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ABSTRACT 

The main purpose of this study was to compare the Distributed Engineering Workstation (DEW) 
and EPANET models.  These two models are fundamentally different in the approaches taken to 
simulate hydraulic systems.  To better understand the calculations behind each models’ hydraulic 
simulation, three solution methods were evaluated and compared.  The three solution approaches 
were the Todini, Hardy-Cross, and DEW bisection methods.  The Todini method was included in 
the study because of its similarities to EPANET’s hydraulic solution method and the Hardy-
Cross solution was included due to its similarities with the DEW approach.  Each solution 
method was used to solve a simple looped network, and the hydraulic solutions were compared.  
It was determined that all three solution methods predicted flow values that were very similar.   

A different, more complex looped network from the solution method comparison was simulated 
using both EPANET and DEW.  Since EPANET is a well established water distribution system 
model, it was considered the standard for the comparison with DEW.  The predicted values from 
the simulation in EPANET and DEW were compared.  This comparison offered insight into the 
functionality of DEW’s hydraulic simulation component.  The comparison determined that the 
DEW model is sensitive to the tolerance value chosen for a simulation.  The flow predictions 
between the DEW and EPANET models became much closer when the tolerance value in DEW 
was decreased.   
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Chapter 1: Literature Review 

The development and use of predictive models for water distribution systems has been a 

common practice for many years.  In the last twenty years these models have been extended to 

analyze water quality.  These new capabilities are driven by the timely challenge to comply with 

stringent governmental regulations and customer expectations.  With the advancement in 

computing, water network simulation provides a fast and efficient way of predicting a water 

network’s hydraulic and water quality characteristics.  Many modeling programs are now 

available for commercial and educational use.   

1.1 Hydraulics 

The use of models has become increasingly important due to the complexity of the 

topology, size, and constant change of water distribution systems.  All of the necessary 

components must be accounted for in order to develop a representative model of a water 

distribution system.  The following figure illustrates the components, sub-components, and sub-

sub-components that comprise a typical water distribution system: 

 

Figure 1.1: Components Comprising a Water Distribution System  
       (Adapted from Mays, L.W. 2004) 
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The proper entry of the components’ sub-components and sub-sub-components allows a model 

to simulate the functioning of a water distribution system.  Most software such as EPANET, a 

widely used water distribution network simulator developed by the Environmental Protection 

Agency (EPA), requires that sub-components for distribution storage and piping be inputted with 

the necessary information.  Pipes, represented as links in EPANET, require the size, length, and 

roughness (i.e. Hazen-Williams C-factor) of a pipe be entered.  Additionally, valves must have 

the correct size and operating conditions inputted.  Further, tanks in EPANET need to be entered 

with the correct dimensions (i.e. diameter) and operating conditions such as minimum water 

level, maximum water level, and starting water level.  These conditions allow tanks to function 

as floating tanks, because during the course of a simulation, a tank may fill up or supply the 

distribution system depending upon current demands.  As illustrated in Figure 1.1, pumping 

stations are rather complicated containing both sub-components and sub-sub-components.  In 

EPANET, pumps are simulated mainly using a pump curve that relates the pressure head to flow.  

These curves allow pumps to function within the manufacturer’s specifications.  Pumps are also 

controlled by other operating conditions such as tank levels and nodal pressures through the use 

of controls and time patterns.  To determine the operating point on a pump curve, a relationship 

between the system and pump curves must be made.  The system head curve is a function of the 

pipe network in which the pump is located and represents the resistance that the pump must 

overcome.  The following equation is used to determine the system head curve (Rossman, L.A. 

2000): 

    ݄௦௬௦௧௘௠ ൌ ݄௦௧௔௧ ൅ ݄௙ ൅ ݄ெ௅ ൌ ݖ∆ ൅ ݄௥௘௤ ൅ ݄௙ ൅ ݄ெ௅                  Eq. 1.1 

Where: 

hstat = Static head (L) 
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hf = Friction head loss (L) 

hML

∆z = Change in elevation (L) 

 = Minor head loss (L) 

hreq = Required head (L) 

The relationship that results between the system head curve and pump curve (Figure 1.2 below) 

provides insight into the operation of the pump.  As seen in Figure 1.2, the intersection of the 

two curves is the point at which the pump operates.  

 

   

      Figure 1.2: Relationship between Pump and System Curve  
             (Adapted from Boulus, P. F. 2006) 
 

 Other important uses of a water distribution system model include master planning, 

rehabilitation, system operation and trouble-shooting.  Master planning is the process of 

projecting system growth and water usage in the future.  This allows planners to understand how 

a system will behave and what improvements are needed to accommodate system growth and 
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changes in water use.  Potentially problematic areas experiencing conditions such as low 

pressure and low velocity can be identified by a model.  With these areas identified, a model can 

be used to size and locate the addition of new water lines, storage facilities, and pumps to ensure 

that issues in the problematic areas do not occur.   

 Rehabilitation of water distribution systems is a major concern for utilities.  The 

infrastructure of distribution systems is aging and the replacement or repair of pipes, valves, 

tanks, and pumps will be common place.  One of the biggest concerns is the aging of unlined, 

metallic pipes resulting in a buildup of deposits from minerals and chemical reactions in the 

water.  These pipes pose a hydraulic and water quality risk by increasing head-loss and 

disinfectant depletion.  Utilities either scrub and reline the problematic pipes or replace them.  

Either way, a model can be used to simulate how the distribution system will behave once repairs 

have been made.   

The daily operation of a water distribution system can be simulated using a model to aid 

an operator in making decisions.  If an operator wishes to close a valve or turn off a pump, a 

model can simulate the changes in the system due to adjusting the current status of a valve or 

pump.  Furthermore, if a utility encounters areas in a system that are experiencing low pressure, 

a model can be used to troubleshoot the system and identify possible causes such as a partially 

closed valve.  Over the years the use of models has become a cornerstone in water distribution 

system operation and planning. 

1.1.1 Head-Loss Equations 

There are a number of head-loss equations that have been developed to determine the 

frictional losses through a pipe.  The three most common equations are the Manning, Hazen-

Williams, and Darcy-Weisbach equations.  The Manning equation is more typically used for 
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open channel flow and is dependent on the pipe length and diameter, flow, and the roughness 

coefficient (Manning roughness).  Th  fo owing is the Manning equation (Walski, T. M. 2003): e ll

݄௅ ൌ ஼೑௅ሺ௡ொሻమ

஽ఱ.యయ                 Eq. 1.2 

Where: n = Manning roughness coefficient 

            Cf = Unit conversion factor (English = 4.66, SI = 10.29) 

             L = Pipe length (L)   

            D = Pipe diameter (L) 

           Q = Pipe Flow (L3/T) 

The Hazen-Williams equation has been used mostly in North America and is distinctive 

in the use of a C-factor.  The C-factor is used to describe the carrying capacity of a pipe.  High 

C-factors represent smooth pipes and low C-factors represent rougher pipes.  The following is 

the Hazen-Williams equation (Wal i, T. M. 20 3): sk 0

݄௅ ൌ ஼೑௅
஼భ.ఴఱమ஽ర.ఴళ ܳଵ.଼ହଶ                     Eq. 1.3 

Where:  

 C = Hazen-Williams C-factor 

The Darcy-Weisbach equation was developed using dimensional analysis.  This 

expression uses many of the same variables as the Hazen-Williams equation, but rather than 

using a C-factor it uses a friction factor, f.  The following is the Darcy-Weisbach equation 

(Walski, T. M. 2003): 

݄௅ ൌ ଼௙௅ொమ

௚஽ఱగమ                                      Eq. 1.4 

Where: 

  f = Darcy-Weisbach friction factor 
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 g = Gravitational acceleration constant (L/T2) 

Several different methods have been developed for estimating the friction factor, f.  Two of the 

main methods are the Colebrook-White and Swamee-Jain equations.  The Colebrook-White 

equation is one of the earliest approximation methods that relate the friction factor to the 

Reynolds number and relative roughness.  The following is the Colebrook-White equation 

(Walski, T. M. 2003): 

ଵ
ඥ௙

ൌ െ0.86ln ൬ ఌ
ଷ.଻஽

൅ ଶ.ହଵ
ோ௘ඥ௙

൰                      Eq. 1.5 

 Where:  

 Equivalent roughness = ߝ  

             Re = Reynolds number 

The main issue with this equation is that the friction factor is found on both sides of the 

expression.  This requires one to solve the expression iteratively to determine which value of the 

friction factor satisfies the equation.  This resulted in the development of the Moody diagram 

which is a graphical solution for the friction factor.  The Swamee-Jain equation is considered to 

be much easier to solve than the iterative Colebrook-White equation.  The following is the 

Swamee-Jain expressio alski, T. M. 2003): n (W

݂ ൌ ଵ.ଷଶହ

ቂ௟௡ቀ ഄ
య.ళವା ఱ.ళర

ೃ೐బ.వቁቃ
మ                                       Eq. 1.6 

The relative simplicity and accuracy of the Swamee-Jain equation has influenced water 

distribution system model developers to use this equation to solve for the friction factor. 

 To better understand certain advantages and disadvantages between the Darcy-Weisbach 

and Hazen-Williams solutions a study by Usman et al. (1988) was conducted that compared the 

results of a flow model using these two head-loss equations.  This study compared the 
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Colebrook-White and Hazen-Williams flow models in a real-time water network simulation.  

The Colebrook-White equation was the method used to determine the friction factor for the 

Darcy-Weisbach equation.  The Hazen-Williams method is more advantageous to the Colebrook-

White method due to its simplicity.  However, problems arise due to the approximate solution 

formed by the Hazen-Williams equation, mainly because of the wide range of flows that exist in 

a real-time water distribution network.  The Colebrook-White equation has been widely accepted 

as more suitable for determining an accurate solution when a wide flow range is present (Usman 

et al. 1988).  This paper discussed an example that was used to evaluate both approaches.  The 

research showed that as the network increased in size (i.e. more nodes) the Colebrook-White 

equation took longer to converge because the resistance needed to be recalculated every time the 

flow changed.  The Hazen-Williams approach had a time saving advantage over the Colebrook-

White method in that the pipe resistance (C-factor) is not a function of flow.  Since the Hazen-

Williams equation does not account for water temperature, it is not very suitable for varying 

water conditions.  The Colebrook-White equation on the other hand is explicitly dependent on 

the kinematic viscosity of water which is a function of temperature.  This attribute makes the 

Colebrook equation suitable for a water network simulation that has varying water conditions.  

Usman et al. (1988) claimed that after comparing the two approaches the Colebrook-White 

equation was more suitable for real-time simulation where there is a range of flow conditions.   

1.1.2 Network Solution Techniques 

 Network solution methods have evolved from applications where networks were solved 

by hand calculations to solutions supported by computer hardware.  One of the earliest and most 

well known solution methods is the Hardy-Cross method.  This method was developed by a 

structural engineer to solve head-loss equations in a looped network, and is traditionally solved 
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iteratively by hand calculations.  Within a network with multiple loops, the Hardy-Cross method 

determines a loop equation for each loop and solves one loop at a time.  This method requires a 

flow balance before the first iteration (the initial guessed flow directions do not need to be 

correct).  The follow  (Walski, T. M. 2003): ing is the loop equation for a closed loop

݊݋݅ݐܽݑݍܧ ݌݋݋ܮ ൌ ∑ ௟|ܳ௟|௡ேܭ
௟ୀଵ ܵ݅݃݊ሺܳሻ                Eq. 1.7 

Where: 

 Kl = ܭ௨
௅

஽ర.ఴళ஼ಹೈ
೙   (for Hazen-Williams) 

 Ql = Flow through pipe “l” (L3/T) 

 N = Number of loops 

            n = Value based on which head-loss equation used (i.e. 1.852 for Hazen-Williams) 

Equation 1.7 is essentially the sum of the head-loss in a predefined direction around a closed 

loop.  Once the loop equation has been determined, the change in flow for that iteration must be 

calculated.  The equation for the change in flow for a closed loop is (Walski, T. M. 2003): 

∆ܳ௅௉ ൌ െ ∑ ௄೗|ொ೗|೙ௌ௜௚௡ሺொሻಿ
೗సభ

∑ ௡ห௛ಽ,೗/ொ೗หಿ
೗సభ

         Eq. 1.8 

Where: 

 ∑ ௟௟௢௢௣א௟|ܳ௟|௡ܵ݅݃݊ሺܳሻ௟ܭ  = Loop equation (sum of head-loss around a loop)  

 N = Number of loops 

  = Value based on which head-loss equation used (i.e. 1.852 for Hazen-Williams) n

 ݄௅,௟ = Head-loss across pipe “l” (L) 

            Ql = Flow through pipe “l” (L3/T) 
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At the end of an iteration the change in flow calculated using equation 1.8 is applied to all of the 

pipes within a respective closed loop.  This process is repeated for all of the loops and continues 

until the change in flow (∆ܳ௅௉) becomes less than some tolerance value.    

 Once the availability of computer hardware became common place, algorithms that solve 

the entire network were developed.  One of the most commonly used algorithms was developed 

by Todini et al. (1987) and is called the gradient method.  This method allows a modeler to 

analyze large networks by solving a system of partly linear and non-linear equations that express 

the balance of mass and energy.  This system of equations is comprised of npipe and nnode 

equations.  The following is the equation used to solve the gradient method (Todini et al. 1987):  

                                                                                      Eq. 1.9 

Where: 

 n = Value based on which head-loss equation used (i.e. 1.852 for Hazen ms) -Willia

 nA11 = Matrix comprised of the derivatives with respect to pipe flow = ݊ܭ|ܳ|௡ିଵ 

 A21 = Connectivity (topological) matrix  

 A12 = Transpose of matrix A21 

 dQ = Change in pipe flow (L3/T) 

 dH = Change in nodal head (L) 

 -dE = Pipe balance error (L) 

 -dq = Nodal balance error (L3/T) 

Please note that in equation 1.9 above, the “npipe” and “nnode” labels signify how the sizes of 

the matrices depend on the number of pipes and nodes in a system (i.e. nA11 is a square npipe x 

npipe matrix).  The result of the nA11, A21, A12, and 0 matrices combined is essentially a 
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Jacobian matrix for the system.  An initial guess for the pipe flows and nodal heads are required 

for this method, but unlike the Hardy-Cross solution, a flow balance is not required.  An 

advantage of this approach is that all pipe flows and nodal heads are solved in each iteration.  

This allows the gradient method to converge on a solution in fewer iterations than a method such 

as Hardy-Cross.  This solution method is used by EPANET and allows it to effectively simulate 

hydraulic parameters in a water distribution network.  

 The method for solving flow continuity and headloss equations in EPANET is known as 

a hybrid node-loop approach.  This approach is very similar to the solution method designed by 

Todini et al. (1987) (the gradient method) and was chosen over similar methods due to its 

simplicity.  EPANET begins analysis by selecting initial flow estimates for every pipe in the 

system.  These initial flow estimates are based on a velocity of 1 ft/s through the pipes and are 

not intended to satisfy continuity.  For every iteration of this method, nodal heads are determined 

by solving the matrix equation AH=F.  The term A in the matrix equation is an (NxN) Jacobian 

matrix, H is an (Nx1) vector of unknown nodal heads, and F is an (Nx1) vector of right hand side 

terms (Rossman et al. 2000).  After new heads are determined using the aforementioned matrix 

equation, the new flows through the pipes are determined.  The advantage of this method is that 

it solves for the hydraulic parameters at every node within a system simultaneously.  This greatly 

improves the probability of convergence.  The criterion for convergence is user defined and is 

inputted in terms of a tolerance value.  For example, if the sum of the absolute flow changes 

relative to the total flow through all of the pipes in the system is less than some prescribed 

tolerance (e.g. 0.003), then the process of solving the matrix equation and determining the new 

flows is terminated.   
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 To better understand how the gradient method developed by Todini et al. (1987) 

compares to other solution algorithms, Salgado et al. (1988) conducted a study that compared the 

gradient method to the simultaneous path and linear theory methods.  The simultaneous path 

method is designed to solve all of the loops within a system simultaneously.  The following is the 

express  f r si  a h d S ado et al. 1988): ion o  the multaneous p th met o  ( alg

ሺ∑ ௜ሻ∆ܳ௞ܬ ൅ ∑ ሺܬ௜∆ܳ௡ሻ ൌ ௞ܧߜ െ ∑ ௜௞௞௞ܪ                                  Eq. 1.10 

Where: 

   Gradient of head loss in a pipe (Hi/Qi) Ji =

 ௞ = Available pressure headsܧߜ 

 H  Headloss through pipe, “i” (L) i =

 ∆ܳ௞ = Flow correction for all links in a loop, “k” (L3/T)  

The first term on the left side of equation 1.10 accounts for the flow correction that is applied to 

the pipes in loop “k”, while the second term accounts for the effect of the flow correction in the 

neighboring loops.  The right side of equation 1.10 is the difference between the available heads 

and total head losses in each loop.  

 The linear theory method requires the simultaneous solution of the following two sets of 

equatio  ( lg t al. 1988):  ns Sa ado e

∑ ܳ௜௝௜ ൌ  ௝  for all nodes “j”                                                    Eq. 1.11ݍ

Where: 

  Qij = Flow through link connecting nodes “i” and “j” (L3/T) 

  qj = Nodal demand in nod

∑ ሺܬ௜ܳሻ ൌ ∑ ሺܬ௜ܳ௜ െ ௜ሻܪ ൅ ௞௞௞ܧߜ   for all loops “k”                  Eq. 1.12 

 e “j” (L3/T) 
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Equation 1.12 is written for every loop in a network.  This version of the linear theory method 

requires the definition of flow paths, but does not need an initial flow since it generates its own 

initial flow distribution.   

