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Wearable Pulse Oximetry in Construction Environments

Jason B. Forsyth

(ABSTRACT)

The goal of this project was to determine the feasibility of non-invasively

monitoring the blood gases of construction workers for carbon monoxide expo-

sure. A blood gas sensor was integrated into a typical construction helmet to

determine the feasibility of monitoring workers for carbon monoxide exposure

throughout the day. In particular, this study sought to understand the impact

of motion artifacts caused by the worker’s activities and to determine if those

activities would prevent the blood gas sensor from detecting the onset of car-

bon monoxide poisoning. This feasibility study was conducted using a blood

oxygen sensor rather than a blood carbon monoxide sensor for several reasons.

First, blood gas sensors that measure blood carbon monoxide are not readily

available in suitable physical form factors. Second, sensors for blood oxygen and

blood carbon monoxide operate on the same physical principles and thus will be

affected in the same way by worker motions. Finally, using a blood oxygen sen-

sor allowed the study to be conducted without exposing the human subjects to

carbon monoxide. A user study was conducted to determine the distribution of

motion artifacts that would be created during a typical work day. By comparing

that distribution to a worst-case estimate of time to impairment, the probability

that helmet will adequately monitor the worker can be established. The results

of the study show that the helmet will provide a measurement capable of warn-

ing the user of on setting carbon monoxide poisoning with a probability greater

than 99%.
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Chapter 1

Introduction

1.1 Motivation

Carbon monoxide poisoning is a significant problem for construction workers

both in residential and industrial settings. Reviewing carbon monoxide poison-

ings in Washington State, Lofgren [1] found the construction industry second

to only wholesale workers in the number of reported incidents. Furthermore, of

the construction related inhalation deaths from 1990 to 1999, nearly 20% were

due to carbon monoxide poisoning [2].

This danger exists because the exhaust from gasoline-powered hand tools can

quickly build up in enclosed spaces and easily overcome not only the tool’s user

but co-workers as well. The construction population is at significant risk because

initial symptoms of carbon monoxide poisoning such as headache, fatigue, and

muscle ache, can easily be dismissed as part of the work day and not as indicators

of something worse.

While this danger is known, current safety systems only monitor environ-

mental concentrations of carbon monoxide. This is a huge liability as carbon
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monoxide exposure affects people at different rates based on their activity level,

body size, and most significantly their background risk factors such as smoking

or anemia [3]. Thus environmental monitoring alone will not save the worker

who is a daily smoker, or the person who has been sick and has a reduced red

blood count as they may be overcome by carbon monoxide well before the en-

vironmental concentrations rise to the level of concern for their co-workers. In

a large population like construction workers, it is impossible to estimate all the

potential physiological factors that will affect each individual worker, therefore

a method must be created that monitors all workers individually to avoid the

shortcomings of environmental monitoring.

To correct this problem, a non-invasive blood oxygen sensor, called a pulse

oximeter, has been integrated into a typical construction helmet to allow real-

time monitoring of workers. Taking readings off the forehead of the wearer, the

sensor is integrated into the headband of the helmet in such a way that the

worker will only know it is present when alerted to danger and will otherwise go

unnoticed. As will be further explained in Chapter 4, this study was conducted

with a blood oxygen sensor rather than a blood carbon monoxide sensor for sev-

eral reasons. First, blood gas sensors that measure blood carbon monoxide are

not readily available in suitable physical form factors. Second, sensors for blood

oxygen and blood carbon monoxide operate on the same physical principles and

thus will be affected in the same way by worker motions. Finally, using a blood

oxygen sensor allowed the study to be conducted without exposing the human

subjects to carbon monoxide.

1.2 Methodology

To provide reliable coverage of the population the helmet prototype must be able

to accurately measure the worker’s internal carbon monoxide levels and warn
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the user before becoming impaired from exposure. However, since the worker

and helmet are constantly undergoing motion, the sensor may have difficulty

in obtaining a measurement because of the amplitude and duration of motion,

resulting in “gaps” in the sequence of measurements. As the worker will not

be overcome immediately from carbon monoxide exposure, reliable coverage can

also be expressed as showing that not measurement gap is longer than the worst-

case time to impairment for a worker. This condition implies the existence of

a valid measurement before the worker becomes impaired, which then can be

used to warn the use or alert co-workers.

While the reliable coverage condition cannot be proven directly, the behavior

of measurement gaps can be estimated by performing a user study involving

typical construction tasks and analyzing the data to determine how often and

of what duration gaps can occur. Combining this information with a hard limit

for time to impairment (Ti), the series of gaps can be mapped to a probability

distribution to directly answer how likely an event longer than Ti may occur.

Thus the answer to how well the helmet protects combines an estimate of Ti as

well as a probabilistic estimate of the gap distribution. This methodology will

be expanded further in Chapter 3.

1.3 Contributions

This work presents a novel analysis of the reliability of helmet-based pulse oxime-

try while undergoing motion. While previous works have explored the use of

pulse oximetry during motion [4] [5], no study has classified the behavior of

motion artifacts to determine the reliability of obtaining a valid measurement.

Here we describe the performance of the oximeter as a repairable system with

a lognormal distribution of repair times. Using this distribution, we can com-

pare the distribution of artifacts to determine the probability of receiving a
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measurement before a worker becomes impaired.

1.4 Thesis Organization

The following chapters will outline the particular steps required to determine the

feasibility of the helmet prototype. Chapter 2 provides further background on

carbon monoxide exposure and overviews the basis of pulse oximetery. Chapter

3 presents the methodology and analytical tools used to determine the reliability

of the prototype, along with estimations of impairment times for various workers.

Chapter 4 describes the construction of the helmet prototype, and the user

study conducted to validate the helmet. Chapter 5 presents the results of the

user study. Finally, Chapter 6 concludes the work.
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Chapter 2

Background

Designing a wearable medical device for the construction population involves a

highly interdisciplinary approach involving human physiology, carbon monoxide

uptake simulation, wearable computing, and reliability analysis. Providing the

history and background for each subject is unnecessary as each subject is much

larger than the methods required in this project. To that end, not all subjects

will be reviewed, but supporting related work will be provided. This chapter

will focus reviewing the motivation for monitoring construction workers as well

as providing an overview of the key technology used, pulse oximetery. Finally, a

comparison between our helmet based monitoring system and others is provided.

2.1 Carbon Monoxide Poisoning

2.1.1 Physiological Effects

Carbon monoxide is a colorless, odorless gas that is highly toxic to both humans

and animals. When inhaled, carbon monoxide competes directly with oxygen

in binding with hemoglobin. Carbon monoxide has an affinity for hemoglobin
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over 200 times greater than oxygen [6, p.43]. This binding creates a new dys-

functional hemoglobin called carboxyhemoglobin (COHb) and greatly reduces

the number of potential oxygen carrying hemoglobins (HbO2). If the concen-

tration of carboxyhemoglobin becomes too great, normal oxygen transport is

interrupted, leading to cellular hypoxia and eventually death.

While the effects of carbon monoxide vary with internal concentrations, at

30% saturation the low level effects include headache, fatigue, and faniting. At

higher levels, approaching 60%, a person will become unconscious and if not

rescued, continued exposure will result in death [3].

As carbon monoxide diffuses in both directions across the lung-blood barrier,

if presented with oxygen, a person will eventually exhale the carbon monoxide

present in their body and recover [3, p.1466].

2.1.2 Workplace Incidents and Prevalence

Carbon monoxide exposure is a grave concern in the construction environment

because it is readily present and the symptoms of its onset can easily be ignored.

Created by incomplete combustion, carbon monoxide is produced by any gaso-

line powered tool such as saws, power washers, drills, and generators that are

common on construction sites.

