Robert W. Burgholzer

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Biological Systems Engineering

Conrad Heatwole (Chair) • Theo Dillaha • Daniel Gallagher February 10<sup>th</sup>, 2005 Blacksburg, Virginia

**Keywords:** digital elevation models, overland flow length, hydrologic modeling, flow accumulation, terrain curvature, DEM, flow network, terrain analysis, contour crenulation, terrain morphology Copyright 2005, Robert W. Burgholzer

# Using Accumulation Based Network Identification Methods to Identify Hill Slope Scale Drainage Networks in a Raster GIS

Robert W. Burgholzer

#### Abstract

The simple accumulation-based network identification method (ANIM) in a raster Geographic Information System (GIS) posed by O'Callaghan and Mark (1984) has been criticized for producing a spatially uniform drainage density (Tarboton 2002) at the watershed scale. This criticism casts doubt on the use of ANIMs for deriving properties such as overland flow length for non-point source pollution models without calibrating the accumulation threshold value. However, the basic assumption that underlies ANIMs is that convergent topography will yield a more rapid accumulation of cells, and thus, more extensive flow networks, with divergent or planar terrain yielding sparser networks. Previous studies have focused on networks that are coarser than the hill-slope scale, and have relied upon visual inspection of drainage networks to suggest that ANIMs lack the ability to produce diverse networks. In this study overland flow lengths were calculated on a sub-watershed basis, with standard deviation, and range calculated for sub-watershed populations as a means of quantifying the diversity of overland flow lengths produced by ANIM at the hill slope scale. Linear regression and Spearman ranking analyses were used to determine if the methods represented trends in overland flow length as suggested by manual delineation of contour lines. Three ANIMs were analyzed: the flow accumulation method (O'Callaghan and Mark, 1984), the terrain curvature method (Tarboton, 2000) and the ridge accumulation method (introduced in this study). All three methods were shown to produce non-zero standard deviations and ranges using a single support area threshold, with the terrain curvature method producing the most diverse networks, followed by the ridge accumulation method, and then the flow accumulation method. At an analysis unit size of 20 ha, the terrain curvature method produced a standard deviation that was most similar to those suggested by the contour crenulations, -13.5%, followed by the ridge accumulation method, -21.5%, and the flow accumulation method, -61.6%. The ridge accumulation produced the most similar range, -19.1%, followed by terrain curvature, -24.9%, and flow accumulation, -65.4%. While the flow accumulation networks had a much narrower range of predicted flow lengths, they had the highest Spearman ranking coefficient,  $R_s=0.722$ , and linear regression coefficient,  $R^2$ =0.602. The terrain curvature method was second,  $R_s$ =0.641,  $R^2$ =0.469, and then ridge accumulation,  $R_s$ =0.602,  $R^2$ =0.490. For all methods, as threshold values were varied, areas of dissimilar morphology (as evidenced by the common stream metric, stream frequency) experienced changes in overland flow lengths at different rates. This results in an inconsistency in ranking of sub-watersheds at different thresholds. When thresholds were varied to produce average overland flow lengths from 75 m to 150 m, the terrain curvature method showed the lowest incidence of rank change, 16.05%, followed by the ridge accumulation method, 16.73%, then flow accumulation, 25.18%. The results of this investigation suggest that for all three methods, a causal relationship exists between threshold area, underlying morphology, and predicted overland flow length. This causal relationship enables ANIMs to represent contour network trends in overland flow length with a single threshold value, but also results in the introduction of rank change error as

threshold values are varied. Calibration of threshold value (varying threshold in order to better match observed overland flow lengths) is an effective means of increasing the accuracy of ANIM predictions, and may be necessary when comparing areas with different stream frequencies. It was shown that the flow accumulation method produces less diverse networks than the terrain curvature and ridge accumulation methods. However, the results of rank and regression analyses suggest that further investigation is required to determine if these more diverse ANIM are in fact more accurate than the flow accumulation method.

# Acknowledgements

I would like to thank Dr. Conrad Heatwole for his guidance during my studies at Virginia Tech, and for continually pushing me to a higher standard of clarity in my research and writing. He not only supervised the development of this thesis, but also taught me virtually everything I know of geographic information systems. I would like to thank the members of my committee, Dr. Theo Dillaha, for mentoring me in my development as a student and engineer, and Dr. Daniel Gallagher, for acting as a balancing influence in the committee, and ultimately pushing me towards a practical, but enjoyable undertaking.

My graduate studies could not have been completed without the support of the department of Biological Systems Engineering, to which I am eternally grateful, and the guidance of many of its fine faculty members. Dr. Gene Yagow provided me with work and guidance, an introduction to non-point source modeling, and served as a sounding board for ideas – his insight and patience have been invaluable. Dr. Saied Mostaghimi gave me a generous break when, despite what may have been his better judgment, he helped me to begin studies as a provisional graduate student in the spring of 2001.

Lastly, I would like to thank Dr. Matthew Eick of the Department of Crop, Soil and Environmental Sciences for acting as a mentor, advisor, employer, instructor and friend. Without his encouragement and belief in my abilities, I would never have undertaken graduate studies and my life would have been poorer as a result.

# **Table of Contents**

| Using Accumulation Based Network Identification Methods to Identify Hill Slope Scale Drainage    |           |
|--------------------------------------------------------------------------------------------------|-----------|
| Networks in a Raster GIS                                                                         | í         |
| Using Accumulation Based Network Identification Methods to Identify Hill Slope Scale Drainage    |           |
| Networks in a Raster GIS                                                                         | ii        |
| Abstract                                                                                         | ii        |
| Acknowledgements                                                                                 | iv        |
| List of Tables                                                                                   | vi        |
| List of Figures                                                                                  | viii      |
| List of Figures                                                                                  | viii      |
| Introduction                                                                                     | 1         |
| 1. Literature Review                                                                             | 3         |
| 2. Materials and Methods                                                                         | 10        |
| 2.1 Introduction to accumulation based methods and evaluation criteria                           | 10        |
| 2.2 Choice of DEM Resolution                                                                     | 10        |
| 2.3 Description of the Area of Study and Selected DEM Source                                     | 11        |
| 2.4 GIS Software for delineating overland flow networks and calculating flow lengths             |           |
| 2.5 Watershed partitioning                                                                       | 12        |
| 2.6 Overland flow length calculations                                                            | 15        |
| 2.7 Graphs of overland flow length versus threshold value                                        | 15        |
| 2.7 Oraphs of overland flow length versus threshold value                                        | 15        |
| 2.8 Quality in Spatial diversity in Overland now relight                                         | 10<br>19  |
| 2.10 Description of collected Assumption hand Matrix description Methods                         | 20        |
| 2.10 Description of selected Accumulation-based Network Identification Methods                   | 22        |
| 2.10.2 Diles A summission                                                                        | 22        |
| 2.10.2 Ridge Accumulation                                                                        | 24        |
| 2.11 Differences in flow paths between terrain curvature and other ANIM                          | 26        |
| 2.12 Contour Crenulation Methodology and Selected Watersheds                                     | 27        |
| 3. Preliminary Analysis: Terrain Morphology and Accumulation-based NIM                           | 31        |
| 3.1 Idealized drainage network forms, threshold and overland flow length                         | 31        |
| Sub-watershed B                                                                                  | 31        |
| 3.2 Idealized Drainage Network Forms, Threshold and Stream Frequency                             | 33        |
| 3.3 Analysis of Actual Networks                                                                  | 34        |
| 4. Spatial Diversity at a Single Threshold, Analysis Unit Size, and Measures of Diversity        | 37        |
| 4.1 The effect of analysis unit size on measures of diversity in overland flow length            | 37        |
| 4.2 Comparisons of predicted overland flow lengths by digital orthoquad                          | 40        |
| 4.3 Variation in overland flow length by Eco-Region                                              | 40        |
| Maximum – Minimum                                                                                | 42        |
| 5. Matching DEM Contours                                                                         | 47        |
| 5.1 Characteristics of ANIM Networks and Contour Crenulation Networks                            | 48        |
| 5.2 Diversity in overland flow length of ANIM versus contour crenulation networks                | 50        |
| 5.3 Oualitative Comparison of observed versus predicted networks                                 | 52        |
| 5 4 Results of Rank Correlation / Regression Analysis                                            | 61        |
| 6 Use of a Single Regionally Calibrated Threshold Value                                          | 72        |
| 6.1 Characteristics of ANIM Networks and Contour Crenulation Networks                            |           |
| 6.2 Results of Rank Correlation / Regression Analysis                                            | , 5<br>74 |
| 7 Sensitivity of Predicted Overland flow length to Threshold and Stream Frequency in Actual DFMs |           |
| Conclusions                                                                                      | +0<br>80  |
| Suggestions for future research                                                                  | 01        |
| Dibliography                                                                                     | 00        |
| ыоподгарну                                                                                       | 92        |

# List of Tables

| <b>Table 3.1:</b> Drainage network characteristics for two idealized sub-watershed forms. Stream length (1) and overland flow length (L) are shown to be highly variable at a single threshold value.                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table 3.2:</b> Drainage network characteristics for two idealized sub-watershed forms. A relationship between stream frequency (F) and ?L are implied                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Table 3.3:</b> Values of stream frequency and overland flow length (in meters) for Surry 3 and Craigville 7 at<br>values of $T = 0.5$ , 1.0, 2.0 and 3.0 ha. Threshold values used to compute L are given in parentheses.<br>The value for F is at a threshold value of 0.5 ha.36                                                                                                                                                                                                                                                                                                           |
| <b>Table 4.1</b> : Average, minimum, maximum and standard deviation of overland flow lengths calculated for watersheds at five different scales using the flow accumulation method of network identification38                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Table 4.2:</b> Average, minimum, maximum and standard deviation of overland flow lengths calculated for watersheds at five different scales using the terrain curvature method of network identification                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Table 4.3:</b> Average, minimum, maximum and standard deviation of overland flow lengths calculated for watersheds at five different scales using the ridge accumulation method of network identification 38                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Table 4.4:</b> Overland flow lengths (in meters) predicted by the flow accumulation, terrain curvature, and ridge accumulation methods for three (3) digital orthoquad 10 m DEMs in Virginia40                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Table 4.5:</b> Overland flow lengths (in meters) predicted by the flow accumulation, terrain curvature, and ridge accumulation methods for seven (7) ecoregions in Virginia.         42                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Table 5.1:</b> Watershed Area, number of sub-watersheds and mean overland flow length (in meters) for 5 watersheds in Briery Branch, Craigville, Louisa and Surry quads in Virginia, for a contour crenulation flow network. The number of sub-watersheds given corresponds to using a 10 and 20 ha minimum sub-watershed size                                                                                                                                                                                                                                                              |
| Table 5.2: Overland flow lengths (OFL) for networks predicted by manual contour crenulation, flow accumulation, terrain curvature and ridge accumulation, using locally calibrated threshold values (in meters).         48                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Table 5.3:</b> Standard deviation and range statistics (in meters) for flow networks predicted for 53 headwater sub-watersheds with a minimum size of 10 ha in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a locally calibrated threshold value                                                                                                                                                                                                                                                                                  |
| <b>Table 5.4:</b> Standard deviation and range statistics (in meters) for flow networks predicted for 25 headwater sub-watersheds with a minimum unit size of 20 ha in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a locally calibrated threshold value                                                                                                                                                                                                                                                                             |
| Table 5.5: Result of regression analysis with Contour Crenulation network as observed variable, and         ANIM network as predicted variable for 53 headwater sub-watersheds with a minimum size of 10 ha         in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated         using a locally calibrated threshold value. P-value for all regressions was less than 0.01. a-values for         each Spearman coefficient are < 0.005. 95% Confidence interval widths for R <sup>2</sup> estimate are also         given                      |
| <b>Table 5.6:</b> Result of regression analysis with Contour Crenulation network as observed variable, and         ANIM network as predicted variable for 25 headwater sub-watersheds with a minimum size of 20 ha         from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were         generated using a locally calibrated threshold value. p-value for all regressions was less than 0.01. a -         values for each Spearman coefficient are < 0.005. 95% Confidence interval widths for R <sup>2</sup> estimate are         also given.       65 |
| <b>Table 5.7:</b> Predictions of overland flow length (in meters) by contour crenulation, flow accumulation, terrain curvature and ridge accumulation methods in 53 headwater sub-watersheds, with a minimum analysis unit size of 10 ha.         69                                                                                                                                                                                                                                                                                                                                           |

**Table 5.8:** Predictions of overland flow length (in meters) by contour crenulation, flow accumulation, terrain curvature and ridge accumulation methods in 25 headwater sub-watersheds, with a minimum analysis unit size of 20 ha.

 71

**Table 6.1:** Range of regionally calibrated threshold values required to match average overland flow length.

- Table 6.2: Standard deviation and range statistics (in meters) for flow networks predicted for 53 headwater sub-watersheds in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia determined with a 10 ha minimum analysis unit size. ANIM networks were generated using a regionally calibrated threshold value. Values in parentheses () are those that were obtained using a locally calibrated threshold value. 73

| <b>Table 7.1:</b> Average percent rank change with small changes in threshold value, for the terrain curvature, |   |
|-----------------------------------------------------------------------------------------------------------------|---|
| ridge accumulation and flow accumulation network identification methods. Threshold values are                   |   |
| chosen to produce average overland flow lengths of 75, 100, 125 and 150 m.                                      | б |

## 

| minimum unit size of 20 ha in the Craigville quad                                                                                                           | .102 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table A.2: Results of rank change analysis for flow accumulation method on 218 sub-watersheds of a minimum unit size of 20 ha in the Craigville quad.       | .109 |
| <b>Table A.3:</b> Results of rank change analysis for terrain curvature method on 218 sub-watersheds of a minimum unit size of 20 ha in the Craigville quad | .116 |

| B.1: Avenue Script for automating the division of watersheds into sub-watershed units based on a |     |
|--------------------------------------------------------------------------------------------------|-----|
| minimum threshold for stream links, the identification of headwater sub-watersheds, and the      |     |
| calculation of flow lengths for each sub-watershed and ANIM.                                     | 125 |

# List of Figures

| Figure 1.1: Sample flow direction grid                                                                                                                                                           | 3       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Figure 1.2: Sample Flow accumulation grid                                                                                                                                                        | 3       |
| Figure 2.1: Sub-watersheds in Craigville 3 quad, based on a minimum analysis unit size of 5 ha                                                                                                   | 13      |
| Figure 2.2: Sub-watershed 4 (6.8 ha) in the Craigville 3 quad, based on a minimum analysis unit size of 5 ha.                                                                                    | 5<br>13 |
| Figure 2.3: Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the contour crenulation method of network delineation                                                     | .13     |
| Figure 2.4: Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the flow accumulation method of network delineation                                                       | 13      |
| Figure 2.5: Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the terrain curvature method of network delineation                                                       | .14     |
| Figure 2.6: Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the ridge accumulation method of network delineation                                                      | .14     |
| Figure 2.7: Craigville 3 quad divided into sub-watershed units based on a minimum unit size of 20 ha                                                                                             | 21      |
| Figure 2.8: Craigville 3 quad divided into sub-watershed units based on a minimum unit size of 10 ha                                                                                             | 21      |
| Figure 2.9: Terrain curvature flow network for the Briery Branch 2 sub-watershed. A threshold value of cells was used to produce this flow network.                                              | 7<br>23 |
| Figure 2.10: A ridge weight grid for the Briery Branch 2 sub-watershed. Cells in blue are cells whose flo accumulation value is zero (0) or "ridge " cells, and are assigned a weight of one (1) | w<br>25 |
| Figure 2.11: The stream network yielded with a threshold value of 27 for the ridge accumulation weighting grid for Briery Branch 2.                                                              | 25      |
| Figure 2.12: Flow paths as determined by the flow accumulation method                                                                                                                            | 26      |
| Figure 2.13: Flow paths as determined by the ridge accumulation method                                                                                                                           | 26      |
| Figure 2.14: Flow paths as determined by the terrain curvature method                                                                                                                            | 26      |
| Figure 2.15: Flow paths as determined by all 3 methods overlaid to illustrate divergences in predicted flo paths                                                                                 | w<br>26 |
| Figure 2.16: Contour crenulation (CC) stream network derived for sub-watershed Craigville 3, used for comparison with the networks derived by selected ANIM.                                     | 28      |
| Figure 2.17: Contour crenulation (CC) stream network derived for sub-watershed Craigville 4, used for comparison with the networks derived by selected ANIM.                                     | 29      |
| Figure 2.18: Contour crenulation (CC) stream network derived for sub-watershed Louisa 5, used for comparison with the networks derived by selected ANIM.                                         | .29     |
| Figure 2.19: Contour crenulation (CC) stream network derived for sub-watershed Surry 3, used for comparison with the networks derived by selected ANIM.                                          | 30      |
| Figure 2.20: Contour crenulation (CC) stream network derived for sub-watershed Briery Branch 2, used for comparison with the networks derived by selected ANIM.                                  | .30     |
| Figure 3.1: Sub-watershed "A". Flow direction grid for an idealized surface with a high D                                                                                                        | 32      |
| Figure 3.2: Sub-watershed "A". Flow accumulation grid for an idealized surface with a high D                                                                                                     | 32      |
| Figure 3.3: Sub-watershed "B". Flow direction grid for an idealized surface with a low D                                                                                                         | 32      |
| Figure 3.4: Sub-watershed "B". Flow accumulation grid for an idealized surface with a low D                                                                                                      | 32      |

| <b>Figure 3.5:</b> Craigville 7 watershed, displaying a parallel drainage network form. At T = 85 cells stream frequency (F) = 26.6, L = 81.9 m                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 3.6:</b> Surry 3 watershed, displaying a dendritic drainage network form. At T = 85 cells stream frequency (F) = 62.6, L = 79.2 m                                                                                                                                                                                                                                                                           |
| <b>Figure 3.7:</b> Plot of overland flow length vs. Threshold area for Surry 3 and Craigville 7 sub-watersheds between source area threshold values of 0.5 ha < T < 3.0 ha                                                                                                                                                                                                                                            |
| <b>Figure 4.1:</b> Sub-watershed units at five different scales used to examine the effects of watershed unit size on the spatial diversity in overland flow length reported by the flow accumulation, terrain curvature and ridge accumulation methods. (a) average unit size 23.1 ha, (b) average unit size 46.4 ha, (c) average unit size 118.3 ha, (d) average unit size 282.6 ha, (e) average unit size 515.6 ha |
| <b>Figure 4.2</b> : The networks predicted by the Flow Accumulation method with eco-regions overlaid for the Craigville quad. Longest overland flow lengths are predicted in the Northern Sandstone Ridges (in green), which the shortest lengths are predicted in the Northern Shale Valleys (light tan, occupying the diagonal from the bottom left to the upper right of this figure)                              |
| <b>Figure 4.3:</b> The networks predicted by the Ridge Accumulation method with eco-regions overlaid for the Craigville quad. Longest overland flow lengths are predicted in the Northern Sandstone Ridges (in green), which the shortest lengths are predicted in the Northern Shale Valleys (light tan, occupying the diagonal from the bottom left to the upper right of this figure)                              |
| <b>Figure 4.4:</b> The networks predicted by the Terrain Curvature method with eco-regions overlaid for the Craigville quad. Longest overland flow lengths are predicted in the Northern Sandstone Ridges (in green), which the shortest lengths are predicted in the Northern Shale Valleys (light tan, occupying the diagonal from the bottom left to the upper right of this figure)                               |
| Figure 5.1: Contour Crenulation network for the Craigville 3 watershed                                                                                                                                                                                                                                                                                                                                                |
| <b>Figure 5.2:</b> Ridge accumulation network with a locally calibrated threshold value, T = 16, for Craigville 3 watershed                                                                                                                                                                                                                                                                                           |
| <b>Figure 5.3:</b> Terrain curvature network with a locally calibrated threshold value, T = 5, for Craigville 3 watershed                                                                                                                                                                                                                                                                                             |
| <b>Figure 5.4:</b> Flow accumulation network with a locally calibrated threshold value, T = 81, for Craigville 3 watershed                                                                                                                                                                                                                                                                                            |
| <b>Figure 5.5:</b> Contour Crenulation network in sub-watershed 38 (13.3 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Sub-watershed size is                                                                                                                                                                                                                                                |
| Figure 5.6: Terrain curvature in sub-watershed 38 in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Percent error +12.5%                                                                                                                                                                                                                                                                            |
| <b>Figure 5.7:</b> Flow Accumulation network in sub-watershed 38 in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Percent error +11.2%                                                                                                                                                                                                                                                             |
| <b>Figure 5.8:</b> Ridge Accumulation network in sub-watershed 38 in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Percent error +16.5%                                                                                                                                                                                                                                                            |
| Figure 5.9: Contour Crenulation in sub-watershed 17(12.1 ha) in the Craigville 3 quad, with a minimum analysis unit of 10 ha                                                                                                                                                                                                                                                                                          |
| <b>Figure 5.10:</b> Terrain curvature network in sub-watershed 17 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error +36.4%                                                                                                                                                                                                                                                               |
| <b>Figure 5.11:</b> Flow Accumulation network in sub-watershed 17 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error -39.4%                                                                                                                                                                                                                                                               |
| Figure 5.12: Ridge Accumulation network in sub-watershed 17 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error +5.3%                                                                                                                                                                                                                                                                      |

| Figure 5.13: Contour Crenulation network in sub-watershed 22(30.1 ha) in the Craigville 3 quad, with a minimum analysis unit of 10 ha                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 5.14:</b> Terrain curvature network in sub-watershed 22 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error +4.9%      |
| <b>Figure 5.15:</b> Flow Accumulation network in sub-watershed 22 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error -25.0%     |
| Figure 5.16: Ridge Accumulation network in sub-watershed 22 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error -17.6 %          |
| <b>Figure 5.17:</b> Contour Crenulation network in sub-watershed 5(12.5 ha) in the Surry 3 quad, with a minimum analysis unit of 10 ha                      |
| <b>Figure 5.18:</b> Terrain curvature network in sub-watershed 5 in the Surry 3 quad, with a minimum analysis unit of 10 ha. Percent error -3.6%            |
| <b>Figure 5.19:</b> Flow Accumulation network in sub-watershed 5 in the Surry 3 quad, with a minimum analysis unit of 10 ha. Percent error +37.9 %          |
| <b>Figure 5.20:</b> Ridge Accumulation network in sub-watershed 5 in the Surry 3 quad, with a minimum analysis unit of 10 ha. Percent error +6.7%           |
| <b>Figure 5.21:</b> Contour Crenulation network in sub-watershed 2 (50.3 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha             |
| Figure 5.22: Terrain curvature network in sub-watershed 2 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -8.9%           |
| <b>Figure 5.23:</b> Flow Accumulation network in sub-watershed 2 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -7.1%    |
| <b>Figure 5.24:</b> Ridge Accumulation network in sub-watershed 2 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -6.3%   |
| Figure 5.25: Contour Crenulation network in sub-watershed 15 (59.7 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha                   |
| Figure 5.26: Terrain curvature network in sub-watershed 15 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error +31.7%         |
| <b>Figure 5.27:</b> Flow Accumulation network in sub-watershed 15 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -9.2%   |
| <b>Figure 5.28:</b> Ridge Accumulation network in sub-watershed 15 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error +27.0% |
| Figure 5.29: Contour Crenulation network in sub-watershed 18 (44.5 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha                   |
| Figure 5.30: Terra in curvature network in sub-watershed 18 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -0.8%         |
| <b>Figure 5.31:</b> Flow Accumulation network in sub-watershed 18 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -5.0%   |
| <b>Figure 5.32:</b> Ridge Accumulation network in sub-watershed 18 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -0.8 % |
| Figure 5.33: Contour Crenulation network in sub-watershed 11 (30.1 ha) in the Craigville 3 quad, with a minimum analysis unit of 20 ha                      |
| <b>Figure 5.34:</b> Terrain curvature network in sub-watershed 11 in the Craigville 3 quad, with a minimum analysis unit of 20 ha. Percent error +4.9%      |

- Figure 7.1: Change in overland flow length (?L) vs. stream frequency (F) for 218 sub-watersheds with area >= 20 ha, from an average overland flow length of 75 m to 150 m, for the terrain curvature method.
  87
- Figure 7.2: Change in overland flow length (?L) vs. stream frequency (F) for 218 sub-watersheds with area >= 20 ha, from an average overland flow length of 75 m to 150 m, for the ridge accumulation method.
- Figure 7.3: Percent change in overland flow length (?L) vs. stream frequency (F) for 218 sub-watersheds with area >= 20 ha, from an average overland flow length of 75 m to 150 m, for the flow accumulation method.
- **Figure A.1:** (a) Contour crenulation network, (b) ridge (T = 19), (c) terrain curvature (T = 9) and (d) flow accumulation (T = 101) networks for locally calibrated threshold values for Craigville 4 watershed...97

## Introduction

NPS pollution models are often used to determine the potential effects of changes in land use, or the application or absence of certain conservation management practices (Haan et al, 1994). They may also be used for the purpose of prioritizing areas of land for the receipt of human and financial conservation resources, or for choosing the type of best management practice to be implemented in order to meet conservation goals (Tomer et al, 2003). An accurate representation of the drainage network is essential for the reliable performance of NPS models, as transport processes differ greatly between overland and channelized flow (Thiekken et al, 1999). Knowledge of the extent of flow concentration in ephemeral channels, at the "hill slope" scale, is essential for predicting the performance of riparian buffers (Dillaha and Hayes, 1992; Inamdar and Dillaha, 2000), and in using empirical methods for predicting erosion and sediment yields (Jain and Kothyari, 2001). Widely used models such as HSPF, AGNPS, TR-55, GLEAMS, USLE/RUSLE and ANSWERS2000 require either an estimate of overland flow length (distance of overland flow before concentration) or a cell based representation of the drainage network at the hill slope scale, where flow through a cell is distinguished as either sheet or channel flow. The purpose of this research is to evaluate the use of Accumulation-based Network Identification Methods (ANIM) in Geographic Information Systems (GIS) for supplying the overland flow length parameter for non-point source pollution models. In order to evaluate these methods based on ease of use and accuracy, a set of general-purpose performance criteria and a standard evaluation procedure will be outlined. In order to inform the choice of evaluation criteria, the basic concepts behind flow accumulation and its relationship to topography will also be explored.

Accumulation-based network identification methods (ANIM) are based on determining the contributing area flowing (or *accumulating*) into every point in a watershed and partitioning flow into overland and channelized flow based on the exceedence of a source area threshold. In order to realize the potential efficiency gains in NPS model input parameterization promised by GIS, network identification methods must be simple to implement, processor efficient, and make use of readily available data sets. The chosen methods must also be able to make accurate predictions with minimal effort (e.g. threshold value calibration) on the part of modelers. ANIM are widely used because they employ readily available rectangular

gridded digital elevation model (DEM) data, have relatively small processor demands, and operate on algorithms that are available in virtually all GIS. With regards to accuracy, however, these methods have been widely criticized based on their dependence on an arbitrary choice of threshold value, the resultant need for calibration of this value, artifacts in network representation due to systematic deficiencies (such as parallel flow paths), and spatial homogeneity in overland flow length when using a single threshold. Three ANIM's, the simple source area threshold method (flow accumulation), the terrain curvature method (terrain curvature), and the ridge accumulation method (ridge accumulation), will be evaluated based on their ability to provide estimates of overland flow length that reflect variations in terrain without calibration of the threshold value.

While previous studies have suggested that the original ANIM, the flow accumulation method, is unable to represent spatial diversity, there has been little attempt to outline evaluation criteria to support these claims. For that matter, there has been little investigation into the practical implications of the fundamentals upon which all ANIM rely, i.e., that convergent terrain will yield denser drainage networks (shorter overland flow lengths) and that divergent or planar terrain will yield sparser networks (longer overland flow lengths). This study will explore the fundamental principles that underlay ANIM and also outline a process for evaluating spatial diversity at the hill-slope scale. The following questions will shape this investigation:

- 1. Do the mechanisms that underlay Accumulation-based Network Identification Methods (ANIM) provide for the *possibility* of spatial variation in overland flow length with a single threshold? Also, are there any negative implications inherent in these mechanisms?
- 2. Do ANIM exhibit spatial variation with a single threshold when analyzing real terrain forms, and can this variation be quantified simply (i.e. standard deviation)?
- 3. Do ANIM represent trends in variation of overland flow length as suggested by tracing contours lines using: a) a locally calibrated threshold value, b) a regionally calibrated threshold value?
- 4. What is the sensitivity to changes in threshold value, and can this sensitivity be predicted?

### 1. Literature Review

Early investigations into defining overland flow length/ephemeral drainage networks were performed by manually defining the channels on contour maps (Smith, 1950; Leopold, 1964; Mark, 1983; Dillaha and Hayes, 1992). More recently, attention has turned to the use of GIS to define these drainage-ways (Inamdar et al, 1993; Bren, 1998; Helmers et al, 2001). While GIS based network identification methods (NIM) can be much faster than manual methods, their accuracy has been questioned due to deficiencies in the methods themselves, and due to the accuracy of the input data sets (Caiado et al, 2003; Edreny and Wood, 2001). Furthermore, due to the scarcity of data at a resolution sufficient to discern hill-slope drainage networks, little is known about the performance of common GIS based NIM at this scale.

Accumulation-based network identification methods, ANIM, are computed by assigning each cell in the grid a weight and flow direction, then computing the sum, or *accumulation*, of all upland cell weights flowing through each cell in the grid (O'Callaghan and Mark, 1984). The operator then chooses a threshold value for channel initiation, and applies this as a filter over the flow accumulation grid. Cells whose accumulation values exceed the threshold value are considered to be part of the channelized flow network.

| $\downarrow$ | $\mathbf{k}$ |
|--------------|--------------|
| $\downarrow$ | 4            |
| $\perp$      |              |

| 0  | 0 |
|----|---|
| 3  | 0 |
| 5  | 0 |
| 7  | 0 |
| 9  | 0 |
| 11 | 0 |
| 13 | 0 |
| 15 | 0 |
| 17 | 0 |
| 19 | 0 |
| 21 | 0 |
| 23 | 0 |
| 24 |   |

Figure 1.1: Sample flow direction grid.

Figure 1.2: Sample Flow accumulation grid.

The most significant change to this common method since its inception has been the introduction of a procedure to fill pits or depressions in the source DEM, and for routing flow over the resulting flat areas (Jensen and Domingue, 1988). The D8 flow direction method (Jenson and Domingue, 1988) creates parallel flow patterns in large areas of flat terrain. The simple flow accumulation method produces parallel channels in these areas. Numerous solutions to this problem have been proposed, from slight alteration of the DEM, to the introduction of alternate algorithms for defining flow direction (Fairfield 1991, Tribe 1992, and Garbrecht and Martz, 1997; Tarboton, 1997). These changes facilitate the construction of a continuous stream network.

ANIM, as defined in this study, differ primarily in their choice of weighting scheme. The most common accumulation-based method is the one introduced by O'Callaghan and Mark, the source area threshold, or flow accumulation method, which features a weight of 1 for each cell. Other weighting schemes have been proposed, based on local slope (Montgomery and Dietrich, 1989; Leopold et al, 1992; Inamdar and Dillaha, 2000), erosion thresholds (Dietrich et al, 1993), using vector contours (Bren, 1998) and upwardly curved cells (Tarboton, 2001). The terrain curvature weighting scheme introduced by Tarboton (Tarboton, 2001), combines one of the earliest network identification algorithms – identifying upwardly curved cells (Peucker and Douglas, 1975), which produced non-continuous networks, with the standard flow accumulation algorithm. By combining these two approaches – accumulation and curvature – this method produces continuous networks that are a reflection of observed terrain features.

While drainage network identification has been studied extensively, due to the scarcity of high-resolution data, much of the work has focused on the use of threshold values that produce networks beyond the hill-slope scale. Furthermore, there have been few attempts to set down standard procedures for evaluating the accuracy of drainage network predictions at the hill-slope scale. One study that did attempt to evaluate hill slope scale networks, an evaluation of predicting concentrated flow through riparian buffers using 30m DEMs (Brothers et al., 2002) was more an exercise in evaluating the accuracy of 30m DEMs, than it was an evaluation of the ANIM. They concluded that 30m DEM are insufficient to discern

hill-slope scale networks. This agreed with a previous study that concluded that DEM's with a 10m resolution would be necessary to represent networks with overland flow lengths as small as 50m (Zhang and Montgomery 1994).

Many investigators have raised questions pertaining to DEM accuracy, and the potential for DEM errors to propagate to NPS models has been shown to be significant (Mark, 1984; Edreny and Wood, 2001; Brothers et al, 2002). Due to these uncertainties, it is difficult to locate instances where investigators actually utilize an ANIM for determining the actual drainage network characteristics employed in predictive NPS models. More common is the use of accumulation values for consideration of loading (Xiang, 1996; Bren, 1998), or in an empirical equation to generate overland flow length factor for use in various implementations of the USLE (Jain and Kothyari, 2000; Tomers, et al, 2002). The USLE and its variants have been shown to be highly sensitive to the overland flow length, or LS factor (Gertner, et al, 2002). The use of ANIM for producing a digital drainage network for NPS models is fairly widespread, perhaps the most prominent being in the integrated GIS and modeling environment BASINS (U.S. EPA, 2003). Although the integrated toolkit provides a facility for employing the flow accumulation method for drainage network identification, it does not necessarily recommend its use, nor does it provide guidance for threshold value choice. Indeed, it also provides for the use of other methods, and the inclusion of the flow accumulation method in the BASIN's toolkit is more an acknowledgement of its ubiquity than its usefulness. While the use of ANIM is widespread, the usefulness of the networks they produce for derivation of overland flow length has not been validated.

While many authors have commented on the influence that the choice of threshold value has on the length of the resulting network (Morris and Heerdegen, 1986; Tarboton et al 1991, Helmlinger et al 1993), few have been able to suggest robust, easy to use guidelines for threshold choice (Helmlinger et al, 1993). Tarboton suggests the use of the constant stream drop parameter, an empirical characteristic of stream networks (Broscoe, 1959), to guide the choice of threshold value. However, preliminary results in this investigation suggest that this method was not suitable for producing networks at the hill slope scale; the resulting networks were too coarse. Helmlinger reported on the relationship between threshold value (T) and drainage density (D), establishing that an increase in threshold value over the range 5 ha < T < 92 ha, resulted in an exponential decrease in drainage density for 3 watersheds, sizes ranging from 113 km<sup>2</sup> to 600 km<sup>2</sup>. Tarboton (2001), comparing drainage densities in 3 separate watersheds (watershed area not reported) at values of threshold area between 1 ha and 100 ha, found a consistent functional dependence between source area threshold, T, and the resultant drainage density. He concluded that networks defined with the flow accumulation technique suffered from a spatially uniform drainage density. The results of Gandolfi and Bischetti (1997), however, showed significant variation in drainage density between 3 watersheds (areas between 4.5 km<sup>2</sup> to 7.0 km<sup>2</sup>) when using the same threshold values over a range of 1 ha <= T <= 10 ha. Their results also showed a variation in the rate of change in D as a function of T, with one watershed having a greater D at lower values of T, and a second watershed having a greater D at higher T levels.

The impact of threshold value on the morphometric characteristics of the resulting networks, such as total network order, drainage density, drainage frequency and bifurcation ratio has been shown to be substantial (Morris and Heerdegen, 1988, Helmlinger et al, 1993, and Gandolfi and Bischetti, 1997). Despite the widespread investigation into the effects of threshold value on stream morphometrics, there has been little investigation into the role that variation in the underlying topography plays on these metrics when networks are generated with a constant support area threshold; excepting, of course, the extensive discussion of parallel flow paths. This problem of parallel flow paths over flat surfaces is perhaps the most extensively studied example of the interaction between an ANIM and the underlying landform represented by the DEM. The effect of resolution aggregation of input DEM has also been shown to significantly alter the resulting drainage network (Wang and Yin, 1998, Thiekken et al, 1999). Additionally, the effects of DEM smoothing on determination of flow direction has been shown to be significant (Caiado et al, 2003), in essence demonstrating the potential impact that changes in landform may have on the interpretation of the drainage network.

The parallel flow problem is particularly interesting in that the flow accumulation method produces an erroneously high drainage density due to a misinterpretation of an artificial landform, i.e. the perfectly flat surface with all drainage pathways flowing parallel to one another. As a result of these observations, it is not unthinkable that there may exist cases wherein naturally occurring landforms that are accurately represented in a DEM might be misinterpreted by the flow accumulation method. However, there seems to be a scarcity of investigation into the role of terrain morphology and ANIM. The lone example of a mention of the impacts of the underlying morphology (other than parallel flow paths) noted in this review is the mention of stream frequency in the sensitivity analysis performed by O'Callaghan and Mark (1984) in their initial paper introducing flow accumulation.

Previous investigations have used 3 basic sources of ground truth to evaluate the veracity of the predicted drainage networks, and/or to guide the choice of accumulation threshold values:

- Comparing the digital network against a field survey of the area in question (Montgomery and Dietrich, 1989; Inamdar and Dillaha, 2000; Brothers et al, 2001).
- 2. Comparing the properties of the digital network against the corresponding properties of real networks as based on empirical relationships (Tarboton, 1992; Ijjasz-Vasquez and Bras, 1995).
- 3. Comparison with ephemeral channels mapped on existing USGS 7.5' topographical maps through the interpretation of contour crenulations (Tarboton, 2001).

The first method would undoubtedly yield the most precise evaluation of the digital network, but is impractical if the area in question were very large. Such field surveys are also expensive, time-consuming, and consequently, rarely available to the investigator. The use of empirical methods (such as drainage density, stream frequency or overland flow length) is much more practical in the case of a large watershed wide assessment, however, data for estimating empirical quantities for a given watershed must be readily available in order to facilitate the comparison of the proposed ephemeral drainage networks. While a number of investigations have been performed using accepted "laws" of stream network characteristics (Ijjasz-Vasquez and Bras, 1995; Tarboton, 1992), the universality of these laws has been questioned (Helmlinger et al, 1993; Montgomery and Foufoula-Georgiou, 1993), and the resolution of these studies was not extended to the hill-slope scale. The third method, comparison with ephemeral channels interpreted from contour crenulations on USGS topographic maps (generally referred to as the contour crenulation, or CC method), while

less precise and still time consuming, is readily accessible. There are two different approaches to evaluating contour crenulations: manual delineation and texture ratio measurement.

Manual delineation is a common method of producing a drainage network, based on interpreting the contours on a topographic map. The basic method, as defined by Lubowe (1964) is to extend the drainage net along a series of cusps in successive contour lines if there are 3 consecutive contours of 150 degrees or less, or if there are two consecutive contours of 100 degrees or less. The USGS topographic DEMs are based on a common form of topographic map that can provide contour networks for such an analysis. When constructing a contour map, USGS topographers begin by sketching in all channels in an area, and then drawing contours based on this channel network. Channels that do not have perennial flow are then eliminated from the final map (Mark, 1983). The CC method involves interpreting the significance of bends, or crenulations, in the contour lines that are drawn upon a topographical map, effectively restoring the drainage features detected by the original topographer (Mark, 1984). Mark (1983) showed that 24 out of 25 drainage pathways predicted by the CC method existed in the field. The main limitation to this method is the resolution of the contour map employed. Comparison of drainage networks predicted by topographic maps with field surveys performed by Morisawa (1961) and Mark (1983) both determined that actual drainage paths are more numerous in the field than those predicted from contour analysis. However, Mark (1983) found that the channels not predicted by the contour analysis were smaller than those that *were* predicted. Morisawa (1961), Leopold (1964) and Mark (1983) all found that the CC method provided a more detailed picture of the actual drainage network than the did the maps of blue line streams on USGS 7.5 minute topographic quads.

The texture ratio is determined by first summing the number of crenulations in the most crenulated contour of a watershed, then, this sum is divided by the length of the watershed perimeter (in km or miles). The resulting number, the *texture ratio*, has been shown by Smith (1950) and Leopold (1964) to be highly correlated with drainage density. While this method is less time consuming than the manual delineation method for a large area, it is limited in

that it provides only a surrogate of a single measurement, drainage density, and may obscure variations in terrain as the size of the watershed being measured increases.

# 2. Materials and Methods

# 2.1 Introduction to accumulation based methods and evaluation criteria

Evaluating the characteristics of ANIM networks requires knowledge of not only the *extent* of the drainage network, but also the *location*. Overland flow length is well suited to this pursuit, as it may be evaluated on a watershed-wide basis, effectively yielding the *extent* of the drainage network (i.e. how dissected is the overall terrain), as well as on a sub-watershed scale, where it then reports on the *location* or *diversity* of the drainage network (i.e. how are the channels distributed along the landscape). In order to evaluate extent, ANIM overland flow lengths for larger watersheds will be compared with contour crenulation overland flow lengths. In order to evaluate location, the watersheds will be divided into smaller sub-watersheds, and overland flow lengths for the sub-watersheds in the digital network will be compared to those in the contour network. Sub-watersheds will be divided into units occupying the minimum permissible area; agreements or disagreements with contour crenulation. Central to this process will involve determining the appropriate DEM types, appropriate study areas, software for performing analysis, and methods of comparison.

# 2.2 Choice of DEM Resolution

Inherent in the evaluation of any drainage network is a central question: "What scale of drainage network is sought?" This question imposes an unavoidable subjectivity on the discussion. The drainage network desired may be as coarse as the "blue line streams", or may extend all the way up the hillside, as overland flow separates into rills (Chorley et al, 1984). While the choice of drainage network extent is arbitrary, the resolution of the input grid will limit the ability to accurately locate channel heads (Dietrich et al, 1993). This study will use the concept of hill-slope scale, or ephemeral channel network, situated somewhere between the rill network, and the perennial stream network. This network is considered to consist of permanent terrain features that concentrate runoff, which cannot be obliterated by tillage, and which are discernable by crenulated contours on topographic maps. The characterization of the 'hill-slope' scale used in this study will follow the results of a survey of riparian hill-slopes in southwestern Virginia's Ridge and Valley province by Inamdar and Dillaha (2000), which focused on ephemeral channels, and found overland flow lengths between 30-100 m. Zhang and Montgomery (1994) concluded that 10m DEM's were of a

sufficient resolution to represent a highly dissected sub-watershed with overland flow lengths of between 30 and 50m, provided that the DEM were sufficiently free of errors.

#### **2.3 Description of the Area of Study and Selected DEM Source**

The source data for these study areas are USGS 10m Level 2 DEMs for Louisa, Craigville, Briery Branch and Surry Virginia, (GIS Data Depot, 2003). The DEM themselves were generated from 1:24,000 scale contour maps, through an automated process which interpolates elevation values smoothly between adjacent contours, and are produced at a resolution of 10m. It will be assumed that these maps, despite topographical generalization in their creation (Mark, 1983) accurately represent a range of morphologic patterns. This does not imply an assumption that these maps are in fact accurate representations of the terrain that they depict. In truth, the resulting map is only as accurate as the contour source, which were generated by human cartographers. Also, the interpolation process may smooth features between contours. However, this data is free of some of the artifacts and noise common to earlier DEM. Even in the case of comparison with ground truth, the ground truth is generated from the maps themselves using contour crenulation, outlined in section 2.5. These quad sheets were selected in order to provide a diversity of terrain forms, however, all study areas are within the Chesapeake Bay watershed in Virginia. These areas span 6 eco-regions (Omernik, 1987), Northern Inner Piedmont, Rolling Chesapeake Inner Coastal Plain, Dissected Ridge and Knob, Northern Shale Valleys, Northern Sandstone Ridges and Northern Limestone/Dolomite Valleys.

**2.4 GIS Software for delineating overland flow networks and calculating flow lengths** The goal of this research is to use the most recent advances in network delineation in an "off the shelf" fashion. ArcView GIS 3.1 and Spatial Analyst (ESRI, 1997) were used delineate networks for the ridge-weight method and the flow accumulation method. The stand-alone version of MapWindow 2.7 (Ames, 2001), with the TauDEM plug-in (Tarboton, 2002), was used to generate the terrain curvature networks, although the plug-in version of MapWindow for ESRI ArcGIS 8.x could also be used for deriving these networks. Values for diagonal and adjacent cell weightings for the terrain curvature method recommended in the literature were used exclusively, with the only adjustments made to the cell threshold values (see section 2.10.1). Terrain curvature networks were then imported into ArcView for further analysis. All calculations of overland flow length were performed using ArcView GIS 3.1. All analyses of flow network properties were carried out through the use of ArcView 3.1, with Spatial Analyst and the Hydrologic Modeling extension version 1.1. Appendix B contains the map algebra statements and Avenue scripts for ArcView GIS 3.1 that were used to perform the analyses listed below. Microsoft Excel, with the Data Analysis ToolPak was used for computing linear regression coefficients and Spearman ranking coefficients (Microsoft, 2000). The MS-DOS program R2 (Steiger and Fouladi, 1992) was used to compute confidence intervals for the R<sup>2</sup> values, in order to determine the signifcane of small differences in R<sup>2</sup> between two different methods.

# 2.5 Watershed partitioning

Ultimately, all analyses boiled down to a calculation of overland flow length in the small subwatershed components of a larger watershed. The DEM's used in this study were partitioned into watershed units of various sizes, depending on the minimum or maximum sub-watershed size required for a given analysis. The sub-watersheds units were determined in ArcView GIS 3.1, using the following procedure:

- 1. Create a simple flow accumulation flow accumulation grid using the "Flow Accumulation" menu item.
- Determine a coarse drainage network by reclassifying flow a ccumulation grid based on a cell threshold equal to the desired minimum unit size, 500 cells for a 5 ha unit, 1,000 cells for a 10 ha cell unit, 2,000 cells for a 20 ha cell unit.
- 3. Assign each reach in the resulting flow networks a unique ID by employing the StreamLink function.
- 4. Create a raster grid of sub-watersheds using the watershed function, with the stream link theme as the outlet theme.

The resulting theme contained sub-watersheds with a variety of sizes, with all headwater subwatersheds guaranteed to have a minimum size equivalent to the threshold used to delineate the base network. Figure 2.1 shows the Craigville 3 watershed, partitioned by a 500-cell network. Figure 2.2 shows the contour network for sub-watershed 4, and figures 2.3-5 show the flow accumulation, terrain curvature and ridge accumulation networks, respectively, for this sub-watershed.



**Figure 2.1:** Sub-watersheds in Craigville 3 quad, based on a minimum analysis unit size of 5 ha.



**Figure 2.3:** Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the contour crenulation method of network delineation.



**Figure 2.2:** Sub-watershed 4 (6.8 ha) in the Craigville 3 quad, based on a minimum analysis unit size of 5 ha.



**Figure 2.4:** Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the flow accumulation method of network delineation.





**Figure 2.5:** Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the terrain curvature method of network delineation.

**Figure 2.6:** Channelized flow network in sub-watershed 4 in the Craigville 3 quad using the ridge accumulation method of network delineation.

#### 2.6 Overland flow length calculations

Following Leopold (1964, p.146), who defined the distance between two adjacent channels, or overland flow length, as the reciprocal of drainage density, we may relate drainage density and overland flow length as follows:

D = S / A; [Eq. 2.1] D = 1 / (2 \* L); [Eq. 2.2] and therefore, L = 1 / (2 \* D); [Eq. 2.3]

where D = drainage density, S = stream length and L is the average overland flow length, and assumes a ridge situated equidistant from two adjacent channels. Therefore, if stream length and sub-watershed area are known an average overland flow length can be computed.

In order to facilitate the rapid calculation of overland flow length for these sub-watersheds, an automated method was developed using a raster drainage network and the "Summarize Zones" function. For determining the length of a given raster stream network in the larger study area, it was assumed that an equal number of cells flowed diagonally, flow distance 14.14 m, and vertically/horizontally, flow distance 10 m, for an average flow distance of 12.07 m. The average stream length for any given reach was then estimated as the number of cells, multiplied by the average flow distance. In order to insure the validity of this assumption, the average cell lengths for the five study areas used in analysis parts 1-2 were computed by converting raster flow networks into vector networks then dividing the total length of the resulting vectors by the total number of cells in the original raster networks. This computed average cell length was within 0.5% the estimated average flow length of 12.07 m. The overland flow length was then calculated by re-arranging Leopold's formula.

L = (A / (2 \* S)); [Eq. 2.4]

#### 2.7 Graphs of overland flow length versus threshold value

In order to produce graphs of overland flow length versus threshold value (Figure 3.9) the data table from the flow accumulation grid, containing accumulation values and number of cells at a given accumulation value, was imported into Microsoft Excel, and sorted by

accumulation value. An additional column was created for each accumulation level showing drainage network length at the given threshold. This drainage network length is computed by first performing a cumulative sum from the last row up to the first row yielding the total number of cells in the network at any given threshold. This cell count is then multiplied by the average length of flow through a cell (approximately 12.07 m in the case of these 10m DEM's) to give a close approximation for length of the flow network:

$$L = \overline{L} \cdot \sum_{i=n}^{T} C_i$$
; [Eq. 2.5]

Where  $C_T$  = the number of cells with an accumulation value equal to threshold i, n is the largest accumulation value in the grid, and T is the accumulation value at any given row. The overland flow length at each point was then computed as in section 2.6. Microsoft Excel's plot function was then used to create a graph of L as a function of T for the study areas.

Strahler defined stream frequency (F) as the number of stream reaches per unit area (as reported by Chorley et al, 1948, 1984). The StreamLink function was used to segment this network into reaches, giving each link a unique ID. Stream frequency was then determined by applying the Spatial Analysts' "zonal summary" to the stream networks and watershed themes. The result of the variety statistic yielded a count of individual reaches in each watershed. The value for stream frequency at a given threshold value was then determined by dividing the number of reaches by the area of the watershed in question.

#### 2.8 Quantifying spatial diversity in overland flow length

The ability or inability of an ANIM to represent spatial variation in overland flow length limits its usefulness as a basis for NPS model parameters. It has been suggested in at least two studies that the flow accumulation method requires the use of multiple, or 'calibrated' values to represent spatial diversity in overland flow length (Tarboton, 2001;Morris and Heerdegen, 1998). However, the result of Section 3, and the results of a study in Italy (Gandolfi and Bischetti, 1997) imply that spatial diversity with the flow accumulation method is at least possible, if not common. This suggests that either the flow accumulation

method is capable of displaying only a limited diversity, which is practically indiscernible in reality, or that there were factors in the previous studies that biased the results toward homogeneity, or perhaps a combination of both. Large analysis units – a minimum size of 11,300 ha, and large threshold values – a minimum T of 5 ha, characterized the study by Morris and Heerdegen (1998). These threshold values are too large to capture the hill slope channels, and the analysis unit is of a size that might lead to averaging of terrain features. Tarboton (2001) compared networks produced by simple flow accumulation and terrain curvature concluding that the flow accumulation networks were spatially homogeneous, and that the terrain curvature networks were spatially diverse. While it appeared that this was in fact the case, these observations were only substantiated graphically, and not quantitatively. Thus, the factors that might bias an analysis towards homogeneity must be identified, and a procedure must be constructed such that these biases can be avoided. Finally, it is not sufficient to simply perform an analysis and proclaim "diversity is present" – some attempt must be made to evaluate the extent to which diversity is present. This portion of the analysis will then attempt to outline a procedure for describing the spatial variability in overland flow length and apply it to networks produced by three ANIM – the flow accumulation method, the terrain curvature method and the ridge accumulation method.

There are several possible reasons (other than ANIM deficiencies) why a drainage network produced by a given ANIM might lack spatial diversity:

- 1. The threshold value might be too large to capture the hill-slope scale variations in morphology that characterize the variations in different regions
- 2. The analysis units (i.e. watersheds being compared) are too large to reflect the regional variations within them, resulting in comparisons of watersheds that are aggregates of smaller, more diverse units, and that consequently display an "average" overland flow length.
- 3. The different analysis units being compared are, in fact, homogeneous.

This first cause is simple to overcome – a threshold value must be chosen such that hillslope scale overland flow lengths are produced. The second potential problem may be overcome by choosing an analysis unit that is sufficiently small to capture the regional variations. The third problem might be somewhat more difficult, given that the absence of ground truth overland flow lengths describing an area might make it difficult to determine analysis units that one would *expect* to display some diversity. In this case, the EPA's level IV ecoregions (USEPA, 2004) are chosen, as they are based in part on differences in "bedrock and surficial geology, soils, land use, hydrology, physiography" (Omernik 1995), and include in them descriptions of variation in drainage density (USEPA, 2003).

In assessing the degree to which diversity, if present, is represented by a given ANIM, simple descriptive statistics will be applied to the sample populations. The minimum and maximum of the population will represent the extremes, while the standard deviation of overland flow lengths will be counted as the measure of diversity. Using these measures it would follow that a method which fails entirely to produce spatially varying overland flow length would show a standard deviation of zero, and no difference between minimum and maximum values, whereas a method which succeeds in producing variation would show some positive value in these measures. This portion of the analysis does not attempt to identify a "correct" level of variation, but simply to establish a numerical measure of spatial homogeneity or diversity for a given ANIM. In addition to the application of these statistics as measures of a given methods performance, they will also be used in order to evaluate the degree to which analysis unit size biases a result towards homogeneity. Finally, networks will be analyzed to determine if there are differences in predicted overland flow length by eco-region for any of the methods.

#### 2.9 Quantitative Comparison of Contour Crenulation and ANIM Networks

When comparing overland flow lengths in ANIM networks to the those generated by manual contour delineation, there are two crucial considerations: 1) means of comparison, and 2) choice of threshold value. Previous investigations have used a qualitative method: the visual comparison with contours (Tarboton, 2001), and a quantitative method: using a least squares regression between predicted and observed OFLs for unique and independent hydrologic units (i.e. headwater sub-watersheds), to calculate a coefficient of multiple determination, or  $R^2$  value (Montgomery and Dietrich, 1989; Inamdar and Dillaha, 2000). This investigation will use a qualitative evaluation, and two quantitative methods – Spearman's Rank Correlation Coefficient ( $R_s$ ), and the linear regression coefficient ( $R^2$ ). A variety of threshold values will be chosen such that they all yield overland flow lengths at the

hill-slope scale (as determined by manual contour delineation). The effects of the degree to which these thresholds are calibrated will be varied to explore the impacts of threshold calibration.

