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Modeling Undesirable Outputs in Data Envelopment Analysis:

Various Approaches

Kalyan Sunder Pasupathy

(ABSTRACT)

The general practice in performance and production efficiency measurement has been

to ignore additional products of most transformation processes that can be classified as

“undesirable outputs” — which are a subset of the output set.  Without the inclusion of

these factors, the efficiency evaluation becomes a purely technical measure of the

system alone, and does not account for the interaction of the system with the

surrounding environment and the impact of policy decisions on the system. In addition,

there are also technological dependencies arising due to the relationships between the

desirable and the undesirable outputs. One of the analytical tools normally used in

efficiency evaluation is Data Envelopment Analysis, DEA.

In the course of addressing these problems, a decision-maker encounters multiple and

contradictory objectives with respect to the output set. This motivates the exploration of

new arenas of measurement of efficiency to facilitate policy decisions and address

technological relationships. This research presents five modifications of the traditional

DEA technique to give a more realistic and comprehensive score of production efficiency

considering both, desirable and undesirable outputs. The models address the following

problems: (i) technological dependency between desirable and undesirable outputs; (ii)

decision-maker’s preferences over inputs, desirable outputs and undesirable output

performance and finally (iii) conflicting production objectives through a formulation that

uses Goal Programming in conjunction with DEA, a concept known as GoDEA.
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CHAPTER 1. Introduction

1.1. OBJECTIVES

The main objectives of this research are:

1. To explore new model formulations for including undesirable outputs in Data

Envelopment Analysis. These formulations will attempt to

♦ Find a way of maximizing desirable outputs while minimizing undesirable

outputs in efficiency computations.

♦ Determine performance measures for the firms in the presence of

predetermined technological dependence between desirable and undesirable

outputs.

♦ Develop a new approach that determines the linear dependence of the

desirable and the undesirable outputs and computes efficiency score for the

firms based on their performance with respect to the two types of outputs.

♦ Develop a modified model with a preferential weight structure to set targets

for the firms in the presence of the desirable and the undesirable outputs.

♦ Finally to explore a Goal Programming approach that addresses the issue of

multi-objective problems relating to inputs, desirable outputs and undesirable

outputs. This would be the first time that this technique is used to evaluate

production units with conflicting production goals. This is also a suitable

approach for setting production targets.

2. To validate and verify the suitability of the proposed models through:

♦ Consultation with decision makers to validate the results

♦ Comparison with previous results from existing models

♦ Peer review through the presentation of the model in conferences where DEA

experts participate (INFORMS 2001).



2

1.2. MOTIVATION

There have been hundreds of papers addressing the issues related to

performance measurement and production efficiency. Most of these papers consider

solely inputs or resources used by a firm and the desirable outputs or operational

products that are the result of input utilization. Other production variables are not

included in the traditional model formulation. These include environmental variables

such as pollution, various types of undesirable outputs such as scrap, rework, and other

qualitative outputs such as service characteristics that lead to dissatisfied customers, to

name a few. Without the inclusion of these factors, the evaluation of technical

performance ignores real world considerations.

The undesirable outputs are an anomaly in the whole set of outputs, which

makes them interesting and worthwhile to analyze. Notwithstanding, the fact that the

nature of these types of outputs is different from that of the desirable outputs, they

demand a different set of assumptions related to the production possibility set and the

modeling of the production process.

Furthermore, the problem of incorporating undesirable outputs into efficiency

measurement requires to reward units that produce more quantity of desirable outputs

and less quantity of undesirable outputs. This multi-objective nature of the problem

requires the utilization of appropriate techniques to handle these differences. Further,

the differences in behavior and target goals between the two types of outputs need to be

analyzed and understood well before they can be expressed mathematical terms.

Including the undesirable outputs necessitates research work on how to account for

them along with the desirable outputs in the production formulation.

The effect of managerial or policy decisions on the transformation process can

be expressed in different forms according to the type of problem and system being

analyzed. In the case of emissions or pollution, for example, regulatory standards are

placed on the amount of undesirable outputs obtained on the output side of the

production process. In the case of a manufacturing process, technological constraints

can impose a certain minimum amount of scrap that is generated independently of the

amount of good output produced. It can also be the case that a company's policy could
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limit the amount of undesirable (bad) output produced even to the detriment of desirable

(good output) maximization goals. Addressing this problem of conflicting production

goals is an additional step in the direction of taking the modeling world closer to the real

world.

In addition, the classical DEA formulation faintly recognizes the effect of the

production process on the environment or the impact that the surroundings have on the

performance of the system.  In the research work being addressed in this document,

ways are analyzed on how to approach the issues described above.

1.3. PRIOR APPROACHES

There have been different directions in which the problem of modeling

undesirable outputs for efficiency evaluation has been explored.

Some authors have approached the problem through transformations performed

on the undesirable output data so that these could be considered just as desirable

outputs. Then, the transformed undesirable output data is considered to have the same

characteristics as the desirable output data. Scheel (2001) discussed various

transformations of the undesirable output data. These transformations will be discussed

later in Chapter 2 of this document. Some of the drawbacks of these approaches are

that because of the transformation done to the data set, we might run into problems

associated with convexity and non-linearity assumptions in DEA. Also, in these cases

the framework assumes that the transformed data has its own meaning, like the

undesirable output “mortality rate” and its additive inverse “survival rate”. In many other

real life applications, the transformation of the data may not make sense.

Other ways of including undesirable outputs is to modify the underlying

production assumptions. Thus at the modeling stage, the two different types of outputs

are incorporated differently in the formulation. In this approach the data do not need to

be transformed.
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Among these approaches, one method developed by Fare et al. (1989) defines a

hyperbolic path to determine a performance measure. This type of measure, which is

discussed in detail in Chapter 2, attempts to increase the desirable outputs and

decrease the undesirable outputs in the same model. This approach involves defining a

non-linear projection due to the hyperbolic path defined by the model. Fare et al. (1989)

uses a linear approximation to address the non-linear projection. However, there are

problems associated with this linear approximation which is discussed in section 2.7.3.

Zofio and Prieto (2001) came up with a modified model with a transformation of

the same expression to overcome the problems with the linear approximation. So far, we

have been limiting our discussions to single stage approaches, where both the increase

of the desirable outputs and the decrease of the undesirable outputs are formulated in

the same model in one single step. The Index number approach, which is discussed

next, is a two-stage model.

Fare et al. (2000) formulated an Index number approach that evaluates the

performance of the firms using two separate models, one in each stage. The first stage

computes an index based on the increase of the desirable outputs and the second stage

based on the decrease of the undesirable outputs. Then an overall environmental index

is computed using the indices from the two stages.

So far, we have briefly mentioned the various approaches in the literature for

modeling undesirable outputs. In the next section, we will present the motivation that are

the basis for this research and support the proposed methodology for the development

of new DEA formulations.

1.4. PROPOSED METHODOLOGY

As it can be seen, the problem at hand includes more than one objective-

maximization of the desirable outputs, minimization of the undesirable outputs. Each of

these objectives may have relative importance. Further, within the sets of each of the

two types of outputs, different variables may have varying importance. This motivates

one to formulate a model to include the relative importance of the objectives as well as

the relative importance of the variables.
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Thus, a model with a preferential weight based structure for the desirable outputs

and the undesirable outputs is developed and will be utilized to measure the

performance of the DMUs and estimate targets that account for the level of desirable as

well as undesirable outputs in the model. The concept behind this model is based on the

work by Thanassoulis and Dyson (1992).

Further, along with the two types of outputs, there are also inputs in the

transformation process that need attention. A decision-maker may encounter the

problem to minimize the inputs along with the two objectives above. Again, each of these

inputs may have varying degrees of importance. Considering the inputs as well, one is

looking at a multi-objective problem that could be solved by using Goal Programming in

DEA. This technique —called GoDEA—was presented by several authors (Charnes et

al. (1988), Thanassoulis and Dyson (1992), Athanassopoulos (1995), Sheth (1999),

Hoopes, Triantis and Partangel (2000)) and was developed to combine conflicting

objectives of resource allocation and also to encapsulate the position of different levels

of management in the generation of planning scenarios. The nature of multi-objective

programming methods has been advocated to solve problems where different goals are

conflicting (such as desirable output maximization and undesirable output minimization

and input minimization at the same time for the same firm).

Another issue that this research will attempt to address is to consider the

technological relationship existing between good and bad outputs. This relationship

exists in majority of manufacturing processes as well as in many other processes in

other realms. For example, the scrap resulting from molding or plastic injection, or

chemical waste products associated with process industries are representative of not

only of the existence of undesirable outputs but their technological relationship to the

good outputs is known or can be calculated.

The existing DEA approaches that treat undesirable outputs do not address how

these type of relationships affect efficiency performance. This is another objective of this

research work- to account for the technological dependence between the desirable and

the undesirable outputs. For example, this amounts to including an additional constraint

in the model developed by Zofio and Prieto (2001) and Fare et al. (2000).
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However in many instances, the technological dependence is neither known a

priori nor can be calculated from the process. In such cases, an approach needs to be

developed that can help the decision-maker determine this dependence. Knowing the

relationship would help him/her define performance targets for the firms and assess the

efficiency performance of the firms based on this technological dependence. To address

this problem, we propose a novel approach that determines the technological

relationship between undesirable and desirable outputs and the resulting efficiency

performance based on this relationship.

In summary, there are three innovations to the traditional DEA formulations that

are being proposed:

1. A model with a preferential weight based structure for the desirable outputs

and the undesirable outputs;

2. A GoDEA approach to consider multi-objectives for inputs, desirable outputs

and undesirable outputs.

3. A modification to existing formulations that considers the technological

relationship existing between good and bad outputs.

4. An approach to help the decision-maker to determine this technological

dependence between undesirable and desirable outputs when it is unknown,

and the resulting efficiency performance based on this relationship.

Results from all four approaches will be compared.

1.5.  ORGANIZATION OF THIS DOCUMENT

Chapter 2 starts with an explanation of the fundamental measures in efficiency

measurement. It then presents the theoretical background on returns to scale and on the

disposability of inputs and outputs in production. Then it presents Data Envelopment

Analysis and explains the CCR and BCC models. Various non-radial measures are also

discussed. Research related to the treatment of undesirable outputs is reviewed. The

various types of measures of efficiency when undesirable outputs are included are also

discussed. Finally, the GoDEA approach is presented.
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Chapter 3 presents the methodology proposed in this research by describing new

potential formulations for the treatment of undesirable outputs. It also provides a brief

overview of the data that will be used in illustrating the application of these formulations.

Chapter 4 illustrates the four formulations developed in Chapter 3 for the

treatment of undesirable outputs. We do this by applying them to three data sets, two

from the DEA literature and another one collected with the purpose of this research. The

results obtained from other models will be used to compare the performance of the

formulations developed here.

Chapter 5 presents the conclusion of this research effort and make

recommendations for future research. The first section summarizes the research of this

thesis. The second section describes the major contribution of this research and the third

section outlines some recommendations for future research.

Finally, the Appendix has the actual data sets, used in Chapter 4 for the

application of the models introduced in Chapter 3. The Appendix also displays the

programming code used to run the models in MS Excel Solver and Visual BASIC for

Excel.
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CHAPTER 2. Literature Review

This chapter contains a summary of all the literature that is relevant to the topics

covered in the remainder of the thesis. The topics covered are efficiency measurement,

technical efficiency, relative efficiency measurement, Data Envelopment Analysis (DEA),

the inclusion of undesirable outputs in efficiency measurement and finally a section in

goal programming and DEA.

2.1. THE TRANSFORMATION PROCESS

The whole idea of efficiency measurement relies on production theory, which

sees a firm as a production system where inputs are the resources that are utilized by

the firm or the organization and are transformed into desirable outputs. This

transformation process is depicted in Figure 2.1.

Figure 2. 1 The Transformation Process

2.2. EFFICIENCY MEASUREMENT

The traditional measure of efficiency determines a score based on the ratio of the

output that was obtained from the process and the inputs or resources that were used by

the process. This traditional efficiency score was thus given as in equation 2.1 below.

FirmInputs Outputs

Output

Input
Efficiency = (2.1)
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This measure of efficiency had its own drawbacks, some of which are described

below.

(i) Inability of the model to incorporate multiple inputs and outputs.

(ii) Real life scenarios that incorporate other process dimensions such as quality and

outcomes cannot be easily incorporated in one single equation.

(iii) Environmental factors that affect the process under study cannot be easily

modeled.

(iv) As a continuation of (i) above, in the presence of multiple inputs and outputs,

varying units of the variables cannot be handled.

2.3. TECHNICAL EFFICIENCY

Considering the above-mentioned drawbacks, Farrell (1957) introduced a new

measure of efficiency to take into account all inputs and outputs. This measure was

defined in such a way so as to overcome the drawbacks mentioned above, and to know

how far "a given industry can be expected to increase its output by simply increasing its

efficiency, without absorbing further resources." p. 260

This new measure of efficiency, known as technical efficiency, is a score

determined for each firm. The firm is analyzed within a group of comparable firms and is

evaluated by comparing it with some ideally performing firm. This ideally performing firm

is found by one of the following means.

(i) Theoretical - the entire process is represented as a theoretical or “ideal”

production function where the outputs produced by the process are represented

as a function of the inputs. This function provides the ideally performing firm and

the expected performance from the comparison.

(ii) Empirical - unlike the theoretical approach that is impossible to operationally

achieve, the performance of the firm is determined by comparing it to a relative

production combination that is achievable in practice.
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Figure 2. 2 Isoquant: Input-Orientation

2.3.1. Input-Oriented Measures

Let us consider a production process with two inputs X1 & X2 and one output Y.

Figure 2.2 graphically depicts this production function. QQ' is termed as an isoquant

and represents the efficient production function. An isoquant is the locus of all possible

combinations of the inputs that produce the same amount of output. It is convex to the

origin showing the lower bounds on the inputs. Before the actual comparison is done,

the output Y is held at a fixed quantity of value q. In the above Figure 2, the quantity q is

assumed to be one. All the firms that are to be compared and normalized so that they

produce the same amount of output quantity q using varying quantities of inputs X1 and

X2 based on their production capabilities. Once this is done, all the production firms are

plotted in the diagram to obtain a scatter plot. The isoquant is then computed or

estimated and is also included in the scatter plot. It represents some function that is

obtained from a relative combination of all existing firms. It is defined in such a way that

all the firms lie to the northeast of the isoquant. P is one such firm represented in the

scatter plot.

Firm P utilizes x1 and x2 units respectively of inputs X1 and X2 to produce an

output quantity q. For the firm P to perform efficiently, it should use x1' and x2' units of

inputs respectively to produce the same quantity q of the output Y. In other words, the

X2/Y

X1/YO

Q

Q'

C

C'

A
P

P''

P'

q

x1

x2

x1'

x2'

Isoquant

Isocost

C1

C1'

c
c1
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firm P would have been operating efficiently, if it uses x1 and x2 units of the inputs to

produce q units of the output Y. Hence based on the former discussion, where the inputs

are reduced proportionally holding the output constant, the technical efficiency of the

firm P is given as OP'/OP.  Typically, this means that the two inputs could be reduced by

a proportion equal to OP'/OP. Reducing input X1 by a proportion OP'/OP from x1 means

to bring it down to x1' units (by the law of similar triangles). A similar proportionate

reduction is done for the input X2 to reduce it from x2 to x2'.

In addition to the technical efficiency, the cost of the inputs should also be

considered to determine the overall performance of the firm under investigation. The line

CC' is the isocost line representing the various combinations of the two inputs that have

the same total cost c. The slope of the isocost line is determined by the ratio of the costs

of the two inputs. Higher cost lines that have the same cost ratio as CC' lie to the

northeast of CC' and parallel to it.