 The gradient method proposed by Todini et al. (1987) is defined by equation 1.9. 

The upper part of equation 1.9 represents the headloss-flow relationship and the lower part 

corresponds to the nodal flow balance.  The simultaneous path and linear theory methods require 

that a branched network be transformed into an equivalent looped network.  To evaluate the three 

algorithms they were translated into FORTRAN and tested using a series of network examples.  

The results from the network examples indicated that the simultaneous path and linear theory 

methods, along with the gradient method, were able to converge on a solution.  However the 

gradient method had certain advantages over the other two solution methods.  The main concern 

with the simultaneous path and linear theory methods was that they were unable to determine the 

nodal heads when the network contained pipes with small diameters or nearly closed valves.  The 

gradient method was able to converge for every network example with considerable speed.  In 

addition, this method did not have difficulty converging when there were partially closed valves 

and high resistance pipes present, because it determines both nodal heads and pipe flows at each 

stage.  The gradient method was also able to simulate partially looped and branched systems, 

whereas the simultaneous path and linear theory methods require an equivalent looped system.  

Unlike the two other solution methods, the gradient method was able to continue a simulation if 

a network becomes disjointed (i.e. through the action of valves).  Salgado et al. (1988) concluded 

that the gradient method is more desirable than the simultaneous path and linear theory 

algorithms due to its ability to converge during extreme cases.   
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1.1.3 Graph Trace Analysis 

 Graph trace analysis (GTA) has been in development for nearly twenty years and 

constitutes a new method in integrated system analysis.  Over the past twenty years, GTA has 

been used to model integrated power transmission and distribution down to the individual 

consumers for systems composed of millions of components.  GTA has also been used to 

develop real-time monitoring systems for power, water, gas, and sewage.  In theory, GTA could 

be used with any system that can be represented as a well-defined network of interrelated 

components with definable “through” and “across” characteristics.  A “through” characteristic 

depicts the calculation of variables that flow through components (i.e. flow), and an “across” 

characteristic depicts the calculation of the variable that is applied across components (i.e. 

pressure).  Advantages of GTA include: allowing a modeler to structure and manage common 

models, along with performing analyses across multiple system types; developing a model that 

simulates steady-state, discrete event, and transient scenarios; allowing for the recombination or 

extension of a system as unforeseen issues arise and priorities change (Feinauer et al. 2008).  

 In order to perform a simulation with a model, GTA utilizes a one-to-one correspondence 

between the objects in the model and the components in the physical system.  The objects in the 

model are stored together as a system in a “container.”  This container provides iterators which 

algorithms use to access data, perform analyses, and control components.  Each component uses 

iterators to define the relationships with other components and the data stored in the container.  

Figure 1.2 below illustrates how iterators relate algorithms and results to the rest of the model 

(“container”).  Each component is encountered only one time in a single graph trace from a 

reference source (i.e. tank) through the network.  In GTA every component has only one 

reference source.  Algorithms use the GTA traces and sets formed by iterators to perform 
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analyses.  The following figure illustrates the relationship among algorithms, iterators, and a 

container (Feinauer et al. 2008):   

 

Figure 1.3: Relationship among Algorithms, Iterators, and the Container 

 

 GTA uses the concept of graphs to develop sets that are created by tracing through a 

network.  The traces are implemented by iterators (as described above) and set operators.  In a 

GTA model, the components in a system correspond to an edge of a graph.  The nodes in a 

system are not directly modeled but rather become part of the edge itself.  This concept means 

that a GTA model is an edge-edge graph.  It is believed that the use of an edge-edge graph rather 

than a more traditional node-to-node approach is more suitable for integrated, reconfigurable, 

and very large systems.  GTA has the ability to solve edge and loop based iterative analyses that 

use matrices, loop equation based matrices, and a combination of the two (Feinauer et al. 2008).  

It is important to note that a GTA model has the ability to store and manage interrelationships 

within the model itself.  This is accomplished by attaching attributes (i.e. algorithm results) to 

specific components in the model.  This capability is also known as in-memory data.   
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1.1.4 Generic Algorithms (Generic Analysis) 

 The use of iterators, component objects, system containers and generic algorithms to 

analyze engineering physical network problems is referred to as “Generic Analysis.”  

Each component in a model is responsible for calculating its internal state and reaction to 

external influences.  Generic algorithms are used to calculate the “through” (i.e. flow) and 

“across” (i.e. pressure) variables for each component.  Due to the nature of distribution systems, 

numerical iteration is typically required in order for convergence on a solution to occur.  In 

Generic Analysis, all of the components in a system are the container.  The trace iterators in 

GTA are used by generic algorithms to navigate and access contained objects.  Generic 

algorithms are programmed in a model so that calculated results can be related back to the 

container where they can be accessed by other algorithms.  This implies that algorithms can work 

in unison via the container.  For example, if data required by an algorithm has not been 

calculated, the container can request that an appropriate algorithm perform a calculation to 

provide the required data.  The developers of Generic Analysis refer to this concept as 

collaborative integration.  The use of generic algorithms ultimately allows one to solve a “system 

of systems” problem that involves interdependencies among different types of systems (i.e. fluid 

and electrical) (Feinauer et al. 2008).  

1.1.5 Hydraulic Calibration 

 Hydraulic simulation software is developed by collecting and entering the required data.  

However, a modeler cannot make the assumption that the model is performing accurate 

simulations.  A hydraulic simulation software typically solves the continuity and energy 

equations using the supplied data.  Thus, the quality of the simulations is dependent on the 
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quality of the data.  Therefore, the accuracy of simulation software depends on how well it was 

calibrated (Walski, T. M. 2003). 

 Calibration can be defined as the process of comparing a model’s results to field 

observations.  If necessary, the input parameters describing a system can be adjusted until the 

model makes predictions that agree reasonably with measured values.  The parameters that may 

need adjustment may include but are not limited to: system demands, pipe roughness, and pump 

operating characteristics.  The complete calibration of a model allows a modeler to have a better 

understanding of a distribution system and more confidence in the model’s predictions (Walski, 

T. M. 2003). 

 Calibrating the hydraulic simulating component of a water distribution system model is 

an intensive and important step for the proper functioning of the model.  Performing a detailed 

calibration ensures that the model generates results that are accurate and reliable.  A number of 

parameters are necessary for the correct calibration of a model; these include but are not limited 

to the sizes, locations, and roughness values of the pipes.  The sizes and locations of pipes can be 

determined by measurements in the field and construction drawings, but roughness values are not 

obtained by direct measurements (Meier et al. 2000).  Instead, roughness values need to be 

determined by back-calculating from the results of flow tests within the system.  The best means 

of conducting a flow test is by opening a hydrant and measuring the flow rate at the open hydrant 

and the pressure change at the closest upstream hydrant.  This method of flow testing is not 

practical for performing on every hydrant within a large system, thus a select number of 

representative hydrants are chosen and the roughness values for the system are inferred from 

those results.   
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 A study by Meier et al. (2000) investigated the use of genetic algorithms in order to 

determine the best locations to conduct the open hydrant flow tests.  Genetic algorithms are a 

relatively novel concept of optimization that can replace the more common approach in which an 

experienced modeler determines the best sampling locations on an ad hoc basis.  The later 

method is largely affected by the experience of the modeler.  Genetic algorithms are based on the 

mechanisms of natural selection and genetics.  The implementation of a genetic algorithm starts 

with a random selection of code strings.  Each code string is simply a vector containing decision 

values that points to one location in the solution space (Meier et al. 2000).  Once the code strings 

are populated, the “fittest” strings are selected and passed down to the next generation.  In order 

to improve the probability that favorable traits make it to the next generation, mutation is often 

used to alter a string to recover or create traits.  In this study a sample water distribution network 

was used as a means to test the optimization capabilities of genetic algorithms.  In this case, the 

genetic algorithm was used to determine the best flow test locations on the standard that the flow 

tests would produce a non-negligible velocity of 0.30 m/s.  The genetic algorithm was validated 

by determining the optimal locations within the system using complete enumeration (listing all 

possible solutions) and then comparing the results to those of a genetic algorithm.  When 

compared to the complete enumeration results, the genetic algorithm proved capable of 

determining the same solution within a reasonable probability.  Thus, Meier et al. (2000) 

concluded that the use of genetic algorithms is a dependable alternative to the more time and 

memory consuming traditional methods. 

 Calibration research has developed several different techniques that optimize parameter 

choices and sampling designs.  Studies conducted by Reddy et al. (1996), Bush et al. (1998), 

Bremond et al. (2003), and Huang et al. (2007) have explored calibration design and 
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methodology.  Reddy et al. (1996) focused on the use of a weighted-regression to identify and 

remove poor measurements within a data set, which can improve the execution of calibrating a 

model.  The study by Bush et al. (1998) compared three different sensitivity-based methods for 

optimizing the calibration design.  These methods were the Max-Sum design, Max-Min design, 

and the Weighted-Sum methods.  Each of these methods rank spatial measurement locations (i.e. 

network nodes) or types (i.e. pressure or tracer concentrations) according to a measure of their 

worth for parameter estimation.  The study by Bremond et al. (2003) focused on determining the 

best locations for calibration measurements.  This involved research on the method of 

minimizing the error in the estimation of chosen parameters to determine the best locations for 

measurements.  Lastly, Huang et al. (2007) researched the use of Bayesian statistical analysis 

incorporated with Gibbs sampling to estimate specific parameters.  These studies offered insight 

into the extensive research that is being conducted in the area of optimizing the calibration 

process. 

1.1.6 Extended Period Simulation 

The transition from steady state to dynamic simulations required the development of a 

model with the ability to perform extended-period simulations (EPS).  In the early stages of EPS 

development, simulation time periods were too limited, preventing a meaningful long term 

characterization of a water distribution system.  The simulation time for an effective EPS 

analysis was studied by Harding et al. (2000).  At the time of this study the authors claimed that 

the current EPS simulation times were generally for periods of one or a few days.  This study 

proposed running a hydraulic and water quality simulation for a period of twenty years.  This 

EPS would allow for the reconstruction of the spatial and temporal patterns of contamination in a 

water distribution system.  A modified version of EPANET was used that allowed the time-series 
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data file to read in such a way so that the results of each daily simulation were used as the initial 

conditions for the following day.  This study concluded that an EPS does not take into account 

the changes in water use and quality that are inherent in a water distribution system; for instance 

a period of less water use due to a drought would not be considered.  However, an experienced 

modeler may be able to choose representative time periods to account for these changes, which 

can reduce inherent deficiencies.  The trade-off for using an EPS is that a larger amount of high 

quality data is needed for longer simulations.  If an abundant source of reliable data is available, 

than an EPS is a viable option for understanding the nature of a water distribution system over a 

long period of time.  The improvement of dynamic simulations in water modeling has allowed 

for the dynamic modeling of water quality, offering insight into the nature of reactions of 

chemical constituents. 

1.2 Water Quality 

 Utilities have become increasing concerned with the behavior and transport of chemical 

species in a water distribution system.  Beginning in the mid-eighties, advancements in computer 

technology allowed for the addition of water quality to hydraulic models.  This was motivated by 

the recognition that water quality can greatly change from the water treatment plant, through the 

distribution system, and to the consumer.  With the advancement in dynamic hydraulic 

simulations, the long term simulation of water quality within a distribution system became 

possible.   

 Most versions of water distribution models contain a water quality modeling package in 

addition to hydraulic modeling.  With the capability of water quality modeling, simulations can 

be made that improve the understanding of reaction and transport of different chemical 

constituents.  For instance, a tracer study can be conducted which allows a utility to simulate the 
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transport and reaction of a chemical from when it enters the system from the water treatment 

plant.  A tracer study offers valuable insight into how a system will react to possible 

contaminants and changes in disinfectant use.  A major concern to most utilities is how chlorine 

residual behaves in a water distribution system.  A model can be used to simulate the reaction of 

chlorine, the formation of disinfectant byproducts, and the impacts on residual concentrations 

from storage tanks.  The information provided by simulating the fate of a disinfectant such as 

chlorine allows utility operators to plan more effectively.   

1.2.1 Simulating Water Quality 

 The modeling of chlorine decay in a distribution system requires the summed effects of 

the bulk liquid and pipe wall.  Even though zero, first, and second-order decay reactions are used 

in practice, a first-order reaction is widely accepted when modeling chlorine decay.  The 

following exponential equation is first-order decay (Walski, T. M. 2003): 

                                                         Ct=C0e-kt                                                       Eq. 1.13 

Where: C = Concentration at time t (M/L3) 

  C0 = Initial Concentration (at time zero) (M/L3) 

  k = Reaction rate constant (1/T) 

The reaction rate constant (k) in equation 1.13 is the overall reaction rate constant, in that it 

incorporates both the bulk and wall reaction rate constants.  The bulk reaction rate constant will 

be determined experimentally by obtaining measurements at the distribution network.  The wall 

reaction constant must be evaluated while taking into consideration the mass transfer rate of 

chlorine between the bulk liquid and pipe wall.  The following equation is the relationship 

among the overall, bulk, and pipe w c on rate coefficients (Walski, T. M. 2003): all rea ti

                                                  ݇ ൌ ݇௕ ൅ ௞ೢ௞೑

ோಹ൫௞ೢା௞೑൯
                                                 Eq. 1.14 
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Where: kb = Bulk reaction rate coefficient (1/T) 

 kw = Wall reaction rate coefficient (L/T) 

 kf = Mass transfer rate coefficient (L/T) 

 RH = Hydraulic radius of pipe (L) 

The mass transfer rate coefficient (kf) in equation 1.14 depends on the molecular diffusivity of 

the constituent in the bulk liquid, the pipe diameter, and the Sherwood number.  This relationship 

is illustrated in the following expression (Walski, T. M. 2003): 

                                                   ݇௙ ൌ ௌಹௗ
஽

                                                                   Eq. 1.15 

Where: SH = Sherwood number 

    d = Molecular diffusivity of constituent in the bulk liquid (L2/T) 

   D = Diameter of pipe (L)  

The Sherwood number (SH) in equation 1.15 is a dimensionless parameter that is a function of 

the Reynolds number (Re) and kinematic viscosity (ν) of the fluid.  The value of the Reynolds 

number determines the expression used to evaluate the Sherwood number.  The following are the 

expressions that correspond to the appropriate range of Reynolds numbers.  

• For stagnant flow (Re < 1) the Sherwood number is equal to 2.0.  

• For turbulent flow (Re > 2300) the Sherwood number is evaluated using the following 

expression (Walski, T. M. 2003): 

ܵு ൌ 0.023ܴ݁଴.଼ଷ ቀఔ
ௗ

ቁ
଴.ଷଷଷ

                                                Eq. 1.16 

Where: Re = Reynolds number 

             d = Molecular diffusivity (L2/T) 

  ν = Kinematic viscosity of liquid (L2/T) 
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• For laminar flow (1<Re<2300) the Sherwood number is evaluated using the following 

expression (Walski, T. M. 2003): 

ܵு ൌ 3.65 ൅
଴.଺଺଼ቀವ

ಽቁሺோ௘ሻቀഌ
೏ቁ

ଵା଴.଴ସቂቀವ
ಽቁோ௘ቀഌ

೏ቁቃ
మ/య                                         Eq. 1.17 

Where: D = Pipe diameter (L) 

 L = Length of pipe (L) 

Equation 1.17 for the Sherwood number during laminar flow is effectively the average Sherwood 

number along the entire length of the pipe.  

   Chlorine decay in water distribution systems is a constant concern to ensure the quality of 

water received by the consumer.  In order to determine the extent to which chlorine residual 

diminishes, predictive modeling techniques have been developed.  A study conducted by 

Rossman et al. (1994) discusses the development of a mass-transfer-based model for predicting 

chlorine decay in water distribution networks.  This model considers first order reactions of 

chlorine in both the bulk water and the pipe wall.  The following was the equation used to model 

the reaction rate of chlorine (Rossman et al. 1994):  

ൌ െݑ ௗ௖
௫

െ Eq. 1.18 ௗ௖                                                                           ܿܭ
ௗ௧ ௗ

ܭ ൌ ݇௕ ൅ ௞ೢ௞೑

௥೓ሺ௞ೢ௞೑ሻ
                                                                         Eq. 1.19 

Where: 

  u = Flow velocity 

             K = Overall reaction rate constant (1/T) 

             c = Chlorine concentration (M/L3) 

 kb = Decay rate constant in bulk flow (1/T) 

 kw = Wall reaction rate constant  (1/T) 
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 kf = Mass-transfer coefficient (L/T) 

 rh = Hydraulic radius (L) 

The rate of the wall reaction is a function of the mass transfer of chlorine to the pipe wall and is 

thus dependent on pipe geometry and flow.  This model was able to illustrate how smaller pipe 

sizes and higher flow velocities cause an increase in chlorine decay.  The model was applied to 

chlorine measurements taken at nine locations from a portion of the South Central Connecticut 

Regional Water Authority’s (SCCRWA) service area, and used an Eulerian approach called the 

Discrete Volume Element Method (DVEM) to evaluate the set of differential/algebraic equations 

for determining the residual chlorine concentrations (Rossman et al. 1994).  When hydraulic 

conditions are constant, DVEM is performed by separating pipes into segments which are treated 

as completely mixed reactors.  Reactions then take place within each segment and the resulting 

concentrations are transferred to the adjacent downstream segment.  Once the reaction and 

transport steps have completed, the resulting concentration at each junction is determined.  This 

concentration is then released into the end segments of the pipes with the flow leaving the node.  