The quantitative method – least squares regression – is an attractive alternative due to its ability to assign a numerical value to the predictive abilities of one method or another, it relies upon some fundamental assumptions that may not hold true in all cases: a normal distribution, and a linear relationship between the observed (in this case contour crenulation) and predicted (a given ANIM) values. In cases where these assumptions are in doubt, one may use a "Rank Correlation Coefficient", sometimes referred to as Spearman's Rank Correlation Coefficient, or  $\mathbf{R}_{s}$ . In the computation of this coefficient, a numerical rank is assigned to each sub-watershed based on its overland flow length. A rank is assigned for the flow length yielded by the contour crenulation method, and the flow length given by each ANIM, then the correlation coefficient is computed based on the distance of the predicted rank versus the observed rank based on the following formula:

$$R_{s} = 1 - \frac{6? d_{i}^{2}}{n(n^{2} - 1)}$$

Where the term  $d_i = (\text{predicted rank} - \text{observed rank})$ . As for the choice of threshold value, there has been considerable discussion with regard to the identification of an optimum threshold value for use with a given ANIM.

Generally speaking, the choice of threshold has been found to be dependent upon the extent of the drainage network being analyzed, e.g., if one were attempting to mimic the blue line stream network, one would choose a certain threshold that yielded a suitable network, whereas if one were dealing with hill-slope scale networks (as in this investigation) a different threshold value (considerably lower) would be appropriate. The identification of a "universal threshold" for hill-slope scale networks, if such a thing exists, is beyond the scope of this investigation, so "locally calibrated" and "regionally calibrated" thresholds will be employed. The locally calibrated threshold value be chosen such that the OFL closely matches the OFL for a larger watershed area as given by the contour crenulation method, then the larger watershed will be divided into unique and independent hydrologic units in order to compare the fidelity of the ANIM networks to the contour crenulation networks, using the methods outlined in section 2.5. This local calibration will be repeated for each larger watershed study area (see section 5 for the results of this analysis), resulting in a total of 5 thresholds for each method. Figure 2.7 shows the 20 ha sub-watershed analysis units for the Craigville 3 quad, and figure 2.8 shows the 10 ha sub-watershed analysis unit in that same quad (See Appendix A for all watersheds). In order to examine the effects of threshold calibration, but still remain within the hill slope scale, the analysis will be repeated using an arithmetic mean of the "locally calibrated" threshold values from the five larger watersheds. This will be referred to as the "regionally calibrated" threshold value.

It may be noted that the methods of section 2.5 yields a set of sub-watersheds that is a mixture of headwater and downstream sub-watersheds, however, the criteria for identifying "unique and independent" hydrologic units is interpreted as referring to only headwater sub-watersheds (Inamdar and Dillaha, 2000), as the OFD of downstream sub-watersheds will be influenced by those watersheds flowing into them. Therefore, the choice of threshold value will be based on the entire watershed, but the analysis will be completed for the subset of headwater sub-watersheds only. In an attempt to observe the effects of analysis unit size, the larger watershed areas will be divided based on a minimum sub-watershed unit size of 10 ha and 20 ha, and the analysis will be repeated at both unit sizes and the results compared.



Figure 2.7: Craigville 3 quad divided into sub-watershed units based on a minimum unit size of 20 ha.



Figure 2.8: Craigville 3 quad divided into sub-watershed units based on a minimum unit size of 10 ha.

### 2.10 Description of selected Accumulation-based Network Identification Methods

The ANIM as outlined by O'Callaghan and Mark (1984) begins with a gridded digital elevation matrix, from which a flow direction is derived, based on the assumption that runoff from any cell will flow to only one of its eight neighbors. This is often referred to as the D-8 method of flow partitioning. A flow accumulation matrix, representing the sum of all cells draining into each cell is then derived from this flow direction matrix and a weighting matrix. A weight of one will yield an accumulation grid that represents the total area draining to each individual cell (O'Callaghan and Mark, 1984), this will be referred to as the flow accumulation method. Differing combinations of diverging and converging landforms will govern flow direction and concentration, and this should lead to spatial variations in overland flow length.

The other methods used in this analysis will be the terrain curvature method, and the ridge weight method. Each of these methods differs from the flow accumulation method in the choice of weighting grid values, and were devised with the intent of producing a greater spatial variation in drainage network distribution. The terrain curvature method also may differ slightly in its handling of flat terrain. The algorithm that it employs routes flow in flat areas towards the nearest downstream cell, helping to eliminate parallel flow paths. Watershed areas that are used for comparison in this study will be chosen such that the incidence of parallel flow paths is minimized, helping to insure that the comparison between ANIMs is based on channel initiation not flow path.

#### 2.10.1 Terrain Curvature Method

The terrain curvature method is an accumulation based method, which assigns a weight of 1 to all cells which represent a local minimum in a 4 square cell neighborhood, and are therefore concave upward, and a weight of 0 to all other cells. Also, the user is able to specify a weight for cells that are situated adjacent to the upwardly curved cell on the diagonal (the suggested values are between 0.01 and 0.1). This method is based on the terrain curvature algorithm outlined by Peucker and Douglas (1975), and employs the accumulation method to correct network discontinuities present in the original method (Tarboton, 2001). The curvature method (terrain curvature) marks a distinct difference in approach to that of the flow accumulation method. Whereas the flow accumulation method

attempts to *predict* the occurrence of channelization based on the exceedence of a certain threshold, the terrain curvature method in essence *interprets* the occurrence of a specific landform type, which is likely to concentrate overland flow. The ability of this method to identify upwardly curved cells is only limited by the vertical resolution of the input data set. The reader is referred to Peucker and Douglas (1975), and Tarboton (2001) for a detailed description of the curvature algorithm. MapWindow 2.7 was used to delineate these networks using a pit-filled DEM that was prepared within ArcView GIS 3.1. The default values for adjacent cell weighting suggested in the TauDEM delineation wizard (side=0.1, center=0.4, diagonal = 0.05) in MapWindow 2.7 were used to delineate all flow networks in this study. Figure 2.9 shows the terrain curvature network for the Briery Branch watershed.



**Figure 2.9:** Terrain curvature flow network for the Briery Branch 2 sub-watershed. A threshold value of 7 cells was used to produce this flow network.

# 2.10.2 Ridge Accumulation

The ridge accumulation method is introduced in this study as a new alternative ANIM. This method involves assigning a weight of 1 to all ridge cells, and a weight of 0 to all other cells. Ridge cells are defined as being any cell whose upslope contributing area is equal to 0. First, a simple, flow accumulation grid is derived, then a map algebra formula is applied to convert cells with a zero accumulation values to 1, and all other values to zero. This new grid is referred to as the "ridge grid". A new accumulation grid is then computed using this ridge grid as its weight. Figure 2.10 shows the ridge weight grid, and figure 2.11 shows the resulting drainage network when a threshold value of 27 cells is applied as a channel initiation criteria. (ArcView 3.1 Map Calculator commands can be found in Appendix B.)

This method attempts to identify convergent landforms through the accumulation of maxima, thereby producing networks with a greater spatial diversity. It is also hoped that in large flat areas, a lower instance of ridge cells will result in this method producing a lower incidence of stream channel initiation along parallel flow paths. It is also hoped that this might prove useful in areas where the vertical resolution is insufficient to show distinct upwardly curved cells as required by the terrain curvature method.


**Figure 2.10:** A ridge weight grid for the Briery Branch 2 sub-watershed. Cells in blue are cells whose flow accumulation value is zero (0) or "ridge " cells, and are assigned a weight of one (1).



**Figure 2.11:** The stream network yielded with a threshold value of 27 for the ridge accumulation weighting grid for Briery Branch 2.

#### 2.11 Differences in flow paths between terrain curvature and other ANIM

While all three methods use a common flow direction grid, the flow paths that are produced by the terrain curvature method are not always identical to those produced by other ANIMs. Figures 2.12-14 depict a detail view of flow paths derived by the flow accumulation, ridge accumulation, and terrain curvature methods over the same area. While the ridge accumulation method and flow accumulation methods share the same flow paths, in some instances the terrain curvature method produces an entirely different path. This is a result of the complex weighting scheme employed by the terrain curvature method, which provides for the weighting of cells next to those identified as "upwardly curved", as well as the procedure used to determine flow direction in flat areas. Watershed areas in this study were chosen to minimize the incidence of parallel flow paths. Figure 2.15 contains flow networks from all three methods superimposed on one another in order to highlight the divergences.



**Figure 2.12:** Flow paths as determined by the flow accumulation method.



**Figure 2.14:** Flow paths as determined by the terrain curvature method.



**Figure 2.13:** Flow paths as determined by the ridge accumulation method.



**Figure 2.15:** Flow paths as determined by all 3 methods overlaid to illustrate divergences in predicted flow paths.

## 2.12 Contour Crenulation Methodology and Selected Watersheds

Manual delineation, since it yields an actual drainage network, will be used to provide the basis for comparison of ANIM networks for this analysis. Based on the previous research regarding this method, it is reasonable to assume that it will most likely yield a conservative estimate of the actual drainage network. While it will not be possible to determine the extent of this underestimation of the drainage network, it does at least indicate that the CC network will be more complete than the one depicted by blue line streams, while not over estimating its extent. Most importantly, it should provide a good measure of overall spatial trends in overland flow length.

ArcView GIS 3.1 was used to trace the contour network through the creation of a vector theme. The contour intervals were selected based on the contour interval used in the original source 1:24,000 scale quad sheet. The blue line stream network on the original contour map was used to provide the base network. The base network was extended along the adjacent contours provided that the contour line met one of the following criterion:

- It was bent at less than 100 degrees (clearly crenulated);
- Or, it was less than 150 degrees, and had a 100-degree bend on a down slope contour;
- Or, three consecutive 150-degree crenulations occurred, in which case all three would be included.

CC networks were traced for five watersheds (sizes ranging from 49 to 466 ha), selected from the Briery Branch, Craigville, Louisa, and Surry quads (see figures 2.16 through 2.20). The watersheds were selected in order to provide a diversity of terrain forms, as identified by the Eco-Region, to avoid large flat areas which would be rendered with parallel flow paths, and also to reflect areas in the DEM that appeared to be free of many of the defects that are commonly associated with DEMs, such as artifacts and banding. Subsequently, the watershed delineated in the Rolling Coastal Plain area, Surry quad, is considerably smaller than the others, due to large flat areas and considerable quality issues encountered in this and other Virginia coastal plain DEMs. Two watersheds were selected from the Craigville quad, as it contained a high diversity of Eco-Regions, and one each was chosen from the Briery Branch, Louisa and Surry quads. In all, six (6) Eco-Regions were represented in the data set: Northern Inner Piedmont, Rolling Chesapeake Inner Coastal Plain, Dissected Ridge and Knob, Northern Shale Valleys, Northern Sandstone Ridges and Northern Limestone/Dolomite Valleys.



**Figure 2.16:** Contour crenulation (CC) stream network derived for sub-watershed Craigville 3, used for comparison with the networks derived by selected ANIM.



**Figure 2.17:** Contour crenulation (CC) stream network derived for sub-watershed Craigville 4, used for comparison with the networks derived by selected ANIM.



**Figure 2.18:** Contour crenulation (CC) stream network derived for sub-watershed Louisa 5, used for comparison with the networks derived by selected ANIM.



**Figure 2.19:** Contour crenulation (CC) stream network derived for sub-watershed Surry 3, used for comparison with the networks derived by selected ANIM.



**Figure 2.20:** Contour crenulation (CC) stream network derived for sub-watershed Briery Branch 2, used for comparison with the networks derived by selected ANIM.

**3.** Preliminary Analysis: Terrain Morphology and Accumulation-based NIM This portion of the investigation attempts to lay some conceptual groundwork for the sections that follow. Given the apparent scarcity of information regarding the interaction between terrain morphology and ANIM, an exploration of the fundamental processes that underlie ANIM was undertaken. The basic assumption that seems to underlie the flow accumulation method (and by association, all other ANIM), is that convergent topography will yield a more rapid accumulation of cells, and thus, more extensive flow networks. Divergent, or planar terrain will likewise yield more sparse networks. Thus, two watersheds with similar areas, but different morphologies should have different overland flow lengths when evaluated at the same source area threshold. If this underlying assumption proves to be true, the role played by the morphological structure of this network and the impact of applying an arbitrary threshold onto this surface remains to be determined. The use of stream frequency (F) as a potential predictor for changes in overland flow length as a result of changing threshold value ( $\Delta L/\Delta T$ ) becomes apparent during this analysis, and is later utilized in analysis chapter 7, as a further criteria for evaluating ANIM.

#### 3.1 Idealized drainage network forms, threshold and overland flow length

Figures 3.1-4 present flow direction and flow accumulation grids (10 m unit size) for idealized sub-watersheds with the same area, but different drainage network forms. Sub-watershed A is long and narrow, with a single main channel (a morphology that can be described as "parallel"), and sub-watershed B is short and wide, with 5 main flow paths converging at the outlet ("dendritic" morphology). Their difference can also be quantified in terms of stream frequency (F); sub-watershed A has a frequency of 4/ ha, while sub-watershed B has 20/ ha. Evaluating overland flow length (L) at a threshold value of T = 5 cells we have  $L_a = 22.7$  m, and  $L_b = 83.3$  m – a difference of 267%. While this is an extreme example, it demonstrates that landform may influence the length of the drainage network when using a constant threshold value with the support area threshold method.

**Table 3.1:** Drainage network characteristics for two idealized sub-watershed forms. Stream length (l) and overland flow length (L) are shown to be highly variable at a single threshold value.

|                 | Area (ha) | Stream Frequency (F) | Stream Length (m) | <b>Overland Flow Length (m)</b> |
|-----------------|-----------|----------------------|-------------------|---------------------------------|
| Sub-watershed A | 0.25      | 4                    | 110               | 22.7                            |
| Sub-watershed B | 0.25      | 20                   | 30                | 83.3                            |



**Figure 3.1:** Sub-watershed "A". Flow direction grid for an idealized surface with a high D.

**Figure 3.2:** Sub-watershed "A". Flow accumulation grid for an idealized surface with a high D.



Figure 3.3: Sub-watershed "B". Flow direction grid for an idealized surface with a low D.

|   |   |   |   | 0 | 0  | 0 |   |   |   |   |
|---|---|---|---|---|----|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 5 | 1  | 5 | 3 | 2 | 1 | 0 |
| 0 | 1 | 2 | 3 | 4 | 24 | 4 | 3 | 2 | 1 | 0 |

Figure 3.4: Sub-watershed "B". Flow accumulation grid for an idealized surface with a low D.

#### 3.2 Idealized Drainage Network Forms, Threshold and Stream Frequency

The stream frequency metric describes the number of branches per unit area in a given watershed. It is hypothesized that as the value of T increases, those areas with a high value for stream frequency (F) at a given threshold will experience increases in overland flow length at a greater rate than those whose value of F is low. This occurs because the shortening of the drainage network occurs at the ends of headwater reaches, and the number of headwater reaches will be less than or equal to the total number of branches, thus it follows that the change in drainage network length should occur at a rate not to exceed:

$$\Delta L/\Delta T = FnA$$
 Eq. 3.1

Where *F* is the stream frequency at the previous value of *T*, *n* is the change in threshold value, and *A* is the area of the watershed of interest and  $\Delta L/\Delta T$  is measured in DEM cells. The idealized set of landforms in figures 3.1-4 will be used to explore the potential for variation in  $\Delta L/\Delta T$  and the use of F as a predictor of this variation.

Evaluating L at a value of T = 3 cells we have a flow network in sub-watershed A of 9 cells, with  $L_a = 12.7$  m,  $F_a = 4/ha$  and sub-watershed B has a flow network of 12 cells, with  $L_b =$ 10.4 m, and  $F_b = 20/ha$ . If the proposed relationship between F and  $\Delta L/\Delta T$  is valid it should follow that as T is increased,  $\Delta L_b/\Delta T > \Delta L_a/\Delta T$ . At a threshold value of 5 cells, the overland flow length computed for the sub-watershed "A" ( $L_a$ ) in Figure 3.3 is 11.4 m, an increase of approximately 11% while that for the sub-watershed in "B" ( $L_b$ ) in Figure 3.4 has grown to 38.3 m, an increase of 213%. The flow network in sub-watershed A decreased by 1 unit, or 1 stream cell/threshold cell, and the network in sub-watershed B decreased by 6 units, or 3 stream cell/threshold cell. The inequality in equation 3.1 predicts that for subwatershed A, the maximum rate of decrease in stream length per unit increase in T is 1 cell/cell, and for sub-watershed B this rate is 5 cell/cell.

|                 |           | T = 3 cells (0.03 ha) |       |       | T = 5 cells (0 | <b>).03 h</b> a) |       |
|-----------------|-----------|-----------------------|-------|-------|----------------|------------------|-------|
|                 | Area (ha) | F (n/ha)              | l (m) | L (m) | 1              | L (m)            | ?L    |
| Sub-watershed A | 0.25      | 4                     | 120   | 12.7  | 110 m          | 11.4             | 11 %  |
| Sub-watershed B | 0.25      | 20                    | 98.3  | 10.4  | 38.3 m         | 32.6             | 213 % |

**Table 3.2:** Drainage network characteristics for two idealized sub-watershed forms. A relationship between stream frequency (F) and ?L are implied.

This example demonstrates that  $\Delta L/\Delta T$  may vary greatly between sub-watersheds, and suggests a possible relationship between F and  $\Delta L/\Delta T$ . It should noted that the values for F and L in these idealized sub-watersheds were contrived in order to demonstrate a point, it remains to be seen whether this trend is evident in actual watersheds. Further analysis using actual terrain data are necessary in order to extend this observation.

## 3.3 Analysis of Actual Networks

Howard (1967) posed eight basic drainage patterns: dendritic, parallel, trellis, rectangular, radial, annular, multi-basinal and contorted. Strahler (1964) noted that due to differences in drainage pattern, drainage density (D) and stream frequency (F) are independent of one another. Given that drainage density and overland flow length are inversely proportional to one another (equation 2.3), therefore it stands to reason that overland flow length and stream frequency are similarly independent. Figures 3.5-6 show drainage networks for two watersheds in Virginia, Craigville 7 and Surry 3. Craigville 7 is characterized by parallel drainage patterns, while Surry 3 is predominantly dendritic with some parallel patterns visible in its southern reaches. These two watersheds have nearly identical values for overland flow length,  $L_{c7} = 81.9$  m and  $L_{s3} = 79.2$  m, a difference of approximately 3%. The contrasts posed by Strahler are in evidence here, as their stream frequencies differ by a factor greater than 2, with  $F_{c7} = 26.6$  and  $F_{s3} = 62.2$  despite a similar drainage density (and consequently, overland flow length).



**Figure 3.5:** Craigville 7 watershed, displaying a parallel drainage network form. At T = 85 cells stream frequency (F) = 26.6, L = 81.9 m.

**Figure 3.6:** Surry 3 watershed, displaying a dendritic drainage network form. At T = 85 cells stream frequency (F) = 62.6, L = 79.2 m.

To examine the behavior of ? L/?T for these two sub-watersheds, overland flow lengths were calculated within the range of 0.5 ha < T < 3.0 ha for these two sub-watersheds; the results are plotted in Figure 7. Table 2 provides a summary of these plots, showing L values for Surry 3 and Craigville 7 at values of T = 0.5, 1.0, 2.0 and 3.0 ha. The % change in L between T = 0.5 ha and T = 3.0 ha differs by a factor of nearly 3 between these two sub-watersheds. Due to this variation, a drainage network delineation that employed a threshold value of 0.5 ha would conclude that overland flow length in Surry 3 exceeded that of Craigville 7, by approximately 35%. Conversely, network delineation employing a threshold value of 3.0 ha would conclude that the overland flow length of Craigville 7 exceeded that of Surry 3 by 42%. Figure 3.7 shows a plot of overland flow length versus threshold value for these two sub-watersheds.



**Figure 3.7:** Plot of overland flow length vs. Threshold area for Surry 3 and Craigville 7 sub-watersheds between source area threshold values of 0.5 ha < T < 3.0 ha.

**Table 3.3:** Values of stream frequency and overland flow length (in meters) for Surry 3 and Craigville 7 at values of T = 0.5, 1.0, 2.0 and 3.0 ha. Threshold values used to compute L are given in parentheses. The value for F is at a threshold value of 0.5 ha.

|              | F    | <b>L</b> (0.5 ha) | <b>L</b> (1.0 ha) | <b>L</b> (2.0 ha) | <b>L</b> (3.0 ha) | % <b>D</b> L |
|--------------|------|-------------------|-------------------|-------------------|-------------------|--------------|
| Surry 3      | 62.6 | 57.01             | 79.49             | 111.11            | 140.45            | 59.41%       |
| Craigville 7 | 26.6 | 77.28             | 85.03             | 91.91             | 98.62             | 21.64%       |

The comparison of these two sub-watersheds further demonstrates the potential for the expression of varying drainage network morphology based on the choice of an arbitrary threshold value. Specifically, this change in relative calculated overland flow length or "rank change" between sub-watersheds might be particularly troubling for hydrologic models. However, for this to significantly impact a wide range of hydrologic studies, the type of variability seen between Surry 3 and Craigville 7 would have to be widespread. Section 7 will explore this issue further, examining and comparing the flow accumulation, terrain curvature and ridge accumulation methods.

# 4. Spatial Diversity at a Single Threshold, Analysis Unit Size, and Measures of Diversity

The results of section 3 confirm the possibility that ANIM networks may display spatial diversity in overland flow length, based on the underlying terrain morphology, and that this possibility is realized in both contrived flow networks and actually occurring networks. This section attempts to identify an appropriate unit size for analysis of diversity, to determine if this diversity is widespread, and to explore the use of standard deviation as a means for quantifying diversity. Finally, networks will be analyzed to determine if there are differences in predicted overland flow length by eco-region for any of the methods.

## 4.1 The effect of analysis unit size on measures of diversity in overland flow length

In order to explore the impact that analysis unit size has on spatial diversity, networks were generated for the Craigville quad using flow accumulation, terrain curvature and ridge accumulation methods. This analysis was limited to a single quad in order to eliminate variation that might occur as a result of differences in quad sheet preparation. A single threshold value was chosen for each method such that the average overland flow length over the whole quad was approximately 100m. Then, sub-watershed analysis units at five different scales were partitioned using the methods explained in section 2.5 corresponding to 500, 1,000, 2,000, 5,000 and 10,000 cell threshold networks. A minimum sub-watershed size was set for each analysis scale of 10 ha, 20 ha, 50 ha, 100 ha and 200 ha, respectively. Sub-watersheds that extended into an adjacent quad were omitted from the analysis. Figures 4.1-5 show the sub-watershed units at each of these scales. The resulting calculations of minimum, maximum, and standard deviations of overland flow lengths are presented in Tables 4.1-3.

It can be seen that for all three methods, standard deviations decrease as the size of the analysis units increase, and that similarly, minimum and maximum overland flow lengths become less extreme as the analysis unit size increases. In addition to the apparent effects of the large analysis unit in reducing diversity, the effects of smaller analysis units are interesting in the range of maximum overland flow lengths predicted. At the minimum 10 ha analysis unit level, the flow accumulation method predicts a maximum overland flow length of 316

m, while the ridge accumulation method predicts a maximum overland flow length of 465.7

m, and the terrain curvature method predicts a maximum of 1,023.2 m.

|           |            |                |           | Minimum             |                |                 |              |  |  |  |
|-----------|------------|----------------|-----------|---------------------|----------------|-----------------|--------------|--|--|--|
|           |            | Minimum        | Avg. Unit | Avg. Flow<br>Length | Flow<br>Length | Maximum<br>Flow | Std.<br>Dev. |  |  |  |
| Threshold | # of units | Unit Size (ha) | Size (ha) | (m)                 | (m)            | Length (m)      | (m)          |  |  |  |
| 178       | 614        | 10             | 23.1      | 109.2               | 51.3           | 316.0           | 27.5         |  |  |  |
| 178       | 302        | 20             | 46.4      | 106.7               | 62.2           | 175.4           | 18.5         |  |  |  |
| 178       | 115        | 50             | 118.3     | 104.4               | 75.8           | 175.4           | 16.1         |  |  |  |
| 178       | 47         | 100            | 282.6     | 107.5               | 88.5           | 150.5           | 13.2         |  |  |  |
| 178       | 26         | 200            | 515.6     | 105.5               | 93.1           | 121.5           | 8.0          |  |  |  |

**Table 4.1**: Average, minimum, maximum and standard deviation of overland flow lengths calculated for watersheds at five different scales using the flow accumulation method of network identification.

**Table 4.2:** Average, minimum, maximum and standard deviation of overland flow lengths calculated for watersheds at five different scales using the terrain curvature method of network identification.

|           |            |              |           | Avg. Minimum   |                |                 |              |  |
|-----------|------------|--------------|-----------|----------------|----------------|-----------------|--------------|--|
|           |            | Minimum Unit | Avg. Unit | Flow<br>Length | Flow<br>Length | Maximum<br>Flow | Std.<br>Dev. |  |
| Threshold | # of units | Size (ha)    | Size (ha) | ( <b>m</b> )   | ( <b>m</b> )   | Length (m)      | ( <b>m</b> ) |  |
| 9         | 614        | 10           | 23.1      | 120.5          | 50.1           | 1,023.2         | 77.8         |  |
| 9         | 302        | 20           | 46.4      | 111.1          | 59.5           | 584.9           | 41.4         |  |
| 9         | 115        | 50           | 118.3     | 104.0          | 63.7           | 191.9           | 24.3         |  |
| 9         | 47         | 100          | 282.6     | 105.9          | 74.1           | 157.9           | 21.2         |  |
| 9         | 26         | 200          | 515.6     | 106.1          | 78.4           | 144.7           | 18.5         |  |
|           |            |              |           |                |                |                 |              |  |

**Table 4.3:** Average, minimum, maximum and standard deviation of overland flow lengths calculated for watersheds at five different scales using the ridge accumulation method of network identification.

|           |            |              |           | Avg. Flow    | Minimum    | Maximum    |           |
|-----------|------------|--------------|-----------|--------------|------------|------------|-----------|
|           |            | Minimum Unit | Avg. Unit | Length       | Flow       | Flow       | Std. Dev. |
| Threshold | # of units | Size (ha)    | Size (ha) | ( <b>m</b> ) | Length (m) | Length (m) | (m)       |
| 29        | 614        | 10           | 23.1      | 116.2        | 51.3       | 465.7      | 46.0      |
| 29        | 302        | 20           | 46.4      | 110.0        | 63.3       | 199.9      | 27.6      |
| 29        | 115        | 50           | 118.3     | 106.0        | 66.2       | 186.7      | 22.8      |
| 29        | 47         | 100          | 282.6     | 108.5        | 80.5       | 166.1      | 19.7      |
| 29        | 26         | 200          | 515.6     | 107.3        | 87.1       | 141.8      | 13.7      |

Despite the trend toward more homogeneous overland flow lengths with increasing watershed size, all three methods still maintain a measure of spatial diversity in their predictions up to an analysis unit size of 200 ha. Comparing the measure of standard deviation between the three methods it is apparent that the terrain curvature method retains more diversity than the others (a minimum standard deviation of 18.5) followed by the ridge accumulation method (13.7) and finally the flow accumulation method (8.0).

(a)

**(b)** 

(c)



(**d**)

**(e)** 



**Figure 4.1:** Sub-watershed units at five different scales used to examine the effects of watershed unit size on the spatial diversity in overland flow length reported by the flow accumulation, terrain curvature and ridge accumulation methods. (a) average unit size 23.1 ha, (b) average unit size 46.4 ha, (c) average unit size 118.3 ha, (d) average unit size 282.6 ha, (e) average unit size 515.6 ha.

## 4.2 Comparisons of predicted overland flow lengths by digital orthoquad

The effect of spatial aggregation is also evident when considering an entire quad sheet as the analysis unit. Table 4.4 presents the results of average overland flow lengths calculated for three USGS quad sheets (in the form of 10 m DEMs), Craigville, Louisa and Surry, which encompass seven (7) ecoregions. The analysis unit size is approximately 15,200 ha in the case of the Craigville and Louisa quads, and approximately 8,300 ha in the case of the Surry quad. The thresholds values used were the same as those that yielded a network with an approximate average overland flow length of 100 m in the Craigville quad in the previous section. In this case the ridge accumulation predicts the widest degree of variation (a range of 29.11 m), followed by the curvature method (a range of 27.58 m), and then the flow accumulation method, which predicts little variation whatsoever (a range of 3.71 m). The differences in the networks yielded by the terrain curvature method and the ridge accumulation method are particularly striking, as these methods predicted a much larger range of overland flow lengths than did the flow accumulation method. Also, the terrain curvature and ridge accumulation methods agree as to the relative ranking of these quads on the basis of overland flow length. The trend towards decreasing diversity with larger analysis unit size, seen in the previous analysis, seems to have continued, with all methods showing a decrease in range with the quad sheet sized analysis unit, however, this effect was much more pronounced in the case of the flow accumulation method, while the ridge accumulation and terrain curvature methods managed to maintain a much larger range of variation.

**Table 4.4:** Overland flow lengths (in meters) predicted by the flow accumulation, terrain curvature, andridge accumulation methods for three (3) digital orthoquad 10 m DEMs in Virginia.

|            | Flow         | Terrain     | Ridge                |  |
|------------|--------------|-------------|----------------------|--|
|            | Accumulation | Curvature   | Accumulation         |  |
|            | Overland     | Overland    | <b>Overland Flow</b> |  |
| Quad Name  | Flow Length  | Flow Length | Length               |  |
| Craigville | 104.36       | 103.60      | 104.36               |  |
| Louisa     | 106.94       | 92.63       | 89.76                |  |
| Surry      | 103.23       | 76.02       | 75.25                |  |

## 4.3 Variation in overland flow length by Eco-Region

If the spatial diversity that is predicted by these methods is considered to genuinely reflect natural variation, rather than simply being random errors in the method, it would be

expected that trends between various ecoregions would be evident. Table 4.5 shows a summary of predicted overland flow length by quad sheet for all three methods, summarized by ecoregion. Drainage networks were calculated for the quad as a whole, and then average overland flow lengths were calculated by ecoregion using the method presented in section 2.5. All three methods show variation by ecoregion. Figures 4.2-4 show the networks predicted by the flow accumulation method, the ridge accumulation method, and the terrain curvature method, with eco-regions overlaid for the Craigville quad. The variation in the density of the predicted networks by eco-region is evident by visual inspection. The contrast between the drainage networks predicted for the Northern Sandstone Ridges (with the longest predicted overland flow length, and hence the most sparsely populated network) and that for the Northern Shale Valleys (with the shortest overland flow length) is particularly apparent. The terrain curvature method predicted the greatest amount of variation with a maximum overland flow length of 141.77 m in the Northern Sandstone Ridges, located in the Craigville quad, and a minimum overland flow length of 74.09 m in the Rolling Chesapeake Inner Coastal Plain located in the Surry quad, a range of 67.68 m. The ridge accumulation method shows less variation, with a range of 59.39 m between the maximum and minimum predicted overland flow lengths. The flow accumulation method shows the least amount of variation, 30.22 m between the maximum and minimum values. Comparing these ranges it can be seen that they agree with the standard deviation measure in the previous section, terrain curvature being largest, followed by ridge accumulation, followed by flow accumulation. The methods were all in agreement as to the ecoregion with the largest overland flow length – the Northern Sandstone Ridges, but they disagreed in their prediction of the ecoregion with the shortest overland flow length. The terrain curvature predicted the Rolling Chesapeake Inner Coastal Plain, while ridge accumulation method predicted the Mid-Atlantic Flatwoods as having the shortest overland flow length, and the flow accumulation method predicted the Northern Shale Valleys as shortest. Arguably, overland flow length predicted by the ridge accumulation method for the Mid-Atlantic Flatwoods did not differ significantly from the overland flow length it predicted for the Rolling Chesapeake Inner Coastal Plain, a difference of less than 0.51%. Given that the original source for 10m DEMs is a hand drawn topographic map, comparisons between different quads may be inherently problematic. However, in the Craigville quad (which spans four ecoregions), all three methods agreed on their ranking of ecoregion by overland

flow length, ranking them in ascending order as: Northern Shale Valleys, Northern Limestone/Dolomite Valleys, Northern Dissected Ridges and Knobs and Northern Sandstone Ridges. Interestingly, in the Surry quad, the ridge accumulation method discerned little difference between ecoregions, while both the terrain curvature flow accumulation methods predicted the Mid-Atlantic Flatwoods to have a longer overland flow length than the Rolling Chesapeake Inner Coastal Plain.

**Table 4.5:** Overland flow lengths (in meters) predicted by the flow accumulation, terrain curvature, and ridge accumulation methods for seven (7) ecoregions in Virginia.

| USEPA Ecoregion                                         | Ouad       | Ecoregion<br>Area | Flow<br>Accumulation<br>Overland Flow<br>Length | Terrain<br>Curvature<br>Overland<br>Flow<br>Length | Ridge<br>Accumulation<br>Overland Flow<br>Length |
|---------------------------------------------------------|------------|-------------------|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| Rolling Chesapeake Inner Coastal                        | <b>.</b>   |                   | 8                                               | 8                                                  | 8                                                |
| Plain                                                   | Surry      | 5,973 ha          | 101.51                                          | 74.09                                              | 75.36                                            |
| Mid-Atlantic Flatwoods                                  | Surry      | 2,319 ha          | 107.92                                          | 81.50                                              | 74.98                                            |
| Northern Inner Piedmont<br>Northern Limestone/Dolomite  | Louisa     | 15,234 ha         | 106.93                                          | 92.65                                              | 89.75                                            |
| Valleys                                                 | Craigville | 2,695 ha          | 97.83                                           | 103.87                                             | 99.58                                            |
| Northern Shale Valleys<br>Northern Dissected Ridges and | Craigville | 4,598 ha          | 89.37                                           | 80.12                                              | 81.28                                            |
| Knobs                                                   | Craigville | 3,297 ha          | 117.24                                          | 106.71                                             | 118.88                                           |
| Northern Sandstone Ridges                               | Craigville | 4,626 ha          | 119.59                                          | 141.77                                             | 134.37                                           |
| Maximum                                                 | – Minimum  |                   | 30.22                                           | 67.68                                              | 59.39                                            |



**Figure 4.2**: The networks predicted by the Flow Accumulation method with eco-regions overlaid for the Craigville quad. Longest overland flow lengths are predicted in the Northern Sandstone Ridges (in green), which the shortest lengths are predicted in the Northern Shale Valleys (light tan, occupying the diagonal from the bottom left to the upper right of this figure).



**Figure 4.3:** The networks predicted by the Ridge Accumulation method with eco-regions overlaid for the Craigville quad. Longest overland flow lengths are predicted in the Northern Sandstone Ridges (in green), which the shortest lengths are predicted in the Northern Shale Valleys (light tan, occupying the diagonal from the bottom left to the upper right of this figure).



**Figure 4.4:** The networks predicted by the Terrain Curvature method with eco-regions overlaid for the Craigville quad. Longest overland flow lengths are predicted in the Northern Sandstone Ridges (in green), which the shortest lengths are predicted in the Northern Shale Valleys (light tan, occupying the diagonal from the bottom left to the upper right of this figure).

In summary, all three methods demonstrated the ability to produce a measurable variation in overland flow length when evaluated at a single threshold that produced a hill-slope scale drainage network. This variation was evidenced by a non-zero standard deviation in the population of analysis units. All three methods showed a decrease in the diversity of overland flow lengths predicted as the minimum analysis unit went from 10 to 200 ha, when analysis units were based on sub-watersheds. Standard deviation decreased most rapidly as the unit size went from 10 ha to 20 ha for all methods, and leveled off somewhat at a unit size of 50 ha. When evaluating overland flow lengths by quad sheet as a whole (analysis unit size 8,300 to 15,200 ha), little variation was predicted by the flow accumulation method; however, the terrain curvature and ridge accumulation methods both predicted a measurable amount of diversity between different quad sheets. When analysis units were based on ecoregions, a measurable amount of diversity was discernible for all three methods, even as the minimum analysis unit size was 2,319 ha, although the range of variation for the flow accumulation method was considerably smaller, 30.22 m, as compared to the terrain curvature and ridge accumulation methods, 67.68 m and 59.39 m respectively. It is concluded that it is not correct to say that the flow accumulation method produces spatially homogeneous networks, but more precisely, that the networks produced by this method fall into a relatively narrow range. Furthermore, the range of overland flow lengths predicted by the flow accumulation method was less than the range produced by the ridge accumulation and terrain curvature methods. Also, the range of variation predicted by each of these methods tends to decrease with increasing analysis unit size, although the ridge accumulation and terrain curvature methods were less sensitive to the analysis unit size than was the flow accumulation method. This robustness in the face of analysis unit aggregation may be indicated by the measure of standard deviation.

## 5. Matching DEM Contours

The results of previous sections suggests that three ANIM, flow accumulation  $(A_i)$ , terrain curvature  $(A_i)$ , and ridge accumulation  $(A_i)$ , produce flow networks that contain a measurable amount of variation in overland flow length with a single threshold value, and that these methods differ in the breadth of the range of overland flow lengths that they produce. However, these results have not suggested which, if any, of these three methods most "accurately" predicts these values, although it might be reasonable to hypothesize that a method that is capable of displaying a greater range of overland flow lengths, might be more adept at predicting the flow paths in an area with a large range of overland flow lengths would be necessary to truly evaluate the relative abilities of these methods. In absence of field data, it has long been suggested that tracing the contour crenulations of a topographic map is an acceptable surrogate to field measurement of drainage pathways (Smith, 1950; Mark, 1983; Hayes and Dillaha, 1992; Tarboton, 2001). Therefore, in this part of the analysis, ANIM will be evaluated based on their ability to mimic the networks produced by manual contour crenulation (CC method).

Contour crenulation networks were traced for five larger watershed areas, as described in section 2.8. The areas, average slopes, average overland flow lengths and a summary of ecoregions represented in each watershed are given in table 5.1. Figures 2.28-32 show the contour crenulation networks for each watershed.

|              |           | Sub-<br>watersheds | Mean<br>OFL(m) |                                                                                |
|--------------|-----------|--------------------|----------------|--------------------------------------------------------------------------------|
| Watershed    | Area (ha) | (10ha/20ha)        |                | Eco-Region Summary                                                             |
| Priory       |           |                    |                | Northern Limestone/Dolomite Valleys,                                           |
| Branch 2     | 986.3     | 45/25              | 101.8          | Northern Dissected Ridges and Knobs,<br>Northern Shale Valleys                 |
| Craigville 3 | 466.0     | 24/11              | 79.8           | Dissected Ridge and Knob, Northern Shale<br>Valleys, Northern Sandstone Ridges |
| Craigville 4 | 271.0     | 13/5               | 80.3           | Dissected Ridge and Knob, Northern Shale<br>Valleys                            |
| Louisa 5     | 196.4 ha  | 12/5               | 88.8           | Northern Inner Piedmont                                                        |
| Surry 3      | 67.2 ha   | 5/1*               | 57.3           | Rolling Chesapeake Inner Coastal Plain                                         |
|              |           |                    |                |                                                                                |

**Table 5.1:** Watershed area, number of sub-watersheds and mean overland flow length (m) for 5 watersheds in Briery Branch, Craigville, Louisa and Surry quads in Virginia, for a contour crenulation flow network. The number of sub-watersheds given corresponds to using a 10 and 20 ha minimum sub-watershed size.

\* Regression and rank analysis at 20 ha unit size was not performed for Surry 3, as the sub-division process yielded only 1 sub-watershed at that threshold.

#### 5.1 Characteristics of ANIM Networks and Contour Crenulation Networks

After manually delineating the networks according to the procedures outlined in section 2.5, an average overland flow length was calculated for each of these five watersheds based on the CC network. Using this overland flow length as a guide, a threshold value was chosen for each ANIM via a process of trial and error in order to yield an average overland flow length for each watershed that closely matched the value given by the CC method for each watershed, within the constraints of the given ANIM's resolution. This threshold value will be referred to as a "locally calibrated" threshold value. This calibration resulted in an OFL for each method that was within a maximum difference of 3.5% of the CC methods overland flow length, and are presented in table 5.2. The resulting flow networks for the Craigville 3 watershed are presented in Figures 5.1-4. The networks for the remaining 4 watersheds are presented in Appendix A.

**Table 5.2:** Overland flow lengths (OFL) for networks predicted by manual contour crenulation, flow accumulation, terrain curvature and ridge accumulation, using locally calibrated threshold values (in meters).

|                | Contour<br>Network | Flow     | Flow<br>Accum. | Terrain<br>Curvature | Terrain<br>Curvature | Ridge<br>Accum. | Ridge<br>Accum. |
|----------------|--------------------|----------|----------------|----------------------|----------------------|-----------------|-----------------|
| Watershed      | OFL (m)            | Accum. T | OFL (m)        | Т                    | OFL (m)              | Т               | OFL (m)         |
| Briery         | 90.5               | 101      | 90.4           | 9                    | 92.2                 | 19              | 89.6            |
| Branch 2       | 760                | 01       |                | _                    | 54.0                 | 1.6             |                 |
| Craigville 3   | 76.9               | 81       | 77.0           | 5                    | 74.2                 | 16              | 76.4            |
| Craigville 4   | 77.8               | 66       | 77.7           | 4                    | 76.5                 | 13              | 77.6            |
| Louisa 5       | 85.6               | 80       | 85.4           | 6                    | 87.0                 | 20              | 85.6            |
| Surry 3        | 54.2               | 39       | 54.1           | 6                    | 55.0                 | 15              | 53.7            |
| Mean<br>Values | 82.9               | 73       | 82.8           | 6                    | 82.8                 | 17              | 82.3            |

These five watersheds were then partitioned into sub-watershed units obtained by the method in section 2.5, using 1,000 cell and 2,000 cell threshold accumulation networks – yielding minimum sub-watershed units of approximately 10 ha and 20 ha (see figures 5.1 and 5.2). The sub-watershed unit size of 10 ha was chosen because below a unit size of 10 ha, some sub-watersheds had no stream cells, and therefore an infinite overland flow length. The 20 ha unit size was chosen because the previous section showed that the decline in diversity due to unit aggregation leveled off after 20 ha. Overland flow lengths were then calculated for predicted (ANIM) and observed (CC) networks for each sub-watershed (see Appendix A, table A.1 and A.2 for a list of all sub-watershed units and the OFL yielded by each method).



**Figure 5.1**: Contour Crenulation network for the Craigville 3 watershed.



**Figure 5.2:** Ridge accumulation network with a locally calibrated threshold value, T = 16, for Craigville 3 watershed.



**Figure 5.3:** Terrain curvature network with a locally calibrated threshold value, T = 5, for Craigville 3 watershed.

**Figure 5.4:** Flow accumulation network with a locally calibrated threshold value, T = 81, for Craigville 3 watershed.

#### 5.2 Diversity in overland flow length of ANIM versus contour crenulation networks

Table 5.3 shows mean, median, standard deviation, range, minimum and maximum of OFL for the 10 ha headwater sub-watershed populations, using a locally calibrated threshold value for each of the five larger watershed units. As in the previous chapter, the standard deviation and range for OFL varied by method, with the flow accumulation (14.51 m) method producing the lowest standard deviation, followed by the ridge accumulation method (20.05 m) and then the terrain curvature method (32.16 m) for headwater sub-watersheds. While the terrain curvature may have produced a standard deviation considerably higher than the other ANIM's, none of the three methods examined produced a standard deviation at 10 ha analysis unit size that approached that of the contour crenulation method, which had a standard deviation of 86.77.

**Table 5.3:** Standard deviation and range statistics (in meters) for flow networks predicted for 53 headwater sub-watersheds with a minimum size of 10 ha in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a locally calibrated threshold value.

|                    |         | Flow         | %     | Terrain   | %       | Ridge        | %     |
|--------------------|---------|--------------|-------|-----------|---------|--------------|-------|
|                    | Contour | Accumulation | Error | Curvature | e Error | Accumulation | Error |
| Mean               | 94.75   | 82.88        |       | 86.57     |         | 82.88        |       |
| Standard Deviation | 86.77   | 14.51        | -83%  | 32.16     | -63%    | 20.05        | -77%  |
| Range              | 650.6   | 77.46        | -88%  | 221.42    | -66%    | 108.45       | -83%  |
| Minimum            | 47.58   | 50.78        | 7%    | 51.78     | 9%      | 48.64        | 2%    |
| Maximum            | 698.18  | 128.24       | -82%  | 273.2     | -61%    | 157.09       | -78%  |

Table 5.4 shows the mean, median, standard deviation, range, minimum and maximum for headwater sub-watersheds at a 20 ha minimum unit sizes using a locally calibrated threshold value. As in the previous chapter, the standard deviation and range for OFL decreased for each ANIM method as the analysis unit size increased. At least part of this may be assumed to be due to the averaging of terrain forms that occurs with a larger analysis unit, as is evidenced by the dramatic decrease in standard deviation in the networks produced by the Contour Crenulation method – decreasing from a maximum of 86.77 m at 10 ha to 19.57 m at a 20 ha minimum unit size. The terrain curvature method displays the largest standard deviations, followed by the Ridge Accumulation, and then Flow Accumulation methods. In a comparison of ANIM standard deviation of 9.75 m (-50% of contour crenulation) at the 20 ha unit size. The terrain curvature and ridge accumulation methods produced standard deviations that were considerably larger, with values of 20.37 m (+4%) and 16.61 m (-15%),

respectively. The range of values was also closely matched by the terrain curvature method (-5%), as were the minimum (-2%) and maximum values (-4%). The ridge accumulation method was next closest, with range -14%, minimum at +7% and maximum at -5%. The flow accumulation performed worst in this regard, with -52%, +21% and -22% in range, minimum and maximum values.

**Table 5.4:** Standard deviation and range statistics (in meters) for flow networks predicted for 25 headwater sub-watersheds with a minimum unit size of 20 ha in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a locally calibrated threshold value.

|                    |         | Flow         | %     | Terrain   | %     | Ridge        | %     |
|--------------------|---------|--------------|-------|-----------|-------|--------------|-------|
|                    | Contour | Accumulation | Error | Curvature | Error | Accumulation | Error |
| Mean               | 84.78   | 84.79        |       | 84.80     |       | 84.28        |       |
| Standard Deviation | 19.57   | 9.75         | -50   | 20.37     | +4    | 16.61        | -15   |
| Range              | 83.21   | 39.24        | -52   | 79.11     | -5    | 71.88        | -14   |
| Minimum            | 57.88   | 70.35        | +21   | 56.80     | -2    | 61.94        | +7    |
| Maximum            | 141.1   | 109.59       | -22   | 135.92    | -4    | 133.82       | -5    |

#### 5.3 Qualitative Comparison of observed versus predicted networks

Figures 5.5 through 5.36 show contour crenulation and ANIM networks for selected subwatersheds along with a percent error in overland flow estimation for each sub-watershed and method (see table 5.14 and 5.15 for all sub-watersheds used in this analysis). For this calculation of percent error the sub-watershed overland flow lengths yielded by the CC method were considered as the baseline. There are 4 sub-watersheds selected from the 10 ha analysis unit set, and 4 from the 20 ha analysis unit set, selected such that each method is represented by instances of "good" prediction and "poor" prediction. For each method, there are 4 cases where its predicted OFL is within 10% error (a good match) and 4 cases where the predicted OFL has an error greater than 15% (a poor match). Five out of eight cases include at least one method with an error <10% and at least one method with an error of >15%, two cases have all methods <10% error, and one case shows all methods with a >10% error.

It is difficult to discern a clearly superior method given these examples, however, the terrain curvature method appears less likely to produce extraneous flow paths, and overall produces more "realistic" networks than the other two methods, adhering to the contours. That said, there is at least one example where the terrain curvature method has an error <4%, yet predicts a significant flow path *not* included in the CC network, and misses a major tributary that *is* in the CC net (figures 5.17 and 5.18). By and large, none of the methods matches the CC network exactly, although each method seems to generally succeed in matching the main stem. In the prediction of tributaries to the main stem, all methods produce additional tributaries in some cases, and also miss minor tributaries in other cases, even in when the percent error indicates a "good" match of OFL. Some of the disparity between a small error and a good "visual fit" may be attributable to comparing a discrete method, contour crenulation, to continuous methods, ANIM. In these examples, the contour interval of the original quad sheets was used, resulting in a contour interval of between 20 and 40 m. A smaller contour interval would create a more continuous network, potentially minimizing this source of error. Analysis unit size may also play a role in these disparities. Additional accuracy could be obtained by using a smaller minimum analysis unit size, however, this would benefit from a more detailed CC network as well.



**Figure 5.5:** Contour Crenulation network in sub-watershed 38 (13.3 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Sub-watershed size is

**Figure 5.6:** Terrain curvature in sub-watershed 38 in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Percent error +12.5%.





**Figure 5.7:** Flow Accumulation network in sub-watershed 38 in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Percent error +11.2%.

**Figure 5.8:** Ridge Accumulation network in sub-watershed 38 in the Briery Branch 2 quad, with a minimum analysis unit of 10 ha. Percent error +16.5%.





**Figure 5.9:** Contour Crenulation in sub-watershed 17(12.1 ha) in the Craigville 3 quad, with a minimum analysis unit of 10 ha.

**Figure 5.10:** Terrain curvature network in sub-watershed 17 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error +36.4%.





**Figure 5.11:** Flow Accumulation network in sub-watershed 17 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error -39.4%.

**Figure 5.12:** Ridge Accumulation network in subwatershed 17 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error +5.3%.





**Figure 5.13:** Contour Crenulation network in sub-watershed 22(30.1 ha) in the Craigville 3 quad, with a minimum analysis unit of 10 ha.

**Figure 5.14:** Terrain curvature network in sub-watershed 22 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error +4.9%.



**Figure 5.15:** Flow Accumulation network in sub-watershed 22 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error -25.0%.



**Figure 5.16:** Ridge Accumulation network in subwatershed 22 in the Craigville 3 quad, with a minimum analysis unit of 10 ha. Percent error -17.6 %.



**Figure 5.17:** Contour Crenulation network in sub-watershed 5(12.5 ha) in the Surry 3 quad, with a minimum analysis unit of 10 ha.



**Figure 5.19:** Flow Accumulation network in sub-watershed 5 in the Surry 3 quad, with a minimum analysis unit of 10 ha. Percent error +37.9 %.



**Figure 5.18:** Terrain curvature network in sub-watershed 5 in the Surry 3 quad, with a minimum analysis unit of 10 ha. Percent error -3.6%.



**Figure 5.20:** Ridge Accumulation network in sub-watershed 5 in the Surry 3 quad, with a minimum analysis unit of 10 ha. Percent error +6.7%.



**Figure 5.21:** Contour Crenulation network in subwatershed 2 (50.3 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha.

**Figure 5.23:** Flow Accumulation network in sub-watershed 2 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -7.1%.

**Figure 5.22:** Terra in curvature network in sub-watershed 2 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -8.9%.



**Figure 5.24:** Ridge Accumulation network in subwatershed 2 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -6.3%.



**Figure 5.25:** Contour Crenulation network in sub-watershed 15 (59.7 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha.





**Figure 5.27:** Flow Accumulation network in sub-watershed 15 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -9.2%.



**Figure 5.28:** Ridge Accumulation network in subwatershed 15 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error +27.0%.



**Figure 5.29:** Contour Crenulation network in subwatershed 18 (44.5 ha) in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha.



**Figure 5.31:** Flow Accumulation network in sub-watershed 18 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -5.0%.



**Figure 5.30:** Terrain curvature network in sub-watershed 18 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -0.8%.



**Figure 5.32:** Ridge Accumulation network in subwatershed 18 in the Briery Branch 2 quad, with a minimum analysis unit of 20 ha. Percent error -0.8 %.



**Figure 5.33:** Contour Crenulation network in subwatershed 11 (30.1 ha) in the Craigville 3 quad, with a minimum analysis unit of 20 ha.

**Figure 5.34:** Terrain curvature network in sub-watershed 11 in the Craigville 3 quad, with a minimum analysis unit of 20 ha. Percent error +4.9%.



**Figure 5.35:** Flow Accumulation network in sub-watershed 11 in the Craigville 3 quad, with a minimum analysis unit of 20 ha. Percent error -25.0%.



**Figure 5.36:** Ridge Accumulation network in subwatershed 11 in the Craigville 3 quad, with a minimum analysis unit of 20 ha. Percent error -17.6 %.
#### 5.4 Results of Rank Correlation / Regression Analysis

In order to evaluate the ANIM overland flow length as a predictor of CC overland flow length the sub-watershed overland flow lengths yielded by the CC method were considered as the independent variable and the overland flow length yielded by the three ANIM's as the dependent variable in the calculation of a Spearman Rank Correlation Coefficient ( $R_s$ ) and a linear regression coefficient ( $R^2$ ). The  $R_s$  values should show the ability of the ANIM to rank the overland flow lengths in a manner similar to that yielded by the CC method, thus representing the ability of the method to predict overall trends. The  $R^2$  should evaluate the extent to which the overland flow lengths produced by each ANIM share a linear relationship to the overland flow lengths derived from the map contours. This analysis was performed using a minimum analysis unit size of 10 ha and then again for 20 ha.

Figures 5.37-39 show plots of the CC overland flow lengths versus the ANIM predicted flow lengths for headwater sub-watersheds of a minimum 10 ha unit size. A linear regression line is also plotted in these figures. The regression lines produced by all ANIM methods are considerably flatter than the 1:1 line (contour crenulation versus contour crenulation). This "flatness" might be expected, given the large differences in standard deviation between the ANIM sub-watershed populations and the CC populations (section 5.2, table 5.3). What these regression lines suggest is that at this analysis unit size, the ANIM methods in question are not capable of producing a strong linear relationship. The  $R^2$  values for these curves are presented in table 5.5. Despite the flat regression lines, the terrain curvature method has an  $\mathbb{R}^2$  value of 0.747 – a fairly high value, given the uncertainties in this analysis, and the appearance of its regression line. Closer inspection of the data points for the terrain curvature method (figure 5.38) suggests that the regression line is heavily influenced by a handful of low predictions above 125 m, possibly accounting for the discrepancy between the regression line and R<sup>2</sup> values. The flow accumulation and ridge accumulation have much lower R<sup>2</sup> values that are more in accordance with what might be expected from looking at the regression lines – both measures indicating a weak linear relationship. Examining the confidence intervals of the R<sup>2</sup> for the flow and ridge accumulation suggests that there is no significant difference in their predictive abilities in this case. The results of Spearman ranking are also presented in table 5.5, and show a different performance ranking. In terms of R<sub>2</sub>, the flow accumulation method has a slightly better

score, although all methods are in a fairly narrow range. This suggests that while the narrow range of overland flow values predicted by these ANIMs prevents them from establishing a strong linear prediction of CC overland flow length, they are still capable of capturing overall trends in overland flow length. This is also supported by the slope of the regression lines in figures 5.37-39, while being much flatter than the 1:1 lines, they do in fact capture the proper directional trend.