Since the isocost line CC' is tangential to the isoquant QQ' at point A, the firm

that is determined by the point A would essentially have the best technical and

allocative efficiency . Allocative efficiency portrays the ability of the firm to use the

inputs in optimal proportions so that the resource cost is minimized. Firm P' which is also

the projection of firm P onto the isoquant QQ' is also as technically efficient as firm A, but

is not as allocatively efficient as A. This is because, the cost of production at point P'

would be the cost associated with the isocost line C1C1', which is c1. As per definition,

the cost c1 is higher than the cost c. The allocative efficiency of the firms P and P' is the

ratio OP'/OP.

By definition (Farrell (1957)), the total economic efficiency of the firm P is the

ratio OP''/OP. This ratio is defined as follows:

OP''/OP = OP''/OP' x OP'/OP

Hence,

Total economic efficiency = Allocative efficiency x Technical efficiency (2.2)
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For the firm P', the total economic efficiency would be OP''/OP and this would be

the same as the allocative efficiency OP’’/OP’ since the technical efficiency of firm P' is

one (1). All the three measures have an upper limit of one and a lower limit of zero.

The above procedure assumes that the production function of the firm is known.

However, in most practical scenarios, this is not the case. The production function is

either too complicated to be represented or may not be known at all. In these

circumstances, Farrell (1957) suggested the use of a non-parametric piece-wise linear

convex isoquant such that in either case, no firm lies either to the left or to the bottom of

the isoquant. Such a function envelops all the data points as shown below in Figure 2.3.

Figure 2. 3 Piecewise Linear Isoquant

2.3.2. Output-Oriented Measures

The previously discussed technical efficiency measure determined the efficiency

of a firm based on how much the inputs could be reduced proportionally without a

decrease in the output and hence is known as the input-reducing measure of technical

efficiency. On the other hand, the output-oriented measure looks at the extent to which

the outputs produced can be increased without an increase in the inputs and hence is

known as the output-increasing measure of technical efficiency. This can be illustrated

X2/Y

X1/YO

A
P

Isoquant
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using Figure 2.4. Here a single input X is involved in the production of two outputs Y1

and Y2. ZZ' is the isoquant that represents a constant quantity of input that is used to

produce varying proportions of the two outputs. It is concave to the origin and since it

determines the best production possibility, all the firms lie to the left and the bottom of

ZZ'. A is one such firm. Point B is the projection of the firm A onto the isoquant ZZ'. Here

the distance AB determines the amount of technical inefficiency. Hence the output-

oriented technical efficiency measure is given by OA/OB. If the prices of the outputs are

also known, then the isorevenue line EE' can be drawn and the allocative efficiency can

also be determined as OB/OD. Then the overall efficiency would be the product of the

two efficiencies and would be the ratio OA/OD.

Figure 2. 4 Output-Orientation

2.3.3. Returns to Scale

The above efficiency measures are based on constant returns to scale

technology (CRS). This implies that the production technology under consideration is

such that, an increase in all the inputs by some proportion results in an increase in the

outputs by the same proportion. The non-constant (or variable) returns to scale result

in a non-proportionate change (increase or decrease) in the outputs. The three types of

O

Y2/X

Y1/X

A

Z

Z'
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E
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returns to scale and the difference between the input-reducing and the output-increasing

measures are illustrated on Figure 2.5.

(a) CRS (b) IRS (c) DRS

Figure 2. 5 Returns to Scale

In Figures 2.5, a production of a single output from a single input is illustrated

graphically. In Figure 2.5 (a), it can be seen that the function f(x) is a straight line and

has a single slope. Hence for every unit increase in the input that goes into the process,

the output produced increases by a constant proportional quantity, hence it represents

constant returns to scale (CRS). Figure 2.5 (b) represents a function with an increasing

slope. For every unit increase in the input, the output increases by a more than

proportional quantity displaying increasing returns to scale (IRS). Finally Figure 2.5 (c)

represents decreasing returns to scale (DRS) where the function has a slope that

decreases as the input increases. P is a firm that lies below the efficient frontier. In each

of the three cases, P could be projected onto the frontier either under an input-reducing

consideration or an output-increasing consideration. B and D are projected points on the

frontier obtained for comparison. The input-reducing efficiency measure is given by

AB/AP and the output-increasing efficiency measure is given by CP/CD.
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In the case of constant returns to scale as in Figure 2.5 (a), the triangles ∆OAB

and ∆DCO are similar. By the law of similar triangles,

AB/OC = OA/CD

⇒ AB/AP = CP/CD

Hence, the input-reducing and the output-increasing measures give the same

technical efficiency score under the assumption of constant returns to scale. However, in

the case of variable returns to scale, both measures give different efficiency scores. It

can also be seen that the increasing returns to scale assumption tends to increase the

distances either AB or CD. In Figure 2.5 this results in an input-reducing efficiency score

that is higher than the output-increasing efficiency score. The converse is true in the

case of the decreasing returns to scale assumption as either AB or CD gets reduced and

hence the output-increasing efficiency score is higher.

2.3.4. Peers of Firms and Slacks Associated with Inputs and Outputs

DEA is based on the assumption of convexity, which states that for any two

points that are feasible, their convex combination is also feasible. This means that for

two observed DMUs lying on the frontier one can prove that their convex combination is

feasible and also lies on the frontier. Based on this assumption, DEA compares actual

firms to virtual firms that are the weighted combinations of actual firms.

Peers or the so-called "composite set", are the firms that are on the frontier or on

the best-performing practice frontier. These are used as the reference of comparison for

inefficiently performing firms. In Figure 2.6, firms A, B and G lie completely to the

northeast of the frontier and are inefficient. Firm A is projected onto the frontier and it

falls on point D, which is an actual firm. Hence, firm D is the peer of firm A with respect

to efficiency measurement. In this case, firm A is compared to the actual firm D.

However, B' is the projection of firm B onto the frontier. Here, since it falls on the frontier

between firms D and E, both D and E are the peers of firm B and firm B is compared to

the weighted combination of D and E.
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Figure 2. 6 Scatter Plot Representing Peers and Slack Inefficiencies

Efficiency measurement of operational units needs to consider the case when

there are certain units or firms lying on that portion of the frontier that is parallel to one of

the axes. As seen in Figure 2.6, the firm F lies on the frontier. So as per the discussions

so far, firm F is rendered efficient as it lies on the frontier. However, it can be seen that

firm F produces the same quantity of the output as E. It also uses the same quantity of

input X2 but more of X1 for every unit of Y produced.

The amount of input X1 given by the distance EF is the excess of input X1 used

by firm F. Hence the slack associated with input X1 for firm F should also be taken into

account while determining its efficiency score. A similar discussion pertains for the

outputs, where the slacks with respect to the outputs would be termed as a shortfall in

production.
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2.3.5. Disposability of inputs and outputs

Disposability of inputs or outputs is the ability with which an input (output) can be

disposed off holding the remaining inputs (outputs) constant while at the same time the

resulting input (output) set still remains part of the production possibility set. The

disposability concept of the inputs and the outputs is related to the definition of the

production possibility set P. A production possibility set P, is the set of all points A (x, y)

that satisfies the relationship: P = {(x, y): x can produce y}

Considering a single input and single output case as in Figure 2.7, the shaded

portion is the production possibility set. Consider a production possibility set A(x, y) and

its mapping into the production possibility set B (x, y1) as shown.

A(x, y) ∈ P ⇒ B(x, y1) ∈ P ∀ B : y1 ≤ y

The above condition defines a strong disposability of the outputs.

The weak disposability of the outputs is given by the condition in Equation 2.4. In

a similar manner, it can be stated for the inputs.

A(x, y) ∈ P ⇒ C(x, y1) ∈ P ∀ C : y1 ≤ µy, 0 ≤ µ ≤ 1

Fare et al. (1994) referred to disposability as the ability to stockpile or dispose of

unwanted commodities. Thus the private disposal cost distinguishes the two different

types of disposability. Strong disposability is the ability to dispose of an unwanted

commodity with no private cost and weak disposability is the ability to dispose of an

unwanted commodity at positive private cost. This concept will be explained in detail in

the sections to come.

(2.3)

(2.4)
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Figure 2. 7 Production Possibility Set

2.4. RELATIVE EFFICIENCY MEASUREMENT

The measurement of relative efficiency in the presence of multiple inputs and

outputs was addressed by Farrell (1957) by assigning weights to the variables so that

the overall relative efficiency score is actually a ratio of the weighted sum of the outputs

to the weighted sum of the inputs.

Thus the presence of multiple inputs and outputs are considered in the efficiency

measurement process. Here, it is common to apply the same set of weights to the inputs

Weighted sum of outputs

Weighted sum of inputs
Efficiency = (2.5)

Production
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Input

Output
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or outputs of all firms. In this way, equal importance is given to a particular input or

output for all the firms. Consider n firms with m inputs and s outputs. Let xij be the inputs

and yrj be the outputs of firm j. the mathematical representation of the above model

would be as follows:

The weights applied here have cost-price implications. The weights of the inputs

correspond to their costs and the weights of the outputs to their prices. The model here

results in efficiency scores in the range [0,1]. All the firms have a common set of weights

assigned by the decision-maker. By assigning a common set of weights, the individual

firms are not given the freedom to choose their own set of weights for their inputs and

outputs. Thus the efficiencies of the firms are determined under this predefined set.

Thus, in this case there is no possibility of increasing the efficiency score of a firm by

way of assigning the weights that are most favorable for that firm. The next section

explains the relaxation given to the DMU to choose its own weights, as well as the

measurement process.

2.5. DATA ENVELOPMENT ANALYSIS

In the relative efficiency model, it is very difficult to find the cost of each input and

the price of each output so that specific cost and price could be assigned to each input

and output respectively. Further, the various firms organize their process differently

hence value their inputs and outputs differently. This gives rise to differing weights. To

overcome these drawbacks, Charnes, Cooper and Rhodes (1978) arrived at a

mathematical programming approach that determines the weights and computes the
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efficiency score. The term Decision-Making Unit (DMU) will be used henceforth to

represent a firm or an organization being evaluated.

2.5.1. The CCR Model

A fractional programming model known as the CCR model was developed by

Charnes, Cooper and Rhodes (1978) to determine the efficiency score of each of the

DMUs in a data set of comparable units. This model determines the best set of weights

for each DMU when the problem is solved for each DMU under consideration.

The objective function maximizes the efficiency of the DMU using the weights ur

and vi for the outputs and the inputs respectively. The weights are determined by the

model such that the efficiency score of the DMU under consideration is maximum and

when the same set of weights are applied to the other DMUs in the sample their

efficiency score cannot exceed one. The mathematical formulation is provided below.

The CCR model is a fractional program and it has to be converted into a linear

program so that it can be solved easily. This is done by normalization i.e., the

denominator of the objective function is equated to one and the first constraint

corresponding to efficiency ratios of all DMUs in the sample is also modified as shown.
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The above model is known as the multiplier model since it is developed from the

fractional program and the input and output variables are multiplied with their respective

weights. ε is a weight restriction that is introduced in the last two constraints. It is a

lower bound or limit on the weights of the variables to make sure that none of the

weights assigned to the input and output variables are zero. This assures that all the

variables are taken into account while determining the efficiency score. In the absence of

such a lower bound weight restriction, a DMU that is performing very badly with respect

to one or more of the inputs or outputs could assign weights of zero to these variables

and end up being efficient. By restricting these weights to be greater than ε, the

decision-maker makes sure that none of the variables are neglected by any of the

DMUs.

The linear program above is not unbounded because of the presence of the

second constraint. In the absence of the second constraint, the linear program could

typically assign increasing amount of weights to the outputs and continue to increase the

value of the objective function. But this is constrained by the second constraint. Once the

weights for the inputs are determined, the second constraint restricts the assigning of

weights to the outputs, where the difference between the weighted sum of the outputs

and the weighted sum of the inputs should be less than zero (0).
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This model has m+s variables and 1+n+m+s constraints. The dual would have

n+m+s+1 variables and s+m constraints. In general, n is quite large compared to m+s

and hence the primal has a large number of constraints compared to the dual. Hence the

primal is more difficult to solve. The dual of this linear program is obtained by assigning

a variable to each constraint and transforming the constraints. The dual is known as the

envelopment form, which is shown below.

2.5.2. The BCC Model

The CCR model assumes constant returns to scale while determining the

efficiency of the DMUs. Banker, Charnes and Cooper (1984) modified the CCR model by

adding a constraint to account for the variable returns to scale. The difference between

the two models is illustrated by Figure 2.8
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Figure 2. 8  The CCR and BCC Models

The envelopment form of the BCC model would be the same as the dual for the

CCR model but with an additional constraint,

2.6. NON-RADIAL EFFICIENCY MEASURES

So far, all the efficiency measures have determined the efficiency scores on a

radial basis. In the case of the input-reducing models, the technical efficiency was

determined by reducing all the inputs proportionally along a radial ray towards the origin

from the point representing the firm or the DMU to a projected point on the frontier. In the

case of the output-increasing models, a similar task is performed but by increasing the

outputs along the ray away from the origin to a point on the frontier.

In the non-radial measure of technical efficiency, the comparison is done

between the point representing the DMU and a point on the frontier that is not on the
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radial ray joining the origin and the point. Again in the case of the input-reducing models,

the movement is in a direction so as to reduce one or more of the inputs and which is not

radial. In the output-increasing models, the aim is to increase one or more of the outputs

again in a non-radial direction. This can be explained with the help of the Figure 2.9.

Figure 2. 9 Non-Radial Efficiency Measure

A is a DMU, which utilizes x1 and x2 units of the two inputs respectively. As seen

from Figure 2.9, DMU A is inefficient, as it is not on the frontier. Unlike the earlier

measure of technical efficiency, which would have considered a movement along the

radial ray AO, the non-radial measure of technical efficiency, considers the movement

along either AA1' or AA2'. In either of these cases, only one of the inputs gets reduced in

the comparison. The other input is held constant. In a more than two input scenario

(multidimensional) the equivalent would be to reduce one or more of the inputs in such a

way that the resultant path is non-radial. This could be accomplished either by reducing

a few of the inputs (but not all) proportionately or by reducing all of the inputs

disproportionately.
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In Figure 2.9, by holding X1 constant and by reducing X2, the point A1' on the

frontier is determined. The efficiency measure related to this observation on the frontier

is x2/x2'. A similar argument can be made for holding input X2 constant to arrive at the

point A2'.

Another non-radial measure of technical efficiency is possible where the

movement is neither radial nor is parallel to one or more of the axes. The movement

along AC illustrates this type of measure. The path is AC1C or AC2C. In either case, the

input X1 gets reduced by C1C and input X2 gets reduced by C2C. It can be seen that

there is disproportionate reduction of the two inputs along AC.

The additive model of Cooper et al. (1999) computes a different type of non-

radial measure. This is illustrated in Figure 2.10, where the input-oriented and the

output-oriented measures are combined to determine a score of technical efficiency. The

following linear program illustrates the additive model. Here, the sum of all the slacks

associated with each of the inputs and the outputs is maximized. Each DMU is projected

to the farthest point on the frontier in a direction that tends to increase the output and

reduce the input.

Figure 2. 10  The Additive Model
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The mathematical formulation for the additive model is shown below.

2.7. UNDESIRABLE OUTPUTS

So far, the discussion included the variables in the output set that were

maximized. Nevertheless, this is not the case in the real world. There are outputs that

are undesirable. Some examples of these outputs are pollution in industries,

complications in operational procedures in hospitals and medical institutions, tax

payments in financial firms, etc. These outputs are present in the output set along with

the desirable outputs like units of production, number of operational procedures

performed, number of customers, revenue generated, etc. Various techniques that

consider the desirable and the undesirable outputs together in the modeling process are

presented in this section. The premise is that while the desirable outputs are being

maximized, the undesirable outputs should be minimized.