A report by NIOSH [7] highlights the danger of carbon monoxide exposure

to construction workers. The majority of cases described involve workers using

individual power hand tools such as pressure washers, or concrete saws. In a

majority of cases workers were overcome in less than 30 minutes. Additionally,

some workers knew of the danger and attempted to ventilate the areas, however

their efforts were not sufficient.
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2.2 Physiology of Pulse Oximetry

To monitor workers for the presence of carbon monoxide, pulse oximetry is used

to non-invasively measure hemoglobin concentrations within the body. Pulse

oximetry is an approximation of Beer’s Law which relates the attenuation of

light through a medium based upon the compounds it passes through. In the

case of pulse oximetry, as light is shone through vascular tissue, it is absorbed at

different rates and frequencies for each species of hemoglobin. Typically a pair

of light emitting diodes (LED) and a photo detector (PD) are used to construct

the oximeter.

In using pulse oximetry, a photopleysmograph (PPG) is created, showing

the volumetric changes of blood through the monitoring site. The PPG rises

and falls as the heart pumps blood though the body. A typical PPG signal is

shown in Figure 2.1.

Figure 2.1: PPG Signal from Pulse Oximeter

The ingenuity of pulse oximetry is that it uses the maximum and minimum

values of the PPG or “AC component” of the signal to determine attenua-
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tion caused by pulsating blood only. This removes the “DC offset” of constant

absorbers in the body such as venous blood, tissue, and pigmentation. Further-

more, using the maximum and minimum values to normalize the attenuation

measurement removes the impact of variations in LED intensity, PD perfor-

mance, and path length variations [6, p.49].

Since pulse oximetry has traditionally focused on determining blood oxygen

saturation (2.1), only two wavelengths of light have been used. Commonly

selected in the red (R) and infrared regions (IR), these two wavelengths are

chosen because Hb and HbO2 exhibit different absorption characteristics in these

regions, making it possible to distinguish their individual absorptions [6, p.46].

Since SpO2 is only based on Hb and HbO2 concentrations, the attenuations in

the red and infrared can be used to find a “ratio of ratios” (2.2) that is directly

related to the oxygen saturation [6, p.130].

SpO2 =
[HbO2]

[HbO2] + [Hb]
(2.1)

SpO2 ≈ R =
ln(Imin,R/Imax,R)

ln(Imin,IR/Imin,IR)
(2.2)

The ratio R, is not itself the internal SpO2 levels, but can empirically related

to SpO2. Typically this is done via calibration by inducing hypoxia in subjects

and noting arterial SpO2 and R values [8]. A drawback of using calibration

is that only mild levels of hypoxia, down to 80%, can ethically be induced in

subjects [6, p.160].

2.2.1 Measurement of COHb

From Beer’s Law, for n unknown concentrations in a substance, n different

wavelengths and n extinction coefficients are required to resolve their individual
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concentrations [6, p.42]. Typically, a pulse oximeter is designed to determine

blood oxygen saturation (SpO2), where only oxygenated hemoglobin (HbO2)

and reduced hemoglobin (Hb) concentrations are of interest. Needing only two

concentrations, only two wavelengths are included in the design, typically at

660nm and 940nm [6, p.46].

However if carboxyhemoglobin is present, the SpO2 type sensor will be un-

able to detect its presence, and will actually cause higher SpO2 readings [6,

p.160][9]. To expand the capabilities of the sensor, additional wavelengths

are introduced to detect dysfunctional hemoglobins such as carboxyhemoglobin

and methemoglobin. The blood saturations of carboxyhemoglobin and methe-

moglobin are SpCO and SpMET, respectively.

While it is only recently that commercial SpCO monitors have become avail-

able via the Masimo line of products [10], an early attempt to determine COHB

was performed by Buinevicius [11] who used a three-wavelength oximeter to

determine SpCO, however no validation testing of the results were presented.

The current SpCO monitors from Masimo use eight different wavelengths and

can detect carboxyhemoglobin and well as methemoglobin [12].

Overall devices monitoring SpO2 and SpCO are technologically the same,

they simply differ in the number of LEDs present.

2.3 Issues in Pulse Oximeter Design

2.3.1 Transmission and Reflective Oximeters

In order for an oximeter to function, light emitted from the LED must be able

to pass through the vascular tissue and back to the PD. This can either be

accomplished by transmitting light directly through the tissue to the PD, or by

having the light reflect off a surface within the body and return to the PD. These
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two types of configurations are known as transmission and reflective oximeters.

While the configuration of the LED and PD are different, they are functionally

the same [6, p.50].

Transmission pulse oximeters place the LED and PD on opposing sides of

the tissue and measure the amount of light that passes through the area. To

achieve this result, the area of interest must be relatively thin, such as the ear

lobe [13], or fingertip [14]. Reflective oximeters position the LED and PD on

the same side of the skin and measure the light that is reflected back to the

detector. This design can be placed in a greater number of locations, including

the forehead [15] [4], jaw [5] and finger[16].

Transmission pulse oximeters can only be placed in an area that is thin

enough to permit light to pass through the body and to the photo detector.

For a given design, the LED must be powerful enough such that the received

signal is not too greatly attenuated by the other absorbers in the body such as

skin pigment, bone, and venous blood [6, p.43]. If a measurement site is too

thick, then the power of the LED must be increased, however skin irritation and

burning are a concern [17, p.32].

For locations where a transmission pulse oximeter is infeasible, such as the

chest or forehead, a reflective pulse oximeter can be used. A reflective oximeter

can have a lower LED power consumption because the light does not need to

pass through the tissue. However, the possibility of a direct optical path, or

light short circuit, is another placement issue that needs to be considered. This

issue occurs when the relative positions of the LED and PD move so close as to

allow the light from the LED to directly reach the PD and corrupt the results

[17, p.31].

These is no overriding issue that makes one configuration greater than an-

other, thus the issue of selecting a configuration should be geared more towards
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user comfort and availability.

2.3.2 Motion Artifacts

A key difficulty in deploying pulse oximetry for field applications is the inter-

ference of motion artifacts on the PPG signal. The calculations of the oximeter

assume that the transmission medium is relatively constant, except for the pul-

sation of blood. If the LED and PD move relative to each other then the

intensity varies not as a function of arterial blood, but of movement, corrupting

the measurement.

To reduce motion artifacts, the sensor must be isolated from the source

of motion. For a finger based sensor, Rhee et al. mechanically isolated the

sensor from the external ring housing [16]. The motion of moving the hand,

or its collision with an object was absorbed by the housing and reduced the

impact on the sensor. Other attempts to remove motion artifacts have used

signal processing algorithms such as the discrete saturation transform [18] [19],

Fourier analysis [20], or accelerometer based adaptive filters [21] [22]. Related

to our objectives, Comtios et al. [23] evaluated noise canceling algorithms for

forehead based monitoring.

While many oximeter designs are “wearable”, few have been tested in real-

life environments that would be required by a deployed product. Many designs

have been tested while undergoing motion, however at times this motion is

simply walking on a treadmill [24], shaking a hand [16], or a random tapping

of the fingers [25]. More complex tasks have been performed by Johnston et

al. [26] and Nagre et al. [5], that involved a helmet-based oximeter undergoing

simulated military activities.
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2.4 Review of Helmet-Based Oximetry

This study is not the first to integrate an oximeter into a helmet platform.

Johnston et al. [26] and Nagre et al. [5] examined, forehead, jaw, and chin

locations that were integrated into a military helmet. Furthermore, their tests

involved complex motions such as talking, head movement, and riding in a ve-

hicle. Following on that work, Dresher [4] [24] investigated the optimal pressure

required to maintain a good PPG signal and also developed a fitted military

helmet insert to allow proper blood flow.