**Table 5.5:** Result of regression analysis with Contour Crenulation network as observed variable, and ANIM network as predicted variable for 53 headwater sub-watersheds with a minimum size of 10 ha in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. P-value for all regressions was less than 0.01. a -values for each Spearman coefficient are < 0.005. 95% Confidence interval widths for R<sup>2</sup> estimate are also given.

|                             | Flow Accumulation | Terrain Curvature | Ridge Accumulation |
|-----------------------------|-------------------|-------------------|--------------------|
| $R^2$                       | 0.306             | 0.747             | 0.384              |
| 95% R <sup>2</sup> CI Width | 0.37              | 0.33              | 0.37               |
| Intercept / Slope           | -179.3 / 3.3      | -107.1 / 2.3      | -127.5 / 2.7       |
| Spearman R                  | 0.691             | 0.686             | 0.661              |



**Figure 5.37:** Plot of mean overland flow lengths for 53 headwater sub-watershed units of a minimum size of 10 ha. Values for mean overland flow length yielded by contour crenulation method are on the x-axis, with values predicted by the flow accumulation method are on the y-axis. Watersheds are from the Briery Branch, Craigville, Surry and Louisa quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. The solid line is the linear regression line for the ridge accumulation method.



**Figure 5.38**: Plot of mean overland flow lengths for 53 headwater sub-watershed units of a minimum size of 10 ha. Values for mean overland flow length yielded by contour crenulation method are on the x-axis, with values predicted by the terrain curvature method are on the y-axis. Watersheds are from the Briery Branch, Craigville, Surry and Louisa quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. The solid line is the linear regression line for the ridge accumulation method.



**Figure 5.39:** Plot of mean overland flow lengths for 53 headwater sub-watershed units of a minimum size of 10 ha. Values for mean overland flow length yielded by contour crenulation method are on the x-axis, with values predicted by the ridge accumulation method are on the y-axis. Watersheds are from the Briery Branch, Craigville, Surry and Louisa quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. The solid line is the linear regression line for the ridge accumulation method.

Figures 5.40-42 show plots of the CC overland flow lengths versus the ANIM predicted mean overland flow lengths for headwater sub-watersheds of a minimum 20 ha unit size. At this analysis unit size the regression lines produced by all ANIM methods draw closer to the 1:1 line (contour crenulation versus contour crenulation), particularly the terrain curvature method. In fact, the slope of regression lines conforms to what might be predicted by from the standard deviations at this unit size (section 5.2, table 5.4). The terrain curvature, with a standard deviation and range almost identical to those of the CC method, matches the slope of the 1:1 line quite well. The ridge accumulation method, with values in the neighborhood of -15% of the CC method, has the next closest regression line slope. The flow accumulation method, with a range -50% of the CC method, has the flattest regression line. Given the slope of the regression lines, it might be expected that the terrain curvature method would have the best regression score (table 5.6). However, this is not the case. At the 20 ha analysis unit size, the flow accumulation method has the highest R<sup>2</sup>, followed by terrain curvature and then ridge accumulation, although all fall into a narrow range (<0.1), considerably smaller than the confidence intervals calculated for each of the  $R^2$  values, suggesting that the difference in  $\mathbb{R}^2$  may not be significant. For the flow accumulation and ridge accumulation methods,  $R^2$  values increase by a large amount, while the score for the terrain curvature method decreases. It is not clear why this performance decline occurred for the terrain curvature method. Looking at the distribution of points around the regression line for these methods, it is clear that the flow accumulation methods predictions are more tightly clustered around the regression line, suggesting that while it does not display the range of the CC method, it represents the trends from lowest to highest more faithfully. This conclusion is also supported by the Spearman ranking scores. Although all methods occupy a relatively small range of R<sub>s</sub> values, the flow accumulation method once again has the highest. Given the uncertainty involved in manual delineation, these R<sub>s</sub> values are encouraging for all methods. Both the Spearman ranking and the trend lines (and to a lesser extent the  $R^2$ ) seem to support the hypothesis that as the analysis unit size increases, and the standard deviation of contour crenulation overland flow lengths decreases, that the ANIM methods are able to better represent the variation in flow lengths present in the watersheds in this study area. They does not necessarily support the hypothesis that an ANIM that produces a wider standard deviation in predicted overland flow lengths will better represent

trends in flow length, as the flow accumulation method has the highest ranking at both analysis unit sizes.

**Table 5.6:** Result of regression analysis with Contour Crenulation network as observed variable, and ANIM network as predicted variable for 25 headwater sub-watersheds with a minimum size of 20 ha from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. p-value for all regressions was less than 0.01. a-values for each Spearman coefficient are < 0.005. 95% Confidence interval widths for R<sup>2</sup> estimate are also given.

|                             | Flow Accumulation | Terrain Curvature | <b>Ridge Accumulation</b> |
|-----------------------------|-------------------|-------------------|---------------------------|
| $R^2$                       | 0.603             | 0.563             | 0.521                     |
| 95% R <sup>2</sup> CI Width | 0.48              | 0.52              | 0.51                      |
| Intercept / Slope           | -47.3 / 1.55      | 23.7 / 0.72       | 13.1 / 0.85               |
| Spearman R                  | 0.797             | 0.788             | 0.745                     |



**Figure 5.40:** Plot of mean overland flow lengths for 35 headwater sub-watershed units of a minimum size of 20 ha. Values for mean overland flow length yielded by contour crenulation method are on the x-axis, with values predicted by the flow accumulation method are on the y-axis. Watersheds are from the Briery Branch, Craigville, and Louisa quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. The solid line is the linear regression line for the ridge accumulation method.



**Figure 5.41:** Plot of mean overland flow lengths for 35 headwater sub-watershed units of a minimum size of 20 ha. Values for mean overland flow length yielded by contour crenulation method are on the x-axis, with values predicted by the terrain curvature method are on the y-axis. Watersheds are from the Briery Branch, Craigville, and Louisa quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. The solid line is the linear regression line for the ridge accumulation method.



**Figure 5.42:** Plot of mean overland flow lengths for 35 headwater sub-watershed units of a minimum size of 20 ha. Values for mean overland flow length yielded by contour crenulation method are on the x-axis, with values predicted by the ridge accumulation method are on the y-axis. Watersheds are from the Briery Branch, Craigville, and Louisa quads in Virginia. ANIM networks were generated using a locally calibrated threshold value. The solid line is the linear regression line for the ridge accumulation method.

The results of this section suggest that there exists a wider range of overland flow lengths in these areas than any of the ANIMs studied are capable of producing – provided that the CC networks accurately reflect the range of overland flow lengths in the study areas. This was despite the use of threshold values calibrated to the watershed level. This is evidenced by the large differences in overland flow length standard deviation between ANIM and CC networks at a 10 ha analysis unit size. However, at a unit size of 20 ha, the terrain curvature method produced comparable range and standard deviation (+4% and -5% respectively). The ridge accumulation method was slightly less diverse (-15, -14), and the flow accumulation was considerably less diverse (-50%, -52%) at this unit size. While there were considerable differences in the ability of the different ANIM to produce comparable spatial diversity, this did not carry over into performance in ranking sub-watersheds on a basis of overland flow length. All methods fell within a fairly narrow range when calculating a Spearman Ranking (R<sub>s</sub>), however the flow accumulation method had the highest R<sub>s</sub> at both analysis unit sizes. Analysis unit aggregation from 10 ha to 20 ha improved the R<sub>s</sub> value for all methods. The results of linear regression were less straightforward, with the terrain curvature method producing a considerably higher  $R^2$  at 10 ha, but failing to produce a trend line that showed evidence of a truly linear relationship. At an analysis unit size of 20 ha, all methods had a similar  $\mathbb{R}^2$  value, with the flow accumulation method being highest, although the differences between methods was far smaller than the 95% confidence interval for their  $R^2$  values. However, the terrain curvature method still had the most similar slope. On the whole, ANIM performance was positively affected by analysis unit aggregation, suggesting that there may be a lower analysis unit threshold in the neighborhood of 20 ha, above which the terrain curvature and ridge accumulation methods are capable of sharing a linear relationship with contour crenulation networks, given the range of expected overland flow lengths in these study areas. The flow accumulation methods predictions were too narrowly constrained to make this possible. That said, errors were considerably larger for both terrain curvature and ridge accumulation predictions than for flow accumulation predictions. One reason for the higher incidence of error for these methods might be the difference in magnitude of threshold values needed by each method. The flow accumulation method works on rather large thresholds, between 39 and 101 in cells for this group of watersheds. This is 3 to 5 times the thresholds used by the ridge accumulation method (13 to 20 ridge cells) and 10 times those used by the terrain curvature method (4 to 9 cells). Small numbers

of erroneous cells in a DEM would most likely affect the terrain curvature method most, and to a smaller degree, the ridge accumulation method. In all of these comparisons, a great uncertainty is the error or bias introduced into the analysis by the contour crenulation method. It would require further research, with considerably larger data sets, preferably the field survey data, to determine the nature and extent of possible errors. In sum, the results of this analysis are encouraging for the use of the terrain curvature ridge accumulation methods as tools to predict realistic networks and/or rank networks, while the flow accumulation method shows potential as a ranking tool only.

|              |    |    | Conto                  | ur Crenul | ulation |           |           |         |           |          |         | <b>Ridge Accumulation</b> |         |         |
|--------------|----|----|------------------------|-----------|---------|-----------|-----------|---------|-----------|----------|---------|---------------------------|---------|---------|
|              |    | _  |                        | Network   | ]       | Flow Accu | imulation | Network | Terrain C | urvature | Network |                           | Network |         |
|              |    |    | 2                      | Stream    | Flow    | Stream    | Flow      |         | Stream    | Flow     |         | Stream                    | Flow    |         |
| Watershed    | ID | A  | Area (m <sup>2</sup> ) | Length    | Length  | Length    | Length    | % Error | Length    | Length   | % Error | Length                    | Length  | % Error |
| Craigville 3 |    | 2  | 512900                 | 4430.1    | 57.9    | 3645.5    | 70.3      | 22%     | 4514.6    | 56.8     | 2%      | 4140.4                    | 61.9    | 7%      |
| Craigville 3 |    | 5  | 473700                 | 3500.6    | 67.7    | 2993.6    | 79.1      | 17%     | 3573.0    | 66.3     | 2%      | 3198.8                    | 74.0    | 9%      |
| Craigville 3 |    | 10 | 312700                 | 1412.3    | 110.7   | 2221.1    | 70.4      | 36%     | 1605.5    | 97.4     | 12%     | 2100.4                    | 74.4    | 33%     |
| Craigville 3 |    | 22 | 301400                 | 1303.7    | 115.6   | 1629.6    | 92.5      | 20%     | 1291.6    | 116.7    | 1%      | 1677.9                    | 89.8    | 22%     |
| Craigville 3 |    | 24 | 192900                 | 953.6     | 101.1   | 1158.8    | 83.2      | 18%     | 1001.9    | 96.3     | 5%      | 869.1                     | 111.0   | 10%     |
| Craigville 3 |    | 11 | 180800                 | 796.7     | 113.5   | 953.6     | 94.8      | 16%     | 1110.5    | 81.4     | 28%     | 953.6                     | 94.8    | 16%     |
| Craigville 3 |    | 1  | 166900                 | 1653.7    | 50.5    | 1231.2    | 67.8      | 34%     | 1352.0    | 61.7     | 22%     | 1315.7                    | 63.4    | 26%     |
| Craigville 3 |    | 19 | 150200                 | 893.3     | 84.1    | 845.0     | 88.9      | 6%      | 989.8     | 75.9     | 10%     | 989.8                     | 75.9    | 10%     |
| Craigville 3 |    | 13 | 148400                 | 591.5     | 125.4   | 832.9     | 89.1      | 29%     | 1001.9    | 74.1     | 41%     | 784.6                     | 94.6    | 25%     |
| Craigville 3 |    | 3  | 139600                 | 917.4     | 76.1    | 808.8     | 86.3      | 13%     | 760.5     | 91.8     | 21%     | 784.6                     | 89.0    | 17%     |
| Craigville 3 |    | 7  | 126500                 | 1086.4    | 58.2    | 917.4     | 68.9      | 18%     | 1001.9    | 63.1     | 8%      | 977.8                     | 64.7    | 11%     |
| Craigville 3 |    | 17 | 121000                 | 724.3     | 83.5    | 1098.5    | 55.1      | 34%     | 591.5     | 102.3    | 22%     | 700.1                     | 86.4    | 3%      |
| Craigville 3 |    | 6  | 102400                 | 881.2     | 58.1    | 663.9     | 77.1      | 33%     | 881.2     | 58.1     | 0%      | 760.5                     | 67.3    | 16%     |
| Craigville 4 |    | 1  | 440900                 | 2800.5    | 78.7    | 2716.0    | 81.2      | 3%      | 2728.1    | 80.8     | 3%      | 2655.6                    | 83.0    | 5%      |
| Craigville 4 |    | 5  | 194500                 | 1267.5    | 76.7    | 1219.2    | 79.8      | 4%      | 1158.8    | 83.9     | 9%      | 1146.8                    | 84.8    | 11%     |
| Craigville 4 |    | 3  | 165200                 | 869.1     | 95.0    | 1146.8    | 72.0      | 24%     | 965.7     | 85.5     | 10%     | 1158.8                    | 71.3    | 25%     |
| Craigville 4 |    | 8  | 126400                 | 700.1     | 90.3    | 639.8     | 98.8      | 9%      | 579.4     | 109.1    | 21%     | 639.8                     | 98.8    | 9%      |
| Craigville 4 |    | 2  | 120100                 | 869.1     | 69.1    | 760.5     | 79.0      | 14%     | 820.8     | 73.2     | 6%      | 760.5                     | 79.0    | 14%     |
| Craigville 4 |    | 11 | 102600                 | 857.0     | 59.9    | 748.4     | 68.5      | 15%     | 663.9     | 77.3     | 29%     | 736.3                     | 69.7    | 16%     |
| Craigville 4 |    | 9  | 100200                 | 615.6     | 81.4    | 676.0     | 74.1      | 9%      | 615.6     | 81.4     | 0%      | 663.9                     | 75.5    | 7%      |
| Louisa 5     |    | 4  | 274200                 | 1750.3    | 78.3    | 1496.8    | 91.6      | 17%     | 1762.4    | 77.8     | 1%      | 1376.1                    | 99.6    | 27%     |
| Louisa 5     |    | 5  | 272600                 | 1279.5    | 106.5   | 1400.2    | 97.3      | 9%      | 1364.0    | 99.9     | 6%      | 1460.6                    | 93.3    | 12%     |
| Louisa 5     |    | 1  | 190300                 | 1267.5    | 75.1    | 1472.7    | 64.6      | 14%     | 1448.5    | 65.7     | 13%     | 1484.7                    | 64.1    | 15%     |
| Louisa 5     |    | 8  | 168000                 | 832.9     | 100.9   | 832.9     | 100.9     | 0%      | 845.0     | 99.4     | 1%      | 748.4                     | 112.2   | 11%     |
| Louisa 5     |    | 2  | 153500                 | 1038.1    | 73.9    | 881.2     | 87.1      | 18%     | 1134.7    | 67.6     | 9%      | 893.3                     | 85.9    | 16%     |
| Louisa 5     |    | 12 | 105400                 | 603.6     | 87.3    | 507.0     | 103.9     | 19%     | 651.8     | 80.8     | 7%      | 712.2                     | 74.0    | 15%     |

**Table 5.7:** Predictions of overland flow length (in meters) by contour crenulation, flow accumulation, terrain curvature and ridge accumulation methods in 53 headwater sub-watersheds, with a minimum analysis unit size of 10 ha.

| Louisa 5        | 9  | 105000 | 905.3  | 58.0  | 748.4  | 70.1  | 21% | 555.3  | 94.5  | 63% | 700.1  | 75.0  | 29% |
|-----------------|----|--------|--------|-------|--------|-------|-----|--------|-------|-----|--------|-------|-----|
| Surry 3         | 4  | 218400 | 2003.8 | 54.5  | 2148.7 | 50.8  | 7%  | 2003.8 | 54.5  | 0%  | 2245.2 | 48.6  | 11% |
| Surry 3         | 1  | 127500 | 1339.9 | 47.6  | 1255.4 | 50.8  | 7%  | 1231.2 | 51.8  | 9%  | 1279.5 | 49.8  | 5%  |
| Surry 3         | 5  | 125600 | 965.7  | 65.0  | 977.8  | 64.2  | 1%  | 1001.9 | 62.7  | 4%  | 965.7  | 65.0  | 0%  |
| Briery Branch 2 | 39 | 730900 | 5721.7 | 63.9  | 4599.1 | 79.5  | 24% | 5069.8 | 72.1  | 13% | 5106.1 | 71.6  | 12% |
| Briery Branch 2 | 29 | 597200 | 3464.4 | 86.2  | 3247.1 | 92.0  | 7%  | 2196.9 | 135.9 | 58% | 2607.4 | 114.5 | 33% |
| Briery Branch 2 | 7  | 531500 | 2619.4 | 101.5 | 2945.3 | 90.2  | 11% | 2740.1 | 97.0  | 4%  | 2691.8 | 98.7  | 3%  |
| Briery Branch 2 | 35 | 438800 | 2800.5 | 78.3  | 2679.8 | 81.9  | 5%  | 2788.4 | 78.7  | 0%  | 2921.2 | 75.1  | 4%  |
| Briery Branch 2 | 11 | 407300 | 2221.1 | 91.7  | 2003.8 | 101.6 | 11% | 2040.0 | 99.8  | 9%  | 1931.4 | 105.4 | 15% |
| Briery Branch 2 | 10 | 399500 | 1774.4 | 112.6 | 2293.5 | 87.1  | 23% | 2414.2 | 82.7  | 27% | 2390.1 | 83.6  | 26% |
| Briery Branch 2 | 3  | 311300 | 1557.2 | 100.0 | 1557.2 | 100.0 | 0%  | 1545.1 | 100.7 | 1%  | 1533.0 | 101.5 | 2%  |
| Briery Branch 2 | 43 | 253800 | 1677.9 | 75.6  | 1629.6 | 77.9  | 3%  | 1931.4 | 65.7  | 13% | 1943.4 | 65.3  | 14% |
| Briery Branch 2 | 5  | 233700 | 1279.5 | 91.3  | 1303.7 | 89.6  | 2%  | 1412.3 | 82.7  | 9%  | 1364.0 | 85.7  | 6%  |
| Briery Branch 2 | 31 | 223700 | 1364.0 | 82.0  | 1231.2 | 90.8  | 11% | 1364.0 | 82.0  | 0%  | 1436.5 | 77.9  | 5%  |
| Briery Branch 2 | 1  | 212700 | 1195.0 | 89.0  | 1291.6 | 82.3  | 7%  | 965.7  | 110.1 | 24% | 1110.5 | 95.8  | 8%  |
| Briery Branch 2 | 25 | 182100 | 1110.5 | 82.0  | 965.7  | 94.3  | 15% | 905.3  | 100.6 | 23% | 1001.9 | 90.9  | 11% |
| Briery Branch 2 | 6  | 174000 | 1195.0 | 72.8  | 1134.7 | 76.7  | 5%  | 1219.2 | 71.4  | 2%  | 1267.5 | 68.6  | 6%  |
| Briery Branch 2 | 2  | 171900 | 1195.0 | 71.9  | 1014.0 | 84.8  | 18% | 917.4  | 93.7  | 30% | 1001.9 | 85.8  | 19% |
| Briery Branch 2 | 22 | 168300 | 1026.0 | 82.0  | 1146.8 | 73.4  | 11% | 1146.8 | 73.4  | 11% | 1170.9 | 71.9  | 12% |
| Briery Branch 2 | 13 | 151700 | 108.6  | 698.2 | 591.5  | 128.2 | 82% | 277.6  | 273.2 | 61% | 482.8  | 157.1 | 78% |
| Briery Branch 2 | 37 | 151600 | 832.9  | 91.0  | 953.6  | 79.5  | 13% | 1014.0 | 74.8  | 18% | 1014.0 | 74.8  | 18% |
| Briery Branch 2 | 38 | 133700 | 857.0  | 78.0  | 893.3  | 74.8  | 4%  | 1110.5 | 60.2  | 23% | 1098.5 | 60.9  | 22% |
| Briery Branch 2 | 15 | 132400 | 772.5  | 85.7  | 700.1  | 94.6  | 10% | 615.6  | 107.5 | 25% | 615.6  | 107.5 | 25% |
| Briery Branch 2 | 19 | 131700 | 494.9  | 133.1 | 772.5  | 85.2  | 36% | 953.6  | 69.1  | 48% | 1038.1 | 63.4  | 52% |
| Briery Branch 2 | 28 | 122700 | 857.0  | 71.6  | 760.5  | 80.7  | 13% | 832.9  | 73.7  | 3%  | 941.5  | 65.2  | 9%  |
| Briery Branch 2 | 30 | 114400 | 953.6  | 60.0  | 748.4  | 76.4  | 27% | 881.2  | 64.9  | 8%  | 893.3  | 64.0  | 7%  |
| Briery Branch 2 | 14 | 100800 | 410.4  | 122.8 | 446.6  | 112.8 | 8%  | 386.3  | 130.5 | 6%  | 386.3  | 130.5 | 6%  |

| _               |    | Contour Crenulation<br>Network |        |        | Flow . | Flow Accumulation<br>Network |       |        | Terrain Curvature<br>Network |       |        | Ridge Accumulation<br>Network |       |  |
|-----------------|----|--------------------------------|--------|--------|--------|------------------------------|-------|--------|------------------------------|-------|--------|-------------------------------|-------|--|
|                 |    |                                | Stream | Flow   | Stream | Flow                         | %     | Stream | Flow                         | %     | Stream | Flow                          | %     |  |
| Watershed       | ID | Area (m <sup>2</sup> )         | Length | Length | Length | Length                       | Error | Length | Length                       | Error | Length | Length                        | Error |  |
| Craigville 3    | 6  | 1001700                        | 4756.0 | 105.3  | 6289.0 | 79.6                         | 24%   | 6168.3 | 81.2                         | 23%   | 6144.2 | 81.5                          | 23%   |  |
| Craigville 3    | 1  | 512900                         | 4430.1 | 57.9   | 3645.5 | 70.3                         | 22%   | 4514.6 | 56.8                         | 2%    | 4140.4 | 61.9                          | 7%    |  |
| Craigville 3    | 3  | 505500                         | 4152.4 | 60.9   | 3524.8 | 71.7                         | 18%   | 4104.2 | 61.6                         | 1%    | 3850.7 | 65.6                          | 8%    |  |
| Craigville 3    | 5  | 473700                         | 3500.6 | 67.7   | 2993.6 | 79.1                         | 17%   | 3573.0 | 66.3                         | 2%    | 3198.8 | 74.0                          | 9%    |  |
| Craigville 3    | 2  | 466600                         | 3862.7 | 60.4   | 3150.5 | 74.1                         | 23%   | 3379.9 | 69.0                         | 14%   | 3210.9 | 72.7                          | 20%   |  |
| Craigville 3    | 11 | 301400                         | 1303.7 | 115.6  | 1629.6 | 92.5                         | 20%   | 1291.6 | 116.7                        | 1%    | 1677.9 | 89.8                          | 22%   |  |
| Craigville 4    | 1  | 440900                         | 2800.5 | 78.7   | 2716.0 | 81.2                         | 3%    | 2728.1 | 80.8                         | 3%    | 2655.6 | 83.0                          | 5%    |  |
| Craigville 4    | 3  | 362500                         | 2474.6 | 73.2   | 2390.1 | 75.8                         | 4%    | 2341.8 | 77.4                         | 6%    | 2402.1 | 75.5                          | 3%    |  |
| Craigville 4    | 2  | 324000                         | 2233.1 | 72.5   | 2076.2 | 78.0                         | 8%    | 2112.4 | 76.7                         | 6%    | 2003.8 | 80.8                          | 11%   |  |
| Loiusa 5        | 1  | 409700                         | 2643.6 | 77.5   | 2836.7 | 72.2                         | 7%    | 2897.1 | 70.7                         | 9%    | 2860.8 | 71.6                          | 8%    |  |
| Loiusa 5        | 2  | 274200                         | 1750.3 | 78.3   | 1496.8 | 91.6                         | 17%   | 1762.4 | 77.8                         | 1%    | 1376.1 | 99.6                          | 27%   |  |
| Loiusa 5        | 3  | 272600                         | 1279.5 | 106.5  | 1400.2 | 97.3                         | 9%    | 1364.0 | 99.9                         | 6%    | 1460.6 | 93.3                          | 12%   |  |
| Briery Branch 2 | 9  | 1314900                        | 4659.4 | 141.1  | 5999.3 | 109.6                        | 22%   | 4852.6 | 135.5                        | 4%    | 4912.9 | 133.8                         | 5%    |  |
| Briery Branch 2 | 1  | 756700                         | 4478.4 | 84.5   | 4381.8 | 86.3                         | 2%    | 4043.8 | 93.6                         | 11%   | 4092.1 | 92.5                          | 9%    |  |
| Briery Branch 2 | 21 | 730900                         | 5721.7 | 63.9   | 4599.1 | 79.5                         | 24%   | 5069.8 | 72.1                         | 13%   | 5106.1 | 71.6                          | 12%   |  |
| Briery Branch 2 | 19 | 607200                         | 3935.2 | 77.2   | 3790.3 | 80.1                         | 4%    | 4176.6 | 72.7                         | 6%    | 4236.9 | 71.7                          | 7%    |  |
| Briery Branch 2 | 7  | 603100                         | 2812.6 | 107.2  | 3597.2 | 83.8                         | 22%   | 3971.4 | 75.9                         | 29%   | 3959.3 | 76.2                          | 29%   |  |
| Briery Branch 2 | 15 | 597200                         | 3464.4 | 86.2   | 3247.1 | 92.0                         | 7%    | 2196.9 | 135.9                        | 58%   | 2607.4 | 114.5                         | 33%   |  |
| Briery Branch 2 | 3  | 531500                         | 2619.4 | 101.5  | 2945.3 | 90.2                         | 11%   | 2740.1 | 97.0                         | 4%    | 2691.8 | 98.7                          | 3%    |  |
| Briery Branch 2 | 2  | 503400                         | 2848.8 | 88.4   | 2800.5 | 89.9                         | 2%    | 2872.9 | 87.6                         | 1%    | 2909.1 | 86.5                          | 2%    |  |
| Briery Branch 2 | 18 | 444700                         | 2981.6 | 74.6   | 2619.4 | 84.9                         | 14%   | 2631.5 | 84.5                         | 13%   | 2860.8 | 77.7                          | 4%    |  |
| Briery Branch 2 | 6  | 407300                         | 2221.1 | 91.7   | 2003.8 | 101.6                        | 11%   | 2040.0 | 99.8                         | 9%    | 1931.4 | 105.4                         | 15%   |  |
| Briery Branch 2 | 23 | 253800                         | 1677.9 | 75.6   | 1629.6 | 77.9                         | 3%    | 1931.4 | 65.7                         | 13%   | 1943.4 | 65.3                          | 14%   |  |
| Briery Branch 2 | 4  | 233700                         | 1279.5 | 91.3   | 1303.7 | 89.6                         | 2%    | 1412.3 | 82.7                         | 9%    | 1364.0 | 85.7                          | 6%    |  |
| Briery Branch 2 | 16 | 223700                         | 1364.0 | 82.0   | 1231.2 | 90.8                         | 11%   | 1364.0 | 82.0                         | 0%    | 1436.5 | 77.9                          | 5%    |  |

**Table 5.8:** Predictions of overland flow length (in meters) by contour crenulation, flow accumulation, terrain curvature and ridge accumulation methods in 25 headwater sub-watersheds, with a minimum analysis unit size of 20 ha.

#### 6. Use of a Single, Regionally Calibrated Threshold Value

The usefulness of automatic drainage network identification hinges in part upon its ability to perform in an unsupervised fashion. The results of the previous section suggest that the flow accumulation, terrain curvature, and ridge accumulation methods are capable of representing a portion of the variation in average overland flow length exhibited by the contour crenulation method by employing a locally calibrated threshold value. However, the time necessary to consider this locally calibrated threshold value may limit the benefit of the process of automatic delineation. For the purpose of analyzing a large watershed area, the ideal ANIM would be able to produce an accurate network with a single threshold value. Therefore, this portion of the study will attempt to explore the ability of these methods to mimic the variation in overland flow length exhibited by the contour crenulation method with a single threshold value.

Once again, the means of choosing a threshold value are of primary importance. In the previous section, a "locally calibrated" threshold was employed, in which a threshold value was chosen for each method, such that it yielded an average overland flow length for a given watershed that was within 3.5% of that predicted by the contour crenulation method. The results in table 6.1 show range of threshold values used for the five watersheds analyzed in chapter 5. A wide range was seen, with the maximum threshold for the flow accumulation method being 159% greater than the minimum calibrated threshold value. The minimum and maximum thresholds for terrain curvature differed by 125%, and for ridge accumulation they differed by 54%. The same watersheds and sub-watersheds will be analyzed in this section, with the mean value of thresholds used in the previous section as an estimate of the "regionally calibrated" threshold value. For each method, the arithmetic mean threshold value was calculated from the five threshold values used in the larger watersheds to determine the drainage network for all watersheds. This choice of threshold value is still in some sense "calibrated", but more generalized, effectively reducing the degree to which the choice of threshold value is calibrated. It would be expected that this generalization would yield poorer results in the regression and ranking analyses, as well as in the more basic measures of variation such as the standard deviation of the predicted population.

|                    |           |           |        | %          |
|--------------------|-----------|-----------|--------|------------|
|                    |           |           |        | Difference |
| Method             | Minimum T | Maximum T | Mean T | max/min    |
| Flow Accumulation  | 39        | 101       | 73     | 159        |
| Terrain Curvature  | 4         | 9         | 6      | 125        |
| Ridge Accumulation | 13        | 20        | 17     | 54         |

**Table 6.1:** Range of regionally calibrated threshold values required to match average overland flow length.

## 6.1 Characteristics of ANIM Networks and Contour Crenulation Networks

Table 6.2 shows a comparison of the population characteristics of the observed and predicted networks for the headwater sub-watersheds, at a minimum analysis unit size of 10 ha. Comparing the standard deviation obtained with locally calibrated (from the previous section) and regionally calibrated threshold values, the flow accumulation method had the largest decrease in standard deviation, approximately 13.3%, followed by the terrain curvature method, 11.4%. The ridge accumulation method had the smallest decreases, with only 1.5% in standard deviation. Accordingly, the percent error for ANIM networks versus CC networks increased as compared to those for calibrated thresholds in section 5. As in the analysis with a locally calibrated threshold, the terrain curvature produced the closest match in standard deviation and range, followed by the ridge accumulation method, and then the flow accumulation method.

**Table 6.2:** Standard deviation and range statistics (in meters) for flow networks predicted for 53 headwater sub-watersheds in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia determined with a 10 ha minimum analysis unit size. ANIM networks were generated using a regionally calibrated threshold value. Values in parentheses () are those that were obtained using a locally calibrated threshold value.

|           | Contour     | Flow          | %     | Terrain       | %     | Ridge         | %     |
|-----------|-------------|---------------|-------|---------------|-------|---------------|-------|
|           | Crenulation | Accumulation  | Error | Curvature     | Error | Accumulation  | Error |
| Mean      | 94.75       | 78.98         |       | 84.97         |       | 83.22         |       |
| Standard  | 86 77       |               |       |               |       |               |       |
| Deviation | 00.77       | 12.57 (14.51) | -86%  | 28.48 (32.16) | -67%  | 19.74 (20.05) | -77%  |
| Range     | 650.60      | 70.21         | -89%  | 180.95        | -72%  | 101.48        | -84%  |
| Minimum   | 47.58       | 50.63         | 6%    | 51.78         | 9%    | 51.78         | 9%    |
| Maximum   | 698.18      | 120.84        | -83%  | 232.73        | -67%  | 153.26        | -78%  |

Table 6.3 shows the population characteristics determined using a 20 ha minimum analysis unit size. Once again, the standard deviations produced by the flow accumulation method were most sensitive to the use of a regionally calibrated threshold value, with a decrease of nearly 23%. The terrain curvature method saw its predicted standard deviation decreased by nearly 17%. Overall, the ridge curvature method was affected least, with a decrease of 7.5%.

In this instance also, the terrain curvature maintained its position as the method producing a standard deviation most similar to that of the contour crenulation (-14%). However, due to its lower overall sensitivity to a single threshold, the ridge accumulation method drew closer in terms of standard deviation (-22%), and actually had the most similar range, -19%.

| Values in parer    | 'alues in parentheses () are those that were obtained using a locally calibrated threshold value. |                      |            |                      |            |                       |            |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------|----------------------|------------|----------------------|------------|-----------------------|------------|--|--|--|--|
|                    | Contour<br>Crenulation                                                                            | Flow<br>Accumulation | %<br>Error | Terrain<br>Curvature | %<br>Error | Ridge<br>Accumulation | %<br>Error |  |  |  |  |
| Mean               | 84.8                                                                                              | 78.5                 |            | 81.6                 |            | 83.3                  |            |  |  |  |  |
| Standard Deviation | 19.6                                                                                              | 7.5 (9.8)            | -62%       | 16.9 (20.4)          | -14%       | 15.4 (16.6)           | -22%       |  |  |  |  |
| Range              | 83.2                                                                                              | 28.8                 | -65%       | 62.5                 | -25%       | 67.4                  | -19%       |  |  |  |  |
| Minimum            | 57.9                                                                                              | 66.6                 | 15%        | 58.7                 | 1%         | 63.0                  | 9%         |  |  |  |  |
| Maximum            | 141.1                                                                                             | 95.4                 | -32%       | 121.2                | -14%       | 130.3                 | -8%        |  |  |  |  |

**Table 6.3:** Standard deviation and range statistics (in meters) for flow networks predicted for 25 headwater sub-watersheds in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia determined with a 20 ha minimum analysis unit size. ANIM networks were using a regionally calibrated threshold value. Values in parentheses () are those that were obtained using a locally calibrated threshold value.

#### 6.2 Results of Rank Correlation / Regression Analysis

At an analysis unit size of 10 ha, the terrain curvature method had the highest R<sup>2</sup> with a value of 0.614 (table 6.5). However, this value was considerably lower than the  $\mathbb{R}^2$  of 0.747 obtained when employing a locally calibrated threshold. The ridge accumulation method had the next highest  $R^2$ , with a value of 0.349, and the accumulation method was again third, with a value of 0.308, although the difference in  $R^2$  between these two methods was far smaller than their 95% confidence interval, suggesting this performance difference may not be statistically significant. Interestingly enough, the flow accumulation method performed slightly better with the constant value than with the varying threshold in terms of regression analysis. All methods show a considerable amount of scatter around the regression line (figures 6.1-3), and slopes that are far from the 1:1 line. This is expected, since the use of a regionally calibrated threshold produced a lower standard deviation for all methods. Once again, the terrain curvature had the most similar slope at this unit size, but had a few points that contained very large errors. In terms of Spearman ranking, results were mixed with the Ridge accumulation having the highest score (0.635), followed by the terrain curvature and then flow accumulation methods. Once again, these were in a very narrow range (0.04), and may not represent a significant difference between methods. However, it is interesting to

note the while  $R_s$  values decreased for all methods, the ridge accumulation methods decrease was the smallest, and the flow accumulation method showed the largest decrease in  $R_s$  value. Since the ridge accumulation method had the smallest decrease in standard deviation with the use of a regionally calibrated threshold value (-1.5%), and the flow accumulation method had the greatest decrease (-13.3%), it might be reasonable to suspect that standard deviation may have a greater impact on a methods ability to rank as threshold calibration is less localized.

**Table 6.4:** Result of regression analysis with Contour Crenulation network as observed variable, and ANIM network as predicted variable for 53 headwater sub-watersheds in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value. P-value for all regressions was less than 0.01. Values in parentheses () are those that were obtained using a locally calibrated threshold value. 95% Confidence interval widths for R<sup>2</sup> estimate are also given.

|                             | <b>Flow Accumulation</b> | Terrain Curvature | <b>Ridge Accumulation</b> |
|-----------------------------|--------------------------|-------------------|---------------------------|
| $R^2$                       | 0.308 (0.306)            | 0.614 (0.747)     | 0.349 (0.384)             |
| 95% R <sup>2</sup> CI Width | 0.37                     | 0.22              | 0.37                      |
| Spearman                    | 0.591 (0.691)            | 0.594 (0.686)     | 0.635 (0.661)             |



**Figure 6.1:** Plot of Contour Crenulation network versus Flow Accumulation values for 53 headwater subwatersheds with a minimum size of 10 ha from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value.



**Figure 6.2** Plot of Contour Crenulation network versus Terrain Curvature values for 53 headwater subwatersheds with a minimum size of 10 ha from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value.



**Figure 6.3** Plot of Contour Crenulation network versus Ridge Accumulation values for 53 headwater subwatersheds with a minimum size of 10 ha from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value.

At an analysis unit size of 20 ha, the flow accumulation and ridge accumulation methods displayed higher R<sup>2</sup> values than in the 10 ha analysis unit size (see table 6.6). At this unit size,

the terrain curvature method performs worst, with an  $R^2$  of 0.469 using a regionally calibrated threshold value. This follows a similar trend to that of the analysis in section 5.4. The flow accumulation emerges as the best performer, with an  $\mathbb{R}^2$  of 0.551, and the ridge accumulation method was the second best performer, with an  $R^2$  of 0.490 – however all methods were within a fairly narrow range (0.082). This difference in  $\mathbb{R}^2$  is considerably smaller than the confidence intervals calculated for each of the R<sup>2</sup> values, suggesting that the difference in  $\mathbb{R}^2$  may not be significant. Observing the regression lines and points in figures 6.4-6, it is clear that once again the flow accumulation methods produces a fairly tight cluster around the regression line, whereas the ridge accumulation and terrain curvature methods have a looser fit, but a more representative slope of data points. As might be expected, flow accumulation also yielded the highest Spearman ranking coefficient in the examination of headwaters, 0.722, followed by the terrain curvature (0.611) and then ridge accumulation (0.602). R<sub>s</sub> values also decreased at this unit size as a result of using a single threshold value, however, the relative decreases between methods were not the same as at the 10 ha unit size. In this case, the terrain curvature and ridge accumulation methods experienced decreases in  $R_s$  value (-0.177 and -0.143 respectively) that were approximately twice the decrease experienced by the flow accumulation method (-0.075). This suggests that the sources of error impacting the terrain curvature and ridge accumulation method are more pronounced with a single threshold than those for the flow accumulation method.

**Table 6.5:** Result of regression analysis with Contour Crenulation network as observed variable, and ANIM network as predicted variable for 25 headwater sub-watersheds in the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value. P-value for all regressions was less than 0.01. Values in parentheses () are those that were obtained using a locally calibrated threshold value. 95% Confidence interval widths for R<sup>2</sup> estimate are also given.

|                             | <b>Flow Accumulation</b> | <b>Terrain Curvature</b> | <b>Ridge Accumulation</b> |
|-----------------------------|--------------------------|--------------------------|---------------------------|
| $\mathbf{R}^2$              | 0.551 (0.603)            | 0.469 (0.563)            | 0.490 (0.521)             |
| 95% R <sup>2</sup> CI Width | 0.45                     | 0.48                     | 0.51                      |
| Spearman                    | 0.722 (0.797)            | 0.611 (0.788)            | 0.602 (0.745)             |



**Figure 6.4:** Plot of Contour Crenulation network versus Flow Accumulation network values for 25 headwater sub-watersheds with a minimum size of 20 ha from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value.



**Figure 6.5:** Plot of Contour Crenulation network versus Terrain Curvature network values for 25 headwater sub-watersheds with a minimum size of 20 ha from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value.



**Figure 6.6:** Plot of Contour Crenulation network versus Ridge Accumulation network values for 25 headwater sub-watersheds with a minimum size of 20 ha from the Briery Branch, Craigville, Louisa, and Surry quads in Virginia. ANIM networks were generated using a regionally calibrated threshold value.

The results of this analysis show that using a single regionally calibrated threshold value with the flow accumulation, terrain curvature, and ridge accumulation methods will produce less variation in overland flow than a locally calibrated threshold. This decrease in variation resulted in overall performance decreases in virtually all measures used herein. The ridge accumulation method seemed to be least impacted in this regard by the use of a regionally calibrated threshold value, while the flow accumulation method experienced the greatest decrease in standard deviation. Once again, the spread of points, and lack of representative ranges for all methods at 10 ha unit size, casts doubt on their usefulness for either prediction or ranking. Similarly, the results at 20 ha unit sizes were more promising. The flow accumulation method experienced the smallest decrease in Spearman ranking, from 0.797 (locally calibrated R.) to 0.722 (regionally calibrated R.), giving it the highest overall Spearman ranking at an analysis unit size of 20 ha. While no method displayed a strong linear relationship with the contour crenulation method, as predicted by the  $R^2$  value, and the difference between the R<sup>2</sup> for the different methods was not statistically significant, the ridge accumulation and terrain curvature method still managed to produce reasonable ranges and standard deviations at the 20 ha analysis unit size (-14% to -22% errors), suggesting that they might be suitable for providing slope length predictions with a single threshold value. In

order to confirm the usefulness of the terrain curvature and ridge accumulation methods, however, more investigation is needed into determining the sources of error that were shown to affect these methods in this investigation. While the flow accumulation method did not prove itself capable of producing realistic estimates of overland flow length in this analysis, it succeeded in representing overall trends, and managed to show the most promise for use as a tool to perform ranking by slope length.

|                 | _      | <b>Contour Crenulation</b> |        |            | <b>Flow Accumulation</b> |        |       | Terrain Curvature |              |       | <b>Ridge Accumulation</b> |        |       |
|-----------------|--------|----------------------------|--------|------------|--------------------------|--------|-------|-------------------|--------------|-------|---------------------------|--------|-------|
|                 |        |                            | Stream |            | Stream                   | Flow   |       | Stream            | Flow         |       | Stream                    | Flow   |       |
|                 |        | Area                       | Length | Flow       | Length                   | Length | %     | Length            | Length       | %     | Length                    | Length | %     |
| Watershed       | Sub ID | ( <b>m</b> <sup>2</sup> )  | (m)    | Length (m) | (m)                      | (m)    | Error | (m)               | ( <b>m</b> ) | Error | (m)                       | (m)    | Error |
| Briery Branch 2 | 1      | 212700                     | 1195.0 | 89.0       | 1557.2                   | 68.3   | -23%  | 1086.4            | 97.9         | 10%   | 1183.0                    | 89.9   | 1%    |
| Briery Branch 2 | 2      | 171900                     | 1195.0 | 71.9       | 1074.3                   | 80.0   | 11%   | 1062.3            | 80.9         | 13%   | 1026.0                    | 83.8   | 16%   |
| Briery Branch 2 | 3      | 311300                     | 1557.2 | 100.0      | 1702.0                   | 91.5   | -9%   | 1702.0            | 91.5         | -9%   | 1629.6                    | 95.5   | -4%   |
| Briery Branch 2 | 5      | 233700                     | 1279.5 | 91.3       | 1388.2                   | 84.2   | -8%   | 1508.9            | 77.4         | -15%  | 1376.1                    | 84.9   | -7%   |
| Briery Branch 2 | 6      | 174000                     | 1195.0 | 72.8       | 1255.4                   | 69.3   | -5%   | 1315.7            | 66.1         | -9%   | 1303.7                    | 66.7   | -8%   |
| Briery Branch 2 | 7      | 531500                     | 2619.4 | 101.5      | 3271.3                   | 81.2   | -20%  | 3150.5            | 84.4         | -17%  | 2897.1                    | 91.7   | -10%  |
| Briery Branch 2 | 10     | 399500                     | 1774.4 | 112.6      | 2486.6                   | 80.3   | -29%  | 2776.3            | 71.9         | -36%  | 2486.6                    | 80.3   | -29%  |
| Briery Branch 2 | 11     | 407300                     | 2221.1 | 91.7       | 2378.0                   | 85.6   | -7%   | 2353.9            | 86.5         | -6%   | 2076.2                    | 98.1   | 7%    |
| Briery Branch 2 | 13     | 151700                     | 108.6  | 698.2      | 627.7                    | 120.8  | -83%  | 325.9             | 232.7        | -67%  | 494.9                     | 153.3  | -78%  |
| Briery Branch 2 | 14     | 100800                     | 410.4  | 122.8      | 482.8                    | 104.4  | -15%  | 422.5             | 119.3        | -3%   | 386.3                     | 130.5  | 6%    |
| Briery Branch 2 | 15     | 132400                     | 772.5  | 85.7       | 808.8                    | 81.9   | -4%   | 784.6             | 84.4         | -2%   | 663.9                     | 99.7   | 16%   |
| Briery Branch 2 | 19     | 131700                     | 494.9  | 133.1      | 917.4                    | 71.8   | -46%  | 1158.8            | 56.8         | -57%  | 1146.8                    | 57.4   | -57%  |
| Briery Branch 2 | 22     | 168300                     | 1026.0 | 82.0       | 1207.1                   | 69.7   | -15%  | 1219.2            | 69.0         | -16%  | 1195.0                    | 70.4   | -14%  |
| Briery Branch 2 | 25     | 182100                     | 1110.5 | 82.0       | 1146.8                   | 79.4   | -3%   | 1122.6            | 81.1         | -1%   | 1050.2                    | 86.7   | 6%    |
| Briery Branch 2 | 28     | 122700                     | 857.0  | 71.6       | 881.2                    | 69.6   | -3%   | 1014.0            | 60.5         | -15%  | 977.8                     | 62.7   | -12%  |
| Briery Branch 2 | 29     | 597200                     | 3464.4 | 86.2       | 3814.5                   | 78.3   | -9%   | 2631.5            | 113.5        | 32%   | 2728.1                    | 109.5  | 27%   |
| Briery Branch 2 | 30     | 114400                     | 953.6  | 60.0       | 832.9                    | 68.7   | 14%   | 941.5             | 60.8         | 1%    | 893.3                     | 64.0   | 7%    |
| Briery Branch 2 | 31     | 223700                     | 1364.0 | 82.0       | 1376.1                   | 81.3   | -1%   | 1545.1            | 72.4         | -12%  | 1484.7                    | 75.3   | -8%   |
| Briery Branch 2 | 35     | 438800                     | 2800.5 | 78.3       | 2909.1                   | 75.4   | -4%   | 3078.1            | 71.3         | -9%   | 3066.1                    | 71.6   | -9%   |
| Briery Branch 2 | 37     | 151600                     | 832.9  | 91.0       | 953.6                    | 79.5   | -13%  | 1086.4            | 69.8         | -23%  | 1050.2                    | 72.2   | -21%  |
| Briery Branch 2 | 38     | 133700                     | 857.0  | 78.0       | 1050.2                   | 63.7   | -18%  | 1243.3            | 53.8         | -31%  | 1146.8                    | 58.3   | -25%  |
| Briery Branch 2 | 39     | 730900                     | 5721.7 | 63.9       | 5226.8                   | 69.9   | 9%    | 5685.5            | 64.3         | 1%    | 5335.4                    | 68.5   | 7%    |
| Briery Branch 2 | 43     | 253800                     | 1677.9 | 75.6       | 1883.1                   | 67.4   | -11%  | 2160.7            | 58.7         | -22%  | 2015.9                    | 63.0   | -17%  |
| Craigville 3    | 1      | 166900                     | 1653.7 | 50.5       | 1267.5                   | 65.8   | 30%   | 1279.5            | 65.2         | 29%   | 1255.4                    | 66.5   | 32%   |
| Craigville 3    | 2      | 512900                     | 4430.1 | 57.9       | 3850.7                   | 66.6   | 15%   | 4164.5            | 61.6         | 6%    | 4055.9                    | 63.2   | 9%    |
| Craigville 3    | 3      | 139600                     | 917.4  | 76.1       | 808.8                    | 86.3   | 13%   | 748.4             | 93.3         | 23%   | 784.6                     | 89.0   | 17%   |

**Table 6.6:** Predictions of overland flow length (in meters) by contour crenulation, flow accumulation, terrain curvature and ridge accumulation methods in 53 headwater sub-watersheds, with a minimum analysis unit size of 10 ha. ANIM networks were generated with a single threshold value.