The main challenges that are considered in the modeling of the undesirable

outputs are the following.

(i) One needs to consider the undesirable outputs in the modeling process along

with the desirable outputs.

(ii) One requires that the undesirable outputs be reduced while the desirable outputs

are increased.

An equivalent scenario of the undesirable outputs but on the input side is one

where a subset of the inputs requires to be increased. For example, products that are

recycled into the production process such as the plastic obtained in an injection molding

firm, scrap, etc. These types of inputs need to be maximized mainly due to two reasons.
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1. If output waste products are recycled, these can be fed back into the transformation

process. By using these products as inputs as much as possible, problems of

disposal and environmental concerns that are associated with these types of outputs

can be avoided. This helps the firms to reduce the amount of waste products

(undesirable outputs) that are disposed of into the environment and helps firms to

meet environmental regulatory conditions.

2. By maximizing the usage of these inputs, the usage of the other inputs could be

reduced through substitution. In this way, production costs could be reduced.

Scheel (2001) introduced various techniques to address the challenges of

incorporating the undesirable outputs into the DEA model, minimizing the undesirable

while maximizing the desirable outputs. He introduced new radial measures, which

assume that any change of the output level will involve both the desirable and the

undesirable outputs.

Scheel defines the technology set as

The next section addresses two known approaches to include undesirable outputs in the

modeling process.

2.7.1. Efficiency Classifications

There are various approaches to incorporate undesirable outputs into the DEA

model. They are classified as indirect and direct approaches.

1. Indirect approaches transform the values of the undesirable output variables by a

monotone decreasing function so that they can be included in the model along with

the desirable outputs in the technology set T and are maximized. In this way, by

maximizing the transformed values, the original undesirable output values are

minimized.
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2. Direct approaches on the other hand, include the undesirable output data directly

into the DEA model but instead modify the assumptions of the model in order to

consider the undesirable outputs appropriately.

Scheel considers X to be the matrix of the inputs, Q the matrix of undesirable

outputs and P the matrix of desirable outputs. He assumes that the matrices X, Q and P

are non-singular matrices with no vanishing rows or columns (determinant is not zero).

By this assumption, we mean that the set of input variables are linearly independent and

so are the set of desirable and undesirable outputs.

The first indirect approach of incorporating the undesirable outputs into the model

is by transforming them by the additive inverse method. This involves including the

undesirable outputs using values f (Q)=-Q. The author refers to this approach as [ADD]

and it was suggested by Koopmans (1951). The technology set defined by this approach

is the same as the one defined by the approach [INP]. [INP] is an approach where the

undesirable outputs Q are considered as inputs and are considered together with the

other inputs. Thus in the process of reducing the inputs, the undesirable outputs are also

reduced.

Another approach is the [TRβ] in the sense of Ali and Seiford (1990) where a

large scalar β is added to each of the undesirable output values such that the

transformed values are positive. The transformation is done using

Here the transformation is done for the rth undesirable output of the jth firm. The

last of the indirect approaches is the multiplicative inverse [MLT] suggested by Golany

and Roll (1989) where the transformation is done by using the function

Then the data of the undesirable outputs is included with the data of the desirable

outputs.
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There is also a relation between [MLT] and [ADD]. If a DMU is efficient using

[MLT], then it is also efficient when using [ADD] ( Scheel (2001)). Hence, as shown by

the author, it is clear that [MLT] is a more “restrictive” approach than [ADD] and thus it is

more difficult to become efficient under [MLT] than under [ADD].

Some of the problems and issues associated with the above approaches are

summarized here. By using the [INP] approach and by considering a part of the output

set variables as inputs, the basic input-output structure of the transformation process is

modified. This approach is slightly different from the other approaches in the sense that,

in the [ADD], [MLT] and [TRβ], the transformed data remains as a part of the output set.

But in the case of [INP] the transformation as such takes the data and considers them as

inputs. Also, in the case of the [MLT] formulation, because of the transformation done to

the data set, we run into problems associated with convexity and non-linearity. In the

case of the indirect approaches, the framework assumes that the transformed data has

its own meaning, like the undesirable output “mortality rate” and its additive inverse

“survival rate”. This may not be the case with all processes. In many real life

applications, the transformation of the data may not make sense. This motivates the

researcher to explore other direct approaches where no transformation is done to the

data set, but they are used with necessary modifications in the modeling assumptions.

Fare et al. (1986) was the first to apply output oriented DEA analysis to steam

electric plants. In this paper the authors defined radial efficiency measures for equi-

proportional increase of all the outputs, both desirable and undesirable. The technology

set was characterized by strong and weak disposability of the undesirable outputs in

order to check for production congestion that is explained later in this chapter under the

section Congestion.

Fare et al. (2000) provide a formal index number of environmental performance

that can be computed using DEA techniques. The procedure is to determine an output

distance function based on the degree to which the desirable outputs could be expanded

for each DMU. This is represented by the quantity index of desirable outputs. . For the

undesirable outputs, the degree of reduction possible is determined for each DMU that is

represented by the quantity index of undesirable outputs. The overall environmental
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performance index is given by the ratio of the quantity index of the desirable outputs to

the quantity index of the undesirable outputs.

Let us define the following notation for the vector of inputs, the desirable outputs

and the undesirable outputs respectively.

Hence, the technology has all feasible vectors (x,y)

The various assumptions introduced are as follows.

1. Weak disposability of outputs:

The weak disposability assumption makes sure that both the desirable and the

undesirable outputs can be disposed proportionally. It also implies that it is not possible

to reduce only the undesirable outputs holding the inputs and the desirable outputs

constant.

According to the null joint assumption discussed below, it is technically

impossible to produce only desirable outputs without producing any undesirable outputs.

Moreover, to totally eliminate the undesirable outputs, the desirable outputs cannot be

produced.

2. Null jointness

This assumption means that it is technically impossible to produce only desirable

outputs without producing any of undesirable outputs. It also means that the only way to

totally eliminate the production of the undesirable outputs is to stop the production of the

desirable outputs.
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3. T is a closed set. This assumption implies that the production possibility set also

includes all the points on the frontier. Any point on the frontier that is a vertex

represents a real DMU. Other points on the frontier are virtual composite DMUs used

for comparison after the projection onto the frontier.

4. Inputs are freely or strongly disposable. This means that, if an amount y can be

produced from x, then y can be produced from any x’ ≥ x. In words, it means that the

amount of input can be increased without an increase in the amount of outputs.

5. The desirable outputs are freely or strongly disposable. This means that if a given

quantity of desirable output p can be produced from x, and for any amount p’ ≤ p, p’

can also be produced from x.

Then the authors define an output distance function for the desirable outputs.

Let x0 and q0 be the input and the undesirable output vectors and let pk and pl be

the desirable output vectors that are being compared. Then the quantity index of good

outputs is given by

This index satisfies the following properties.

1. Homogeneity:

2. Time reversal:
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3. Transitivity:

4. Dimensionality:

A distance function is also determined for the undesirable outputs similar to the

desirable outputs. It is given by:

Then the undesirable output quantity index is given by:

The environmental performance index is defined as:

The linear programs used to compute the values of the distance functions are as follows.

Model L2: Desirable outputs:

Qp(x
0,q0,pk,pl) is the ratio of the distance functions for desirable outputs of the

DMU under consideration and the reference DMU. Each DMU is taken into consideration

and the distance function for the desirable outputs is calculated using the above linear
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program which is the numerator of the ratio Qp(x
0,q0,pk,pl). The denominator, which is the

distance function for the reference DMU is computed.

Similarly, the following linear program calculates the distance function for

undesirable outputs:

Fare et al. (2000) apply this technique to measure the environmental

performance of 19 countries with the following variables.

S. No. Name of variable Type of variable Unit

1 Oil consumption Input Million tons of

equivalent

2 Labor Input Number of workers

in thousands

3 Capital stock Input Trillions of US $

4 Gross Domestic Production Desirable output Billions of US $

5 Carbon dioxide emissions Undesirable output Millions of tons

6 Nitrogen oxide emissions Undesirable output Thousands of tons

7 Sulfur dioxide emissions Undesirable output Thousands of tons

Table 2.1 - Variables used by Fare, et al. (2000)

The authors then conduct a set of non-parametric tests to determine if there is a

relationship between the overall environmental indicator and the country characteristics.

For this purpose, the countries are split into two groups. Group A comprises of those

countries with an environmental performance index below the median indicator and

group B consists of those with an index equal to or better than the median. Then they
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determine if there is a statistically significant difference between the two groups with

respect to GDP/Population and Oil consumption/GDP.

The authors found that there is no significant statistical difference between the

two groups of countries with respect to the per capita GDP. In previous studies, the

pollutants have been considered separately in the analysis and it has been found that,

CO2 has a positive relationship with GDP per capita and the other pollutants have a

negative relationship. Based on the work of Fare et al., there seems to be no clear-cut

relationship between the emissions CO2, SOx, NOx and the per capita GDP. In this case,

all three pollutants are considered together in computing the performance index. Also, in

case where only CO2 and NOx were considered and in case where only CO2 and SOx

were considered, the authors did not find any significant correlation with GDP. Their

indices account for the production of goods and the use of inputs simultaneously. This is

achieved by the use of distance functions. In addition, since the data used is just for a

single year, it fails to reveal the time series relationships.

If data over time is available, the panel nature could be exploited to compute

environmental performance indices over time to determine the performance of countries

over a period of time. This would also mean that no single country need to be

considered as the reference to calculate the desirable and undesirable output quantity

indices. Each country can be evaluated based on its performance over a period of time.

As it can be seen, in the case of the index number approach, the performance of

the DMUs are evaluated separately based on the desirable outputs and the undesirable

outputs and then an index is computed. This model cannot handle a combined structure

for improvements in the desirable outputs and the undesirable outputs in the same

model. The improvements in the desirable and the undesirable outputs are linear and

independent of one another.

2.7.2. Hyperbolic Efficiency Measure

Fare et al. (1989) introduced a different approach to incorporate both the

desirable outputs and the undesirable outputs in the model. They allowed the desirable
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outputs to increase by some proportion and at the same time allowed the undesirable

outputs to decrease by the same proportion. The result was a northwesterly hyperbolic

path as shown in the Figure 2.11 below.

Figure 2. 11 Hyperbolic Path

The main difference in the measurement between the radial and the hyperbolic

efficiency measures is that in the case of the radial efficiency measure, the target of the

performance score is to determine the extent to which a firm is technically efficient.

Increasing both the desirable output and the undesirable output renders a greater

technical efficiency but, due to the increase in the undesirable output, it is not

environment-friendly. However, in the case of the hyperbolic path, the efficiency

measure makes sure that as the desirable output increases, the undesirable output

decreases. This is incorporated into the model in such a way that both the outputs

change by the same proportion but in different directions.

Another interesting fact to be noted from the hyperbolic approach in Fare et al.

(1989) is that, for greater quantities of undesirable outputs, small displacements to the

frontier lead to a greater unit decrease in quantity of the undesirable output than the unit

increase in the desirable output. This can clearly be seen from Figure 2.11 as the initial

part of the hyperbolic path has a slope tending to 0° and it gradually increases until it

reaches 90°. As the quantity of the undesirable output decreases, the initial part of the

Undesirable output

Desirable output
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hyperbolic path becomes more and more steep. This results in a tremendous increase in

the desirable output right from the start of the hyperbolic path as depicted by Figure 2.12

below.

Figure 2. 12 Hyperbolic Path for a Firm with a Low Quantity of Undesirable Output

Implementing the hyperbolic approach, Zofio and Prieto (2001) assess the

environmental performance of a set of producers by grading their ability to produce "the

largest equi-proportional increase in the desirable output and decrease in the

undesirable output."

The authors assume that the firms k={1,…K} use a set of x inputs to produce y

outputs out of which p are desirable and q are undesirable.

The reference technology is modeled in the following manner.
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Figure 2. 13 Radial Efficiency Measure

Figure 2. 14 Hyperbolic Efficiency Measure
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Here the strong disposal reference technology for the inputs and the outputs is

represented by the output set: which is represented by OFBCE in Figures 2.14 and 2.15.

In the above expression, the superscript in RS(x), represents strong disposability.

ℜK
+ is the standard notation to represent the positive side of a K-dimensional space.

The figures 2.14 and 2.15 graphically illustrate the existence of weak

disposability of the undesirable outputs. Considering the section OAB of the frontier in

either of the figures, it can be seen that any reduction in the undesirable outputs results

in a reduction of the desirable outputs. If the reduction in the desirable outputs has to be

avoided, then the desirable outputs have to be held constant. This results in an increase

in the usage of the inputs. In either case there is a cost associated with the disposal of

the undesirable outputs and it is not free, hence the weak disposability.

The weak disposal reference technology for the undesirable outputs is the output

set, which is represented by OABCE in Figures 2.13 and 2.14.

Considering the same production possibility set, the functional representations of

the reference technologies are given by an output distance function provided by

Shephard (1953).

A similar hyperbolic distance function is given as follows.

These distance functions are regarded as performance measures and are

evaluated to determine the scores of the firms. The final efficiency score is given as the

reciprocal of the distance function. If the expansion of either the radial or the hyperbolic

];,,:),[(:)( KS zXzxQzqPzpqpxR +ℜ∈≥≤≤ (2.32)

];,,:),[(:)( KW zXzxQzqPzpqpxR +ℜ∈≥=≤ (2.33)

)}(:{),( xRyqpD RRR ∈= θθ (2.34)
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distance functions is infeasible, then the respective distance function has a value of one,

i.e. θR = θH = 1.

Such firms are characterized as efficient. This happens for the DMUs that are on

the frontier. On the other hand, if the distance functions are expandable, then θ > 1 and

hence the production process is considered inefficient.

The radial and the hyperbolic measures of the above distance functions can now

be defined as below.

These radial measure is computed using the formulation below in 2.37. The

hyperbolic measure is computed using 2.38, which is explained later in the next section

on the next page.

As it can be seen, the radial measure tries to increase both the desirable and the

undesirable outputs along the radial direction away from the origin. This assumes that

the undesirable output cannot be decreased simultaneously while the desirable outputs

are being increased.

Brannlund et al. (1995) studied radial efficiency levels in the Swedish pulp and

paper industry with environmental standards. The authors used a ratio of the restricted

profit function and the unrestricted one to determine the effect of the regulation. But the

efficiency and the productivity gains are determined with the help of ray vectors that

increase both the desirable as well as the undesirable outputs. Obviously, this approach

does not seem reasonable in cases where environmental concerns are central to the
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analysis. The hyperbolic approach takes care of this problem, since it considers the firms

in the reference sets that not only have increased amount of desirable outputs but also

have a reduced amount of undesirable outputs. The hyperbolic approach thus can be

applied to processes where the environmental concerns are central to the problem. In

the next section, the concept of congestion is introduced and the method to determine

the presence of any congestion in a production process is discussed.

2.7.3. Congestion

A production process is said to exhibit strong disposability of undesirable outputs

if the undesirable output can be freely disposed without any change in the desirable

outputs or in the inputs. The weak disposability of undesirable outputs implies that a

reduction in the undesirable output forces a proportional reduction in the desirable output

as well. This leads to congestion in production.

The existence of congestion can be determined by evaluating the firm

successively under strong and weak disposability assumptions. If the efficiency scores

obtained from both the assumptions are the same, then the firm's production process is

not affected by congestion. Hence the undesirable outputs can be reduced without any

reduction in the desirable outputs. On the other hand, if the scores are different, then

congestion is said to exist and weak disposability is binding. Any reduction in the

undesirable output is associated with a loss in the desirable output. This loss can be

determined by computing both the scores and comparing them.

We assume the strong disposal reference technology RS(x) and solve the

following linear program to determine  the efficiency score.