This method is repeated until a new hydraulic condition occurs.  This DVEM approach can be 

found in EPANET.  The reaction rate constant for bulk flow (kb) was estimated via lab tests, 

whereas the pipe wall reaction rate constant (kw) was adjusted over a range of values (Rossman 

et al. 1994).  The results from this study were compared to observed chlorine measurements.  

Good agreement between the predicted and observed values was present when hydraulic 

conditions were well characterized.  In cases where hydraulic calibration was not complete, less 

accurate chlorine predictions resulted.  Complete hydraulic calibration was essential for the 

optimal performance of the model since chlorine kinetics were dependent on flow velocity.  This 
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study emphasizes the importance of hydraulic calibration when determining water quality 

parameters.   

 There are two major categories for tracking bulk water in the simulation of water quality 

in a pipe network: the Eulerian model and the Lagrangian model.  For an Eulerian model pipes 

are divided into equal volume segments and water flows through the volume segments as time 

progresses and chemical reactions are included in transport.  A Lagrangian model tracks parcels 

of water with homogenous constituent concentrations as they move through a pipe.  New parcels 

can be added due to changes in source quality or when two or more parcels meet at a junction.  

In order to reduce the number of possible parcels, algorithms have been developed that combine 

parcels with negligible difference in constituent concentrations.  A study by Rossman et al. 

(1996) compared four different numerical methods, two of which were Eulerian based and two 

that were Lagrangian based.  The two Eulerian based methods are the finite-difference and 

discrete-volume methods.  The two Lagrangian based methods are the time-driven and event-

driven methods.  This study evaluated the performance of each approach by encoding each 

method into a water distribution system model and running them on several networks of different 

size but under identical accuracy tolerances.  Five major conclusions were reached after the 

comparison of accuracy, computation time, and computational storage requirements was 

completed.  The conclusions were as follows: 

1. The numerical accuracy of the methods was effectively the same, with the exception that 

the Eulerian methods had occasional inaccuracies.  

2. Each of the methods was capable of representing water quality behavior in existing water 

distribution systems.  

3. Network size was not always an indicator of solution time and memory required. 
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4. Lagrangian methods were more time and memory efficient than Eulerian methods for 

modeling chemical constituents.  

5. For modeling water age, the Lagrangian time-driven method was the most time efficient 

whereas the Eulerian methods were the most memory efficient.  (Rossman et al. 1996) 

Based on the results provided in this study, it seemed that the Lagrangian event-driven method 

was the most versatile unless there were limitations due to computer memory.  If that is the case, 

the Eulerian methods are preferred.  

 Chlorine decay in bulk water can be affected by different chemical constituents and 

conditions.  There have been several studies that investigate chlorine decay in different bulk 

water conditions.  Two of these studies, conducted by Boccelli et al.(2003) and Shang et al. 

(2008), delved into the behavior of reactive chlorine under different conditions and in the 

presence of different chemical constituents.  Boccelli et al. (2003) developed a reactive species 

model for chlorine decay and trihalomethane (THM) formation under rechlorination conditions.  

This model involved second-order chlorine decay and total THM formation.  The second-order 

decay model took into account the reactive species involved in the kinetics, which allowed the 

model to simulate how the chlorine concentration depended upon the reactive species.  The 

following was the s n -order equation used in this study (Boccelli et al. 2003):  eco d

ሻݐ஺ሺܥ ൌ ஼ಲ,బିఈ

ଵି൬ ഀ
಴ಲ,బ

൰ୣ୶୮൤ିሺ
CA,బ

ಉ ିଵሻஒ୲൨
                                      Eq. 1.20 

ൌן   
௕

௔஼ಳ,బ    (M/L3)                                                       Eq. 1.21 

ߚ ൌ ݇஺ܥ஻,଴      (1/T)                                                       Eq. 1.22 

Where:
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                                                        ஺,଴= Initial concentration of chlorine (M/L3)ܥ 



 ஻,଴ = Initial concentration of reactive species (M/L3)                                                         ܥ

 ݇஺ = Second order chlorine decay rate coefficient (L3M-1T-1) 

  t = Time 

 (a/b) = oichiometric ratio of the chlorine consumed to reactive material consumed St

The parameter ן, is the stoichiometric chlorine concentration that is required for the completion 

of the reaction.  This is based on a hypothetical non-reversible reaction that follows 

 aA + bB =>pP, where A and B are the chlorine component and reactant component  

respectively and P is the disinfectant by-product.  The parameter ߚ in equation 1.22 is a pseudo-

first-order decay rate coefficient.  In order to determine the chlorine concentration after 

rechlorination the concentration of the reactant had to be determined since the parameters ן and 

 are a function of the reactant concentration.  The following equation was used to calculate the ߚ

reactant concentration aft in on l et al. 2003): er rechlor ati  (Bocce li 

஻,଴ܥ
כ ൌ ஻,଴ܥ െ ௕

௔
ሾܥ஺,଴ െ  ௕ሻሿ                          Eq. 1.23ݐ஺ሺܥ

Where: 

஻,଴ܥ  
כ  = Reactant concentration after rechlorination (M/L3) 

 ( /a

 ௕ (M/L3)ݐ ,௕ሻ = Chlorine concentration at time of rechlorinationݐ஺ሺܥ 

b ) = Stoichiometric ratio of the reactive material consumed to the chlorine consumed  

With the new reactant concentration determined using equation 1.23 the parameters ן and ߚ can 

be calculated, allowing a new chlorine concentration after rechlorination to be determined using 

equation 1.20.  Boccelli et al. (2003) determined that the second-order model was able to perform 

as well as or better than the traditional first-order decay model.  Additionally, the total THM 

concentration proved to be linearly related to the amount of chlorine decay and can be defined by 

the following equation (Boccelli et al. 2003): 
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ሻݐሺܯܪܶܶ ൌ ሻݐሺݔܶ ൅  Eq. 1.24                                    ܯ 

Where: 

஺,଴ܥ = ሻݐሺݔ   െ  ௕ሻ = Total chlorine demand at time, tݐ஺ሺܥ

 T = p/a = Stoichiometric ratio of TTHM formation and chlorine consumed 

           M = TTHM concentration at t=0 (M/L3) 

The second-order model developed by Boccelli et al. (2003) has applications in modeling water 

quality at junctions within a water distribution system.  For instance, the water containing a 

lower chlorine concentration will enter a junction and be rechlorinated by water with a higher 

chlorine concentration, thus altering the reactive and disinfectant species concentration due to 

mixing.  This application would require the tracing of chlorine and the reactive species within a 

system.   

 The development of a model that could simulate the reaction and transport of multiple 

species in a water distribution system was pursued by Shang et al. (2008).  The model developed 

was able to simulate the reaction of a chemical species with other chemicals, biological material, 

and organics present in the bulk liquid and pipe wall.  This model was created by extending the 

current version of EPANET to form EPANET-MSX (multispecies extension).   Reactions that 

occur in water within a distribution system are not solely caused by influences in the bulk water, 

but are also affected by the contact water has with the pipe wall.  

1.2.2 Effects of Pipe Wall on Reaction 

 There has been extensive research on the effects of the pipe wall on chemical reactions.  

Specifically, researchers have been interested in the effects that a pipe wall has on the depletion 

of chlorine residual.  In order to better understand the effects that different pipe material and age 

have on chlorine first-order wall decay constants Al Jasser et al. (2006) conducted a study that 
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involved three hundred and two pipes varying in age, size, and material.  The different materials 

used were: cast iron, steel, asbestos cement, cement-lined cast iron (CLCI), cement-lined ductile 

iron (CLDI), polyvinyl chloride (PVC), unplasticized polyvinyl chloride (uPVC), and 

polyethylene.  Additionally, the pipe ages ranged from new to fifty years, and the pipe diameters 

ranged from a half an inch to twelve inches.  Water containing a chlorine concentration of 2 mg/l 

was exposed to the different pipes.  Sampling for chlorine residual took place until the 

concentration was approximately ten percent of the initial concentration.  The bulk reaction rate 

constant, kb, was determined experimentally using a clean flask and was on average 0.28 day-1 

with a standard deviation of 0.021 day-1.  The wall reaction constant, kw, observed during the 

experiment ranged from 0.11 to 112 day-1.  This wide range is a result of the varying age, size, 

and composition of the sample pipes.  Al Jasser et al. (2006) made an interesting hypothesis that 

the layer of biofilm and tubercles can actually prevent some chlorine decay because the reactive 

surface of the pipe is buffered from the bulk water.  In order to test this hypothesis, the biofilm 

and tubercle layers were removed from several pipes to see if the wall reaction constant would 

change.  This method actually showed that the wall chlorine decay constant increased and 

decreased depending on the pipe material and age.  For medium age steel and cast iron pipes 

(approximately 18 years old) the removal of the layer caused a decrease in the wall reaction 

constant of about 7% and 12% respectively.  This indicated that the biofilm and tubercle layer 

was actually a more reactive surface than the bare pipe wall.  Conversely, removing the layer 

from old pipes increased the wall reaction constant by 15% for steel pipes and 18% for cast iron 

pipes.  This indicated that the biofilm and tubercle layer was less of a reactive surface and 

buffered the more reactive pipe wall from the bulk water.  The decrease in the chlorine decay 

constant for the less aged pipes indicated that the layer was consuming chlorine more than 
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protecting the pipe wall, whereas the increase in the constant for the more aged pipes showed 

that the layer was providing protection more than consuming chlorine.  These results do provide 

some insight into the role biofilm and tubercle layers have on chlorine consumption, but further 

research must be conducted in order to reach a plausible conclusion.  The main conclusions 

drawn from this study are that the pipe service age has a significant impact on the chlorine wall 

reaction rate and that the wall reaction rate will govern chlorine decay when the bulk reaction 

rate is less prominent.    

1.2.3 Water Quality Calibration 

 Ensuring that a model is calibrated with respect to water quality simulation is a major 

concern to any modeler.  A thoroughly calibrated water quality model is essential for accurate 

and confident results.  In order to calibrate a water quality model for a reactive constituent, the 

governing parameters for reaction must be correctly adjusted.  However, the calibration of water 

quality simulation should not occur until the hydraulic simulation component of the model has 

been completely calibrated.  Research has been conducted in water quality calibration and the 

necessary parameters requiring adjustment.  A study conducted by Zheng et al. (2006) explored 

the process of effectively calibrating a water quality model by adjusting bulk and wall reaction 

rates.  For the bulk reaction rate, the parameters of interest were the bulk reaction coefficient, 

bulk reaction order, and concentration limit.  These parameters needed to be adjusted for both the 

pipe and tank components in a system.  To simplify the calibration process, pipes with similar 

characteristics (i.e. pipe material and age) were combined into one calibration group for the bulk 

reaction coefficient adjustment.  However, the tank bulk reaction coefficient was calibrated 

individually for each storage tank.  The parameters that needed to be adjusted for pipe wall 

reaction were the wall reaction coefficient and reaction order.  Both of these parameters are 
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related to pipe material and pipe wall conditions (i.e. tuberculation).  This study proposed two 

different means of calibrating the pipe wall parameters.  The first method was known as direct 

calibration, which is similar to the calibration of the bulk reaction parameters and involved the 

grouping of pipes with similar characteristics (age, material, and location) and directly 

optimizing the pipe wall reaction coefficient and reaction order.  The second method was known 

as correlation calibration and involved the assumption that there is a relationship between the 

increase of pipe wall roughness due to age and the reactivity of the pipe wall.  The relationship 

between the pipe wall reaction coefficient and the pipe roughness varies depending on which 

head-loss equation is used (Zheng et al. 2006):   

Hazen-Williams: Kw = F/C                                                                       Eq. 1.25 

Darcy-Weisbach: Kw = -F/log(e/d)                                                           Eq. 1.26 

Chezy-Manning: Kw = F*N                                                                      Eq. 1.27 

Where: 

  Kw = Pipe wall reaction coefficient  

 C = Hazen-Williams C-factor 

 e = Darcy-Weisbach roughness 

 N = Manning roughness coefficient 

 d = Pipe diameter (L) 

  F = Coefficient of correlation 

The coefficient of correlation, F, is related to the wall reaction coefficient in a way that is 

dependent on the head-loss equation used.  The parameter F must be determined from site-

specific field measurements.  The advantage of using correlation calibration is that it requires 

only a single parameter F, to allow wall reaction coefficients to vary throughout a system in a 
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physically meaningful way.  This is based on the assumption that the hydraulic model is 

calibrated and that the pipe roughness values are known.  The methodology proposed in this 

study used an example to illustrate the importance of water quality calibration.  For this example, 

the pipe wall reaction rate was calibrated using the correlation method.  The results of the study 

showed that before calibration a large difference existed between the observed and modeled 

chlorine concentrations, whereas after calibration the model produced chlorine concentrations 

that were much more representative of the observed values.  The necessity of an accurately 

calibrated hydraulic model was reinforced in this study due to the need of a well calibrated 

extended period simulation hydraulic model for water quality calibration.  If the hydraulic model 

is not well calibrated, then errors in the hydraulic model can be transferred to the water quality 

calibration process.   

 There have been major accomplishments in the development of water distribution system 

modeling.  The mechanisms running hydraulic simulation have been fully developed.  However, 

the simulation of chemical reactions and corrosion are still a major focus in modeling research 

and development.  The further advancement in water quality simulation is being motivated partly 

by security precautions.  The simulation of possibly harmful contaminants in water distribution 

systems is of major concern for water utilities.  To satisfy security demands further research has 

been conducted in the development of warning system hardware and software.   

 The simulation of corrosion is still a novel concept and current development has been in 

the area of identifying corrosion indicators.  For example, the accelerated depletion of a 

disinfectant may indicate that corrosion is forming turbicles on the pipe wall.  Once the 

mechanisms behind pipe corrosion have been fully defined and understood, more advancements 

will be made in the development of modeling packages. 
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Chapter 2: Comparison of EPANET and DEW 

2.1 Objectives 

 Comparing the simulation performance of EPANET and DEW will provide insight into 

the capabilities of the DEW model.  Since EPANET is a well established water distribution 

system model, it will be considered the standard for the comparison with DEW.  The following 

are the main objectives for this study: 

1. The solution methods for DEW, Todini (similar to EPANET solution method), and 

Hardy-Cross will be used to solve a simple looped network.  The hydraulic solutions for 

the three different methods will be compared.  These comparisons will allow for a better 

understanding of EPANET’s and DEW’s solution approaches.  

2. A simple water distribution network (a different, more complex network from the 

solution method comparison) will be simulated in both DEW and EPANET.  The results 

of the simulation in both models will be compared and the performance of the DEW 

model assessed.   

 Completing the two main objectives as described above will provide valuable 

information that will be used to better understand the hydraulic solution method in the DEW 

model.  Since DEW is a multi-disciplinary model that is theoretically capable of solving different 

types of networks (i.e. electrical and water), it is important to assess its ability to perform simple 

hydraulic simulations.  This chapter discusses the comparison of EPANET’s and DEW’s 

hydraulic simulation capabilities used as a preliminary assessment of DEW.   

2.2 Methodology 

 Three solution methods were studied by solving a simple looped network with each 

method.  The current DEW solution is an ad-hoc approach that utilizes the bisection method.  
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The Todini method is very similar to the approach used by EPANET and uses a matrix equation 

to simultaneously solve for pipe flows and nodal heads.  The Hardy-Cross method is a well 

known and accepted method for network analysis.  This method was added to the study due to its 

similarities with the DEW solution.  Both DEW and Hardy-Cross calculate a flow adjustment for 

each loop, and pipes that are shared by two loops undergo multiple adjustments.  The parameters 

for the simple looped network used in this study remained the same for each method (i.e. pipe 

length, pipe diameter, pipe roughness, and nodal demands).  The number of iterations to 

convergence and pipe flows were determined for each method and compared.  The stopping 

criteria used for this study was 0.001.  This means that when the correction value for both the 

pipe flows and nodal heads was less than or equal to 0.001, a converged solution was 

determined.   

A simple water distribution network was simulated in both the EPANET and DEW 

models.  Please note that the network used in the model comparison was a different, more 

complex network from the one used in the solution method comparison.  The input parameters 

for both models were identical (i.e. pipe length, pipe roughness, pipe diameter, nodal demands).  

The current state of DEW would only allow a steady-state simulation to take place.  Therefore, a 

transient comparison of the two models did not occur.  The hydraulic predictions were recorded 

from both models and compared.  Since EPANET is a developed and well accepted hydraulic 

simulation package, its predictions were held as the correct standard.  Thus, taking the results 

from EPANET as the correct predictions, the comparison allowed for a preliminary assessment 

of DEW’s performance.   
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2.3 DEW a Graph-Trace Analysis Simulator 

 DEW is considered a graph trace analysis (GTA) simulator.  The concept of GTA is 

explained in Chapter 1 under section 1.1.3.  GTA has been in development for nearly twenty 

years, and over this period of time has been used to model integrated power transmission and 

distribution down to the individual consumers for systems composed of millions of components.  

