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CHAPTER TWO

PREDICTIVE PROBABILITY MODELS

Conceptual Framework

Proper management of cultural resources should not only entail protection and
interpretation, but also include research into understanding and explanation of historic
phenomenon.  Archaeologists are interested in objects of the past, and also why those
objects are found in certain locations and not others.  This knowledge requires
understanding interactions of past peoples with their environments.

The location of archaeological sites exhibit non-random tendencies or patterning
throughout a landscape (Parker 1985).  This patterning is a result of past people’s
tendency to interact with the landscape in “favorable” settings. Favorable settings refer to
sites that are preferred over other locations because of specific landscape characteristics
(e.g., proximity to navigable water, access to trade routes, prominent setting with high
visibility).  Certain variables, either environmental or social, within the landscape can
produce patterning. It is these non-random redundancies that predictive models exploit in
attempt to explain the relationship between locational characteristics and archaeological
sites.  Predictive models make use of existing knowledge to anticipate or predict events
that are to come or that have already taken place.

An archaeological predictive model is essentially a map that indicates the relative
potential of encountering an archaeological site.  These maps are often referred to as
“sensitivity” maps because they indicate the sensitivity of one location in relation to
another for the presence of cultural resources (Parker and Johnson 1986).  Predictive
modeling emerged over the last few years as an important component of archaeological
research (Carr 1985, Kohler and Parker 1986). “Most archaeological predictive models
rest on two fundamental assumptions.  First, the settlement choices made by the
prehistoric [historic] peoples were strongly influenced or conditioned by characteristics
of the natural environment.  Second, the environmental [or social] factors that directly
influence these choices are portrayed, at least indirectly, in modern maps of
environmental [or social] variation across an area of interest” (Allen, Green, and Zubrow
1990b, 62).  With these assumptions fulfilled, predictive models hold tremendous
potential as planning tools.  In the long run, they can reduce costs for archaeological
survey, mitigation, and clearance (Minnesota Department of Transportation 1996).  For
example, the Minnesota Department of Transportation (1996) prepared an archaeological
predictive model in order to avoid areas of high sensitivity in future construction projects.
Warren (1987) also constructed a predictive model, but with the goal of conserving time
and resources in locating archaeological sites in the Western Shawnee National Forest.
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Warren noted that one of the most powerful approaches to prediction is a family
of procedures called probability models (Allen, Green, and Zubrow 1990a).  Probability
models work under the assumption that there is data on positive and negative responses to
stimuli (dichotomy).  In other words, the dependent variable is either a positive or
negative (success vs. failure, presence vs. absence) response with respect to the
independent variable(s).  Like linear regression, the independent variable(s) are predictors
of the dependent variable.    “Probability-based predictions have several advantages over
predictions on other scales.  For instance, they are readily interpretable (values range
between 0 and 1), they can be treated as ratios (a probability of 0.6 is twice as high as a
probability of 0.3), and their accuracy can be tested with sample data” (Allen, Green, and
Zubrow 1990a, 93).

Logistic Regression Analysis

There are many statistical approaches to predictive probability modeling.
However, the most popular of these is the logit or logistic regression model (Allen,
Green, and Zubrow 1990a).  In Carr’s (1985) “Introductory Remarks on Regional
Analysis”, five popular techniques (i.e., density transfer, density regression, significance
regression, discriminant function analysis, and logistic regression analysis) of predictive
modeling were critically scrutinized.  Logistic regression, although very similar to
discriminant function analysis, was less constrained by statistical assumptions1.  It was
also found to provide more powerful and consistent predictions when the aforementioned
statistical assumptions were violated (Kvamme, 1983; Press and Wilson 1978).  In
addition, logistic regression analysis readily accepts mixtures of nominal, ordinal,
interval, and ratio scaled independent variables.  Use of logistic regression was also
scrutinized and wholeheartedly supported by Parker (1985) in her article: “Predictive
Modeling of Site Settlement Systems Using Multivariate Logistics.”  If one considers all
these advantages, plus the fact that the resulting formula from logistic regression is easily
interpreted, logistic regression becomes the clear choice for use in archaeological
prediction models.