Model L1:
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In the above linear program, the constraints for the desirable and the undesirable

outputs have a ‘≤’ which accounts for the strong disposability of both the outputs. Since

the above program is nonlinear in θ, the problem cannot be solved by linear

programming techniques. Fare et al. (1989) proposed the following expression, which is

linear in θ as a linear approximation to the nonlinear constraint. The assumption behind

this is that θ can take a value greater than 1 (one) and it converges at θ = 1.

This approach has some drawbacks. The linear approximation and the nonlinear

constraint are equal only for θ = 1. Also as the value of θ diverges from one, the linear

approximation diverges from the actual nonlinear constraint and hence the

approximation error increases.

An alternate transformation that works around this problem is given by

This can be equivalently expressed as the inequality below, which is linear in θ

The undesirable output weak disposability reference technology is given by

RW(x). The corresponding efficiency score is determined by the following linear program.
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As it can be seen, ‘=’ is used in the undesirable output constraint to account for

the weak disposability of these undesirable outputs while still holding the desirable

outputs as strongly disposable.

Then the ratio E1k
S/E1k

W is defined to check for production congestion. If the ratio

equals one, then the production does not present weak disposability of undesirable

outputs. If the ratio is greater than one, then weak disposability congests the production

process.

Exhibiting strong or weak disposability is based on the technology of the firm and

it is internal to each firm. However, the regulatory standard that is imposed on the firm is

external to the firm. It is to be noted that, the extent and the proportion of strong or weak

disposability is different for each firm but the regulatory standard is the same for all the

firms under comparison.

2.7.4. Production possibilities and environmental standards

The following model introduces quantitative constraints to incorporate the

environmental standard.

The linear program 2.43 has the same technology set as 2.38 except for the

introduction of the new constraint to account for the environmental standard. QZ is the

undesirable output of the composite unit that is used for the comparison. The new

constraint implies that the undesirable output of the composite unit has to satisfy the

environmental standard set, qrk
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The following ratio is used to check if the environmental standard affects the

production process k.

The numerator is obtained from 2.38 while the denominator is obtained from

2.43.

If the ratio is greater than one, then the standard binds the production while if its

less than one, no costs are associated with the regulation.

Thereupon the authors Zofio and Prieto (2001) determine the limits relating to the

undesirable outputs and the production. For a given piecewise reference technology,

they determine the minimum amount of undesirable output that is required to carry out

the production. Also, they compute the minimum amount of production of the

undesirable output that is possible without sustaining output congestion.

This methodology is applied to manufacturing industries in 14 OECD countries

where the undesirable output is CO2. In the formulation of the model, it is assumed that

all the countries have access to the efficient production frontier. In their case, this seems

as a reasonable assumption since the data consists of only the most advanced OECD

countries.

The index approach Fare et al. (2000) that has been discussed previously does

not discuss the congestion involved with the technology by making the weak

disposability assumption of the undesirable outputs. Further, the model does not

consider any environmental policies. The model by Zofio and Prieto (2001) however

addresses these issues.

The models by Fare et al. (2000) and Zofio and Prieto (2001) have to be modified

to facilitate the incorporation of the strategic policies or measures that originate from the

top-level management or from the individual DMUs. In such cases, when one wants to

look at the performance of the DMUs with priorities being assigned, the model

formulation needs to have a preferential structure built into it. Then the weights included

rk
S
k EE /1 (2.44)
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in the model determine the relative importance given to the increase of the desirable

outputs and the decrease of the undesirable outputs.

In the case of the Zofio and Prieto (2001) approach, it’s a hyperbolic measure

where the same factor is applied for both the increase of the desirable outputs and the

decrease of the undesirable outputs. Still, the model fails to handle improvements of the

two different types of outputs and the inputs with a preferential structure.

2.7.5. Non – DEA Approach – Pair wise Dominance

According to Otis (1999) a pair wise dominance approach is important for frontier

models. This dominance production plan according to Koopmans (1951) is a production

plan that uses less of inputs for the same amount of output or produces more of outputs

for the same level of inputs. Figure 2.12 illustrates the two input production system with

the outputs being fixed. The four sets are shown in the figure. Strong dominance refers

to a production plan that has all inputs less than the reference while weak dominance

means that at least one input is less than the reference and this is represented by the

dotted lines.

In the figure below, the Dominated set would consist of all DMUs that consume

more of the two inputs than the reference DMU and produce the same amount of

outputs. On the other hand, the Dominating set would comprise of all DMUs that

consume lesser of the two inputs and produce the same amount of the outputs. The

Dominance Indifferent set will have DMUs that consume more of one of the two inputs

and lesser of the other input.
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Figure 2. 15 Classification based on Dominance

By the inclusion of undesirable outputs in the pair wise dominance approach, the

following news sets are defined.

1. Technically Dominating-Preferred Environmentally

2. Technically Dominated Non-Preferred Environmentally

3. Technically and Environmentally Dominance Indifferent

These sets can be explained in a similar manner with respect to the desirable

and the undesirable outputs.

It can be seen that the above requires that a production plan not only represents

an increase in the production efficiency but at the same time must also not represent an

increase in the undesirable outputs to be considered as a part of the dominating set.

There are instances in the process of efficiency measurement where the

decision-maker would like to give preference for the improvement of certain inputs

and/or outputs and/or to hold certain others constant. These requirements tend to give

rise to multiple objectives and a modified framework is necessary to handle these kinds

of requirements. In the next section, the concept of goal programming is discussed and

the way in which it is used in DEA to handle multiple objectives. This concept is termed

Input 1

Input 2

Dominance
Indifferent

Dominating

Dominated

Dominance
Indifferent

Reference Production Plan
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as GoDEA and was first used by Charnes et al. (1988) to determine the performance of

individual DMUs using some ‘ideal’ input/outputs as targets.

2.8. GOAL PROGRAMMING AND DATA ENVELOPMENT ANALYSIS

Thanassoulis and Dyson (1992) developed models that can be used to estimate

alternative input-output target levels to render relatively inefficient DMUs efficient. These

models can also incorporate preferential weights on the input-output improvements such

that the final target levels reflect the user’s preferences in achieving efficiency through

alternative paths. Then the authors discuss the estimation of targets when one of the

input or output is given a pre-emptive priority to improve. As a generalization of the

above, the authors also discuss a model with a general preferential structure that allows

for a different degree of importance to be attached to the improvements in each of the

input and outputs. Further, the model also accounts for the improvements in the inputs

and the outputs simultaneously. An important aspect in the formulation of the model is

that, the structure does not necessarily require proportional changes in the case of all

inputs or all outputs, hence making it different from the classical radial models. Different

factors are used in the constraints for the increase of each of the outputs and the

decrease of each of the inputs. These factors are then weighted appropriately and then

included in the objective function. This model with the preferential weights on the

improvements of the inputs and the outputs is shown in the full form in the linear

program in 2.45
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where,

n – Number of DMUs assessed

I – Index set of inputs, I = {1,2,…m}

R – Index set of outputs, R = {1,2,…s}

xij – Input i∈I, j = 1,2,…n

yrj – Output r∈R, j = 1,2,…n

βr – Factor of increase of the outputs

αI – Proportion of decrease of the inputs

wr
+ – Preferential weights attached to the factor of increase of the outputs

wI
- - Preferential weights attached to the proportion of decrease of the inputs

dI
- - Deviation variable associated with the inputs

dr
+ - Deviation variable associated with the outputs

ε - Small positive number

zj – Weights associated with DMU j

There might be DMUs that would be able to articulate their targets they wish to

adopt. In these cases, each of the DMUs would have ideal targets that they would wish

to achieve. These targets might sometimes be in such a way that the DMU would be

(2.45)
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willing to sacrifice the level of some of the input(s) and/or output(s) in the process of

improving the others. Some of these ideal targets in general might be neither feasible

nor efficient. Hence the authors propose a two-stage approach to determine feasible and

efficient targets.

In the first stage, feasible input-output levels are determined that are as close as

possible to the ideal targets. In the second stage, the model is used to check for the

presence of a set of efficient input-output levels that dominates the input-output levels in

stage 1. This set of input-output levels determined in stage 2 are said to be compatible

with the original ideal targets and are used as the targets for the DMU.

The linear program is as in 2.46.
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The formulation in 2.46 is a preferential structure formulation that tends to

minimize the positive and the negative slacks (deviational variables) associated with the

inputs and the outputs. The values on the right hand side are the targets levels

associated with the input and the output variables. Also the deviation from the targets

are associated with a penalty which are the ‘w’ s in the objective function. In the next

chapter, the goal programming formulation will be used to address the questions that we

raised with respect to accounting for the preference for the improvement of the different

types of variables like the desirable and the undesirable outputs.

Thanassoulis and Dyson (1992) formulation does not address planning and

resource allocation issues at the global organizational level while considering all DMUs

simultaneously. Athanassopoulos (1995) provided enhancements to that formulation by

including global organizational targets and global resource constraints. However, the

(2.46)
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model developed by Athanassopoulos (1995) is not represented here, as the

enhancements provided do not have any direct relation with the formulation to be

discussed in the methodology in Chapter 3. For further information, the reader is

directed to the original paper.

Finally, one important aspect to be noted is that none of the models discussed so

far accounted for the presence of any sort of technological dependencies between the

desirable outputs and the undesirable outputs. In many real life scenarios, in addition to

weak disposability and the null jointness between the desirable and the undesirable

outputs, there might exist a relationship between the two types of outputs. In the next

Chapter, a more detailed explanation of the situation and the methodology of the

formulation to account for the relationship will be discussed.
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CHAPTER 3. Methodology

In the previous chapter we discussed a few direct and indirect approaches in

incorporating undesirable outputs in the model while determining the efficiency of the

DMUs. We also consider these outputs differently from the other outputs in such a way

that when an increase in the desirable outputs is desired, a simultaneous reduction in

the undesirable outputs is modeled. Finally, we discussed the Goal Programming

approach that is being used in Data Envelopment Analysis and also introduced the

concept of GoDEA.

In this Chapter, we will initially discuss the interdependencies between the

desirable and the undesirable outputs and as to how these can be incorporated in the

model. Later we will present how goal programming can be used to check and determine

the targets for the DMUs.

3.1. Interdependencies between Desirable and Undesirable Outputs

Zofio and Prieto(2001) in their paper talk about the existence of congestion. Then

they go about to talk in detail about how congestion binds the production process if the

authority sets a regulatory standard. The authors explicitly introduce a constraint to

account for the regulatory standard in the linear programming formulation. There is no

discussion about the presence of any technological dependence between the desirable

and the undesirable outputs.

In the case of certain transformation processes, it is possible that the Decision-

maker knows a priori a standard or an achievable relationship with regard to the

desirable and the undesirable outputs. The Decision-maker would then set this

relationship as a target to be achieved. This is driven by the existence of a technological

relationship between the desirable and the undesirable outputs and that he/she can

explicitly determine the relationship in the form of a linear dependence. A typical

example for this can be found in the transformation process in the chemical industry.
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According to a given chemical process, let us assume that along with the required

product, there is also a waste product. By increasing the amount of the required product

being produced, one will end up with a proportional increase in the waste product as

well.

3.1.1. One Desirable output – One Undesirable output

Figure 3.1 Linear Dependence relationship

Let us assume that A through E are the observed DMUs as shown in the Figure

3.1. These DMUs are plotted in a desirable-undesirable output space pOq. Let RR’ be

the line representing the technological relationship between the desirable and the

undesirable output. Here ‘q0’ is the residual amount of the undesirable output that would

be produced without any production of the desirable output.

A typical example of observing such a residual amount of the undesirable output

is the printing of papers in the Pressroom at the Washington Post. At the start of any

production run, the presses start with an initial amount of waste papers being printed.

This is often due to one or more reasons. One such reason is due to excess or

insufficient ink applied onto the plates. This causes the papers that are printed to be

q

p
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R’

q0

Slope 1/c
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blotted with ink in the former case. In the latter case, the text printed on the paper is too

light to read. Either of these requires the attention of the Pressroom personnel to attend

to the inking process and rectify it. The presses usually are in running state and are not

stopped for any rectification of the inking process. Due to not stopping during this time,

the presses print some paper that need to be discarded. Only after the rectification, good

papers start to be printed. Hence we see that initially there is a residue of waste when

the number of good papers produced is zero.

‘1/c’ is the slope that represents the gradient of the linear relationship between

the desirable and the undesirable outputs after the initial residual amount. Here ‘c’

represents the amount of undesirable output that can be produced for every unit of the

desirable output. Again in the case of the Washington Post Pressroom example, the

Quality Control person will have a rate of c = 0.003. This means that for every 1000 good

papers printed, 3 bad papers can be printed.

The decision maker would expect all the DMUs to lie to the north-west of the line

RR’ (like DMU A), meaning that each of the DMU need to be producing equal or greater

amount of the desirable output than that determined by the line RR’ for a given amount

of undesirable output. Or in other words, each DMU should produce equal or lesser

amount of the undesirable output than that determined by the line RR’ for a given

amount of desirable output. Hence typically the requirement would have the following

form,

But in reality some of the DMUs that are not operating as required would end up

lying on the south-east side of the line RR’ such as DMUs B, C, D and E in Figure 3.1.

The decision-maker would also be interested in determining the efficiency score in the

outputeundesirablofamountsidualq

outputdesirableofAmountp

iprelationshthedepictinglinetheofSlopec

outputeundesirablofAmountq

where

qcpq
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presence of the interdependency and the extent to which this relation binds the

production process. To take into account these issues, the previously defined

technological relationship needs to be incorporated into the model in such a way that

targets that are set for the non-efficient DMUs need to satisfy the technological

dependence requirement. This can be done by determining hypothetical DMUs that lie to

the northwest of the line RR’ for the purpose of comparison.

By this procedure of incorporating the new constraint, one ensures that whenever

the efficiency of a DMU is evaluated, it is compared to DMUs (real or hypothetical) on or

to the northwest of the line RR’. This step might increase the reference set (peers) of the

DMUs. This is because, by adding the new constraint, we will be comparing each DMU

with a hypothetical or an observed DMU that is efficient and satisfies the constraint as

well.

Introduction of this technological dependence relation into the model would bind

the production process and one can complete a sensitivity analysis as to whether the

evaluation scores change dramatically. This is possible by the comparison of the

efficiency scores before and after the introduction of the relation.

3.1.2. Nomenclature

In the previous section we discussed in detail the dependence of a single

desirable output and single undesirable output. We also looked at the intuition behind

the inclusion of these relations into the model. Here, let us start with the required

nomenclature for the general case and the model formulations explained later in this

Chapter.

Let us assume that a set of DMUs j={1,…J} use a set of x inputs to produce y

outputs out of which p are desirable and q are undesirable.
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The subsets p and q of set y are mutually exclusive and collectively exhaustive of

the set y.

The technology set T consists of all vectors (x, y) i.e.,

Assumptions on the set T:

Ø The set T is a closed set.

Ø The set of inputs x and the set of desirable outputs p are strongly or freely

disposable.

Ø Weak disposability of the undesirable outputs is assumed.

If (x, y) ∈ T and 0 ≤ δ ≤ 1 then (x,δy) ∈ T

Ø Null-jointness

If (x, y) ∈ T where y = (p, q) and q = 0 then p = 0

3.1.3. Dependence in a multiple outputs scenario

Using the equation in 3.1, the single desirable single undesirable output case for

a set of j=1,2,…J DMUs, the relationship is

RN

R
R

N
N

M
M

qpy

qqqq

pppp

xxxx

+
+

+

+

+

ℜ∈=

ℜ∈=

ℜ∈=

ℜ∈=

),(

),,(

),,(

),,(

21

21

21

K

K

K

(3.2)

)},(:),{( qpyproducecanxyxT == (3.3)

0

1 1

qpcq
J

j

J

j
jjjj +≤∑ ∑

= =

αα (3.4)



55

When the value of ‘c’ is forced to zero by the decision-maker, then the above

inequality reduces to

which is the equivalent of ‘Qz ≤ qrk’ as given by Zofio and Prieto (2001)

Here we take a step further to account for the relationships between each of the

undesirable outputs with each and every desirable output.