| Craigville 3 | 5 473700  | 3500.6 | 67.7  | 3114.3 | 76.1  | 12%  | 3271.3 | 72.4  | 7%   | 3138.5 | 75.5  | 12%  |
|--------------|-----------|--------|-------|--------|-------|------|--------|-------|------|--------|-------|------|
| Craigville 3 | 6 102400  | 881.2  | 58.1  | 724.3  | 70.7  | 22%  | 772.5  | 66.3  | 14%  | 760.5  | 67.3  | 16%  |
| Craigville 3 | 7 126500  | 1086.4 | 58.2  | 941.5  | 67.2  | 15%  | 953.6  | 66.3  | 14%  | 953.6  | 66.3  | 14%  |
| Craigville 3 | 10 312700 | 1412.3 | 110.7 | 2293.5 | 68.2  | -38% | 1533.0 | 102.0 | -8%  | 2064.2 | 75.7  | -32% |
| Craigville 3 | 11 180800 | 796.7  | 113.5 | 977.8  | 92.5  | -19% | 953.6  | 94.8  | -16% | 929.5  | 97.3  | -14% |
| Craigville 3 | 13 148400 | 591.5  | 125.4 | 857.0  | 86.6  | -31% | 881.2  | 84.2  | -33% | 772.5  | 96.0  | -23% |
| Craigville 3 | 17 121000 | 724.3  | 83.5  | 1195.0 | 50.6  | -39% | 531.1  | 113.9 | 36%  | 688.1  | 87.9  | 5%   |
| Craigville 3 | 19 150200 | 893.3  | 84.1  | 869.1  | 86.4  | 3%   | 857.0  | 87.6  | 4%   | 905.3  | 83.0  | -1%  |
| Craigville 3 | 22 301400 | 1303.7 | 115.6 | 1738.2 | 86.7  | -25% | 1243.3 | 121.2 | 5%   | 1581.3 | 95.3  | -18% |
| Craigville 3 | 24 192900 | 953.6  | 101.1 | 1183.0 | 81.5  | -19% | 893.3  | 108.0 | 7%   | 869.1  | 111.0 | 10%  |
| Craigville 4 | 1 440900  | 2800.5 | 78.7  | 2631.5 | 83.8  | 6%   | 2378.0 | 92.7  | 18%  | 2462.5 | 89.5  | 14%  |
| Craigville 4 | 2 120100  | 869.1  | 69.1  | 748.4  | 80.2  | 16%  | 700.1  | 85.8  | 24%  | 700.1  | 85.8  | 24%  |
| Craigville 4 | 3 165200  | 869.1  | 95.0  | 1086.4 | 76.0  | -20% | 905.3  | 91.2  | -4%  | 1014.0 | 81.5  | -14% |
| Craigville 4 | 5 194500  | 1267.5 | 76.7  | 1158.8 | 83.9  | 9%   | 1050.2 | 92.6  | 21%  | 977.8  | 99.5  | 30%  |
| Craigville 4 | 8 126400  | 700.1  | 90.3  | 603.6  | 104.7 | 16%  | 434.6  | 145.4 | 61%  | 519.1  | 121.8 | 35%  |
| Craigville 4 | 9 100200  | 615.6  | 81.4  | 676.0  | 74.1  | -9%  | 531.1  | 94.3  | 16%  | 531.1  | 94.3  | 16%  |
| Craigville 4 | 11 102600 | 857.0  | 59.9  | 736.3  | 69.7  | 16%  | 603.6  | 85.0  | 42%  | 651.8  | 78.7  | 31%  |
| Louisa 5     | 1 190300  | 1267.5 | 75.1  | 1557.2 | 61.1  | -19% | 1448.5 | 65.7  | -13% | 1521.0 | 62.6  | -17% |
| Louisa 5     | 2 153500  | 1038.1 | 73.9  | 929.5  | 82.6  | 12%  | 1134.7 | 67.6  | -9%  | 893.3  | 85.9  | 16%  |
| Louisa 5     | 4 274200  | 1750.3 | 78.3  | 1581.3 | 86.7  | 11%  | 1762.4 | 77.8  | -1%  | 1521.0 | 90.1  | 15%  |
| Louisa 5     | 5 272600  | 1279.5 | 106.5 | 1496.8 | 91.1  | -15% | 1364.0 | 99.9  | -6%  | 1545.1 | 88.2  | -17% |
| Louisa 5     | 8 168000  | 832.9  | 100.9 | 869.1  | 96.6  | -4%  | 845.0  | 99.4  | -1%  | 772.5  | 108.7 | 8%   |
| Louisa 5     | 9 105000  | 905.3  | 58.0  | 760.5  | 69.0  | 19%  | 555.3  | 94.5  | 63%  | 748.4  | 70.1  | 21%  |
| Louisa 5     | 12 105400 | 603.6  | 87.3  | 531.1  | 99.2  | 14%  | 651.8  | 80.8  | -7%  | 724.3  | 72.8  | -17% |
| Surry 3      | 1 127500  | 1339.9 | 47.6  | 1014.0 | 62.9  | 32%  | 1231.2 | 51.8  | 9%   | 1231.2 | 51.8  | 9%   |
| Surry 3      | 4 218400  | 2003.8 | 54.5  | 1617.5 | 67.5  | 24%  | 2003.8 | 54.5  | 0%   | 2100.4 | 52.0  | -5%  |
| Surry 3      | 5 125600  | 965.7  | 65.0  | 700.1  | 89.7  | 38%  | 1001.9 | 62.7  | -4%  | 905.3  | 69.4  | 7%   |

|                                                                                                                                                                  | _                                                    | <b>Contour Crenulation</b>                                                                                  |                                                                                                            | <b>Flow Accumulation</b>                                                                |                                                                                                            |                                                                                                                                                                                                              | Terrain Curvature                                                           |                                                                                                            |                                                                                       | <b>Ridge Accumulation</b>                                               |                                                                                                            |                                                                                      |                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                                                                                                  |                                                      |                                                                                                             | Stream                                                                                                     | Flow                                                                                    | Stream                                                                                                     | Flow                                                                                                                                                                                                         |                                                                             | Stream                                                                                                     | Flow                                                                                  |                                                                         | Stream                                                                                                     | Flow                                                                                 |                                                                              |
|                                                                                                                                                                  |                                                      | Area                                                                                                        | Length                                                                                                     | Length                                                                                  | Length                                                                                                     | Length                                                                                                                                                                                                       | _%                                                                          | Length                                                                                                     | Length                                                                                | _%                                                                      | Length                                                                                                     | Length                                                                               | -%<br>-                                                                      |
| Watershed                                                                                                                                                        | Sub ID                                               | (m2)                                                                                                        | ( <b>m</b> )                                                                                               | (m)                                                                                     | (m)                                                                                                        | (m)                                                                                                                                                                                                          | Error                                                                       | ( <b>m</b> )                                                                                               | (m)                                                                                   | Error                                                                   | ( <b>m</b> )                                                                                               | (m)                                                                                  | Error                                                                        |
| Briery Branch 2                                                                                                                                                  | 1                                                    | 756700                                                                                                      | 4478.4                                                                                                     | 84.5                                                                                    | 4876.7                                                                                                     | 77.6                                                                                                                                                                                                         | -8%                                                                         | 4599.1                                                                                                     | 82.3                                                                                  | -3%                                                                     | 4236.9                                                                                                     | 89.3                                                                                 | 6%                                                                           |
| Briery Branch 2                                                                                                                                                  | 2                                                    | 503400                                                                                                      | 2848.8                                                                                                     | 88.4                                                                                    | 3066.1                                                                                                     | 82.1                                                                                                                                                                                                         | -7%                                                                         | 3126.4                                                                                                     | 80.5                                                                                  | -9%                                                                     | 3041.9                                                                                                     | 82.7                                                                                 | -6%                                                                          |
| Briery Branch 2                                                                                                                                                  | 3                                                    | 531500                                                                                                      | 2619.4                                                                                                     | 101.5                                                                                   | 3271.3                                                                                                     | 8 81.2                                                                                                                                                                                                       | -20%                                                                        | 3150.5                                                                                                     | 84.4                                                                                  | -17%                                                                    | 2897.1                                                                                                     | 91.7                                                                                 | -10%                                                                         |
| Briery Branch 2                                                                                                                                                  | 4                                                    | 233700                                                                                                      | 1279.5                                                                                                     | 91.3                                                                                    | 1388.2                                                                                                     | 84.2                                                                                                                                                                                                         | -8%                                                                         | 1508.9                                                                                                     | 77.4                                                                                  | -15%                                                                    | 1376.1                                                                                                     | 84.9                                                                                 | -7%                                                                          |
| Briery Branch 2                                                                                                                                                  | 6                                                    | 407300                                                                                                      | 2221.1                                                                                                     | 91.7                                                                                    | 2378.0                                                                                                     | 85.6                                                                                                                                                                                                         | -7%                                                                         | 2353.9                                                                                                     | 86.5                                                                                  | -6%                                                                     | 2076.2                                                                                                     | 98.1                                                                                 | 7%                                                                           |
| Briery Branch 2                                                                                                                                                  | 7                                                    | 603100                                                                                                      | 2812.6                                                                                                     | 107.2                                                                                   | 3959.3                                                                                                     | 76.2                                                                                                                                                                                                         | -29%                                                                        | 4538.7                                                                                                     | 66.4                                                                                  | -38%                                                                    | 4164.5                                                                                                     | 72.4                                                                                 | -32%                                                                         |
| Briery Branch 2                                                                                                                                                  | 9                                                    | 1314900                                                                                                     | 4659.4                                                                                                     | 141.1                                                                                   | 6892.6                                                                                                     | 5 95.4                                                                                                                                                                                                       | -32%                                                                        | 5721.7                                                                                                     | 114.9                                                                                 | -19%                                                                    | 5045.7                                                                                                     | 130.3                                                                                | -8%                                                                          |
| Briery Branch 2                                                                                                                                                  | 15                                                   | 597200                                                                                                      | 3464.4                                                                                                     | 86.2                                                                                    | 3814.5                                                                                                     | 5 78.3                                                                                                                                                                                                       | -9%                                                                         | 2631.5                                                                                                     | 113.5                                                                                 | 32%                                                                     | 2728.1                                                                                                     | 109.5                                                                                | 27%                                                                          |
| Briery Branch 2                                                                                                                                                  | 16                                                   | 223700                                                                                                      | 1364.0                                                                                                     | 82.0                                                                                    | 1376.1                                                                                                     | 81.3                                                                                                                                                                                                         | -1%                                                                         | 1545.1                                                                                                     | 72.4                                                                                  | -12%                                                                    | 1484.7                                                                                                     | 75.3                                                                                 | -8%                                                                          |
| Briery Branch 2                                                                                                                                                  | 18                                                   | 444700                                                                                                      | 2981.6                                                                                                     | 74.6                                                                                    | 3005.7                                                                                                     | 74.0                                                                                                                                                                                                         | -1%                                                                         | 3138.5                                                                                                     | 70.8                                                                                  | -5%                                                                     | 3005.7                                                                                                     | 74.0                                                                                 | -1%                                                                          |
| Briery Branch 2                                                                                                                                                  | 19                                                   | 607200                                                                                                      | 3935.2                                                                                                     | 77.2                                                                                    | 4176.6                                                                                                     | 5 72.7                                                                                                                                                                                                       | -6%                                                                         | 4659.4                                                                                                     | 65.2                                                                                  | -16%                                                                    | 4430.1                                                                                                     | 68.5                                                                                 | -11%                                                                         |
| Briery Branch 2                                                                                                                                                  | 21                                                   | 730900                                                                                                      | 5721.7                                                                                                     | 63.9                                                                                    | 5226.8                                                                                                     | 69.9                                                                                                                                                                                                         | 9%                                                                          | 5685.5                                                                                                     | 64.3                                                                                  | 1%                                                                      | 5335.4                                                                                                     | 68.5                                                                                 | 7%                                                                           |
| Briery Branch 2                                                                                                                                                  | 23                                                   | 253800                                                                                                      | 1677.9                                                                                                     | 75.6                                                                                    | 1883.1                                                                                                     | 67.4                                                                                                                                                                                                         | -11%                                                                        | 2160.7                                                                                                     | 58.7                                                                                  | -22%                                                                    | 2015.9                                                                                                     | 63.0                                                                                 | -17%                                                                         |
| Craigville 3                                                                                                                                                     | 1                                                    | 512900                                                                                                      | 4430.1                                                                                                     | 57.9                                                                                    | 3850.7                                                                                                     | 66.6                                                                                                                                                                                                         | 15%                                                                         | 4164.5                                                                                                     | 61.6                                                                                  | 6%                                                                      | 4055.9                                                                                                     | 63.2                                                                                 | 9%                                                                           |
| Craigville 3                                                                                                                                                     | 2                                                    | 466600                                                                                                      | 3862.7                                                                                                     | 60.4                                                                                    | 3223.0                                                                                                     | 72.4                                                                                                                                                                                                         | 20%                                                                         | 3198.8                                                                                                     | 72.9                                                                                  | 21%                                                                     | 3150.5                                                                                                     | 74.1                                                                                 | 23%                                                                          |
| Craigville 3                                                                                                                                                     | 3                                                    | 505500                                                                                                      | 4152.4                                                                                                     | 60.9                                                                                    | 3681.7                                                                                                     | 68.7                                                                                                                                                                                                         | 13%                                                                         | 3874.8                                                                                                     | 65.2                                                                                  | 7%                                                                      | 3790.3                                                                                                     | 66.7                                                                                 | 10%                                                                          |
| Craigville 3                                                                                                                                                     | 5                                                    | 473700                                                                                                      | 3500.6                                                                                                     | 67.7                                                                                    | 3114.3                                                                                                     | 76.1                                                                                                                                                                                                         | 12%                                                                         | 3271.3                                                                                                     | 72.4                                                                                  | 7%                                                                      | 3138.5                                                                                                     | 75.5                                                                                 | 12%                                                                          |
| Craigville 3                                                                                                                                                     | 6                                                    | 1001700                                                                                                     | 4756.0                                                                                                     | 105.3                                                                                   | 6506.3                                                                                                     | 3 77.0                                                                                                                                                                                                       | -27%                                                                        | 5516.5                                                                                                     | 90.8                                                                                  | -14%                                                                    | 6023.5                                                                                                     | 83.1                                                                                 | -21%                                                                         |
| Craigville 3                                                                                                                                                     | 11                                                   | 301400                                                                                                      | 1303.7                                                                                                     | 115.6                                                                                   | 1738.2                                                                                                     | 86.7                                                                                                                                                                                                         | -25%                                                                        | 1243.3                                                                                                     | 121.2                                                                                 | 5%                                                                      | 1581.3                                                                                                     | 95.3                                                                                 | -18%                                                                         |
| Craigville 4                                                                                                                                                     | 1                                                    | 440900                                                                                                      | 2800.5                                                                                                     | 78.7                                                                                    | 2631.5                                                                                                     | 83.8                                                                                                                                                                                                         | 6%                                                                          | 2378.0                                                                                                     | 92.7                                                                                  | 18%                                                                     | 2462.5                                                                                                     | 89.5                                                                                 | 14%                                                                          |
| Craigville 4                                                                                                                                                     | 2                                                    | 324000                                                                                                      | 2233.1                                                                                                     | 72.5                                                                                    | 2003.8                                                                                                     | 8 80.8                                                                                                                                                                                                       | 11%                                                                         | 1858.9                                                                                                     | 87.1                                                                                  | 20%                                                                     | 1774.4                                                                                                     | 91.3                                                                                 | 26%                                                                          |
| Craigville 4                                                                                                                                                     | 3                                                    | 362500                                                                                                      | 2474.6                                                                                                     | 73.2                                                                                    | 2353.9                                                                                                     | 77.0                                                                                                                                                                                                         | 5%                                                                          | 2015.9                                                                                                     | 89.9                                                                                  | 23%                                                                     | 2076.2                                                                                                     | 87.3                                                                                 | 19%                                                                          |
| Louisa 5                                                                                                                                                         | 1                                                    | 409700                                                                                                      | 2643.6                                                                                                     | 77.5                                                                                    | 2969.5                                                                                                     | 69.0                                                                                                                                                                                                         | -11%                                                                        | 2897.1                                                                                                     | 70.7                                                                                  | -9%                                                                     | 2897.1                                                                                                     | 70.7                                                                                 | -9%                                                                          |
| Louisa 5                                                                                                                                                         | 2                                                    | 274200                                                                                                      | 1750.3                                                                                                     | 78.3                                                                                    | 1581.3                                                                                                     | 8 86.7                                                                                                                                                                                                       | 11%                                                                         | 1762.4                                                                                                     | 77.8                                                                                  | -1%                                                                     | 1521.0                                                                                                     | 90.1                                                                                 | 15%                                                                          |
| Louisa 5                                                                                                                                                         | 3                                                    | 272600                                                                                                      | 1279.5                                                                                                     | 106.5                                                                                   | 1496.8                                                                                                     | 91.1                                                                                                                                                                                                         | -15%                                                                        | 1364.0                                                                                                     | 99.9                                                                                  | -6%                                                                     | 1545.1                                                                                                     | 88.2                                                                                 | -17%                                                                         |
| Craigville 3<br>Craigville 3<br>Craigville 3<br>Craigville 3<br>Craigville 3<br>Craigville 4<br>Craigville 4<br>Craigville 4<br>Louisa 5<br>Louisa 5<br>Louisa 5 | 2<br>3<br>5<br>6<br>11<br>1<br>2<br>3<br>1<br>2<br>3 | 466600<br>505500<br>473700<br>1001700<br>301400<br>440900<br>324000<br>362500<br>409700<br>274200<br>272600 | 3862.7<br>4152.4<br>3500.6<br>4756.0<br>1303.7<br>2800.5<br>2233.1<br>2474.6<br>2643.6<br>1750.3<br>1279.5 | 60.4<br>60.9<br>67.7<br>105.3<br>115.6<br>78.7<br>72.5<br>73.2<br>77.5<br>78.3<br>106.5 | 3223.0<br>3681.7<br>3114.3<br>6506.3<br>1738.2<br>2631.5<br>2003.8<br>2353.9<br>2969.5<br>1581.3<br>1496.8 | 0       72.4         7       68.7         68.7       76.1         8       76.1         8       77.0         8       80.8         9       77.0         6       69.0         8       86.7         9       91.1 | 20%<br>13%<br>12%<br>-27%<br>-25%<br>6%<br>11%<br>5%<br>-11%<br>11%<br>-15% | 3198.8<br>3874.8<br>3271.3<br>5516.5<br>1243.3<br>2378.0<br>1858.9<br>2015.9<br>2897.1<br>1762.4<br>1364.0 | 72.9<br>65.2<br>72.4<br>90.8<br>121.2<br>92.7<br>87.1<br>89.9<br>70.7<br>77.8<br>99.9 | 21%<br>7%<br>7%<br>-14%<br>5%<br>18%<br>20%<br>23%<br>-9%<br>-1%<br>-6% | 3150.5<br>3790.3<br>3138.5<br>6023.5<br>1581.3<br>2462.5<br>1774.4<br>2076.2<br>2897.1<br>1521.0<br>1545.1 | 74.1<br>66.7<br>75.5<br>83.1<br>95.3<br>89.5<br>91.3<br>87.3<br>70.7<br>90.1<br>88.2 | 23%<br>10%<br>12%<br>-21%<br>-18%<br>14%<br>26%<br>19%<br>-9%<br>15%<br>-17% |

**Table 6.7:** Predictions of overland flow length by contour crenulation, flow accumulation, terrain curvature and ridge accumulation methods in 25 headwater sub-watersheds, with a minimum analysis unit size of 20 ha. ANIM networks were generated with a single threshold value.

### 7. Sensitivity of Predicted Overland flow length to Threshold and Stream Frequency in Actual DEMs

While the results of the analysis in sections 5 and 6 suggest that the networks generated by the flow accumulation, terrain curvature and ridge accumulation methods do not share a strong linear relationship with contour crenulation networks delineated in this study, the results of Spearman ranking are more encouraging. These analyses yielded Spearman rank correlations as high as 0.722 for the flow accumulation method at an analysis unit size of 20 ha, with a regionally calibrated threshold value, and 0.797 with a locally calibrated threshold value. This suggests that while these methods may show promise for use as a ranking tool, the calibration of the threshold value does have a measurable impact on performance. This section attempts to quantify the sensitivity to threshold value variation exhibited by the flow accumulation, terrain curvature and ridge accumulation methods in overland flow length rankings. That is, if the T value were to be changed by a small percentage, would this result in a significant change in rank? Since the results presented in the section 3 suggest that  $\Delta L/\Delta T$  (change in overland flow distance as a function of change in threshold value) for ANIM generated networks may vary based on sub-watershed morphology, and that a relationship exists between stream frequency (F) and  $\Delta L/\Delta T$ , this section will also explore the use of stream frequency as a predictor of rank change.

This analysis used the Craigville Virginia digital orthoquad; a 10 m DEM that contains a variety of terrain forms, spanning 5 eco-regions. This quad was divided into sub-watersheds according to the methods outlined in section 2.5, using a minimum sub-watershed area of 20 ha, resulting in 138 sub-watersheds. In order to evaluate the potential for rank change given a varying threshold, four threshold values were chosen for each method, corresponding to networks whose average overland flow length were 75, 100, 125, and 150 meters. The sub-watersheds were then ranked according to the predicted overland flow length at each given threshold value, and a percent change in rank (number of ranks changed divided by the total number of samples) between thresholds was calculated. The average percent change in rank was then used to compare the performance of the various methods. Additionally, a sensitivity to stream frequency was computed for each method, by computing an  $R^2$  value for F as a predictor of  $\Delta L/\Delta T$ .

Variation in  $\Delta L/\Delta T$  between different sub-watersheds will be referred to as "rank change" as it may lead to inconsistency in relative ranking between different sub-watersheds as varying T are employed. Given a real world variation, it would be ideal to have a method for predicting  $\Delta L/\Delta T$ ; therefore, the viability of stream frequency as a predictor will be explored. Since the value of F that is calculated from a DEM is dependent upon the T at which it is calculated, three values of F were considered as the predictor for  $\Delta L/\Delta T$  over a range of two threshold values, the average value over the range ( $F_{avg}$ ), F at  $T_{max}$  ( $F_{max}$ ) and F at  $T_{min}$  ( $F_{min}$ ).  $F_{min}$  gave slightly better performance than the others; therefore, in each of the analyses that follow,  $F_{min}$  has been used as the predictor of rank change. In order to evaluate the strength of the relationship between F and  $\Delta L/\Delta T$ , F was used as the independent variable and  $\Delta L/\Delta T$  as the dependent variable in a least squares regression.

#### 7.1 Results of Sensitivity Analysis

Table 7.1 shows the average percentage of rank change between adjacent flow length values, and the overall percentage rank change between thresholds which produced an average L =75 m, and an average L = 150 m, for the flow accumulation, ridge accumulation and terrain curvature methods. These figures demonstrate a significant incidence of rank change for all 3 methods, however, the terrain curvature method shows consistently lower incidence of rank change (16.05%) with the ridge accumulation method second (16.73%), and the flow accumulation method showing the largest average rank change (25.18%) when the average overland flow length changes from 75 m to 150 m. Perhaps more illuminating is the percentage of rank change with smaller changes in overland flow length. The Ridge and Curvature methods perform similarly when the average overland flow length goes from 75 to 100 m, with an average rank change of just greater than 9%, however the flow accumulation method performs considerably worse, with a variation of nearly 15%. The results are similar when overland flow length goes from 100 to 125 m and from 125 to 150 m, although the terrain curvature method distinguishes itself at 125 to 150 m with a low figure of 5.81%, beating the ridge accumulation with an average rank change of 6.06%. In each case, the flow accumulation method displays an incidence of rank change that exceeds the rank change of the other two methods by nearly 50%.

**Table 7.1:** Average percent rank change with small changes in threshold value, for the terrain curvature, ridge accumulation and flow accumulation network identification methods. Threshold values are chosen to produce average overland flow lengths of 75, 100, 125 and 150 m.

|                   |                   | Rank Change      | Rank Change   | Rank Change   | <b>Rank Change</b> |
|-------------------|-------------------|------------------|---------------|---------------|--------------------|
|                   |                   | from $L = 75m$ - | from L = 100- | from L = 125- | from L = 75-       |
| Method            | Threshold Values  | 100m             | 125           | 150           | 150                |
| Curvature         | 4, 9, 18, 29      | 9.95%            | 7.70%         | 5.81%         | 16.05%             |
| Ridge             | 14, 29, 51, 77    | 9.18%            | 7.81%         | 6.06%         | 16.73%             |
| Flow Accumulation | 81, 178, 320, 498 | 14.73%           | 10.73%        | 10.28%        | 25.18%             |

Table 7.2 shows the results of a regression analysis of  $\Delta L$  as a function of F, using F evaluated at an average overland flow length of 75 m as a predictor of  $\Delta L$  between 75m and 150 m. The flow accumulation method shows the strongest relationship, followed by the ridge accumulation method, then the terrain curvature method. However, all three methods show a significant relationship between  $\Delta L$  and F, as can be seen in the graphs of F vs.  $\Delta L$  in Figures 7.1 through 7.3.

**Table 7.2:** Results of a regression analysis with stream frequency (F) as a predictor of  $\Delta L$  for 218 subwatersheds in the Craigville quad.

|                | Terrain Curvature | <b>Ridge Accumulation</b> | Flow accumulation |
|----------------|-------------------|---------------------------|-------------------|
| $R^2$          | 0.171             | 0.352                     | 0.505             |
| # Observations | 218               | 218                       | 218               |
| P-value        | < 0.01            | < 0.01                    | < 0.01            |

All three methods display a capacity for rank change, and a significant relationship between rank change and stream frequency. While the flow accumulation method shows a larger magnitude of rank change and greater sensitivity to stream frequency than the other two methods when overland flow length is doubled, from 75 m to 150 m, in narrow ranges (changes of 25 m), all methods have relatively low incidence of rank change. These narrower ranges correspond to a fairly large threshold value change for each method, indicating that small changes in threshold value may result in negligible incidence of rank change.







**Figure 7.2:** Change in overland flow length (?L) vs. stream frequency (F) for 218 sub-watersheds with area  $\geq 20$  ha, from an average overland flow length of 75 m to 150 m, for the ridge accumulation method.



**Figure 7.3:** Percent change in overland flow length (?L) vs. stream frequency (F) for 218 sub-watersheds with area  $\geq 20$  ha, from an average overland flow length of 75 m to 150 m, for the flow accumulation method.

### Conclusions

This study attempted to assess the feasibility of using accumulation-based network identification methods (ANIM) to derive flow length parameters for use in NPS pollution models by evaluating their ability to: produce channel networks with non-homogeneous overland flow lengths, match the distribution of overland flow lengths as suggested by the contour crenulations using regionally and locally calibrated threshold values, and to produce consistent ranking of different sub-watersheds given small variations in threshold value.

The underlying mechanism used by all ANIM, the interpretation of the convergent and divergent landforms present in the DEM, was shown to provide for the possibility of variation in overland flow length. The three ANIM in this study were shown to produce non-homogeneous overland flow lengths when applied to the terrain forms present in 10m DEMs, using a single threshold value. The terrain curvature method produced the widest standard deviation (16.9 m at 20 ha unit size), followed by ridge accumulation (15.4 m at 20 ha unit size) and then flow accumulation (7.5 m at 20 ha unit size).

While it was shown that it is technically incorrect to say that the flow accumulation method exhibits spatial homogeneity, its spatial variability was shown to be quite limited. This range was so limited in fact, that at neither of the unit sizes studied, 10 ha, or 20 ha, did it produce ranges within 50% of those indicated by manual contour delineation, regardless of threshold calibration. That said, none of the methods studied was capable of producing comparable ranges at a 10 ha unit size, although both terrain curvature and ridge accumulation produced comparable ranges at 20 ha. This suggests that for these methods, the 20 ha unit size might be a minimum unit size to expect realistic predictions given the current input data sets. Interestingly enough, while the flow accumulation method's range of predicted overland flow lengths was far narrower than any of the other methods, it was consistently the most successful in terms of producing sub-watershed ranks that were comparable to those produced by manual contour delineation. The terrain curvature and ridge accumulation methods, while producing much wider ranges of overland flow lengths, and matching overall trends well at the 20 ha unit size, appeared to be subject to considerable error in a sub-watershed comparison to contour crenulation networks. Calibration of

threshold value was shown to increase the ability of each method to match contour networks in producing comparable overland flow length ranges, and in ranking ability.

The importance of calibration was shown to be in part a result of the manner in which the basic ANIM mechanism interacts with networks of different terrain morphology, as evidenced by stream frequency. Watersheds with higher stream frequencies were shown to experience greater sensitivity to variations in threshold value than were watersheds with a lower stream frequency. This sensitivity was shown to result in inconsistency in producing relative rankings of sub-watersheds as threshold values were varied. This suggests that F may be used as *one* criterion for determining the feasibility of using a single threshold value over a given watershed area. In general, these results suggest that a single threshold value may be appropriate in areas where there is a relatively homogeneous distribution of stream frequencies, but that in areas with a wider distribution of F, a more local calibration of threshold value may be required. The flow accumulation method was shown to have a larger magnitude of change than were the terrain curvature and ridge accumulation methods.

In summary, all methods studied were shown to display spatial diversity in overland flow lengths without threshold calibration, when producing hill-slope scale networks. These results agree with a previous study conducted at the hill slope scale (Gandolfi and Bischetti, 1997). The failure of other studies (Tarboton, 2001; Helmlinger et al, 1993) to show variation was shown to be most likely due to the scale of networks studied, the analysis unit size, and/or the use of only qualitative methods of evaluation. By outlining a quantitative procedure for analyzing spatial diversity, this study confirmed previous claims (Tarboton, 2001) that the terrain curvature method produces networks that are far more spatially diverse than the flow accumulation method. This study also introduced a new method, the ridge accumulation method, which was shown to produce a considerably wider range of overland flow lengths than flow accumulation. The ridge accumulation networks were slightly less diverse than the terrain curvature networks, but were shown to be less sensitive to calibration than were the terrain curvature networks given the input data sets used in this study. Both terrain curvature and ridge accumulation methods showed potential for producing realistic estimates of overland flow length with single threshold values, although

more study will be required to assess sources of error, and to determine if other flow weighting schemes are needed in order to produce useful estimates.

# Suggestions for future research

Future research into the sources of error encountered in this study would be necessary to validate the use of terrain curvature and ridge accumulation in providing estimates of overland flow length for inputs to non-point source models. The acquisition of high-resolution ground level survey data would be optimal, and ultimately, the only means of truly evaluating the results of this study. While the areas used in this study were chosen to provide a diverse set of land-forms and potential overland flow lengths, the study areas were still selected from a fairly narrow geographical area, and quite likely do not represent the myriad of terrain forms that exist. Thus, the definitive study would include ground level surveys of a much wider geographic area as well.

# Bibliography

Ames, Daniel P., et al, 2002, MapWindow GIS, version 2.7.21, Environmental Management Research Center, Utah State University, http://mapwindow.com/.

Basnyat, Prakash, Teeter, L.D., Lockaby, B.G., Flynn, K.M., 2000, The use of remotesensing and GISD In watershed level analyses of non-point source pollution problems, Forest Ecology and Management, 128, pp. 65-73.

Bren, L.J., 1998, The geometry of a constant buffer-loading design for humid watersheds, Forest Ecology and Management, 110, pp. 113-125.

Brothers, Jason M., Eisenhauer, D. E., Helmers, M. J., Dosskey, M. G., Franti, T. G., 2001, Modeling Vegetative Buffer Performance Considering Topographic Data Accuracy, 2001 ASAE International Meeting, paper No. 01-2125, July 30-August 1, 2001.

Dillaha, Theo A., Hayes, John C., 1992, Vegetative filter strips: II. Application of design procedures, 1992 ASAE International Summer Meeting, June 1992, paper no. 92-2103.

Gandolfi, C., Bischetti, G. B., 1997, Influence of the drainage network identification method on geomorphological properties and hydrological response, Hydrological Processes, vol. 11, pp. 353-375.

Gertner, G., Wang, G., Fang, S., Anderson, A. B., 2002, Effect and uncertainty of digital elevation model spatial resolutions on predicting the topographical factor for soil loss estimation, Journal of Soil and Water Conservation, 57(3).

GIS Data Depot, 10m Digital Elevation Models, <u>http://www.geocomm.com/</u>. Downloaded June 2003. Original source: United States Geological Survey.

Haan, C. T., Barfield, B. J., Hayes, J. C., 1994, Design Hydrology and Sedimentology for Small Catchments, Academic Press.

Hayes, John C., Dillaha, Theo A., Vegetative filter strips: I. Site suitability and procedures, 1992 ASAE International Summer Meeting, June 1992, paper no. 92-2102.

Helmlinger, K.R., Kumar, P., Foufoula-Georgiou, E. 1993. 'On the use of digital elevation model data for Hortonian and fractal analysis of channel networks', Water Resources Research, v. 29, pp. 2599-2613.

Hickey, R., 2000, Slope Angle and Slope Length Solutions for GIS. *Cartography*, v. 29, no. 1, pp. 1 - 8.

Ijjasz-Vasquez, Ede J., Bras, Rafael L., 1995, Scaling regimes of local slope versus contributing area in digital elevation models, Geomorphology 12, pp. 299-311.

Inamdar, Shreeram P., Zacharias, S., Heatwole, C.D., Dillaha, T.A., 1993, Spatial placement of filter strips using a GIS, 1993 ASAE Winter Meeting, December 14-17.

Inamdar, S.P., and T. A. Dillaha. 2000. Relationships between drainage area, slope length, and slope gradient for riparian hillslopes in Virginia. Transactions of the ASAE 43(4): 861-866.

Jain, Manoj K., Kothyari, Umesh C., 2000, Estimation of soil erosion and sediment yield using GIS, Hydrologic Sciences Journal, 45(5), pp. 771-786.

Jenson, S. K., and J. O. Domingue, 1988, Extracting topographic structure from digital elevation data for geographic information system analysis, Photogrammetric Engineering and Remote Sensing, 54(11), pp. 1593-1600.

Mark, David M., 1983, Relations Between Field-surveyed Channel Networks and Map-based Geomorphometric Measures, Inez, Kentucky, Annals of the Association of American Geographers, 73(3), pp. 358-372.

Mark, David M., Automated Detection of Drainage Networks from DEMs, Cartographica, 21, 168-178.

Montgomery, D.R., Foufoula-Georgiou, E., 1993. 'Channel network source representation using digital elevation models', Water Resources Research, v. 29, pp. 3925-3934.

Morris, David G., Heerdegen, Richard. G., 1988, Automatically derived catchment boundaries and channel networks and their hydrological applications, Geomorphology 1, pp. 131-141.

O'Callaghan, John F., Mark, David M., 1984, The Extraction of Drainage Networks from Digital Elevation Data, Computer Vision, Graphics, and Image Processing 28, pp. 323-344.

Peucker, T.K., Douglas, D.H., 1975, Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and Image Processing, v. 4, pp. 375-387.

Smith, Kenneth G., 1950, Standards for Grading Texture of Erosional Topography, American Journal off Science, 248, pp. 655-668.

Steiger, James H. and Fouladi, Rachel T., R2 - A DOS program for confidence interval estimation, power calculation, and sample size estimation for the squared multiple correlation. Department of Psychology, University of British Columbia. 1992-1993. http://www.interchg.ubc.ca/steiger/homepage.htm

Tarboton, D. G., 1997, "A new method for the determination of flow directions and upslope areas in grid digital elevation models," in Water Resources Research, Vol. 33, No. 2, pp. 309-319.

Tarboton, D. G. and D. P. Ames, 2001, "Advances in the mapping of flow networks from digital elevation data," in World Water and Environmental Resources Congress, Orlando, Florida, May 20-24, ASCE.

Tarboton, David G., Bras, Rafael L., Rodriguez-Iturbe, Ignacio, 1992, A physical basis for drainage density, Geomorphology 5, pp. 59-76.

Thiekken, Annegret H., Lucke, Andreas, Diekkruger, Bernd, Richter, Otto, 1999, Scaling input data by GIS for hydrological modeling, Hydrological Processes 13, pp. 611-630.

Tomer, M.D., James, D.E. and Isenhart, T.M., 2003, Optimizing the placement of riparian practices in a watershed using terrain analysis, Journal of Soil and Water Conservation, 58(4), pp. 198-206.

Tucker, George E., Bras, Rafael, 1998, Hillslope processes, drainage density, and landscape morphology, Water Resources Research, vol. 34(10), pp. 2751-2764.

United States Environmental Protection Agency (U.S. EPA), Better Assessment Science Integrating point and Nonpoint Sources (BASINS), Current release, 3.0, http://www.epa.gov/waterscience/basins/.

United States Environmental Protection Agency (U.S. EPA), Mid-Atlantic Ecoregions, Updated September 8, 2003. http://www.epa.gov/maia/html/ecoregion.html

United States Environmental Protection Agency (U.S. EPA), Mid-Atlantic Ecoregions, Updated March 4<sup>th</sup>, 2004. http://www.epa.gov/wed/pages/ecoregions/level\_iv.htm

Zhang, Weihua, Montgomery, David R., 1994, Digital Elevation model grid size, landscape representation and hydrologic simulations, Water Resources Research, 30(4), pp. 1019-1028.

Wang, Xinhao, Yin, Zhi-Yong, 1998, A comparison of drainage networks derived from digital elevation models at two scales, Journal of Hydrology, Vol. 210, pp. 221-224.

Xiang, Wei-Ning, 1996, GIS-based riparian buffer analysis: injecting geographic information into landscape planning, Landscape and Urban Planning, 34, pp. 1-10.

Appendix A: Additional Figures and Tables


**Figure A.1:** (a) Contour crenulation network, (b) ridge (T = 19), (c) terrain curvature (T = 9) and (d) flow accumulation (T = 101) networks for locally calibrated threshold values for Craigville 4 watershed.



**Figure A.2:** (a) Contour crenulation network, (b) ridge (T = 19), (c) terrain curvature (T = 9) and (d) flow accumulation (T = 101) networks for locally calibrated threshold values for Briery Branch 2 watershed.



**Figure A.3:** (a) Contour Crenulation network, (b) ridge accumulation (T = 16), (c) terrain curvature (T = 5) and (d) flow accumulation (T = 81) networks for locally calibrated threshold values for Craigville 3 watershed



**Figure A.4:** (a) Contour Crenulation network, (b) ridge accumulation (T = 15), (c) terrain curvature (T = 6) and (d) flow accumulation (T = 39) networks for locally calibrated threshold values for Surry 3 watershed.



**Figure A.5:** (a) Contour Crenulation network, (b) ridge accumulation (T = 13), (c) terrain curvature (T = 6) and (d) flow accumulation (T = 80) networks for locally calibrated threshold values for Louisa 5 watershed.

Table A.1: Results of rank change analysis for ridge accumulation method on 218 sub-watersheds of a minimum unit size of 20 ha in the Craigville quad.

|         |                 |                    |                 |                     |                    |                   |                    |                      |                              |                |                     |                     |                     |                         | Avg. Fl<br>=    | ow L<br>150m | ength       | Avg. Fl<br>=    | ow L<br>125m | ength / | Avg. Fl<br>=    | ow Lo<br>100m | ength /       | Avg. Flo<br>=   | ow Le<br>75m | ngth          |            |
|---------|-----------------|--------------------|-----------------|---------------------|--------------------|-------------------|--------------------|----------------------|------------------------------|----------------|---------------------|---------------------|---------------------|-------------------------|-----------------|--------------|-------------|-----------------|--------------|---------|-----------------|---------------|---------------|-----------------|--------------|---------------|------------|
| Wshed ( | dR(150-<br>125) | Rank<br>@T<br>=125 | dR(125-<br>100) | Rank<br>@ T<br>=100 | DR<br>(100-<br>75) | Rank<br>@T<br>=75 | DR<br>(75-<br>125) | DR 9<br>(75-<br>150) | #<br>streams<br>@ L =<br>75m | F@<br>L=<br>75 | dD<br>(75 -<br>125) | dD<br>(75 -<br>100) | dD<br>(75 -<br>150) | total<br>area<br>(cells | stream<br>cells | DD           | Flow<br>Len | stream<br>cells | DD           | Flow s  | stream<br>cells | DD            | Flow s<br>Len | stream<br>cells |              | Flow<br>Len c | %<br>hange |
| 15      | 12              | 133                | 200)            | 160                 | 4                  | 156               | 23                 | 35                   | 37                           | 44 3           | 2.98                | 1 48                | 3.89                | 8345                    | 243             | 3 64         | 137         | 304             | 4 55         | 110     | 404             | 6.05          | 82.6          | 503             | 7 53         | 66.4          | 0.25       |
| 18      | 5               | 194                | 50              | 144                 |                    | 87                | 107                | 112                  | 3                            | 9.28           | 0.58                | 0.35                | 0.89                | 3232                    | 133             | 5.14         | 97.2        | 141             | 5.45         | 91.7    | 147             | 5.69          | 87.9          | 156             | 6.03         | 82.9          | 0.06       |
| 22      | 4               | 190                | 2               | 192                 | 32                 | 160               | 30                 | 34                   | 9                            | 32.5           | 2.21                | 0.9                 | 2.75                | 2771                    | 107             | 4.83         | 104         | 119             | 5.37         | 93.1    | 148             | 6.68          | 74.9          | 168             | 7.58         | 66            | 0.14       |
| 24      | 4               | 8                  | 5               | 3                   | 1                  | 2                 | 6                  | 10                   | 9                            | 20.1           | 0.98                | 0.56                | 1.26                | 4475                    | 72              | 2.01         | 249         | 82              | 2.29         | 218     | 97              | 2.71          | 185           | 117             | 3.27         | 153           | 0.21       |
| 30      | 6               | 59                 | 7               | 66                  | 19                 | 85                | 26                 | 20                   | 28                           | 41.3           | 2.6                 | 1.71                | 3.17                | 6782                    | 154             | 2.84         | 176         | 185             | 3.41         | 147     | 233             | 4.29          | 116           | 326             | 6.01         | 83.2          | 0.4        |
| 36      | 0               | 29                 | 7               | 22                  | 16                 | 6                 | 23                 | 23                   | 3                            | 10.4           | 0.95                | 0.39                | 1.51                | 2895                    | 54              | 2.33         | 214         | 67              | 2.89         | 173     | 80              | 3.45          | 145           | 89              | 3.84         | 130           | 0.11       |
| 37      | 44              | 43                 | 16              | 59                  | 42                 | 101               | 58                 | 14                   | 17                           | 61.5           | 3.12                | 2.08                | 3.12                | 2765                    | 70              | 3.16         | 158         | 70              | 3.16         | 158     | 93              | 4.2           | 119           | 139             | 6.28         | 79.6          | 0.49       |
| 41      | 17              | 27                 | 18              | 45                  | 1                  | 44                | 17                 | 34                   | 21                           | 35             | 2.46                | 1.27                | 3.29                | 5995                    | 95              | 1.98         | 252         | 135             | 2.81         | 178     | 192             | 4             | 125           | 253             | 5.28         | 94.8          | 0.32       |
| 43      | 2               | 208                | 0               | 208                 | 4                  | 204               | 4                  | 2                    | 13                           | 60.3           | 3.3                 | 1.91                | 4.29                | 2156                    | 100             | 5.8          | 86.2        | 117             | 6.78         | 73.7    | 141             | 8.17          | 61.2          | 174             | 10.1         | 49.6          | 0.23       |
| 44      | 17              | 68                 | 24              | 44                  | 13                 | 31                | 37                 | 20                   | 7                            | 29.8           | 1.38                | 0.91                | 2.24                | 2348                    | 50              | 2.66         | 188         | 66              | 3.51         | 142     | 75              | 3.99          | 125           | 92              | 4.9          | 102           | 0.23       |
| 45      | 72              | 188                | 3               | 185                 | 26                 | 159               | 29                 | 43                   | 32                           | 59.1           | 2.22                | 1.06                | 3.97                | 5411                    | 156             | 3.6          | 139         | 232             | 5.36         | 93.3    | 282             | 6.51          | 76.8          | 328             | 7.58         | 66            | 0.16       |
| 46      | 1               | 4                  | 3               | 7                   | 1                  | 8                 | 4                  | 3                    | 7                            | 26.8           | 1.82                | 1.05                | 2.15                | 2613                    | 39              | 1.87         | 268         | 46              | 2.2          | 227     | 62              | 2.97          | 169           | 84              | 4.02         | 124           | 0.35       |
| 49      | 2               | 183                | 11              | 172                 | 46                 | 126               | 57                 | 59                   | 3                            | 12.4           | 1.6                 | 0.72                | 2.37                | 2424                    | 88              | 4.54         | 110         | 103             | 5.31         | 94.1    | 120             | 6.19          | 80.8          | 134             | 6.91         | 72.4          | 0.12       |
| 50      | 8               | 159                | 18              | 141                 | 20                 | 121               | 38                 | 46                   | 7                            | 26.3           | 1.93                | 1.22                | 2.54                | 2661                    | 91              | 4.27         | 117         | 104             | 4.89         | 102     | 119             | 5.59          | 89.4          | 145             | 6.81         | 73.4          | 0.22       |
| 51      | 18              | 49                 | 13              | 36                  | 1                  | 37                | 12                 | 30                   | 9                            | 21.4           | 1.78                | 1.28                | 2.17                | 4213                    | 97              | 2.88         | 174         | 110             | 3.26         | 153     | 127             | 3.77          | 133           | 170             | 5.04         | 99.1          | 0.34       |
| 52      | 1               | 10                 | 15              | 25                  | 7                  | 18                | 8                  | 9                    | 7                            | 32.9           | 2.06                | 0.94                | 2.53                | 2127                    | 33              | 1.94         | 258         | 41              | 2.41         | 208     | 60              | 3.53          | 142           | 76              | 4.47         | 112           | 0.27       |
| 54      | 33              | 97                 | 8               | 89                  | 5                  | 84                | 13                 | 46                   | 25                           | 46.7           | 2.03                | 1.22                | 2.27                | 5348                    | 160             | 3.74         | 134         | 170             | 3.97         | 126     | 205             | 4.79          | 104           | 257             | 6.01         | 83.2          | 0.25       |
| 55      | 9               | 86                 | 4               | 82                  | 13                 | 69                | 17                 | 8                    | 15                           | 46.2           | 1.96                | 1.12                | 2.77                | 3247                    | 78              | 3            | 167         | 99              | 3.81         | 131     | 121             | 4.66          | 107           | 150             | 5.77         | 86.6          | 0.24       |
| 58      | 8               | 91                 | 6               | 85                  | 33                 | 52                | 39                 | 31                   | 7                            | 17.4           | 1.52                | 0.68                | 2.33                | 4032                    | 99              | 3.07         | 163         | 125             | 3.88         | 129     | 152             | 4.71          | 106           | 174             | 5.39         | 92.7          | 0.14       |
| 59      | 18              | 21                 | 5               | 26                  | 22                 | 48                | 27                 | 45                   | 15                           | 42             | 2.62                | 1.75                | 3.57                | 3573                    | 50              | 1.75         | 286         | 77              | 2.69         | 186     | 102             | 3.57          | 140           | 152             | 5.32         | 94            | 0.49       |
| 60      | 7               | 24                 | 15              | 39                  | 8                  | 47                | 23                 | 16                   | 53                           | 43.2           | 2.55                | 1.38                | 2.95                | ###                     | 231             | 2.35         | 213         | 270             | 2.75         | 182     | 385             | 3.92          | 128           | 521             | 5.3          | 94.3          | 0.35       |
| 61      | 15              | 20                 | 2               | 18                  | 6                  | 12                | 8                  | 23                   | 7                            | 33.3           | 1.67                | 1.01                | 1.97                | 2099                    | 40              | 2.38         | 210         | 45              | 2.68         | 187     | 56              | 3.33          | 150           | 73              | 4.35         | 115           | 0.3        |
| 63      | 12              | 106                | 28              | 78                  | 5                  | 73                | 33                 | 45                   | 13                           | 21.8           | 1.65                | 1.26                | 2.18                | 5973                    | 173             | 3.62         | 138         | 198             | 4.14         | 121     | 217             | 4.54          | 110           | 277             | 5.8          | 86.3          | 0.28       |
| 64      | 16              | 149                | 48              | 101                 | 60                 | 41                | 108                | 124                  | 1                            | 3.4            | 0.43                | 0.13                | 0.89                | 2941                    | 100             | 4.25         | 118         | 111             | 4.72         | 106     | 118             | 5.02          | 99.7          | 121             | 5.14         | 97.2          | 0.03       |
| 65      | 23              | 31                 | 2               | 29                  | 18                 | 11                | 20                 | 3                    | 3                            | 12.9           | 1.45                | 0.7                 | 2.41                | 2331                    | 36              | 1.93         | 259         | 54              | 2.9          | 173     | 68              | 3.65          | 137           | 81              | 4.34         | 115           | 0.19       |

| 67  | 1   | 197 | 6  | 191 | 33 | 158 | 39  | 40  | 9  | 43.8 | 1.95 | 0.91 | 2.5  | 2053 | 83  | 5.05 | 98.9 | 92  | 5.6  | 89.3 | 109  | 6.64 | 75.3 | 124  | 7.55 | 66.2 | 0.14 |
|-----|-----|-----|----|-----|----|-----|-----|-----|----|------|------|------|------|------|-----|------|------|-----|------|------|------|------|------|------|------|------|------|
| 68  | 5   | 83  | 3  | 86  | 0  | 86  | 3   | 2   | 63 | 45.2 | 2.23 | 1.3  | 2.79 | ###  | 360 | 3.23 | 155  | 422 | 3.78 | 132  | 526  | 4.72 | 106  | 671  | 6.02 | 83.1 | 0.28 |
| 71  | 28  | 12  | 38 | 50  | 1  | 51  | 39  | 11  | 7  | 31.7 | 2.89 | 1.3  | 2.89 | 2207 | 44  | 2.49 | 201  | 44  | 2.49 | 201  | 72   | 4.08 | 123  | 95   | 5.38 | 92.9 | 0.32 |
| 72  | 27  | 54  | 53 | 107 | 4  | 103 | 49  | 76  | 84 | 25.8 | 3.04 | 1.25 | 4.08 | ###  | 596 | 2.29 | 218  | 867 | 3.33 | 150  | 1333 | 5.12 | 97.6 | 1658 | 6.37 | 78.5 | 0.24 |
| 73  | 4   | 39  | 6  | 33  | 9  | 24  | 15  | 19  | 23 | 37.8 | 1.6  | 0.94 | 2.15 | 6092 | 124 | 2.54 | 197  | 151 | 3.1  | 161  | 183  | 3.75 | 133  | 229  | 4.7  | 106  | 0.25 |
| 74  | 3   | 206 | 2  | 204 | 4  | 200 | 6   | 3   | 11 | 53   | 2.95 | 2.17 | 3.91 | 2077 | 93  | 5.6  | 89.3 | 109 | 6.56 | 76.2 | 122  | 7.34 | 68.1 | 158  | 9.51 | 52.6 | 0.3  |
| 75  | 0   | 207 | 1  | 206 | 4  | 202 | 5   | 5   | 19 | 73   | 3.07 | 2.35 | 3.94 | 2604 | 122 | 5.86 | 85.4 | 140 | 6.72 | 74.4 | 155  | 7.44 | 67.2 | 204  | 9.79 | 51.1 | 0.32 |
| 77  | 13  | 57  | 18 | 75  | 14 | 61  | 4   | 17  | 8  | 32.7 | 2.3  | 1.18 | 3.12 | 2446 | 50  | 2.56 | 196  | 66  | 3.37 | 148  | 88   | 4.5  | 111  | 111  | 5.67 | 88.1 | 0.26 |
| 79  | 14  | 186 | 30 | 156 | 47 | 109 | 77  | 63  | 7  | 19.9 | 1.14 | 0.5  | 2.14 | 3511 | 122 | 4.34 | 115  | 150 | 5.34 | 93.6 | 168  | 5.98 | 83.6 | 182  | 6.48 | 77.2 | 0.08 |
| 80  | 130 | 180 | 27 | 207 | 2  | 209 | 29  | 159 | 26 | 123  | 7.39 | 5.02 | 9.99 | 2115 | 45  | 2.66 | 188  | 89  | 5.26 | 95.1 | 129  | 7.62 | 65.6 | 214  | 12.6 | 39.5 | 0.66 |
| 81  | 3   | 78  | 13 | 65  | 26 | 39  | 39  | 42  | 19 | 31.1 | 1.39 | 0.84 | 2.09 | 6110 | 148 | 3.03 | 165  | 182 | 3.72 | 134  | 209  | 4.28 | 117  | 250  | 5.11 | 97.8 | 0.2  |
| 86  | 4   | 121 | 21 | 100 | 38 | 62  | 59  | 63  | 7  | 18.2 | 1.33 | 0.68 | 2.02 | 3840 | 113 | 3.68 | 136  | 134 | 4.36 | 115  | 154  | 5.01 | 99.7 | 175  | 5.7  | 87.8 | 0.14 |
| 88  | 1   | 17  | 12 | 5   | 4  | 1   | 16  | 17  | 1  | 4.53 | 0.45 | 0.23 | 0.91 | 2208 | 38  | 2.15 | 232  | 46  | 2.6  | 192  | 50   | 2.83 | 177  | 54   | 3.06 | 164  | 0.08 |
| 91  | 17  | 82  | 29 | 53  | 17 | 36  | 46  | 63  | 7  | 17.4 | 1.27 | 0.93 | 1.62 | 4024 | 110 | 3.42 | 146  | 121 | 3.76 | 133  | 132  | 4.1  | 122  | 162  | 5.03 | 99.4 | 0.23 |
| 93  | 9   | 15  | 7  | 8   | 4  | 4   | 11  | 20  | 11 | 36.3 | 1.15 | 0.7  | 1.48 | 3034 | 54  | 2.22 | 225  | 62  | 2.55 | 196  | 73   | 3.01 | 166  | 90   | 3.71 | 135  | 0.23 |
| 95  | 30  | 140 | 17 | 123 | 49 | 74  | 66  | 96  | 5  | 17.5 | 1.18 | 0.52 | 1.48 | 2862 | 99  | 4.32 | 116  | 106 | 4.63 | 108  | 121  | 5.28 | 94.6 | 133  | 5.81 | 86.1 | 0.1  |
| 97  | 0   | 209 | 0  | 209 | 10 | 199 | 10  | 10  | 9  | 32.3 | 2.33 | 1.17 | 3.19 | 2785 | 138 | 6.19 | 80.7 | 157 | 7.05 | 71   | 183  | 8.21 | 60.9 | 209  | 9.38 | 53.3 | 0.14 |
| 103 | 5   | 157 | 11 | 146 | 28 | 118 | 39  | 44  | 24 | 41.5 | 1.88 | 0.97 | 2.57 | 5778 | 193 | 4.18 | 120  | 225 | 4.87 | 103  | 267  | 5.78 | 86.6 | 312  | 6.75 | 74.1 | 0.17 |
| 104 | 1   | 204 | 4  | 200 | 16 | 184 | 20  | 21  | 3  | 14   | 2.1  | 1.28 | 2.68 | 2143 | 97  | 5.66 | 88.4 | 107 | 6.24 | 80.1 | 121  | 7.06 | 70.8 | 143  | 8.34 | 59.9 | 0.18 |
| 105 | 0   | 110 | 8  | 118 | 23 | 95  | 15  | 15  | 7  | 21.3 | 2.01 | 0.99 | 2.66 | 3292 | 94  | 3.57 | 140  | 111 | 4.21 | 119  | 138  | 5.24 | 95.4 | 164  | 6.23 | 80.3 | 0.19 |
| 106 | 25  | 64  | 26 | 90  | 79 | 169 | 105 | 80  | 19 | 81   | 4.32 | 2.99 | 4.53 | 2345 | 61  | 3.25 | 154  | 65  | 3.46 | 144  | 90   | 4.8  | 104  | 146  | 7.78 | 64.2 | 0.62 |
| 107 | 24  | 79  | 4  | 83  | 19 | 102 | 23  | 1   | 11 | 42.7 | 2.62 | 1.7  | 2.91 | 2575 | 71  | 3.45 | 145  | 77  | 3.74 | 134  | 96   | 4.66 | 107  | 131  | 6.36 | 78.6 | 0.36 |
| 108 | 7   | 101 | 44 | 57  | 19 | 38  | 63  | 70  | 3  | 12.3 | 1.02 | 0.92 | 1.54 | 2441 | 69  | 3.53 | 142  | 79  | 4.05 | 124  | 81   | 4.15 | 121  | 99   | 5.07 | 98.6 | 0.22 |
| 109 | 15  | 109 | 38 | 71  | 22 | 49  | 60  | 75  | 3  | 11.8 | 1.18 | 0.93 | 1.66 | 2553 | 75  | 3.67 | 136  | 85  | 4.16 | 120  | 90   | 4.41 | 113  | 109  | 5.34 | 93.7 | 0.21 |
| 110 | 14  | 38  | 8  | 30  | 13 | 17  | 21  | 35  | 9  | 31.5 | 1.4  | 0.79 | 1.79 | 2859 | 61  | 2.67 | 187  | 70  | 3.06 | 163  | 84   | 3.67 | 136  | 102  | 4.46 | 112  | 0.21 |
| 111 | 25  | 47  | 7  | 54  | 9  | 63  | 16  | 9   | 24 | 44.7 | 2.47 | 1.6  | 2.74 | 5375 | 128 | 2.98 | 168  | 140 | 3.26 | 154  | 177  | 4.12 | 121  | 246  | 5.72 | 87.4 | 0.39 |
| 116 | 21  | 92  | 19 | 111 | 74 | 185 | 93  | 72  | 25 | 62.3 | 4.51 | 3.24 | 4.83 | 4015 | 115 | 3.58 | 140  | 125 | 3.89 | 128  | 166  | 5.17 | 96.7 | 270  | 8.41 | 59.5 | 0.63 |
| 119 | 3   | 52  | 12 | 40  | 5  | 45  | 7   | 10  | 9  | 28.8 | 2    | 1.36 | 2.6  | 3122 | 67  | 2.68 | 186  | 82  | 3.28 | 152  | 98   | 3.92 | 127  | 132  | 5.29 | 94.6 | 0.35 |
| 120 | 16  | 37  | 10 | 27  | 43 | 70  | 33  | 49  | 17 | 60.5 | 2.76 | 2.18 | 3.6  | 2811 | 49  | 2.18 | 229  | 68  | 3.02 | 165  | 81   | 3.6  | 139  | 130  | 5.78 | 86.5 | 0.6  |
| 121 | 32  | 116 | 32 | 84  | 27 | 57  | 59  | 91  | 8  | 30.6 | 1.24 | 0.86 | 1.53 | 2615 | 84  | 4.02 | 125  | 90  | 4.3  | 116  | 98   | 4.68 | 107  | 116  | 5.54 | 90.2 | 0.18 |
| 122 | 11  | 50  | 12 | 62  | 6  | 56  | 6   | 5   | 7  | 19.7 | 2.25 | 1.27 | 2.71 | 3557 | 80  | 2.81 | 178  | 93  | 3.27 | 153  | 121  | 4.25 | 118  | 157  | 5.52 | 90.6 | 0.3  |
| 123 | 3   | 205 | 16 | 189 | 25 | 164 | 41  | 44  | 11 | 26.3 | 1.34 | 1.13 | 1.79 | 4186 | 197 | 5.88 | 85   | 212 | 6.33 | 79   | 219  | 6.54 | 76.5 | 257  | 7.67 | 65.2 | 0.17 |

