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Head Acceleration Measurements in Helmet-Helmet Impacts and the Youth Population 

 

Ray Winston Daniel II 

 

Abstract 
The research presented herein is an analysis of acceleration measurements of the head 

during helmet-helmet impacts, where a player’s helmet impacts another player’s helmet, 

and with a youth population in football. This research is aimed at advancing current 

understanding of impact biomechanics for two specialized groups. The first study is an 

observational analysis focusing on helmet-helmet impacts, and the difference in effective 

mass and head acceleration measurements between the striking player and the struck 

player. The study involved working with football players outfitted with a sensor 

integrated into their helmets containing a 6 accelerometer array, capable of measuring 

linear accelerations and estimating angular accelerations. To evaluate helmet-helmet 

impacts, video analysis of past NCAA football competitions between Virginia Tech and 

University of North Carolina (UNC) were utilized to identify these impacts between 

instrumented players. A force balance was then carried out for the observed impacts and 

their respective acceleration measurements to compute the effective mass of the players. 

It was determined that the total mass recruited by the striking player was 28% to 77% 

more than that of the struck player. The second study focused on documenting the head 

impact biomechanics of a youth population. To accomplish this objective, unique 

accelerometer arrays, capable of measuring linear and angular accelerations, were 

integrated into existing youth football helmets for 7 players on a local team. Acceleration 

data were collected for every practice and game during the 2011 season to amass a total 

of 748 impacts. No instrumented player sustained a concussion during the 2011 season. 

Results of the study indicated impacts of greater magnitudes were more likely to occur in 

practices, and can be minimized by augmenting practice activities. 
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Chapter 1: Introduction 

Opening Remarks 

Throughout the years, the topic of concussions and the effect that they have on the human 

brain have been increasingly scrutinized by media, political, and academic personnel. 

And, this increased awareness may be rightfully deserved, as concussions have been 

linked to severe neurocognitive impairment late in life. However, studying concussions 

and the effects on the human brain require testing of subjects with higher critical thinking 

skills. Thus, post-mortem human subjects and animal models are not completely accurate 

models for testing and receiving accurate results for the effects of a concussion. On the 

other hand, football players regularly impact their heads as a result from participation in 

the sport and often receive concussive-like impacts, in terms of magnitude. Therefore, 

football players are ideal candidates for studying the effects of concussion due to their 

exposure. As they are human volunteers, their difference in anatomical geometry with the 

average male is non-existent compared to those of animal subjects. Also, many of the 

indications of a concussion are verbally conveyed by the patient, such as dizziness, 

confusion, or headaches, making diagnosis difficult with other types of testing subjects. 

The research presented in this thesis utilizes unique methods to collect biomechanical 

data regarding specialized groups. The main function of this research is to better 

understand these injuries, and provide data that will benefit the enhancement of 

protective equipment and regulations of the game. 
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Research Objectives 

To investigate the risk of concussion associated with specialized subgroups of impacts in 

football, understanding the underlying principles of a concussion is first necessary. A 

concussion is a form of mild traumatic brain injury (mTBI), and can be caused by a direct 

impact to the head or any other region of the body resulting in a force transmitted to the 

brain. There are many symptoms of a concussion, which may or may not be experienced. 

Among these symptoms, headaches, dizziness, confusion, nausea, and lack of motor 

coordination are some of the more prominent (Kushner, 1998). Although the 

aforementioned symptoms may be apparent immediately after the onset of a concussion, 

several other symptoms may arise over the course of time. These symptoms include, but 

are not limited to, a memory deficit, a decline in attention-span and movement speed, and 

possible chronic traumatic encephalopathy (Cantu, 2007). 

 

Each year in the United States, approximately 300,000 athletes sustain concussions while 

playing contact sports, with football having the largest occurrence (Thurman, 1998). As 

the awareness for the potential harm of a concussion has increased, regulations for the 

game of football in the National Football League (NFL) have been augmented to “take 

the head out of the game.” These types of rules attempt to discourage players from 

specific impacts, including helmet-helmet impacts. The first study presented in this thesis 

investigates the biomechanics behind these types of impacts. This research also attempts 

to draw correlations between the effective mass of a player during an impact and whether 

he is the striking player or the stuck player.  
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Much focus has been placed on high school, collegiate, and professional athletes in the 

past, overlooking the youth population despite the dramatically lager size. The second 

study in this thesis focuses on documenting the head impact exposure in youth football. 

These biomechanical data will influence enhancements in protective equipment, as well 

as regulations at the youth level to make the game safer.  Also, these data may serve as 

validation for computational models of the pediatric anatomy, resulting in an improved 

understanding of the developmental differences. The goal of this work is to provide the 

information necessary to help make the aforementioned improvements possible. 
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Chapter 2: Investigation of Effective Mass Differences for 

Helmet to Helmet Impacts in Football: Role of the Neck and 

Implications on Injury 
 

Abstract 

Among the many types of impacts involved in the sport of football, impacts involving 

one players helmet directly impacting another players helmet, helmet-helmet impacts, 

have been judged as more severe. This judgment has led to the augmentation and 

implementation of several rules in football. The objective of this study was to investigate 

the differences in effective mass and head acceleration between players involved in 

helmet-helmet impacts. This was done through video analysis and force balancing. After 

identifying and analyzing several impacts between players, it was found that the total 

mass recruited by the striking player was 28% to 77% more than that of the struck player. 

This difference in recruited effective mass can be attributed to the neck muscles of the 

striking player tensing and creating a better coupling with the body of the striking player. 

As previous work has suggested, a stronger neck may result in a greater coupling with the 

torso that likely lowers the risk of concussion. 