While our project is similar in that an oximeter has been integrated into a

construction helmet, the results of Johnston and Nagre are valid only for the

military-type applications they tested and as such cannot be extended into the

construction realm. Additionally, Dresher did not use real-time data, but spot

checked his integrated sensor versus a finger based oximeter at various times

during the testing.

While the tests employed by Dresher and Johnston validate their designs,

their focus was on monitoring of soldiers where continuous measurement was of

prime importance. Our study is different in that it does not seek continuous

monitoring but a probable bound on performance based on the time to impair-

ment by carbon monoxide. This study seeks to characterize the durations of

motion artifact to ensure that they do not interfere with the overall objective of

detecting CO poisoning. Relaxing the constraints of real-time monitoring is pos-

sible because construction workers will not be overcome from carbon monoxide

instantly, but over a period of time.
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Chapter 3

Methodology & Uptake

Estimation

This chapter overviews the methodology used to determine the feasibility of

the integrated helmet-oximeter prototype. The helmet will be described as a

repairable system in which motion artifacts of the user cause the helmet to fail

and enter a repair state until the motion artifact passes, restoring the helmet to

working order. In comparing the distribution of repair times to an estimate of

time to impairment for a worker, the reliability of the helmet can be established.

This chapter will outline the justification of the helmet as a repairable system

as well as provide a derivation for worker time to impairment.

3.1 Determining Prototype Reliability

As the user moves throughout the workday so does the helmet and sensor. Based

on how quickly or rapidly the user moves, the sensor may be disturbed to the

point that it is unable to provide a reading. These periods where the sensor
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cannot determine a person’s carbon monoxide levels cause “gaps” in monitoring.

If these gaps are too long in duration, they may inhibit readings such that signs

of a worker becoming affected are hidden. Thus, to prove the feasibility of the

helmet, we must show that long gaps occur with such a small probability that

the safety of the worker is not compromised. An example of measurement gaps

are shown in Figure 3.1 with the gaps highlighted in red. The PPG signal is

clearly distorted during the three gaps caused by the user hammering.

In answering this question we must first determine two things: (1) for an

exposed population, what are the worst-case times to become impaired in the

presence of carbon monoxide and (2) knowing this limit, what models can we

use to find the probability of gap lengths longer those worst case times? The

following sections outline the analytical methods required to find a probabilistic

model of gap times and the analysis for determining time to impairment will be

conducted in Section 3.3.

Figure 3.1: Measurement Gaps Induced by Hammering
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3.2 Probabilistic Model of Sensor Performance

As this is the first study that seeks to characterize motion and measurement

errors there is no existing work to help determine which probability distribution

to choose when modeling the gaps. Thus our problem must be translated into

a known form where analytical methods are already established. To accomplish

this, the prototype’s performance will be moved into the context of a repairable

system which is common in reliability analysis [27]. From there, existing tools

and methods can be used to understand how the gaps are distributed.

The repairable system model characterizes the state of a device as either

functional or non-functional. The time during which the device is working

properly is called uptime. Because we are assuming a repairable system, when

the system fails it immediately begins repair time and upon completing repairs

is restored to uptime [27, p.85]. For our prototype helmet, the times at which

the helmet is giving proper readings will be considered uptime, and once a

measurement gap begins, the sensor will fail and be in repair time until a new

valid measurement is received. The transition between these states is known

because the oximeter transmits warning flags and indicators to identify the

quality of the measurement. Specifically, we will assume any reading is a valid

measurement unless one of the following conditions is met:

1. The presence of a warning flag indicating either out of track pulses, or the

sensor is disconnected.

2. A “missing data” value is reported for SpO2 or Heart Rate.

3. Reported SpO2 is <95%.

Conditions (1) and (2) indicate normal functionality of the oximeter while

(3) is a special case required due to ambient light contaminating the readings.

It was found that during certain activities the helmet would report SpO2 values
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but because of the noisy signal, its values were obviously incorrect. In most cases

the reported SpO2 would drop below 90% during heavy motion, which is not

correct considering a user would be experiencing a serious health event at that

level and no users were under strenuous exercise. A level of 95% approximates

a typical oxygen saturation value.

3.2.1 Gap Conditions

Using these conditions, the acquired readings can be partitioned into sequences

of uptimes and repair times, where the repair times can be mapped into the

lognormal distribution. This distribution is chosen because it is a common

model for failure/repair times [27, p.94]. In previous works, Ananda [28][29]

used a 2-parameter lognormal distribution for repair times while examining

steady-state availability of systems. Schroeder and Gibson [30] examined several

distributions to model high performance computing failures, finding that repair

times were best modeled by a lognormal distribution. Also, software failure rates

have been proposed to be distributed lognormally [31], and normal temperature

distributions can cause lognormal failure rates in thin film conductors [32].

It must be noted that at times there exists a difficulty in selecting between

the lognormal and Weibull distributions when modeling system lifetimes. The

main concern is the impact of heavily tailed data, which is important in long

range projections [33]. Realizing this concern, Chapter 5 shows that the lognor-

mal distribution can be accepted under χ2 goodness of fit analysis, whereas the

Weibull cannot.

Finally, with the measurement gaps translated into the repairable system

model, and the lognormal distribution selected to estimate gap events, we have

the proper analytical tools to analyze the gaps. What remains is to find a proper

estimate for time to impairment for the construction population. The analysis
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to determine the impairment time is explained in the following sections and once

having that estimate, the feasibility of the prototype will be shown in Chapter

5.

3.3 Prediction of Carbon Monoxide Uptake

The CO uptake model developed by Coburn, Forester, and Kane [34] relates

exogenous CO exposure and endogenous CO production, along with relevant

physiological parameters to estimate the amount of CO bound with hemoglobin

(COHb). This model is known as the CFK equation and has been extensively

verified in several studies and renders an accurate assessment of CO uptake for

various exposure levels, body sizes, and activity levels [35][36][37].

3.3.1 The CFK Equation

The CFK equation treats the human physiology as a two compartment sys-

tem in which exogenous and endogenous concentrations of carbon monoxide are

exchanged by passing through the lungs. In a steady-state exposure environ-

ment, a person will gradually inhale and absorb carbon monoxide, producing

carboxyhemoglobin, until an equilibrium with the outside environment has been

produced. Because carbon monoxide diffuses equally in both directions, a per-

son with a high internal concentration of COHb will naturally exhale the toxin

if placed in an oxygen environment. The two compartmental model, combined

with physiological parameters for respiration rate, and blood stores, are the

basis of the CFK equation. The form given by Tikusis [37] is shown in (3.1).

d[COHb]

dt
=

˙VCO

VB
+

1

VBβ
(PICO

− [COHb]PCO2

[HbO2]M
) (3.1)

Additionally, (3.2) exists because CO binds with hemoglobin (Hb) in place
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of oxygen, decreasing the amount of HbO2 in the presence of COHb.

[HbO2] = 1.38[Hb]− [COHb] (3.2)

3.3.2 CFK Parameters and Units

While there are many parameters involving the CFK equation, many are either

environmental or physiological constants that do not vary often. The complete

table of parameters is shown below in Table 3.1. We will briefly distinguish be-

tween environmental parameters (PICO
, PL, PH2O) of which only PICO

changes

rapidly; physiological constants (DL, M, PCO2, Vco) which remain stable; and

physiological variables (VB , VA, [HbO2], [COHb]) which along with PICO
are

active in the determination of COHb levels.

