List of Figures

Figure 2.1 (a) Geometry of helical antenna; (b) Unrolled turn of helical antenna........ 6
Figure 2.2 Instantaneous charge distribution for transmission modes: (a) The lowest-order mode \(T_0 \); (b) The second-order mode \(T_1 \) .. 6
Figure 2.3 Radiation patterns of helix: (a) Normal mode; (b) Axial mode 8
Figure 2.4 Approximating the geometry of normal-mode helix 12
Figure 2.5 Measured current distribution on axial-mode helix [5] 12
Figure 2.6 Gain of helix for different lengths as function of normalized circumference \(C_\lambda \)[9] .. 17
Figure 2.7 Peak gain of various diameter as \(D \) and \(\alpha \) varied (circles), \(D \) fixed and \(\alpha \) varied (triangle) [8]. .. 17
Figure 2.8 Gain versus frequency of 30.8-inch length and 4.3-inch diameter helix for different pitch angles [8]... 19
Figure 2.9 Gain versus frequency for 5 to 35-turn helical antennas with 4.23-inch diameter [8] ... 20
Figure 2.10 Radiation patterns for various helical turns of helices with \(\alpha = 12^\circ \) and \(C = 10 cm. \) at 3 GHz [12] ... 20
Figure 2.11 Tapered helical antenna configuration.[11]. .. 23
Figure 2.12 \(\frac{1}{2} \) turn half-wavelength printed resonant quadrifilar helix [14]. 24
Figure 2.13 Stub-loaded helix configuration [15].. 25
Figure 2.14 Monopole-helix antenna [16]... 25
Figure 3.1 Geometry of spherical helix: (a) Fully wound 10-turn helix, (b) Truncated 7-turn helix .. 27
Figure 3.2 Hemispherical helical antenna with 4.5 turns 30
Figure 4.1 Computed radiation patterns, (------) G_θ and (--------------) G_ϕ, for truncated spherical helices with $C = 1.25\lambda$, $N = 10$, and actual number of turns (a) $n = 9$, (b) $n = 7$, (c) $n = 5$, and (d) $n = 3$. 38

Figure 4.2 Variations of phase difference between θ and ϕ components of electric field versus theta for several values of n 39

Figure 4.3 Variations of axial ratio in the $\theta = 0^\circ$ direction versus actual number of turns for truncated spherical helices with $C = 1.25\lambda$ and $N = 10$. 40

Figure 4.4 Variations of directivity versus actual number of turns for truncated spherical helices with $C = 1.25\lambda$ and $N = 10$. 40

Figure 4.5 Variations of axial ratio in the $\theta = 0^\circ$ direction versus actual number of turns for spherical helices with $C = 1.25\lambda$ and (a) $N = 7$, (b) $N = 4$ 41

Figure 4.6 Variations of directivity versus actual number of turns for spherical helices with $C = 1.25\lambda$ and (a) $N = 7$, (b) $N = 4$ 42

Figure 4.7 Geometry of double spherical helix. The lower sphere has 7 turns, while the upper one has 4 turns 44

Figure 4.8 Comparison of computed directivities of the spherical and double spherical helices. Both helices have a radius of 0.0254 m. 44

Figure 4.9 Calculated radiation patterns of double spherical helix at $f = 1.88$ GHz 45

Figure 4.10 Calculated axial ratio of double spherical helix at $f = 1.88$ GHz 45

Figure 4.11 Calculated axial ratio versus frequency for double spherical helix with a diameter of 0.0508 m. 46

Figure 4.12 Comparison of directivity versus frequency for various hemispherical helices 48

Figure 4.13 Comparison of axial ratio in $\theta = 0^\circ$ direction versus frequency for various hemispherical helices 48

Figure 4.14 Input impedance versus frequency for 3-turn hemispherical helix with a diameter of 0.04 m. 50

Figure 4.15 Input impedance versus frequency for 4.5-turn hemispherical helix with a diameter of 0.04 m. 50
Figure 4.16 Input impedance versus frequency for 7-turn hemispherical helix with a diameter of 0.04 m. ... 51

Figure 4.17 Input impedance versus frequency for 9-turn hemispherical helix with a diameter of 0.04 m. ... 51

Figure 4.18 Far-field patterns at $f = 2.84$ GHz for a 4.5-turn hemispherical helix with a diameter of 0.04 m mounted over 10x10 cm2 ground plane. 52

Figure 4.19 Axial ratio versus frequency for 4.5-turn hemispherical helix with a diameter of 0.04 m. ... 54

Figure 4.20 Computed radiation patterns, (-----) G_θ and (-----) G_ϕ, for 4.5-turn hemispherical helices with normalized circumference of 1.19λ, (a) $f = 2.84$ GHz, (b) $f = 5.0$ GHz, (c) $f = 7.0$ GHz, and (d) $f = 9.0$ GHz. .. 55

Figure 4.21 Axial ratios for 4.5-turn hemispherical helices with normalized circumference of 1.19λ, (a) $f = 2.84$ GHz, (b) $f = 5.0$ GHz, (c) $f = 7.0$ GHz, and (d) $f = 9.0$ GHz... 56

Figure 5.1 (a) Computed and (b) measured radiation patterns for the double spherical helix at $f = 1.85$ GHz... 60

Figure 5.2 (a) Computed and (b) measured far-field patterns for the hemispherical helix at $f = 2.8$ GHz. ... 61

Figure 5.3 Computed axial ratio from measured pattern data for the 4.5-turn hemispherical helix. ... 63