Theoretically the use of GTA can be extended to any system that can be built as a well-defined 

network.  The real-time monitoring of power, water, gas, and sewage systems has been 

performed using GTA.  The use of GTA allows a modeler to structure and manage common 

models in addition to performing analyses across multiple system types.  Simulations executed 

by DEW are done through the use of iterators, component objects, system containers and generic 

algorithms (Feinauer et al. 2008).  This is referred to as “Generic Analysis” and is explained in 

greater detail in Chapter 1 under section 1.1.4.  

2.4 Water Analysis in DEW  

 DEW has the ability to simulate water system hydraulics by the use of the Hazen-

Williams, Darcy-Weisbach, or Manning headloss equations.  The equations for each method 

were programmed in DEW and the use of any of the methods is user selectable.  The manner in 

which each equation accounts for pipe roughness is slightly different.  The C-factor for the 

Hazen-Williams equation is looked up by DEW and is determined by the material of the pipe.   

The Darcy-Weisbach friction factor, f, is a function of the Reynolds number and relative 

roughness (roughness coefficient divided by the diameter of a pipe) and is determined using the 

Swamee-Jain equation.  Currently in DEW the friction factor is embedded directly into the 

source code, but will eventually be determined based on pipe material and flow conditions.  The 

Manning roughness, n, is a function of the Reynolds number and the friction factor.  This value 
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is also directly embedded into the source code and not determined for each respective pipe.  It is 

important to note that the DEW model will eventually account for the affects of pipe age on pipe 

roughness values (i.e. Hazen-Williams C-factor).  Due to the current status of DEW, the 

comparison between EPANET and DEW was performed using the Hazen-Williams equation. 

An interesting aspect of the hydraulic solution in DEW is the use of cotrees.  A cotree is 

the result of forming a closed loop within a network.  DEW depends on the pressure difference 

across a cotree for determining convergence.  Convergence occurs in DEW when the pressure 

difference across a cotree is less than a set tolerance.  When a system is designed in DEW the 

first action carried out by the model is determining the feeder path for each component within the 

system.  Once the system is built and the feeder paths defined, the pressures from the sources are 

propagated to the loads (it is important to note that for the initial propagation the flow is assumed 

to be zero).  At the load components, the initial propagated pressure is used to estimate the flows.  

Currently in DEW all load components are modeled as constant flow and not pressure 

dependent, this means that the fluid loads do not depend on the propagated pressure.  The flows 

are then propagated back to the sources using the defined feeder path traces.  The flows are next 

used to estimate the pressure at each component (i.e. a pump curve is used for the pump and a 

volume curve is used for the tank).  The pressure difference is monitored at the cotree.  If the 

difference is not zero or less than a set tolerance, then flow is injected from the high pressure 

side to the low pressure side.  DEW then resets flows using the new cotree pressure difference.  

This step is repeated until the pressures on both sides of the cotree are equal within a set 

tolerance. 

The prediction of chlorine decay is a major focus for the simulation of water quality in 

DEW.  The first-order reaction of chlorine decay that will be simulated using DEW is described 
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in Chapter 1 under section 1.2.1.  Once the water quality simulation capabilities of DEW have 

been fully developed, which can only occur once the mechanisms controlling hydraulic 

simulation have been completely developed, DEW will be able to perform a comprehensive 

water distribution network simulation.   

2.5 Tank Simulation in EPANET and DEW 

Tanks in EPANET can be “floating” tanks.  “Floating” tanks do not have to be operated 

manually since they fill and drain by themselves as the head changes due to the diurnal demand.  

These tanks operate with a given minimum and maximum water level.  If the water level during 

a simulation is lowered below the minimum value, EPANET stops outflow from the tank.  

Likewise, if the water level exceeds the maximum value, EPANET stops inflow into the tank.  

EPANET also offers the addition of a volume curve, which allows irregular-shaped tanks to be 

characterized (if no curve is added, it is assumed that the tank is cylindrical).  A source 

concentration of a chemical (i.e. chlorine) can be an input parameter for a tank so that water 

flowing into the system from the tank will initially share the same source concentration as the 

stored tank water.  EPANET also offers different mixing models for simulating water quality 

within the tanks.  The mixing models are described as: fully mixed, two-compartment mixing, 

first-in-first-out plug flow (FIFO), and last-in-first-out plug flow (LIFO).  Fully mixed assumes 

that the water entering the tank instantaneously mixes with the water that is already present 

within the tank.  Two-compartment mixing proposes that there are two zones within the tank.  

The first zone (inlet-outlet zone) contains the water that is entering and exiting the tank and is 

being mixed with the water already in that zone.  When water “overflows” from the first zone, it 

then mixes with the water in the main, upper zone.  When water is exiting the tank, the water that 

is released from the inlet-outlet zone is replaced by water from the main zone.  The plug flow 
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mixing models claim that no mixing takes place within the tank and water entering the tank is 

segregated into parcels that enter and exit in order.  The main difference between the two plug 

flow models, FIFO and LIFO, is that for FIFO the parcels of water enter and exit the tank on the 

horizontal plane and with LIFO the parcels enter and exit on the vertical plane (Rossman, L.A. 

2000).  

 Currently in DEW, tanks do not behave similarly to “floating” tanks in EPANET.  The 

main difference is that DEW depends on information being transmitted to the model via a 

SCADA system (Supervisory Control and Data Acquisition).  This allows the tank to have a 

water level that is known in real-time.  The drawback to this method is that if a SCADA system 

cannot be installed into a network, then DEW is unable to account for the rise and fall of the 

water level in a tank inherent to a distribution system.  This approach may be appropriate for 

real-time simulations where a SCADA system is connected and active, but can be limiting if the 

model is being used for design purposes.  Thus, EPANET treats the water level in a tank as a 

simulated variable, while DEW treats the water level as an input variable.   DEW does, however, 

share the same ability as EPANET for adding a water quality source for the system being 

serviced.  Mixing within the tank is currently under development and will most likely resemble 

the aforementioned two-compartment mixing.   

2.6 Pump Simulation in EPANET and DEW 

Pumps that are functional within an EPANET model depend on the use of a pump curve.  

A pump curve represents the relationship between pressure head and flow rates that are 

associated with a pump at its nominal speed setting.  A correct pump curve must have a 

decreasing pressure head with an increasing flow rate.  EPANET can use three different pump 

curves: single-point curve, three-point curve, and multi-point curve.  The single-point curve is 
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formed by defining a single head-flow point that represents the desired operating setting.  In this 

case the rest of the curve is determined by assuming a shut-off head at zero flow equal to 133% 

of the design head, and a maximum flow at zero head equal to twice the design flow.  A three-

point curve is formed by defining the low flow (flow and head at low or zero flow condition), 

design flow (flow and head at desired operating point), and the maximum flow (flow and head at 

maximum flow) points.  With these three points, EPANET fits a continuous function that 

represents the pump curve.  The multi-point curve is formed by entering four or more head-flow 

points, which EPANET connects with straight line segments forming the pump curve.  EPANET 

is also able to simulate variable speed pumps.  In this scenario the pump curve shifts as the speed 

of the pump changes.  The following are the relationships of flow (Q) and head (H) to speeds N1 

and N2 (Rossman, L.A. 2000):  

                                                                        ொభ
ொమ

ൌ ேభ
ேమ

                                            Eq. 2.1 

                                                                       ுభ
ுమ

ൌ ቀேభ
ேమ

ቁ
ଶ
                                       Eq. 2.2 

If the system requires a head that is greater than the first point on the pump curve, then EPANET 

will shut down the pump (this is known as the shut-off head).  

 Currently in DEW, pumps do not have the capability to operate with pump curves.  As of 

now, the model treats pumps as a constant pressure source.  Thus, a pump would depend on a 

SCADA system to relay the current pressure of the corresponding pump in the network.  This 

method does not allow DEW to properly simulate a pump’s behavior in a network that does not 

have a SCADA system.  The use of a pump curve is under development, but may not have the 

same functionality as in EPANET.   
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2.7 Solution Method Comparison  

 Three different solution methods were used to perform hydraulic calculations for a simple 

looped network (Figure 2.1 below).  The three methods are the Todini (gradient method), Hardy-

Cross, and DEW solution method.  The Hardy-Cross solution method was included in the 

comparison because like DEW, it calculates an adjustment for each loop (cotree), and pipes 

common to more than one loop undergo multiple adjustments.  The input parameters remained 

constant for each method so that a meaningful comparison could be made.  The following figure 

and tables contain the simple looped network and parameters respectively for the solution 

method comparison:  
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                 Figure 2.1: Solution Comparison Network 

 

 

 

 

40 
 



Table 2.1: Pipe Parameters              Table 2.2: Nodal Demands & Sources   

Link Diameter Length C‐Factor Node Nodal Demand Nodal Source
(in) (ft) (gpm) (gpm)

1 6 2000 100 1 0 0
2 6 1000 100 2 0 0
3 6 1000 100 3 0 0
4 6 2000 100 4 200 0
5 6 2000 100 5 0 600
6 6 1000 100 6 400 0
7 6 1000 100 7 0 0
8 6 2000 100 8 400 0
9 6 2000 100 9 600 0
10 6 2000 100 * Node 1 was set as a fixed head of 219.05 ft (100 psi)  

      

 The Todini method is also known as the gradient method and is very similar to the 

approach used by EPANET.  This method uses matrices that contain a set of npipe and nnode 

equations to equal the number of unknowns.  The matrix solution is in the form of (Todini et al. 

1987): 

                                                                   Eq. 2.3 

Where: 

 n = Value based on which head-loss equation used (i.e. 1.852 for Hazen ms) -Willia

 nA11  Matrix comprised of the derivatives with respect to pipe flow = ݊ܭ|ܳ|௡ିଵ  =

 K = ܭ௨
௅

஽ర.ఴళ஼ಹೈ
೙  

 ௨ = Unit constant (i.e. 10.57 for English units: D-L-Q in in, ft, gpm)ܭ 

 A21 = Connectivity (topological) matrix  

 A12 = Transpose of matrix A21 

 dQ = Change in pipe flow (L3/T) 

 dH = Change in nodal head (L) 
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 -dE = Pipe balance error (L) 

 -dq = Nodal balance error (L3/T) 

Please note that in equation 2.3 above, the “npipe” and “nnode” labels signify how the sizes of 

the matrices depend on the number of pipes and nodes in a system (i.e. nA11 is a square npipe x 

npipe matrix).  The result of the nA11, A21, A12, and 0 matrices combined is essentially a 

Jacobian matrix for the system and will be identified as the A matrix.  The following figure 

shows the initial flow magnitudes and directions in the sample network used for the Todini 

method:  
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Figure 2.2: Initial Flow Magnitudes & Directions for Todini Approach 

Please note, that in Figure 2.2 the black arrows denote the flow directions, the blue arrows 

represent nodal demands, and the red arrows represent sources.  The solution for the Todini 

method for the example network in Figure 2.2 can be found in the Appendix.  The following 

figure is the first iteration for the Todini solution:   
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ITERATION 1 1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9
index Q0 | H0 AUGMENTED A RHS
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 129.048
2 0 0 0 0 0 0 0 0 0 0 0 ‐1 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 1 ‐1 0 0 0 0 0
4 200 0 0 0 0.115 0 0 0 0 0 0 0 0 1 ‐1 0 0 0 0 ‐12.3662
5 400 0 0 0 0 0.207 0 0 0 0 0 0 0 0 ‐1 1 0 0 0 ‐44.6422
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ‐1 0

8 400 0 0 0 0 0 0 0 0.207 0 0 0 0 0 0 0 0 1 0 84.4054
9 600 0 0 0 0 0 0 0 0 0.292 0 0 0 0 0 0 0 0 1 34.45
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ‐1 0
2 90 1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 90 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 90 0 0 ‐1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 90 0 0 0 ‐1 ‐1 0 0 0 0 1 0 0 0 0 0 0 0 0
6 90 0 0 0 0 1 ‐1 0 0 0 0 0 0 0 0 0 0 0 0
7 90 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
8 90 0 0 0 0 0 0 ‐1 1 0 0 0 0 0 0 0 0 0 0
9 90 0 0 0 0 0 0 0 0 1 ‐1 0 0 0 0 0 0 0 0

0
0

0
0

3

0
0
0
0
0
0
0
0

Figure 2.3: First Iteration for Todini Method 

 

When referring to the first iteration above, cell (1, 1) in the nA11 portion (pink segment in Figure 

2.3) of the A matrix represents pipe 1, cell (2, 2) refers to pipe 2, cell (3,3 ) refers to pipe 3, and 

so on.  The first iteration for the solution uses the initial guesses for pipe flow and direction (a 

flow balance for the network is not a requirement).  The following is an example calculation for 

the value corresponding to pipe 4, cell (4, 4), in the nA11 portion of the matrix above: 

 

௡ିଵ|ܳ|ܭ݊ ൌ 1.852 כ 10.57 כ
ݐ݂ 2000

ሺሺ6 ݅݊ሻସ.଼଻ሻሺ100ଵ.଼ହଶሻ כ ሺ200 ݃݉݌ሻଵ.଼ହଶିଵ ൌ 0.115 

  

 In the A21 portion (blue segment in Figure 2.3) of the A matrix, the connectivity among 

the nodes and pipes are defined.  For instance, the first row in the A21 portion represents node 2 

and its connectivity with the pipes.  It is important to note that node 1 is not included in the 

matrix because it is a constant known head.  Each cell in the row accounts for each pipe, the first 

cell in the first row accounts for the connectivity of node 2 with pipe 1, the second cell in the 

first row accounts for the connectivity of node 2 with pipe 2, and so on.  The derivatives with 
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respect to the nodal heads are 0, 1, or -1.  A 0 is used when a pipe is not connected to a node, a 1 

is used if a pipe is connected to a node and the flow enters the node (sink node), and a -1 is used 

when a pipe is connected to a node but the flow is exiting the node (source node).  Therefore, the 

row corresponding to node 2 has a 1 and -1 in the first two cells and 0’s in the remaining cells.  

This is because pipe 1 has flow entering node 2 and pipe 2 has flow exiting node 2, and the rest 

of the pipes are not connected to node 2 and thus are assigned a value of 0.  The remaining cells 

in the A matrix are simply the transpose of A21 (the A12 section, light green segment) and a 0 

matrix.   

 The right side of the solution, ൥
െ݀ܧ
െ െ
െ݀ݍ

൩, accounts for the pipe balance error (-dE) and the 

nodal balance error (-dq).  The pipe balance error is essentially an energy balance through a pipe.  

Thus, -dE can be defined h f odini et al 1987):   by t e ollowing equation (T

െ݀ܧ ൌ െሺܭ௜ܳ௜
௡ ൅ ଶܪ െ  ଵሻ                   Eq. 2.4ܪ

Where: 

 ܳ௡ Head-loss through a pipe (Hazen-Williams) (L) ܭ௜ ௜  = 

ܭ  ൌ ௨ܭ
௅

஽ర.ఴళ஼ಹೈ
೙௜   (Hazen-Williams) 

 ௨ = Unit constant (i.e. 10.57 for English units: D-L-Q in in, ft, gpm)ܭ 

  H2 = Head at downstream node (L) 

 H1 = Head at upstream node (L) 

For instance, the pipe balance error for pipe 1in the first iteration based on the initial flow 

estimates is: –(0.0007*0^1.852 + 90 -219.048) = 129.048 ft.  

The nodal balance error is essentially a flow balance at a node.  Thus, -dq can be defined by the 

following equation (no is s od t 87): de 4  u ed) (T ini e  al. 19

െ݀ݍସ ൌ െሺെܳଷ ൅ ܳସ െ  ସሻ                         Eq. 2.5ݍ



Where: 

 Q3 = Flow through pipe 3 (L3/T) 

 Q4 = Flow through pipe 4 (L3/T)  

 q4 = Demand at node 4 (L3/T) 

Therefore, for node 4 the nodal balance error is –(-0+200-200) = 0 gpm.  Please note that the 

example calculation performed above are from the first iteration of the solution (Figure 2.3).  