Logistic regression employs the use of independent variables to create a
mathematical formula that predicts the probability that a site occurs on any give parcel of
land (Allen, Green, and Zubrow 1990b).  The key to logistic regression is that the
dependent variable is dichotomous.  Unlike multiple regression, which predicts scores for
a continuous dependent variable, logistic regression predicts the probability of
membership in one of the available groups (i.e. site/non-site).  The independent
variable(s) in this model are predictors of the dependent variable and can be measured on
nominal, ordinal, interval, or ratio scale.  The relationship between the dependent variable

                                                       
1 Discriminate function analysis:
(1) Assumes multivariate normality of data
(2) Assumes equal covariance matrices
(3) Does not readily accept mixtures of categorical and interval-scale independent variables
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and the independent variable(s) is nonlinear.  It is this relationship that is utilized to
predict the probability of group membership for each case in the model.

The standard logistic regression formula for a model with multiple independent
variables is:

p(B)  =  ____Exp(α + β1x1 + β2x2 + … + βixi)____
     1 + Exp(α + β1x1 + β2x2 + … + βixi)

Or simplified

p(B)  =  _______________1_________________
1 + Exp(-(α + β1x1 + β2x2 + … + βixi))

2.1

Where p(B) is the probability (p) that case “i” is a member of group B, such that p(B) = 1
(i.e. site presence);  Exp is a function that raises the number e exponentially to the power
of the value enclosed in parentheses, where the number e, Euler’s number, is the
irrational number whose natural logarithm is 1 (ln(1) = 2.71828…); α is the intercept
constant; the βs are the coefficients for the independent variables;  and the “x”s are the
independent variables for the corresponding β coefficient.

The α parameter, called the intercept, represents the value of the dependent
variable (Y) when x is zero.  The parameter β represents the change in Y associated with
one-unit increase in x, or the slope of the line that provides the best linear estimate of Y
from x.  In linear regression, the least squares method is most often use to estimate
parameters (i.e., α and β).  This method selects those values of α and β which minimize
the sum of squared deviations of the observed values of Y from the predicted values
based upon the model.  To estimate α and β coefficients for the independent variables in
the logistic regression model, two methods are commonly used: the maximum-likelihood
and the least-squares regression fitting procedures (Warren 1987).  Unlike linear
regression, the least-squares regression approach is plagued with many statistical
problems, so the maximum-likelihood fitting procedure is most frequently used (Hosmer
and Lemeshow 1989).  Although the maximum-likelihood method requires a complex
series of iterations in which trial coefficients are proposed, tested, and refined to find an
optimum solution, current statistics software and computer hardware make this ideal
approach feasible.  In general, the maximum-likelihood technique is used to maximize
the log-likelihood function, which indicates how likely it is to obtain the observed values
of Y, given the values of the independent variables and parameters (i.e., α and β) (Menard
1995).



14

Probabilities produced from the logistic procedure are used to derive the
dichotomous dependent variable for each location.  To accomplish this, a cutpoint (c)
value must be selected to delineate sites from non-sites.  Each location’s probability is
compared to this value (c) to determine membership.  If the estimated probability exceeds
or is equal to the cutpoint value then the location is considered to be a site (if p(B) >= c,
then = 1), otherwise it is considered to be a non-site (if p(B) < c, then = 0).

Stepwise Logistic Regression

The term “stepwise” refers to the use of decisions made by computer, rather than
choices made by the researcher, to select a set of predictors (i.e., independent variables)
for inclusion in or removal from the logistic model.  Stepwise logistic regression is most
often used in situations were the “important” independent variables are not known and
associations with the outcome not well understood (Hosmer and Lemeshow 1989).  In
these instances, most studies will collect many possible independent variables and screen
them for significance.  Stepwise logistic regression offers a fast and effective means of
screening a large number of variables, and simultaneously fit a number of logistic
regression equations.

