Appendix A. Subroutine WGEOM for the Double Spherical Helix

The subroutine WGEOM is used to generate the geometry of the antenna to be analyzed by the ESP code. The ESP user's manual [22] explains in details how the geometry of a wire antenna should be defined. In this appendix the Fortran source code for WGEOM when the wire antenna is a double spherical helix is presented.

The following parameters in WGEOM subroutine are for the double spherical helix.

NSEGSP Number of segments per turn on the helix
NSEGSP1 Total number of segments on sphere\#1
NSEGSP2 Total number of segments on sphere\#2
NSEGSP3 Total number of segments on sphere\#3 (if any)
ZOFFSET Distance the helix is offset from the ground plane in meters
NTOTAL Number of turns of each sphere if wound fully
AS Radius of sphere in meters

These data are included at the end of the input file for the READ statements in
ESP. Sample input data for a double spherical helix with the lower sphere having 7 turns, and the upper sphere having 4 turns are presented below. The radius of 0.02 meters, and the helix offset above the ground is 0.005 meters.

```
20
140
80
0
0.005
7
0.02
```

The WGEOM subprogram for the double spherical helix is listed below.

```
SUBROUTINE WGEOM(IA,IB,X,Y,Z,NM,NP,NAT,NSA,NPLA,VGA,BDSK,ZLDA,
    +NWG,VG,ZLD,WV,NFS1,NFS2,NRUN,A)
    DIMENSION IA(1),IB(1),X(1),Y(1),Z(1),
    +NSA(1),NPLA(1),BDSK(1)
    COMPLEX VGA(1),ZLDA(1),VG(1),ZLD(1)
    REAL PIE, AS, NTOTAL, NACT
C
C number of wire segments per turn
    READ(5,*)NSEGSP
C number of wire segments of each sphere, NSEGSP1, NSEGSP2, NSEGSP3
    READ(5,*)NSEGSP1
    READ(5,*)NSEGSP2
    READ(5,*)NSEGSP3
    NSEG1 = NSEGSP1+1
    NSEG2 = NSEG1+NSEGSP2
    NSEG3 = NSEG2+NSEGSP3
C
C Length of segment offsetting sphere from ground plane, ZOFFSET
C If ZOFFSET is not zero there will be one additional segment
    READ(5,*)ZOFFSET
C
    IF (ZOFFSET .GT. 0.0) INDX = 1
    NM = NSEGSP1+NSEGSP2+NSEGSP3 + INDX
C Total number of wire points, NP
    NP = NM +1
C Total number of wire attachment points, NAT
    NAT = 1
C
C Total number of turns sphere would have if completely wound, NTOTAL
    READ(5,*)NTOTAL
    IF (NSEGSP1 .EQ. NTOTAL*NSEGSP) INDX1 = 90
C
```