With the A matrix and balance error matrix determined, the change in flow/head matrix, ൥
݀ܳ
െ െ
ܪ݀

൩, 

can be determined.  The change in flow/head matrix is determined by multiplying the inverse of 

the A matrix by the balance error matrix, as demonstrated in the following figure: 

 

1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9
A INVERSE RHS dQ | dH
3.501 3.501 ‐3.501 ‐3.501 1.449 1.449 ‐1.449 ‐1.449 ‐2.052 ‐2.052 1.000 1.000 1.000 0.599 0.300 0.300 0.300 0.599 129.0476 237.3847
3.501 3.501 ‐3.501 ‐3.501 1.449 1.449 ‐1.449 ‐1.449 ‐2.052 ‐2.052 0.000 1.000 1.000 0.599 0.300 0.300 0.300 0.599 0 237.3847
‐3.501 ‐3.501 3.501 3.501 ‐1.449 ‐1.449 1.449 1.449 2.052 2.052 0.000 0.000 ‐1.000 ‐0.599 ‐0.300 ‐0.300 ‐0.300 ‐0.599 0 ‐237.385
‐3.501 ‐3.501 3.501 3.501 ‐1.449 ‐1.449 1.449 1.449 2.052 2.052 0.000 0.000 0.000 ‐0.599 ‐0.300 ‐0.300 ‐0.300 ‐0.599 ‐12.3662 ‐237.385
1.449 1.449 ‐1.449 ‐1.449 2.018 2.018 ‐2.018 ‐2.018 0.568 0.568 0.000 0.000 0.000 ‐0.166 0.417 0.417 0.417 ‐0.166 ‐44.6422 ‐35.843
1.449 1.449 ‐1.449 ‐1.449 2.018 2.018 ‐2.018 ‐2.018 0.568 0.568 0.000 0.000 0.000 ‐0.166 ‐0.583 0.417 0.417 ‐0.166 0 ‐35.843
‐1.449 ‐1.449 1.449 1.449 ‐2.018 ‐2.018 2.018 2.018 ‐0.568 ‐0.568 0.000 0.000 0.000 0.166 0.583 0.583 ‐0.417 0.166 0 35.84301

‐1.449 ‐1.449 1.449 1.449 ‐2.018 ‐2.018 2.018 2.018 ‐0.568 ‐0.568 0.000 0.000 0.000 0.166 0.583 0.583 0.583 0.166 X 84.40544 = 35.84301
‐2.052 ‐2.052 2.052 2.052 0.568 0.568 ‐0.568 ‐0.568 2.620 2.620 0.000 0.000 0.000 0.235 0.117 0.117 0.117 0.235 34.45302 ‐273.228
‐2.052 ‐2.052 2.052 2.052 0.568 0.568 ‐0.568 ‐0.568 2.620 2.620 0.000 0.000 0.000 0.235 0.117 0.117 0.117 ‐0.765 0 ‐273.228
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 129.0476
1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 129.0476
1.000 1.000 ‐1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 129.0476
0.599 0.599 ‐0.599 ‐0.599 ‐0.166 ‐0.166 0.166 0.166 0.235 0.235 0.000 0.000 0.000 ‐0.069 ‐0.034 ‐0.034 ‐0.034 ‐0.069 0 114.2306
0.300 0.300 ‐0.300 ‐0.300 0.417 ‐0.583 0.583 0.583 0.117 0.117 0.000 0.000 0.000 ‐0.034 ‐0.120 ‐0.120 ‐0.120 ‐0.034 0 76.99693
0.300 0.300 ‐0.300 ‐0.300 0.417 0.417 0.583 0.583 0.117 0.117 0.000 0.000 0.000 ‐0.034 ‐0.120 ‐0.120 ‐0.120 ‐0.034 0 76.99693
0.300 0.300 ‐0.300 ‐0.300 0.417 0.417 ‐0.417 0.583 0.117 0.117 0.000 0.000 0.000 ‐0.034 ‐0.120 ‐0.120 ‐0.120 ‐0.034 0 76.99693
0.599 0.599 ‐0.599 ‐0.599 ‐0.166 ‐0.166 0.166 0.166 0.235 ‐0.765 0.000 0.000 0.000 ‐0.069 ‐0.034 ‐0.034 ‐0.034 ‐0.069 0 114.2306  

Figure 2.4: Solution of First Iteration for Todini Method 

 

Once the change vector is determined the initial flow and head values are corrected and the next 

iteration is performed.  This continues until the changes in flow and head are less than a certain 

tolerance.   

 The Hardy-Cross approach is a well known and understood method that solves the energy 

equations for loops and pseudo-loops for a loop-flow correction.  This method solves one loop at 
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a time, in that one loop equation is written for each closed loop.  It is important to note that for 

this method a flow balance must be made in the system before the first iteration (initial flow 

directions do not have to be correct).  The Hardy-Cross approach is described in detail in Chapter 

1 under section 1.1.2.  The following figure shows the initial flow magnitudes and directions for 

the Hardy-Cross method: 
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Figure 2.5: Initial Flow Magnitudes & Directions for Hardy-Cross Method 

 

 As stated before, this flow correction is applied to every pipe within the closed loop of 

interest.  The value of ∆ܳ௅௉ (flow correction for a loop) determines whether or not the solution 

proceeds to another iteration.  If the value of ∆ܳ௅௉ is less than a specified tolerance then the 

solution stops and if it is not the solution continues through another iteration.  This method was 

used to solve the example looped network in Figure 2.5.  For this solution it is important to note 

that pipes 9 and 10 are shared between both loops.  This means that pipes 9 and 10 will have two 
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flow corrections applied for each iteration (one from the top loop and one from the bottom loop).   

The entire solution for this method can be found in the Appendix.  This solution uses the Hazen-

Williams head-loss equation for determining the loop equations and flow corrections.  To 

illustrate the point made about pipes 9 and 10, refer to the first iteration in the solution, which is 

given in the following figure: 

 

ITERATION 1
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 50 0.950607 0.019012 61.10
2 6 1000 50 0.475303 0.009506 61.10
3 6 1000 50 0.475303 0.009506 61.10
4 6 2000 -150 -7.27159 0.048477 -138.90

10 6 2000 300 26.25046 0.087502 311.10
9 6 2000 -300 -26.2505 0.087502 -288.90

SUM -5.37038 0.261505
DELTA Q 11.1008

9 6 2000 288.9 24.47996 0.084735 433.39
10 6 2000 -311.1 -28.0777 0.090253 -166.61
5 6 2000 150 7.27159 0.048477 294.50
6 6 1000 -250 -9.36404 0.037456 -105.50
7 6 1000 -250 -9.36404 0.037456 -105.50
8 6 2000 -650 -109.907 0.169087 -505.50

SUM -124.961 0.467465
DELTA Q 144.4952

Figure 2.6: First Iteration for Hardy-Cross Solution 

 

 For the top loop (pipes 1=>2=>3=>4=>10=>9), where clockwise is the positive direction, 

the ∆ܳ௅௉ applied to every pipe is 11.1 gpm.  As a result, the corrected flows through pipes 9 and 

10 from the top loop are -288.90 and 311.10 gpm respectively.  These corrected values are then 

used as the initial flows for the bottom loop (still within the first iteration).  Based on the sign 

convention the direction of flow is reversed for pipes 9 and 10 in the bottom loop.  Thus the 

flows through pipes 9 and 10 in the bottom loop are 288.90 and -311.10 gpm respectively.  The 
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∆ܳ௅௉ for the bottom loop is 144.5 gpm, thus the corrected flows for pipes 9 and 10 for the first 

iteration are 433.39 and -166.61 gpm respectively.    

 The current DEW solution method can be considered a modified Hardy-Cross approach.  

This is because DEW performs an energy balance across a loop in a manner very similar to the 

Hardy-Cross method and both methods attempt to make the sum of the pressures across a loop 

equal to zero.  A major difference is that DEW uses cotrees as the point where a closed loop is 

monitored.  Additionally, DEW solves each cotree individually which is the same as Hardy-

Cross solving each loop individually.  DEW performs a radial solution for a loop from both sides 

of the cotree and determines the pressure difference from both sides of the loop at the cotree.  

The DEW solution for the sample network in Figure 2.7 (below) utilizes graph trace analysis to 

perform the calculations.  The following figure shows the initial flow magnitudes and directions 

for the DEW solution: 

2 CT 
1 4

1 9 5

8 CT 
2 6

2 3

9 10

7 6

8 5
41

Left Trace for Cotree 1 Right Trace for Cotree 1

Left Trace for Cotree 2 Right Trace for Cotree 2

20
0 

gp
m

40
0 

gp
m

40
0 

gp
m

0 
gp

m

 

* CT 1and CT 2 are the locations of cotree 1 and cotree 2 respectively 

Figure 2.7: Initial Flow Magnitudes & Directions for DEW Solution 
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 Hazen-Williams is the head-loss equation used for this solution.  The first part of this 

solution (DEW solution is found in the Appendix) is performing a flow balance; DEW performs 

a flow balance that simply satisfies the demands at nodes 4, 6, 8, and 9.  For the first iteration 

DEW checks the change in pressure across the cotrees for the top and bottom loops (CT 1 and 

CT 2 are the locations of the cotrees for the top and bottom loops respectively).  The top loop is 

comprised of pipes 1 and 2 for the left side of the cotree and pipes 9, 10, 4, and 3 for the right 

side of the cotree.  The bottom loop is comprised of pipes 8 and 7 for the left side of the cotree 

and pipes 9, 10, 5, and 6 for the right side of the cotree.  For the second iteration DEW  adds 

flow to the loop that contains the cotree with the larger pressure difference from the first iteration 

(the top loop in this example).  The flow is added to the side of the cotree with the larger 

pressure so that flow goes in the direction of high pressure to low pressure.  The following figure 

contains the first and second iterations from the DEW solution: 

49 
 



Pipe ID Flow (gpm) Length (ft) hf (ft) psi
1 0 2000 0.00 0.00
2 0 1000 0.00 0.00
3 0 1000 0.00 0.00
4 200 2000 12.39 5.37
5 400 2000 44.72 19.38
6 0 1000 0.00 0.00
7 0 1000 0.00 0.00
8 400 2000 44.72 19.38
9 600 2000 94.76 41.06

10 0 2000 0.00 0.00
cotree 1 Δp = (100‐(0+0))‐(100‐(41.06+0+5.37+0)) = 46.43 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(41.06+0+19.38+0)) = 41.06 psi

Pipe ID Flow (gpm) Length (ft) hf (ft) psi
1 71.9 2000 1.86 0.81
2 71.9 1000 0.93 0.40
3 71.9 1000 0.93 0.40
4 128.1 2000 5.43 2.35
5 400 2000 44.72 19.38
6 0 1000 0.00 0.00
7 0 1000 0.00 0.00
8 400 2000 44.72 19.38
9 528.1 2000 74.81 32.42

10 71.9 2000 1.86 0.81
cotree 1 Δp = (100‐(0.81+0.40))‐(100‐(32.42‐0.81+2.35‐0.40)) = 32.35 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(32.42‐0.81+19.38+0)) = 31.61 psi

Iteration 1

Iteration 2

 

Figure 2.8: First and Second Iterations of the DEW Solution 

 It is important to note that DEW currently uses a flow correction that remains constant 

for every iteration and is user defined (71.9 gpm for this solution).  Using the corrected flows 

DEW performs the same actions as in the first iteration and compares the pressure difference 

across the cotrees.  This continues until the change in pressure across the cotrees switch from 

positive to negative or vice versa.  At this point, the change in flow supplied to a particular loop 

is reduced by half.  This is where DEW is utilizing the bisection method to converge on a 

solution.  DEW terminates this method once the pressure differences across the cotrees are zero 

or less than some tolerance.  The DEW solution uses an ad-hoc version of this bisection method.  

Currently DEW is programmed so that the bisection method initiates only if the current cotree 

being solved stays constant for the next iteration (i.e. the same cotree has the largest pressure 
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difference) and the sign of the pressure difference across that cotree changes.  For this example 

the DEW solution first used this bisection method in the eighth iteration for the lower cotree 

(cotree 2).  The following figure contains the sixth, seventh, and eighth iteration for the DEW 

method: 

 

Pipe ID Flow (gpm) Length (ft) hf (ft) Pressure (psi)
1 215.7 2000 14.25 6.17
2 215.7 1000 7.12 3.09
3 215.7 1000 7.12 3.09
4 15.7 2000 0.11 0.05
5 400 2000 44.72 19.38
6 0 1000 0.00 0.00
7 0 1000 0.00 0.00
8 400 2000 44.72 19.38
9 384.3 2000 41.53 17.99
10 215.7 2000 14.25 6.17

cotree 1 Δp = (100‐(6.17+3.09))‐(100‐(17.99‐6.17‐0.05‐3.09)) = ‐0.578 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(17.99‐6.17+19.38‐0)) =11.819 psi

Pipe ID Flow (gpm) Length (ft) hf (ft) Pressure (psi)
1 179.7 2000 10.16 4.40
2 179.7 1000 5.08 2.20
3 179.7 1000 5.08 2.20
4 20.3 2000 0.18 0.08
5 328.1 2000 30.99 13.43
6 71.9 1000 0.93 0.40
7 71.9 1000 0.93 0.40
8 471.9 2000 60.74 26.32
9 348.4 2000 34.63 15.01
10 251.6 2000 18.95 8.21

cotree 1 Δp = (100‐(4.40+2.20))‐(100‐(15.01‐8.21+0.08‐2.20)) = ‐1.935 psi
cotree 2 Δp = (100‐(26.32+0.40))‐(100‐(15.01‐8.21+13.43‐0.40)) =‐6.907psi

Pipe ID Flow (gpm) Length (ft) hf (ft) Pressure (psi)
1 179.7 2000 10.16 4.40
2 179.7 1000 5.08 2.20
3 179.7 1000 5.08 2.20
4 20.3 2000 0.18 0.08
5 364.1 2000 37.57 16.28
6 35.9 1000 0.26 0.11
7 35.9 1000 0.26 0.11
8 435.9 2000 52.44 22.72
9 384.3 2000 41.53 17.99
10 215.7 2000 14.25 6.17

Iteration 7

Iteration 8

Iteration 6

Figure 2.9: Iterations Six through Eight for the DEW Solution 
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 The bisection method was used in the eighth iteration because the lower cotree (cotree 2) 

remained constant from the sixth to seventh iteration and the sign of the pressure difference 

changed.  For the seventh iteration a correction of 71.9 gpm was used for the lower loop and for 

the eighth iteration that correction was divided by two making it 35.9 gpm.  

As previously noted, DEW uses a constant flow correction that is applied throughout the 

solution.  This technique does not optimize the solution method since the predefined correction 

value is not determined at each iteration, making it more difficult to converge on a solution.  

Thus, it would be advantageous to use a technique that determines a correction value for each 

iteration.  This could be performed by using the Hardy-Cross method.  However, the Hardy-

Cross method can only work if there is flow going through all of the pipes.  If there is a pipe 

within a loop that has no flow than the solution will not work (hL/Q = Not Defined).  Perhaps the 

Hardy-Cross method could be used once DEW has simulated flow into all of the pipes using the 

predefined correction value.  Once pipes have flow, using the Hardy-Cross solution could 

potentially prove to be beneficial to the DEW solution.   

 The converged values for the simple network from all three of the solution methods were 

compared.  When comparing the solution methods, it is evident that the Todini method (gradient 

approach) converged on a solution in the fewest number of iterations.  The solution shows that 

by the fifth iteration the change in the flow/head vector contain values that were less than the 

predefined stopping criteria of 0.001.  The Hardy-Cross solution converged on a solution at the 

eleventh iteration where the change in flow for both loops was less than or equal to the stopping 

criteria of 0.001.  After allowing the DEW model to run to completion, it converged on a 

solution that is very similar to the Todini approach.  To illustrate the number of iterations 
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required for DEW to converge in comparison to the Todini method, a plot (Figure 2.10 below) 

was made for the flow estimate for pipe 4 at each iteration.   
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Figure 2.10: Number of Iterations for Pipe 4 for Todini and DEW Methods 

 

 According to Figure 2.10 it appears that the Todini method converged on a flow value by 

the fourth iteration, whereas the DEW solution converged on a flow value around the twenty-

fifth iteration.  Figure 2.10 also shows that the DEW solution fluctuated from what appears to be 

a converged solution between the fourteenth and twentieth iterations.  This fluctuation is most 

likely due to the fact that DEW attempts to solve each loop (cotree) individually, and can 

inadvertently readjust a cotree that has satisfied the convergence criteria.  Thus, the fluctuation 

from a converged solution could have been caused by an adjustment made on one of the cotrees 

that adversely affected the estimate through the other.  However, it is important to note that in 

Figure 2.10, the portions of the red line enclosed in the green circles indicate when cotree 1 (CT 

1) was being solved by DEW.  This is known because pipe 4 is associated with CT 1 and the 

estimated flow fluctuated when the flow through CT 1 was adjusted.  Each iteration of the Todini 
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method is rather extensive (solving the whole system) when compared to the DEW approach, 

which explains why the Todini solution converged in less iterations.  Figure 2.10 shows that the 

two methods converged on a flow value through pipe 4 that is approximately the same.  The 

bisection method is being used by DEW because it will eventually converge on a solution.  This 

is supported by the results from DEW and how they compare to the Todini method.  The DEW 

method took longer, but it eventually converged on practically the same flow values as the 

Todini method.  Table 2.3 contains the flow values for each pipe for all three solution methods: 

 

Table 2.3: Results for Solution Comparison 

Flow (gpm) 
Pipe  Todini DEW Hardy-Cross 

1 184.9 184.9 184.9 
2 184.9 184.9 184.9 
3 184.9 184.9 184.9 
4 15.1 15.1 15.1 
5 350.7 350.8 350.8 
6 49.3 49.2 49.3 
7 49.3 49.2 49.3 
8 449.3 449.2 449.3 
9 365.8 365.9 365.9 
10 234.2 234.1 234.2 

*Todini converged in 5 iterations, H-C converged in 11 iterations, DEW converged in 25 iterations 

 

 A root mean square value was determined for the following flow estimate comparisons: 

Todini/DEW, Todini/H-C, and DEW/H-C.  A root mean square value of 0.08, 0.04, and 0.06 

gpm was calculated for the Todini/DEW, Todini/H-C, and DEW/H-C comparisons respectively.  

The root mean square values represent the average difference in flow for each comparison.  