Summing up all the inequalities in 3.6,

The inequality 3.7 can be reduced further and in its generalized sense (n –

desirable and r – undesirable outputs) takes the form as below in the inequality 3.8

The relationship as such is given by the parameters crn and qr
0. Since the

parameters are known, these are applied into the constraint. The values of c represent

the gradients of each of the desirable outputs in relation to each of the undesirable
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outputs. Hence it is a matrix of dimension rxn. The intercepts on each of the undesirable

output axes are given by values of q0. It is a matrix of dimension r.

The inequality in 3.8 thus puts forth the constraint that the hypothetical DMU

used for the comparison, cannot have an amount of the undesirable output that exceeds

the amount determined by the expression on the right hand side of the inequality. The

value of this expression on the right hand side is in turn determined by the values of the

parameters. This constraint is applied to each one of the undesirable outputs.

The inequality developed in this section can be incorporated into models that are

used for efficiency measurement. In the next few sections, we will modify the Index

number approach developed by Fare et al. (2000) and the Hyperbolic approach

originally introduced by Fare et al. (1985) and recently modified by Zofio and

Prieto(2001).

3.1.4. Interdependency Incorporated in the Hyperbolic Efficiency

Measurement Model

The modified hyperbolic approach for the measurement of efficiency by Zofio and

Prieto (2001) as explained in Chapter 2 looks at the expansion desirable outputs by a

factor θ and a contraction in the undesirable outputs by a factor θ.

Here we apply the inequality that we developed in 3.8 as a constraint to the

model with weak disposability assumption only. It can similarly be incorporated in the

model with the strong disposability assumption.

The formulation is as in 3.9 below.
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Model A:

The linear program 3.9 is in the envelopment form, where together with the

scores of the individual DMUs, the weights of the peers are also determined. As

explained before in Chapter 2, the weights of the peers determine the extent to which

each of the other DMUs are important in coming up with a hypothetical DMU on the

efficient frontier for the purpose of comparison with the DMU being evaluated. It can be

seen that, θ′ is the factor of increase of the desirable outputs and the decrease of

undesirable outputs. The objective function looks at maximizing the factor θ′.

The first three constraints are similar to the constraints from the original

formulation by Zofio and Prieto(2001) (refer to Chapter 2). The set of αj are the weights

of the peers. The remaining variables are as mentioned in the nomenclature.

The last constraint is effectively the difference between the original model by

Zofio and Prieto(2001) and the model described here. The inclusion of the additional

constraint accounts for the existence of a previously known relationship between the

desirable and the undesirable outputs. This relationship as explained before is an ideal

and expected linear relationship. The effect of the ideal performance relationship can be

Jj

Jj

Rrqpcq

Mmxx

Rrqq

Nnpp

ts

j

r

J

j

N

n

J

j
njjrnrjj

J

j
mjmjj

J

j
rjrjj

J

j
njnjj

,...2,10,

,...2,1

,2,1

,2,1

,2,1/

,2,1

..

max

0

0

1 1 1

1

1

1

0

0

0

=∀≥′
=

=∀+≤

=∀≤

=∀′=

=∀′≥

′

∑ ∑ ∑

∑

∑

∑

= = =

=

=

=

αθ

αα

α

θα

θα

θ

K

K

K

K

(3.9)



58

studied by computing the ratio, θ′ /θZ where, θ’ is the factor of increase of the desirable

and the decrease of the undesirable outputs.

3.1.5. Interdependency incorporated in the Index number approach

The index number approach developed by Fare et al. (2000) as explained earlier

is a two step approach to determine the efficiency scores. Each step computes an index

number. The first step determines the quantity index of desirable outputs and the

second, the quantity index of undesirable outputs. The overall environmental

performance index is given by the ratio of these two indices.

The inequality constraint can also be incorporated into this model as below in

3.10

Model B:

Desirable outputs:

(3.10)
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Undesirable outputs:

The assumptions for the above two models 3.10 and 3.11 are weak disposability

of the undesirable outputs; i.e. the undesirable outputs can be reduced only when

accompanied by a proportional reduction in the desirable outputs.

The two models have the additional constraint incorporated that modifies the

computed score of the DMUs accounting for their performance in the presence of the

ideal relationship. The desirable output and the undesirable output quantity indices are

computed as in Chapter 2 with respect to a specific reference DMU and then the overall

environmental performance index is given as the ratio of the desirable output quantity

index to the undesirable output quantity index.

So far we discussed the computation of the efficiency scores in the presence of

interdependencies of the desirable and the undesirable outputs that we have known a

priori. In the next section we will look at a modified approach that helps the decision-

maker to determine the actual interdependency.

(3.11)
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3.2. Determination of the interdependencies

The original formulation by Charnes et al. (1978) was developed to determine the

efficiency score of the transformation process associated with the DMUs. It evaluated

the performance of the DMUs by computing scores that were based on the amount of

resources used and the amount of outputs produced.

Here we deviate from the basic intuition of the transformation process and come

up with a different type efficiency score based on the relationship between the desirable

and the undesirable outputs. The intuition arises with the basic assumption that a linear

relationship exists between the two types of outputs. Using this assumption, a different

type of efficiency score ρ is defined as below.

ρ =

The next question that needs to be answered is a way to compute the ideal

amount of the desirable output. This can be done by going back to the linearity

assumption used to determine the ideal amount of desirable output using the observed

amount of undesirable output. It can be given as in 3.13 below.

Ideal amount of desirable output = aq + p0

where,

a – slope of the gradient of the relationship between the desirable and the undesirable

output

p0 – the intercept with the desirable output axis

Here, a and p0 are the variables that need to be determined. These are

parameters and a parallel could be drawn to the weights for the inputs and the outputs in

the original CCR model by Charnes et al. (1978). Then based on the definition, the

efficiency score can be given as

Observed amount of desirable output

Ideal amount of desirable output
(3.12)
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The above fraction can take any value between 0 and 1. When the value is one,

the DMU is environmentally efficient. As the observed amount of the undesirable output

p decreases from the ideal value, the score decreases from one.

Using the expression in 3.14, a linear program can be formulated to compute the

efficiency score of each DMU considering the desirable and the undesirable outputs.

But, definitely, the efficiency score thus computed would give us insight on how the DMU

is performing with respect to the desirable and the undesirable outputs alone. This does

not account for the input performance of the DMU  in relation to other DMUs.

Typically, assuming the presence of J DMUs, the parameters will be determined

using the linear program and the DMU will be given the freedom to assign values to

parameters that will give a score as close to one as possible. The constraint on the

parameters will be that if the parameters are used to compute an equivalent score for

any of the DMUs, the score should not fall below one. Hence the program is formulated

as below in 3.16.

In the presence of N desirable outputs and R undesirable outputs, the linear

program is modified and the takes the form as in 3.17.
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Model C:

The above-formulated model gives an efficiency score based on the performance

of the DMUs as explained before. Also by solving the above model, one can get values

for the parameters for each of the DMUs. These parameters are determined in such a

way so as to maximize the performance of each DMU. One will end up with J sets of

parameter values from the model. This would give insight into the technological

interdependence that exists between the desirable and the undesirable outputs. Based

on this, the decision-maker will be able to set new targets for the DMUs in future.

Further, these can be used as a correction measure to modify or alter earlier targets that

are set based on technological interdependence. It also gives best possible relationships

between the various desirable and undesirable outputs in the form of hyperplanes.

So far the models developed and discussed have been non-goal programming

approaches to incorporate the effects of undesirable outputs. The last model formulated

looked at the performance based on only the desirable and the undesirable outputs. We

have not addressed the problem when considering the inputs. In the next section, we will

look at models that include the inputs in the measurement process using a preferential

weight structure.
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3.3. Modified Approach to Incorporate Desirable and Undesirable

Outputs with a Preferential Structure

As explained in Chapter 2, Thanassoulis and Dyson (1992) formulated a weight-

based preferential structure model that would allow a differential degree of importance to

be attached to the potential changes of the individual input or output levels. In this

section we develop a modified model based on the preferential weight structure that will

incorporate the increase of the desirable outputs and the decrease of the undesirable

outputs with preferential weights attached to them.

The model is as shown in 3.18

Model D:

Unlike the hyperbolic approach initially developed by Fare et al. (1989) and

modified by Zofio and Prieto (2001), the basic structure of the model developed in 3.18

allows varying amounts of increase of the desirable outputs and decrease of the

undesirable outputs. Compared to the index number approach by Fare (2000), here both

the increase of the desirable outputs and the decrease of the undesirable outputs are

accounted for in the same model. Also it can be seen that the model in 3.18 has σ and ω

in N and R dimensions respectively. This means that the model has a non-radial

structure. The model does not necessarily require increase (decrease) with respect to

the desirable (undesirable) outputs to be in the same proportion. Hence the above model
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could be used to set targets in the context of a generalized preferential structure over

potential changes to desirable-undesirable output changes.

σn is the proportional increase in the nth desirable output and ωr is the

proportional decrease in the r th undesirable output. A DMU will be efficient if,

σn
* = ωr

* = 1 ∀ n and r

The above approach does not look at the changes in the inputs as a contribution

to the overall performance. Hence the model needs to be modified in a way to account

for the performance of the DMUs with respect to all the three types of variables- inputs,

desirable outputs and undesirable outputs. In the next section, we look at a model that

addresses this issue.

The values of the weights w in the objective function are set by the decision-

maker based on experience and the requirements. The values of these represent the

relative importance of one output (desirable or undesirable) with respect to the rest of

the variables.

3.4. A Goal Programming approach

The Goal Programming approach in DEA is a method formulated by

Athanassopoulos (1995) to account for issues in the Thanassoulis and Dyson (1992)

model explained in Chapter 2. The model explained in this section minimizes the slacks

associated with the inputs, desirable and undesirable outputs.
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Model E:

The model in 3.19 has a Goal programming structure because of the structure of

the objective function, where the overall target is to minimize any inefficiency associated

with any of the variables. This is a modification of the model explained in Chapter 2. The

model gets to the frontier by minimizing the positive and negative deviational variables

associated with the inputs, desirable and the undesirable outputs. The s are the

deviational variables. Each input or desirable output or undesirable output has one

positive and one negative deviational variable associated with it.

This model is different from the rest of the models developed in this Chapter

because, unlike other models, this model looks at improving the performance by

considering the inefficiency with respect to all the three different types of variables. The

w are the weights associated with the deviational variables to account for relative

importance in the improvement of the performance respective variables. The values of

these weights again are determined by repeated solving of the model and by

experience.
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CHAPTER 4. Application, Results, And Discussion

In this chapter, we illustrate the four formulations developed in Chapter 3 for the

treatment of undesirable outputs. We do this by applying them to three data sets, two

from the DEA literature and another one collected with the purpose of this research. The

results obtained from other models will be used to compare the performance of the

formulations developed here. Table 4.1, at a glance, provides information about the

source of the data set used for illustrating each model.

Whenever possible, the models developed were applied to the same data sets

used in the literature to illustrate the basic formulations that we have modified. This is

the case for models A and B, which were compared to their corresponding models in the

literature  models L1 and L2. As model C presents a formulation for the determination

of interdependencies that has not been attempted, the results from this formulation was

not compared to any other. Model D was compared to Fare’s index number approach

model, as both have individual measures for capturing inefficiency relating to the

desirable and undesirable outputs. Model E is compared to models L1 and L2 since both

formulations give also a measure of the slacks.
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Model Source of Data Set Model to be compared

to

Model A:

Interdependency incorporated

in the Hyperbolic Efficiency

Measurement Model (see

section 3.1.4)

Data from the manufacturing

industries of 14 OECD

countries

Model L1:

Hyperbolic Efficiency

Measurement Model —

Zofio and Prieto  (2001)

Model B:

Interdependency incorporated

in the Index number approach

(see section 3.1.5)

Data from the manufacturing

industries of 14 OECD

countries

Model L2:

Index number approach

—Fare et al. (2000)

Model C:

Determination of

interdependencies (see

section 3.2)

Undesirable Outputs in

Efficiency Valuations —Scheel

(2001)

Data from the manufacturing

industries of 14 OECD

countries

Model D:

Modified approach to

incorporate desirable and

undesirable outputs with a

preferential structure (see

section 3.3)

Data from the manufacturing

industries of 14 OECD

countries

Model L2:

Index number approach

—Fare et al. (2000)

Model E:

Goal Programming Approach

to incorporate undesirable

outputs  (see section 3.4)

Data from the manufacturing

industries of 14 OECD

countries

Newspaper print production

data 2001

Model L1:

Hyperbolic Efficiency

Measurement Model —

Zofio and Prieto  (2001)

Table 4.1 - Sources of Data Sets for Illustrating the Models for the Treatment of

Undesirable Outputs.
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This chapter is divided into two sections. The first section discusses the available

data sets. The second section presents the application of each of the five types of

models to the data sets described. Finally, this section is concluded by comparing the

results of each model with those of the corresponding formulations found in the

literature.

4.1. Data Sets

Three data sets are used to compare the performance of the developed

formulations against published results from other models. Comparisons against results

obtained from applying other models in the literature to these data sets are also

performed. The first two data sets describe production from a macro-economic

standpoint, since they describe countries. The third data set gives a micro-economic

description of a production process. The different character of the data sets illustrates

the applicability of the models at different levels and for different purposes.

A short description and background information of each data set follows.

4.1.1. Data from the manufacturing industries of 14 OECD countries

Zofío and Prieto (2001) analyzed the effects of regulatory standards on

production, and the limits beyond which production is impossible for different regulatory

scenarios on CO2 emissions. They used data from the Organization for Economic

Cooperation and Development (OECD)'s manufacturing industries. The authors did not

publish the data but provided the data set for our use in the course of the present

research.

This data set contains two inputs, one desirable output and one undesirable

output for 14 countries.  Table 4.2 presents these variables and some descriptive

statistics. The actual data tables are included in Appendix I.
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Variable Type of
variable

Unit Mean Standard
Deviation

Min Max

Production Desirable
Output

Millions of
US$

558555.6
7

797443.81 32236.07 2861273.00

CO2

emissions
Undesirable
Output

Millions of
Tons

133.38 228.43 8.61 886.25

Capital
Stock

Input Millions of
US$

248274.4
7

320755.45 22015.83 1152700.00

Labor Input Thousands 3969.66 4997.76 271.80 17496.00

Table 4.2 - Variables and Descriptive Statistics manufacturing industries of 14

OECD countries

4.1.2. Undesirable Outputs in Efficiency Valuations —Scheel (2001)

Scheel (2001) applied the efficiency concept to selected European economies

adopted from Statistisches Bundesamt (1997). The data set has one input, one

undesirable output and one desirable output for 13 countries as shown in Table 4.3. This

author acknowledges a high correlation between the desirable and undesirable output of

0.95.

Variable Type of
variable

Unit Mean Standard
Deviation

Min Max

Gross
Domestic
product
(GDP)

Desirable
Output

DM 901.15 1023.00 92.20 3457.40

NOx

emissions
Undesirable
Output

Millions of
Tons

174.92 186.00 24.00 612.00

Employees Input Thousands 11120.85 11173.49 1262.00 35782.00

Table 4.3 - Variables and Descriptive Statistics —Scheel (2001)

4.1.3. Newspaper print production data 2001

The Pressroom at The Washington Post will be used as the research site for this

work. Data is being collected to analyze the performance over time of this production

department.
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The Washington Post is the second newspaper in the U.S. in circulation. Each

week the Post Circulation Department oversees delivery of over five million newspapers

to homes, businesses and newsstands.