| 127 | 1  | 154 | 32 | 122 | 32 | 90  | 64 | 63  | 11 | 36.3 | 1.32 | 0.87 | 2.06 | 3028 | 99  | 4.09 | 122 | 117 | 4.83 | 104  | 128 | 5.28 | 94.6 | 149 | 6.15 | 81.3 | 0.16 |
|-----|----|-----|----|-----|----|-----|----|-----|----|------|------|------|------|------|-----|------|-----|-----|------|------|-----|------|------|-----|------|------|------|
| 129 | 1  | 181 | 9  | 190 | 4  | 186 | 5  | 4   | 15 | 61.3 | 3.17 | 1.89 | 3.94 | 2445 | 88  | 4.5  | 111 | 103 | 5.27 | 95   | 128 | 6.54 | 76.4 | 165 | 8.44 | 59.3 | 0.29 |
| 131 | 22 | 120 | 25 | 145 | 13 | 132 | 12 | 10  | 17 | 51.8 | 2.67 | 1.26 | 3.05 | 3279 | 104 | 3.96 | 126 | 114 | 4.35 | 115  | 151 | 5.76 | 86.9 | 184 | 7.01 | 71.3 | 0.22 |
| 132 | 17 | 45  | 4  | 41  | 7  | 34  | 11 | 28  | 5  | 15.9 | 1.74 | 1.07 | 2.18 | 3152 | 71  | 2.82 | 178 | 82  | 3.25 | 154  | 99  | 3.93 | 127  | 126 | 5    | 100  | 0.27 |
| 134 | 12 | 129 | 28 | 157 | 34 | 191 | 62 | 50  | 25 | 54.1 | 4.03 | 2.49 | 4.55 | 4619 | 146 | 3.95 | 127 | 165 | 4.47 | 112  | 222 | 6.01 | 83.2 | 314 | 8.5  | 58.8 | 0.41 |
| 135 | 3  | 42  | 38 | 80  | 2  | 78  | 36 | 39  | 26 | 34.1 | 2.79 | 1.33 | 3.51 | 7624 | 149 | 2.44 | 205 | 193 | 3.16 | 158  | 282 | 4.62 | 108  | 363 | 5.95 | 84   | 0.29 |
| 136 | 61 | 166 | 10 | 176 | 2  | 174 | 8  | 69  | 29 | 58.2 | 2.86 | 1.63 | 4.41 | 4985 | 139 | 3.49 | 143 | 201 | 5.04 | 99.2 | 250 | 6.27 | 79.8 | 315 | 7.9  | 63.3 | 0.26 |
| 137 | 17 | 40  | 6  | 34  | 6  | 40  | 0  | 17  | 15 | 37.6 | 2    | 1.38 | 2.41 | 3992 | 87  | 2.72 | 184 | 100 | 3.13 | 160  | 120 | 3.76 | 133  | 164 | 5.14 | 97.4 | 0.37 |
| 138 | 14 | 119 | 25 | 94  | 18 | 76  | 43 | 57  | 14 | 42.2 | 1.54 | 1.02 | 2.07 | 3319 | 101 | 3.8  | 131 | 115 | 4.33 | 115  | 129 | 4.86 | 103  | 156 | 5.88 | 85.1 | 0.21 |
| 140 | 3  | 192 | 44 | 148 | 13 | 135 | 57 | 60  | 8  | 38.2 | 1.61 | 1.25 | 2.15 | 2093 | 82  | 4.9  | 102 | 91  | 5.43 | 92   | 97  | 5.79 | 86.3 | 118 | 7.05 | 70.9 | 0.22 |
| 141 | 3  | 187 | 38 | 149 | 38 | 111 | 76 | 79  | 5  | 16.3 | 1.14 | 0.69 | 1.88 | 3061 | 113 | 4.61 | 108 | 131 | 5.35 | 93.5 | 142 | 5.8  | 86.2 | 159 | 6.49 | 77   | 0.12 |
| 142 | 2  | 172 | 1  | 173 | 29 | 144 | 28 | 30  | 44 | 47.5 | 2.23 | 1.15 | 2.98 | 9259 | 323 | 4.36 | 115 | 379 | 5.12 | 97.7 | 459 | 6.2  | 80.7 | 544 | 7.34 | 68.1 | 0.19 |
| 143 | 5  | 32  | 13 | 19  | 11 | 30  | 2  | 7   | 15 | 39.7 | 1.98 | 1.52 | 2.48 | 3783 | 73  | 2.41 | 207 | 88  | 2.91 | 172  | 102 | 3.37 | 148  | 148 | 4.89 | 102  | 0.45 |
| 145 | 26 | 163 | 21 | 142 | 0  | 142 | 21 | 47  | 55 | 59.4 | 2.23 | 1.58 | 2.6  | 9266 | 341 | 4.6  | 109 | 369 | 4.98 | 100  | 417 | 5.63 | 88.9 | 534 | 7.2  | 69.4 | 0.28 |
| 146 | 18 | 152 | 40 | 112 | 70 | 182 | 30 | 48  | 16 | 63.7 | 3.53 | 3.13 | 4.48 | 2513 | 77  | 3.83 | 131 | 96  | 4.78 | 105  | 104 | 5.17 | 96.7 | 167 | 8.31 | 60.2 | 0.61 |
| 147 | 7  | 23  | 6  | 17  | 3  | 14  | 9  | 2   | 23 | 42.4 | 1.64 | 1.06 | 2.26 | 5428 | 91  | 2.1  | 239 | 118 | 2.72 | 184  | 143 | 3.29 | 152  | 189 | 4.35 | 115  | 0.32 |
| 148 | 15 | 124 | 14 | 110 | 20 | 130 | 6  | 21  | 15 | 64.6 | 2.58 | 1.83 | 3.44 | 2323 | 66  | 3.55 | 141 | 82  | 4.41 | 113  | 96  | 5.17 | 96.8 | 130 | 7    | 71.5 | 0.35 |
| 149 | 52 | 143 | 50 | 193 | 0  | 193 | 50 | 102 | 21 | 57.7 | 4.12 | 2.09 | 5.46 | 3641 | 97  | 3.33 | 150 | 136 | 4.67 | 107  | 195 | 6.69 | 74.7 | 256 | 8.79 | 56.9 | 0.31 |
| 153 | 2  | 67  | 26 | 93  | 4  | 89  | 22 | 20  | 15 | 34   | 2.58 | 1.25 | 3.17 | 4413 | 103 | 2.92 | 171 | 124 | 3.51 | 142  | 171 | 4.84 | 103  | 215 | 6.09 | 82.1 | 0.26 |
| 154 | 6  | 131 | 26 | 105 | 8  | 97  | 34 | 40  | 9  | 21   | 1.78 | 1.17 | 2.34 | 4277 | 134 | 3.92 | 128 | 153 | 4.47 | 112  | 174 | 5.09 | 98.3 | 214 | 6.25 | 79.9 | 0.23 |
| 155 | 5  | 90  | 23 | 67  | 45 | 112 | 22 | 27  | 15 | 60.9 | 2.64 | 2.18 | 3.35 | 2463 | 62  | 3.15 | 159 | 76  | 3.86 | 130  | 85  | 4.31 | 116  | 128 | 6.5  | 77   | 0.51 |
| 156 | 14 | 150 | 31 | 119 | 25 | 94  | 56 | 70  | 9  | 25   | 1.5  | 0.97 | 2.02 | 3594 | 121 | 4.21 | 119 | 136 | 4.73 | 106  | 151 | 5.25 | 95.2 | 179 | 6.23 | 80.3 | 0.19 |
| 159 | 7  | 203 | 0  | 203 | 15 | 188 | 15 | 8   | 15 | 45.4 | 2.31 | 1.14 | 3.48 | 3302 | 131 | 4.96 | 101 | 162 | 6.13 | 81.5 | 193 | 7.31 | 68.4 | 223 | 8.44 | 59.2 | 0.16 |
| 160 | 6  | 174 | 0  | 174 | 24 | 150 | 24 | 30  | 29 | 49.1 | 2.31 | 1.23 | 3.03 | 5907 | 209 | 4.42 | 113 | 243 | 5.14 | 97.2 | 294 | 6.22 | 80.4 | 352 | 7.45 | 67.1 | 0.2  |
| 161 | 11 | 130 | 15 | 115 | 12 | 127 | 3  | 8   | 27 | 36.7 | 2.45 | 1.72 | 3.28 | 7361 | 214 | 3.63 | 138 | 263 | 4.47 | 112  | 306 | 5.2  | 96.2 | 407 | 6.91 | 72.3 | 0.33 |
| 162 | 11 | 118 | 16 | 134 | 41 | 175 | 57 | 46  | 25 | 66   | 3.6  | 2.44 | 4.19 | 3788 | 113 | 3.73 | 134 | 131 | 4.32 | 116  | 166 | 5.48 | 91.3 | 240 | 7.92 | 63.1 | 0.45 |
| 163 | 8  | 168 | 2  | 170 | 11 | 181 | 13 | 21  | 58 | 65.8 | 3.19 | 2.1  | 4.11 | 8821 | 293 | 4.15 | 120 | 358 | 5.07 | 98.6 | 435 | 6.16 | 81.1 | 583 | 8.26 | 60.5 | 0.34 |
| 164 | 15 | 41  | 10 | 31  | 23 | 54  | 13 | 2   | 15 | 28.3 | 2.29 | 1.77 | 2.76 | 5296 | 114 | 2.69 | 186 | 134 | 3.16 | 158  | 156 | 3.68 | 136  | 231 | 5.45 | 91.7 | 0.48 |
| 166 | 22 | 132 | 1  | 131 | 9  | 140 | 8  | 14  | 21 | 61.5 | 2.63 | 1.72 | 3.07 | 3416 | 112 | 4.1  | 122 | 124 | 4.54 | 110  | 149 | 5.45 | 91.7 | 196 | 7.17 | 69.7 | 0.32 |
| 167 | 3  | 66  | 2  | 64  | 28 | 92  | 26 | 29  | 29 | 59   | 2.67 | 1.91 | 3.36 | 4914 | 111 | 2.82 | 177 | 138 | 3.51 | 142  | 168 | 4.27 | 117  | 243 | 6.18 | 80.9 | 0.45 |
| 168 | 18 | 141 | 3  | 138 | 9  | 147 | 6  | 12  | 47 | 52.6 | 2.74 | 1.85 | 3.25 | 8927 | 296 | 4.14 | 121 | 332 | 4.65 | 108  | 396 | 5.54 | 90.2 | 528 | 7.39 | 67.6 | 0.33 |
| 169 | 27 | 74  | 3  | 77  | 11 | 88  | 14 | 41  | 13 | 40   | 2.42 | 1.54 | 3.5  | 3249 | 67  | 2.58 | 194 | 95  | 3.65 | 137  | 118 | 4.54 | 110  | 158 | 6.08 | 82.3 | 0.34 |

| 172 | 40 | 196 | 1  | 197 | 5  | 192 | 4   | 36  | 34 | 65.9 | 2.98 | 1.67 | 4.45 | 5163 | 170 | 4.12 | 121  | 231 | 5.59 | 89.4 | 285 | 6.9  | 72.5 | 354 | 8.57 | 58.3 | 0.24 |
|-----|----|-----|----|-----|----|-----|-----|-----|----|------|------|------|------|------|-----|------|------|-----|------|------|-----|------|------|-----|------|------|------|
| 173 | 4  | 98  | 52 | 150 | 4  | 146 | 48  | 44  | 26 | 55.3 | 3.35 | 1.57 | 3.94 | 4698 | 129 | 3.43 | 146  | 151 | 4.02 | 124  | 218 | 5.8  | 86.2 | 277 | 7.37 | 67.8 | 0.27 |
| 175 | 17 | 115 | 16 | 99  | 20 | 119 | 4   | 13  | 19 | 52.3 | 2.51 | 1.79 | 3    | 3631 | 110 | 3.79 | 132  | 124 | 4.27 | 117  | 145 | 4.99 | 100  | 197 | 6.78 | 73.7 | 0.36 |
| 176 | 91 | 195 | 4  | 199 | 12 | 187 | 8   | 83  | 7  | 34.8 | 2.92 | 1.43 | 4.97 | 2014 | 56  | 3.48 | 144  | 89  | 5.52 | 90.5 | 113 | 7.01 | 71.3 | 136 | 8.44 | 59.2 | 0.2  |
| 177 | 19 | 144 | 30 | 114 | 56 | 58  | 86  | 105 | 9  | 27.6 | 0.92 | 0.42 | 1.42 | 3258 | 109 | 4.18 | 120  | 122 | 4.68 | 107  | 135 | 5.18 | 96.5 | 146 | 5.6  | 89.3 | 0.08 |
| 178 | 45 | 162 | 40 | 202 | 1  | 201 | 39  | 84  | 17 | 75.6 | 4.62 | 2.34 | 5.95 | 2248 | 65  | 3.61 | 138  | 89  | 4.95 | 101  | 130 | 7.23 | 69.2 | 172 | 9.56 | 52.3 | 0.32 |
| 179 | 1  | 3   | 3  | 6   | 94 | 100 | 97  | 98  | 18 | 69   | 4.22 | 3.36 | 4.7  | 2608 | 33  | 1.58 | 316  | 43  | 2.06 | 243  | 61  | 2.92 | 171  | 131 | 6.28 | 79.6 | 1.15 |
| 183 | 50 | 146 | 42 | 188 | 8  | 180 | 34  | 84  | 31 | 61.1 | 3.53 | 1.68 | 4.83 | 5070 | 137 | 3.38 | 148  | 190 | 4.68 | 107  | 265 | 6.53 | 76.5 | 333 | 8.21 | 60.9 | 0.26 |
| 184 | 61 | 103 | 62 | 165 | 41 | 206 | 103 | 164 | 41 | 94.4 | 7.28 | 5.27 | 8.84 | 4342 | 88  | 2.53 | 197  | 142 | 4.09 | 122  | 212 | 6.1  | 81.9 | 395 | 11.4 | 44   | 0.86 |
| 186 | 11 | 135 | 18 | 153 | 8  | 145 | 10  | 1   | 23 | 48.6 | 2.8  | 1.48 | 3.38 | 4737 | 151 | 3.98 | 125  | 173 | 4.57 | 110  | 223 | 5.88 | 85   | 279 | 7.36 | 67.9 | 0.25 |
| 187 | 6  | 99  | 8  | 91  | 0  | 91  | 8   | 2   | 35 | 45.8 | 2.16 | 1.36 | 2.83 | 7650 | 205 | 3.35 | 149  | 246 | 4.02 | 124  | 295 | 4.82 | 104  | 378 | 6.18 | 81   | 0.28 |
| 188 | 7  | 142 | 14 | 128 | 5  | 133 | 9   | 2   | 43 | 52.5 | 2.36 | 1.6  | 3.16 | 8195 | 253 | 3.86 | 130  | 305 | 4.65 | 107  | 355 | 5.41 | 92.3 | 460 | 7.02 | 71.3 | 0.3  |
| 189 | 2  | 198 | 19 | 179 | 55 | 124 | 74  | 76  | 7  | 14.3 | 1.17 | 0.56 | 1.73 | 4905 | 203 | 5.17 | 96.7 | 225 | 5.73 | 87.2 | 249 | 6.35 | 78.8 | 271 | 6.91 | 72.4 | 0.09 |
| 191 | 10 | 76  | 5  | 81  | 10 | 71  | 5   | 5   | 46 | 34.8 | 2.08 | 1.15 | 2.93 | ###  | 301 | 2.85 | 176  | 391 | 3.7  | 135  | 489 | 4.63 | 108  | 611 | 5.78 | 86.5 | 0.25 |
| 192 | 3  | 104 | 8  | 96  | 27 | 123 | 19  | 16  | 56 | 55.9 | 2.79 | 1.98 | 3.36 | ###  | 283 | 3.53 | 142  | 328 | 4.09 | 122  | 393 | 4.9  | 102  | 552 | 6.89 | 72.6 | 0.4  |
| 193 | 17 | 62  | 20 | 42  | 37 | 79  | 17  | 0   | 11 | 54.1 | 2.52 | 2.03 | 2.95 | 2034 | 49  | 3.01 | 166  | 56  | 3.44 | 145  | 64  | 3.93 | 127  | 97  | 5.96 | 83.9 | 0.52 |
| 197 | 13 | 9   | 4  | 13  | 85 | 98  | 89  | 76  | 23 | 55.1 | 3.96 | 3.06 | 4.08 | 4171 | 73  | 2.19 | 229  | 77  | 2.31 | 217  | 107 | 3.21 | 156  | 209 | 6.26 | 79.8 | 0.95 |
| 199 | 7  | 184 | 37 | 147 | 30 | 117 | 67  | 74  | 7  | 21   | 1.35 | 0.9  | 1.99 | 3329 | 125 | 4.69 | 107  | 142 | 5.33 | 93.8 | 154 | 5.78 | 86.5 | 178 | 6.68 | 74.8 | 0.16 |
| 202 | 10 | 105 | 62 | 167 | 11 | 178 | 73  | 83  | 34 | 64.8 | 4.05 | 2.03 | 4.81 | 5245 | 141 | 3.36 | 149  | 173 | 4.12 | 121  | 258 | 6.15 | 81.3 | 343 | 8.17 | 61.2 | 0.33 |
| 203 | 21 | 147 | 4  | 143 | 33 | 176 | 29  | 50  | 34 | 77.7 | 3.32 | 2.34 | 4.29 | 4373 | 130 | 3.72 | 135  | 164 | 4.69 | 107  | 198 | 5.66 | 88.3 | 280 | 8    | 62.5 | 0.41 |
| 204 | 0  | 202 | 15 | 187 | 19 | 168 | 34  | 34  | 9  | 42.3 | 1.65 | 1.23 | 2.17 | 2127 | 95  | 5.58 | 89.6 | 104 | 6.11 | 81.8 | 111 | 6.52 | 76.6 | 132 | 7.76 | 64.5 | 0.19 |
| 205 | 1  | 179 | 3  | 182 | 30 | 152 | 27  | 26  | 14 | 35.1 | 2.25 | 1.06 | 3.07 | 3992 | 141 | 4.42 | 113  | 167 | 5.23 | 95.6 | 205 | 6.42 | 77.9 | 239 | 7.48 | 66.8 | 0.17 |
| 209 | 17 | 75  | 1  | 74  | 57 | 131 | 56  | 39  | 11 | 47.4 | 3.34 | 2.53 | 3.66 | 2321 | 62  | 3.34 | 150  | 68  | 3.66 | 137  | 83  | 4.47 | 112  | 130 | 7    | 71.4 | 0.57 |
| 210 | 14 | 125 | 5  | 120 | 15 | 105 | 20  | 34  | 16 | 38.7 | 2    | 1.15 | 2.48 | 4135 | 130 | 3.93 | 127  | 146 | 4.41 | 113  | 174 | 5.26 | 95.1 | 212 | 6.41 | 78   | 0.22 |
| 211 | 24 | 22  | 15 | 37  | 43 | 80  | 58  | 34  | 16 | 44.4 | 3.26 | 2.08 | 3.4  | 3604 | 74  | 2.57 | 195  | 78  | 2.71 | 185  | 112 | 3.88 | 129  | 172 | 5.97 | 83.8 | 0.54 |
| 213 | 13 | 88  | 15 | 73  | 26 | 99  | 11  | 24  | 18 | 60.6 | 2.44 | 1.81 | 3.28 | 2969 | 71  | 2.99 | 167  | 91  | 3.83 | 131  | 106 | 4.46 | 112  | 149 | 6.27 | 79.7 | 0.41 |
| 214 | 9  | 134 | 7  | 127 | 2  | 129 | 5   | 14  | 32 | 53.5 | 2.38 | 1.57 | 2.97 | 5983 | 190 | 3.97 | 126  | 218 | 4.55 | 110  | 257 | 5.37 | 93.1 | 332 | 6.94 | 72.1 | 0.29 |
| 215 | 14 | 100 | 32 | 68  | 42 | 26  | 74  | 88  | 7  | 31.9 | 0.68 | 0.4  | 1.14 | 2197 | 63  | 3.58 | 139  | 71  | 4.04 | 124  | 76  | 4.32 | 116  | 83  | 4.72 | 106  | 0.09 |
| 217 | 2  | 19  | 4  | 23  | 2  | 21  | 2   | 4   | 20 | 39.1 | 1.96 | 1.15 | 2.52 | 5109 | 86  | 2.1  | 238  | 109 | 2.67 | 187  | 142 | 3.47 | 144  | 189 | 4.62 | 108  | 0.33 |
| 218 | 23 | 48  | 10 | 58  | 10 | 68  | 20  | 3   | 30 | 48.9 | 2.51 | 1.59 | 2.83 | 6136 | 144 | 2.93 | 170  | 160 | 3.26 | 153  | 205 | 4.18 | 120  | 283 | 5.77 | 86.7 | 0.38 |
| 219 | 31 | 53  | 3  | 56  | 16 | 72  | 19  | 12  | 9  | 29.8 | 2.48 | 1.65 | 2.69 | 3023 | 75  | 3.1  | 161  | 80  | 3.31 | 151  | 100 | 4.13 | 121  | 140 | 5.79 | 86.4 | 0.4  |
| 224 | 6  | 117 | 38 | 155 | 40 | 195 | 78  | 72  | 25 | 79   | 4.58 | 2.92 | 5.21 | 3166 | 93  | 3.67 | 136  | 109 | 4.3  | 116  | 151 | 5.96 | 83.9 | 225 | 8.88 | 56.3 | 0.49 |

| 225 | 2  | 175 | 21 | 154 | 17  | 171 | 4   | 2   | 20  | 60   | 2.66 | 1.91 | 3.49 | 3334  | 116 | 4.35 | 115  | 138 | 5.17 | 96.6 | 158  | 5.92 | 84.4 | 209  | 7.84 | 63.8 | 0.32 |
|-----|----|-----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|-------|-----|------|------|-----|------|------|------|------|------|------|------|------|------|
| 226 | 8  | 155 | 18 | 137 | 12  | 125 | 30  | 22  | 17  | 47.7 | 2.07 | 1.37 | 2.91 | 3564  | 114 | 4    | 125  | 138 | 4.84 | 103  | 158  | 5.54 | 90.2 | 197  | 6.91 | 72.4 | 0.25 |
| 227 | 32 | 156 | 13 | 169 | 30  | 139 | 17  | 49  | 9   | 40.7 | 2.31 | 1.02 | 2.6  | 2214  | 81  | 4.57 | 109  | 86  | 4.86 | 103  | 109  | 6.15 | 81.2 | 127  | 7.17 | 69.7 | 0.17 |
| 230 | 12 | 113 | 48 | 161 | 11  | 172 | 59  | 71  | 15  | 60.5 | 3.63 | 1.82 | 4.44 | 2478  | 68  | 3.43 | 146  | 84  | 4.24 | 118  | 120  | 6.05 | 82.6 | 156  | 7.87 | 63.5 | 0.3  |
| 231 | 9  | 102 | 14 | 116 | 6   | 110 | 8   | 1   | 14  | 35.4 | 2.44 | 1.27 | 2.91 | 3952  | 113 | 3.57 | 140  | 128 | 4.05 | 124  | 165  | 5.22 | 95.8 | 205  | 6.48 | 77.1 | 0.24 |
| 232 | 0  | 136 | 0  | 136 | 8   | 128 | 8   | 8   | 25  | 66.3 | 2.35 | 1.39 | 3.05 | 3772  | 117 | 3.88 | 129  | 138 | 4.57 | 109  | 167  | 5.53 | 90.3 | 209  | 6.93 | 72.2 | 0.25 |
| 233 | 7  | 7   | 17 | 24  | 40  | 64  | 57  | 50  | 17  | 82   | 3.44 | 2.23 | 3.68 | 2074  | 34  | 2.05 | 244  | 38  | 2.29 | 218  | 58   | 3.5  | 143  | 95   | 5.73 | 87.3 | 0.64 |
| 236 | 20 | 151 | 30 | 121 | 6   | 115 | 36  | 56  | 19  | 38.3 | 1.91 | 1.38 | 2.32 | 4964  | 172 | 4.33 | 115  | 188 | 4.73 | 106  | 209  | 5.26 | 95   | 264  | 6.65 | 75.2 | 0.26 |
| 238 | 11 | 65  | 39 | 104 | 37  | 67  | 2   | 13  | 13  | 40.9 | 2.24 | 0.67 | 3.06 | 3182  | 68  | 2.67 | 187  | 89  | 3.5  | 143  | 129  | 5.07 | 98.7 | 146  | 5.74 | 87.2 | 0.13 |
| 240 | 0  | 201 | 6  | 195 | 30  | 165 | 36  | 36  | 13  | 45.5 | 1.66 | 1.01 | 2.36 | 2856  | 122 | 5.34 | 93.6 | 138 | 6.04 | 82.8 | 153  | 6.7  | 74.7 | 176  | 7.7  | 64.9 | 0.15 |
| 242 | 5  | 85  | 10 | 95  | 19  | 114 | 29  | 34  | 103 | 38.9 | 2.75 | 1.66 | 3.52 | ###   | 640 | 3.02 | 166  | 804 | 3.79 | 132  | 1036 | 4.89 | 102  | 1387 | 6.54 | 76.4 | 0.34 |
| 246 | 7  | 127 | 74 | 201 | 7   | 208 | 81  | 88  | 31  | 116  | 7.65 | 4.99 | 8.45 | 2679  | 78  | 3.64 | 137  | 95  | 4.43 | 113  | 152  | 7.09 | 70.5 | 259  | 12.1 | 41.4 | 0.7  |
| 247 | 10 | 160 | 2  | 158 | 7   | 151 | 9   | 1   | 33  | 44.1 | 2.59 | 1.45 | 3.46 | 7483  | 241 | 4.03 | 124  | 293 | 4.89 | 102  | 361  | 6.03 | 82.9 | 448  | 7.48 | 66.8 | 0.24 |
| 248 | 54 | 123 | 25 | 98  | 21  | 77  | 46  | 100 | 9   | 36.9 | 1.49 | 0.92 | 1.49 | 2441  | 86  | 4.4  | 114  | 86  | 4.4  | 114  | 97   | 4.97 | 101  | 115  | 5.89 | 84.9 | 0.19 |
| 249 | 23 | 145 | 39 | 184 | 29  | 155 | 10  | 13  | 25  | 53.5 | 2.84 | 1.02 | 3.24 | 4673  | 160 | 4.28 | 117  | 175 | 4.68 | 107  | 243  | 6.5  | 76.9 | 281  | 7.52 | 66.5 | 0.16 |
| 250 | 40 | 44  | 12 | 32  | 7   | 25  | 19  | 21  | 7   | 27.4 | 1.47 | 0.98 | 2.89 | 2551  | 37  | 1.81 | 276  | 66  | 3.23 | 155  | 76   | 3.72 | 134  | 96   | 4.7  | 106  | 0.26 |
| 254 | 0  | 60  | 5  | 55  | 61  | 116 | 56  | 56  | 29  | 73.5 | 3.23 | 2.53 | 3.9  | 3947  | 87  | 2.76 | 181  | 108 | 3.42 | 146  | 130  | 4.12 | 121  | 210  | 6.65 | 75.2 | 0.62 |
| 255 | 40 | 46  | 5  | 51  | 23  | 28  | 18  | 58  | 7   | 18.6 | 1.49 | 0.66 | 1.59 | 3766  | 95  | 3.15 | 159  | 98  | 3.25 | 154  | 123  | 4.08 | 122  | 143  | 4.75 | 105  | 0.16 |
| 256 | 9  | 77  | 31 | 108 | 0   | 108 | 31  | 40  | 28  | 49.9 | 2.74 | 1.31 | 3.54 | 5613  | 131 | 2.92 | 171  | 167 | 3.72 | 134  | 231  | 5.14 | 97.2 | 290  | 6.46 | 77.4 | 0.26 |
| 258 | 28 | 25  | 13 | 38  | 169 | 207 | 182 | 154 | 22  | 87.1 | 8.66 | 7.52 | 8.76 | 2527  | 54  | 2.67 | 187  | 56  | 2.77 | 181  | 79   | 3.91 | 128  | 231  | 11.4 | 43.8 | 1.92 |
| 259 | 18 | 55  | 17 | 72  | 3   | 75  | 20  | 2   | 43  | 42.1 | 2.5  | 1.41 | 2.85 | ###   | 244 | 2.99 | 167  | 273 | 3.34 | 150  | 362  | 4.43 | 113  | 477  | 5.84 | 85.7 | 0.32 |
| 261 | 4  | 30  | 2  | 28  | 5   | 33  | 3   | 1   | 51  | 41.9 | 2.06 | 1.32 | 2.58 | 12181 | 232 | 2.38 | 210  | 282 | 2.89 | 173  | 354  | 3.63 | 138  | 483  | 4.96 | 101  | 0.36 |
| 262 | 62 | 69  | 56 | 125 | 58  | 183 | 114 | 176 | 37  | 71.1 | 4.78 | 2.95 | 6.41 | 5205  | 79  | 1.9  | 264  | 147 | 3.53 | 142  | 223  | 5.36 | 93.4 | 346  | 8.31 | 60.2 | 0.55 |
| 263 | 26 | 126 | 13 | 113 | 20  | 93  | 33  | 7   | 14  | 44.6 | 1.79 | 1.03 | 2.79 | 3141  | 86  | 3.42 | 146  | 111 | 4.42 | 113  | 130  | 5.17 | 96.6 | 156  | 6.21 | 80.5 | 0.2  |
| 264 | 2  | 191 | 14 | 177 | 4   | 173 | 18  | 20  | 30  | 53.7 | 2.46 | 1.59 | 3.09 | 5588  | 214 | 4.79 | 104  | 242 | 5.41 | 92.4 | 281  | 6.29 | 79.5 | 352  | 7.87 | 63.5 | 0.25 |
| 265 | 8  | 5   | 11 | 16  | 26  | 42  | 37  | 29  | 25  | 51.3 | 2.98 | 1.9  | 3.16 | 4869  | 79  | 2.03 | 247  | 86  | 2.21 | 226  | 128  | 3.29 | 152  | 202  | 5.19 | 96.4 | 0.58 |
| 266 | 6  | 169 | 3  | 166 | 23  | 143 | 26  | 32  | 21  | 35.1 | 2.13 | 1.09 | 2.86 | 5986  | 209 | 4.36 | 115  | 244 | 5.1  | 98.1 | 294  | 6.14 | 81.4 | 346  | 7.23 | 69.2 | 0.18 |
| 267 | 2  | 35  | 26 | 9   | 10  | 19  | 16  | 14  | 14  | 41.4 | 1.59 | 1.4  | 2.18 | 3384  | 64  | 2.36 | 212  | 80  | 2.96 | 169  | 85   | 3.14 | 159  | 123  | 4.54 | 110  | 0.45 |
| 276 | 0  | 94  | 3  | 97  | 25  | 122 | 28  | 28  | 84  | 55.3 | 2.94 | 1.92 | 3.51 | 15199 | 408 | 3.36 | 149  | 477 | 3.92 | 127  | 602  | 4.95 | 101  | 835  | 6.87 | 72.8 | 0.39 |
| 280 | 35 | 80  | 4  | 76  | 16  | 60  | 20  | 55  | 13  | 54.9 | 1.9  | 1.11 | 2.06 | 2370  | 68  | 3.59 | 139  | 71  | 3.74 | 134  | 86   | 4.54 | 110  | 107  | 5.64 | 88.6 | 0.24 |
| 281 | 2  | 171 | 9  | 180 | 26  | 154 | 17  | 15  | 33  | 40.7 | 2.41 | 1.14 | 3.22 | 8101  | 278 | 4.29 | 117  | 331 | 5.11 | 97.9 | 413  | 6.37 | 78.5 | 487  | 7.51 | 66.5 | 0.18 |
| 282 | 5  | 14  | 2  | 12  | 5   | 7   | 7   | 12  | 7   | 27.4 | 1.47 | 0.83 | 1.86 | 2551  | 44  | 2.16 | 232  | 52  | 2.55 | 196  | 65   | 3.19 | 157  | 82   | 4.02 | 124  | 0.26 |

| 284 | 2  | 18  | 4  | 14  | 1  | 15  | 3   | 5   | 31 | 32.8 | 1.83 | 1.18 | 2.26 | 9452  | 164 | 2.17 | 231  | 197 | 2.61 | 192  | 246 | 3.25 | 154  | 335 | 4.43 | 113  | 0.36 |
|-----|----|-----|----|-----|----|-----|-----|-----|----|------|------|------|------|-------|-----|------|------|-----|------|------|-----|------|------|-----|------|------|------|
| 285 | 22 | 139 | 0  | 139 | 19 | 120 | 19  | 41  | 13 | 42.2 | 2.19 | 1.26 | 2.63 | 3084  | 103 | 4.17 | 120  | 114 | 4.62 | 108  | 137 | 5.55 | 90   | 168 | 6.81 | 73.4 | 0.23 |
| 288 | 2  | 185 | 14 | 171 | 10 | 161 | 24  | 22  | 15 | 40.2 | 2.28 | 1.44 | 3.09 | 3727  | 135 | 4.53 | 110  | 159 | 5.33 | 93.8 | 184 | 6.17 | 81   | 227 | 7.61 | 65.7 | 0.23 |
| 290 | 13 | 63  | 6  | 69  | 16 | 53  | 10  | 23  | 19 | 35.8 | 1.98 | 1.08 | 2.45 | 5309  | 127 | 2.99 | 167  | 147 | 3.46 | 144  | 185 | 4.36 | 115  | 231 | 5.44 | 91.9 | 0.25 |
| 292 | 0  | 1   | 0  | 1   | 4  | 5   | 4   | 4   | 13 | 55.6 | 2.46 | 1.23 | 3.37 | 2338  | 8   | 0.43 | 1169 | 25  | 1.34 | 374  | 48  | 2.57 | 195  | 71  | 3.8  | 132  | 0.48 |
| 293 | 10 | 177 | 6  | 183 | 20 | 163 | 14  | 24  | 25 | 34.4 | 2.43 | 1.15 | 3.07 | 7257  | 265 | 4.56 | 110  | 302 | 5.2  | 96.1 | 376 | 6.48 | 77.2 | 443 | 7.63 | 65.5 | 0.18 |
| 297 | 1  | 16  | 5  | 11  | 9  | 20  | 4   | 5   | 60 | 28.9 | 2    | 1.41 | 2.52 | ###   | 343 | 2.07 | 242  | 430 | 2.59 | 193  | 527 | 3.18 | 157  | 761 | 4.59 | 109  | 0.44 |
| 298 | 14 | 11  | 36 | 47  | 4  | 43  | 32  | 18  | 9  | 31.3 | 2.78 | 1.17 | 2.96 | 2874  | 52  | 2.26 | 221  | 56  | 2.44 | 205  | 93  | 4.04 | 124  | 120 | 5.22 | 95.8 | 0.29 |
| 299 | 3  | 178 | 16 | 194 | 15 | 179 | 1   | 2   | 39 | 48.2 | 2.97 | 1.48 | 3.71 | 8083  | 289 | 4.47 | 112  | 337 | 5.21 | 95.9 | 433 | 6.7  | 74.7 | 529 | 8.18 | 61.1 | 0.22 |
| 300 | 21 | 173 | 10 | 163 | 29 | 134 | 39  | 18  | 19 | 35.5 | 1.89 | 0.96 | 2.97 | 5350  | 174 | 4.07 | 123  | 220 | 5.14 | 97.3 | 260 | 6.07 | 82.3 | 301 | 7.03 | 71.1 | 0.16 |
| 302 | 64 | 96  | 36 | 132 | 26 | 106 | 10  | 74  | 13 | 45.4 | 2.44 | 0.96 | 4.06 | 2865  | 54  | 2.36 | 212  | 91  | 3.97 | 126  | 125 | 5.45 | 91.7 | 147 | 6.41 | 78   | 0.18 |
| 303 | 46 | 84  | 56 | 140 | 57 | 197 | 113 | 159 | 75 | 81.3 | 5.34 | 3.56 | 6.69 | 9228  | 180 | 2.44 | 205  | 280 | 3.79 | 132  | 411 | 5.57 | 89.8 | 674 | 9.13 | 54.8 | 0.64 |
| 304 | 71 | 199 | 1  | 198 | 2  | 196 | 3   | 68  | 23 | 73.7 | 3.25 | 2.04 | 5.29 | 3119  | 93  | 3.73 | 134  | 144 | 5.77 | 86.6 | 174 | 6.97 | 71.7 | 225 | 9.02 | 55.4 | 0.29 |
| 307 | 1  | 193 | 12 | 181 | 33 | 148 | 45  | 44  | 51 | 41.9 | 1.97 | 1.01 | 2.66 | ###   | 463 | 4.76 | 105  | 530 | 5.45 | 91.8 | 624 | 6.41 | 78   | 722 | 7.42 | 67.4 | 0.16 |
| 308 | 9  | 122 | 29 | 151 | 15 | 166 | 44  | 35  | 32 | 64.3 | 3.31 | 1.88 | 3.97 | 4979  | 149 | 3.74 | 134  | 175 | 4.39 | 114  | 232 | 5.82 | 85.8 | 307 | 7.71 | 64.9 | 0.32 |
| 314 | 17 | 58  | 3  | 61  | 11 | 50  | 8   | 9   | 19 | 48.9 | 1.96 | 1.09 | 2.83 | 3887  | 78  | 2.51 | 199  | 105 | 3.38 | 148  | 132 | 4.24 | 118  | 166 | 5.34 | 93.7 | 0.26 |
| 316 | 17 | 167 | 5  | 162 | 13 | 149 | 18  | 35  | 53 | 54   | 2.41 | 1.39 | 2.92 | 9819  | 356 | 4.53 | 110  | 396 | 5.04 | 99.2 | 476 | 6.06 | 82.5 | 585 | 7.45 | 67.1 | 0.23 |
| 318 | 21 | 61  | 13 | 48  | 26 | 22  | 39  | 60  | 15 | 36   | 1.23 | 0.6  | 1.59 | 4164  | 102 | 3.06 | 163  | 114 | 3.42 | 146  | 135 | 4.05 | 123  | 155 | 4.65 | 107  | 0.15 |
| 320 | 4  | 2   | 0  | 2   | 7  | 9   | 7   | 3   | 11 | 32.3 | 2.16 | 1.47 | 2.27 | 3409  | 51  | 1.87 | 267  | 54  | 1.98 | 253  | 73  | 2.68 | 187  | 113 | 4.14 | 121  | 0.55 |
| 321 | 65 | 93  | 24 | 117 | 10 | 107 | 14  | 79  | 14 | 49.7 | 2.53 | 1.2  | 4.13 | 2815  | 52  | 2.31 | 217  | 88  | 3.91 | 128  | 118 | 5.24 | 95.4 | 145 | 6.44 | 77.7 | 0.23 |
| 322 | 0  | 36  | 1  | 35  | 30 | 65  | 29  | 29  | 17 | 65.5 | 2.75 | 1.98 | 3.32 | 2594  | 50  | 2.41 | 208  | 62  | 2.99 | 167  | 78  | 3.76 | 133  | 119 | 5.73 | 87.2 | 0.53 |
| 324 | 24 | 164 | 11 | 175 | 5  | 170 | 6   | 30  | 46 | 59.9 | 2.8  | 1.53 | 3.86 | 7683  | 242 | 3.94 | 127  | 307 | 4.99 | 100  | 385 | 6.26 | 79.8 | 479 | 7.79 | 64.2 | 0.24 |
| 325 | 19 | 26  | 37 | 63  | 17 | 46  | 20  | 1   | 9  | 17.1 | 2.51 | 1.02 | 2.73 | 5271  | 108 | 2.56 | 195  | 117 | 2.77 | 180  | 180 | 4.27 | 117  | 223 | 5.29 | 94.5 | 0.24 |
| 326 | 25 | 87  | 44 | 43  | 30 | 13  | 74  | 99  | 3  | 11.6 | 0.53 | 0.39 | 0.77 | 2586  | 74  | 3.58 | 140  | 79  | 3.82 | 131  | 82  | 3.96 | 126  | 90  | 4.35 | 115  | 0.1  |
| 327 | 19 | 51  | 1  | 52  | 25 | 27  | 24  | 43  | 7  | 28.2 | 1.46 | 0.66 | 1.81 | 2480  | 58  | 2.92 | 171  | 65  | 3.28 | 153  | 81  | 4.08 | 122  | 94  | 4.74 | 106  | 0.16 |
| 328 | 4  | 200 | 5  | 205 | 11 | 194 | 6   | 10  | 15 | 53.2 | 2.84 | 1.42 | 3.19 | 2820  | 127 | 5.63 | 88.8 | 135 | 5.98 | 83.6 | 167 | 7.4  | 67.5 | 199 | 8.82 | 56.7 | 0.19 |
| 332 | 5  | 6   | 2  | 4   | 1  | 3   | 3   | 8   | 18 | 21.4 | 1.28 | 0.76 | 1.5  | 8402  | 134 | 1.99 | 251  | 149 | 2.22 | 226  | 184 | 2.74 | 183  | 235 | 3.5  | 143  | 0.28 |
| 333 | 3  | 176 | 2  | 178 | 11 | 167 | 9   | 12  | 73 | 53.8 | 2.55 | 1.42 | 3.33 | 13557 | 479 | 4.42 | 113  | 563 | 5.19 | 96.3 | 686 | 6.33 | 79   | 840 | 7.75 | 64.6 | 0.22 |
| 335 | 17 | 107 | 19 | 126 | 10 | 136 | 29  | 46  | 48 | 59.9 | 2.93 | 1.72 | 3.78 | 8013  | 212 | 3.31 | 151  | 266 | 4.15 | 120  | 344 | 5.37 | 93.2 | 454 | 7.08 | 70.6 | 0.32 |
| 336 | 11 | 138 | 29 | 109 | 28 | 81  | 57  | 68  | 9  | 30.5 | 1.35 | 0.8  | 1.95 | 2953  | 95  | 4.02 | 124  | 109 | 4.61 | 108  | 122 | 5.16 | 96.8 | 141 | 5.97 | 83.8 | 0.16 |
| 337 | 2  | 28  | 18 | 10  | 0  | 10  | 18  | 20  | 16 | 38.1 | 1.46 | 1.13 | 1.93 | 4202  | 79  | 2.35 | 213  | 95  | 2.83 | 177  | 106 | 3.15 | 159  | 144 | 4.28 | 117  | 0.36 |
| 340 | 10 | 128 | 26 | 102 | 20 | 82  | 46  | 56  | 18 | 37.2 | 1.55 | 0.95 | 2.06 | 4844  | 152 | 3.92 | 127  | 172 | 4.44 | 113  | 195 | 5.03 | 99.4 | 232 | 5.99 | 83.5 | 0.19 |

| 341 | 45 | 71  | 1  | 70  | 11  | 59  | 12  | 33  | 21 | 55.2 | 2.04 | 1.25 | 3.35 | 3806 | 69  | 2.27 | 221 | 109 | 3.58 | 140  | 133 | 4.37 | 114  | 171 | 5.62 | 89   | 0.29 |
|-----|----|-----|----|-----|-----|-----|-----|-----|----|------|------|------|------|------|-----|------|-----|-----|------|------|-----|------|------|-----|------|------|------|
| 342 | 18 | 158 | 25 | 133 | 20  | 113 | 45  | 63  | 13 | 50.2 | 1.64 | 1.06 | 2.13 | 2588 | 91  | 4.4  | 114 | 101 | 4.88 | 102  | 113 | 5.46 | 91.6 | 135 | 6.52 | 76.7 | 0.19 |
| 343 | 46 | 81  | 32 | 49  | 17  | 32  | 49  | 95  | 9  | 21.5 | 1.19 | 0.89 | 1.22 | 4193 | 125 | 3.73 | 134 | 126 | 3.76 | 133  | 136 | 4.05 | 123  | 166 | 4.95 | 101  | 0.22 |
| 344 | 10 | 13  | 2  | 15  | 20  | 35  | 22  | 12  | 17 | 42.1 | 2.51 | 1.73 | 2.82 | 4040 | 71  | 2.2  | 228 | 81  | 2.51 | 200  | 106 | 3.28 | 152  | 162 | 5.01 | 99.8 | 0.53 |
| 347 | 21 | 165 | 31 | 196 | 19  | 177 | 12  | 33  | 42 | 54.1 | 3.14 | 1.47 | 4.19 | 7764 | 247 | 3.98 | 126 | 312 | 5.02 | 99.5 | 416 | 6.7  | 74.7 | 507 | 8.16 | 61.3 | 0.22 |
| 348 | 8  | 72  | 7  | 79  | 110 | 189 | 117 | 125 | 45 | 78.4 | 4.85 | 3.83 | 5.62 | 5743 | 130 | 2.83 | 177 | 165 | 3.59 | 139  | 212 | 4.61 | 108  | 388 | 8.45 | 59.2 | 0.83 |
| 350 | 31 | 114 | 26 | 88  | 33  | 55  | 59  | 90  | 13 | 33.4 | 1.22 | 0.74 | 1.51 | 3897 | 124 | 3.98 | 126 | 133 | 4.27 | 117  | 148 | 4.75 | 105  | 171 | 5.48 | 91.2 | 0.16 |
| 351 | 3  | 189 | 30 | 159 | 18  | 141 | 48  | 45  | 27 | 65.5 | 1.82 | 1.15 | 2.64 | 4124 | 150 | 4.55 | 110 | 177 | 5.36 | 93.2 | 199 | 6.03 | 82.9 | 237 | 7.18 | 69.6 | 0.19 |
| 352 | 9  | 148 | 16 | 164 | 11  | 153 | 5   | 4   | 14 | 58.4 | 2.82 | 1.41 | 3.39 | 2397 | 79  | 4.12 | 121 | 90  | 4.69 | 107  | 117 | 6.1  | 81.9 | 144 | 7.51 | 66.6 | 0.23 |
| 353 | 25 | 73  | 30 | 103 | 100 | 203 | 130 | 155 | 43 | 71.6 | 6.43 | 5.01 | 7.45 | 6007 | 125 | 2.6  | 192 | 174 | 3.62 | 138  | 242 | 5.04 | 99.3 | 483 | 10.1 | 49.7 | 1    |
| 354 | 21 | 95  | 8  | 87  | 21  | 66  | 29  | 8   | 21 | 30.8 | 1.8  | 1.01 | 2.75 | 6822 | 163 | 2.99 | 167 | 215 | 3.94 | 127  | 258 | 4.73 | 106  | 313 | 5.74 | 87.2 | 0.21 |
| 355 | 3  | 56  | 10 | 46  | 17  | 29  | 27  | 30  | 5  | 20.3 | 1.53 | 0.86 | 2.14 | 2459 | 54  | 2.75 | 182 | 66  | 3.36 | 149  | 79  | 4.02 | 125  | 96  | 4.88 | 102  | 0.22 |
| 356 | 17 | 89  | 29 | 60  | 23  | 83  | 6   | 23  | 25 | 42.8 | 2.14 | 1.76 | 2.48 | 5838 | 164 | 3.51 | 142 | 180 | 3.85 | 130  | 198 | 4.24 | 118  | 280 | 6    | 83.4 | 0.41 |
| 357 | 24 | 182 | 4  | 186 | 19  | 205 | 23  | 47  | 33 | 106  | 5.11 | 3.86 | 6.23 | 3108 | 103 | 4.14 | 121 | 131 | 5.27 | 94.9 | 162 | 6.52 | 76.7 | 258 | 10.4 | 48.2 | 0.59 |
| 358 | 14 | 108 | 27 | 135 | 55  | 190 | 82  | 68  | 24 | 62.3 | 4.31 | 2.98 | 4.8  | 3855 | 113 | 3.66 | 136 | 128 | 4.15 | 120  | 169 | 5.48 | 91.2 | 261 | 8.46 | 59.1 | 0.54 |
| 360 | 16 | 33  | 13 | 20  | 4   | 16  | 17  | 33  | 9  | 26.3 | 1.53 | 1.06 | 1.82 | 3426 | 72  | 2.63 | 190 | 80  | 2.92 | 171  | 93  | 3.39 | 147  | 122 | 4.45 | 112  | 0.31 |
| 362 | 5  | 161 | 32 | 129 | 25  | 104 | 57  | 62  | 12 | 45.4 | 1.47 | 0.95 | 2.13 | 2643 | 90  | 4.26 | 117 | 104 | 4.92 | 102  | 115 | 5.44 | 91.9 | 135 | 6.38 | 78.3 | 0.17 |
| 364 | 8  | 70  | 22 | 92  | 4   | 96  | 26  | 18  | 11 | 51.8 | 2.71 | 1.41 | 3.24 | 2123 | 51  | 3    | 167 | 60  | 3.53 | 142  | 82  | 4.83 | 104  | 106 | 6.24 | 80.1 | 0.29 |
| 365 | 24 | 34  | 13 | 21  | 2   | 23  | 11  | 35  | 19 | 31.5 | 1.72 | 1.24 | 1.93 | 6029 | 132 | 2.74 | 183 | 142 | 2.94 | 170  | 165 | 3.42 | 146  | 225 | 4.66 | 107  | 0.36 |
| 366 | 39 | 112 | 12 | 124 | 38  | 162 | 50  | 11  | 19 | 67   | 3.39 | 2.34 | 3.57 | 2837 | 92  | 4.05 | 123 | 96  | 4.23 | 118  | 120 | 5.29 | 94.6 | 173 | 7.62 | 65.6 | 0.44 |
| 367 | 27 | 170 | 18 | 152 | 5   | 157 | 13  | 40  | 19 | 38.2 | 2.44 | 1.68 | 2.54 | 4975 | 199 | 5    | 100 | 203 | 5.1  | 98   | 233 | 5.85 | 85.4 | 300 | 7.54 | 66.3 | 0.29 |
| 370 | 2  | 153 | 15 | 168 | 30  | 138 | 15  | 17  | 13 | 60.9 | 2.34 | 1    | 3.05 | 2133 | 70  | 4.1  | 122 | 82  | 4.81 | 104  | 105 | 6.15 | 81.3 | 122 | 7.15 | 69.9 | 0.16 |
| 377 | 13 | 111 | 5  | 106 | 31  | 137 | 26  | 39  | 21 | 64.4 | 2.88 | 1.99 | 3.68 | 3259 | 89  | 3.41 | 146 | 110 | 4.22 | 119  | 133 | 5.1  | 98   | 185 | 7.1  | 70.5 | 0.39 |
|     |    |     |    |     |     |     |     |     |    |      |      |      |      |      |     |      |     |     |      |      |     |      |      |     |      |      |      |

Table A.2: Results of rank change analysis for flow accumulation method on 218 sub-watersheds of a minimum unit size of 20 ha in the Craigville quad.