These values indicate that all three methods resulted in flow predictions that were very close in 

value.   
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 The solution method for DEW is based on a multidisciplinary approach that has been in 

development for nearly twenty years for use in electrical power systems.  Currently DEW has 

been successful in simulating several types of electrical distribution and transmission networks 

which traditionally require the use of different approaches.  This means that the same solution 

method could be used for electrical, water, sewer, and gas.  This method utilizes GTA to store 

information about the system and to solve network parameters.   
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2.8 DEW and EPANET Model Simulation Comparison 

 A simple looped network (Figure 2.11) was simulated in DEW and EPANET.  The input 

parameters for the network remained identical for both models.  All of the pipes in the system 

had a length of 500 feet and a Hazen-Williams C-factor of 130.  The diameters of the pipes 

varied and can be found under Table 2.5.  The elevations of every node in the system remained 

the same and the demands varied with magnitudes found in Table 2.4.  There were two tanks (T1 

and T2) in the network, each held at a constant pressure head of 236 feet.  Due to the history and 

acceptance of EPANET, the results from its simulation were considered the correct values.  

 

 

 

Figure 2.11: Simple Looped Network Used for Model Comparison 
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       Table 2.4: Nodal Demands Table 2.5: Pipe Parameters 

 

Node  Demand (gpm)  Pipe ID Length (ft) Diameter (in)
1 5.79 1 500 12
2 5.79 2 500 6
3 5.79 3 500 6
4 5.79 4 500 6
5 5.79 5 500 8
6 5.79 6 500 12
7 11.57 7 500 4
8 11.57 8 500 4
9 11.57 9 500 4
10 11.57 10 500 4
11 11.57 11 500 4
12 11.57 12 500 4
13 11.57 13 500 4
14 11.57 14 500 4
15 11.57 15 500 4
16 11.57 16 500 6
17 5.79 17 500 4
18 5.79 18 500 6
19 5.79 19 500 6
20 5.79 20 500 6
21 5.79 21 500 6
22 5.79 22 500 8
23 11.57 23 500 6
24 11.57 24 500 6
25 11.57 25 500 6
26 11.57 26 500 8
27 11.57 27 500 6
28 11.57 28 500 6
29 11.57 29 500 8
30 11.57 30 500 6
31 11.57 31 500 6
32 11.57 32 500 6
33 5.79 33 500 6
34 5.79 34 500 6
35 5.79 35 500 4
36 5.79 36 500 4
37 5.79 37 500 4
38 5.79 38 500 4
39 5.79 39 500 4
40 5.79 40 500 4

41 500 12
42 500 4
43 500 4
44 500 6
45 500 6
46 500 8
47 500 6
48 500 6
50 500 4
51 500 4
52 500 4
53 500 4
54 500 4
55 500 4
56 500 4
57 500 4
58 500 4
59 500 4
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 The simulation in both DEW and EPANET was steady-state and solved using the Hazen-

Williams equation.  Due to the current state of DEW, a transient analysis comparison could not 

be performed.  The results for the flow through the pipes can be found under Table 2.6.  The 

default maximum number of iterations for DEW is one-thousand.  To simply ensure that DEW 

did not reach its maximum number of iterations before a converged solution was determined, the 

value was increased to one-hundred-thousand.  The first attempt of simulating the network in 

DEW resulted in relatively different flow values from EPANET.  Additionally, the flow 

directions for pipes 30, 31, and 33 were in the opposite direction from EPANET.  The different 

flow directions caused a greater difference in the flow values between DEW and EPANET in the 

affected pipes.  A possible reason for the different flow directions was the set tolerance value in 

DEW.  This tolerance value is the level at which DEW interprets the pressure difference at the 

cotrees.  If the tolerance value is too high, then DEW does not have a strict stopping criterion for 

convergence.  DEW has a default tolerance value of 0.001, which can be manually adjusted.  The 

first simulation with DEW already had an adjusted tolerance value of 1x10-4.  To test whether the 

tolerance value would affect the results from DEW, it was changed from 1x10-4 to 1x10-6 and the 

simulation was rerun.  With the new tolerance value, the simulated flow values from DEW were 

very close in comparison to EPANET.  This indicates that the stopping criterion had a large 

influence on the performance of DEW.  Additionally, DEW converged on a solution because it 

satisfied the tolerance value at each cotree and did not reach the maximum number of iterations.  

 Two root mean square values were calculated for the EPANET and DEW flow estimates, 

one for each tolerance value in DEW.  The root mean square value that corresponds to the 

comparison between EPANET and DEW at a tolerance of 1x10-4 is 4.1 gpm.  Whereas, the root 

mean square value that corresponds to the comparison with a DEW tolerance of 1x10-6 is 0.028 
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gpm.  These values indicate that the flow estimates determined by EPANET and DEW are much 

closer when DEW was set with a tolerance value of 1x10-6.  Figure 2.12 below contains a 

graphical comparison of the simulated flows for EPANET and DEW with a tolerance value of 

1x10-6.  This figure indicates that the predicted flow values from EPANET and DEW (tolerance 

value of 1x10-6) are effectively the same.  This is supported by the fitted line with a slope of 1 

and an R2 value of 1.   

 The simulation run times for EPANET and DEW were relatively the same.  Both models 

completed the simulation in approximately one second.  However, a greater distinction in time 

could be present if the models were simulating a much larger network.  Please note that the nodal 

pressures were the same when DEW had a tolerance of 1x10-6.  It is important to note that the 

default stopping criteria for EPANET is 0.001. This value was not adjusted for the comparison 

with DEW.    
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Figure 2.12: Simulated Flows for EPANET and DEW with a Tolerance of 1x10-6 
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Table 2.6: DEW/EPANET Comparison Results 

   Flow (gpm) 
Pipe ID  EPANET  DEW (Tol = 1e‐4)  DEW (Tol=1e‐6) 

1 187.9 186.3 187.9 
2 27.7 27.5 27.7 
3 5.8 5.8 5.8 
4 5.8 5.7 5.8 
5 59.0 58.8 59 
6 159.3 160.9 159.3 
7 21.2 21.0 21.2 
8 3.4 3.3 3.4 
9 9.2 9.1 9.2 

10 9.5 9.0 9.5 
11 2.4 2.5 2.4 
12 3.2 2.2 3.2 
13 1.3 0.7 1.3 
14 10.3 10.9 10.3 
15 5.8 5.8 5.8 
16 20.5 19.9 20.5 
17 19.3 18.9 19.3 
18 10.4 10.6 10.4 
19 33.3 33.4 33.3 
20 6.0 5.7 6 
21 17.6 17.3 17.6 
22 56.4 55.0 56.4 
23 12.8 13.0 12.8 
24 10.3 10.1 10.3 
25 11.6 11.6 11.6 
26 14.4 13.1 14.4 
27 10.8 26.1 10.7 
28 11.6 11.6 11.6 
29 23.0 35.9 23 
30 8.9 -7.1 8.9 
31 12.4 -3.0 12.4 
32 15.1 11.4 15.1 
33 3.5 -0.2 3.5 
34 19.5 20.6 19.5 
35 0.03 0.1 0.03 
36 0.1 0.2 0.1 
37 5.9 6.3 5.9 
38 5.8 5.7 5.8 
39 5.7 5.5 5.7 
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Pipe ID EPANET DEW (Tol = 1e-4) DEW (Tol=1e-6) 
40 5.8 5.6 5.8 
41 5.8 5.4 5.8 
42 17.5 17.8 17.5 
43 17.3 16.9 17.3 
44 6.0 9.0 6 
45 35.6 38.5 35.6 
46 63.0 61.0 63 
47 26.6 27.3 26.6 
48 15.0 15.7 15 
50 22.5 22.6 22.5 
51 9.2 9.0 9.2 
52 9.6 10.1 9.6 
53 2.4 2.6 2.4 
54 3.4 3.2 3.4 
55 18.0 17.9 18 
56 2.1 2.2 2.1 
57 10.1 9.9 10.1 
58 1.5 1.7 1.5 
59 5.8 5.8 5.8 

 

2.9 Conclusions 

 The comparison of the solution methods offered valuable insight into how EPANET and 

DEW perform hydraulic calculations.  The comparison of the simulation of the simple water 

distribution network in EPANET and DEW allowed for a preliminary assessment of the 

hydraulic simulating component in DEW.  The following are the main conclusions drawn from 

this study: 

1. Showing how the Todini method (gradient method) solved a network with the use 

of matrices provided a better understanding of how EPANET executes 

simulations.  The flow predictions from all three solution methods were very 

close in value.  This supports the notion that the bisection method used by DEW 

will converge on an acceptable solution if given enough time.  The main 
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disadvantage of DEW’s bisection method is the number of iterations required for 

convergence.  On the other hand, the use of the Todini method allowed for a 

converged solution by the fifth iteration due to the fact that all of the nodal heads 

and pipe flows were determined in each iteration.  Including the Hardy-Cross 

solution method allowed for the better understanding of DEW’s approach due to 

their similarities.   The DEW method attempts to solve each loop (cotree) 

individually and can inadvertently readjust a cotree that has satisfied the 

convergence criteria.  This adjustment is illustrated in Figure 2.10.  The plot 

shows that between the 14th and 20th iterations DEW fluctuated from what 

appeared to be a converged solution.  This fluctuation is a result of DEW making 

an adjustment on one cotree that adversely affected the estimate through the other 

cotree.  However, DEW appears to have corrected itself by the 25th iteration. 

2. The simulation of the simple looped network in Figure 2.11 in EPANET and 

DEW improved the understanding of DEW’s hydraulic simulation capabilities.  

The results from this comparison revealed the sensitivity of DEW to set tolerance 

values.  The DEW model may not converge on the best solution if a user has 

inputted an inappropriate tolerance value.  This was demonstrated by how close 

the flow values from EPANET and DEW were when DEW’s tolerance value was 

set to 1x10-6 from 1x10-4.  The root mean square value for the difference between 

EPANET and DEW decreased from 4.1 to 0.028 gpm when the tolerance was 

changed to 1x10-6, which indicated that the flow values were much closer in value 

once the tolerance was decreased.       
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2.10 Future Work 

 Further research could be conducted in the comparison of EPANET and DEW.  For 

instance, the solution methods that were used to solve the small network could be extended to a 

larger network.  Using the solution methods to solve a larger network could offer further insight 

into the performance of the different methods.  Performing an analysis using a larger network 

that consisted mainly of loops could reveal more advantages and disadvantages among the 

solution methods.  For instance, the advantages from using the Todini method over the current 

DEW and Hardy-Cross methods could become more prevalent when the solution methods are 

used to solve a larger looped network.   

 The simple looped network that was simulated in EPANET and DEW offered a 

preliminary comparison of the two models.  However, using a larger, more complex network 

could offer much more insight into the performance of the DEW model.  Once the DEW model 

has reached the point in its development where complex hydraulic simulations occur without 

issue, the simulation of a large, complex network could be compared with the predicted values 

from EPANET.  This comparison would provide valuable information that if necessary could be 

used to troubleshoot the hydraulic component of the DEW model.   

 During the simulation in DEW it became apparent that it was difficult to distinguish 

when crossing pipes with ends that had the same coordinates were not actually connected.  This 

means that two pipes that appear to be connected may actually overlap each other (one pipe is 

deeper than the other).  This issue can be addressed further to develop a way for DEW to identify 

whether pipes are connected or overlapping.   
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 The use of pump and volume curves for pumps and tanks respectively will be added to 

the DEW model.  The use of these curves will allow DEW to be used as a design model in 

addition to a real-time simulator connected to a SCADA system.   

 The solution approach used by DEW could be improved in several ways.  The following 

are possible improvements to the hydraulic simulating component in the DEW model: 

1. Improve Loop/Cotree Correction: Hardy-Cross Solution 

As previously discussed, the use of the Hardy-Cross method may be beneficial for 

determining the flow corrections applied to a network.  This method could be used in lieu 

of the predefined correction value that stays constant throughout the solving process.  

However, a complication that could arise from the use of the Hardy-Cross method is the 

initial flow estimates through the pipes.   

2. Improve Initial Flow Estimates: Minimum Spanning Tree  

A possible means to determine the initial flow estimates could be the use of a minimum 

spanning tree.  A minimum spanning tree transforms a looped network into a branched 

network in which a parameter of the pipes (i.e. pipe resistance or pipe length) is at a 

minimum.  The following example will elaborate on this method (Bhave, P.R. 2006): 
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        Figure 2.13: Minimum Spanning Tree Example 

The pipe parameter considered in this example was pipe length.  The first step in the 

example above was to consider the nodes connected to the source node (node 1).  Thus, 

the first two nodes in consideration were nodes 2 and 3.  The numbers in the parentheses 

are the order in which the pipes were added to the spanning tree.  Since the pipe 

connecting node 1 to node 2 is shorter than the pipe connecting node 1 to node 3, it was 

the first pipe added to the spanning tree.  Nodes 1 and 2 comprised the first partial 

spanning tree, and the nodes directly connected to this partial spanning tree were 

considered next (nodes 3, 4, and 5).  Since the pipe connecting nodes 1 and 3 is shortest, 

it was the next pipe added to the spanning tree.  This process continued until all of the 

nodes were accounted for and the maximum number of pipes was added without forming 
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a loop.  With the minimum spanning tree constructed the initial flows could be 

determined using a simple branched network solution approach.  All of the pipes that 

were not added to the spanning tree would contain an initial flow of zero.  However, 

since the Hardy-Cross method cannot consider pipes with zero flow, a very small amount 

can initially flow through these pipes (i.e. 1x10-5 gpm).  The incorporation of the use of a 

minimum spanning tree in the DEW model could be further explored.   

3. Modified Solution: Bisection to Modified Todini Approach 

The current solution method for DEW will change.  It is proposed that the radial portions 

of a system will be solved separately from the looped sections which will be solved using 

a matrix.  The looped matrix solution is similar to the Todini method.  However, instead 

of using a full matrix approach, DEW’s method will use a matrix to determine the change 

applied to the flows in a loop similar to the upper part of the Todini matrix equation: 

ሾܣሿሾ݀ܳሿ ൌ ሾെ݀ܧሿ                              Eq. 2.6 

The new flows will then be used to solve the pressure difference at the cotrees.  This 

solution will continue until all of the pressure differences at the cotrees have satisfied the 

tolerance value.     

 The water distribution simulation capabilities of DEW will be advanced with the further 

exploration and development of the topics discussed above.  A greater understanding of the 

DEW model and the implications that accompany a multidiscipline simulator will come from 

additional studies during the course of the model’s development.   
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Todini Solution: 
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 Figure A.1: Initial Flows and Directions for Todini Solution 

 

Table A.1: Pipe Parameters             Table A.2: Network Parameters 

Link Diam Length C = 100 Assumed same for all pipes
in ft n = 1.852

1 6 2000 H1 = 100 psi
2 6 1000 fixed 219.048 ft
3 6 1000
4 6 2000
5 6 2000
6 6 1000
7 6 1000
8 6 2000
9 6 2000
10 6 2000
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TED
 A

RH
S

A
 IN

VERSE
1

184.8976
0.107

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
‐0.0047

2.413
2.4134

‐2.413
‐2.413

1.011
1.011

‐1.011
‐1.01

‐1.403
2

184.8976
0

0.054
0

0
0

0
0

0
0

0
‐1

1
0

0
0

0
0

0
‐0.00235

2.413
2.4134

‐2.413
‐2.413

1.011
1.011

‐1.011
‐1.01

‐1.403
3

‐184.898
0

0
0.0536

0
0

0
0

0
0

0
0

1
‐1

0
0

0
0

0
0.002348

‐2.41
‐2.413

2.4134
2.413

‐1.01
‐1.011

1.011
1.011

1.403
1.

4
15.10242

0
0

0
0.013

0
0

0
0

0
0

0
0

1
‐1

0
0

0
0

‐0.00704
‐2.41

‐2.413
2.4134

2.413
‐1.01

‐1.011
1.011

1.011
1.403

1.
5

350.7386
0

0
0

0
0.185

0
0

0
0

0
0

0
0

‐1
1

0
0

0
‐0.0007

1.011
1.0106

‐1.011
‐1.011

1.722
1.722

‐1.722
‐1.72

0.711
0.

6
‐49.2614

0
0

0
0

0
0.0174

0
0

0
0

0
0

0
0

‐1
1

0
0

0.000468
1.011

1.0106
‐1.011

‐1.011
1.722

1.722
‐1.722

‐1.72
0.711

0.
7

49.26135
0

0
0

0
0

0
0.017

0
0

0
0

0
0

0
0

1
‐1

0
‐0.00047

‐1.01
‐1.011

1.0106
1.011

‐1.72
‐1.722

1.722
1.722

‐0.711
‐

8
449.2614

0
0

0
0

0
0

0
0.228

0
0

0
0

0
0

0
0

1
0

‐0.00067
=>

‐1.01
‐1.011

1.0106
1.011

‐1.72
‐1.722

1.722
1.722

‐0.711
‐

9
365.8411

0
0

0
0

0
0

0
0

0.192
0

0
0

0
0

0
0

0
1

‐0.00151
‐1.4

‐1.403
1.4028

1.403
0.711

0.711
‐0.711

‐0.71
2.114

2.
10

‐234.159
0

0
0

0
0

0
0

0
0

0.131
0

0
0

1
0

0
0

‐1
0.001615

‐1.4
‐1.403

1.4028
1.403

0.711
0.711

‐0.711
‐0.71

2.114
2.

2
208.3596

1
‐1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.742

‐0.258
0.2585

0.258
‐0.11

‐0.108
0.108

0.108
0.15

3
203.0156

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.612

0.6123
0.3877

0.388
‐0.16

‐0.162
0.162

0.162
0.225

0.
4

197.6716
0

0
‐1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.483
0.483

‐0.483
0.517

‐0.22
‐0.216

0.216
0.216

0.3
5

197.7679
0

0
0

‐1
‐1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0.452
0.4524

‐0.452
‐0.452

‐0.23
‐0.229

0.229
0.229

0.318
0.