Unit of Analysis:

The concentration will be only on the “Late Run” production.

There are two possible units of analysis or Decision-Making Units to be studied.

One is the weeks in a year (analyzing the production process on a weekly basis). For

this purpose, the data that is collected daily is aggregated over a week. This is done to

remove any non-homogeneity due to the differences in the production run on different

days of the week. The data can also be aggregated to a monthly basis in case there is a

need to analyze monthly production against weekly production.

A second possible category of DMUs is the daily production of the presses

themselves (a total of four presses) with data of their performance over several days.

The latter is done in this research. Figure 3.5 shows the input-output diagram for

these processes.

Figure 4.1 Input-Output analysis for newspaper Pressroom

Data Collection for Inputs and Outputs:

Data for inputs and outputs has been obtained from the Press Department at the

Washington Post. The Pressroom reports these measures on a regular basis. Table 4.4

presents the available inputs, desirable and undesirable outputs production data. This is

Downtime

Scrap

Day of the week

Production
requirements DMU

Production time
Newspapers
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data that is being collected for a simulation project aimed at identifying bottlenecks and

correcting their causes.

Labor data will not be included in the model because in this application, this

variable is fixed for all runs across all days. Production teams are always the same.

Capital data is not available at this level. Material data might be possible to collect, and

the possible inclusion of the amount of materials input to production each day might be

considered as an additional input. At the moment, though, this data is still not available.

The need to ensure that the measures used in the DEA model reflect the relevant

perspectives of the organization has been emphasized in the literature (Rouse et al.,

1997). The validity of DEA results is often supported by testimony of their usefulness by

managers within the organization. Validation by managers of the variables selected for

analysis is being sought.

The data set corresponds to the production of four presses on Thursday late

night runs for the months of January and February 2001.  In total, there are 32 DMUs.

The data set contains one input, one desirable output and two undesirable outputs. A

description of these variables follows in Table 4.4.

Variable Type of
variable

Unit Mean Standard
Deviation

Min Max

Good
papers

Desirable
Output

Papers 103035.84 22948.88 30981.00 143875.00

Waste Undesirable
Output

Papers 14445.00 759.14 660.00 4600.00

Press
downtime

Undesirable
Output

Minutes 35.81 23.90 0.00 119.00

Pressrun
Time

Input Minutes 147.50 27.88 65.00 205.00

Table 4.4 - Variables and Descriptive Statistics —Newspaper pressroom data
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4.2. Programming and Related Issues

4.2.1. Software used

The software used for the programming and the running of the models is Excel

Standard Solver and Excel Premium Solver Plus V3.5 as an add-in to Excel 97 on a

Windows 2000 platform. The codes and the formulation of the linear programs are

illustrated in Appendix II of this document.

4.2.2. Scaling Issues in the data sets

The data sets described above in section 4.1 have variables that vary in

magnitude. This gives rise to scaling issues which is taken care of by re-scaling. The

software used, causes the coefficients to be re-scaled across both rows and columns, so

that all matrix elements are of a similar scale. The scaling problem is very unlikely to

occur with Excel 97 or with the enhanced Solver product, especially because of the use

of a scaling option. These Solvers include both the ability to automatically re-scale linear

models internally, and a more robust test for linearity, part of which is performed at the

beginning of the solution process, rather than at the end by earlier versions of excel and

the standard solvers that are packaged with Microsoft Excel. We do not lose any

information by re-scaling.

In section 4.2 the models developed and existing models in the literature are

applied to the data sets here described.

4.3. Application Results

The following sections present the results obtained for the developed formulations

and present statistical comparison of these results against formulations existent in the

literature as explained in Table 4.1.

4.3.1. Interdependency incorporated in the Hyperbolic Efficiency

Measurement Model

The formulation to model interdependency in the hyperbolic efficiency

measurement model (Model A) was applied to two sets of data and compared to Zofío

and Prieto's hyperbolic efficiency measurement model (Model L1).



73

The results for each one of the data sets are shown in the Table 4.5 and 4.6

below.

Results from Data from the Manufacturing Industries of 14 OECD Countries:

Model A and Model L1 were applied to Zofío and Prieto (2001) data set. The

results as well as the statistical analysis performed in both results are explained here.

DMU Efficiency score from
model A

Efficiency Score from
model L1

Effect of Interdependency
Eff.(A)/Eff.(L1)

CAN 1.0000 1.0000 1.0000
USA I.S. 1.0000 I.S.
JAP I.S. 0.9565 I.S.
AUS 0.8331 0.8331 1.0000
BEL 0.7371 0.7338 1.0045
FIN 0.6662 0.6285 1.0600
FRA 0.8948 0.8141 1.0991
GER 0.9183 0.9127 1.0061
GRE 0.6368 0.5894 1.0804
ITA 0.9497 0.8781 1.0815

NOR 0.7785 0.7252 1.0735
SWE I.S. 1.0000 I.S.
UK 0.9159 0.7623 1.2015

SPA 0.8362 0.8071 1.0361
I.S. – Infeasible Solution

Table 4.5 Comparison of efficiency scores from model A and model L1

Model A Model L1
Mean 0.833 0.831
Standard Error 0.035 0.036
Median 0.836 0.824
Standard
Deviation

0.117 0.135

Sample Variance 0.014 0.018
Range 0.363 0.411
Minimum 0.637 0.589
Maximum 1.000 1.000
Count 11 14
Table 4.6 Descriptive Statistics for the efficiency scores in Table 4.5



74

By applying the interdependency Model A, 9 DMUs experienced an increase in

their efficiency score. Two DMUs remained constant and the model did not find a

feasible solution for three of them.

Figure 4.3 Comparison of Efficiency scores from Model L1 and Model A

It is clear that some countries might not be affected by the additional constraint at

all, like CAN and AUS. These results are similar to the ones obtained by Zofio and Prieto

(2001).

Under the strong disposability assumptions for the model A, for some countries

the hyperbolic model cannot reduce the CO2 emissions by the amount in the restriction

because no production would be possible unless at a lower level of efficiency. This can

be seen in the case of USA, JAP and SWE where there is no feasible solution.

For the rest of the DMUs, there is an increase in the efficiency score. This might

be explained by the fact that Model L1 is already a constrained model, where the search

path is restricted to the hyperbolic curve. When adding an additional constraint to model

the interdependencies, the solution space gets further reduced. Due to this, either more

DMUs fall on the frontier or their path to the frontier gets reduced. This is the justification

for the average increase in efficiency scores.
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While this feature might seem a disadvantage, it really is an advantage since by

incorporating real dependencies between good and bad output we are constraining the

solutions to those DMUs that operate under this relationship.

4.3.2. Model B: Interdependency incorporated in the Index number

Approach (see section 3.1.5)

The formulation to model interdependency in the index number model (Model B)

was applied to Zofío and Prieto's sets of data and compared to Fare's Index number

approach (Model L2). The results for each one of the data sets are shown below in

tables below.

Results from Data from the manufacturing industries of 14 OECD countries:

Model B and Model L2 were applied to Zofío and Prieto (2001) data set. The

results as well as the descriptive statistics in both results are displayed in Tables 4.7 and

4.8 below.

DMU Efficiency score from
model B

Efficiency Score from
model L2

Effect of Interdependency
Eff.(B)/Eff.(L2)

CAN 0.6171 0.6173 0.9997
USA 0.9686 1.0000 0.9686
JAP 0.9565 1.0000 0.9565
AUS 0.3226 0.3226 1.0000
BEL 0.2730 0.2736 0.9978
FIN 0.2743 0.2880 0.9524
FRA 0.6625 0.7197 0.9205
GER 0.7994 0.8034 0.9950
GRE 0.2839 0.3040 0.9339
ITA 0.7072 0.7581 0.9329

NOR 0.4054 0.4312 0.9402
SWE 1.0000 1.0000 1.0000
UK 0.6740 0.8009 0.8416
SPA 0.6008 0.6203 0.9686

Table 4.7 Comparison of efficiency scores from model B and model L2
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Model B Model L2
Mean 0.610 0.639
Standard Error 0.071 0.073
Median 0.640 0.670
Standard
Deviation

0.265 0.274

Sample Variance 0.070 0.075
Range 0.727 0.726
Minimum 0.273 0.274
Maximum 1.000 1.000
Count 14 14
Table 4.8 Descriptive Statistics for the efficiency scores in Table 4.7

Before comparing the results from the models B and L2, we need to note that

model L2 has different assumptions from those of model L1. Further, due to the two-

stage evaluation in model L2 the scores are different and cannot be compared to model

L1. DMU CAN, which was efficient in model L1, turned out to have an efficiency score of

only 0.6173. But at the same time, DMUs USA and SWE remained efficient in both

model results.

Figure 4. 3 Comparison of Efficiency scores from Model L2 and Model B

In fact, by applying the interdependency Model B, in comparison with model L2,

12 DMUs experienced a decrease in their efficiency score. Two DMUs had no change in

their efficiency scores out of which one was inefficient and the other was efficient.
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This might be explained because the original model L2 has weak disposability

assumption and by incorporating the interdependencies, model B presents strong

disposability and the additional technological relationship constraint envelops the data

more loosely, thus decreasing the efficiency scores.

When modeling for the interdependencies one can think that units that do not

follow the pre-determined relationship will be penalized. The score of the DMU under

analysis depends on the added constraint, which determines that the undesirable output

of the hypothetical DMU should be less than or equal to the calculated value of the

undesirable output. This calculation is done using the interdependency relationship.

4.3.3. Results from Model C: Determination of interdependencies

The formulation to determine interdependencies (Model C) was applied to the

data set from Scheel (2001). The results for each one of the data sets are shown in the

tables below.

Results from the data in Undesirable Outputs in Efficiency Valuations —Scheel

(2001):

Model C was applied to Scheel (2001) data set. The efficiency score obtained

from this model evaluates the performance of DMUs considering the production of

desirable outputs vs. undesirable outputs, without considering input performance.  As

such, the results from this model cannot be compared to others for validation purposes.

Insights will be obtained from the analysis of a sub-set of the data. For this purpose, the

data set has been included in Table 4.9.

Model C produces the equation's parameters —the slope and intercept —of the

line that depicts the relationship between desirable and undesirable outputs.  Based on

those parameters, it is possible to calculate the predicted value of the desirable output.

The difference of the predicted to the observed value can provide insights about the

validity of model C. The results are in Table 4.10 below.
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DMU GDP NOx Employees
Predicted
value of

NOx

%
Reduction

in NOx

B 385.7 76 3793 55.7 26.74
D 3457.4 612 35782 461.2 24.64

DK 248.2 61 2601 37.7 38.27
E 802.4 151 12027 110.3 26.96
F 2204.0 294 22057 294.0 0.00

GB 1579.3 456 25936 210.7 53.80
GR 163.8 33 3821 26.6 19.41

I 1560.9 295 19943 208.2 29.42
IRL 92.2 24 1262 17.2 28.29
NL 566.9 116 6782 79.4 31.53
P 144.0 24 4417 24.0 0.00
S 330.9 78 4134 48.5 37.82
SF 179.2 54 2016 28.6 47.01

Table 4.9. Scheel's data set and predicted value for desirable output

DMU Efficiency score from model C
B 0.7133
D 0.7536

DK 0.5822
E 0.7210
F 1.0000

GB 0.4620
GR 0.7702

I 0.7058
IRL 0.6403
NL 0.6702
P 1.0000
S 0.5951
SF 0.4806

Table 4.10 Efficiency Scores from Model C

Interdependency equation:

Slope Intercept

7.62963 39.11111
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Representing the results obtained graphically, we can see the variation in the

performance across the different countries in Figure 4.4.

Figure 4. 4 Model C - Efficiency scores

The lowest efficiency score is the one for DMU GB (0.46). A brief observation of

the data uncovers that GB is producing 1579.3 units of GDP and 456 units of

undesirable output (NOx).  For the amount of desirable output that GB is producing it

should produce 53.8% less of NOx to become efficient —which in turn is the highest

difference of the data set.

Conversely, the highest efficiency scores are for DMU P and DMU F. Those

DMUs produce the exact predicted amount of desirable output relative to the amount of

undesirable output.
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Model C
Mean 0.700

Standard Error 0.045
Median 0.706
Mode 1.000

Standard
Deviation

0.164

Sample Variance 0.027
Range 0.538

Minimum 0.462
Maximum 1.000

Count 13
Table 4.11 Descriptive Statistics for the efficiency scores in Table 4.10

Comparing the results published by Scheel (2001) to the ones obtained, in

Scheel's paper DMU P and F are also efficient on an undesirable output oriented non-

separating measure.  GB is also the lowest efficiency score (0.462). DMUs D and SF are

also ranked as 1 with reduced amounts of undesirable outputs. These last results do not

compare to Model C since those DMUs are deemed inefficient. This probably can be

explained due to the inclusion of inputs in Scheel's formulation. DMU SF, for example,

produces more desirable output than DMU GR but using a lot lesser inputs.

4.3.4. Model D: Modified approach to incorporate desirable and

undesirable outputs with a preferential structure

The formulation to incorporate desirable and undesirable outputs with a

preferential structure (Model D) was applied to Zofío and Prieto's sets of data and

compared to Fare's Index number approach (Model L2).

The results for each one of the data sets are shown in tables below.

Results from Data from the manufacturing industries of 14 OECD countries:

Model D and Model L2 were applied to Zofío and Prieto (2001) data set. Both

models look at proportional increase of desirable outputs and proportional decrease of

undesirable outputs and compute a score based on these two proportions. The scores

as well as the statistical description are in Table 4.12 and 4.13 below.
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DMU Efficiency score from
Model D

Efficiency Score from
Model L2

CAN 0.4340 0.6173
USA 0.5456 1.0000
JAP 0.8775 1.0000
AUS 0.4202 0.3226
BEL 0.4239 0.2736
FIN 0.4940 0.2880
FRA 0.8138 0.7197
GER 0.8758 0.8034
GRE 0.5452 0.3040
ITA 0.7192 0.7581

NOR 0.5552 0.4312
SWE 1.0000 1.0000
UK 0.8842 0.8009

SPA 0.7444 0.6203
Table 4.12 Comparison in efficiency scores from model D and model L2

Model D Model L2
Mean 0.667 0.639
Standard Error 0.054 0.073
Median 0.637 0.670
Standard
Deviation

0.200 0.274

Sample Variance 0.040 0.075
Range 0.580 0.726
Minimum 0.420 0.274
Maximum 1.000 1.000
Count 14 14
Table 4.13 Descriptive Statistics for the efficiency scores in Table 4.12

By applying the interdependency model D four DMUs experienced a decrease in

their efficiency score while nine DMUs experienced an increase. One DMU remained the

same (i.e. efficient)

The maximum difference in efficiency scores is for DMU USA, which becomes

inefficient to a great extent in model D (0.546). This can be explained by the fact that in

model L2, DMU USA dominates while in model D DMU JAP is the peer for USA with a

weight of 1.57. Further, we can see that JAP is the only DMU comparable and has lot

lesser undesirable outputs (see data in Appendix I and codes for the formulations in

Appendix II)
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4.3.5. Model E: Goal Programming Approach

The formulation to incorporate desirable and undesirable outputs using goal

programming (Model E) was applied to Zofío and Prieto (2001) data set. In the

application of the models to the data sets, the weights of the slacks were assumed to be

equal to one. This formulation does not provide efficiency scores but identifies the

shortfalls and the excesses of the corresponding variables. The results are shown below

in tables below.