C Actual number of turns sphere has, NACT
C READ $(5, *)$ NACT1
C $\operatorname{READ}(5, *)$ NACT2
C $\operatorname{READ}(5, *) \mathrm{NACT} 3$
C
C Radius of sphere, AS (meters)
READ (5,*)AS
C The Spherical Helix geometry is now defined
C
PIE $=3.1415927$
C SEGPHI is the change in the angle phi (radians) for each segment
SEGPHI $=2.0 *$ PIE $*$ NTOTAL/REAL(NSEGSP $*$ NTOTAL)
C
C Define coordinates of wire points and endpoints of segments
$\mathrm{X}(1)=0.0$
$Y(1)=0.0$
$Z(1)=0.0$
$\mathrm{IA}(1)=1$
$\operatorname{IB}(1)=2$
IF (INDX .EQ. 0) GOTO 101
$\mathrm{X}(2)=0.0$
$\mathrm{Y}(2)=0.0$
$\mathrm{Z}(2)=$ ZOFFSET
$\mathrm{IA}(2)=2$
$\mathrm{IB}(2)=3$
101 DO $100 \mathrm{~J}=2+$ INDX,NP
IF (J.LE.NSEG1+INDX) THEN
PHI = SEGPHI*REAL(J-1-INDX)
$\mathrm{TH}=\mathrm{ACOS}((\mathrm{PHI} /(\mathrm{PIE} * \mathrm{NTOTAL}))-1.00000007)$
$\mathrm{X}(\mathrm{J})=\mathrm{AS} * \mathrm{SIN}(\mathrm{TH}) * \operatorname{COS}(\mathrm{PHI})$
$\mathrm{Y}(\mathrm{J})=\mathrm{AS} * \mathrm{SIN}(\mathrm{TH}) * \mathrm{SIN}(\mathrm{PHI})$
$\mathrm{Z}(\mathrm{J})=\mathrm{AS} * \mathrm{COS}(\mathrm{TH})+\mathrm{AS}+\mathrm{ZOFFSET}$
IF (J.EQ.NP) GOTO 100
$\operatorname{IA}(\mathrm{J})=\mathrm{J}$
$\mathrm{IB}(\mathrm{J})=\mathrm{J}+1$
ELSE IF (J.LE.NSEG2+INDX) THEN
PHI1 = SEGPHI*REAL(NSEGSP1)
TH1 = ACOS((PHI1/(PIE*NTOTAL))-1.00000007)
$\mathrm{Z} 1=\mathrm{AS} * \mathrm{COS}(\mathrm{TH} 1)+\mathrm{AS}$
ZOFFSET1 $=(2 *$ AS $)+$ ZOFFSET- $(((2 *$ AS $)-Z 1) * 2)$
PHI = SEGPHI*REAL (((NSEGSP*NTOTAL)-NSEGSP1) $+(\mathrm{J}-($ NSEG1 + INDX $)))$
$\mathrm{TH}=\mathrm{ACOS}((\mathrm{PHI} /(\mathrm{PIE} * N T O T A L))-1.00000007)$
TPHI =SEGPHI*REAL(J-1-INDX)
$\mathrm{X}(\mathrm{J})=\mathrm{AS} * \mathrm{SIN}(\mathrm{TH}) * \mathrm{COS}(\mathrm{TPHI}+\mathrm{INDX} 1)$
$\mathrm{Y}(\mathrm{J})=\mathrm{AS} * \operatorname{SIN}(\mathrm{TH}) * \operatorname{SIN}(\mathrm{TPHI}+\mathrm{INDX} 1)$
$\mathrm{Z}(\mathrm{J})=\mathrm{AS} * \mathrm{COS}(\mathrm{TH})+\mathrm{AS}+$ ZOFFSET1
IF (J.EQ.NP) GOTO 100
$\mathrm{IA}(\mathrm{J})=\mathrm{J}$
$\mathrm{IB}(\mathrm{J})=\mathrm{J}+1$
ELSE
PHI1 = SEGPHI*REAL(NSEGSP1)
$\mathrm{TH} 1=\mathrm{ACOS}((\mathrm{PHI} 1 /(\mathrm{PIE} * \mathrm{NTOTAL}))-1.00000007)$
$\mathrm{Z} 1=\mathrm{AS} * \mathrm{COS}(\mathrm{TH} 1)+\mathrm{AS}$
ZOFFSET1 $=(2 *$ AS $)+$ ZOFFSET- $(((2 * A S)-Z 1) * 2)$
PHI2 $=$ SEGPHI*REAL(((NSEGSP*NTOTAL)-NSEGSP1)+(NSEG2-NSEG1))
$\mathrm{TH} 2=\mathrm{ACOS}((\mathrm{PHI} 2 /(\mathrm{PIE} * N T O T A L))-1.00000007)$

```
        Z2 = AS*COS(TH2)+AS+ZOFFSET1
        ZOFFSET2 = (2*AS)-(2*((2*AS)-((AS*COS(TH2))+AS)))+ZOFFSET1
        PHI = SEGPHI*REAL((NSEGSP*NTOTAL)-((NSEGSP*NTOTAL)-NSEGSP1)
    & -(NSEG2-NSEG1)+(J-(NSEG2+INDX)))
        TH = ACOS((PHI/(PIE*NTOTAL))-1.00000007)
        TPHI =SEGPHI*REAL(J-1-INDX)
        X(J) = AS*SIN(TH)*COS(TPHI)
        Y(J) = AS*SIN(TH)*SIN(TPHI)
        Z(J) = AS*COS(TH) + AS + ZOFFSET2
            IF (J.EQ.NP) GOTO 100
        IA(J) = J
        IB}(\textrm{J})=\textrm{J}+
        END IF
    100 CONTINUE
C
C Check that smallest segment is greater than twice the wire radius
    SLENGTH = SQRT( (X(NP)-X(NP-1))**2 + (Y(NP)-Y(NP-1))**2 +
    + (Z(NP)-Z(NP-1))**2 )
    IF (SLENGTH .LE. A*2.) WRITE(*,*)' WARNING - At least one segmen
    +t is smaller than twice the wire radius'
C
C Wire "location" of attachment point, NSA
    NSA(1) = 1
C Plate number geometry is attached to, NPLA
    NPLA(1) = 1
C Complex voltage generator, VGA
    VGA(1) = (1.0,0.0)
C Outer disk radius of disk monopole (should be about .2lambda), BDSK
    BDSK(1) = 0.2*WV
C No mutual coupling computations
c NFS1=0
c NFS2=0
C
    RETURN
    END
```