6
162.7709

0
0

0
0

1
‐1

0
0

0
0

0
0

0
0

0
0

0
0

0
0.266

0.2657
‐0.266

‐0.266
0.453

‐0.547
0.547

0.547
0.187

0.
7

163.232
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0.248
0.2482

‐0.248
‐0.248

0.423
0.423

0.577
0.577

0.175
0.

8
163.6931

0
0

0
0

0
0

‐1
1

0
0

0
0

0
0

0
0

0
0

0
0.231

0.2306
‐0.231

‐0.231
0.393

0.393
‐0.393

0.607
0.162

0.
9

181.2094
0

0
0

0
0

0
0

0
1

‐1
0

0
0

0
0

0
0

0
0

0.269
0.2687

‐0.269
‐0.269

‐0.14
‐0.136

0.136
0.136

0.595

10
2

3
4

5
6

7
8

9
RH

S
dQ

 | dH
Q
1 | H

1
‐2.1

1.0
1.0

1.0
0.6

0.3
0.3

0.3
0.6

129.0476
237.3847

237.3847
‐2.1

0.0
1.0

1.0
0.6

0.3
0.3

0.3
0.6

0
237.3847

237.3847
2.1

0.0
0.0

‐1.0
‐0.6

‐0.3
‐0.3

‐0.3
‐0.6

0
‐237.385

‐237.385
2.1

0.0
0.0

0.0
‐0.6

‐0.3
‐0.3

‐0.3
‐0.6

‐12.3662
‐237.385

‐37.3847
0.6

0.0
0.0

0.0
‐0.2

0.4
0.4

0.4
‐0.2

‐44.6422
‐35.843

364.157
0.6

0.0
0.0

0.0
‐0.2

‐0.6
0.4

0.4
‐0.2

0
‐35.843

‐35.843
‐0.6

0.0
0.0

0.0
0.2

0.6
0.6

‐0.4
0.2

0
35.84301

35.84301

‐0.6
0.0

0.0
0.0

0.2
0.6

0.6
0.6

0.2
X

84.40544
=

35.84301
=>

435.843

2.6
0.0

0.0
0.0

0.2
0.1

0.1
0.1

0.2
34.45302

‐273.228
326.7723

2.6
0.0

0.0
0.0

0.2
0.1

0.1
0.1

‐0.8
0

‐273.228
‐273.228

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0

129.0476
219.0476

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0

129.0476
219.0476

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0

129.0476
219.0476

0.2
0.0

0.0
0.0

‐0.1
0.0

0.0
0.0

‐0.1
0

114.2306
204.2306

0.1
0.0

0.0
0.0

0.0
‐0.1

‐0.1
‐0.1

0.0
0

76.99693
166.9969

0.1
0.0

0.0
0.0

0.0
‐0.1

‐0.1
‐0.1

0.0
0

76.99693
166.9969

0.1
0.0

0.0
0.0

0.0
‐0.1

‐0.1
‐0.1

0.0
0

76.99693
166.9969

0.77
0.00

0.00
0.00

‐0.07
‐0.03

‐0.03
‐0.03

‐0.07
0

114.2306
204.2306

10
2

3
4

5
6

7
8

9
RH

S
dQ

 | dH
Q
2 | H

2
‐1.2

0.7232
0.585

0.446
0.389

0.2203
0.209

0.197
0.209

‐16.9851
‐48.1193

189.2654
‐1.2

‐0.277
0.585

0.446
0.389

0.2203
0.209

0.197
0.209

‐8.49256
‐48.1193

189.2654
203

0.2768
0.415

‐0.45
‐0.39

‐0.22
‐0.209

‐0.197
‐0.209

8.492563
48.11931

‐189.265
203

0.2768
0.415

0.554
‐0.39

‐0.22
‐0.209

‐0.197
‐0.209

‐14.2632
48.11931

10.73458
801

‐0.117
‐0.18

‐0.23
‐0.26

0.4195
0.397

0.375
‐0.139

‐0.28409
‐11.6556

352.5014
801

‐0.117
‐0.18

‐0.23
‐0.26

‐0.581
0.397

0.375
‐0.139

0.256128
‐11.6556

‐47.4986
‐0.8

0.1173
0.176

0.235
0.259

0.5805
0.603

‐0.375
0.139

‐0.25613
11.65556

47.49857

‐0.8
0.1173

0.176
0.235

0.259
0.5805

0.603
0.625

0.139
X

‐0.28158
=

11.65556
=>

447.4986
004

0.1595
0.239

0.319
0.352

0.1992
0.189

0.178
0.651

‐15.8811
36.46376

363.236
004

0.1595
0.239

0.319
0.352

0.1992
0.189

0.178
‐0.349

22.0381
36.46376

‐236.764
159

‐0.096
‐0.08

‐0.06
‐0.05

‐0.029
‐0.028

‐0.026
‐0.028

0
‐10.6087

208.4389
239

‐0.077
‐0.12

‐0.09
‐0.08

‐0.044
‐0.041

‐0.039
‐0.042

0
‐15.9131

203.1345
319

‐0.059
‐0.09

‐0.12
‐0.1

‐0.058
‐0.055

‐0.052
‐0.055

0
‐21.2174

197.8302
352

‐0.052
‐0.08

‐0.1
‐0.11

‐0.064
‐0.061

‐0.058
‐0.061

0
‐5.63406

198.5965
199

‐0.029
‐0.04

‐0.06
‐0.06

‐0.144
‐0.137

‐0.129
‐0.035

0
‐3.69421

163.3027
189

‐0.028
‐0.04

‐0.06
‐0.06

‐0.137
‐0.142

‐0.134
‐0.033

0
‐3.28383

163.7131
178

‐0.026
‐0.04

‐0.05
‐0.06

‐0.129
‐0.134

‐0.139
‐0.031

0
‐2.87346

164.1235
0.35

‐0.028
‐0.04

‐0.06
‐0.06

‐0.035
‐0.033

‐0.031
‐0.113

0
‐22.2252

182.0054

10
2

3
4

5
6

7
8

9
RH

S
dQ

 | dH
Q
3 | H

3
‐1.4

0.7369
0.605

0.474
0.451

0.2636
0.247

0.23
0.266

‐0.55648
‐4.36784

184.8976
‐1.4

‐0.263
0.605

0.474
0.451

0.2636
0.247

0.23
0.266

‐0.27824
‐4.36784

184.8976
398

0.2631
0.395

‐0.47
‐0.45

‐0.264
‐0.247

‐0.23
‐0.266

0.278239
4.36784

‐184.898
398

0.2631
0.395

0.526
‐0.45

‐0.264
‐0.247

‐0.23
‐0.266

0.711428
4.36784

15.10242
714

‐0.11
‐0.17

‐0.22
‐0.23

0.4499
0.421

0.392
‐0.136

‐0.03037
‐1.76279

350.7386
714

‐0.11
‐0.17

‐0.22
‐0.23

‐0.55
0.421

0.392
‐0.136

0.021053
‐1.76279

‐49.2614
0.71

0.1103
0.165

0.221
0.23

0.5501
0.579

‐0.392
0.136

‐0.02105
1.762787

49.26135

0.71
0.1103

0.165
0.221

0.23
0.5501

0.579
0.608

0.136
X

‐0.02949
=

1.762787
=>

449.2614
112

0.1527
0.229

0.305
0.319

0.1863
0.174

0.162
0.598

‐0.29997
2.605054

365.8411
112

0.1527
0.229

0.305
0.319

0.1863
0.174

0.162
‐0.402

0.311791
2.605054

‐234.159
153

‐0.081
‐0.07

‐0.05
‐0.05

‐0.029
‐0.027

‐0.025
‐0.029

0
‐0.07928

208.3596
229

‐0.066
‐0.1

‐0.08
‐0.07

‐0.043
‐0.04

‐0.038
‐0.044

0
‐0.11891

203.0156
305

‐0.052
‐0.08

‐0.1
‐0.1

‐0.058
‐0.054

‐0.05
‐0.058

0
‐0.15855

197.6716
319

‐0.049
‐0.07

‐0.1
‐0.1

‐0.06
‐0.056

‐0.052
‐0.061

0
‐0.82859

197.7679
186

‐0.029
‐0.04

‐0.06
‐0.06

‐0.144
‐0.134

‐0.125
‐0.035

0
‐0.53181

162.7709
174

‐0.027
‐0.04

‐0.05
‐0.06

‐0.134
‐0.141

‐0.132
‐0.033

0
‐0.4811

163.232
162

‐0.025
‐0.04

‐0.05
‐0.05

‐0.125
‐0.132

‐0.138
‐0.031

0
‐0.4304

163.6931
‐0.4

‐0.029
‐0.04

‐0.06
‐0.06

‐0.035
‐0.033

‐0.031
‐0.114

0
‐0.79595

181.2094

10
2

3
4

5
6

7
8

9
RH

S
dQ

 | dH
Q
4 | H

4
‐1.4

0.7415
0.612

0.483
0.452

0.2657
0.248

0.231
0.269

‐0.0047
‐0.00489

184.8927
‐1.4

‐0.258
0.612

0.483
0.452

0.2657
0.248

0.231
0.269

‐0.00235
‐0.00489

184.8927
403

0.2585
0.388

‐0.48
‐0.45

‐0.266
‐0.248

‐0.231
‐0.269

0.002348
0.00489

‐184.893
403

0.2585
0.388

0.517
‐0.45

‐0.266
‐0.248

‐0.231
‐0.269

‐0.00704
0.00489

15.10731
711

‐0.108
‐0.16

‐0.22
‐0.23

0.4526
0.423

0.393
‐0.136

‐0.0007
‐0.00073

350.7379
711

‐0.108
‐0.16

‐0.22
‐0.23

‐0.547
0.423

0.393
‐0.136

0.000468
‐0.00073

‐49.2621
0.71

0.1082
0.162

0.216
0.229

0.5474
0.577

‐0.393
0.136

‐0.00047
0.000734

49.26209
0.71

0.1082
0.162

0.216
0.229

0.5474
0.577

0.607
0.136

X
‐0.00067

0.000734
449.2621

114
0.1502

0.225
0.3

0.318
0.1869

0.175
0.162

0.595
‐0.00151

=
0.004156

=>
365.8452

114
0.1502

0.225
0.3

0.318
0.1869

0.175
0.162

‐0.405
0.001615

0.004156
‐234.155

0.15
‐0.079

‐0.07
‐0.05

‐0.05
‐0.028

‐0.027
‐0.025

‐0.029
0

‐0.00417
208.3555

225
‐0.066

‐0.1
‐0.08

‐0.07
‐0.043

‐0.04
‐0.037

‐0.043
0

‐0.00626
203.0094

0.3
‐0.052

‐0.08
‐0.1

‐0.1
‐0.057

‐0.053
‐0.049

‐0.058
0

‐0.00835
197.6633

318
‐0.048

‐0.07
‐0.1

‐0.1
‐0.06

‐0.056
‐0.052

‐0.061
0

‐0.00124
197.7667

187
‐0.028

‐0.04
‐0.06

‐0.06
‐0.144

‐0.134
‐0.125

‐0.036
0

‐0.0018
162.7691

175
‐0.027

‐0.04
‐0.05

‐0.06
‐0.134

‐0.142
‐0.132

‐0.033
0

‐0.00132
163.2307

162
‐0.025

‐0.04
‐0.05

‐0.05
‐0.125

‐0.132
‐0.139

‐0.031
0

‐0.00084
163.6922

‐0.4
‐0.029

‐0.04
‐0.06

‐0.06
‐0.036

‐0.033
‐0.031

‐0.114
0

‐0.00231
181.2071
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Iterations 5-8: 
ITERA

TIO
N
 5

1
2

3
4

5
6

7
8

9
10

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

index
Q
0 | H

0
A
U
G
M
EN

TED
 A

RH
S

A
 IN

VERSE
1

184.8927
0.107

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
‐5.9E‐09

2.413
2.4134

‐2.413
‐2.413

1.011
1.011

‐1.011
‐1.01

‐1.403
2

184.8927
0

0.054
0

0
0

0
0

0
0

0
‐1

1
0

0
0

0
0

0
‐3E‐09

2.413
2.4134

‐2.413
‐2.413

1.011
1.011

‐1.011
‐1.01

‐1.403
3

‐184.893
0

0
0.0535

0
0

0
0

0
0

0
0

1
‐1

0
0

0
0

0
2.95E‐09

‐2.41
‐2.413

2.4134
2.413

‐1.01
‐1.011

1.011
1.011

1.403
4

15.10731
0

0
0

0.013
0

0
0

0
0

0
0

0
1

‐1
0

0
0

0
‐8.5E‐09

‐2.41
‐2.413

2.4134
2.413

‐1.01
‐1.011

1.011
1.011

1.403
5

350.7379
0

0
0

0
0.185

0
0

0
0

0
0

0
0

‐1
1

0
0

0
‐1.2E‐10

1.011
1.0106

‐1.011
‐1.011

1.722
1.722

‐1.722
‐1.72

0.711
6

‐49.2621
0

0
0

0
0

0.0174
0

0
0

0
0

0
0

0
‐1

1
0

0
8.08E‐11

1.011
1.0106

‐1.011
‐1.011

1.722
1.722

‐1.722
‐1.72

0.711
7

49.26209
0

0
0

0
0

0
0.017

0
0

0
0

0
0

0
0

1
‐1

0
‐8.1E‐11

‐1.01
‐1.011

1.0106
1.011

‐1.72
‐1.722

1.722
1.722

‐0.711

8
449.2621

0
0

0
0

0
0

0
0.228

0
0

0
0

0
0

0
0

1
0

‐1.2E‐10
=>

‐1.01
‐1.011

1.0106
1.011

‐1.72
‐1.722

1.722
1.722

‐0.711
9

365.8452
0

0
0

0
0

0
0

0
0.192

0
0

0
0

0
0

0
0

1
‐3.9E‐09

‐1.4
‐1.403

1.4028
1.403

0.711
0.711

‐0.711
‐0.71

2.114
10

‐234.155
0

0
0

0
0

0
0

0
0

0.131
0

0
0

1
0

0
0

‐1
4.12E‐09

‐1.4
‐1.403

1.4028
1.403

0.711
0.711

‐0.711
‐0.71

2.114
2

208.3555
1

‐1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.742
‐0.258

0.2585
0.258

‐0.11
‐0.108

0.108
0.108

0.15
3

203.0094
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.612
0.6123

0.3877
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Hardy-Cross Solution: 
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  Figure A.2: Initial Flows and Directions for Hardy-Cross Solution 
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Iterations 1-3: 

 

ITERATION 1
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 50 0.950607 0.019012 61.10
2 6 1000 50 0.475303 0.009506 61.10
3 6 1000 50 0.475303 0.009506 61.10
4 6 2000 -150 -7.27159 0.048477 -138.90

10 6 2000 300 26.25046 0.087502 311.10
9 6 2000 -300 -26.2505 0.087502 -288.90

SUM -5.37038 0.261505
DELTA Q 11.1008

9 6 2000 288.9 24.47996 0.084735 433.39
10 6 2000 -311.1 -28.0777 0.090253 -166.61
5 6 2000 150 7.27159 0.048477 294.50
6 6 1000 -250 -9.36404 0.037456 -105.50
7 6 1000 -250 -9.36404 0.037456 -105.50
8 6 2000 -650 -109.907 0.169087 -505.50

SUM -124.961 0.467465
DELTA Q 144.4952

ITERATION 2
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 61.10079 1.378057 0.022554 156.79
2 6 1000 61.10079 0.689028 0.011277 156.79
3 6 1000 61.10079 0.689028 0.011277 156.79
4 6 2000 -138.899 -6.3065 0.045403 -43.21

10 6 2000 166.6 8.832374 0.053014 262.30
9 6 2000 -433.4 -51.882 0.119711 -337.70

SUM -46.6 0.263235
DELTA Q 95.6906

9 6 2000 337.7 32.68563 0.096788 381.61
10 6 2000 -262.3 -20.4697 0.07804 -218.39

5 6 2000 294.5 25.36537 0.086132 338.40
6 6 1000 -105.5 -1.89487 0.01796 -61.60
7 6 1000 -105.5 -1.89487 0.01796 -61.60
8 6 2000 -505.5 -68.9934 0.136484 -461.60

SUM -35.2018 0.433364
DELTA Q 43.9077

ITERATION 3
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 156.7914 7.893058 0.050341 177.83
2 6 1000 156.7914 3.946529 0.025171 177.83
3 6 1000 156.7914 3.946529 0.025171 177.83
4 6 2000 -43.2086 -0.72541 0.016789 -22.17

10 6 2000 218.4 14.58015 0.066762 239.42
9 6 2000 -381.6 -40.9894 0.107411 -360.58

SUM -11.3485 0.291645
DELTA Q 21.0336

9 6 2000 360.6 36.90377 0.102346 369.93
10 6 2000 -239.4 -17.287 0.072203 -230.07

5 6 2000 338.4 32.81106 0.096959 347.76
6 6 1000 -61.6 -0.69943 0.011355 -52.24
7 6 1000 -61.6 -0.69943 0.011355 -52.24
8 6 2000 -461.6 -58.3074 0.126317 -452.24

SUM -7.27847 0.420534
DELTA Q 9.3555
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Iterations 4-6: 

 