Results from Data from the manufacturing industries of 14 OECD countries:

Model E was applied to Zofío and Prieto (2001) data set. It is interesting to note

that in the goal programming approach, there is no factor to account for the proportional

increase or decrease to approach the frontier as in the case of all other models

discussed here. Furthermore, all the inefficiency associated to the variables is captured

in the slacks.  The results (slacks for all variables) were compared to the slacks resulting

from the application of the model in Zofío and Prieto (2001) in the table below. The

results are as follows:

DMU Output
Shortfall

CO2

Excess
Capital
Stock

Excess

Labor
Excess

CAN 191.2476 37.01446 0 0
USA 0 0 0 0
JAP 0 0 0 0
AUS 24167.3 12.48727 0 0
BEL 32977 0 0 0
FIN 22551.76 0 1222.782 0
FRA 73189.28 0 20474.84 0
GER 76350.36 0 0 0
GRE 19152.13 0 3251.303 0
ITA 22288 0 138606.5 0

NOR 9272.425 0 4982.642 0
SWE 0 0 0 0
UK 58713.55 0 62614.8 0
SPA 48409.1 0 0 0

Table 4.14 Results obtained from Model E: Goal Programming Formulation
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DMU Output
Slack

CO2
Slack

Capital
Stock
Slack

Labor
Slack

CAN 0 0 0 0
USA 0 0 3002.94 0
JAP 0 0 14553.58 0
AUS 0 0 0 0
BEL 0 12.30981 0 0
FIN 0 7.348661 1274.532 0
FRA 0 9.949562 25750.21 0
GER 0 9.885347 0 0
GRE 0 5.692634 3286.358 0
ITA 0 2.737925 138888.1 0

NOR 0 2.27793 5011.813 0
SWE 0 0 636.4059 14.356
UK 0 6.802956 67511.14 0

SPA 0 8.480665 516.0885 0

Table 4.15 Results obtained from model L1: Zofío and Prieto (2001)

The above comparison is done with the results obtained from Model L1 and not

Model L2 because of the fact that Model L2 is a two stage approach and the

inefficiencies are appropriately captured in the slacks separately in the two stages. This

is unlike Models E and L1, where the slacks are obtained from a single stage.

By applying the goal programming approach of model E the slacks of the

desirable output are increased for 11 DMUs while the slacks for CO2 in the goal

programming case are zero for 12 DMUs while Model L1 gives values to 9 of them. This

is because Model L1 captures part of the inefficiencies in the desirable outputs by way of

the factor and the rest through the slacks for each of the variables. On the other hand,

Model E captures all of the inefficiencies in the slacks.

The only case where the slacks are comparable is on the input side, where the

slacks are very close (see for example DMU FIN that has a value of 1274.5 in Model L1

while in Model E has a value of 1222.7. The same for DMU FRA with value 25750 vs.

20474. Similar values have been obtained for six DMUs in both models while four DMUs

had zero slack in both models.  Four DMUs had substantially different values.

Further, the slacks for Labor are zero for most DMUs in both models.
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Results from Newspaper print production data 2001:

To illustrate the applicability of the goal programming formulation, Model E was

applied to the newspaper print production data set. In the application here, the weights

for the slacks are assumed to be one.  The results are explained in table 4.16 below.

DMU Output
Deficit

Waste
Excess

Press
Downtime

Excess

Press
Run
Time

Excess
1 0 0 0.0 0
2 23303 0 7.6 0
3 27472 0 34.2 0
4 11430 970 12.7 0
5 18390 0 12.8 0
6 0 0 0.0 0
7 26046 0 22.7 0
8 25420 2763 15.1 0
9 29837 0 11.1 0
10 64976 0 35.6 0
11 41777 0 18.8 0
12 18569 0 11.7 0
13 35964 0 17.1 0
14 49232 0 16.1 0
15 0 0 0.0 0
16 26785 0 15.1 0
17 53482 0 54.6 0
18 38061 327 24.2 0
19 10373 0 8.5 0
20 0 0 0.0 0
21 60551 0 38.3 0
22 32935 0 8.0 0
23 51758 0 33.2 0
24 15029 0 9.9 0
25 0 0 0.0 0
26 29340 1914 116.6 0
27 27198 0 15.4 0
28 40016 0 36.9 0
29 28700 0 38.7 0
30 6570 1123 9.3 0
31 25252 0 25.4 0
32 42825 0 38.2 0

Table 4.16 Results from model E to the newspaper pressroom data
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According to this model, five DMUs do not have any slack in inputs and outputs,

thus they can be considered efficient.  DMU 26 seem to present the greatest amount of

slacks, thus, being the most inefficient. In fact DMU 26 produces less of good papers

(30981 units) with a lot of waste (2660 papers) with the maximum downtime of 119

minutes and utilizing 65 minutes of press run time, which is not high.  Here the

undesirable outputs dominate. The model indicates a slack for the waste as 1914 while

116.6 excess downtime.

DMU 6 has a value of zero for one of the variables  Press Downtime

(undesirable output). In the field of DEA, some researchers feel that this might pose a

problem as this DMU will dominate the rest due to the high efficiency in that dimension

and make all the other DMUs seem to be inefficient. In the application presented in this

research, this does not pose any difficulty in the running of the model. The results show

that, DMU 6 turns out to be efficient, as expected. This is due to the fact that this DMU is

performing efficiently with respect to all the variables  input, desirable and undesirable.

In fact, it does not appear as a peer for any of the DMUs. The peers for all the DMUs are

given in Table 4.17 below.
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DMU Peer
1 None
2 1, 20
3 1,15
4 20
5 1, 15
6 None
7 1, 20
8 20
9 1, 20

10 1, 15
11 1, 20
12 1, 20
13 1, 20
14 1, 15
15 None
16 1, 15
17 1, 20
18 1, 20
19 1, 20
20 None
21 1, 20
22 1, 20
23 1, 20
24 1, 20
25 None
26 20
27 1, 15
28 1, 20
29 15, 25
30 20
31 1, 15
32 1, 20

Table 4.17 Model E Peer set for DMUs

DMU 25 is efficient and appears in the peer set of only DMU 29. DMUs 4, 8, 26

and 30 have only DMU 20 as their peer. All the other inefficient DMUs have two peers in

their peer set.

The Figure 4.4 gives a graphical representation of the Output deficits over the 32

DMUs. In this figure five DMUs have zero Output deficits, namely DMUs 1, 6, 15, 20 and

25. This means that these DMUs are performing efficiently with respect to the desirable

output – Good papers. These five DMUs are the same DMUs that were declared

efficient after analyzing the slacks from all the variables.
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Figure 4. 5 Model E – Output Deficits for the Newspaper Print Production Data

4.4. Implementation of the various Models by the decision-maker

In the case of certain transformation processes, it is possible that the Decision-

maker knows a priori a standard or an achievable relationship concerning the desirable

and the undesirable outputs. Under these circumstances, Model A and Model B can be

used by the decision-maker.

However in many instances, the technological dependence is neither known a

priori nor can be calculated from the process. In such cases, Model C is used to

determine the relationship between the desirable and the undesirable outputs.
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The application of the five models developed for this research has been

illustrated with three different data sets. Several of these models present a different

approach for efficiency evaluations in the presence of undesirable outputs. Some of

these approaches- Models C, D and E are innovative.  For this reason, we developed

the flowchart in Figure 4.6 with the purpose of assisting the decision-maker in the

selection of the most appropriate model for his/her needs.

A validation of the models through comparison with published results was not

always available and or meaningful. However, whenever possible, comparisons were

attempted.
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Figure 4.6.  Flowchart to facilitate the selection of models
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Note: Model D and E need modifications to include technological dependencies
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CHAPTER 5. Conclusion

In this chapter we present the conclusion of this research effort and make

recommendations for future research. The first section summarizes the research of this

thesis. The second section describes the major contribution of this research and the

managerial implications related to the use of the different models developed. The third

section outlines some recommendations for future research.

5.1. Summary

The present research study had two objectives and several sub-objectives: First,

to explore new model formulations for including undesirable outputs in Data

Envelopment Analysis. The goal was to find suitable formulations to address (i) a way of

maximizing desirable outputs while minimizing undesirable outputs in the efficiency

computations; (ii) determine performance measures for the firms in the presence of

predetermined technological dependence between desirable and undesirable outputs;

(iii) develop a new approach that determines the linear dependence of the desirable and

the undesirable outputs and to compute efficiency scores for the firms based on their

performance with respect to the two types of outputs; (v)  to develop a modified model

with a preferential weight structure to set targets for the firms in the presence of the

desirable and the undesirable outputs and finally, to explore the Goal Programming

approach to address the issue of multi-objective problems relating to inputs, desirable

outputs and undesirable outputs.

A second objective was to validate and verify the suitability of the proposed

models.

 The undesirable outputs are an anomaly in the whole set of outputs however

they are a reality given the complete production processes, with different characteristics

from that of the desirable outputs. Because of this characteristic they demand a different

set of assumptions related to the production possibility set and the modeling of the

production process.
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Furthermore, the problem of incorporating undesirable outputs into efficiency

measurement requires to reward units that produce more quantity of desirable outputs

and less quantity of undesirable outputs. This multi-objective nature of the problem

requires the utilization of appropriate techniques to handle those differences.

The effect of managerial or policy decisions/regulations on the transformation

process can be expressed in different forms according to the type of problem and

system being analyzed. It can be the case that a company's policy could limit the amount

of undesirable (bad) output produced even to the detriment of desirable (good output)

maximization goals.

In addition, the classical DEA formulation faintly recognizes the effect of the

production process on the environment or the impact that the surroundings have on the

performance of the system. For the purpose of this research, the impact of the operating

environment on the production process is not considered. All formulations have been

developed under the assumption of a black box where the process is isolated from

external influences.

This research attempts to provide ways to approach the issues described above

apart from the known directions in which the problem of modeling undesirable outputs

for efficiency evaluation has been explored so far in the literature. The most known

approaches to handle this problem are:

1. Transformations performed on the undesirable output data so that these could be

considered just as desirable outputs. The transformed undesirable output data is

considered to have the same characteristics as the desirable output data. Scheel

(2001) discussed various transformations that are done on the undesirable output

data.

2. Other ways of including undesirable outputs relate to modifying the underlying

production assumptions. Thus the two different types of outputs are incorporated

differently in the formulation at the modeling stage. In this approach the data do not

need to be transformed. Fare et al. (1989) defines a hyperbolic path to determine a

performance measure. This type of measure attempts to increase the desirable
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outputs and decrease the undesirable outputs in the same model. This approach

involves non-linearity due to the hyperbolic path defined by the model. Fare et al.

(1989) uses a linear approximation to take care of the non-linearity.

3. Zofio and Prieto (2001) came up with a modified model with a transformation of the

same expression proposed by Fare et al. (1989) to overcome the problems with the

linear approximation.

4. Fare et al. (2000) formulated an Index number approach that evaluates the

performance of the firms using two separate models, one in each stage. The first

stage computes an index based on the increase of the desirable outputs and the

second stage based on the decrease of the undesirable outputs. Then an overall

environmental index is computed using the indices from the two stages.

The drawbacks of the transformation approach are that because of the

transformation done to the data set, we might run into problems associated with

convexity and non-linearity. Also, in these cases the framework assumes that the

transformed data has its own meaning while in many real life applications, the

transformation of the data may not make sense.

There are also problems associated with Fare's linear approximation in the

hyperbolic approach that are explained in section 2.7.3 of Chapter 2.

As a result of this research, the following four innovations to the DEA formulation

are presented. We believe these overcome some of the problems and challenges

exposed above:

1. A modification to existing formulations that considers the technological relationship

existing between good and bad outputs.

2. An approach to help the decision-maker to determine this technological dependence

between undesirable and desirable outputs when this is unknown along with the

resulting efficiency performance based on this relationship.

3. A model with a preferential weight based structure for the desirable outputs and the

undesirable outputs;

4. A GoDEA approach to consider multi-objectives for inputs, desirable outputs and

undesirable outputs.
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Results from all four approaches have been compared and recommendations for

their potential applications have been outlined.

The significance of these innovations is clear when real production processes are

observed in detail.

5.1.1. The new models: significance and insights

In the case of certain transformation processes, it is possible that the decision-

maker knows a priori a standard or an achievable relationship concerning the desirable

and the undesirable outputs. The decision-maker would then set this relationship as a

target to be achieved. This is driven by the existence of a technological

relationship/dependence between the desirable and the undesirable outputs and that

he/she can explicitly determine the relationship in the form of a linear dependence. In the

available literature on undesirable outputs there is a lack of discussion about the

presence of any technological dependence between the desirable and the undesirable

outputs.

The decision-maker would also be interested in determining the efficiency score

in the presence of the interdependency and the extent to which this relation binds the

production process. To take into account these issues, the previously defined

technological relationship needs to be incorporated into the model in such a way that

targets that are set for the non-efficient DMUs need to satisfy the technological

dependence requirement. This can be done by determining hypothetical DMUs that lie to

the northwest of the frontier for the purpose of comparison.

By this procedure of incorporating this new constraint, it is made sure that

whenever the efficiency of a DMU is evaluated, it is compared to DMUs (real or

hypothetical) on or to the northwest of the line. This step might increase the reference

set (peers) of the DMUs. This is because, by adding the new constraint, we will be

comparing each DMU with a hypothetical or an observed DMU that is efficient and

satisfies the constraint as well. Hence, some of the non-efficient DMUs need to be

travelling on a longer path to the frontier to satisfy this constraint. Due to this, the



94

procedure might also reduce the efficiency score of some of the DMUs in the observed

set.

The modified hyperbolic approach for the measurement of efficiency by Zofio and

Prieto(2001) as explained in Chapter 2 looks at the expansion desirable outputs by a

factor θ and a contraction in the undesirable outputs by a factor θ.  Here we apply the

dependency inequality that we developed above as a constraint to the model with weak

disposability assumption only. It can similarly be incorporated in the model with the

strong disposability assumption.

Thus, this linear program was formulated in its envelopment form where the

scores of the individual DMUs and the weights of the peers are determined. The weights

of the peers determine the extent to which each of the other DMUs are important in

coming up with a hypothetical DMU on the efficient frontier for the purpose of

comparison with the DMU being evaluated. It can be seen that, θ′ is the factor of

increase of the desirable outputs and the decrease of undesirable outputs. The objective

function looks at maximizing the factor θ′.

The index number approach developed by Fare et al. (2000) as explained earlier

is a two step approach to determine the efficiency scores. Each step computes an index

number. The overall environmental performance index is given by the ratio of these two

indices. We modified this index by incorporating the inequality constraint into this model.

The two models have the additional constraint incorporated that modifies the computed

score of the DMUs accounting for their performance in the presence of the ideal

relationship between desirable and undesirable outputs. The desirable output and the

undesirable output quantity indices are computed with respect to a specific reference

DMU and then the overall environmental performance index is given as the ratio of the

desirable output quantity index to the undesirable output quantity index.

We also look at a modified approach that helps the decision-maker to determine

the actual interdependency between desirable and undesirable outputs. Here we deviate

slightly from the basic intuition of the transformation process and come up with a

different type of efficiency score based on the relationship between the desirable and the

undesirable outputs. The intuition arises with the basic assumption that a linear
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relationship exists between the two types of outputs. Using this assumption, a different

type of efficiency score ρ "good output" efficiency, is defined as the ratio of observed

amount of desirable output over the ideal amount of desirable output.

The ideal amount of the desirable output is compute by going back to the linearity

assumption used to determine the ideal amount of desirable output using the observed

amount of undesirable output. It is given by an equation that contains slope of the

gradient of the relationship between the desirable and the undesirable output plus the

intercept with the desirable output axis. These parameters need to be determined by the

linear program. The efficiency score thus computed give us insight on how the DMU is

performing with respect to the desirable and the undesirable outputs alone. This does

not account for the performance of the DMU with respect to the inputs. This model looks

at the performance based on only the desirable and the undesirable outputs. However,

the formulation can be expanded to include inputs as well in the performance

measurement.