Opponents of the use of stepwise regression criticize the technique as an
admission of ignorance on the phenomenon being studied (Studenmund and Cassidy
1987).  There is also general agreement that the use of stepwise techniques is
inappropriate for theory-testing because it capitalizes on random variations in the data
and produces results that tend to be idiosyncratic and difficult to replicate in any sample
other that the sample in which they were originally obtained (Menard 1995).  However,
stepwise proponents support its use in purely predictive and exploratory research
(Menard 1995).  Both Hosmer and Lemeshow (1989) and Agresti and Finlay (1986)
support the stepwise logistic regression technique as a useful and effective data analysis
tool in these situations.  To mention a few, stepwise logistic regression was utilized to
uncover settlement patterns of ancient civilizations in the country of Jordon
(Christopherson, Guertin, and Borstad 1996), model prehistoric site locations near Pinyon
Canyon, Colorado (Kvamme 1984), and is also currently being used to identify
archaeological sites in the state of Minnesota (Minnesota Department of Transportation
1996).

There are two basic forms of stepwise logistic regression: forward inclusion and
backward elimination. In forward logistic regression all independent variables are
initially withheld from the model.  At subsequent steps in the procedure, those variables
determined to be significant are added to the model while all others are withheld.  Just the
opposite occurs in backward logistic regression in which all independent variables are
initially include in the model.  At subsequent steps in the procedure, those variables
determined insignificant are eliminated from the model until the remaining variables are
all deemed “important.”
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In stepwise logistic regression (e.g., forward or backward), selection or deletion
of variables from the model is based on a statistical algorithm that checks for
“importance” of variables, and either includes or excludes them on the basis of a fixed
decision rule.  The likelihood ratio chi-square test is used to assess significance in logistic
regression since the errors are assumed to follow a binomial distribution.  This test
assigns a p-value to each variable to assess significance.  Therefore, the most important
variable is the one with the smallest p-value.

An important element of stepwise logistic regression is selection of removal and
entry criteria (e.g., fixed decision rule) to determine variable significance.  The removal
criterion (pR) is the p-value (i.e. probability value) used to eliminate insignificant
independent variables.  If a variables p-value is equal to or greater than this number it
will be eliminated from the model.  The entry criterion (pE) value determines which
independent variables will be included in the model.  If a variable’s p-value is less than
this value then it will be entered into the model.

The following subsection is a simplified description of forward stepwise logistic
regression.  This example is included to clarify the stepwise process for the reader.  It
should be noted, as mentioned earlier, that the processes (i.e., steps) of backward
stepwise logistic regression are essentially the same.  However, in backward elimination
all independent variables are included in the initial model, and are then evaluated for
“importance” at subsequent steps.

Forward Stepwise Logistic Regression

Dependent Variable: Absence or Presence Union Civil War Forts
Independent Variables: Elevation, Slope, and Distance from Confederate Forts
pE: 0.20
pR: 0.15

STEP 0

1.   Fit the “intercept only” logistic regression model
- Compute the log-likelihood for this model

2. Fit each independent variable (i.e., “Elevation”, “Slope”, and “Distance from
Confederate Forts”) into this model separately

- Compute log-likelihood values for each independent variable
- Perform the likelihood ratio tests on each variable
- Compute p-values for each independent variable (i.e., 0.0037, 0.6521, and

.0071)
3. Select the independent variable with the smallest p-value: “Elevation” (i.e., 0.0037)
4.   Proceed to Step 1 if 0.0037 (p-value of “Elevation”) < 0.20 (pE) otherwise STOP
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Step 1

1. Fit the “Elevation” plus the intercept logistic regression model
- compute the log-likelihood for this model

2. Fit each remaining independent variable into this model (i.e., “Slope” and “Distance
from Confederate Forts”)

- Compute log-likelihood values for each independent variable
- Perform the likelihood ratio tests on each variable
- Compute p-values for each independent variable (i.e., 0.6631 and 0.0070)

3. Select the independent variable with the smallest p-value: “Distance from
Confederate Forts” (i.e., 0.0070)

4. Proceed to Step 2 if 0.0070 (p-value of  “Distance from Confederate Forts”) < 0.20 (
pE) otherwise STOP

Step 2

1. Fit the “Elevation, Distance from Confederate Forts”, plus the intercept logistic
regression model

-    Compute the log-likelihood for this model
2. Check for removal/elimination of independent variables in the model (i.e.,

