4}^N$ and $z_{n1} = z_{b2}^B$, our initial set $F = \{-y \leq 0, x \leq 7\}$.

Now since $z_p \neq z_{n1}^N$, then $y - 1.25 \leq 1.75$ determines the inequality that passes through z_p and z_{n1}^N. Note that at $z_{cCorner} = (1, 8)$, $\alpha z_{cCorner} = 6.75 > 1.75$. Since $x = \{(3,7), (3.5, 6.5), (2,5)\} \neq \emptyset$, we compute θ_1, θ_2 and θ_3. These are equal to 2.03, 2.35, and 2.35,