Table 3.1: Parameters of the CFK Equation

Vco = endogenous CO production VB = blood volume (mL)
M = CO affinity for hemoglobin PCO2 = capillary pressure of O2 (mmHg)
PICO

= inspired pressure of CO (mmHg) PB = barometric pressure (mmHg)
VA = alveolar ventilation rate PH2O = vapor pressure of water (mmHg)
[COHb] = CO concentration (g/mL) [HbO2]=O2 concentration (g/mL)
DL = lung diffusivity (mL/(min*mmHg))

Beyond having a large number of parameters to estimate, implementations

and publications about the CFK equation suffer from differences between unit

systems and translation of environmental factors between disciplines. Of critical

importance is whether the values used in the solution come from Standard

Temperature, Pressure Dry (STPD) or Body Temperature, Pressure Saturated

(BTPS) systems. The main difference between the systems is whether water

vapor is considered present in the lungs and at what temperature the exchange

takes place. The original work by Coburn et al. used STPD, later validations
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by Peterson et al. [36] used BTPS and Bernard et al. [35] returned to STPD.

While values in either unit system can be translated between the other, the

inconstancies provide difficulty for initial studies. These discrepancies between

unit systems is discussed extensively by Tikuisis [37].

Related to the above unit system differences, there exists a difficulty when

comparing inhaled carbon monoxide measurements between fields. Where CFK

uses the partial pressure of CO, PICO
, the more common industry standard for

toxins and pollutants are noted in parts per million (ppm). Often omitted in

publications, the proper relationship between PICO
and ppm is shown below.

PICO
=
ppmCO

106
(PB − PH2O) (3.3)

Another difficulty in understanding CFK equation is that the final result,

[COHb], is not the commonly used values of % COHB saturation. To convert

from concentration in blood, to percentage staturation in blood use equation

below (3.4):

% COHb Saturation =
100 ∗ [COHb]

1.38 ∗ [Hb]
(3.4)

3.3.3 Solutions to CFK

Complexity is added to solving the CFK equation because [HbO2] is not con-

stant but dependent on the current amount of [COHb] as defined in (3.2), thus

the equation becomes non-linear and must be solved through numerical means.

This relationship is a key point and is easy to miss when attempting a direct

solution.

To compensate for this non-linearity, Peterson et al. [36] used a trial and

error method to converge on the proper value of [COHb], whereas numerical

integration with RK4 was used by Bernard et al. [35] and Tikuisis et al. [37]
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with a small enough step size such that (3.2) could be updated at each step.

Both methods were implemented in this work and little difference was noted

between the two solutions. With RK4 a more commonly known and accepted

method, it will be our used for our analysis. During simulation a step size of

.01 minutes was used.

3.4 Determination of Worker Profile

To understand what level of coverage is required by the worker population, we

must understand what factors effect carbon monoxide uptake the most. Looking

at (3.1), this is not directly obvious, but when considering how CO enters, exits,

and binds to the body the most important variables are clear. The build up of

carbon monoxide within the body is directly related to how much is inhaled,

exhaled, and how rapidly over that time period. The faster a person breathes

the quicker CO will diffuse across the lungs. In cases of poisoning, when two

equivalent people are exposed, the person who is breathing the most or working

hardest will present advanced symptoms quicker, revealing that VA is key in CO

uptake.

Because of (3.2) the effects of CO poisoning become more severe as COHb

increases relative to total blood count, thus those with high CO background

levels, low hemoglobin counts, or small body size are at significantly greater risk

when doing equivalent work. Thus if two people are working at the same activity

level, in the same exposure level, the one who is already a smoker, smaller, or

suffering from anemia, will be overcome in a much shorter timespan. By this

understanding, background Hb and VB values greatly influence the uptake of

CO.

To measure how these variable affect a population, two profiles were created

for typical and at-risk workers with each profile working at resting, moderate,
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and intense levels of activity. The two theoretical subjects were exposed at

an extremely high concentration of 1,200 ppm which is defined as Immediate

Danger to Life and Health by NIOSH [7, p.3]. Recognizing the impact of activity

level, resting, moderate and intense levels of activity were derived from exercise

conditions in [38, p.269]. The physiological profile of both workers in shown

in Table 3.2. Additionally, the at-risk worker was considered to be anemic

as defined by the World Health Organization [39, p.4]. This is an especially

important condition as 30% of men in non-industrial countries are anemic [40,

p.15]. Also, each worker is given a high background level of carboxyhemoglobin

as if they were smokers.

The values selected for the at-risk worker are intentionally chosen to setup

a worst-case estimate. In setting up this hard limit, if the helmet is able to

sufficiently monitor these worst-case workers, then it will be able to monitor

healthier workers as well.

Table 3.2: Profile of Typical and At-Risk Workers

Physiological Parameters Typical At-Risk
VB(mL) [36] 5,500 5,000

[Hb] (g/100mL) [39] 15.71 13.0
Initial COHb (% Saturation) 5 5

Table 3.3: Respiratory Exercise Parameters for Various Intensities

VT (mL) f VD (mL) V̇A (mL)
Resting 500 12 200 3600

Moderate 2,500 30 150 70,500
Intense 3,000 50 150 142,500

The various levels of activity were derived from tidal volume (VT ), dead

space (VD), and breaths per minute (f) values given in [38] and converted to
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V̇A measurements by (3.5). The resulting activity levels are shown in Table 3.3.

V̇A = f(VT − VD) (3.5)

3.5 Time to Impairment and Incapacitation

A carboxyhemoglobin saturation at 30% results in confusion and impairment,

whereas at 60% a person would become unconscious and eventually die if not

rescued [3]. Our approach is similar to that of Alari [41] and Bernard and

Duker [35] who used the CFK equation to model escape times from fires. Also,

Tikuisis compared theoritical and measured values of COHB for resting [42] and

exercising subjects [43].

The two worker profiles were estimated at the activity levels shown in Table

3.3, the results of the estimation are shown in Table 3.4 and Figure 3.2 provides

a graphical representation for the uptake curves.

Table 3.4: Time to Impairment (30% COHb) and Incapacitation (60% COHb)
in Minutes at 1200 ppm

Resting (30/60%) Moderate (30/60%) Intense (30/60%)
Typical 97.0 300.2 17.5 57.0 15.5 50.4
Anemic 69.2 225.8 13.1 42.9 11.6 37.9

Viewing Table 3.4, the impact of higher activity levels and lower red blood

cell counts is revealed by the faster times to impairment and incapacitation.

Returning to the definitions of worst-case time to impairment (Ti), Table

3.4 provides these values. As would be expected, the worst-case overall is the

worker that is both anemic and performing intense activity. For this particular

worker Ti=11.6. It is these bounds at which the prototype will be tested against

to determine if it sufficiently covers the worker population.
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Figure 3.2: Carbon Monoxide Uptake at 1200ppm
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Chapter 4

Prototype Development &

User Study

This chapter provides an overview of design and construction of the integrated

helmet prototype as well as the user study conducted to validate the design. We

will describe the physiological and wearability requirements that were a driving

force in the design. Additionally, we will outline the required substitution of

the CO pulse oximeter for a traditional blood oxygen oximeter.

4.1 Physiological & Wearability Requirements

In designing for the construction worker population it is of prime importance to

have a device that is not only functional but is extremely non-intrusive to their

daily lives. Even if the workers are convinced of the criticality of monitoring for

CO, if the device gets in the way of their accustomed activities and encumbers

their work, they are unlikely to take to the device.

Thus a method of integration must be found that is both physiologically
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acceptable for monitoring, but also culturally, aesthetically, and functionally

desirable for the worker. To begin, there are several possible sites on the body

that have shown to be acceptable monitoring locations for pulse oximetry in-

cluding the finger, wrist, earlobe, forehead, and facial regions. Table 4.1 shows

various comparative studies of sensor placements that have been conducted. In-

dicated are: the types of sensors compared, where [R] denotes a reflective sensor

and [T] denotes a transmission; whether the subjects were in motion or at rest;

and which measurement site provided the best result.