“Elevation” and “Distance from Confederate Forts”)
- Compute log-likelihood without “Elevation” and “Distance from Confederate

Forts”
- Perform the likelihood ratio test on “Elevation” and “Distance from

Confederate Forts”
- compute p-values for “Elevation” and “Distance from Confederate Forts” (i.e.,

0.0000 and 0.0003)
3. Select the independent variable (“Distance from Confederate Forts”), that when

removed, yields the largest p-value (i.e., 0.0003)
4. If 0.0003 (p-value of “Distance from Confederate Forts”) > 0.15 (pR) then remove

“Distance from Confederate Forts”, else “Distance from Confederate Forts” remains
in the model

5. Fit each remaining independent variables into this model (i.e., “Slope”)
- Compute log-likelihood values for each independent variable
- Perform likelihood ratio tests for each independent variable
- Compute p-values for each independent variable (i.e., 0.3344)

6. Select the independent variable (“Slope”) with the smallest p-value (i.e., 0.3344)
7. Proceed to Step 3 if 0.3344 (p-value of “Slope”)  < 0.15 (pE), otherwise STOP

Step 3

This procedure is identical to Step 2.  The program checks for backward elimination
followed by forward selection.  This process continues until the last step, Stop Step.
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Stop Step

This step occurs when:
1. all variables have been entered into the model, or
2. all variables in the model have p-values < pR  (0.15) and the variables not included in

the model have p-values > pE (0.20)

All variables in the model at this final step are important relative to the criteria of pR and
pE.

In some instances an independent variable may illustrate the suppressor effect,
that is, when it appears to be statistically significant only when another variable is
controlled or held constant (Agresti and Finlay 1986).  The disadvantage of using forward
logistic regression is the possible exclusion of variables involved in the suppressor effect
(Menard 1995).  Although Menard (1995) mentioned that both forward and backward
stepwise techniques often generate identical results; backward elimination is more likely
to uncover these relationships since all variables are initially included in the model.

Geographic Information Systems and Predictive Probability Models

Archaeology and geography are sister disciplines.  They are both
concerned with the patterning of human activities in space and time

P. Peregrine, 1988. Geographic Information Systems in Archaeological Research:
Prospects and Problems, 874

Archaeologists have extensive spatial data handling requirements (Reilly and
Rahtz 1992).  Archaeology deals with the unique position in space and time of
phenomenon and the latent relationships existing between them.  Since early this century
archaeologists have used a variety of techniques to visualize, analyze, and interpret
spatial patterning, but maps have always been an ideal media (Reilly and Rahtz 1992).
Therefore, it is no surprise that archaeologists have paid close attention to developments
is spatial analysis within geography, most notably Geographic Information Systems
(GIS).

A GIS is a collection of computer hardware and software, spatial data, and
personal that efficiently capture, store, manipulate, analyze create, and display
geographically referenced data.  GIS incorporates computer cartography and a relational
database into one package, that is, every mapped feature is linked to a record in a tabular
database which holds its attributes.
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GIS data sets are organized into map layers, in which each layer contains different
information on the same geographic area.  These same map layers share a common
coordinate system that allows them to share the same geographic space.  In the same way,
each database associated with these map layers has a key field that links each database
together.  It is this linkage between the mapped feature and the database that makes
analysis of geographic data possible (Figure 2.1).  With such “intelligent” maps, spatial
queries, measurements, and more complex problems can be answered easily.

GIS Map Layers

Elevation

Slope

Aspect

Vegetation Cover

Database

Figure 2.1. Generalization of GIS data structure.

Predictive models in archaeology fall into the general category of cartographic
modeling.  Traditionally these models were developed using analog maps and manual
map overlay procedures.  The advent of GIS has greatly simplified this process.  Spatial
data from large regions can be digitized and geo-referenced within a GIS to allow rapid
investigation of relationships between the locations of sites and the environment.
Kvamme stated “… development and application of models of regional archaeological
distributions is greatly facilitated through GIS (Allen, Green, and Zubrow 1990c, 112).”
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