|             |               |                 |            |                 |               |                |           |                |                |                              |                |                      |                       |                        |                         | Avg. F<br>=     | low Lo<br>150m | ength         | Avg. F<br>=     | 'low L<br>125m | ength       | Avg. F<br>=     | 'low L<br>100m | ength       | Avg. F<br>=     | low L<br>= 75m | ength       |             |
|-------------|---------------|-----------------|------------|-----------------|---------------|----------------|-----------|----------------|----------------|------------------------------|----------------|----------------------|-----------------------|------------------------|-------------------------|-----------------|----------------|---------------|-----------------|----------------|-------------|-----------------|----------------|-------------|-----------------|----------------|-------------|-------------|
| Wshec<br>ID | IR@<br>150    | dR(150-<br>125) | R @<br>125 | dR(125-<br>100) | • R @<br>100  | dR(100-<br>75) | R @<br>75 | dR(75-<br>125) | dR(75-<br>150) | #<br>streams<br>@ L =<br>75m | F@<br>L=<br>75 | dD<br>(75 -><br>125) | dD<br>•(75 -><br>100) | dD<br>• (75 -><br>150) | total<br>area<br>(cells | stream<br>cells | DD             | Flow :<br>Len | stream<br>cells | DD             | Flow<br>Len | stream<br>cells | DD             | Flow<br>Len | stream<br>cells | DD             | Flow<br>Len | %<br>change |
| 15          | 5 113         | 23              | 136        | 4               | 140           | ) 11           | 15        | 1 15           | 38             | 39                           | 46.7           | 2.9                  | 1.9                   | 3.7                    | 8345                    | 226.0           | 3.4            | 147.7         | 284.0           | 4.3            | 117.5       | 352.0           | 5.3            | 94.8        | 476.0           | 7.1            | 70.1        | 26.05%      |
| 18          | 3 201         | 3               | 198        | 31              | 167           | 7 103          | 6         | 4 134          | 137            | 3                            | 9.3            | 0.5                  | 0.3                   | 8 0.9                  | 3232                    | 133.0           | 5.1            | 97.2          | 142.0           | 5.5            | 91.0        | 146.0           | 5.6            | 88.5        | 155.0           | 6.0            | 83.4        | 5.81%       |
| 22          | 2 199         | 22              | 177        | 0               | ) 177         | 15             | 16        | 2 15           | 37             | 9                            | 32.5           | 2.5                  | 1.5                   | 5 2.5                  | 2771                    | 107.0           | 4.8            | 103.6         | 107.0           | 4.8            | 103.6       | 129.0           | 5.8            | 85.9        | 162.0           | 7.3            | 68.4        | 20.37%      |
| 24          | 1 13          | 7               | 6          | 4               | 1 2           | 2 1            |           | 1 5            | 12             | 18                           | 40.2           | 1.2                  | 0.8                   | 3 1.7                  | 4475                    | 79.0            | 2.2            | 226.6         | 95.0            | 2.7            | 188.4       | 112.0           | 3.1            | 159.8       | 139.0           | 3.9            | 128.8       | 19.42%      |
| 30          | ) 56          | 21              | 35         | 57              | 92            | 2 26           | 11        | 8 83           | 62             | 35                           | 51.6           | 3.4                  | 1.8                   | 3.8                    | 6782                    | 157.0           | 2.9            | 172.8         | 178.0           | 3.3            | 152.4       | 264.0           | 4.9            | 102.8       | 363.0           | 6.7            | 74.7        | 27.27%      |
| 30          | 5 76          | 22              | 54         | 30              | ) 24          | 4 20           |           | 4 50           | 72             | 11                           | 38.0           | 0.9                  | 0.6                   | 5 1.4                  | 2895                    | 70.0            | 3.0            | 165.4         | 81.0            | 3.5            | 143.0       | 90.0            | 3.9            | 128.7       | 103.0           | 4.4            | 112.4       | 12.62%      |
| 31          | 7 84          | 41              | 43         | 86              | 5 129         | 30             | 15        | 9 116          | 75             | 15                           | 54.2           | 3.8                  | 2.1                   | 4.1                    | 2765                    | 70.0            | 3.2            | 158.0         | 75.0            | 3.4            | 147.5       | 114.0           | 5.2            | 97.0        | 160.0           | 7.2            | 69.1        | 28.75%      |
| 4           | 14            | 39              | 53         | 8               | 3 45          | 5 15           | 6         | 0 7            | 46             | 29                           | 48.4           | 2.4                  | 1.6                   | 5 3.6                  | 5995                    | 109.0           | 2.3            | 220.0         | 167.0           | 3.5            | 143.6       | 209.0           | 4.4            | 114.7       | 284.0           | 5.9            | 84.4        | 26.41%      |
| 43          | 3 151         | 43              | 194        | . 7             | 201           | 1 4            | 20.       | 5 11           | 54             | 13                           | 60.3           | 3.5                  | 1.9                   | 5.1                    | 2156                    | 66.0            | 3.8            | 130.7         | 93.0            | 5.4            | 92.7        | 122.0           | 7.1            | 70.7        | 154.0           | 8.9            | 56.0        | 20.78%      |
| 44          | 4 168         | 58              | 110        | 33              | 3 143         | 3 56           | 8         | 7 23           | 81             | 9                            | 38.3           | 2.3                  | 1.0                   | ) 2.3                  | 2348                    | 75.0            | 4.0            | 125.2         | 75.0            | 4.0            | 125.2       | 100.0           | 5.3            | 93.9        | 118.0           | 6.3            | 79.6        | 15.25%      |
| 4           | 5 129         | 57              | 186        | 8               | 3 194         | 1 24           | 170       | 0 16           | 41             | 26                           | 48.1           | 2.3                  | 1.2                   | 2 3.8                  | 5411                    | 155.0           | 3.6            | 139.6         | 221.0           | 5.1            | 97.9        | 266.0           | 6.1            | 81.4        | 319.0           | 7.4            | 67.8        | 16.61%      |
| 40          | 5 41          | 20              | 21         | 13              | 3 34          | 4 27           | 6         | 1 40           | 20             | 19                           | 72.7           | 2.9                  | 1.8                   | 3.2                    | 2613                    | 57.0            | 2.7            | 183.4         | 63.0            | 3.0            | 165.9       | 86.0            | 4.1            | 121.5       | 124.0           | 5.9            | 84.3        | 30.65%      |
| 49          | ) 184         | 11              | 195        | 8               | 187           | 67             | 120       | 0 75           | 64             | 3                            | 12.4           | 1.3                  | 0.7                   | 2.4                    | 2424                    | 84.0            | 4.3            | 115.4         | 105.0           | 5.4            | 92.3        | 117.0           | 6.0            | 82.9        | 130.0           | 6.7            | 74.6        | 10.00%      |
| 50          | ) 198         | 5               | 193        | 20              | ) 173         | 5 58           | 11:       | 5 78           | 83             | 9                            | 33.8           | 1.3                  | 0.9                   | ) 1.9                  | 2661                    | 102.0           | 4.8            | 104.4         | 114.0           | 5.4            | 93.4        | 122.0           | 5.7            | 87.2        | 142.0           | 6.7            | 75.0        | 14.08%      |
| 5.          | 1 123         | 45              | /8         | 5               |               | ) 43           | 2         | / 51           | 96             | 13                           | 30.9           | 1.8                  | 0.8                   | s 2.0                  | 4213                    | 117.0           | 3.5            | 144.0         | 125.0           | 3.7            | 134.8       | 157.0           | 4.7            | 107.3       | 185.0           | 5.5            | 91.1        | 15.14%      |
| 5.          | 2 21          | 0               | 100        | 18              | 5 9           | 4 4<br>        | 1.        | 5 14           | 8              | 1/                           | 79.9           | 2.0                  | 1.5                   | 2.7                    | 5249                    | 41.0            | 2.4            | 207.5         | 53.0            | 3.1            | 160.5       | 62.0            | 5.0            | 137.2       | 87.0            | 5.1            | 97.8        | 28.74%      |
| 54          | + 155<br>; 71 | 47              | 52         | - c             |               | ) 20           | 4         | 0 12<br>8 1    | 39             | 12                           | 40.0           | 2.3                  | 1.4                   | · 2.3                  | 2247                    | 78.0            | 3.9            | 126.9         | 00.0            | 4.0            | 144.2       | 110.0           | 5.0            | 100.1       | 150.0           | 5.9            | 86.6        | 21.45%      |
| 51          | 2 126         | 19              | 144        | 35              | , 02<br>; 100 | 2 14           | 2         | 0 115          | 23             | 15                           | 40.0           | 1.2                  | 0.5                   | 2.0                    | 4032                    | 114.0           | 3.0            | 141.5         | 140.0           | 13             | 144.5       | 161.0           | 4.0            | 109.1       | 178.0           | 5.5            | 90.6        | 9.55%       |
| 50          | ) 120<br>) 5  | 13              | 144        |                 | 10,           | , 00<br>5 6    | 2         | 2 4            | 17             | 17                           | 47.6           | 24                   | 16                    | , <u>2.</u> 0          | 3573                    | 59.0            | 2.1            | 242.2         | 84.0            | 29             | 170.1       | 108.0           | 3.8            | 132.3       | 154.0           | 5.4            | 92.8        | 29.87%      |
| 6           | ) 30          | 11              | 10         |                 | 2 10          | , 0<br>1 7     | 2         | 0 1            | 10             | 59                           | 48.0           | 2.1                  | 13                    | , 5.5                  | 12280                   | 251.0           | 2.1            | 195.7         | 293.0           | 3.0            | 167.6       | 394.0           | 4.0            | 124.7       | 524.0           | 53             | 93.7        | 24.81%      |
| 6           | 65            | 26              | 91         | 22              | . 69          | ) 3            | 6         | 5 25           | 1              | 13                           | 61.9           | 2.2                  | 1.4                   | 3.0                    | 2099                    | 50.0            | 3.0            | 167.9         | 64.0            | 3.8            | 131.2       | 78.0            | 4.6            | 107.6       | 101.0           | 6.0            | 83.1        | 22.77%      |
| 63          | 3 144         | 14              | 130        | 54              | 76            | 5 27           | 4         | 9 81           | 95             | 15                           | 25.1           | 1.6                  | 1.1                   | 2.0                    | 5973                    | 180.0           | 3.8            | 132.7         | 201.0           | 4.2            | 118.9       | 225.0           | 4.7            | 106.2       | 277.0           | 5.8            | 86.3        | 18.77%      |
| 64          | 4 185         | 18              | 167        | 61              | 106           | 5 90           | 1         | 6 151          | 169            | 3                            | 10.2           | 0.5                  | 0.2                   | 2 0.9                  | 2941                    | 102.0           | 4.3            | 115.3         | 111.0           | 4.7            | 106.0       | 117.0           | 5.0            | 100.5       | 122.0           | 5.2            | 96.4        | 4.10%       |
| 65          | 5 78          | 37              | 41         | 23              | 18            | 3 9            |           | 9 32           | 69             | 11                           | 47.2           | 1.6                  | 1.2                   | 2 1.9                  | 2331                    | 57.0            | 3.1            | 163.6         | 63.0            | 3.4            | 148.0       | 71.0            | 3.8            | 131.3       | 93.0            | 5.0            | 100.3       | 23.66%      |
|             |               |                 |            |                 |               |                |           |                |                |                              |                |                      |                       |                        |                         |                 |                |               |                 |                |             |                 |                |             |                 |                |             |             |

| 67  | 181 | 3   | 184 | 11 | 195 | 17  | 178 | 6   | 3   | 9   | 43.8 | 2.6 | 1.5 | 3.3 | 2053  | 70.0  | 4.3 | 117.3 | 82.0   | 5.0 | 100.1 | 101.0  | 6.1 | 81.3  | 125.0 | 7.6 | 65.7  | 19.20% |
|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-------|-------|-----|-------|--------|-----|-------|--------|-----|-------|-------|-----|-------|--------|
| 68  | 89  | 16  | 73  | 6  | 67  | 5   | 62  | 11  | 27  | 64  | 45.9 | 2.3 | 1.3 | 2.7 | 13939 | 360.0 | 3.2 | 154.9 | 412.0  | 3.7 | 135.3 | 516.0  | 4.6 | 108.1 | 663.0 | 5.9 | 84.1  | 22.17% |
| 71  | 24  | 0   | 24  | 29 | 53  | 25  | 28  | 4   | 4   | 9   | 40.8 | 2.4 | 1.1 | 3.0 | 2207  | 44.0  | 2.5 | 200.6 | 54.0   | 3.1 | 163.5 | 78.0   | 4.4 | 113.2 | 97.0  | 5.5 | 91.0  | 19.59% |
| 72  | 109 | 71  | 180 | 11 | 191 | 9   | 182 | 2   | 73  | 168 | 51.6 | 2.9 | 1.7 | 4.4 | 32531 | 873.0 | 3.4 | 149.1 | 1267.0 | 4.9 | 102.7 | 1579.0 | 6.1 | 82.4  | ####  | 7.8 | 64.4  | 21.79% |
| 73  | 64  | 14  | 50  | 22 | 28  | 9   | 19  | 31  | 45  | 27  | 44.3 | 1.8 | 1.3 | 2.3 | 6092  | 145.0 | 3.0 | 168.1 | 168.0  | 3.4 | 145.0 | 197.0  | 4.0 | 123.7 | 258.0 | 5.3 | 94.4  | 23.64% |
| 74  | 206 | 1   | 205 | 3  | 208 | 13  | 195 | 10  | 11  | 5   | 24.1 | 1.9 | 1.0 | 2.6 | 2077  | 96.0  | 5.8 | 86.5  | 109.0  | 6.6 | 76.2  | 123.0  | 7.4 | 67.5  | 140.0 | 8.4 | 59.3  | 12.14% |
| 75  | 204 | 2   | 206 | 1  | 207 | 20  | 187 | 19  | 17  | 9   | 34.6 | 1.6 | 0.8 | 2.7 | 2604  | 113.0 | 5.4 | 92.2  | 137.0  | 6.6 | 76.0  | 154.0  | 7.4 | 67.6  | 170.0 | 8.2 | 61.3  | 9.41%  |
| 77  | 31  | 16  | 15  | 33 | 48  | 19  | 67  | 52  | 36  | 10  | 40.9 | 3.1 | 1.6 | 3.5 | 2446  | 50.0  | 2.6 | 195.7 | 57.0   | 2.9 | 171.6 | 86.0   | 4.4 | 113.8 | 118.0 | 6.0 | 82.9  | 27.12% |
| 79  | 195 | 6   | 201 | 5  | 196 | 61  | 135 | 66  | 60  | 11  | 31.3 | 1.2 | 0.6 | 2.1 | 3511  | 134.0 | 4.8 | 104.8 | 160.0  | 5.7 | 87.8  | 175.0  | 6.2 | 80.3  | 193.0 | 6.9 | 72.8  | 9.33%  |
| 80  | 8   | 182 | 190 | 15 | 205 | 1   | 206 | 16  | 198 | 14  | 66.2 | 4.4 | 2.3 | 7.4 | 2115  | 36.0  | 2.1 | 235.0 | 88.0   | 5.2 | 96.1  | 123.0  | 7.3 | 68.8  | 162.0 | 9.6 | 52.2  | 24.07% |
| 81  | 81  | 5   | 76  | 38 | 38  | 21  | 17  | 59  | 64  | 21  | 34.4 | 1.5 | 1.0 | 2.1 | 6110  | 152.0 | 3.1 | 160.8 | 181.0  | 3.7 | 135.0 | 207.0  | 4.2 | 118.1 | 254.0 | 5.2 | 96.2  | 18.50% |
| 86  | 183 | 15  | 168 | 31 | 137 | 53  | 84  | 84  | 99  | 15  | 39.1 | 1.5 | 1.0 | 1.9 | 3840  | 133.0 | 4.3 | 115.5 | 145.0  | 4.7 | 105.9 | 161.0  | 5.2 | 95.4  | 192.0 | 6.3 | 80.0  | 16.15% |
| 88  | 50  | 30  | 20  | 16 | 4   | 2   | 2   | 18  | 48  | 7   | 31.7 | 1.1 | 0.7 | 1.2 | 2208  | 50.0  | 2.8 | 176.6 | 53.0   | 3.0 | 166.6 | 59.0   | 3.3 | 149.7 | 72.0  | 4.1 | 122.7 | 18.06% |
| 91  | 135 | 28  | 107 | 64 | 43  | 31  | 12  | 95  | 123 | 7   | 17.4 | 1.1 | 0.7 | 1.4 | 4024  | 117.0 | 3.6 | 137.6 | 127.0  | 3.9 | 126.7 | 140.0  | 4.3 | 115.0 | 163.0 | 5.1 | 98.7  | 14.11% |
| 93  | 17  | 1   | 16  | 3  | 13  | 8   | 5   | 11  | 12  | 17  | 56.0 | 1.6 | 0.8 | 2.2 | 3034  | 57.0  | 2.3 | 212.9 | 71.0   | 2.9 | 170.9 | 90.0   | 3.7 | 134.8 | 110.0 | 4.5 | 110.3 | 18.18% |
| 95  | 188 | 23  | 165 | 53 | 112 | 57  | 55  | 110 | 133 | 7   | 24.5 | 1.2 | 0.8 | 1.4 | 2862  | 103.0 | 4.5 | 111.1 | 107.0  | 4.7 | 107.0 | 115.0  | 5.0 | 99.5  | 134.0 | 5.9 | 85.4  | 14.18% |
| 97  | 208 | 1   | 209 | 0  | 209 | 2   | 207 | 2   | 1   | 11  | 39.5 | 2.2 | 1.3 | 3.3 | 2785  | 142.0 | 6.4 | 78.5  | 166.0  | 7.5 | 67.1  | 186.0  | 8.3 | 59.9  | 215.0 | 9.6 | 51.8  | 13.49% |
| 103 | 147 | 4   | 151 | 6  | 157 | 48  | 109 | 42  | 38  | 24  | 41.5 | 2.2 | 1.1 | 2.8 | 5778  | 175.0 | 3.8 | 132.1 | 205.0  | 4.4 | 112.7 | 256.0  | 5.5 | 90.3  | 305.0 | 6.6 | 75.8  | 16.07% |
| 104 | 209 | 1   | 208 | 5  | 203 | 15  | 188 | 20  | 21  | 5   | 23.3 | 1.5 | 1.0 | 1.7 | 2143  | 110.0 | 6.4 | 77.9  | 114.0  | 6.6 | 75.2  | 123.0  | 7.2 | 69.7  | 140.0 | 8.2 | 61.2  | 12.14% |
| 105 | 197 | 2   | 199 | 15 | 184 | 70  | 114 | 85  | 83  | 15  | 45.6 | 1.1 | 0.7 | 1.9 | 3292  | 126.0 | 4.8 | 104.5 | 145.0  | 5.5 | 90.8  | 157.0  | 6.0 | 83.9  | 175.0 | 6.6 | 75.2  | 10.29% |
| 106 | 25  | 9   | 34  | 5  | 39  | 165 | 204 | 170 | 179 | 17  | 72.5 | 5.6 | 4.6 | 6.3 | 2345  | 47.0  | 2.5 | 199.6 | 61.0   | 3.3 | 153.8 | 80.0   | 4.3 | 117.3 | 166.0 | 8.8 | 56.5  | 51.81% |
| 107 | 114 | 43  | 71  | 34 | 37  | 44  | 81  | 10  | 33  | 13  | 50.5 | 2.5 | 2.0 | 2.8 | 2575  | 70.0  | 3.4 | 147.1 | 76.0   | 3.7 | 135.5 | 87.0   | 4.2 | 118.4 | 128.0 | 6.2 | 80.5  | 32.03% |
| 108 | 161 | 44  | 117 | 68 | 49  | 39  | 10  | 107 | 151 | 3   | 12.3 | 1.0 | 0.6 | 1.1 | 2441  | 77.0  | 3.9 | 126.8 | 79.0   | 4.0 | 123.6 | 86.0   | 4.4 | 113.5 | 98.0  | 5.0 | 99.6  | 12.24% |
| 109 | 165 | 25  | 140 | 66 | 74  | 50  | 24  | 116 | 141 | 3   | 11.8 | 1.1 | 0.7 | 1.5 | 2553  | 81.0  | 4.0 | 126.1 | 88.0   | 4.3 | 116.0 | 96.0   | 4.7 | 106.4 | 111.0 | 5.4 | 92.0  | 13.51% |
| 110 | 37  | 15  | 22  | 7  | 15  | 7   | 8   | 14  | 29  | 13  | 45.5 | 2.0 | 1.3 | 2.3 | 2859  | 61.0  | 2.7 | 187.5 | 69.0   | 3.0 | 165.7 | 85.0   | 3.7 | 134.5 | 114.0 | 5.0 | 100.3 | 25.44% |
| 111 | 77  | 40  | 37  | 2  | 35  | 18  | 53  | 16  | 24  | 32  | 59.5 | 2.5 | 1.7 | 2.8 | 5375  | 130.0 | 3.0 | 165.4 | 142.0  | 3.3 | 151.4 | 178.0  | 4.1 | 120.8 | 251.0 | 5.8 | 85.7  | 29.08% |
| 116 | 118 | 17  | 135 | 0  | 135 | 65  | 200 | 65  | 82  | 28  | 69.7 | 4.5 | 3.5 | 5.3 | 4015  | 110.0 | 3.4 | 146.0 | 136.0  | 4.2 | 118.1 | 168.0  | 5.2 | 95.6  | 279.0 | 8.7 | 57.6  | 39.78% |
| 119 | 59  | 34  | 25  | 2  | 23  | 24  | 47  | 22  | 12  | 17  | 54.5 | 2.7 | 1.9 | 2.8 | 3122  | 73.0  | 2.9 | 171.1 | 77.0   | 3.1 | 162.2 | 97.0   | 3.9 | 128.7 | 144.0 | 5.8 | 86.7  | 32.64% |
| 120 | 40  | 4   | 36  | 16 | 20  | 32  | 52  | 16  | 12  | 17  | 60.5 | 2.5 | 2.0 | 3.1 | 2811  | 61.0  | 2.7 | 184.3 | 74.0   | 3.3 | 151.9 | 86.0   | 3.8 | 130.7 | 131.0 | 5.8 | 85.8  | 34.35% |
| 121 | 177 | 16  | 161 | 68 | 93  | 15  | 108 | 53  | 69  | 14  | 53.5 | 2.0 | 1.7 | 2.4 | 2615  | 88.0  | 4.2 | 118.9 | 97.0   | 4.6 | 107.8 | 102.0  | 4.9 | 102.5 | 138.0 | 6.6 | 75.8  | 26.09% |
| 122 | 96  | 31  | 127 | 15 | 142 | 64  | 78  | 49  | 18  | 15  | 42.2 | 2.0 | 0.9 | 2.9 | 3557  | 93.0  | 3.3 | 153.0 | 119.0  | 4.2 | 119.6 | 151.0  | 5.3 | 94.2  | 176.0 | 6.2 | 80.8  | 14.20% |
| 123 | 207 | 3   | 204 | 5  | 199 | 24  | 175 | 29  | 32  | 9   | 21.5 | 1.3 | 0.9 | 1.7 | 4186  | 195.0 | 5.8 | 85.9  | 207.0  | 6.2 | 80.9  | 223.0  | 6.7 | 75.1  | 252.0 | 7.5 | 66.4  | 11.51% |

| 127 | 159 | 19 | 178 | 37  | 141 | 52  | 89  | 89  | 70  | 11 | 36.3 | 1.5 | 1.0 | 2.4 | 3028 | 95.0  | 3.9 | 127.5 | 117.0 | 4.8 | 103.5 | 128.0 | 5.3 | 94.6  | 153.0 | 6.3 | 79.2  | 16.34% |
|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|------|-----|-----|-----|------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|--------|
| 129 | 112 | 50 | 162 | 1   | 161 | 13  | 148 | 14  | 36  | 13 | 53.2 | 2.5 | 1.5 | 3.7 | 2445 | 66.0  | 3.4 | 148.2 | 91.0  | 4.7 | 107.5 | 109.0 | 5.6 | 89.7  | 139.0 | 7.1 | 70.4  | 21.58% |
| 131 | 170 | 42 | 128 | 56  | 72  | 35  | 107 | 21  | 63  | 17 | 51.8 | 2.4 | 1.9 | 2.6 | 3279 | 105.0 | 4.0 | 124.9 | 110.0 | 4.2 | 119.2 | 123.0 | 4.7 | 106.6 | 173.0 | 6.6 | 75.8  | 28.90% |
| 132 | 63  | 34 | 97  | 18  | 79  | 43  | 36  | 61  | 27  | 13 | 41.2 | 1.7 | 0.9 | 2.7 | 3152 | 75.0  | 3.0 | 168.1 | 98.0  | 3.9 | 128.7 | 119.0 | 4.7 | 105.9 | 142.0 | 5.6 | 88.8  | 16.20% |
| 134 | 176 | 16 | 160 | 32  | 192 | 3   | 189 | 29  | 13  | 27 | 58.5 | 3.6 | 2.1 | 4.1 | 4619 | 152.0 | 4.1 | 121.6 | 171.0 | 4.6 | 108.0 | 225.0 | 6.1 | 82.1  | 303.0 | 8.2 | 61.0  | 25.74% |
| 135 | 67  | 10 | 77  | 42  | 119 | 3   | 122 | 45  | 55  | 36 | 47.2 | 3.0 | 1.7 | 3.7 | 7624 | 182.0 | 3.0 | 167.6 | 226.0 | 3.7 | 134.9 | 309.0 | 5.1 | 98.7  | 410.0 | 6.7 | 74.4  | 24.63% |
| 136 | 55  | 37 | 92  | 84  | 176 | 11  | 165 | 73  | 110 | 23 | 46.1 | 3.5 | 1.5 | 4.4 | 4985 | 115.0 | 2.9 | 173.4 | 152.0 | 3.8 | 131.2 | 232.0 | 5.8 | 85.9  | 292.0 | 7.3 | 68.3  | 20.55% |
| 137 | 58  | 9  | 49  | 16  | 33  | 7   | 26  | 23  | 32  | 17 | 42.6 | 2.0 | 1.4 | 2.6 | 3992 | 93.0  | 2.9 | 171.7 | 110.0 | 3.4 | 145.2 | 131.0 | 4.1 | 121.9 | 175.0 | 5.5 | 91.2  | 25.14% |
| 138 | 122 | 15 | 137 | 9   | 128 | 46  | 82  | 55  | 40  | 16 | 48.2 | 2.0 | 1.1 | 2.7 | 3319 | 92.0  | 3.5 | 144.3 | 113.0 | 4.3 | 117.5 | 136.0 | 5.1 | 97.6  | 165.0 | 6.2 | 80.5  | 17.58% |
| 140 | 196 | 8  | 188 | 19  | 169 | 110 | 59  | 129 | 137 | 3  | 14.3 | 0.8 | 0.2 | 1.1 | 2093 | 80.0  | 4.8 | 104.7 | 86.0  | 5.1 | 97.3  | 95.0  | 5.7 | 88.1  | 99.0  | 5.9 | 84.6  | 4.04%  |
| 141 | 194 | 3  | 197 | 16  | 181 | 87  | 94  | 103 | 100 | 5  | 16.3 | 0.9 | 0.5 | 1.7 | 3061 | 116.0 | 4.7 | 105.6 | 134.0 | 5.5 | 91.4  | 145.0 | 5.9 | 84.4  | 157.0 | 6.4 | 78.0  | 7.64%  |
| 142 | 128 | 26 | 154 | 0   | 154 | 10  | 144 | 10  | 16  | 44 | 47.5 | 2.6 | 1.6 | 3.5 | 9259 | 263.0 | 3.6 | 140.8 | 330.0 | 4.5 | 112.2 | 406.0 | 5.5 | 91.2  | 521.0 | 7.0 | 71.1  | 22.07% |
| 143 | 33  | 4  | 29  | 21  | 8   | 6   | 14  | 15  | 19  | 19 | 50.2 | 2.0 | 1.5 | 2.6 | 3783 | 78.0  | 2.6 | 194.0 | 95.0  | 3.1 | 159.3 | 110.0 | 3.6 | 137.6 | 156.0 | 5.2 | 97.0  | 29.49% |
| 145 | 160 | 3  | 157 | 26  | 131 | 34  | 97  | 60  | 63  | 48 | 51.8 | 1.9 | 1.3 | 2.5 | 9266 | 292.0 | 3.9 | 126.9 | 337.0 | 4.5 | 110.0 | 385.0 | 5.2 | 96.3  | 479.0 | 6.5 | 77.4  | 19.62% |
| 146 | 142 | 38 | 104 | 5   | 99  | 78  | 177 | 73  | 35  | 14 | 55.7 | 3.6 | 2.6 | 3.8 | 2513 | 75.0  | 3.7 | 134.0 | 79.0  | 3.9 | 127.2 | 99.0  | 4.9 | 101.5 | 152.0 | 7.6 | 66.1  | 34.87% |
| 147 | 11  | 1  | 10  | 5   | 5   | 2   | 7   | 3   | 4   | 25 | 46.1 | 1.9 | 1.4 | 2.6 | 5428 | 95.0  | 2.2 | 228.5 | 124.0 | 2.9 | 175.1 | 148.0 | 3.4 | 146.7 | 207.0 | 4.8 | 104.9 | 28.50% |
| 148 | 90  | 12 | 102 | 24  | 126 | 25  | 101 | 1   | 11  | 11 | 47.4 | 2.6 | 1.4 | 3.3 | 2323 | 60.0  | 3.2 | 154.9 | 73.0  | 3.9 | 127.3 | 95.0  | 5.1 | 97.8  | 121.0 | 6.5 | 76.8  | 21.49% |
| 149 | 115 | 53 | 62  | 106 | 168 | 34  | 202 | 140 | 87  | 23 | 63.2 | 5.1 | 3.1 | 5.4 | 3641 | 99.0  | 3.4 | 147.1 | 105.0 | 3.6 | 138.7 | 165.0 | 5.7 | 88.3  | 255.0 | 8.8 | 57.1  | 35.29% |
| 153 | 52  | 14 | 66  | 24  | 90  | 18  | 72  | 6   | 20  | 16 | 36.3 | 2.5 | 1.3 | 3.3 | 4413 | 101.0 | 2.9 | 174.8 | 128.0 | 3.6 | 137.9 | 171.0 | 4.8 | 103.2 | 216.0 | 6.1 | 81.7  | 20.83% |
| 154 | 167 | 5  | 172 | 1   | 171 | 52  | 119 | 53  | 48  | 15 | 35.1 | 2.0 | 1.0 | 2.7 | 4277 | 136.0 | 4.0 | 125.8 | 162.0 | 4.7 | 105.6 | 195.0 | 5.7 | 87.7  | 229.0 | 6.7 | 74.7  | 14.85% |
| 155 | 116 | 4  | 112 | 41  | 71  | 14  | 57  | 55  | 59  | 13 | 52.8 | 1.9 | 1.2 | 2.5 | 2463 | 67.0  | 3.4 | 147.0 | 79.0  | 4.0 | 124.7 | 92.0  | 4.7 | 107.1 | 116.0 | 5.9 | 84.9  | 20.69% |
| 156 | 169 | 6  | 163 | 3   | 160 | 81  | 79  | 84  | 90  | 9  | 25.0 | 1.5 | 0.6 | 2.2 | 3594 | 115.0 | 4.0 | 125.0 | 134.0 | 4.7 | 107.3 | 160.0 | 5.6 | 89.9  | 178.0 | 6.2 | 80.8  | 10.11% |
| 159 | 203 | 1  | 202 | 4   | 206 | 7   | 199 | 3   | 4   | 13 | 39.4 | 2.8 | 1.2 | 3.1 | 3302 | 143.0 | 5.4 | 92.4  | 152.0 | 5.8 | 86.9  | 195.0 | 7.4 | 67.7  | 226.0 | 8.6 | 58.4  | 13.72% |
| 160 | 182 | 16 | 166 | 23  | 189 | 15  | 174 | 8   | 8   | 29 | 49.1 | 2.8 | 1.4 | 3.2 | 5907 | 204.0 | 4.3 | 115.8 | 222.0 | 4.7 | 106.4 | 286.0 | 6.1 | 82.6  | 353.0 | 7.5 | 66.9  | 18.98% |
| 161 | 172 | 3  | 169 | 23  | 146 | 9   | 155 | 14  | 17  | 29 | 39.4 | 2.5 | 1.9 | 3.2 | 7361 | 237.0 | 4.0 | 124.2 | 278.0 | 4.7 | 105.9 | 315.0 | 5.3 | 93.5  | 424.0 | 7.2 | 69.4  | 25.71% |
| 162 | 130 | 21 | 109 | 8   | 117 | 23  | 140 | 31  | 10  | 22 | 58.1 | 3.0 | 1.9 | 3.4 | 3788 | 109.0 | 3.6 | 139.0 | 120.0 | 4.0 | 126.3 | 153.0 | 5.0 | 99.0  | 212.0 | 7.0 | 71.5  | 27.83% |
| 163 | 146 | 13 | 159 | 0   | 159 | 12  | 171 | 12  | 25  | 51 | 57.8 | 2.8 | 1.8 | 3.6 | 8821 | 267.0 | 3.8 | 132.1 | 323.0 | 4.6 | 109.2 | 392.0 | 5.6 | 90.0  | 521.0 | 7.4 | 67.7  | 24.76% |
| 164 | 86  | 0  | 86  | 13  | 73  | 10  | 63  | 23  | 23  | 17 | 32.1 | 2.2 | 1.3 | 2.8 | 5296 | 135.0 | 3.2 | 156.9 | 160.0 | 3.8 | 132.4 | 199.0 | 4.7 | 106.5 | 253.0 | 6.0 | 83.7  | 21.34% |
| 166 | 158 | 16 | 142 | 10  | 132 | 39  | 93  | 49  | 65  | 17 | 49.8 | 2.1 | 1.2 | 2.5 | 3416 | 107.0 | 3.9 | 127.7 | 118.0 | 4.3 | 115.8 | 142.0 | 5.2 | 96.2  | 175.0 | 6.4 | 78.1  | 18.86% |
| 167 | 43  | 26 | 69  | 18  | 87  | 16  | 71  | 2   | 28  | 26 | 52.9 | 2.4 | 1.3 | 3.4 | 4914 | 108.0 | 2.7 | 182.0 | 144.0 | 3.7 | 136.5 | 189.0 | 4.8 | 104.0 | 240.0 | 6.1 | 81.9  | 21.25% |
| 168 | 134 | 35 | 99  | 2   | 97  | 37  | 134 | 35  | 0   | 49 | 54.9 | 3.0 | 1.9 | 3.2 | 8927 | 259.0 | 3.6 | 137.9 | 279.0 | 3.9 | 128.0 | 351.0 | 4.9 | 101.7 | 490.0 | 6.9 | 72.9  | 28.37% |
| 169 | 19  | 66 | 85  | 19  | 66  | 14  | 80  | 5   | 61  | 17 | 52.3 | 2.4 | 1.6 | 3.8 | 3249 | 62.0  | 2.4 | 209.6 | 98.0  | 3.8 | 132.6 | 120.0 | 4.6 | 108.3 | 161.0 | 6.2 | 80.7  | 25.47% |

| 172 | 48  | 75 | 123 | 41  | 164 | 1   | 163 | 40  | 115 | 26 | 50.4 | 3.2 | 1.7 | 4.5 | 5163  | 116.0 | 2.8 | 178.0 | 171.0 | 4.1 | 120.8 | 231.0 | 5.6 | 89.4  | 302.0 | 7.3 | 68.4  | 23.51% |
|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|------|-----|-----|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|--------|
| 173 | 101 | 11 | 90  | 8   | 82  | 59  | 141 | 51  | 40  | 24 | 51.1 | 3.2 | 2.2 | 3.7 | 4698  | 124.0 | 3.3 | 151.5 | 143.0 | 3.8 | 131.4 | 179.0 | 4.8 | 105.0 | 263.0 | 7.0 | 71.5  | 31.94% |
| 175 | 132 | 11 | 121 | 7   | 114 | 14  | 100 | 21  | 32  | 17 | 46.8 | 2.4 | 1.5 | 2.9 | 3631  | 105.0 | 3.6 | 138.3 | 119.0 | 4.1 | 122.1 | 146.0 | 5.0 | 99.5  | 189.0 | 6.5 | 76.8  | 22.75% |
| 176 | 85  | 97 | 182 | 20  | 202 | 4   | 198 | 16  | 113 | 7  | 34.8 | 3.5 | 1.4 | 5.3 | 2014  | 51.0  | 3.2 | 158.0 | 80.0  | 5.0 | 100.7 | 115.0 | 7.1 | 70.1  | 137.0 | 8.5 | 58.8  | 16.06% |
| 177 | 178 | 5  | 173 | 48  | 125 | 84  | 41  | 132 | 137 | 9  | 27.6 | 1.0 | 0.6 | 1.5 | 3258  | 110.0 | 4.2 | 118.5 | 124.0 | 4.8 | 105.1 | 133.0 | 5.1 | 98.0  | 149.0 | 5.7 | 87.5  | 10.74% |
| 178 | 120 | 22 | 98  | 52  | 150 | 23  | 173 | 75  | 53  | 11 | 48.9 | 3.6 | 2.1 | 4.0 | 2248  | 62.0  | 3.4 | 145.0 | 70.0  | 3.9 | 128.5 | 97.0  | 5.4 | 92.7  | 134.0 | 7.5 | 67.1  | 27.61% |
| 179 | 3   | 4  | 7   | 15  | 22  | 145 | 167 | 160 | 164 | 25 | 95.9 | 4.6 | 3.5 | 5.3 | 2608  | 42.0  | 2.0 | 248.4 | 56.0  | 2.7 | 186.3 | 81.0  | 3.9 | 128.8 | 153.0 | 7.3 | 68.2  | 47.06% |
| 183 | 62  | 7  | 55  | 56  | 111 | 43  | 154 | 99  | 92  | 27 | 53.3 | 3.7 | 2.2 | 4.2 | 5070  | 120.0 | 3.0 | 169.0 | 143.0 | 3.5 | 141.8 | 203.0 | 5.0 | 99.9  | 292.0 | 7.2 | 69.5  | 30.48% |
| 184 | 7   | 7  | 14  | 44  | 58  | 132 | 190 | 176 | 183 | 30 | 69.1 | 5.4 | 3.9 | 6.2 | 4342  | 73.0  | 2.1 | 237.9 | 101.0 | 2.9 | 172.0 | 156.0 | 4.5 | 111.3 | 290.0 | 8.3 | 59.9  | 46.21% |
| 186 | 66  | 47 | 113 | 13  | 100 | 5   | 105 | 8   | 39  | 23 | 48.6 | 2.5 | 1.6 | 3.6 | 4737  | 113.0 | 3.0 | 167.7 | 152.0 | 4.0 | 124.7 | 187.0 | 4.9 | 101.3 | 248.0 | 6.5 | 76.4  | 24.60% |
| 187 | 107 | 11 | 118 | 24  | 94  | 21  | 73  | 45  | 34  | 35 | 45.8 | 2.1 | 1.2 | 2.8 | 7650  | 204.0 | 3.3 | 150.0 | 248.0 | 4.1 | 123.4 | 299.0 | 4.9 | 102.3 | 375.0 | 6.1 | 81.6  | 20.27% |
| 188 | 97  | 25 | 72  | 24  | 96  | 4   | 92  | 20  | 5   | 41 | 50.0 | 2.7 | 1.5 | 3.1 | 8195  | 215.0 | 3.3 | 152.5 | 242.0 | 3.7 | 135.5 | 322.0 | 4.9 | 101.8 | 419.0 | 6.4 | 78.2  | 23.15% |
| 189 | 202 | 1  | 203 | 6   | 197 | 50  | 147 | 56  | 55  | 13 | 26.5 | 1.1 | 0.7 | 1.8 | 4905  | 208.0 | 5.3 | 94.3  | 233.0 | 5.9 | 84.2  | 252.0 | 6.4 | 77.9  | 278.0 | 7.1 | 70.6  | 9.35%  |
| 191 | 51  | 36 | 87  | 7   | 80  | 26  | 54  | 33  | 3   | 54 | 40.9 | 2.1 | 1.1 | 3.0 | 13208 | 301.0 | 2.8 | 175.5 | 400.0 | 3.8 | 132.1 | 499.0 | 4.7 | 105.9 | 618.0 | 5.8 | 85.5  | 19.26% |
| 192 | 117 | 22 | 95  | 27  | 68  | 31  | 99  | 4   | 18  | 57 | 56.9 | 2.6 | 1.9 | 3.1 | 10018 | 274.0 | 3.4 | 146.2 | 309.0 | 3.9 | 129.7 | 371.0 | 4.6 | 108.0 | 521.0 | 6.5 | 76.9  | 28.79% |
| 193 | 75  | 8  | 67  | 26  | 41  | 1   | 40  | 27  | 35  | 13 | 63.9 | 2.1 | 1.4 | 2.7 | 2034  | 49.0  | 3.0 | 166.0 | 59.0  | 3.6 | 137.9 | 70.0  | 4.3 | 116.2 | 93.0  | 5.7 | 87.5  | 24.73% |
| 197 | 15  | 3  | 12  | 2   | 14  | 44  | 58  | 46  | 43  | 28 | 67.1 | 3.0 | 2.2 | 3.6 | 4171  | 77.0  | 2.3 | 216.7 | 96.0  | 2.9 | 173.8 | 124.0 | 3.7 | 134.5 | 197.0 | 5.9 | 84.7  | 37.06% |
| 199 | 192 | 4  | 196 | 10  | 186 | 69  | 117 | 79  | 75  | 7  | 21.0 | 1.2 | 0.7 | 2.1 | 3329  | 123.0 | 4.6 | 108.3 | 145.0 | 5.4 | 91.8  | 160.0 | 6.0 | 83.2  | 178.0 | 6.7 | 74.8  | 10.11% |
| 202 | 73  | 20 | 93  | 77  | 170 | 14  | 184 | 91  | 111 | 29 | 55.3 | 4.2 | 2.3 | 5.0 | 5245  | 126.0 | 3.0 | 166.5 | 160.0 | 3.8 | 131.1 | 239.0 | 5.7 | 87.8  | 336.0 | 8.0 | 62.4  | 28.87% |
| 203 | 100 | 32 | 68  | 18  | 86  | 40  | 126 | 58  | 26  | 28 | 64.0 | 3.1 | 2.0 | 3.5 | 4373  | 115.0 | 3.3 | 152.1 | 128.0 | 3.7 | 136.7 | 168.0 | 4.8 | 104.1 | 237.0 | 6.8 | 73.8  | 29.11% |
| 204 | 200 | 9  | 191 | 1   | 190 | 37  | 153 | 38  | 47  | 7  | 32.9 | 1.9 | 1.1 | 2.2 | 2127  | 85.0  | 5.0 | 100.1 | 90.0  | 5.3 | 94.5  | 103.0 | 6.1 | 82.6  | 122.0 | 7.2 | 69.7  | 15.57% |
| 205 | 175 | 1  | 174 | 4   | 178 | 26  | 152 | 22  | 23  | 16 | 40.1 | 2.4 | 1.3 | 3.0 | 3992  | 131.0 | 4.1 | 121.9 | 152.0 | 4.8 | 105.1 | 187.0 | 5.9 | 85.4  | 228.0 | 7.1 | 70.0  | 17.98% |
| 209 | 98  | 40 | 58  | 26  | 32  | 44  | 76  | 18  | 22  | 13 | 56.0 | 2.6 | 2.0 | 2.9 | 2321  | 61.0  | 3.3 | 152.2 | 66.0  | 3.6 | 140.7 | 76.0  | 4.1 | 122.2 | 114.0 | 6.1 | 81.4  | 33.33% |
| 210 | 141 | 34 | 175 | 23  | 152 | 31  | 121 | 54  | 20  | 22 | 53.2 | 1.9 | 1.2 | 3.0 | 4135  | 123.0 | 3.7 | 134.5 | 158.0 | 4.8 | 104.7 | 181.0 | 5.5 | 91.4  | 222.0 | 6.7 | 74.5  | 18.47% |
| 211 | 6   | 32 | 38  | 7   | 31  | 114 | 145 | 107 | 139 | 22 | 61.0 | 3.7 | 2.9 | 5.0 | 3604  | 60.0  | 2.1 | 240.3 | 96.0  | 3.3 | 150.2 | 118.0 | 4.1 | 122.2 | 203.0 | 7.0 | 71.0  | 41.87% |
| 213 | 68  | 35 | 33  | 21  | 54  | 29  | 83  | 50  | 15  | 18 | 60.6 | 3.0 | 1.8 | 3.2 | 2969  | 71.0  | 3.0 | 167.3 | 77.0  | 3.2 | 154.2 | 105.0 | 4.4 | 113.1 | 148.0 | 6.2 | 80.2  | 29.05% |
| 214 | 153 | 14 | 139 | 48  | 91  | 5   | 86  | 53  | 67  | 25 | 41.8 | 2.0 | 1.4 | 2.4 | 5983  | 185.0 | 3.9 | 129.4 | 204.0 | 4.3 | 117.3 | 232.0 | 4.8 | 103.2 | 300.0 | 6.3 | 79.8  | 22.67% |
| 215 | 154 | 22 | 132 | 90  | 42  | 36  | 6   | 126 | 148 | 5  | 22.8 | 0.5 | 0.3 | 0.8 | 2197  | 68.0  | 3.9 | 129.2 | 74.0  | 4.2 | 118.8 | 76.0  | 4.3 | 115.6 | 82.0  | 4.7 | 107.2 | 7.32%  |
| 217 | 23  | 6  | 17  | 7   | 10  | 25  | 35  | 18  | 12  | 26 | 50.9 | 2.7 | 2.0 | 3.2 | 5109  | 101.0 | 2.5 | 202.3 | 120.0 | 2.9 | 170.3 | 149.0 | 3.6 | 137.2 | 230.0 | 5.6 | 88.9  | 35.22% |
| 218 | 53  | 9  | 44  | 8   | 36  | 20  | 56  | 12  | 3   | 36 | 58.7 | 2.5 | 1.7 | 3.0 | 6136  | 141.0 | 2.9 | 174.1 | 167.0 | 3.4 | 147.0 | 206.0 | 4.2 | 119.1 | 288.0 | 5.9 | 85.2  | 28.47% |
| 219 | 46  | 24 | 70  | 7   | 63  | 31  | 32  | 38  | 14  | 13 | 43.0 | 1.9 | 1.0 | 2.8 | 3023  | 67.0  | 2.8 | 180.5 | 89.0  | 3.7 | 135.9 | 111.0 | 4.6 | 108.9 | 135.0 | 5.6 | 89.6  | 17.78% |
| 224 | 44  | 13 | 57  | 128 | 185 | 8   | 193 | 136 | 149 | 23 | 72.6 | 4.8 | 2.4 | 5.6 | 3166  | 70.0  | 2.8 | 180.9 | 90.0  | 3.6 | 140.7 | 152.0 | 6.0 | 83.3  | 212.0 | 8.4 | 59.7  | 28.30% |

| 225 | 95  | 46  | 141 | 10 | 151 | 20  | 131 | 10  | 36  | 16  | 48.0 | 2.5 | 1.4 | 3.6 | 3334  | 87.0  | 3.3 | 153.3 | 115.0 | 4.3 | 116.0 | 145.0 | 5.4 | 92.0  | 182.0 | 6.8  | 73.3 | 20.33% |
|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|------|------|--------|
| 226 | 127 | 12  | 115 | 12 | 127 | 50  | 77  | 38  | 50  | 17  | 47.7 | 2.1 | 1.1 | 2.6 | 3564  | 101.0 | 3.5 | 141.1 | 115.0 | 4.0 | 124.0 | 146.0 | 5.1 | 97.6  | 176.0 | 6.2  | 81.0 | 17.05% |
| 227 | 191 | 12  | 179 | 16 | 163 | 5   | 168 | 11  | 23  | 9   | 40.7 | 2.5 | 1.8 | 2.8 | 2214  | 81.0  | 4.6 | 109.3 | 86.0  | 4.9 | 103.0 | 99.0  | 5.6 | 89.5  | 130.0 | 7.3  | 68.1 | 23.85% |
| 230 | 49  | 11  | 60  | 41 | 101 | 63  | 164 | 104 | 115 | 15  | 60.5 | 3.7 | 2.4 | 4.5 | 2478  | 56.0  | 2.8 | 177.0 | 71.0  | 3.6 | 139.6 | 98.0  | 4.9 | 101.1 | 145.0 | 7.3  | 68.4 | 32.41% |
| 231 | 152 | 21  | 131 | 1  | 130 | 5   | 125 | 6   | 27  | 18  | 45.5 | 2.6 | 1.6 | 2.9 | 3952  | 122.0 | 3.9 | 129.6 | 133.0 | 4.2 | 118.9 | 164.0 | 5.2 | 96.4  | 214.0 | 6.8  | 73.9 | 23.36% |
| 232 | 124 | 23  | 101 | 17 | 84  | 22  | 106 | 5   | 18  | 23  | 61.0 | 2.7 | 1.8 | 3.1 | 3772  | 105.0 | 3.5 | 143.7 | 118.0 | 3.9 | 127.9 | 144.0 | 4.8 | 104.8 | 199.0 | 6.6  | 75.8 | 27.64% |
| 233 | 4   | 3   | 1   | 16 | 17  | 133 | 150 | 149 | 146 | 19  | 91.6 | 5.0 | 3.3 | 5.1 | 2074  | 34.0  | 2.0 | 244.0 | 35.0  | 2.1 | 237.0 | 63.0  | 3.8 | 131.7 | 118.0 | 7.1  | 70.3 | 46.61% |
| 236 | 163 | 8   | 171 | 48 | 123 | 4   | 127 | 44  | 36  | 27  | 54.4 | 2.1 | 1.7 | 2.8 | 4964  | 157.0 | 4.0 | 126.5 | 188.0 | 4.7 | 105.6 | 202.0 | 5.1 | 98.3  | 270.0 | 6.8  | 73.5 | 25.19% |
| 238 | 88  | 23  | 111 | 47 | 158 | 19  | 139 | 28  | 51  | 17  | 53.4 | 3.0 | 1.5 | 3.8 | 3182  | 82.0  | 3.2 | 155.2 | 102.0 | 4.0 | 124.8 | 141.0 | 5.5 | 90.3  | 178.0 | 7.0  | 71.5 | 20.79% |
| 240 | 189 | 11  | 200 | 2  | 198 | 18  | 180 | 20  | 9   | 9   | 31.5 | 2.0 | 1.2 | 3.2 | 2856  | 103.0 | 4.5 | 110.9 | 130.0 | 5.7 | 87.9  | 148.0 | 6.5 | 77.2  | 176.0 | 7.7  | 64.9 | 15.91% |
| 242 | 57  | 22  | 79  | 10 | 89  | 34  | 123 | 44  | 66  | 121 | 45.7 | 3.0 | 1.9 | 3.9 | ####  | 615.0 | 2.9 | 172.3 | 789.0 | 3.7 | 134.3 | ####  | 4.8 | 103.6 | ####  | 6.8  | 74.0 | 28.56% |
| 246 | 16  | 127 | 143 | 21 | 122 | 72  | 194 | 51  | 178 | 20  | 74.7 | 4.1 | 3.3 | 6.1 | 2679  | 50.0  | 2.3 | 214.3 | 93.0  | 4.3 | 115.2 | 109.0 | 5.1 | 98.3  | 180.0 | 8.4  | 59.5 | 39.44% |
| 247 | 103 | 52  | 155 | 20 | 175 | 6   | 169 | 14  | 66  | 31  | 41.4 | 2.8 | 1.6 | 4.0 | 7483  | 198.0 | 3.3 | 151.2 | 270.0 | 4.5 | 110.9 | 345.0 | 5.8 | 86.8  | 440.0 | 7.3  | 68.0 | 21.59% |
| 248 | 187 | 38  | 149 | 90 | 59  | 15  | 44  | 105 | 143 | 9   | 36.9 | 1.3 | 1.2 | 1.3 | 2441  | 86.0  | 4.4 | 113.5 | 86.0  | 4.4 | 113.5 | 88.0  | 4.5 | 111.0 | 112.0 | 5.7  | 87.2 | 21.43% |
| 249 | 111 | 23  | 134 | 19 | 115 | 9   | 124 | 10  | 13  | 19  | 40.7 | 2.5 | 1.7 | 3.4 | 4673  | 126.0 | 3.4 | 148.3 | 158.0 | 4.2 | 118.3 | 188.0 | 5.0 | 99.4  | 253.0 | 6.8  | 73.9 | 25.69% |
| 250 | 133 | 39  | 94  | 43 | 51  | 145 | 196 | 102 | 63  | 19  | 74.5 | 4.6 | 4.0 | 4.8 | 2551  | 74.0  | 3.6 | 137.9 | 78.0  | 3.8 | 130.8 | 90.0  | 4.4 | 113.4 | 172.0 | 8.4  | 59.3 | 47.67% |
| 254 | 54  | 12  | 42  | 36 | 78  | 58  | 136 | 94  | 82  | 25  | 63.3 | 3.5 | 2.2 | 4.0 | 3947  | 91.0  | 2.9 | 173.5 | 107.0 | 3.4 | 147.6 | 149.0 | 4.7 | 106.0 | 218.0 | 6.9  | 72.4 | 31.65% |
| 255 | 105 | 41  | 64  | 7  | 57  | 13  | 70  | 6   | 35  | 25  | 66.4 | 2.5 | 1.6 | 2.8 | 3766  | 100.0 | 3.3 | 150.6 | 109.0 | 3.6 | 138.2 | 135.0 | 4.5 | 111.6 | 183.0 | 6.1  | 82.3 | 26.23% |
| 256 | 34  | 47  | 81  | 43 | 124 | 13  | 111 | 30  | 77  | 30  | 53.4 | 2.9 | 1.5 | 4.0 | 5613  | 118.0 | 2.6 | 190.3 | 168.0 | 3.7 | 133.6 | 229.0 | 5.1 | 98.0  | 297.0 | 6.6  | 75.6 | 22.90% |
| 258 | 45  | 36  | 9   | 55 | 64  | 145 | 209 | 200 | 164 | 23  | 91.0 | 8.6 | 6.8 | 8.6 | 2527  | 56.0  | 2.8 | 180.5 | 56.0  | 2.8 | 180.5 | 93.0  | 4.6 | 108.7 | 230.0 | 11.4 | 43.9 | 59.57% |
| 259 | 119 | 35  | 84  | 14 | 98  | 48  | 146 | 62  | 27  | 57  | 55.8 | 3.3 | 2.2 | 3.6 | 10214 | 280.0 | 3.4 | 145.9 | 308.0 | 3.8 | 132.6 | 402.0 | 4.9 | 101.6 | 578.0 | 7.1  | 70.7 | 30.45% |
| 261 | 60  | 36  | 96  | 44 | 52  | 33  | 85  | 11  | 25  | 73  | 59.9 | 2.4 | 1.8 | 3.3 | 12181 | 287.0 | 2.9 | 169.8 | 376.0 | 3.9 | 129.6 | 430.0 | 4.4 | 113.3 | 610.0 | 6.3  | 79.9 | 29.51% |
| 262 | 20  | 99  | 119 | 54 | 65  | 121 | 186 | 67  | 166 | 36  | 69.2 | 4.1 | 3.5 | 5.7 | 5205  | 100.0 | 2.4 | 208.2 | 169.0 | 4.1 | 123.2 | 192.0 | 4.6 | 108.4 | 339.0 | 8.1  | 61.4 | 43.36% |
| 263 | 102 | 41  | 61  | 83 | 144 | 70  | 74  | 13  | 28  | 12  | 38.2 | 2.5 | 0.8 | 2.8 | 3141  | 83.0  | 3.3 | 151.4 | 90.0  | 3.6 | 139.6 | 134.0 | 5.3 | 93.8  | 154.0 | 6.1  | 81.6 | 12.99% |
| 264 | 171 | 12  | 183 | 4  | 179 | 36  | 143 | 40  | 28  | 22  | 39.4 | 2.1 | 1.1 | 3.0 | 5588  | 179.0 | 4.0 | 124.9 | 222.0 | 5.0 | 100.7 | 263.0 | 5.9 | 85.0  | 314.0 | 7.0  | 71.2 | 16.24% |
| 265 | 10  | 7   | 3   | 4  | 7   | 18  | 25  | 22  | 15  | 30  | 61.6 | 3.1 | 1.9 | 3.3 | 4869  | 84.0  | 2.2 | 231.9 | 91.0  | 2.3 | 214.0 | 139.0 | 3.6 | 140.1 | 213.0 | 5.5  | 91.4 | 34.74% |
| 266 | 166 | 28  | 138 | 24 | 162 | 30  | 132 | 6   | 34  | 19  | 31.7 | 2.6 | 1.3 | 2.9 | 5986  | 190.0 | 4.0 | 126.0 | 204.0 | 4.3 | 117.4 | 267.0 | 5.6 | 89.7  | 327.0 | 6.8  | 73.2 | 18.35% |
| 267 | 80  | 15  | 65  | 25 | 40  | 28  | 68  | 3   | 12  | 19  | 56.1 | 2.4 | 1.8 | 3.0 | 3384  | 84.0  | 3.1 | 161.1 | 98.0  | 3.6 | 138.1 | 116.0 | 4.3 | 116.7 | 164.0 | 6.1  | 82.5 | 29.27% |
| 276 | 61  | 13  | 74  | 3  | 77  | 51  | 128 | 54  | 67  | 86  | 56.6 | 3.1 | 2.1 | 3.9 | 15199 | 359.0 | 3.0 | 169.3 | 450.0 | 3.7 | 135.1 | 573.0 | 4.7 | 106.1 | 828.0 | 6.8  | 73.4 | 30.80% |
| 280 | 164 | 38  | 126 | 41 | 85  | 40  | 45  | 81  | 119 | 13  | 54.9 | 1.6 | 0.9 | 1.8 | 2370  | 75.0  | 4.0 | 126.4 | 79.0  | 4.2 | 120.0 | 91.0  | 4.8 | 104.2 | 109.0 | 5.7  | 87.0 | 16.51% |
| 281 | 162 | 4   | 158 | 16 | 174 | 14  | 160 | 2   | 2   | 33  | 40.7 | 2.7 | 1.5 | 3.3 | 8101  | 256.0 | 4.0 | 126.6 | 295.0 | 4.6 | 109.8 | 372.0 | 5.7 | 87.1  | 469.0 | 7.2  | 69.1 | 20.68% |
| 282 | 38  | 6   | 32  | 13 | 19  | 2   | 21  | 11  | 17  | 13  | 51.0 | 2.1 | 1.5 | 2.6 | 2551  | 55.0  | 2.7 | 185.5 | 66.0  | 3.2 | 154.6 | 78.0  | 3.8 | 130.8 | 109.0 | 5.3  | 93.6 | 28.44% |