Table 4.1: Comparison of Various Sensor Placements

Author Locations
Compared

Motion Preferred Site

Mendelson et al [44] forehead[R],
finger[T]

N forehead

Mendelson & Pujary [45] forehead[R],
wrist[R]

N forehead

Narge & Mendelson [5] forehead[R],
finger tip[T],
jaw[R],
chin[R]

Y forehead

Nogawa et al [46] forehead[R],
chest[R]

N forehead

Rhee et al [16] fingertip[T],
finger[R]

Y finger

4.1.1 Wrist & Finger

Now let us consider the impact of various monitoring sites on the ability and

dexterity of the worker. The finger and fingertip has long been the traditional

measurement location of pulse oximetry with one of the first truly wearable

designs by Rhee [47] being a large ring where the oximeter was housed. Fur-

thermore, measuring from the fingertip is very common in hospital settings and

many medical devices use this location [14] [10]. However, these designs are very
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restrictive to the dexterity of the worker with each design covering a significant

portion of the finger. Considering the target population works closely with hand

tools, it is unlikely that any design encumbering the hands will be accepted.

Additionally, while a wrist based sensor has been attempted [45][48], the

complex bone structure in the wrist does not lend itself to being a stable location

for light back scattering that is required in reflective oximeters. While plausible,

no studies have shown the wrist to be a reliable location.

4.1.2 Facial Regions

Several studies have examined regions of the face for possible oximetry moni-

toring including the forehead, jaw, and chin [5][26]. It was noted that during

motion or even talking, the jaw and chin sensors would be unusable due to mo-

tion [26, p.215]. When undergoing combat simulation exercises, the forehead

sensor was found to be less affected by motion than chin or jaw sensors [5, p.2].

While early oximeter designs also used the ear as a potential location [6,

p.33][15, p.800], development ready parts are not available for this location and

will likely not be accepted by the worker. However a design could integrate

the sensor within a common bluetooth ear piece, potentially making the device

desirable to be worn. Designs similar to this have been conducted by Wang et

al [13].

4.1.3 Selection of Forehead

Overall, the forehead is viewed as a good location for measurement as it is re-

sistant to motion and has sufficient density of vascular elements to provide a

reading. Additionally, the large bone structure is fairly regular and provides

a simple background from which to capture reflected light. Beyond the phys-

iological considerations, the forehead is a prime location because it does not
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affect the dexterity of the user and can also be easily integrated into existing

headwear, such as the military helmet integration performed by Dresher [4].

4.2 Substitution of SpCO for SpO2

Ideally, in investigating a wearable solution for monitoring carbon monoxide, the

Masimo [10] line of products would be modified to become a wearable device.

However, this route is not possible due to two particular reasons. First, the

Masimo products are prohibitively expensive for this project and it would not

be cost effective to modify their products. Second, the algorithms and signal

processing methods used to detect SpCO are proprietary and it is not guaranteed

that modifying their sensors would result in proper functionality.

A solution can be found by understanding the equivalent methods used be-

tween SpO2 and SpCO measurement. Both techniques follow the same prin-

ciples of pulse oximetry, the comparison of emitted and received light through

vascular tissue. However the Masimo technology simply increases the num-

ber of wavelengths used to determine additional blood components. This fol-

lows directly from their patent filings where additional wavelengths are used

to determine hemocrit, carboxyhemoglobin, and methhemglobin (U.S. Patent

7,274,955). Furthermore, the similarity between SpO2 and SpCO systems is

shown in a three-wavelength oximeter developed by Buinevicius where an ad-

ditional LED at 810nm was added to the traditional LEDs to account for the

presence of carbon monoxide [11].

With an equivalent method for measuring SpO2 and SpCO, traditional pulse

oximeters can be substituted for a SpCO oximeter for design and testing pur-

poses. While they do not provide the same measurements, the substitution

allows for adequate approximation of wearability, physiological feasibility, and

energy constraints with the added benefit of using a well developed and inex-
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pensive technology.

4.3 Helmet Prototype

In order to avoid developing our own oximeter, we selected the Xpod pulse

oximetry from Nonin [49] utilizing a reflective sensor attachment. Marketed as

an easy to use development kit, the Xpod is frequently used in prototypes that

monitor from the forehead [4][45][5][26][50]. To enable wireless transmission of

readings, the output of the Xpod was connected to an Xbee Radio from Digi Inc.

[51] that transmits the readings of the Xpod to an Xbee base station connected

to a laptop. The Xbee radios communicate using the Zigbee protocol.

The final prototype is shown in Figure 4.1, with the interior view showing

the attached Xpod and sensor integrated into the headband. The back view

shows the Xpod connection to the Xbee and required 9V battery. The following

sections describe the design implications that lead to the prototype’s final form.

In general, the design process was driven by a desire to shape the internal

headband such that it minimized motion artifacts, and to place the electronics

to reduce the impact of their weight.

4.4 Headband Design

The headband insert shown in Figure 4.1a was not the final form factor selected

for the user study. An earlier design did not have the sensor surrounded by

the foam insert, causing the sensor to easily slip out of place when the helmet

was removed. The current design is a vinyl front with a foam backing that

attaches to the natural helmet headband by Velcro. The sensor is recessed into

the headband such that it is pressed against the forehead, but the extra foam

padding softens the design and provides even pressure across the forehead. The
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(a) Interior View (b) Back View

Figure 4.1: Interior and Back of Helmet Prototype

recessed sensor and foam insert are shown in detail in Figure 4.2.

4.4.1 Motion Issues

The final design was a compromise between comfort and the desire to reduce

motion artifacts, the main obstacle in helmet based monitoring. Since a reflec-

tive oximeter is required for use on the forehead, the sensor must remain still

such that the backscattering reflections off the frontal bone are consistent over

time. If the sensor moves relative to the forehead, motion errors are induced

and a reading may not be possible. For reference, a normal PPG signal from

the helmet prototype is shown in Figure 4.3a. In moving the helmet side to side,

as if to say “No”, slight motion errors are induced in Figure 4.3b. However in
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Figure 4.2: Modified Helmet Headband

Figure 4.3c, moving the helmet up and down, as if to say “Yes”, induces major

errors and the signal becomes unusable. A major cause of motion is the torque

moment applied by the helmet to the sensor. Because the sensor is physically

integrated into the helmet, as it moves, so does the sensor and depending on

the amplitude and frequency of movement, no measurement may be possible.

(a) Good PPG Signal (b) Side to Side Motion (c) Up and Down Motion

Figure 4.3: Motion Induced Errors in PPG

Several design iterations were conducted that attempted to isolate the sensor

from the helmet. Overall these attempts were unsuccessful because specific
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pressure is required at a location to hold the sensor in place. This singular

pressure point is extremely uncomfortable given that during typical wear the

headband pressure is distributed evenly across the forehead. The best possible

solution would be to mechanically isolate the internal assembly from the outer

protective shell of the helmet. This strategy was used by Rhee when he separated

the internal sensors closest to the finger from the outer metal shell with only thin

wires connecting the two [16]. Applying this method to the helmet, the internal

assembly could be a simple elastic headband to which the sensor is integrated.

The outer hard part of the helmet would still be attached, but in such a way that

it moves freely apart from the headband, much like the independent sections of a

gyroscope. It is unknown whether a design of this type would meet the required

safety standards, but the potentiality of a reliable helmet design is worthy of

further study.

4.5 Electronics & Placement

As briefly mentioned, the final prototype includes three major electronic compo-

nents: the Xpod oximeter, the Xbee Zigbee radio, and a 9V battery for power.

The electrical and communication connections between the devices are shown

in Figure 4.4.