To address the problem when considering the inputs as well we developed a

model to include them in the measurement process using a preferential weight structure

that will incorporate the increase of the desirable outputs and the decrease of the

undesirable outputs with preferential weights attached to them. Here both the increase of

the desirable outputs and the decrease of the undesirable outputs are accounted for in

the same model. In addition, the model has a non-radial structure. Hence this model

could be used to set targets in the context of a generalized preferential structure over

potential changes to desirable-undesirable output changes.

The Goal Programming approach in DEA is a method formulated by

Athanassopoulos (1995) to account for issues in the Thanassoulis and Dyson (1992)

model addressed in section 2.8. The model explained in this section looks at minimizing

the slacks associated with the inputs, desirable and undesirable outputs.

The structure of the objective function has the overall target of minimizing any

inefficiency associated with any of the variables. The model gets to the frontier by

minimizing the positive and negative deviational variables associated with the inputs,

desirable and the undesirable outputs. This model is different from the rest of the models
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developed because, unlike other models, this model looks at improving the performance

by considering the inefficiency with respect to all the three different types of variables.

As a modification to the GoDEA formulation, the dependency constraint of the

desirable outputs to the undesirable outputs could be added to the formulation.

The models developed were applied to three different sets of data. The mains

insights obtained are:

v The hyperbolic approach model L1 is already a constrained model, where the

search path is restricted to the hyperbolic curve. When adding an additional

constraint to model the interdependencies, the solution space gets further

reduced. Due to this, either more DMUs fall on the frontier or their distance to

the frontier gets reduced. While this feature might seem as a disadvantage, it

really is an advantage since by incorporating real dependencies between

good and bad output we are constraining the solutions to those DMUs that

operate under this relationship.

v The original Fare's index number approach model L2, is characterized by a

weak disposability assumption while by incorporating the interdependencies,

Model B presents strong disposability. Furthermore, the additional

technological relationship constraint envelops the data more loosely, thus

decreasing the efficiency scores. When modeling for the interdependencies

one can think that units that do not follow the pre-determined relationship will

be penalized. The score of the DMU under analysis depends on the added

constraint, which determines that the undesirable output of the hypothetical

DMU should be less than or equal to the calculated value of the undesirable

output. This calculation is done using the interdependency relationship. One

could also use the weak disposability assumption for model B.

v Model C produces the equation's parameters —the slope and intercept —of

the line that depicts the relationship between desirable and undesirable

outputs. Some DMUs that in other models are deemed inefficient can

become efficient when applying this model. This probably can be explained
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by the fact that inputs are included in Scheel's formulation, which changes

the case mix and therefore, the frontier.

v By applying the preferential weights structure model D some DMUs

experienced a decrease in their efficiency score while others experienced an

increase as compared to Fare’s Model L2. This is due to the different

mechanisms that both formulations use to arrive to the efficiency score.

Fare’s model calculates the efficiency score for desirable and undesirable

outputs separately, calculating an index. Therefore, the reference set for each

DMU will be different for the desirable outputs as compared to the reference

set for the undesirable outputs. Contrary to that, Model D, calculates the

efficiency score considering both, desirable and undesirable outputs at the

same time, therefore, comparing the DMU to only one hypothetical DMU. The

reference set in this case needs to satisfy convexity assumptions for both,

desirable and undesirable outputs at the same time, therefore, influencing the

efficiency score which might be different than the one calculated in Fare’s

model.

v The Goal programming formulation (Model E) does not provide efficiency

scores but identifies the shortfalls and the excesses of the corresponding

variables. By applying the goal programming approach of model E the slacks

of the desirable output are increased for a number of DMUs while the slacks

for undesirable outputs in the goal programming case are zero for more

DMUs than in Model L1. The only case where the slacks are comparable is

on the input side, where the slacks are very close. Similar values have been

obtained for six DMUs in both models while four DMUs had zero slack in both

models. Four DMUs had substantially different values.
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5.2. Research Contribution and Managerial Implications

This study has contributed to the field of Data Envelopment Analysis and

performance evaluation in several ways. Prior to this research, there were no models

dealing with the technological dependency among desirable and undesirable outputs,

even though in most production systems, such interrelationship does exist. Several

approaches modeled for the presence of undesirable outputs only without considering

the potential interrelationship of these with the desirable outputs. This research has

solved this problem augmenting such models with a constraint that takes care of such

interrelationship if it exists.

Second, traditional efficiency evaluation has considered the ratio of outputs to

inputs only. In some cases, however, it is possible that the decision-maker is equally

concerned with evaluating decision-making units on the basis of their output production

(including desirable and undesirable outputs). For these cases, this study has proposed

a different conceptualization of efficiency, the "Good output" efficiency, in which DMUs

are evaluated regarding their ratio of expected good output production to the observed

good output production. The expected good output production being a function of the

interrelationship with bad outputs. We consider this innovative formulation as, perhaps,

one of the most important  contributions of the present study.

Third, in most production systems the decision-maker encounters multiple

production goals: he or she wants to maximize the production of desirable or good

outputs while reducing or keeping constant resource (input) consumption and reducing

the production levels of undesirable outputs. To address this multiple-objective problem

a goal programming approach has been proposed for the first time.

5.2.1. Managerial Implications of all models

All five formulations are different and have different managerial implications. The

choice of model by decision-makers is based on the type of information at hand, the

models’ requirements, and the different, sometimes conflicting managerial objectives.

For example, both, models A and B require that the decision-maker identifies the

technological relationship between desirable and undesirable outputs. This might be the
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case for some industry applications concerned with not exceeding a pre-determined

amount of pollutants because of environmental regulations. Hence the name

“environmental performance index.” Some other industrial applications might also fall

into this category, when this “ideal” relationship is known a priori, as is the case with

some molding and extrusion processes where the expected ideal relationship between

scrap and good usable output is part of the machine specifications.

Conversely, as articulated before, the motivation to apply model C would be to

learn the technological relationship between good and bad outputs, if any. Whenever the

most important aspect of production is to evaluate units producing bad and good outputs

relative to bad output minimization this model is most adequate. After learning the

technological dependency this model will produce an efficiency score to rank the DMUs

according to this new “output efficiency index” based on undesirable to desirable output

production. It is the case for so many producing units that the production of undesirable

outputs is taken for granted, without knowing the type of interdependencies that bad and

good output production might have. Once the technological relationship is defined, then

DMUs are evaluated in light of the ideal ratio of desirable to undesirable outputs.

The application of Model D requires that the decision-maker be prepared to

provide input into the model. For that, he or she needs to define a priori the most

desirable hierarchy of preferences given to the different outputs – good and bad—so that

a set of weights is attached to them in the objective function. This will give form to the

preferential structure formulation. Consequently, this model is useful when management

is interested in knowing the performance of the DMUs regarding a determined

preference regarding the production of one or more desirable outputs against

undesirable outputs and to set the ideal production targets based on that structure.

The usage of model E is constrained to those applications in which the decision-

maker is faced with conflicting goals regarding input and bad output minimization versus

good output maximization. This model can be used whenever the most important

outcome expected is not to have an efficiency score, but rather to identify the relative

best possible combinations or production targets for inputs, and bad and good outputs.
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5.3. Recommendations for Future Research

The current research can be extended with respect to one or more of its

components, namely, DEA, undesirable output evaluation, and goal programming in

DEA (GoDEA).

With respect to DEA approaches that deal with undesirable outputs, the

suitability of the path by which the frontier is approached can be an issue of interest.

Moreover, the impact that the path to the frontier has on the efficiency results also

warrants attention. As further research, one could experiment with other non-radial

paths, the presence of regulations and standards, etc.

In this research, we developed a model to take into account "Good Output"

efficiency. This model needs to be further amplified to account for input consumption as

well. Developing a model in which the input, desirable output and undesirable output are

combined to account for output efficiency has a potential for further research.

With respect to Goal Programming, or GoDEA, the approach needs further

investigation not only to find the best way to apply it but also ways of best

communicating its results to the decision maker.

On the application side, novel applications of the formulations developed in this

research can be experimented with, such as in service quality arenas, where the number

of complaints, or dissatisfied customers can be considered undesirable outputs. Another

potential application is in social and health services with the need to model bad

outcomes. Some of these variables can be in categorical format and would require

further investigation to suit the formulations to these special cases.
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Appendix I. Data Tables

Zofío and Prieto (2001) Data Set for OECD Countries

S. No. DMU Output (Mill
US$)

CO2 (Mill.
Tons)

Capital Stock
(Mill US$)

Labor
(Thousands)

1 CAN 265184.62 98.13 100661.54 1870.00
2 USA 2861273.00 886.25 1152700.00 17496.00
3 JAP 1664941.12 281.35 687898.78 11173.00
4 AUS 120555.04 46.18 55004.32 1015.50
5 BEL 91728.24 36.56 49979.54 779.60
6 FIN 44651.41 15.27 28702.19 434.40
7 FRA 559702.27 101.98 268013.16 4558.50
8 GER 847046.41 143.41 335110.05 7210.00
9 GRE 33378.36 10.35 24847.65 346.30
10 ITA 403049.26 83.10 313520.06 2806.80
11 NOR 32236.07 8.61 22015.83 271.80
12 SWE 89630.94 13.29 31820.29 717.80
13 UK 564430.00 94.65 290166.67 4849.20
14 SPA 241972.60 48.20 115402.49 2046.40
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Scheel's (2001)Data Set for 13 Countries

S. No. DMU GDP (DM) NO (Mill. Tons) Employees
(Thousands)

1 B 385.7 76 3793
2 D 3457.4 612 35782
3 DK 248.2 61 2601
4 E 802.4 151 12027
5 F 2204.0 294 22057
6 GB 1579.3 456 25936
7 GR 163.8 33 3821
8 I 1560.9 295 19943
9 IRL 92.2 24 1262
10 NL 566.9 116 6782
11 P 144.0 24 4417
12 S 330.9 78 4134
13 SF 179.2 54 2016
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The Washington Post Data Set from the Pressroom

S. No. ID Good
Papers

Waste Press Downtime
(Min.)

Time (Min.)

1 4745 90913 690 8 99
2 4746 123960 1270 19 160
3 4747 85316 820 54 133
4 4748 120348 2600 18 142
5 4801 109740 900 44 160
6 4802 108452 1600 0 122
7 4803 79729 1300 27 114
8 4804 123062 4600 21 160
9 4857 120308 1770 18 162
10 4858 77042 1020 64 171
11 4859 98496 1380 28 152
12 4860 126844 1250 23 158
13 4913 102932 1580 24 150
14 4914 100596 1120 34 168
15 4915 127256 890 32 160
16 4916 86730 800 42 141
17 4966 85350 1130 66 151
18 4967 82581 1820 29 130
19 4968 127018 1300 18 149
20 4969 125282 1550 5 135
21 5015 92498 1440 49 166
22 5016 126587 1510 19 173
23 5017 99828 1600 42 164
24 5018 104446 950 20 130
25 5064 124389 790 61 205
26 5065 30981 2660 119 65
27 5066 118826 1080 36 167
28 5067 143875 1500 52 200
29 5115 69363 660 73 139
30 5116 85303 2260 13 99
31 5117 108832 1000 42 151
32 5118 90264 1400 46 144
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Appendix II: Excel Solver Code

Excel Solver Code for Model A
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Sub Macro1()
'
' Macro1 Macro
' Macro recorded 10/01/2001 by pasupatk
'
' Keyboard Shortcut: Ctrl+q
'
    Application.ScreenUpdating = False
    Sheets("Sheet2").Select
    Range("A1").Select
    For n = 1 To 14
    Sheets("Data & Model").Select
    Range("I3").Select
    Selection.Value = n
    Range("I8").Select
    Selection.Value = 1
    Range("I9:I27").Select
    Selection.Value = 0
    SolverSolve (True)
    Range("I3:I27").Select
    Selection.Copy
    Sheets("Sheet2").Select
'    Range("A1").Select
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _
        False, Transpose:=False
    Range("A1").Offset(0, n).Select
    Next n
    Sheets("Data & Model").Select
    Range("K12").Select
    Sheets("Sheet2").Select
    Range("I2").Select
End Sub
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Excel Solver Code for Model B
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Sub Macro1()
'
' Macro1 Macro
' Macro recorded 10/01/2001 by pasupatk
'
' Keyboard Shortcut: Ctrl+q
'
    Application.ScreenUpdating = False
    Sheets("Sheet2").Select
    Range("A1").Select
    For n = 1 To 14
    Sheets("Data & Model-Des").Select
    Range("I3").Select
    Selection.Value = n
    Range("I8").Select
    Selection.Value = 1
    Range("I9:I27").Select
    Selection.Value = 0
    SolverSolve (True)
    Range("I3:I27").Select
    Selection.Copy
    Sheets("Sheet2").Select
'    Range("A1").Select
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _
        False, Transpose:=False
    Range("A1").Offset(0, n).Select
    Next n
    For n = 1 To 14
    Sheets("Data & Model-Und").Select
    Range("I3").Select
    Selection.Value = n
    Range("I8").Select
    Selection.Value = 1
    Range("I9:I27").Select
    Selection.Value = 0
    SolverSolve (True)
    Range("I3:I27").Select
    Selection.Copy
    Sheets("Sheet2").Select
'    Range("A1").Select
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _
        False, Transpose:=False
    Range("A1").Offset(0, n + 14).Select
    Next n
End Sub
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Excel Solver Code for Model C
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Sub Macro1()
'
' Macro1 Macro
' Macro recorded 10/01/2001 by pasupatk
'
' Keyboard Shortcut: Ctrl+q
'
    Application.ScreenUpdating = False
    Sheets("Sheet2").Select
    Range("A1").Select
    For n = 1 To 14
    Sheets("Data & Model-Prim").Select
    Range("I2").Select
    Selection.Value = n
    SolverSolve (True)
    Range("J2:J6").Select
    Selection.Copy
    Sheets("Sheet2").Select
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _
        False, Transpose:=False
    Range("A1").Offset(0, n).Select
    Next n
End Sub
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Excel Solver Code for Model D



116

Sub Macro1()
'
' Macro1 Macro
' Macro recorded 10/01/2001 by pasupatk
'
' Keyboard Shortcut: Ctrl+q
'
    Application.ScreenUpdating = False
    Sheets("Sheet2").Select
    Range("A1").Select
    For n = 1 To 14
    Sheets("Data & Model").Select
    Range("I3").Select
    Selection.Value = n
    Range("I8:I9").Select
    Selection.Value = 1
    Range("I10:I28").Select
    Selection.Value = 0
    SolverSolve (True)
    Range("I3:I28").Select
    Selection.Copy
    Sheets("Sheet2").Select
'    Range("A1").Select
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _
        False, Transpose:=False
    Range("A1").Offset(0, n).Select
    Next n
    Sheets("Data & Model").Select
    Range("K12").Select
    Sheets("Sheet2").Select
    Range("I2").Select
End Sub
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Excel Solver Code for Model E
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Sub Macro1()
'
' Macro1 Macro
' Macro recorded 10/01/2001 by pasupatk
'
' Keyboard Shortcut: Ctrl+q
'
    Application.ScreenUpdating = False
    Sheets("Sheet2").Select
    Range("A1").Select
    For n = 1 To 14
    Sheets("Data & Model").Select
    Range("I3").Select
    Selection.Value = n
    Range("I8:I26").Select
    Selection.Value = 0
    SolverSolve (True)
    Range("I3:I26").Select
    Selection.Copy
    Sheets("Sheet2").Select
'    Range("A1").Select
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _
        False, Transpose:=False
    Range("A1").Offset(0, n).Select
    Next n
    Sheets("Data & Model").Select
    Range("K12").Select
    Sheets("Sheet2").Select
    Range("I2").Select
End Sub
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