| 284 | 35  | 5  | 30  | 19  | 11  | 7  | 18  | 12  | 17  | 56  | 59.2 | 2.1 | 1.6 | 2.7 | 9452  | 199.0 | 2.6 | 190.0 | 240.0 | 3.2 | 157.5 | 279.0 | 3.7 | 135.5 | 400.0  | 5.3 | 94.5  | 30.25% |
|-----|-----|----|-----|-----|-----|----|-----|-----|-----|-----|------|-----|-----|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|--------|-----|-------|--------|
| 285 | 137 | 4  | 133 | 13  | 120 | 22 | 98  | 35  | 39  | 15  | 48.6 | 2.3 | 1.4 | 2.8 | 3084  | 90.0  | 3.6 | 137.1 | 104.0 | 4.2 | 118.6 | 125.0 | 5.1 | 98.7  | 160.0  | 6.5 | 77.1  | 21.88% |
| 288 | 179 | 6  | 185 | 13  | 172 | 23 | 149 | 36  | 30  | 15  | 40.2 | 2.1 | 1.4 | 2.9 | 3727  | 126.0 | 4.2 | 118.3 | 149.0 | 5.0 | 100.1 | 170.0 | 5.7 | 87.7  | 212.0  | 7.1 | 70.3  | 19.81% |
| 290 | 39  | 9  | 48  | 19  | 29  | 36 | 65  | 17  | 26  | 29  | 54.6 | 2.6 | 1.9 | 3.3 | 5309  | 115.0 | 2.7 | 184.7 | 146.0 | 3.4 | 145.5 | 173.0 | 4.1 | 122.8 | 255.0  | 6.0 | 83.3  | 32.16% |
| 292 | 12  | 4  | 8   | 97  | 105 | 37 | 142 | 134 | 130 | 19  | 81.3 | 4.3 | 2.0 | 4.8 | 2338  | 41.0  | 2.2 | 228.1 | 51.0  | 2.7 | 183.4 | 93.0  | 5.0 | 100.6 | 131.0  | 7.0 | 71.4  | 29.01% |
| 293 | 156 | 8  | 164 | 24  | 188 | 7  | 181 | 17  | 25  | 29  | 40.0 | 3.0 | 1.7 | 3.8 | 7257  | 226.0 | 3.9 | 128.4 | 271.0 | 4.7 | 107.1 | 351.0 | 6.0 | 82.7  | 448.0  | 7.7 | 64.8  | 21.65% |
| 297 | 32  | 6  | 26  | 1   | 25  | 66 | 91  | 65  | 59  | 113 | 54.5 | 3.2 | 2.4 | 3.8 | 20734 | 425.0 | 2.6 | 195.1 | 516.0 | 3.1 | 160.7 | 647.0 | 3.9 | 128.2 | 1053.0 | 6.3 | 78.8  | 38.56% |
| 298 | 2   | 3  | 5   | 7   | 12  | 26 | 38  | 33  | 36  | 20  | 69.6 | 3.0 | 2.0 | 3.7 | 2874  | 46.0  | 2.0 | 249.9 | 60.0  | 2.6 | 191.6 | 85.0  | 3.7 | 135.2 | 130.0  | 5.7 | 88.4  | 34.62% |
| 299 | 140 | 41 | 181 | 2   | 183 | 0  | 183 | 2   | 43  | 37  | 45.8 | 3.0 | 1.9 | 4.1 | 8083  | 240.0 | 3.7 | 134.7 | 315.0 | 4.9 | 102.6 | 385.0 | 6.0 | 84.0  | 508.0  | 7.9 | 63.6  | 24.21% |
| 300 | 69  | 60 | 129 | 37  | 166 | 36 | 130 | 1   | 61  | 17  | 31.8 | 2.6 | 1.2 | 3.8 | 5350  | 128.0 | 3.0 | 167.2 | 180.0 | 4.2 | 118.9 | 240.0 | 5.6 | 89.2  | 292.0  | 6.8 | 73.3  | 17.81% |
| 302 | 83  | 6  | 89  | 6   | 95  | 5  | 90  | 1   | 7   | 13  | 45.4 | 2.5 | 1.4 | 3.2 | 2865  | 72.0  | 3.1 | 159.2 | 87.0  | 3.8 | 131.7 | 112.0 | 4.9 | 102.3 | 145.0  | 6.3 | 79.0  | 22.76% |
| 303 | 27  | 32 | 59  | 88  | 147 | 50 | 197 | 138 | 170 | 74  | 80.2 | 4.9 | 3.1 | 5.9 | 9228  | 187.0 | 2.5 | 197.4 | 263.0 | 3.6 | 140.3 | 395.0 | 5.4 | 93.4  | 623.0  | 8.4 | 59.2  | 36.60% |
| 304 | 106 | 23 | 83  | 110 | 193 | 8  | 185 | 102 | 79  | 19  | 60.9 | 4.4 | 2.0 | 4.8 | 3119  | 83.0  | 3.3 | 150.3 | 94.0  | 3.8 | 132.7 | 152.0 | 6.1 | 82.1  | 203.0  | 8.1 | 61.5  | 25.12% |
| 307 | 186 | 3  | 189 | 9   | 180 | 24 | 156 | 33  | 30  | 46  | 37.8 | 2.1 | 1.3 | 2.8 | 12163 | 426.0 | 4.4 | 114.2 | 500.0 | 5.1 | 97.3  | 575.0 | 5.9 | 84.6  | 701.0  | 7.2 | 69.4  | 17.97% |
| 308 | 93  | 13 | 80  | 30  | 110 | 6  | 116 | 36  | 23  | 25  | 50.2 | 2.9 | 1.7 | 3.4 | 4979  | 129.0 | 3.2 | 154.4 | 149.0 | 3.7 | 133.7 | 199.0 | 5.0 | 100.1 | 266.0  | 6.7 | 74.9  | 25.19% |
| 314 | 26  | 15 | 11  | 39  | 50  | 4  | 46  | 35  | 20  | 23  | 59.2 | 2.9 | 1.4 | 3.2 | 3887  | 78.0  | 2.5 | 199.3 | 89.0  | 2.9 | 174.7 | 137.0 | 4.4 | 113.5 | 179.0  | 5.8 | 86.9  | 23.46% |
| 316 | 143 | 13 | 156 | 22  | 134 | 30 | 104 | 52  | 39  | 46  | 46.8 | 2.0 | 1.3 | 2.8 | 9819  | 294.0 | 3.7 | 133.6 | 355.0 | 4.5 | 110.6 | 409.0 | 5.2 | 96.0  | 514.0  | 6.5 | 76.4  | 20.43% |
| 318 | 87  | 36 | 51  | 25  | 26  | 8  | 34  | 17  | 53  | 26  | 62.4 | 2.2 | 1.7 | 2.4 | 4164  | 107.0 | 3.2 | 155.7 | 115.0 | 3.5 | 144.8 | 132.0 | 4.0 | 126.2 | 187.0  | 5.6 | 89.1  | 29.41% |
| 320 | 1   | 3  | 4   | 2   | 6   | 37 | 43  | 39  | 42  | 19  | 55.7 | 3.4 | 2.3 | 3.7 | 3409  | 54.0  | 2.0 | 252.5 | 64.0  | 2.3 | 213.1 | 93.0  | 3.4 | 146.6 | 156.0  | 5.7 | 87.4  | 40.38% |
| 321 | 99  | 43 | 56  | 1   | 55  | 4  | 51  | 5   | 48  | 12  | 42.6 | 2.3 | 1.4 | 2.5 | 2815  | 74.0  | 3.3 | 152.2 | 80.0  | 3.6 | 140.8 | 100.0 | 4.4 | 112.6 | 131.0  | 5.8 | 86.0  | 23.66% |
| 322 | 29  | 34 | 63  | 39  | 102 | 35 | 137 | 74  | 108 | 15  | 57.8 | 3.3 | 2.0 | 4.4 | 2594  | 53.0  | 2.6 | 195.8 | 75.0  | 3.6 | 138.3 | 103.0 | 5.0 | 100.7 | 144.0  | 6.9 | 72.1  | 28.47% |
| 324 | 110 | 22 | 88  | 45  | 133 | 5  | 138 | 50  | 28  | 38  | 49.5 | 3.2 | 1.8 | 3.6 | 7683  | 207.0 | 3.4 | 148.5 | 233.0 | 3.8 | 131.9 | 320.0 | 5.2 | 96.0  | 428.0  | 7.0 | 71.8  | 25.23% |
| 325 | 121 | 15 | 106 | 23  | 83  | 96 | 179 | 73  | 58  | 35  | 66.4 | 3.7 | 2.9 | 4.2 | 5271  | 146.0 | 3.5 | 144.4 | 166.0 | 3.9 | 127.0 | 201.0 | 4.8 | 104.9 | 324.0  | 7.7 | 65.1  | 37.96% |
| 326 | 157 | 37 | 120 | 64  | 56  | 26 | 30  | 90  | 127 | 9   | 34.8 | 1.5 | 1.1 | 1.6 | 2586  | 81.0  | 3.9 | 127.7 | 84.0  | 4.1 | 123.1 | 92.0  | 4.4 | 112.4 | 115.0  | 5.6 | 89.9  | 20.00% |
| 327 | 82  | 35 | 47  | 0   | 47  | 10 | 37  | 10  | 45  | 15  | 60.5 | 2.2 | 1.3 | 2.5 | 2480  | 62.0  | 3.1 | 160.0 | 68.0  | 3.4 | 145.9 | 87.0  | 4.4 | 114.0 | 112.0  | 5.6 | 88.6  | 22.32% |
| 328 | 205 | 2  | 207 | 3   | 204 | 3  | 201 | 6   | 4   | 9   | 31.9 | 2.0 | 1.5 | 3.1 | 2820  | 127.0 | 5.6 | 88.8  | 150.0 | 6.6 | 75.2  | 162.0 | 7.2 | 69.6  | 196.0  | 8.7 | 57.6  | 17.35% |
| 332 | 9   | 7  | 2   | 1   | 1   | 2  | 3   | 1   | 6   | 36  | 42.8 | 1.8 | 1.2 | 2.0 | 8402  | 144.0 | 2.1 | 233.4 | 152.0 | 2.3 | 221.1 | 196.0 | 2.9 | 171.5 | 276.0  | 4.1 | 121.8 | 28.99% |
| 333 | 136 | 9  | 145 | 3   | 148 | 15 | 133 | 12  | 3   | 59  | 43.5 | 2.5 | 1.5 | 3.2 | 13557 | 395.0 | 3.6 | 137.3 | 471.0 | 4.3 | 115.1 | 581.0 | 5.4 | 93.3  | 741.0  | 6.8 | 73.2  | 21.59% |
| 335 | 91  | 25 | 116 | 37  | 153 | 4  | 157 | 41  | 66  | 40  | 49.9 | 3.2 | 1.7 | 4.0 | 8013  | 207.0 | 3.2 | 154.8 | 259.0 | 4.0 | 123.8 | 351.0 | 5.5 | 91.3  | 462.0  | 7.2 | 69.4  | 24.03% |
| 336 | 79  | 73 | 152 | 31  | 121 | 46 | 75  | 77  | 4   | 11  | 37.3 | 1.7 | 1.1 | 3.0 | 2953  | 73.0  | 3.1 | 161.8 | 105.0 | 4.4 | 112.5 | 120.0 | 5.1 | 98.4  | 145.0  | 6.1 | 81.5  | 17.24% |
| 337 | 18  | 5  | 23  | 2   | 21  | 12 | 33  | 10  | 15  | 26  | 61.9 | 2.6 | 1.8 | 3.2 | 4202  | 79.0  | 2.4 | 212.8 | 102.0 | 3.0 | 164.8 | 129.0 | 3.8 | 130.3 | 188.0  | 5.6 | 89.4  | 31.38% |
| 340 | 145 | 2  | 147 | 39  | 108 | 77 | 31  | 116 | 114 | 14  | 28.9 | 1.2 | 0.6 | 1.8 | 4844  | 146.0 | 3.8 | 132.7 | 169.0 | 4.4 | 114.7 | 193.0 | 5.0 | 100.4 | 216.0  | 5.6 | 89.7  | 10.65% |

| 341 | 36  | 64 | 100 | 13 | 113 | 25 | 88  | 12  | 52  | 23 | 60.4 | 2.4 | 1.3 | 3.6 | 3806 | 81.0  | 2.7 | 188.0 | 119.0 | 3.9 | 127.9 | 153.0 | 5.0 | 99.5  | 192.0 | 6.3  | 79.3 | 20.31% |
|-----|-----|----|-----|----|-----|----|-----|-----|-----|----|------|-----|-----|-----|------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|------|------|--------|
| 342 | 190 | 3  | 187 | 22 | 165 | 62 | 103 | 84  | 87  | 15 | 58.0 | 1.4 | 0.9 | 2.0 | 2588 | 94.0  | 4.5 | 110.1 | 106.0 | 5.1 | 97.7  | 116.0 | 5.6 | 89.2  | 135.0 | 6.5  | 76.7 | 14.07% |
| 343 | 131 | 26 | 105 | 45 | 60  | 21 | 39  | 66  | 92  | 23 | 54.9 | 1.8 | 1.1 | 2.1 | 4193 | 121.0 | 3.6 | 138.6 | 132.0 | 3.9 | 127.1 | 153.0 | 4.6 | 109.6 | 191.0 | 5.7  | 87.8 | 19.90% |
| 344 | 28  | 3  | 31  | 44 | 75  | 6  | 69  | 38  | 41  | 21 | 52.0 | 2.9 | 1.4 | 3.5 | 4040 | 82.0  | 2.5 | 197.1 | 103.0 | 3.2 | 156.9 | 152.0 | 4.7 | 106.3 | 196.0 | 6.1  | 82.4 | 22.45% |
| 347 | 92  | 11 | 103 | 33 | 136 | 25 | 161 | 58  | 69  | 38 | 48.9 | 3.3 | 2.0 | 4.0 | 7764 | 201.0 | 3.2 | 154.5 | 244.0 | 3.9 | 127.3 | 325.0 | 5.2 | 95.6  | 452.0 | 7.3  | 68.7 | 28.10% |
| 348 | 22  | 17 | 39  | 49 | 88  | 41 | 129 | 90  | 107 | 35 | 60.9 | 3.5 | 2.0 | 4.4 | 5743 | 112.0 | 2.4 | 205.1 | 153.0 | 3.3 | 150.1 | 221.0 | 4.8 | 103.9 | 313.0 | 6.8  | 73.4 | 29.39% |
| 350 | 149 | 1  | 148 | 44 | 104 | 54 | 50  | 98  | 99  | 13 | 33.4 | 1.4 | 0.8 | 2.0 | 3897 | 119.0 | 3.8 | 131.0 | 136.0 | 4.4 | 114.6 | 155.0 | 5.0 | 100.6 | 181.0 | 5.8  | 86.1 | 14.36% |
| 351 | 173 | 3  | 176 | 20 | 156 | 54 | 102 | 74  | 71  | 13 | 31.5 | 1.7 | 1.0 | 2.5 | 4124 | 133.0 | 4.0 | 124.0 | 159.0 | 4.8 | 103.7 | 182.0 | 5.5 | 90.6  | 215.0 | 6.5  | 76.7 | 15.35% |
| 352 | 108 | 14 | 122 | 41 | 81  | 31 | 112 | 10  | 4   | 10 | 41.7 | 2.5 | 1.9 | 3.3 | 2397 | 64.0  | 3.3 | 149.8 | 79.0  | 4.1 | 121.4 | 91.0  | 4.7 | 105.4 | 127.0 | 6.6  | 75.5 | 28.35% |
| 353 | 104 | 66 | 170 | 30 | 200 | 8  | 208 | 38  | 104 | 55 | 91.6 | 6.6 | 4.6 | 8.0 | 6007 | 159.0 | 3.3 | 151.1 | 227.0 | 4.7 | 105.9 | 323.0 | 6.7 | 74.4  | 545.0 | 11.3 | 44.1 | 40.73% |
| 354 | 74  | 1  | 75  | 14 | 61  | 19 | 42  | 33  | 32  | 27 | 39.6 | 2.0 | 1.1 | 2.7 | 6822 | 164.0 | 3.0 | 166.4 | 202.0 | 3.7 | 135.1 | 250.0 | 4.6 | 109.2 | 312.0 | 5.7  | 87.5 | 19.87% |
| 355 | 42  | 2  | 40  | 6  | 46  | 23 | 23  | 17  | 19  | 10 | 40.7 | 2.0 | 1.0 | 2.6 | 2459 | 54.0  | 2.7 | 182.1 | 66.0  | 3.4 | 149.0 | 86.0  | 4.4 | 114.4 | 106.0 | 5.4  | 92.8 | 18.87% |
| 356 | 148 | 34 | 114 | 4  | 118 | 85 | 203 | 89  | 55  | 44 | 75.4 | 4.7 | 3.7 | 5.0 | 5838 | 177.0 | 3.8 | 131.9 | 188.0 | 4.0 | 124.2 | 236.0 | 5.1 | 98.9  | 409.0 | 8.8  | 57.1 | 42.30% |
| 357 | 150 | 4  | 146 | 1  | 145 | 46 | 191 | 45  | 41  | 21 | 67.6 | 4.0 | 3.0 | 4.5 | 3108 | 95.0  | 3.8 | 130.9 | 108.0 | 4.3 | 115.1 | 133.0 | 5.3 | 93.5  | 208.0 | 8.4  | 59.8 | 36.06% |
| 358 | 138 | 14 | 124 | 15 | 139 | 53 | 192 | 68  | 54  | 23 | 59.7 | 4.2 | 3.1 | 4.7 | 3855 | 113.0 | 3.7 | 136.5 | 128.0 | 4.2 | 120.5 | 162.0 | 5.3 | 95.2  | 258.0 | 8.4  | 59.8 | 37.21% |
| 360 | 70  | 42 | 28  | 2  | 30  | 15 | 15  | 13  | 55  | 21 | 61.3 | 2.0 | 1.1 | 2.2 | 3426 | 82.0  | 3.0 | 167.1 | 86.0  | 3.1 | 159.3 | 112.0 | 4.1 | 122.4 | 142.0 | 5.2  | 96.5 | 21.13% |
| 362 | 180 | 27 | 153 | 15 | 138 | 28 | 166 | 13  | 14  | 14 | 53.0 | 2.9 | 2.1 | 3.1 | 2643 | 90.0  | 4.3 | 117.5 | 94.0  | 4.4 | 112.5 | 111.0 | 5.2 | 95.2  | 155.0 | 7.3  | 68.2 | 28.39% |
| 364 | 72  | 27 | 45  | 1  | 44  | 51 | 95  | 50  | 23  | 13 | 61.2 | 3.0 | 2.1 | 3.4 | 2123 | 51.0  | 3.0 | 166.5 | 58.0  | 3.4 | 146.4 | 74.0  | 4.4 | 114.8 | 109.0 | 6.4  | 77.9 | 32.11% |
| 365 | 47  | 34 | 13  | 10 | 3   | 8  | 11  | 2   | 36  | 25 | 41.5 | 2.2 | 1.7 | 2.3 | 6029 | 134.0 | 2.8 | 180.0 | 139.0 | 2.9 | 173.5 | 160.0 | 3.3 | 150.7 | 243.0 | 5.0  | 99.2 | 34.16% |
| 366 | 174 | 24 | 150 | 43 | 107 | 3  | 110 | 40  | 64  | 19 | 67.0 | 2.2 | 1.6 | 2.5 | 2837 | 93.0  | 4.1 | 122.0 | 100.0 | 4.4 | 113.5 | 113.0 | 5.0 | 100.4 | 150.0 | 6.6  | 75.7 | 24.67% |
| 367 | 193 | 1  | 192 | 10 | 182 | 24 | 158 | 34  | 35  | 17 | 34.2 | 1.9 | 1.3 | 2.5 | 4975 | 188.0 | 4.7 | 105.9 | 211.0 | 5.3 | 94.3  | 236.0 | 5.9 | 84.3  | 287.0 | 7.2  | 69.3 | 17.77% |
| 370 | 139 | 14 | 125 | 30 | 155 | 21 | 176 | 51  | 37  | 9  | 42.2 | 3.4 | 2.1 | 3.9 | 2133 | 63.0  | 3.7 | 135.4 | 71.0  | 4.2 | 120.2 | 94.0  | 5.5 | 90.8  | 129.0 | 7.6  | 66.1 | 27.13% |
| 377 | 125 | 43 | 82  | 67 | 149 | 36 | 113 | 31  | 12  | 15 | 46.0 | 2.9 | 1.3 | 3.1 | 3259 | 91.0  | 3.5 | 143.3 | 98.0  | 3.8 | 133.0 | 140.0 | 5.4 | 93.1  | 173.0 | 6.6  | 75.4 | 19.08% |
| 380 | 94  | 48 | 46  | 57 | 103 | 69 | 172 | 126 | 78  | 46 | 65.5 | 4.0 | 2.4 | 4.1 | 7021 | 182.0 | 3.2 | 154.3 | 192.0 | 3.4 | 146.3 | 279.0 | 5.0 | 100.7 | 415.0 | 7.4  | 67.7 | 32.77% |

Table A.3: Results of rank change analysis for terrain curvature method on 218 sub-watersheds of a minimum unit size of 20 ha in the Craigville quad.

|       |     |         |     |         |            |         |       |         |        | ц                     |        |              |              |              |               | Avg. Fl | ow Lei<br>150m | ngth = | Avg. Fl | ow Le<br>125m | ngth = | Avg. Flo<br>1 | ow Leng<br>100m | gth = | Avg. Fl | ow Lei<br>75m | ngth = |        |
|-------|-----|---------|-----|---------|------------|---------|-------|---------|--------|-----------------------|--------|--------------|--------------|--------------|---------------|---------|----------------|--------|---------|---------------|--------|---------------|-----------------|-------|---------|---------------|--------|--------|
| Wshed | R @ | dR(150- | R @ | dR(125- | <b>R</b> @ | dR(100- | • R @ | dR(75-) | dR(75- | #<br>streams<br>@ L = | F@L    | dD<br>(75 -> | dD<br>(75 -> | dD<br>(75 -> | total<br>area | stream  |                | Flow   | stream  |               | Flow   | stream        | ]               | Flow  | stream  |               | Flow   | %      |
| ID    | 150 | 125)    | 125 | 100)    | 100        | 75)     | 75    | 125)    | 150)   | 75m                   | = 75   | 125)         | 100)         | 150)         | (cells        | cells   | DD             | Len    | cells   | DD            | Len    | cells         | DD              | Len   | cells   | DD            | Len    | change |
| 15    | 129 | 8       | 137 | 7 11    | 148        | 3 5     | 15    | 3 16    | 24     | 52                    | 62.3   | 3.3          | 1.9          | 4.0          | 8345          | 261     | 3.9            | 127.9  | 309.0   | 4.6           | 108.0  | 402.0         | 6.0             | 83.0  | 526.0   | 7.9           | 63.5   | 30.8%  |
| 18    | 201 | 12      | 189 | 9 43    | 140        | 5 47    | 99    | 9 90    | 102    | 15                    | 6.4    | 1.1          | 0.8          | 1.3          | 3232          | 143     | 5.5            | 90.4   | 147.0   | 5.7           | 87.9   | 155.0         | 6.0             | 83.4  | 176.0   | 6.8           | 73.5   | 13.5%  |
| 22    | 194 | 8       | 202 | 2 4     | 200        | 5 11    | 19    | 5 7     | 1      | 15                    | 54.1   | 2.4          | 1.4          | 3.7          | 2771          | 113     | 5.1            | 98.1   | 142.0   | 6.4           | 78.1   | 166.0         | 7.5             | 66.8  | 196.0   | 8.8           | 56.6   | 18.1%  |
| 24    | 17  | 11      | (   | 6 4     |            | 2 1     |       | 1 5     | 16     | 7                     | 15.6   | 0.6          | 0.3          | 0.7          | 4475          | 72      | 2.0            | 248.6  | 74.0    | 2.1           | 241.9  | 84.0          | 2.3             | 213.1 | 96.0    | 2.7           | 186.5  | 14.3%  |
| 30    | 62  | 5       | 6   | 7 13    | 80         | ) 17    | 9     | 7 30    | 35     | 37                    | 54.6   | 3.3          | 2.0          | 3.9          | 6782          | 153     | 2.8            | 177.3  | 187.0   | 3.4           | 145.1  | 257.0         | 4.7             | 105.6 | 367.0   | 6.8           | 73.9   | 42.8%  |
| 36    | 25  | 0       | 2   | 5 9     | 10         | 5 12    | 4     | 4 21    | 21     | 7                     | 24.2   | 0.7          | 0.3          | 1.3          | 2895          | 50      | 2.2            | 231.6  | 62.0    | 2.7           | 186.8  | 71.0          | 3.1             | 163.1 | 79.0    | 3.4           | 146.6  | 11.3%  |
| 37    | 74  | 28      | 40  | 6 41    | 8          | 7 27    | 60    | 0 14    | 14     | 13                    | 47.0   | 2.9          | 1.2          | 3.0          | 2765          | 68      | 3.1            | 162.6  | 70.0    | 3.2           | 158.0  | 108.0         | 4.9             | 102.4 | 134.0   | 6.1           | 82.5   | 24.1%  |
| 41    | 35  | 41      | 70  | 6 1     | 77         | 7 16    | 6     | 1 15    | 26     | 30                    | 50.0   | 2.4          | 1.4          | 3.6          | 5995          | 116     | 2.4            | 206.7  | 176.0   | 3.7           | 136.3  | 225.0         | 4.7             | 106.6 | 291.0   | 6.1           | 82.4   | 29.3%  |
| 43    | 208 | 1       | 209 | 9 0     | 209        | 9 0     | 209   | 9 0     | 1      | 23                    | 106.7  | 3.9          | 2.1          | 4.8          | 2156          | 104     | 6.0            | 82.9   | 120.0   | 7.0           | 71.9   | 150.0         | 8.7             | 57.5  | 187.0   | 10.8          | 46.1   | 24.7%  |
| 44    | 9   | 30      | 39  | 9 14    | 2          | 5 14    | 1     | 1 28    | 2      | 5                     | 5 21.3 | 1.1          | 0.5          | 2.2          | 2348          | 35      | 1.9            | 268.3  | 56.0    | 3.0           | 167.7  | 68.0          | 3.6             | 138.1 | 77.0    | 4.1           | 122.0  | 13.2%  |
| 45    | 117 | 57      | 174 | 4 6     | 168        | 3 13    | 155   | 5 19    | 38     | 30                    | 55.4   | 2.5          | 1.5          | 4.2          | 5411          | 162     | 3.7            | 133.6  | 235.0   | 5.4           | 92.1   | 279.0         | 6.4             | 77.6  | 345.0   | 8.0           | 62.7   | 23.7%  |
| 46    | 24  | 13      | 1   | 1 4     |            | 7 2     | : :   | 5 6     | 19     | 11                    | 42.1   | 1.4          | 0.8          | 1.5          | 2613          | 45      | 2.2            | 232.3  | 48.0    | 2.3           | 217.8  | 60.0          | 2.9             | 174.2 | 77.0    | 3.7           | 135.7  | 28.3%  |
| 49    | 197 | 0       | 19  | 7 18    | 179        | 9 50    | 129   | 9 68    | 68     | ģ                     | 37.1   | 1.4          | 0.8          | 2.2          | 2424          | 102     | 5.3            | 95.1   | 117.0   | 6.0           | 82.9   | 130.0         | 6.7             | 74.6  | 145.0   | 7.5           | 66.9   | 11.5%  |
| 50    | 128 | 14      | 142 | 2 9     | 133        | 3 52    | 8     | 1 61    | 47     | 1                     | 26.3   | 1.7          | 0.8          | 2.5          | 2661          | 83      | 3.9            | 128.2  | 100.0   | 4.7           | 106.4  | 120.0         | 5.6             | 88.7  | 137.0   | 6.4           | 77.7   | 14.2%  |
| 51    | 88  | 5       | 83  | 3 35    | 48         | 3 10    | 38    | 8 45    | 50     | 21                    | 49.8   | 1.7          | 1.3          | 2.2          | 4213          | 109     | 3.2            | 154.6  | 127.0   | 3.8           | 132.7  | 140.0         | 4.2             | 120.4 | 183.0   | 5.4           | 92.1   | 30.7%  |
| 52    | 4   | 1       | :   | 5 2     | 1          | 3 4     |       | 7 2     | 3      | 1                     | 32.9   | 1.6          | 1.1          | 2.4          | 2127          | 22      | 1.3            | 386.7  | 35.0    | 2.1           | 243.1  | 45.0          | 2.6             | 189.1 | 63.0    | 3.7           | 135.0  | 40.0%  |
| 54    | 101 | 1       | 102 | 2 23    | 79         | 9 4     | 7:    | 5 27    | 26     | 36                    | 67.3   | 2.2          | 1.5          | 2.9          | 5348          | 146     | 3.4            | 146.5  | 174.0   | 4.1           | 122.9  | 202.0         | 4.7             | 105.9 | 268.0   | 6.3           | 79.8   | 32.7%  |
| 55    | 92  | 13      | 105 | 5 13    | 118        | 8 3     | 11    | 5 10    | 23     | 28                    | 8 86.2 | 3.0          | 1.9          | 3.9          | 3247          | 85      | 3.3            | 152.8  | 107.0   | 4.1           | 121.4  | 137.0         | 5.3             | 94.8  | 186.0   | 7.2           | 69.8   | 35.8%  |
| 58    | 125 | 3       | 128 | 8 20    | 108        | 8 44    | 64    | 4 64    | 61     | 15                    | 37.2   | 1.6          | 1.0          | 2.2          | 4032          | 125     | 3.9            | 129.0  | 146.0   | 4.5           | 110.5  | 166.0         | 5.1             | 97.2  | 197.0   | 6.1           | 81.9   | 18.7%  |
| 59    | 31  | 3       | 34  | 4 6     | 28         | 3 10    | 18    | 8 16    | 13     | 15                    | 42.0   | 1.7          | 0.8          | 2.2          | 3573          | 66      | 2.3            | 216.5  | 82.0    | 2.9           | 174.3  | 106.0         | 3.7             | 134.8 | 130.0   | 4.5           | 109.9  | 22.6%  |
| 60    | 41  | 9       | 50  | 0 18    | 68         | в с     | 68    | 8 18    | 27     | 60                    | 53.7   | 2.9          | 1.6          | 3.7          | 12280         | 243     | 2.5            | 202.1  | 319.0   | 3.2           | 154.0  | 442.0         | 4.5             | 111.1 | 604.0   | 6.1           | 81.3   | 36.7%  |
| 61    | 54  | 28      | 20  | 69      | 35         | 5 7     | 28    | 8 2     | 26     | ç                     | 42.9   | 2.3          | 1.1          | 2.3          | 2099          | 45      | 2.7            | 186.6  | 45.0    | 2.7           | 186.6  | 65.0          | 3.9             | 129.2 | 83.0    | 4.9           | 101.2  | 27.7%  |
| 63    | 131 | 11      | 120 | 0 31    | 89         | 9 13    | 70    | 6 44    | 55     | 21                    | 35.2   | 1.9          | 1.4          | 2.3          | 5973          | 188     | 3.9            | 127.1  | 210.0   | 4.4           | 113.8  | 234.0         | 4.9             | 102.1 | 300.0   | 6.3           | 79.6   | 28.2%  |
| 64    | 166 | 17      | 149 | 9 37    | 112        | 2 71    | 4     | 1 108   | 125    | 3                     | 3 10.2 | 0.6          | 0.3          | 1.1          | 2941          | 104     | 4.4            | 113.1  | 115.0   | 4.9           | 102.3  | 123.0         | 5.2             | 95.6  | 129.0   | 5.5           | 91.2   | 4.9%   |
| 65    | 5   | 11      | 10  | 6 4     | 20         | ) 14    |       | 6 10    | 1      | ç                     | 38.6   | 1.3          | 0.4          | 2.1          | 2331          | 29      | 1.6            | 321.5  | 45.0    | 2.4           | 207.2  | 61.0          | 3.3             | 152.9 | 69.0    | 3.7           | 135.1  | 13.1%  |
| 67    | 200 | 5       | 195 | 5 2     | 197        | 7 67    | 130   | 0 65    | 70     | ç                     | 43.8   | 1.6          | 0.4          | 2.1          | 2053          | 89      | 5.4            | 92.3   | 96.0    | 5.8           | 85.5   | 116.0         | 7.1             | 70.8  | 123.0   | 7.5           | 66.8   | 6.0%   |

| 68  | 95  | 18 | 113 | 17 | 130 | 30  | 100 | 13  | 5   | 67  | 48.1 | 2.6 | 1.2 | 3.5 | 13939 | 369 | 3.3 | 151.1 | 472.0 | 4.2 | 118.1 | 623.0 | 5.6 | 89.5  | 761.0  | 6.8 | 73.3  | 22.2% |
|-----|-----|----|-----|----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-------|-----|-----|-------|-------|-----|-------|-------|-----|-------|--------|-----|-------|-------|
| 71  | 43  | 49 | 92  | 17 | 109 | 18  | 91  | 1   | 48  | 13  | 58.9 | 2.8 | 1.5 | 4.2 | 2207  | 44  | 2.5 | 200.6 | 69.0  | 3.9 | 127.9 | 91.0  | 5.2 | 97.0  | 118.0  | 6.7 | 74.8  | 29.7% |
| 72  | 7   | 11 | 18  | 14 | 32  | 7   | 39  | 21  | 32  | 105 | 32.3 | 2.9 | 1.7 | 3.7 | 32531 | 456 | 1.8 | 285.4 | 658.0 | 2.5 | 197.8 | 989.0 | 3.8 | 131.6 | 1420.0 | 5.5 | 91.6  | 43.6% |
| 73  | 57  | 1  | 58  | 16 | 42  | 5   | 47  | 11  | 10  | 38  | 62.4 | 2.3 | 1.6 | 2.9 | 6092  | 133 | 2.7 | 183.2 | 164.0 | 3.4 | 148.6 | 198.0 | 4.1 | 123.1 | 274.0  | 5.6 | 88.9  | 38.4% |
| 74  | 199 | 1  | 200 | 7  | 193 | 5   | 198 | 2   | 1   | 9   | 43.3 | 2.8 | 2.1 | 3.7 | 2077  | 90  | 5.4 | 92.3  | 105.0 | 6.3 | 79.1  | 116.0 | 7.0 | 71.6  | 151.0  | 9.1 | 55.0  | 30.2% |
| 75  | 206 | 2  | 208 | 3  | 205 | 25  | 180 | 28  | 26  | 15  | 57.6 | 1.7 | 1.0 | 2.6 | 2604  | 122 | 5.9 | 85.4  | 141.0 | 6.8 | 73.9  | 155.0 | 7.4 | 67.2  | 176.0  | 8.4 | 59.2  | 13.5% |
| 77  | 52  | 46 | 98  | 31 | 129 | 1   | 128 | 30  | 76  | 15  | 61.3 | 3.5 | 1.9 | 4.8 | 2446  | 52  | 2.7 | 188.2 | 78.0  | 4.0 | 125.4 | 109.0 | 5.6 | 89.8  | 146.0  | 7.5 | 67.0  | 33.9% |
| 79  | 191 | 11 | 180 | 17 | 163 | 25  | 138 | 42  | 53  | 13  | 37.0 | 2.1 | 1.3 | 2.6 | 3511  | 139 | 4.9 | 101.0 | 155.0 | 5.5 | 90.6  | 176.0 | 6.3 | 79.8  | 213.0  | 7.6 | 65.9  | 21.0% |
| 80  | 22  | 14 | 8   | 44 | 52  | 32  | 20  | 12  | 2   | 5   | 23.6 | 2.5 | 0.4 | 2.5 | 2115  | 36  | 2.1 | 235.0 | 36.0  | 2.1 | 235.0 | 71.0  | 4.2 | 119.2 | 78.0   | 4.6 | 108.5 | 9.9%  |
| 81  | 70  | 11 | 81  | 12 | 93  | 14  | 107 | 26  | 37  | 30  | 49.1 | 3.3 | 2.1 | 3.9 | 6110  | 149 | 3.0 | 164.0 | 183.0 | 3.7 | 133.6 | 241.0 | 4.9 | 101.4 | 342.0  | 7.0 | 71.5  | 41.9% |
| 86  | 140 | 5  | 135 | 30 | 105 | 42  | 63  | 72  | 77  | 11  | 28.6 | 1.5 | 1.0 | 2.1 | 3840  | 123 | 4.0 | 124.9 | 141.0 | 4.6 | 108.9 | 156.0 | 5.1 | 98.5  | 187.0  | 6.1 | 82.1  | 19.9% |
| 88  | 37  | 6  | 31  | 21 | 10  | 8   | 2   | 29  | 35  | 3   | 13.6 | 0.5 | 0.3 | 0.8 | 2208  | 43  | 2.4 | 205.4 | 49.0  | 2.8 | 180.2 | 51.0  | 2.9 | 173.2 | 57.0   | 3.2 | 154.9 | 11.8% |
| 91  | 108 | 9  | 99  | 36 | 63  | 29  | 34  | 65  | 74  | 7   | 17.4 | 1.2 | 0.9 | 1.8 | 4024  | 112 | 3.5 | 143.7 | 129.0 | 4.0 | 124.8 | 141.0 | 4.4 | 114.2 | 169.0  | 5.2 | 95.2  | 19.9% |
| 93  | 26  | 2  | 28  | 10 | 18  | 5   | 13  | 15  | 13  | 7   | 23.1 | 1.6 | 1.1 | 2.1 | 3034  | 53  | 2.2 | 229.0 | 66.0  | 2.7 | 183.9 | 77.0  | 3.2 | 157.6 | 104.0  | 4.3 | 116.7 | 35.1% |
| 95  | 126 | 17 | 109 | 21 | 88  | 56  | 32  | 77  | 94  | 3   | 10.5 | 1.1 | 0.3 | 1.4 | 2862  | 89  | 3.9 | 128.6 | 95.0  | 4.1 | 120.5 | 112.0 | 4.9 | 102.2 | 120.0  | 5.2 | 95.4  | 7.1%  |
| 97  | 195 | 12 | 207 | 3  | 204 | 37  | 167 | 40  | 28  | 5   | 18.0 | 1.4 | 0.7 | 2.9 | 2785  | 116 | 5.2 | 96.0  | 150.0 | 6.7 | 74.3  | 165.0 | 7.4 | 67.5  | 181.0  | 8.1 | 61.5  | 9.7%  |
| 103 | 167 | 4  | 163 | 6  | 157 | 13  | 144 | 19  | 23  | 44  | 76.2 | 2.4 | 1.5 | 3.2 | 5778  | 206 | 4.5 | 112.2 | 241.0 | 5.2 | 95.9  | 284.0 | 6.1 | 81.4  | 353.0  | 7.6 | 65.5  | 24.3% |
| 104 | 209 | 4  | 205 | 7  | 198 | 1   | 197 | 8   | 12  | 11  | 51.3 | 2.4 | 1.9 | 2.9 | 2143  | 105 | 6.1 | 81.6  | 113.0 | 6.6 | 75.9  | 122.0 | 7.1 | 70.3  | 155.0  | 9.0 | 55.3  | 27.0% |
| 105 | 149 | 5  | 154 | 18 | 136 | 3   | 139 | 15  | 10  | 13  | 39.5 | 2.6 | 1.9 | 3.5 | 3292  | 108 | 4.1 | 121.9 | 131.0 | 5.0 | 100.5 | 150.0 | 5.7 | 87.8  | 200.0  | 7.6 | 65.8  | 33.3% |
| 106 | 99  | 24 | 75  | 41 | 34  | 32  | 66  | 9   | 33  | 21  | 89.6 | 2.5 | 2.3 | 2.8 | 2345  | 63  | 3.4 | 148.9 | 68.0  | 3.6 | 137.9 | 72.0  | 3.8 | 130.3 | 115.0  | 6.1 | 81.6  | 59.7% |
| 107 | 119 | 12 | 107 | 47 | 154 | 35  | 119 | 12  | 0   | 13  | 50.5 | 3.1 | 1.2 | 3.4 | 2575  | 78  | 3.8 | 132.1 | 85.0  | 4.1 | 121.2 | 125.0 | 6.1 | 82.4  | 149.0  | 7.2 | 69.1  | 19.2% |
| 108 | 145 | 44 | 101 | 35 | 66  | 30  | 36  | 65  | 109 | 7   | 28.7 | 1.3 | 0.9 | 1.3 | 2441  | 79  | 4.0 | 123.6 | 79.0  | 4.0 | 123.6 | 87.0  | 4.5 | 112.2 | 105.0  | 5.4 | 93.0  | 20.7% |
| 109 | 156 | 20 | 136 | 17 | 119 | 32  | 87  | 49  | 69  | 8   | 31.3 | 2.0 | 1.3 | 2.4 | 2553  | 86  | 4.2 | 118.7 | 94.0  | 4.6 | 108.6 | 108.0 | 5.3 | 94.6  | 135.0  | 6.6 | 75.6  | 25.0% |
| 110 | 53  | 10 | 43  | 12 | 55  | 104 | 159 | 116 | 106 | 25  | 87.4 | 4.9 | 3.8 | 5.3 | 2859  | 61  | 2.7 | 187.5 | 71.0  | 3.1 | 161.1 | 97.0  | 4.2 | 117.9 | 183.0  | 8.0 | 62.5  | 88.7% |
| 111 | 76  | 21 | 55  | 44 | 99  | 17  | 82  | 27  | 6   | 26  | 48.4 | 3.2 | 1.4 | 3.4 | 5375  | 133 | 3.1 | 161.7 | 142.0 | 3.3 | 151.4 | 217.0 | 5.0 | 99.1  | 278.0  | 6.5 | 77.3  | 28.1% |
| 116 | 47  | 17 | 30  | 28 | 58  | 58  | 116 | 86  | 69  | 28  | 69.7 | 4.4 | 2.9 | 4.6 | 4015  | 81  | 2.5 | 198.3 | 89.0  | 2.8 | 180.4 | 137.0 | 4.3 | 117.2 | 230.0  | 7.2 | 69.8  | 67.9% |
| 119 | 48  | 1  | 49  | 4  | 45  | 12  | 33  | 16  | 15  | 15  | 48.0 | 2.0 | 1.1 | 2.7 | 3122  | 63  | 2.5 | 198.2 | 81.0  | 3.2 | 154.2 | 103.0 | 4.1 | 121.2 | 131.0  | 5.2 | 95.3  | 27.2% |
| 120 | 39  | 1  | 38  | 13 | 51  | 8   | 59  | 21  | 20  | 13  | 46.2 | 3.1 | 1.9 | 3.6 | 2811  | 55  | 2.4 | 204.4 | 66.0  | 2.9 | 170.4 | 94.0  | 4.2 | 119.6 | 136.0  | 6.0 | 82.7  | 44.7% |
| 121 | 124 | 9  | 115 | 43 | 72  | 35  | 37  | 78  | 87  | 7   | 26.8 | 1.1 | 0.8 | 1.5 | 2615  | 81  | 3.9 | 129.1 | 90.0  | 4.3 | 116.2 | 96.0  | 4.6 | 109.0 | 113.0  | 5.4 | 92.6  | 17.7% |
| 122 | 84  | 25 | 59  | 16 | 43  | 20  | 23  | 36  | 61  | 11  | 30.9 | 1.4 | 0.7 | 1.5 | 3557  | 91  | 3.2 | 156.4 | 96.0  | 3.4 | 148.2 | 116.0 | 4.1 | 122.7 | 135.0  | 4.7 | 105.4 | 16.4% |
| 123 | 205 | 4  | 201 | 14 | 187 | 27  | 160 | 41  | 45  | 20  | 47.8 | 1.7 | 1.2 | 2.2 | 4186  | 196 | 5.9 | 85.4  | 212.0 | 6.3 | 79.0  | 228.0 | 6.8 | 73.4  | 268.0  | 8.0 | 62.5  | 17.5% |
| 127 | 168 | 12 | 156 | 13 | 143 | 5   | 148 | 8   | 20  | 26  | 85.9 | 2.7 | 1.8 | 3.3 | 3028  | 108 | 4.5 | 112.1 | 121.0 | 5.0 | 100.1 | 143.0 | 5.9 | 84.7  | 187.0  | 7.7 | 64.8  | 30.8% |

| 129 | 184 | 3  | 181 | 19 | 200 | 9  | 191 | 10  | 7   | 17 | 69.5  | 3.2 | 1.4 | 4.0 | 2445 | 92  | 4.7 | 106.3 | 108.0 | 5.5 | 90.6  | 143.0 | 7.3 | 68.4  | 171.0 | 8.7  | 57.2 | 19.6% |
|-----|-----|----|-----|----|-----|----|-----|-----|-----|----|-------|-----|-----|-----|------|-----|-----|-------|-------|-----|-------|-------|-----|-------|-------|------|------|-------|
| 131 | 136 | 10 | 146 | 3  | 149 | 24 | 173 | 27  | 37  | 31 | 94.5  | 3.4 | 2.2 | 4.3 | 3279 | 104 | 4.0 | 126.1 | 126.0 | 4.8 | 104.1 | 158.0 | 6.0 | 83.0  | 216.0 | 8.2  | 60.7 | 36.7% |
| 132 | 90  | 5  | 85  | 29 | 56  | 4  | 52  | 33  | 38  | 11 | 34.9  | 1.9 | 1.5 | 2.5 | 3152 | 82  | 3.3 | 153.8 | 96.0  | 3.8 | 131.3 | 107.0 | 4.2 | 117.8 | 145.0 | 5.8  | 87.0 | 35.5% |
| 134 | 133 | 17 | 116 | 10 | 126 | 9  | 135 | 19  | 2   | 27 | 58.5  | 3.2 | 2.1 | 3.6 | 4619 | 146 | 4.0 | 126.5 | 160.0 | 4.3 | 115.5 | 201.0 | 5.4 | 91.9  | 279.0 | 7.6  | 66.2 | 38.8% |
| 135 | 42  | 9  | 33  | 36 | 69  | 9  | 78  | 45  | 36  | 58 | 76.1  | 3.5 | 1.8 | 3.9 | 7624 | 151 | 2.5 | 202.0 | 173.0 | 2.8 | 176.3 | 276.0 | 4.5 | 110.5 | 387.0 | 6.3  | 78.8 | 40.2% |
| 136 | 120 | 46 | 166 | 17 | 183 | 15 | 168 | 2   | 48  | 29 | 58.2  | 2.8 | 1.4 | 4.3 | 4985 | 152 | 3.8 | 131.2 | 211.0 | 5.3 | 94.5  | 270.0 | 6.8 | 73.9  | 324.0 | 8.1  | 61.5 | 20.0% |
| 137 | 38  | 4  | 42  | 15 | 57  | 14 | 43  | 1   | 5   | 27 | 67.6  | 2.4 | 1.3 | 3.1 | 3992 | 78  | 2.4 | 204.7 | 99.0  | 3.1 | 161.3 | 136.0 | 4.3 | 117.4 | 177.0 | 5.5  | 90.2 | 30.1% |
| 138 | 141 | 0  | 141 | 9  | 132 | 22 | 154 | 13  | 13  | 28 | 84.4  | 3.3 | 2.3 | 3.9 | 3319 | 107 | 4.0 | 124.1 | 124.0 | 4.7 | 107.1 | 149.0 | 5.6 | 89.1  | 211.0 | 7.9  | 62.9 | 41.6% |
| 140 | 202 | 6  | 196 | 41 | 155 | 61 | 94  | 102 | 108 | 10 | 47.8  | 0.8 | 0.7 | 1.2 | 2093 | 93  | 5.6 | 90.0  | 99.0  | 5.9 | 84.6  | 102.0 | 6.1 | 82.1  | 113.0 | 6.7  | 74.1 | 10.8% |
| 141 | 188 | 13 | 175 | 34 | 141 | 21 | 120 | 55  | 68  | 15 | 49.0  | 1.9 | 1.4 | 2.5 | 3061 | 118 | 4.8 | 103.8 | 133.0 | 5.4 | 92.1  | 144.0 | 5.9 | 85.0  | 179.0 | 7.3  | 68.4 | 24.3% |
| 142 | 170 | 6  | 176 | 2  | 174 | 2  | 172 | 4   | 2   | 67 | 72.4  | 2.8 | 1.6 | 3.7 | 9259 | 337 | 4.5 | 109.9 | 404.0 | 5.5 | 91.7  | 492.0 | 6.6 | 75.3  | 609.0 | 8.2  | 60.8 | 23.8% |
| 143 | 34  | 13 | 47  | 15 | 62  | 14 | 48  | 1   | 14  | 19 | 50.2  | 2.5 | 1.3 | 3.3 | 3783 | 71  | 2.3 | 213.1 | 96.0  | 3.2 | 157.6 | 132.0 | 4.4 | 114.6 | 171.0 | 5.7  | 88.5 | 29.5% |
| 145 | 176 | 5  | 171 | 24 | 147 | 5  | 152 | 19  | 24  | 71 | 76.6  | 2.5 | 1.8 | 3.2 | 9266 | 342 | 4.6 | 108.4 | 395.0 | 5.3 | 93.8  | 446.0 | 6.0 | 83.1  | 582.0 | 7.9  | 63.7 | 30.5% |
| 146 | 82  | 5  | 77  | 23 | 54  | 11 | 65  | 12  | 17  | 12 | 47.8  | 2.4 | 1.9 | 2.9 | 2513 | 64  | 3.2 | 157.1 | 74.0  | 3.7 | 135.8 | 85.0  | 4.2 | 118.3 | 123.0 | 6.1  | 81.7 | 44.7% |
| 147 | 49  | 8  | 41  | 3  | 44  | 30 | 74  | 33  | 25  | 35 | 64.5  | 3.2 | 2.1 | 3.7 | 5428 | 110 | 2.5 | 197.4 | 134.0 | 3.1 | 162.0 | 179.0 | 4.1 | 121.3 | 272.0 | 6.3  | 79.8 | 52.0% |
| 148 | 121 | 22 | 143 | 1  | 144 | 25 | 169 | 26  | 48  | 17 | 73.2  | 3.4 | 2.2 | 4.3 | 2323 | 71  | 3.8 | 130.9 | 88.0  | 4.7 | 105.6 | 110.0 | 5.9 | 84.5  | 151.0 | 8.1  | 61.5 | 37.3% |
| 149 | 100 | 20 | 80  | 1  | 81  | 8  | 89  | 9   | 11  | 50 | 137.3 | 2.9 | 1.9 | 3.3 | 3641 | 99  | 3.4 | 147.1 | 109.0 | 3.7 | 133.6 | 138.0 | 4.7 | 105.5 | 194.0 | 6.7  | 75.1 | 40.6% |
| 153 | 65  | 22 | 87  | 5  | 92  | 6  | 86  | 1   | 21  | 31 | 70.2  | 2.8 | 1.7 | 3.7 | 4413 | 101 | 2.9 | 174.8 | 135.0 | 3.8 | 130.8 | 174.0 | 4.9 | 101.4 | 233.0 | 6.6  | 75.8 | 33.9% |
| 154 | 113 | 2  | 111 | 16 | 95  | 19 | 114 | 3   | 1   | 24 | 56.1  | 3.0 | 2.2 | 3.5 | 4277 | 124 | 3.6 | 138.0 | 144.0 | 4.2 | 118.8 | 170.0 | 5.0 | 100.6 | 245.0 | 7.2  | 69.8 | 44.1% |
| 155 | 83  | 1  | 82  | 9  | 91  | 20 | 111 | 29  | 28  | 28 | 113.7 | 3.3 | 2.2 | 3.9 | 2463 | 63  | 3.2 | 156.4 | 74.0  | 3.8 | 133.1 | 97.0  | 4.9 | 101.6 | 140.0 | 7.1  | 70.4 | 44.3% |
| 156 | 163 | 13 | 150 | 8  | 158 | 23 | 181 | 31  | 18  | 22 | 61.2  | 3.5 | 2.3 | 4.1 | 3594 | 126 | 4.4 | 114.1 | 141.0 | 4.9 | 102.0 | 177.0 | 6.2 | 81.2  | 243.0 | 8.5  | 59.2 | 37.3% |
| 159 | 196 | 24 | 172 | 13 | 159 | 54 | 105 | 67  | 91  | 16 | 48.5  | 1.6 | 0.8 | 1.7 | 3302 | 138 | 5.2 | 95.7  | 142.0 | 5.4 | 93.0  | 163.0 | 6.2 | 81.0  | 183.0 | 6.9  | 72.2 | 12.3% |
| 160 | 189 | 4  | 185 | 1  | 186 | 0  | 186 | 1   | 3   | 48 | 81.3  | 2.9 | 1.7 | 3.6 | 5907 | 231 | 4.9 | 102.3 | 265.0 | 5.6 | 89.2  | 321.0 | 6.8 | 73.6  | 403.0 | 8.5  | 58.6 | 25.5% |
| 161 | 135 | 4  | 139 | 8  | 131 | 9  | 122 | 17  | 13  | 31 | 42.1  | 2.7 | 1.8 | 3.4 | 7361 | 233 | 4.0 | 126.4 | 273.0 | 4.6 | 107.9 | 329.0 | 5.6 | 89.5  | 434.0 | 7.4  | 67.8 | 31.9% |
| 162 | 122 | 16 | 106 | 6  | 100 | 31 | 131 | 25  | 9   | 29 | 76.6  | 3.4 | 2.4 | 3.7 | 3788 | 116 | 3.8 | 130.6 | 125.0 | 4.1 | 121.2 | 153.0 | 5.0 | 99.0  | 227.0 | 7.5  | 66.7 | 48.4% |
| 163 | 154 | 28 | 126 | 30 | 156 | 22 | 134 | 8   | 20  | 63 | 71.4  | 3.0 | 1.4 | 3.3 | 8821 | 297 | 4.2 | 118.8 | 318.0 | 4.5 | 111.0 | 430.0 | 6.1 | 82.1  | 532.0 | 7.5  | 66.3 | 23.7% |
| 164 | 58  | 4  | 54  | 5  | 59  | 44 | 103 | 49  | 45  | 27 | 51.0  | 3.6 | 2.6 | 4.2 | 5296 | 116 | 2.7 | 182.6 | 139.0 | 3.3 | 152.4 | 182.0 | 4.3 | 116.4 | 292.0 | 6.9  | 72.5 | 60.4% |
| 166 | 138 | 21 | 117 | 42 | 75  | 65 | 140 | 23  | 2   | 40 | 117.1 | 3.3 | 2.9 | 3.6 | 3416 | 109 | 4.0 | 125.4 | 119.0 | 4.4 | 114.8 | 128.0 | 4.7 | 106.8 | 208.0 | 7.6  | 65.7 | 62.5% |
| 167 | 63  | 1  | 62  | 1  | 61  | 32 | 93  | 31  | 30  | 33 | 67.2  | 3.4 | 2.4 | 3.9 | 4914 | 111 | 2.8 | 177.1 | 133.0 | 3.4 | 147.8 | 170.0 | 4.3 | 115.6 | 265.0 | 6.7  | 74.2 | 55.9% |
| 168 | 158 | 6  | 152 | 12 | 164 | 3  | 161 | 9   | 3   | 69 | 77.3  | 3.1 | 1.8 | 3.8 | 8927 | 306 | 4.3 | 116.7 | 353.0 | 4.9 | 101.2 | 450.0 | 6.3 | 79.4  | 575.0 | 8.1  | 62.1 | 27.8% |
| 169 | 44  | 0  | 44  | 62 | 106 | 8  | 98  | 54  | 54  | 19 | 58.5  | 3.7 | 1.7 | 4.3 | 3249 | 65  | 2.5 | 199.9 | 81.0  | 3.1 | 160.4 | 132.0 | 5.1 | 98.5  | 176.0 | 6.8  | 73.8 | 33.3% |
| 172 | 173 | 21 | 194 | 13 | 207 | 1  | 208 | 14  | 35  | 59 | 114.3 | 4.2 | 2.3 | 5.4 | 5163 | 189 | 4.6 | 109.3 | 241.0 | 5.8 | 85.7  | 317.0 | 7.7 | 65.1  | 414.0 | 10.0 | 49.9 | 30.6% |
|     |     |    |     |    |     |    |     |     |     |    |       |     |     |     |      |     |     |       |       |     |       |       |     |       |       |      |      |       |