4.5.1 Communication & Power

The main connection point in the design is the break out board which holds the

Xbee module. This board, purchased from SparkFun [52], allows direct access to

the Xbee pins and provides a regulator that steps down the 9V battery output

to 3.3V which supplies operating power for both the Xbee and the Xpod.

The primary reason for using the Xbee is simplicity. In its most basic con-

figuration the device acts as a UART replacement, transmitting over the radio
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Figure 4.4: Schematic of Prototype Components

items it receives via UART and sending across its UART the packets received

on the radio. In this manner, the Xpod can easily be made into a wireless device

by connecting its output line directly to the Xbee. The measurements from the

Xpod are transmitted 75 times a second at 9600 baud to the Xbee where it

is broadcast to another Xbee base station. This base station is connected to

a laptop via USB virtual serial port, from which the native Nonin Oximetry

software can read the Xpod’s measurements and run without modification.

While indoor ranges of 30 meters are listed for the Xbee modules, in cluttered

environment these ranges were not possible unless a higher-gain antenna was

used at the base station. Initially the “whip” type antenna used on the helmet

was at both locations. However in this configuration data was dropped after

only 5 meters. Replacing the whip antenna on the basestation with the UF.L

type antenna in Figure 4.5 resolved the problem with only a handful of packet

being dropped.
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Figure 4.5: High Gain Xbee Antenna

4.5.2 Energy Consumption

During testing, the lifetime of the prototype was only several hours, where a

lifetime of several days would be required from a final product. During oper-

ation, the entire prototype consumes 91mA which is constant because of the

linear regulator. With the Xpod consuming 18 mA, the main power draw of the

prototype is the Xbee radio. The Xbee consumes 55 mA while idle or receiving

and 250 mA during transmission. Since the system is not transmitting contin-

uously, the total current draw of the radio is less, resulting in the 91mA total

current draw.

In a deployed system, monitoring of the worker would be localized and power

consumptions could be much less. To enable local monitoring, a small microcon-

troller would need to be added to the system to monitor the oximetry readings.

The Xbee radio would remain but would only be activated in case of an emer-

gency where an alert was required. The lifetimes of these two systems when
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running on a typical alkaline [53] and lithium 9V battery [54] are compared

in Table 4.2. The microcontroller on the future deployed system is estimated

with a PIC18 [55]. Additionally, different types of power regulators are shown

with the linear regulator lifetimes shown directly, and the switching regulation

lifetimes shown in parenthesis. The switching regulator was assumed to be 95%

efficient.

Table 4.2: System Lifetimes in Hours of Current and Future Deployed Designs
for Linear and Switching Regulators

Design Components Inom Pnom 9V Alkaline 9V Lithium
Prototype Xpod, XBee 91mA 303mW 6h (15h) 8h (20h)
Deployed Xpod, XBee, PIC18 26.1mA 86mW 21h (54h) 29h (76h)

The system lifetime estimates were derived as follows. For a linear regulator,

such as the one presently used, the system lifetime Llinear can be found from

equation (4.1) where Cnom and Inom are the nominal battery charge capacity

and nominal current draw, respectively. For a switching regulator, the system

lifetime Lswitch are given by equation (4.2) where Vnom and the Pnom are the

nominal battery voltage and nominal system power, respectively.

Llinear ≈
Cnom

Inom
(4.1)

Lswitch ≈
VnomCnom

Pnom
(4.2)

In both equations, the charge capacity of the battery is required. However,

the charge capacity offered by the battery changes over time based on load

and current draws. The information provided by the manufacturer in [53] [54]

does not allow for the charge capacity to be known at all times. To be fair

in comparisons, for each battery type we used a nominal capacity that is the
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average capacity at a constant draw of 25mA and 100mA, which are the closest

values to our two potential systems. The derived nominal capacity for the

alkaline and lithium batteries are 550mAh and 762mAh, respectively.

As the results in Table 4.2 show, removing the Xbee radio from an active role

in the design greatly increases the expected battery life. Additionally, power is

wasted by the linear regulator in dropping the supply voltage from 9V to 3.3V.

The 9V battery and connector were original to the Xpod and for simplicity they

were kept in the design. Recognizing that the design can run at 3.3V, a supply

closer to that threshold would provide better efficiency and longer lifetimes.

4.5.3 Placement Considerations

Initially the Xpod was placed on the brim of the helmet, but the additional

weight, was quickly noticed as a tilting force to the helmet. By relocating the

Xpod to the interior, the device is not noticed by the user. A production version

of the helmet should consider the weight distribution of the electronics to reduce

the effects of the weight on the movement on the helmet.

4.6 User Study

A user study was conducted to validate the helmet prototype design. The

study featured ten students performing six construction related tasks intended

to mimic typical motions and actions of construction workers. The study was

conducted in Torgersen Hall on the campus of Virginia Tech and was approved

by the Virginia Tech Internal Review Board (IRB # 09-768).
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4.6.1 Selection of Tasks

Six individual tasks were selected for the user study and were performed over two

weeks by the students. Each task sought to mimic the activities and motions of

a construction worker without necessarily the impact or stress that performing

the actual activity would cause. No standardized set of safety activities or

motions was found, however the selected activities were deemed sufficient for

our purposes. While none of the activities are as intensive in action and duration

as some construction tasks, this distinction was intentional because of the nature

of the study. As this is an initial study, if the helmet cannot pass the simple

tasks presented here, then it will not pass more rigorous ones later.

4.6.2 Selection of Participants

Study participants were fellow graduate and undergraduate students who knew

about the project during its development. Experienced workers in construction

are not required because only the motions of tasks need to be approximated, not

necessarily the task itself. A person does not need to be an expert hammerer

to approximate the required hammering motion. Likewise, for the simple tasks

selected, moving boxes, walking, or sweeping the inherent motions are assumed

to be equivalent between experienced and non-experienced users.

4.6.3 Walking and Stairs

After placing the helmet on the user and acquiring a good reading, each user

was instructed to walk around the third floor of Torgersen three times. This

task is a baseline measurement of helmet performance; if the motion of walking

is too great, then more advanced tasks are not feasible. After completing the

walking circuit, the users were asked to walk down the stairs to the first floor

twice and then return. Figures 4.6a and 4.6b show the third floor of Torgersen
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(a) Walking (b) Stairs (c) Sweeping (d) Boxes (e) Hammering

Figure 4.6: User Study Activities

where these two tasks occurred.

4.6.4 Sweeping

A more involved motion was desired to ascertain the effects of upper body

movement on the helmet. To approximate this motion, many pieces of paper

were dumped on the floor in Torgersen Hall and the user was asked to sweep

up these items, this task was repeated three times. The user was not idle while

performing this task and had to move around and sweep to complete the activity.

4.6.5 Hammering and Boxes

The final tasks were to have the users hammer on several paint cans and move

boxes around a laboratory. These acts simulate the effects of hand tools on

head motion and also the bending and lifting motions of carrying. Hammering

was conducted with the cans both on the floor and on a saw horse. For the

boxes task, each boxes was individually labeled and the users were asked to

move them across a room and stack them in proper order. This task involved

multiple motions of moving, bending, and lifting to accomplish.
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Chapter 5

Results

This chapter presents the results of the user study and highlights the overall per-

formance of the prototype and contributing factors that determined the quality

of measurements.

5.1 Validating Helmet Reliability

As outlined in Chapter 3, the validity of the helmet prototype is predicated on

its ability to warn the worker before he or she becomes impaired from carbon

monoxide exposure. The user study provides sensor data which can be used to

determine how reliably the prototype operates during construction activities.

Because this type of study has not been conducted before, simple tasks were

specifically selected such that if the helmet could not perform these items easily,

then it would not be able to perform more rigorous tasks that would be required

for a complete safety device.