ITERATION 4
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 177.825 9.965409 0.056041 183.16
2 6 1000 177.825 4.982705 0.02802 183.16
3 6 1000 177.825 4.982705 0.02802 183.16
4 6 2000 -22.175 -0.21089 0.00951 -16.84

10 6 2000 230.1 16.05689 0.069792 235.40
9 6 2000 -369.9 -38.6966 0.104604 -364.60

SUM -2.91981 0.295988
DELTA Q 5.3322

9 6 2000 364.6 37.66998 0.103318 366.85
10 6 2000 -235.4 -16.7529 0.071168 -233.15

5 6 2000 347.8 34.51076 0.099238 350.01
6 6 1000 -52.2 -0.51552 0.009868 -49.99
7 6 1000 -52.2 -0.51552 0.009868 -49.99
8 6 2000 -452.2 -56.1377 0.124132 -449.99

SUM -1.74091 0.417592
DELTA Q 2.2535

ITERATION 5
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 183.1572 10.52588 0.057469 184.47
2 6 1000 183.1572 5.262942 0.028735 184.47
3 6 1000 183.1572 5.262942 0.028735 184.47
4 6 2000 -16.8428 -0.12671 0.007523 -15.53

10 6 2000 233.1 16.4571 0.070587 234.46
9 6 2000 -366.9 -38.1023 0.103862 -365.54

SUM -0.72015 0.296911
DELTA Q 1.3111

9 6 2000 365.5 37.8505 0.103546 366.09
10 6 2000 -234.5 -16.6289 0.070925 -233.91

5 6 2000 350.0 34.92606 0.099785 350.56
6 6 1000 -50.0 -0.47509 0.009504 -49.44
7 6 1000 -50.0 -0.47509 0.009504 -49.44
8 6 2000 -450.0 -55.6207 0.123605 -449.44

SUM -0.42327 0.41687
DELTA Q 0.5488

ITERATION 6
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.4683 10.66585 0.057819 184.79
2 6 1000 184.4683 5.332925 0.02891 184.79
3 6 1000 184.4683 5.332925 0.02891 184.79
4 6 2000 -15.5317 -0.10906 0.007021 -15.21

10 6 2000 233.9 16.55688 0.070784 234.23
9 6 2000 -366.1 -37.9558 0.103678 -365.77

SUM -0.17629 0.297122
DELTA Q 0.3207

9 6 2000 365.8 37.89426 0.103601 365.91
10 6 2000 -234.2 -16.5989 0.070867 -234.09

5 6 2000 350.6 35.02756 0.099919 350.69
6 6 1000 -49.4 -0.46548 0.009415 -49.31
7 6 1000 -49.4 -0.46548 0.009415 -49.31
8 6 2000 -449.4 -55.4952 0.123476 -449.31

SUM -0.10326 0.416693
DELTA Q 0.1340
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Iterations 7-9: 

 

ITERATION 7
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.789 10.70022 0.057905 184.87
2 6 1000 184.789 5.350109 0.028953 184.87
3 6 1000 184.789 5.350109 0.028953 184.87
4 6 2000 -15.211 -0.10492 0.006898 -15.13

10 6 2000 234.1 16.58137 0.070832 234.17
9 6 2000 -365.9 -37.92 0.103633 -365.83

SUM -0.04308 0.297173
DELTA Q 0.0784

9 6 2000 365.8 37.90493 0.103614 365.86
10 6 2000 -234.2 -16.5917 0.070852 -234.14

5 6 2000 350.7 35.05235 0.099951 350.73
6 6 1000 -49.3 -0.46315 0.009393 -49.27
7 6 1000 -49.3 -0.46315 0.009393 -49.27
8 6 2000 -449.3 -55.4645 0.123445 -449.27

SUM -0.02521 0.41665
DELTA Q 0.0327

ITERATION 8
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8674 10.70862 0.057926 184.89
2 6 1000 184.8674 5.354311 0.028963 184.89
3 6 1000 184.8674 5.354311 0.028963 184.89
4 6 2000 -15.1326 -0.10392 0.006867 -15.11

10 6 2000 234.1 16.58736 0.070844 234.16
9 6 2000 -365.9 -37.9112 0.103622 -365.84

SUM -0.01052 0.297185
DELTA Q 0.0191

9 6 2000 365.8 37.90753 0.103618 365.85
10 6 2000 -234.2 -16.5899 0.070849 -234.15

5 6 2000 350.7 35.0584 0.099959 350.74
6 6 1000 -49.3 -0.46258 0.009388 -49.26
7 6 1000 -49.3 -0.46258 0.009388 -49.26
8 6 2000 -449.3 -55.4571 0.123437 -449.26

SUM -0.00616 0.416639
DELTA Q 0.0080

ITERATION 9
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8865 10.71068 0.057931 184.89
2 6 1000 184.8865 5.355338 0.028966 184.89
3 6 1000 184.8865 5.355338 0.028966 184.89
4 6 2000 -15.1135 -0.10368 0.00686 -15.11

10 6 2000 234.2 16.58882 0.070847 234.16
9 6 2000 -365.8 -37.9091 0.103619 -365.84

SUM -0.00257 0.297188
DELTA Q 0.0047

9 6 2000 365.8 37.90817 0.103618 365.85
10 6 2000 -234.2 -16.5894 0.070848 -234.15

5 6 2000 350.7 35.05988 0.099961 350.74
6 6 1000 -49.3 -0.46244 0.009387 -49.26
7 6 1000 -49.3 -0.46244 0.009387 -49.26
8 6 2000 -449.3 -55.4552 0.123436 -449.26

SUM -0.0015 0.416636
DELTA Q 0.0020
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Iterations 10-12: 

 

ITERATION 10
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8912 10.71118 0.057932 184.89
2 6 1000 184.8912 5.355588 0.028966 184.89
3 6 1000 184.8912 5.355588 0.028966 184.89
4 6 2000 -15.1088 -0.10362 0.006858 -15.11

10 6 2000 234.2 16.58918 0.070847 234.16
9 6 2000 -365.8 -37.9085 0.103619 -365.84

SUM -0.00063 0.297189
DELTA Q 0.0011

9 6 2000 365.8 37.90832 0.103619 365.85
10 6 2000 -234.2 -16.5893 0.070848 -234.15

5 6 2000 350.7 35.06024 0.099962 350.74
6 6 1000 -49.3 -0.4624 0.009387 -49.26
7 6 1000 -49.3 -0.4624 0.009387 -49.26
8 6 2000 -449.3 -55.4548 0.123435 -449.26

SUM -0.00037 0.416636
DELTA Q 0.000476

ITERATION 11
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8923 10.7113 0.057933 184.89
2 6 1000 184.8923 5.35565 0.028966 184.89
3 6 1000 184.8923 5.35565 0.028966 184.89
4 6 2000 -15.1077 -0.10361 0.006858 -15.11

10 6 2000 234.2 16.58927 0.070848 234.15
9 6 2000 -365.8 -37.9084 0.103619 -365.85

SUM -0.00015 0.297189
DELTA Q 0.000279

9 6 2000 365.8 37.90836 0.103619 365.85
10 6 2000 -234.2 -16.5893 0.070848 -234.15

5 6 2000 350.7 35.06033 0.099962 350.74
6 6 1000 -49.3 -0.4624 0.009386 -49.26
7 6 1000 -49.3 -0.4624 0.009386 -49.26
8 6 2000 -449.3 -55.4547 0.123435 -449.26

SUM -9E-05 0.416636
DELTA Q 0.000116

ITERATION 12
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8926 10.71133 0.057933 184.89
2 6 1000 184.8926 5.355665 0.028966 184.89
3 6 1000 184.8926 5.355665 0.028966 184.89
4 6 2000 -15.1074 -0.1036 0.006858 -15.11

10 6 2000 234.2 16.58929 0.070848 234.15
9 6 2000 -365.8 -37.9084 0.103619 -365.85

SUM -3.7E-05 0.297189
DELTA Q 6.8E-05

9 6 2000 365.8 37.90837 0.103619 365.85
10 6 2000 -234.2 -16.5893 0.070848 -234.15

5 6 2000 350.7 35.06035 0.099962 350.74
6 6 1000 -49.3 -0.46239 0.009386 -49.26
7 6 1000 -49.3 -0.46239 0.009386 -49.26
8 6 2000 -449.3 -55.4547 0.123435 -449.26

SUM -2.2E-05 0.416636
DELTA Q 2.84E-05
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Iterations 13-15: 

 

ITERATION 13
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8927 10.71134 0.057933 184.89
2 6 1000 184.8927 5.355668 0.028966 184.89
3 6 1000 184.8927 5.355668 0.028966 184.89
4 6 2000 -15.1073 -0.1036 0.006858 -15.11

10 6 2000 234.2 16.5893 0.070848 234.15
9 6 2000 -365.8 -37.9084 0.103619 -365.85

SUM -9.1E-06 0.297189
DELTA Q 1.66E-05

9 6 2000 365.8 37.90837 0.103619 365.85
10 6 2000 -234.2 -16.5893 0.070848 -234.15

5 6 2000 350.7 35.06036 0.099962 350.74
6 6 1000 -49.3 -0.46239 0.009386 -49.26
7 6 1000 -49.3 -0.46239 0.009386 -49.26
8 6 2000 -449.3 -55.4547 0.123435 -449.26

SUM -5.3E-06 0.416636
DELTA Q 6.93E-06

ITERATION 14
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8927 10.71134 0.057933 184.89
2 6 1000 184.8927 5.355669 0.028966 184.89
3 6 1000 184.8927 5.355669 0.028966 184.89
4 6 2000 -15.1073 -0.1036 0.006858 -15.11

10 6 2000 234.2 16.5893 0.070848 234.15
9 6 2000 -365.8 -37.9084 0.103619 -365.85

SUM -2.2E-06 0.297189
DELTA Q 4.06E-06

9 6 2000 365.8 37.90837 0.103619 365.85
10 6 2000 -234.2 -16.5893 0.070848 -234.15

5 6 2000 350.7 35.06036 0.099962 350.74
6 6 1000 -49.3 -0.46239 0.009386 -49.26
7 6 1000 -49.3 -0.46239 0.009386 -49.26
8 6 2000 -449.3 -55.4547 0.123435 -449.26

SUM -1.3E-06 0.416636
DELTA Q 1.69E-06

ITERATION 15
Link Diam Length Flow hL hL/Q New Flow

in ft gpm ft ft/gpm gpm
1 6 2000 184.8927 10.71134 0.057933 184.89
2 6 1000 184.8927 5.355669 0.028966 184.89
3 6 1000 184.8927 5.355669 0.028966 184.89
4 6 2000 -15.1073 -0.1036 0.006858 -15.11

10 6 2000 234.2 16.5893 0.070848 234.15
9 6 2000 -365.8 -37.9084 0.103619 -365.85

SUM -5.4E-07 0.297189
DELTA Q 9.91E-07

9 6 2000 365.8 37.90837 0.103619 365.85
10 6 2000 -234.2 -16.5893 0.070848 -234.15

5 6 2000 350.7 35.06036 0.099962 350.74
6 6 1000 -49.3 -0.46239 0.009386 -49.26
7 6 1000 -49.3 -0.46239 0.009386 -49.26
8 6 2000 -449.3 -55.4546 0.123435 -449.26

SUM -3.2E-07 0.416636
DELTA Q 4.14E-07
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DEW Solution: 
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* CT 1and CT 2 are the locations of cotree 1 and cotree 2 respectively 

                                   Figure A.3: Initial Flows and Directions for DEW Solution 
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Iterations 1-3: 

Pipe ID Flow (gpm) Length (ft) hf (ft) psi
1 0 2000 0.00 0.00
2 0 1000 0.00 0.00
3 0 1000 0.00 0.00
4 200 2000 12.39 5.37
5 400 2000 44.72 19.38
6 0 1000 0.00 0.00
7 0 1000 0.00 0.00
8 400 2000 44.72 19.38
9 600 2000 94.76 41.06

10 0 2000 0.00 0.00
cotree 1 Δp = (100‐(0+0))‐(100‐(41.06+0+5.37+0)) = 46.43 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(41.06+0+19.38+0)) = 41.06 psi

Pipe ID Flow (gpm) Length (ft) hf (ft) psi
1 71.9 2000 1.86 0.81
2 71.9 1000 0.93 0.40
3 71.9 1000 0.93 0.40
4 128.1 2000 5.43 2.35
5 400 2000 44.72 19.38
6 0 1000 0.00 0.00
7 0 1000 0.00 0.00
8 400 2000 44.72 19.38
9 528.1 2000 74.81 32.42

10 71.9 2000 1.86 0.81
cotree 1 Δp = (100‐(0.81+0.40))‐(100‐(32.42‐0.81+2.35‐0.40)) = 32.35 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(32.42‐0.81+19.38+0)) = 31.61 psi

Pipe ID Flow (gpm) Length (ft) hf (ft) psi
1 143.8 2000 6.72 2.91
2 143.8 1000 3.36 1.46
3 143.8 1000 3.36 1.46
4 56.2 2000 1.18 0.51
5 400 2000 44.72 19.38
6 0 1000 0.00 0.00
7 0 1000 0.00 0.00
8 400 2000 44.72 19.38
9 456.2 2000 57.05 24.72

10 143.8 2000 6.72 2.91
cotree 1 Δp = (100‐(2.91+1.46))‐(100‐(24.72‐2.91+0.51‐1.46)) = 16.49 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(24.72‐2.91+19.38+0)) = 21.81 psi

Iteration 1

Iteration 2

Iteration 3
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Iterations 4-6: 

 

Pipe ID Flow (gpm) Length (ft) hf (ft) psi
1 143.8 2000 6.72 2.91
2 143.8 1000 3.36 1.46
3 143.8 1000 3.36 1.46
4 56.2 2000 1.18 0.51
5 328.1 2000 30.99 13.43
6 71.9 1000 0.93 0.40
7 71.9 1000 0.93 0.40
8 471.9 2000 60.74 26.32
9 384.3 2000 41.53 17.99

10 215.7 2000 14.25 6.17
cotree 1 Δp = (100‐(2.91+1.46))‐(100‐(17.99‐6.17+0.51‐1.46)) = 6.50 psi
cotree 2 Δp = (100‐(26.32+0.40))‐(100‐(17.99‐6.17+13.43‐0.40)) = ‐1.88psi

Pipe ID Flow (gpm) Length (ft) hf (ft) psi
1 215.7 2000 14.25 6.17
2 215.7 1000 7.12 3.09
3 215.7 1000 7.12 3.09
4 15.7 2000 0.11 0.05
5 328.1 2000 30.99 13.43
6 71.9 1000 0.93 0.40
7 71.9 1000 0.93 0.40
8 471.9 2000 60.74 26.32
9 312.5 2000 28.31 12.27

10 287.5 2000 24.26 10.51
cotree 1 Δp = (100‐(6.17+3.09))‐(100‐(12.27‐10.51‐0.05‐3.09)) = ‐10.64 psi
cotree 2 Δp = (100‐(26.32+0.40))‐(100‐(12.27‐10.51+13.43‐0.40)) = ‐11.95 psi

Pipe ID Flow (gpm) Length (ft) hf (ft) Pressure (psi)
1 215.7 2000 14.25 6.17
2 215.7 1000 7.12 3.09
3 215.7 1000 7.12 3.09
4 15.7 2000 0.11 0.05
5 400 2000 44.72 19.38
6 0 1000 0.00 0.00
7 0 1000 0.00 0.00
8 400 2000 44.72 19.38
9 384.3 2000 41.53 17.99
10 215.7 2000 14.25 6.17

cotree 1 Δp = (100‐(6.17+3.09))‐(100‐(17.99‐6.17‐0.05‐3.09)) = ‐0.578 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(17.99‐6.17+19.38‐0)) =11.819 psi

Iteration 4

Iteration 5

Iteration 6
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Iterations 7-8: 

Pipe ID Flow (gpm) Length (ft) hf (ft) Pressure (psi)
1 179.7 2000 10.16 4.40
2 179.7 1000 5.08 2.20
3 179.7 1000 5.08 2.20
4 20.3 2000 0.18 0.08
5 328.1 2000 30.99 13.43
6 71.9 1000 0.93 0.40
7 71.9 1000 0.93 0.40
8 471.9 2000 60.74 26.32
9 348.4 2000 34.63 15.01
10 251.6 2000 18.95 8.21

cotree 1 Δp = (100‐(4.40+2.20))‐(100‐(15.01‐8.21+0.08‐2.20)) = ‐1.935 psi
cotree 2 Δp = (100‐(26.32+0.40))‐(100‐(15.01‐8.21+13.43‐0.40)) =‐6.907psi

Pipe ID Flow (gpm) Length (ft) hf (ft) Pressure (psi)
1 179.7 2000 10.16 4.40
2 179.7 1000 5.08 2.20
3 179.7 1000 5.08 2.20
4 20.3 2000 0.18 0.08
5 364.1 2000 37.57 16.28
6 35.9 1000 0.26 0.11
7 35.9 1000 0.26 0.11
8 435.9 2000 52.44 22.72
9 384.3 2000 41.53 17.99
10 215.7 2000 14.25 6.17

cotree 1 Δp = (100‐(6.17+3.09))‐(100‐(17.99‐6.17‐0.05‐3.09)) = ‐0.578 psi
cotree 2 Δp = (100‐(19.38+0))‐(100‐(17.99‐6.17+19.38‐0)) =11.819 psi

Iteration 7

Iteration 8

 

 

 

14 
 