| 173 | 116 | 7  | 123 | 30 | 153 | 5  | 158 | 35 | 42  | 36 | 76.6  | 3.6 | 1.9 | 4.3 | 4698  | 140 | 3.7 | 134.2 | 166.0 | 4.4 | 113.2 | 228.0 | 6.1 | 82.4  | 300.0 | 8.0 | 62.6  | 31.6%  |
|-----|-----|----|-----|----|-----|----|-----|----|-----|----|-------|-----|-----|-----|-------|-----|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|--------|
| 175 | 139 | 15 | 124 | 7  | 117 | 11 | 106 | 18 | 33  | 22 | 60.6  | 2.5 | 1.7 | 3.0 | 3631  | 116 | 4.0 | 125.2 | 130.0 | 4.5 | 111.7 | 153.0 | 5.3 | 94.9  | 203.0 | 7.0 | 71.5  | 32.7%  |
| 176 | 179 | 25 | 204 | 1  | 203 | 1  | 202 | 2  | 23  | 11 | 54.6  | 2.7 | 1.8 | 4.5 | 2014  | 75  | 4.7 | 107.4 | 104.0 | 6.5 | 77.5  | 119.0 | 7.4 | 67.7  | 148.0 | 9.2 | 54.4  | 24.4%  |
| 177 | 165 | 5  | 160 | 33 | 127 | 55 | 72  | 88 | 93  | 11 | 33.8  | 1.1 | 0.8 | 1.8 | 3258  | 115 | 4.4 | 113.3 | 135.0 | 5.2 | 96.5  | 142.0 | 5.4 | 91.8  | 163.0 | 6.3 | 80.0  | 14.8%  |
| 178 | 109 | 44 | 153 | 37 | 190 | 24 | 166 | 13 | 57  | 20 | 89.0  | 3.2 | 1.3 | 4.6 | 2248  | 63  | 3.5 | 142.7 | 89.0  | 4.9 | 101.0 | 123.0 | 6.8 | 73.1  | 146.0 | 8.1 | 61.6  | 18.7%  |
| 179 | 3   | 0  | 3   | 5  | 8   | 8  | 16  | 13 | 13  | 11 | 42.2  | 2.8 | 1.6 | 3.4 | 2608  | 24  | 1.2 | 434.7 | 36.0  | 1.7 | 289.8 | 60.0  | 2.9 | 173.9 | 94.0  | 4.5 | 111.0 | 56.7%  |
| 183 | 144 | 43 | 187 | 14 | 201 | 1  | 200 | 13 | 56  | 43 | 84.8  | 3.5 | 1.8 | 5.1 | 5070  | 164 | 4.0 | 123.7 | 229.0 | 5.6 | 88.6  | 297.0 | 7.3 | 68.3  | 369.0 | 9.1 | 55.0  | 24.2%  |
| 184 | 130 | 22 | 108 | 94 | 202 | 1  | 203 | 95 | 73  | 49 | 112.9 | 5.1 | 1.8 | 5.3 | 4342  | 136 | 3.9 | 127.7 | 144.0 | 4.1 | 120.6 | 256.0 | 7.4 | 67.8  | 320.0 | 9.2 | 54.3  | 25.0%  |
| 186 | 142 | 15 | 127 | 38 | 165 | 27 | 192 | 65 | 50  | 41 | 86.6  | 4.2 | 2.5 | 4.7 | 4737  | 153 | 4.0 | 123.8 | 171.0 | 4.5 | 110.8 | 239.0 | 6.3 | 79.3  | 332.0 | 8.8 | 57.1  | 38.9%  |
| 187 | 115 | 4  | 119 | 12 | 107 | 27 | 80  | 39 | 35  | 45 | 58.8  | 2.0 | 1.3 | 2.7 | 7650  | 224 | 3.7 | 136.6 | 267.0 | 4.4 | 114.6 | 313.0 | 5.1 | 97.8  | 391.0 | 6.4 | 78.3  | 24.9%  |
| 188 | 143 | 15 | 158 | 18 | 140 | 23 | 163 | 5  | 20  | 55 | 67.1  | 3.1 | 2.2 | 4.0 | 8195  | 265 | 4.0 | 123.7 | 329.0 | 5.0 | 99.6  | 383.0 | 5.8 | 85.6  | 529.0 | 8.1 | 62.0  | 38.1%  |
| 189 | 198 | 0  | 198 | 28 | 170 | 21 | 149 | 49 | 49  | 15 | 30.6  | 1.7 | 1.2 | 2.4 | 4905  | 211 | 5.4 | 93.0  | 237.0 | 6.0 | 82.8  | 257.0 | 6.5 | 76.3  | 304.0 | 7.7 | 64.5  | 18.3%  |
| 191 | 81  | 22 | 103 | 18 | 121 | 12 | 109 | 6  | 28  | 83 | 62.8  | 3.0 | 1.7 | 3.9 | 13208 | 336 | 3.2 | 157.2 | 430.0 | 4.1 | 122.9 | 565.0 | 5.3 | 93.5  | 746.0 | 7.1 | 70.8  | 32.0%  |
| 192 | 91  | 19 | 110 | 12 | 98  | 10 | 108 | 2  | 17  | 71 | 70.9  | 2.9 | 2.0 | 3.8 | 10018 | 261 | 3.3 | 153.5 | 333.0 | 4.2 | 120.3 | 403.0 | 5.0 | 99.4  | 565.0 | 7.0 | 70.9  | 40.2%  |
| 193 | 59  | 14 | 73  | 23 | 50  | 46 | 96  | 23 | 37  | 19 | 93.4  | 3.2 | 2.6 | 4.0 | 2034  | 45  | 2.8 | 180.8 | 58.0  | 3.6 | 140.3 | 68.0  | 4.2 | 119.6 | 110.0 | 6.8 | 74.0  | 61.8%  |
| 197 | 13  | 0  | 13  | 8  | 5   | 44 | 49  | 36 | 36  | 24 | 57.5  | 3.4 | 3.0 | 3.7 | 4171  | 65  | 1.9 | 256.7 | 77.0  | 2.3 | 216.7 | 90.0  | 2.7 | 185.4 | 190.0 | 5.7 | 87.8  | 111.1% |
| 199 | 193 | 16 | 177 | 38 | 139 | 60 | 79  | 98 | 114 | 9  | 27.0  | 0.9 | 0.6 | 1.4 | 3329  | 134 | 5.0 | 99.4  | 146.0 | 5.5 | 91.2  | 155.0 | 5.8 | 85.9  | 170.0 | 6.4 | 78.3  | 9.7%   |
| 202 | 110 | 15 | 125 | 53 | 178 | 4  | 182 | 57 | 72  | 49 | 93.4  | 4.0 | 1.8 | 4.9 | 5245  | 148 | 3.5 | 141.8 | 188.0 | 4.5 | 111.6 | 281.0 | 6.7 | 74.7  | 355.0 | 8.5 | 59.1  | 26.3%  |
| 203 | 137 | 8  | 145 | 30 | 175 | 21 | 196 | 51 | 59  | 42 | 96.0  | 4.1 | 2.3 | 4.9 | 4373  | 139 | 4.0 | 125.8 | 168.0 | 4.8 | 104.1 | 233.0 | 6.7 | 75.1  | 312.0 | 8.9 | 56.1  | 33.9%  |
| 204 | 203 | 4  | 199 | 26 | 173 | 4  | 177 | 22 | 26  | 16 | 75.2  | 2.2 | 1.7 | 2.8 | 2127  | 95  | 5.6 | 89.6  | 104.0 | 6.1 | 81.8  | 113.0 | 6.6 | 75.3  | 142.0 | 8.3 | 59.9  | 25.7%  |
| 205 | 174 | 17 | 191 | 1  | 192 | 21 | 171 | 20 | 3   | 26 | 65.1  | 2.4 | 1.2 | 3.5 | 3992  | 147 | 4.6 | 108.6 | 184.0 | 5.8 | 86.8  | 221.0 | 6.9 | 72.3  | 260.0 | 8.1 | 61.4  | 17.6%  |
| 209 | 87  | 8  | 79  | 26 | 53  | 51 | 104 | 25 | 17  | 17 | 73.2  | 3.2 | 2.7 | 3.7 | 2321  | 60  | 3.2 | 154.7 | 69.0  | 3.7 | 134.6 | 78.0  | 4.2 | 119.0 | 128.0 | 6.9 | 72.5  | 64.1%  |
| 210 | 111 | 11 | 122 | 1  | 123 | 52 | 71  | 51 | 40  | 18 | 43.5  | 1.8 | 0.8 | 2.7 | 4135  | 118 | 3.6 | 140.2 | 146.0 | 4.4 | 113.3 | 178.0 | 5.4 | 92.9  | 206.0 | 6.2 | 80.3  | 15.7%  |
| 211 | 33  | 3  | 36  | 2  | 38  | 29 | 67  | 31 | 34  | 17 | 47.2  | 3.3 | 2.2 | 3.8 | 3604  | 67  | 2.3 | 215.2 | 83.0  | 2.9 | 173.7 | 114.0 | 4.0 | 126.5 | 177.0 | 6.1 | 81.4  | 55.3%  |
| 213 | 86  | 2  | 88  | 6  | 94  | 32 | 126 | 38 | 40  | 16 | 53.9  | 3.6 | 2.5 | 4.3 | 2969  | 76  | 3.2 | 156.3 | 91.0  | 3.8 | 130.5 | 118.0 | 5.0 | 100.6 | 177.0 | 7.5 | 67.1  | 50.0%  |
| 214 | 159 | 25 | 134 | 21 | 113 | 28 | 85  | 49 | 74  | 26 | 43.5  | 1.9 | 1.3 | 2.2 | 5983  | 206 | 4.3 | 116.2 | 219.0 | 4.6 | 109.3 | 251.0 | 5.2 | 95.3  | 311.0 | 6.5 | 77.0  | 23.9%  |
| 215 | 123 | 9  | 114 | 41 | 73  | 15 | 88  | 26 | 35  | 13 | 59.2  | 2.4 | 2.0 | 2.8 | 2197  | 68  | 3.9 | 129.2 | 75.0  | 4.3 | 117.2 | 81.0  | 4.6 | 108.5 | 117.0 | 6.7 | 75.1  | 44.4%  |
| 217 | 23  | 3  | 20  | 14 | 6   | 2  | 8   | 12 | 15  | 34 | 66.5  | 1.3 | 1.1 | 1.8 | 5109  | 87  | 2.1 | 234.9 | 105.0 | 2.6 | 194.6 | 113.0 | 2.8 | 180.8 | 159.0 | 3.9 | 128.5 | 40.7%  |
| 218 | 68  | 8  | 60  | 0  | 60  | 32 | 92  | 32 | 24  | 47 | 76.6  | 3.3 | 2.4 | 3.8 | 6136  | 143 | 2.9 | 171.6 | 166.0 | 3.4 | 147.9 | 212.0 | 4.3 | 115.8 | 329.0 | 6.7 | 74.6  | 55.2%  |
| 219 | 69  | 6  | 63  | 22 | 41  | 36 | 77  | 14 | 8   | 13 | 43.0  | 2.9 | 2.2 | 3.3 | 3023  | 72  | 3.0 | 167.9 | 82.0  | 3.4 | 147.5 | 98.0  | 4.1 | 123.4 | 152.0 | 6.3 | 79.6  | 55.1%  |
| 224 | 151 | 11 | 140 | 26 | 114 | 29 | 143 | 3  | 8   | 24 | 75.8  | 3.0 | 2.4 | 3.5 | 3166  | 104 | 4.1 | 121.8 | 118.0 | 4.7 | 107.3 | 133.0 | 5.3 | 95.2  | 193.0 | 7.6 | 65.6  | 45.1%  |
| 225 | 186 | 7  | 179 | 6  | 185 | 2  | 183 | 4  | 3   | 21 | 63.0  | 3.0 | 1.7 | 3.7 | 3334  | 126 | 4.7 | 105.8 | 147.0 | 5.5 | 90.7  | 181.0 | 6.8 | 73.7  | 226.0 | 8.5 | 59.0  | 24.9%  |
|     |     |    |     |    |     |    |     |    |     |    |       |     |     |     |       |     |     |       |       |     |       |       |     |       |       |     |       |        |

| 226 | 146 | 15 | 161 | 0   | 161 | 37 | 124 | 37  | 22  | 19  | 53.3  | 2.2 | 1.2 | 3.4 | 3564  | 116 | 4.1 | 122.9  | 148.0 | 5.2 | 96.3  | 177.0  | 6.2 | 80.5  | 212.0  | 7.4 | 67.2  | 19.8% |
|-----|-----|----|-----|-----|-----|----|-----|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|--------|-------|-----|-------|--------|-----|-------|--------|-----|-------|-------|
| 227 | 172 | 39 | 133 | 49  | 84  | 39 | 45  | 88  | 127 | 5   | 22.6  | 1.0 | 0.7 | 1.0 | 2214  | 81  | 4.6 | 109.3  | 81.0  | 4.6 | 109.3 | 86.0   | 4.9 | 103.0 | 99.0   | 5.6 | 89.5  | 15.1% |
| 230 | 97  | 32 | 129 | 37  | 166 | 45 | 121 | 8   | 24  | 12  | 48.4  | 2.8 | 1.0 | 4.0 | 2478  | 66  | 3.3 | 150.2  | 90.0  | 4.5 | 110.1 | 126.0  | 6.4 | 78.7  | 145.0  | 7.3 | 68.4  | 15.1% |
| 231 | 104 | 20 | 84  | 2   | 86  | 13 | 73  | 11  | 31  | 20  | 50.6  | 2.5 | 1.4 | 2.8 | 3952  | 109 | 3.4 | 145.0  | 120.0 | 3.8 | 131.7 | 154.0  | 4.9 | 102.6 | 198.0  | 6.3 | 79.8  | 28.6% |
| 232 | 148 | 4  | 144 | 6   | 150 | 3  | 147 | 3   | 1   | 30  | 79.5  | 2.9 | 1.7 | 3.6 | 3772  | 123 | 4.1 | 122.7  | 144.0 | 4.8 | 104.8 | 182.0  | 6.0 | 82.9  | 232.0  | 7.7 | 65.0  | 27.5% |
| 233 | 2   | 0  | 2   | 9   | 11  | 19 | 30  | 28  | 28  | 29  | 139.8 | 3.5 | 2.1 | 4.6 | 2074  | 7   | 0.4 | 1185.1 | 26.0  | 1.6 | 319.1 | 49.0   | 3.0 | 169.3 | 84.0   | 5.1 | 98.8  | 71.4% |
| 236 | 180 | 32 | 148 | 3   | 145 | 17 | 162 | 14  | 18  | 30  | 60.4  | 3.2 | 2.1 | 3.4 | 4964  | 185 | 4.7 | 107.3  | 194.0 | 4.9 | 102.4 | 238.0  | 6.0 | 83.4  | 320.0  | 8.1 | 62.1  | 34.5% |
| 238 | 56  | 9  | 65  | 9   | 74  | 4  | 70  | 5   | 14  | 25  | 78.6  | 2.8 | 1.6 | 3.5 | 3182  | 69  | 2.7 | 184.5  | 87.0  | 3.4 | 146.3 | 118.0  | 4.6 | 107.9 | 158.0  | 6.2 | 80.6  | 33.9% |
| 240 | 204 | 1  | 203 | 9   | 194 | 24 | 170 | 33  | 34  | 12  | 42.0  | 1.7 | 1.1 | 2.5 | 2856  | 130 | 5.7 | 87.9   | 147.0 | 6.4 | 77.7  | 160.0  | 7.0 | 71.4  | 186.0  | 8.1 | 61.4  | 16.3% |
| 242 | 96  | 6  | 90  | 11  | 101 | 1  | 102 | 12  | 6   | 123 | 46.4  | 3.0 | 1.8 | 3.5 | 26496 | 705 | 3.3 | 150.3  | 823.0 | 3.9 | 128.8 | 1071.0 | 5.1 | 99.0  | 1455.0 | 6.9 | 72.8  | 35.9% |
| 246 | 29  | 14 | 15  | 15  | 30  | 60 | 90  | 75  | 61  | 20  | 74.7  | 4.3 | 2.9 | 4.4 | 2679  | 49  | 2.3 | 218.7  | 50.0  | 2.3 | 214.3 | 81.0   | 3.8 | 132.3 | 143.0  | 6.7 | 74.9  | 76.5% |
| 247 | 155 | 10 | 165 | 2   | 167 | 25 | 142 | 23  | 13  | 39  | 52.1  | 2.4 | 1.2 | 3.4 | 7483  | 252 | 4.2 | 118.8  | 315.0 | 5.3 | 95.0  | 383.0  | 6.4 | 78.2  | 456.0  | 7.6 | 65.6  | 19.1% |
| 248 | 164 | 43 | 121 | 36  | 85  | 32 | 117 | 4   | 47  | 21  | 86.0  | 2.8 | 2.3 | 2.8 | 2441  | 86  | 4.4 | 113.5  | 86.0  | 4.4 | 113.5 | 95.0   | 4.9 | 102.8 | 140.0  | 7.2 | 69.7  | 47.4% |
| 249 | 160 | 4  | 164 | 27  | 191 | 26 | 165 | 1   | 5   | 35  | 74.9  | 2.9 | 1.2 | 3.8 | 4673  | 161 | 4.3 | 116.1  | 196.0 | 5.2 | 95.4  | 258.0  | 6.9 | 72.4  | 303.0  | 8.1 | 61.7  | 17.4% |
| 250 | 8   | 14 | 22  | 2   | 24  | 5  | 19  | 3   | 11  | 14  | 54.9  | 2.0 | 1.1 | 2.7 | 2551  | 38  | 1.9 | 268.5  | 53.0  | 2.6 | 192.5 | 72.0   | 3.5 | 141.7 | 94.0   | 4.6 | 108.6 | 30.6% |
| 254 | 45  | 7  | 52  | 12  | 64  | 49 | 113 | 61  | 68  | 32  | 81.1  | 3.9 | 2.8 | 4.7 | 3947  | 79  | 2.5 | 199.8  | 103.0 | 3.3 | 153.3 | 139.0  | 4.4 | 113.6 | 226.0  | 7.2 | 69.9  | 62.6% |
| 255 | 79  | 28 | 51  | 14  | 65  | 30 | 35  | 16  | 44  | 15  | 39.8  | 2.0 | 0.9 | 2.1 | 3766  | 95  | 3.2 | 158.6  | 98.0  | 3.3 | 153.7 | 133.0  | 4.4 | 113.3 | 159.0  | 5.3 | 94.7  | 19.5% |
| 256 | 89  | 49 | 138 | 1   | 137 | 9  | 146 | 8   | 57  | 38  | 67.7  | 3.0 | 1.9 | 4.4 | 5613  | 146 | 3.3 | 153.8  | 208.0 | 4.6 | 107.9 | 257.0  | 5.7 | 87.4  | 344.0  | 7.7 | 65.3  | 33.9% |
| 258 | 61  | 26 | 35  | 116 | 151 | 55 | 206 | 171 | 145 | 17  | 67.3  | 6.8 | 3.6 | 6.8 | 2527  | 57  | 2.8 | 177.3  | 58.0  | 2.9 | 174.3 | 122.0  | 6.0 | 82.9  | 195.0  | 9.6 | 51.8  | 59.8% |
| 259 | 67  | 19 | 48  | 11  | 37  | 13 | 50  | 2   | 17  | 44  | 43.1  | 2.5 | 1.8 | 2.9 | 10214 | 234 | 2.9 | 174.6  | 265.0 | 3.2 | 154.2 | 320.0  | 3.9 | 127.7 | 467.0  | 5.7 | 87.5  | 45.9% |
| 261 | 40  | 8  | 32  | 6   | 26  | 3  | 29  | 3   | 11  | 57  | 46.8  | 2.2 | 1.4 | 2.5 | 12181 | 241 | 2.5 | 202.2  | 271.0 | 2.8 | 179.8 | 355.0  | 3.6 | 137.3 | 487.0  | 5.0 | 100.0 | 37.2% |
| 262 | 6   | 13 | 19  | 10  | 9   | 8  | 17  | 2   | 11  | 11  | 21.1  | 2.0 | 1.7 | 3.0 | 5205  | 65  | 1.6 | 320.3  | 106.0 | 2.5 | 196.4 | 120.0  | 2.9 | 173.5 | 189.0  | 4.5 | 110.2 | 57.5% |
| 263 | 102 | 6  | 96  | 20  | 116 | 61 | 55  | 41  | 47  | 12  | 38.2  | 2.0 | 0.7 | 2.5 | 3141  | 86  | 3.4 | 146.1  | 100.0 | 4.0 | 125.6 | 132.0  | 5.3 | 95.2  | 149.0  | 5.9 | 84.3  | 12.9% |
| 264 | 187 | 1  | 186 | 5   | 181 | 7  | 188 | 2   | 1   | 38  | 68.0  | 3.1 | 1.9 | 3.9 | 5588  | 214 | 4.8 | 104.4  | 251.0 | 5.6 | 89.1  | 301.0  | 6.7 | 74.3  | 388.0  | 8.7 | 57.6  | 28.9% |
| 265 | 21  | 6  | 27  | 22  | 49  | 2  | 51  | 24  | 30  | 28  | 57.5  | 3.0 | 1.6 | 3.6 | 4869  | 81  | 2.1 | 240.4  | 105.0 | 2.7 | 185.5 | 162.0  | 4.2 | 120.2 | 223.0  | 5.7 | 87.3  | 37.7% |
| 266 | 171 | 13 | 184 | 13  | 171 | 14 | 157 | 27  | 14  | 34  | 56.8  | 2.4 | 1.4 | 3.4 | 5986  | 218 | 4.6 | 109.8  | 267.0 | 5.6 | 89.7  | 316.0  | 6.6 | 75.8  | 382.0  | 8.0 | 62.7  | 20.9% |
| 267 | 30  | 7  | 37  | 15  | 22  | 7  | 15  | 22  | 15  | 15  | 44.3  | 1.5 | 1.0 | 2.1 | 3384  | 62  | 2.3 | 218.3  | 79.0  | 2.9 | 171.3 | 93.0   | 3.4 | 145.5 | 119.0  | 4.4 | 113.7 | 28.0% |
| 276 | 85  | 4  | 89  | 22  | 111 | 1  | 112 | 23  | 27  | 118 | 77.6  | 3.3 | 1.9 | 4.0 | 15199 | 389 | 3.2 | 156.3  | 470.0 | 3.9 | 129.4 | 634.0  | 5.2 | 95.9  | 870.0  | 7.2 | 69.9  | 37.2% |
| 280 | 77  | 5  | 72  | 5   | 67  | 84 | 151 | 79  | 74  | 24  | 101.3 | 4.3 | 3.3 | 4.7 | 2370  | 59  | 3.1 | 160.7  | 67.0  | 3.5 | 141.5 | 85.0   | 4.5 | 111.5 | 148.0  | 7.8 | 64.1  | 74.1% |
| 281 | 182 | 10 | 192 | 3   | 189 | 5  | 184 | 8   | 2   | 59  | 72.8  | 2.7 | 1.7 | 3.8 | 8101  | 302 | 4.7 | 107.3  | 375.0 | 5.8 | 86.4  | 443.0  | 6.8 | 73.1  | 551.0  | 8.5 | 58.8  | 24.4% |
| 282 | 11  | 11 | 22  | 1   | 23  | 19 | 42  | 20  | 31  | 18  | 70.6  | 2.9 | 2.1 | 3.6 | 2551  | 39  | 1.9 | 261.6  | 53.0  | 2.6 | 192.5 | 71.0   | 3.5 | 143.7 | 113.0  | 5.5 | 90.3  | 59.2% |
| 284 | 18  | 8  | 10  | 5   | 15  | 5  | 10  | 0   | 8   | 23  | 24.3  | 1.8 | 0.9 | 2.0 | 9452  | 154 | 2.0 | 245.5  | 168.0 | 2.2 | 225.0 | 231.0  | 3.1 | 163.7 | 302.0  | 4.0 | 125.2 | 30.7% |

| 285 | 162 | 11 | 151 | 23 | 128 | 1  | 127 | 24  | 35  | 22  | 71.3  | 2.6 | 1.9 | 3.1 | 3084  | 107 | 4.3 | 115.3  | 121.0 | 4.9 | 102.0 | 137.0 | 5.6 | 90.0  | 184.0 | 7.5 | 67.0  | 34.3% |
|-----|-----|----|-----|----|-----|----|-----|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|--------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|
| 288 | 178 | 16 | 162 | 10 | 172 | 31 | 141 | 21  | 37  | 17  | 45.6  | 2.4 | 1.0 | 3.0 | 3727  | 138 | 4.6 | 108.0  | 155.0 | 5.2 | 96.2  | 197.0 | 6.6 | 75.7  | 227.0 | 7.6 | 65.7  | 15.2% |
| 290 | 64  | 5  | 69  | 2  | 71  | 18 | 53  | 16  | 11  | 25  | 47.1  | 2.3 | 1.2 | 2.9 | 5309  | 121 | 2.8 | 175.5  | 147.0 | 3.5 | 144.5 | 193.0 | 4.5 | 110.0 | 245.0 | 5.8 | 86.7  | 26.9% |
| 292 | 1   | 0  | 1   | 0  | 1   | 2  | 3   | 2   | 2   | 9   | 38.5  | 2.4 | 1.2 | 3.0 | 2338  | 6   | 0.3 | 1558.7 | 18.0  | 1.0 | 519.6 | 40.0  | 2.1 | 233.8 | 62.0  | 3.3 | 150.8 | 55.0% |
| 293 | 185 | 2  | 183 | 5  | 188 | 1  | 187 | 4   | 2   | 43  | 59.3  | 3.0 | 1.7 | 3.8 | 7257  | 274 | 4.7 | 105.9  | 323.0 | 5.6 | 89.9  | 396.0 | 6.8 | 73.3  | 496.0 | 8.5 | 58.5  | 25.3% |
| 297 | 16  | 4  | 12  | 9  | 21  | 0  | 21  | 9   | 5   | 89  | 42.9  | 2.4 | 1.4 | 2.7 | 20734 | 333 | 2.0 | 249.1  | 381.0 | 2.3 | 217.7 | 547.0 | 3.3 | 151.6 | 775.0 | 4.7 | 107.0 | 41.7% |
| 298 | 14  | 3  | 17  | 14 | 31  | 9  | 40  | 23  | 26  | 15  | 52.2  | 3.0 | 1.7 | 3.5 | 2874  | 46  | 2.0 | 249.9  | 56.0  | 2.4 | 205.3 | 87.0  | 3.8 | 132.1 | 126.0 | 5.5 | 91.2  | 44.8% |
| 299 | 175 | 6  | 169 | 13 | 182 | 3  | 179 | 10  | 4   | 57  | 70.5  | 3.1 | 1.7 | 3.8 | 8083  | 298 | 4.6 | 108.5  | 344.0 | 5.3 | 94.0  | 437.0 | 6.8 | 74.0  | 545.0 | 8.4 | 59.3  | 24.7% |
| 300 | 152 | 21 | 173 | 4  | 169 | 37 | 132 | 41  | 20  | 20  | 37.4  | 2.1 | 1.1 | 3.4 | 5350  | 178 | 4.2 | 120.2  | 231.0 | 5.4 | 92.6  | 277.0 | 6.5 | 77.3  | 322.0 | 7.5 | 66.5  | 16.2% |
| 302 | 60  | 35 | 95  | 2  | 97  | 28 | 69  | 26  | 9   | 13  | 45.4  | 2.2 | 1.2 | 3.4 | 2865  | 64  | 2.8 | 179.1  | 91.0  | 4.0 | 125.9 | 115.0 | 5.0 | 99.7  | 142.0 | 6.2 | 80.7  | 23.5% |
| 303 | 15  | 51 | 66  | 69 | 135 | 64 | 199 | 133 | 184 | 72  | 78.0  | 5.6 | 3.4 | 7.1 | 9228  | 148 | 2.0 | 249.4  | 254.0 | 3.4 | 145.3 | 417.0 | 5.6 | 88.5  | 671.0 | 9.1 | 55.0  | 60.9% |
| 304 | 127 | 66 | 193 | 15 | 208 | 1  | 207 | 14  | 80  | 33  | 105.8 | 4.1 | 2.2 | 6.1 | 3119  | 97  | 3.9 | 128.6  | 145.0 | 5.8 | 86.0  | 192.0 | 7.7 | 65.0  | 248.0 | 9.9 | 50.3  | 29.2% |
| 307 | 192 | 4  | 188 | 8  | 180 | 4  | 176 | 12  | 16  | 84  | 69.1  | 2.7 | 1.6 | 3.3 | 12163 | 488 | 5.0 | 99.7   | 551.0 | 5.7 | 88.3  | 653.0 | 6.7 | 74.5  | 812.0 | 8.3 | 59.9  | 24.3% |
| 308 | 112 | 19 | 131 | 11 | 142 | 6  | 136 | 5   | 24  | 33  | 66.3  | 3.0 | 1.7 | 3.9 | 4979  | 144 | 3.6 | 138.3  | 182.0 | 4.6 | 109.4 | 235.0 | 5.9 | 84.7  | 301.0 | 7.6 | 66.2  | 28.1% |
| 314 | 66  | 2  | 64  | 18 | 82  | 63 | 145 | 81  | 79  | 29  | 74.6  | 4.2 | 2.9 | 4.8 | 3887  | 89  | 2.9 | 174.7  | 106.0 | 3.4 | 146.7 | 148.0 | 4.8 | 105.1 | 238.0 | 7.7 | 65.3  | 60.8% |
| 316 | 181 | 11 | 170 | 7  | 177 | 3  | 174 | 4   | 7   | 74  | 75.4  | 3.0 | 1.6 | 3.6 | 9819  | 366 | 4.7 | 107.3  | 418.0 | 5.3 | 94.0  | 524.0 | 6.7 | 75.0  | 652.0 | 8.3 | 60.2  | 24.4% |
| 318 | 75  | 1  | 74  | 4  | 78  | 6  | 84  | 10  | 9   | 36  | 86.5  | 2.9 | 1.8 | 3.4 | 4164  | 103 | 3.1 | 161.7  | 120.0 | 3.6 | 138.8 | 157.0 | 4.7 | 106.1 | 216.0 | 6.5 | 77.1  | 37.6% |
| 320 | 12  | 8  | 4   | 8  | 12  | 13 | 25  | 21  | 13  | 18  | 52.8  | 2.9 | 1.8 | 2.9 | 3409  | 53  | 1.9 | 257.3  | 54.0  | 2.0 | 252.5 | 82.0  | 3.0 | 166.3 | 132.0 | 4.8 | 103.3 | 61.0% |
| 321 | 28  | 42 | 70  | 33 | 103 | 49 | 54  | 16  | 26  | 10  | 35.5  | 2.4 | 0.8 | 3.6 | 2815  | 51  | 2.3 | 220.8  | 78.0  | 3.5 | 144.4 | 114.0 | 5.1 | 98.8  | 132.0 | 5.9 | 85.3  | 15.8% |
| 322 | 46  | 6  | 40  | 11 | 29  | 33 | 62  | 22  | 16  | 23  | 88.7  | 3.0 | 2.3 | 3.6 | 2594  | 52  | 2.5 | 199.5  | 64.0  | 3.1 | 162.1 | 78.0  | 3.8 | 133.0 | 126.0 | 6.1 | 82.3  | 61.5% |
| 324 | 134 | 25 | 159 | 17 | 176 | 2  | 178 | 19  | 44  | 72  | 93.7  | 3.3 | 1.7 | 4.4 | 7683  | 243 | 4.0 | 126.5  | 309.0 | 5.0 | 99.5  | 410.0 | 6.7 | 75.0  | 513.0 | 8.3 | 59.9  | 25.1% |
| 325 | 36  | 15 | 21  | 7  | 14  | 0  | 14  | 7   | 22  | 15  | 28.5  | 1.8 | 1.3 | 1.9 | 5271  | 102 | 2.4 | 206.7  | 109.0 | 2.6 | 193.4 | 128.0 | 3.0 | 164.7 | 183.0 | 4.3 | 115.2 | 43.0% |
| 326 | 93  | 7  | 86  | 50 | 36  | 14 | 22  | 64  | 71  | 7   | 27.1  | 0.9 | 0.8 | 1.4 | 2586  | 68  | 3.3 | 152.1  | 79.0  | 3.8 | 130.9 | 81.0  | 3.9 | 127.7 | 97.0  | 4.7 | 106.6 | 19.8% |
| 327 | 80  | 27 | 53  | 7  | 46  | 11 | 57  | 4   | 23  | 16  | 64.5  | 2.7 | 1.8 | 2.8 | 2480  | 63  | 3.2 | 157.5  | 65.0  | 3.3 | 152.6 | 82.0  | 4.1 | 121.0 | 118.0 | 5.9 | 84.1  | 43.9% |
| 328 | 207 | 1  | 206 | 7  | 199 | 5  | 204 | 2   | 3   | 14  | 49.6  | 2.7 | 2.1 | 3.4 | 2820  | 135 | 6.0 | 83.6   | 150.0 | 6.6 | 75.2  | 163.0 | 7.2 | 69.2  | 211.0 | 9.4 | 53.5  | 29.4% |
| 332 | 10  | 3  | 7   | 3  | 4   | 5  | 9   | 2   | 1   | 30  | 35.7  | 1.8 | 1.3 | 2.1 | 8402  | 126 | 1.9 | 266.7  | 142.0 | 2.1 | 236.7 | 179.0 | 2.7 | 187.8 | 264.0 | 3.9 | 127.3 | 47.5% |
| 333 | 177 | 5  | 182 | 13 | 195 | 6  | 189 | 7   | 12  | 106 | 78.2  | 3.2 | 1.7 | 4.1 | 13557 | 501 | 4.6 | 108.2  | 602.0 | 5.6 | 90.1  | 760.0 | 7.0 | 71.4  | 946.0 | 8.7 | 57.3  | 24.5% |
| 335 | 103 | 1  | 104 | 2  | 102 | 7  | 95  | 9   | 8   | 51  | 63.6  | 2.6 | 1.7 | 3.3 | 8013  | 221 | 3.4 | 145.0  | 264.0 | 4.1 | 121.4 | 324.0 | 5.1 | 98.9  | 433.0 | 6.8 | 74.0  | 33.6% |
| 336 | 94  | 38 | 132 | 12 | 120 | 2  | 118 | 14  | 24  | 15  | 50.8  | 2.6 | 1.9 | 3.9 | 2953  | 78  | 3.3 | 151.4  | 108.0 | 4.6 | 109.4 | 125.0 | 5.3 | 94.5  | 170.0 | 7.2 | 69.5  | 36.0% |
| 337 | 32  | 18 | 14  | 3  | 17  | 10 | 27  | 13  | 5   | 22  | 52.4  | 2.6 | 1.8 | 2.6 | 4202  | 78  | 2.3 | 215.5  | 78.0  | 2.3 | 215.5 | 106.0 | 3.2 | 158.6 | 165.0 | 4.9 | 101.9 | 55.7% |
| 340 | 132 | 2  | 130 | 5  | 125 | 24 | 101 | 29  | 31  | 29  | 59.9  | 2.3 | 1.4 | 2.9 | 4844  | 153 | 3.9 | 126.6  | 177.0 | 4.6 | 109.5 | 210.0 | 5.4 | 92.3  | 266.0 | 6.9 | 72.8  | 26.7% |
| 341 | 27  | 34 | 61  | 22 | 39  | 7  | 46  | 15  | 19  | 30  | 78.8  | 2.2 | 1.6 | 3.4 | 3806  | 67  | 2.2 | 227.2  | 103.0 | 3.4 | 147.8 | 122.0 | 4.0 | 124.8 | 171.0 | 5.6 | 89.0  | 40.2% |

| 342 | 150 | 3  | 147 | 23 | 124 | 26  | 150 | 3   | 0   | 22 | 85.0  | 2.9 | 2.4 | 3.7 | 2588 | 85  | 4.1 | 121.8 | 101.0 | 4.9 | 102.5 | 112.0 | 5.4 | 92.4  | 161.0 | 7.8 | 64.3  | 43.8%  |
|-----|-----|----|-----|----|-----|-----|-----|-----|-----|----|-------|-----|-----|-----|------|-----|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|--------|
| 343 | 118 | 27 | 91  | 21 | 70  | 13  | 83  | 8   | 35  | 25 | 59.6  | 2.6 | 1.9 | 2.7 | 4193 | 126 | 3.8 | 133.1 | 131.0 | 3.9 | 128.0 | 152.0 | 4.5 | 110.3 | 217.0 | 6.5 | 77.3  | 42.8%  |
| 344 | 20  | 11 | 9   | 10 | 19  | 7   | 12  | 3   | 8   | 15 | 37.1  | 2.0 | 1.0 | 2.1 | 4040 | 66  | 2.0 | 244.8 | 69.0  | 2.1 | 234.2 | 103.0 | 3.2 | 156.9 | 134.0 | 4.1 | 120.6 | 30.1%  |
| 347 | 169 | 9  | 178 | 18 | 196 | 5   | 201 | 23  | 32  | 61 | 78.6  | 3.7 | 2.1 | 4.7 | 7764 | 279 | 4.5 | 111.3 | 341.0 | 5.5 | 91.1  | 438.0 | 7.1 | 70.9  | 570.0 | 9.2 | 54.5  | 30.1%  |
| 348 | 51  | 5  | 56  | 9  | 47  | 9   | 56  | 0   | 5   | 40 | 69.7  | 2.6 | 1.8 | 3.4 | 5743 | 118 | 2.6 | 194.7 | 154.0 | 3.4 | 149.2 | 190.0 | 4.1 | 120.9 | 273.0 | 5.9 | 84.1  | 43.7%  |
| 350 | 147 | 29 | 118 | 35 | 83  | 39  | 44  | 74  | 103 | 31 | 79.5  | 1.2 | 0.7 | 1.5 | 3897 | 127 | 4.1 | 122.7 | 136.0 | 4.4 | 114.6 | 151.0 | 4.8 | 103.2 | 173.0 | 5.5 | 90.1  | 14.6%  |
| 351 | 161 | 7  | 168 | 16 | 152 | 29  | 123 | 45  | 38  | 29 | 70.3  | 2.1 | 1.3 | 3.1 | 4124 | 143 | 4.3 | 115.4 | 175.0 | 5.3 | 94.3  | 200.0 | 6.1 | 82.5  | 244.0 | 7.4 | 67.6  | 22.0%  |
| 352 | 183 | 7  | 190 | 6  | 184 | 9   | 175 | 15  | 8   | 27 | 112.6 | 2.6 | 1.6 | 3.7 | 2397 | 90  | 4.7 | 106.5 | 110.0 | 5.7 | 87.2  | 130.0 | 6.8 | 73.8  | 160.0 | 8.3 | 59.9  | 23.1%  |
| 353 | 19  | 5  | 24  | 3  | 27  | 110 | 137 | 113 | 118 | 45 | 74.9  | 5.0 | 3.9 | 5.5 | 6007 | 98  | 2.0 | 245.2 | 126.0 | 2.6 | 190.7 | 178.0 | 3.7 | 135.0 | 364.0 | 7.6 | 66.0  | 104.5% |
| 354 | 72  | 22 | 94  | 18 | 76  | 18  | 58  | 36  | 14  | 42 | 61.6  | 2.0 | 1.3 | 2.9 | 6822 | 167 | 3.1 | 163.4 | 216.0 | 4.0 | 126.3 | 256.0 | 4.7 | 106.6 | 326.0 | 6.0 | 83.7  | 27.3%  |
| 355 | 71  | 14 | 57  | 24 | 33  | 7   | 26  | 31  | 45  | 7  | 28.5  | 1.5 | 1.1 | 1.8 | 2459 | 60  | 3.1 | 163.9 | 66.0  | 3.4 | 149.0 | 75.0  | 3.8 | 131.1 | 96.0  | 4.9 | 102.5 | 28.0%  |
| 356 | 107 | 10 | 97  | 7  | 90  | 104 | 194 | 97  | 87  | 43 | 73.7  | 4.8 | 3.9 | 5.4 | 5838 | 162 | 3.5 | 144.1 | 186.0 | 4.0 | 125.5 | 229.0 | 4.9 | 102.0 | 412.0 | 8.8 | 56.7  | 79.9%  |
| 357 | 153 | 2  | 155 | 5  | 160 | 45  | 205 | 50  | 52  | 38 | 122.3 | 4.4 | 3.2 | 5.2 | 3108 | 104 | 4.2 | 119.5 | 124.0 | 5.0 | 100.3 | 154.0 | 6.2 | 80.7  | 234.0 | 9.4 | 53.1  | 51.9%  |
| 358 | 114 | 21 | 93  | 29 | 122 | 68  | 190 | 97  | 76  | 31 | 80.4  | 4.8 | 3.4 | 5.1 | 3855 | 112 | 3.6 | 137.7 | 121.0 | 3.9 | 127.4 | 165.0 | 5.4 | 93.5  | 269.0 | 8.7 | 57.3  | 63.0%  |
| 360 | 55  | 10 | 45  | 5  | 40  | 9   | 31  | 14  | 24  | 19 | 55.5  | 2.0 | 1.1 | 2.4 | 3426 | 74  | 2.7 | 185.2 | 86.0  | 3.1 | 159.3 | 110.0 | 4.0 | 124.6 | 141.0 | 5.1 | 97.2  | 28.2%  |
| 362 | 157 | 0  | 157 | 19 | 138 | 26  | 164 | 7   | 7   | 18 | 68.1  | 3.1 | 2.3 | 3.8 | 2643 | 90  | 4.3 | 117.5 | 106.0 | 5.0 | 99.7  | 123.0 | 5.8 | 86.0  | 171.0 | 8.1 | 61.8  | 39.0%  |
| 364 | 73  | 5  | 78  | 32 | 110 | 23  | 133 | 55  | 60  | 26 | 122.5 | 3.8 | 2.4 | 4.5 | 2123 | 52  | 3.1 | 163.3 | 63.0  | 3.7 | 134.8 | 88.0  | 5.2 | 96.5  | 128.0 | 7.5 | 66.3  | 45.5%  |
| 365 | 50  | 21 | 29  | 16 | 13  | 11  | 24  | 5   | 26  | 33 | 54.7  | 2.0 | 1.7 | 2.2 | 6029 | 123 | 2.6 | 196.1 | 132.0 | 2.7 | 182.7 | 146.0 | 3.0 | 165.2 | 229.0 | 4.7 | 105.3 | 56.8%  |
| 366 | 98  | 14 | 112 | 8  | 104 | 52  | 156 | 44  | 58  | 38 | 133.9 | 3.7 | 2.9 | 4.6 | 2837 | 76  | 3.3 | 149.3 | 96.0  | 4.2 | 118.2 | 115.0 | 5.1 | 98.7  | 181.0 | 8.0 | 62.7  | 57.4%  |
| 367 | 190 | 23 | 167 | 5  | 162 | 31  | 193 | 26  | 3   | 32 | 64.3  | 3.5 | 2.5 | 3.9 | 4975 | 195 | 4.9 | 102.1 | 211.0 | 5.3 | 94.3  | 249.0 | 6.3 | 79.9  | 350.0 | 8.8 | 56.9  | 40.6%  |
| 370 | 106 | 6  | 100 | 4  | 96  | 29  | 125 | 25  | 19  | 25 | 117.2 | 3.4 | 2.5 | 4.0 | 2133 | 59  | 3.5 | 144.6 | 69.0  | 4.0 | 123.7 | 85.0  | 5.0 | 100.4 | 127.0 | 7.4 | 67.2  | 49.4%  |
| 377 | 105 | 34 | 71  | 63 | 134 | 51  | 185 | 114 | 80  | 38 | 116.6 | 5.0 | 2.9 | 5.1 | 3259 | 90  | 3.5 | 144.8 | 91.0  | 3.5 | 143.3 | 147.0 | 5.6 | 88.7  | 222.0 | 8.5 | 58.7  | 51.0%  |
| 380 | 78  | 10 | 68  | 47 | 115 | 5   | 110 | 42  | 32  | 58 | 82.6  | 3.6 | 1.8 | 4.0 | 7021 | 176 | 3.1 | 159.6 | 194.0 | 3.5 | 144.8 | 295.0 | 5.3 | 95.2  | 398.0 | 7.1 | 70.6  | 34.9%  |

## Appendix B: Map calculator commands, software used, and scripts.

Map Calculator Commands:

1. Isolating the flow accumulation data for a given sub-watershed:

([wshed20000] = 20).con([Facc], (0.asgrid/0.asgrid)).Int

(0.asgrid/0.asgrid) returns a [No Data] section for the remainder of the watershed. The "Int" command returns an integer grid which is essential for displaying the value/count grid attribute table.

2. Breaking a larger watershed area into smaller sub-watershed units for analysis: create coarse flow net: ( [flow accumulation] > 999).con(1.asgrid,0.asgrid) create stream links: ( [coarsenet] ).streamlink([flow direction]) create sub-watersheds: [flow direction].Watershed([streamLinkGrid])

3. Analyzing Stream Frequency at a given threshold value: Create flow net at desired threshold: ( [flow accumulation] > 81).con(1.asgrid,0.asgrid) Create streamlinks: ( [flownet81] ).streamlink([flow direction]) Summarize zones with sub-watershed as zonal theme, the result "Variety" contains the number of streams links in each subshed, #/Area gives stream frequency.

4. Calculating Flow Length, avoiding problems with parallel flow paths creating artificially high. Set the stream network to null in the flow direction grid, thus, all measurements are only to stream length, not downstream measurements.

5. Obtaining a grid from the vector Contour Crenulation network appropriate for overland flow length calculations and comparison with ANIM raster grids. First, thin the CCNEt: ([Ccnet]).thin(FALSE, FALSE, TRUE, 1) Calculate Flowdir\_nilchannel: ([ccnet\_thin]).setnull([Bb2\_dir]) Obtain overland flow length: ([Flowdir\_nilchannel]).flowlength(Nil, FALSE) 6. Producing the ridge accumulation weighting grid and use this grid as a weighting grid input into the flow accumulation routine:

```
Isolate ridgecells=grid:([Flow Accumulation] == 0)
Perform accumulation:
FlowDir.FlowAccumulation(ridgecellgrid)
```

Software Installation and use:

Install the MapWindow extension for ArcGIS available at: http://hydrology.neng.usu.edu/taudem/ Must un-select the option to "Check for Edge Contamination".

Identifying Outlet Point: outlet = con([facc] = max of flow acc., 1)

**B.1:** Avenue Script for automating the division of watersheds into sub-watershed units based on a minimum threshold for stream links, the identification of headwater sub-watersheds, and the calculation of flow lengths for each sub-watershed and ANIM.

```
' do a subshed theme based on streamlinks and given threshold
' takes as input a minimum threshold for determining sub-watershed
' analysis units, a prefix for output dbase files, a flow direction
' grid theme, and a flow accumulation theme.
' The ANIM networks to be analyzed should be selected at the time
' of script execution.
theView = av.GetActiveDoc
workdir = "C:\working\thesis\analysis\regional_T\nw10ha\"
tempDir = "C:\working\thesis\analysis\temp\"
' get minimum size
status = TRUE
while (status)
  minSize = MsgBox.Input("Enter the minimum number of"+NL+
                         "cells for a Stream Network:", "Stream
Network", "5000")
if (minSize = NIL) then return NIL end
  if (minSize.IsNumber and (minSize.AsNumber > 0)) then
    status = FALSE
  else
    status = TRUE
   MsqBox.Error("The minimum Stream Network size must be a number
greater than 0", "Watershed")
  end
end
' get file prefix
prefix = MsgBox.Input("Enter prefix for the output files:", "Prefix",
"pre_")
'Prompt for flow direction theme. zye 10/4
TheThms=av.run("hydro.GetThms", {TheView,false,GTheme})
TheFdirThm=msgbox.ChoiceAsString(TheThms, "Select the Flow Direction
grid theme", Script. The. GetName)
if(TheFdirThm=nil)then
   exit
end
FlowDir=TheFdirThm.GetGrid
'Prompt for flow Accum theme. zye 10/4
TheThms=av.run("hydro.GetThms", {TheView,false,GTheme}))
TheFaccThm=msgbox.ChoiceAsString(TheThms, "Select the Flow Accumulation
grid theme", Script. The. GetName)
if(TheFaccThm=nil)then
   exit
end
Faccum=TheFaccThm.GetGrid
```

```
'Faccum = FlowDir.FlowAccumulation(1.asGrid)
StreamNet = (Faccum < minSize.AsNumber.AsGrid).SetNull(1.AsGrid)</pre>
LinkNet=StreamNet.streamLink(FlowDir)
SubShedTheme=FlowDir.watershed(LinkNet)
' create a theme to add SubShed theme to view
gthm = GTheme.Make(SubShedTheme)
' set name of theme
gthm.SetName("SubShed " + minSize)
' add theme to the view
theView.AddTheme(gthm)
' get zone theme
zoneTargets = theView.GetActiveThemes
zoneObj = SubShedTheme.GetVTab
'get zone Field from zoneObj
zoneField = zoneObj.FindField("Value")
' get value theme
  for each zTarg in zoneTargets
    valueTheme = zTarq
    ' obtain grid from value theme and create VTab
    theGrid = valueTheme.GetGrid
    aPrj = theView.GetProjection
   bName = valueTheme.GetName
    aFN = (workdir + prefix + "_" + bName + "_" + minSize +
".dbf").AsFileName
    theVTab =
theGrid.ZonalStatsTable(SubShedTheme, aPrj, zoneField, FALSE, aFN)
    ' attempt to join a summary of the flow accum table
    ' to the summary of the stream network table
    ' in order to evaluate if it is a headwater subshed
    ' a headwater subshed will have its (max accum value + 1) equal to
its
    ' number of cells
   accumFileName = (tempDir + prefix + "_" + bName + "_acc_" + minSize
+ ".dbf").AsFileName
   theAccumTab =
Faccum.ZonalStatsTable(SubShedTheme, aPrj, zoneField, FALSE, accumFileName)
    ' now locate the Value fields
    theBitmap=theVTab.GetSelection
    theAccumTab.Query( "[Count] = ([Max] + 1)",
theBitmap,#vtab_seltype_new)
   NetVField=theVTab.FindField("Value")
    AccumVField=theAccumTab.FindField("Value")
    theVTab.Join(NetVField,theAccumTab,AccumVField)
    ' check for error during operation
    if (theVTab.HasError) then
      return NIL
    end
    zoneTable = Table.Make(theVTab)
    'zoneTable.GetWin.Activate
```

```
'accTable = Table.Make(theAccumTab)
'accTable.GetWin.Activate
theVTab.SetEditable(TRUE)
' add field indicating headwater, and set selected to be true
Apn = field.make("Headwater",#field_char,10,0)
'zFtab = zoneTable.GetFTab
theVTab.addfields({apn})
HWRecords = theVTab.GetSelection
hwfield = theVTab.FindField("Headwater")
for each rec in HWRecords
   theVTab.SetValue(hwfield, rec, "true")
end
theVTab.SetEditable(FALSE)
```

```
end
```