The data from the study was broken down into sequences of measurement

gaps, as defined in Section 3.2.1. The distribution of these gaps is critical to

understanding the safety of the helmet. The observed distribution of gaps is
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shown in Figure 5.1. The x-axis describes the gap length in seconds and the

y-axis reveals the observed frequency of each gap occurring.

Figure 5.1: Distribution of Gaps from User Study

To have a reliable system we want to avoid long gaps in measurement. It is

a welcome sign that a majority of gaps are short in duration, indicated by high

frequencies near the y-axis. Recalling the work in Chapter 3, we are interested

in knowing the probability of gaps (X) above a time to impairment threshold

(Ti minutes). This probability can be expressed by equation (5.1).

P (X ≥ Ti) (5.1)

Replacing P with the lognormal distribution, we can rewrite (5.1) as (5.2)

where F is the lognormal cumulative distribution function. The parameters µ

and σ are the shape parameters for the lognormal.

P (X ≥ Ti) = 1− F (Ti|µ, σ) (5.2)

We can fit the lognormal distribution to the observed gaps with the MAT-
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LAB command lognfit, which returns estimates at µ = 1.0155 and σ = 2.0256.

Illustrated in Figure 5.2, this new estimated distribution closely fits the plot of

observed gaps.

Figure 5.2: Histogram Fitted with Lognormal Distribution

With the estimates of µ and σ along with value of Ti, we can directly find

the probability of a gap occurring that is longer than Ti. Solving (5.2), the

probability of such an event is p = 0.0034. (Ti, which is in minutes, must be

multiplied by 60 to convert into seconds.)

P (X ≥ Ti) = 1− F (11 ∗ 60|1.0155, 2.0265) = 0.0034 (5.3)

Equation (5.3) reveals how likely the prototype is to fail while monitoring

a worker. Conversely, the probability the helmet will adequately protect the

worker is 1-p, or 99.66%.

While this is an excellent result, given the way our gap objective is con-

structed, it is possible a single measurement could occur near time zero and

then the remaining time to Ti could be covered by a gap. This situation would
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still be considered valid monitoring time, as the gap would not be the full length

of Ti. However, depending on how early the singular measurement occurs, it

may not contain any useful information as internal carbon monoxide levels may

not have risen to the level of concern.

To counter this possibility, we can divide Ti in half to create two new mea-

surement intervals against which we will test the probability of measurement

gaps. While early measurements in the domain [0-Ti/2] may not reveal any

carbon monoxide presence, at Ti/2 the internal levels for our worst-case worker

will be 17.5%. Thus any measurement in [Ti/2 - Ti] will warn of the presence

of CO. Replacing Ti with Ti/2 in equation (5.2), we find the the probability of

a gap covering the new Ti/2 intervals is p = 0.0091 or 0.91%. Conversely, this

indicates the helmet will provide protect the worker with probability 99.09% in

these new restrictive intervals, giving a strong indication that the helmet will

find a valid reading upon which to act and accurately warn the worker.

Regarding the probabilities derived above, a point can be made that the

probability of a gap occurring near Ti will be low because none of the activities

in the study were long enough to create gaps of length Ti. While this is a valid

point, if significant measurement outages were frequent, the distribution of gaps

in Figure 5.1 would not be so closely aligned to the y-axis; the addition of more

long duration gaps would be unlikely to shift the curve. Furthermore, we do

not assert that the probability of large gaps is zero. In fact it is quite easy

to construct activities where no measurement is even possible. However with

these basic, but reasonable tasks, we have shown that it is feasible to conduct

monitoring during typical construction tasks. Further work in isolating the

sensor from helmet motion, and longer, more complex tasks will allow a greater

understanding of the true abilities of the prototype. Yet as a proof-of-concept,

the helmet verifies the idea of an integrated pulse oximeter for construction
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activities. Moreover, because of the criticality of the monitoring construction

workers, even results that show feasibility demand further study.

5.1.1 Choice of Distribution

As briefly mentioned in Section 3.2, at times there is an ambiguity between

selecting the lognormal or Weibull distribution [33]. The main concern is the

impact of heavily tailed data on the overall result. To determine the correctness

of our selection, Table 5.1 shows the estimations of P (X ≥ Ti) for the lognormal

and Weibull distributions.

Table 5.1: Metrics of Fit to Histogram

Distribution P (X ≥ Ti/2) P (X ≥ Ti) χ2 p-value
Lognormal 0.0091 0.0034 0.1785

Weibull 0.0013 7.71E − 5 0.0349

This concern is evident when comparing the gap probabilities at various

points along the curve. At Ti/2, the probabilities are on the same order, however

when extrapolating to Ti the difference becomes two orders of magnitude. We

can be assured that the lognormal is the correct choice by the χ2 p-value. At 5%

significance, we can reject that the gaps come from a Weibull distribution, but

cannot reject they are from a lognormal distribution. Furthermore, Figure 5.3

provides a visual indication of how well the distributions fit. The exponential

distribution is also included because at times it is substituted for the lognormal

for ease of computation [56].

5.2 Helmet Performance Factors

The previous section provides an understanding of how the helmet performed

over the whole study; this section seeks to break down the data and understand
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Figure 5.3: Various Distributions Mapped to Histogram

individual factors influenced the helmet. Table 5.2 shows the average, total, and

maximum gap times for each user and activity. In general, the lower the total

gap time, the more valid measurements the sensor was able to acquire. The

total gap information is plotted in Figure 5.4. Also, Table 5.2 and Table 5.3

provides the amount of time taken by each user to perform each activity. The

hammer and hammer2 activities differ in whether the hammer was performed

on the ground, or on a sawhorse.

Table 5.2: User Performance: Average, Maximum, Total Gap in Seconds

User Walking Stairs Sweeping
U1 4.5 10.7 13.4 0.9 3.0 4.6 11.7 28.8 46.9
U2 4.0 11.6 31.7 0.6 2.0 3.9 42.1 57.1 126.3
U3 0.3 0.4 0.5 0.4 0.4 1.7 19.3 32.6 58.1
U4 0.0 0.0 0.0 2.3 3.8 9.5 23.2 37.0 116.0
U5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
U6 5.4 19.8 42.9 31.8 85.3 95.4 117.4 226.3 234.8
U7 29.2 74.0 204.4 4.3 67.1 90.8 219.3 219.3 219.3
U8 0.2 0.5 0.5 38.7 99.9 116.3 0.0 0.0 0.0
U9 0.4 0.5 1.5 2.9 14.5 29.2 6.8 8.2 13.7
U10 2.7 42.5 67.1 44.0 131.1 132.0 58.8 155.8 176.4
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Table 5.3: User Performance: Average, Maximum, Total Gap in Seconds

User Boxes Hammer Hammer 2
U1 0.0 0.0 0.0 24.5 67.0 98.3 0.0 0.0 0.0
U2 22.8 61.1 114.3 43.2 46.0 86.4 95.8 95.8 95.8
U3 12.0 24.0 24.1 6.1 11.2 18.4 2.6 3.7 5.3
U4 3.4 9.0 10.2 40.2 93.0 120.8 10.7 16.3 53.6
U5 1.4 2.5 2.8 24.6 43.0 74.0 1.6 1.6 1.6
U6 60.3 119.8 120.7 29.5 118.0 147.9 42.1 114.5 126.3
U7 23.0 87.0 115.4 129.0 129.0 129.0 56.8 111.3 113.7
U8 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0
U9 1.4 2.7 2.8 1.8 1.8 1.8 8.0 12.7 16.1
U10 14.9 35.1 59.6 42.1 119.3 126.3 9.3 10.3 28.0

Table 5.4: Activity Durations in Minutes for Each User

Walking Stairs Sweeping Boxes Hammer Hammer2
U1 3.96 2.83 3.06 2.81 2.51 2.36
U2 4.15 2.85 3.51 2.96 2.5 2.26
U3 5.18 2.95 4.03 1.81 2.25 2.98
U4 4.53 2.81 3.61 1.36 2.68 2.81
U5 4.1 2.7 3.63 1.76 2.41 2.43
U6 3.71 2.76 4.46 2.28 3.15 2.38
U7 4.71 3.9 4.75 3.28 2.63 2.46
U8 4.51 3.58 3.63 1.98 2.48 2.55
U9 4.38 2.83 4.66 3.45 2.41 2.33
U10 3.8 3 3.71 1.95 2.63 2.16

Total gap size is an aggregate measure that can tell how the helmet per-

formed overall for particular user and activity. If the total gap is small, that

implies the sensor was able to gather more valid readings during the activity. A

key to understanding the helmet’s monitoring behavior is to determine which

factor, Users or Activities, had a significant impact on the total gap size. Since

User and Activities are the only two factors considered in the study, if we can

show that one has equal effect, then the other must be the cause of variations

in total gap size.

44



5.2.1 Activities and Total Gap Size

If we organize total gap information into a matrix of Users by Activities such as

in Table 5.5, we can use Friedman’s Test to determine if the columns (Activities)

have equal or non-equal effects on the total gap size. If the activity effects are

equal, then we can conclude that user effects have a greater impact on the total

gap size.

Table 5.5: Total Gap Organization for Friedman Analysis

Walking Stairs Sweeping Boxes Hammer Hammer2
U1 ... ... ... ... ... ...
U2 ... ... ... ... ... ...
U3 ... ... ... ... ... ...
... ... ... ... ... ... ...

Using the MATLAB command, friedman, we can analyze the total gap data

and either accept or reject the null hypothesis H0 that all column effects are the

same. The resulting analysis is shown in Table 5.6 where SS is Sum of Squares,

df is degrees of freedom, and MS is Mean Squares. The p-value is found to

be p = 0.0708, which at 5% significance indicates we cannot reject H0. This

result confirms that the effects of all the Activities are statistically equal and

the differences noticed in total gap size are a function of the Users.

Table 5.6: Results of Friedman’s Test

Source SS df MS χ2 Prob> χ2

Columns 34.55 5 6.91 10.16 0.0708
Error 134.45 45 3.01
Total 170 59
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5.2.2 Users and Total Gap Size

Looking at Figure 5.4, there is a range in the quality of monitoring by the helmet

over the several users. Grouping these users visually by thirds, we have Group

I, where five users have a total gap time of less than 300 seconds, indicating a

slight loss of monitoring; Group II, where three users have total gaps in the range

of 300 to 600 seconds indicating a mild loss; and finally the helmet performed

poorly with two users who have total gaps of over 600 seconds. These groupings

are shown in Table 5.7.

Figure 5.4: Individual Activity Contribution to Total Gap Time

Table 5.7: Grouping of Users by Total Gap Size

Users Total Gap Time 30% Loss Activities
I U1,U3,U5,U8,U9 < 300s < 1
II U2,U4,U10 (300s - 600s) ≥ 3
III U6,U7 > 600s ≥ 4

By virtue of the low total gap time, the helmet monitored better during

each activity for users in Group I, whereas the monitoring in Group III was
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poor on each activity, giving rise to those users’ high total gaps. Exploring this

further, we can ensure this trend is a property of the users themselves and not

necessarily how long they performed the activity by normalizing each activity

to its duration. In Figure 5.5 we see again that if a user performed well overall,

then generally each activity lost a low percentage of the measurements. For the

Users in Group I, they had at most one activity where 30% of data was lost, for

Groups II and II there were 3 and 4 activities at 30% lost, respectively.

Figure 5.5: Total Gap Size as Percentage of Activity Duration

5.3 User Parameters

In this section we discuss three contributing items to understand the variations

in user performance: the tightness of the helmet, the gait of the users, and the

sensor measurement site.

The tightness of the helmet is a prime factor in how well the sensor performs.

As Dresher found, there is an optimal sensor pressure at which a good pulse
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can be detected [4]. If the pressure on the forehead is too great, then blood

flow is cut off and no measurement is possible. However, if the sensor is not

securely in contact with the forehead, then ambient light can corrupt the results.

In the study, users were instructed to wear the helmet at their comfort level.

Depending on their personal feel, they may have tightened the helmet too much

or too little, moving away from an optimal pressure and potentially degrading

the result. A curious note regarding the fit of the helmet, User 8 was one of the

best monitored during the test. Before beginning the test he indicated that he

previously held a job where wearing a safety helmet was common. It is possible

his familiarity with the helmet allowed him a proper fit that was also functional

for the sensor. While requiring further study, this is a hopeful indicator that

those accustomed to wearing a helmet may produce better results than the

results obtained from the study.

Considering the gait of the users, it is possible there is no correlation among

activities as each user performed the activities differently. Returning to the

performance of User 8, while having virtually no gaps in most activities, the user

did have time lost while completing the Stairs task. Perhaps when ascending

and descending stairs this person bobs his head, whereas in the other tasks he

was more stable. While this cannot be verified, further studies involving motion

capture could pinpoint potential differences among users.

Finally, conditions of the measurement site may cause poor readings if there

is not sufficient perfusion in the tissues to allow a reading. In particular, User

7 indicated that he had a scar on his forehead near the site where the sensor

would normally sit. The scar may have damaged the vascular bed and restricted

blood flow to the site. If true, this could be the cause for User 7 having the

largest gap size overall.
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Chapter 6

Conclusion

A pulse oximeter has been integrated into a typical construction helmet to assess

the feasibility of monitoring for exposure to carbon monoxide. Ten participants

took part in a user study to characterize the performance of the helmet using

simulated construction tasks. During the study, continuous measurements of the

users were recorded to determine how the prototype performed under motion.

As the user performed the activities, measurement gaps were created by periods

of high motion when the oximeter could not determine a valid reading.

The distribution of these gaps was compared to worst-case estimate of time

to impairment for construction workers to determine if the measurement gaps

were so frequent that a worker becoming impaired would go unnoticed. This

was shown not to be case as a worst case as the helmet would provide a reading

in 99.66% of cases. For further assurance, the time to impairement could be

halved, with the helmet still providing a reading in 99.03% cases.

While these results do not ensure absolute monitoring of workers, the time

to impairment is very conservative and was derived for a very susceptible worker

under very difficult conditions. Therefore, the high probability of measurement
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at more than 99% indicates that helmet-based monitoring is a feasible safety

platform worthy of further study.

6.1 Future Work

The most compelling area for further work is in advancing the design of the

helmet insert and reducing the impact of motion. At present, the insert is

made of simple materials and Velcro is used for attachment, however a more

elegant solution should be found. Additionally, a new helmet design should

be attempted that mechanically isolates the inner headband from the exterior

protective shell. Because a headband design itself would suffer little motion

artifacts, isolating the weight of the exterior helmet from sensor themselves

should provide great advancements in resistance to motion.

Also, the helmet is not an individual solution, but part of a network of

sensors on the construction site. As a person impaired by carbon monoxide may

be unable to self-rescue, the sole use of a personal alert would not adequate.

Future designs can incorporate a multi-modal alert that warns co-workers of

a person in danger. This alert could include transmitting radio messages and

warnings to summon distant help, or provide visual and audible clues to the

location of the worker. These additions would not be a large extension as

wireless capability is already integrated into the prototype and could be easily

turned on in case of emergencies.

Finally, the results of this study need to be validated with a true CO-pulse

oximeter. While the blood oxygen oximeter used is technologically equivalent,

there is no substitution for direct validation of the helmet. Hopefully as time

passes the SpCO monitors will be made available at lower prices and smaller

form factors.
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