Authors: R. Daniel
1
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1
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2
, J. Mihalik

2
, and S. Duma

1
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Introduction 

Of the 1.6 to 3.8 million sports-related traumatic brain injuries that occur each year in the 

US, participation in football yields the greatest incidence.
19

 The high incidence rate of 

concussions in football provides a unique opportunity to collect biomechanical data from 

humans to characterize mild traumatic brain injuries (mTBI). However, collecting human 

head acceleration data is not a new method. There have been several studies in the past 

that have had football players wear headbands instrumented with accelerometers to 

measure head acceleration during football games.
15-17, 21, 24-33

 The earliest studies laid the 

groundwork for future research and provided a proof of concept, but ran into limitations 

as far as measuring head accelerations and the number of instrumented players. 

 

One study recreated concussive impacts in an attempt to quantify head accelerations 

experienced by football players.
25

 The National Football League utilized game video to 

reconstruct injurious game impacts using Hybrid III dummies. Although the analysis was 

exceptionally well done, due to the selection of only injurious impacts, the dataset was 

biased. Since then, there have been several studies that have quantified head accelerations 

by instrumenting helmets worn by college football players.
15-17, 24-33

 In one of these 

studies, conducted by Duma et al, a six accelerometer sensor was integrated into football 

helmets. These sensors recorded the resultant linear head acceleration for every impact 

that a player experienced, which produced a large and unbiased dataset. Over 27,000 

head impacts were recorded over 4 seasons, with 4 of the impacts being concussive.  
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The 6 accelerometer sensor used by Duma et al. (2005) is part of the Head Impact 

Telemetry System (HITS), developed by Simbex, LLC (Lebanon, NH). The sensor 

consists of 6 orthogonally mounted single-axis accelerometers positioned normally to the 

head. The HITS sensor also includes an integrated radio board that communicates 

wirelessly with a computer stationed on the sideline. In order to measure head 

acceleration as opposed to helmet acceleration, all 6 accelerometers are spring mounted 

so that they stay in contact with the head at all times (Figure 1). Validation of the HITS 

sensor was completed by impacting a helmeted Hybrid III head and then comparing the 

acceleration measurements of both the Hybrid III head’s center of gravity and the helmet 

shell with that of the HITS sensor.
12

 Manoogian et al. found that the HITS sensor was in 

strong agreement with the acceleration measurements of the Hybrid III head. 

 

Figure 1. The 6 spring-mounted accelerometer sensor records resultant 

accelerations for every impact that a player experiences (Photo by Steven Rowson, 

2010, Used with permission.) 

 

Any impact that generates a peak acceleration measurement above 10 g triggers the data 

collection for the sensor. For every impact, the data is transmitted from the sensor to the 

sideline computer, which processes and displays data in real-time. Data are collected for 
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40 ms, with 12 ms of pre-trigger data and 28 ms of post-trigger data. In order to 

determine impact magnitude and direction, the sensor utilizes a unique algorithm 

developed by Crisco et al. The developed algorithm also allows the calculation of 

resultant linear accelerations throughout time. 

 

Recent research has suggested that long-term neurocognitive effects may be associated 

with a history of concussions.
4, 13, 22-23

 Studies investigating the biomechanics of 

concussion in football agree that helmet to helmet impacts pose an increased risk of 

concussion. The objective of this study is to investigate the differences in effective mass 

and head acceleration between striking and struck players for helmet to helmet impacts, 

which have implications on the effect of neck strength. An increased understanding of the 

mechanical characteristics associated with helmet to helmet impacts in football can 

provide valuable insight applicable to future improvements in injury prevention 

techniques. 

Materials and Methods 

In order to better assess the kinetics of such head impacts, select players from the 

Virginia Tech (VT) football team have been instrumented with the HITS sensor in their 

helmets. The individual 6 accelerometer configuration in each player’s helmet 

communicates wirelessly to a computer system, stationed on the sideline for every game 

and practice for real-time data collection (Figure 2). Data collected from these 

accelerometers is used to characterize impacts experienced by the players, and cross-

referenced with video analysis to identify the specific impact. The University of North 
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Carolina (UNC) has also instrumented select players on their respective football team in 

order to characterize impact kinetics.  

 

Figure 2. The HIT computer stationed on the sideline for real-time data collection 

during a VT football game (Photo by Steven Rowson, 2010, Used with permission.) 

 

By utilizing game footage of recorded NCAA collegiate football competitions between 

the two teams, helmet-helmet impacts were identified and approximate times were noted. 

The times were noted by noting the kickoff of the game and factoring in the amount time 

since kickoff on the video. The player numbers of the individuals involved in the helmet-

helmet impact were also noted. Once the approximate time of the impact was noted, as 

well as the players involved in the impact, the HITS data was analyzed to confirm the 

impact by taking note of the impact time. Thus, by utilizing the HITS data from both 

teams, the helmet to helmet impacts between the instrumented players can be singled out 

and the correlating HITS data can be recorded. The linear head acceleration values for 

each player, noted by the individual HITS sensors from the respective teams, were used 

in a force balancing equation. Through this equation the effective mass of each player 

was calculated and compared. For each helmet to helmet impact, the relationship between 

effective mass and head acceleration was analyzed, knowing that each helmet 
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experienced equal and opposite force.  In this analysis, effective mass is defined as the 

combined mass of the head and the mass of the neck and torso recruited by the 

musculature of the neck. The exact amount of mass of the torso recruited by the neck is 

often dependent on if the neck is tense or not, i.e. a strong or weak coupling between the 

head and the torso via the neck musculature. Variances between the effective masses of 

striking and struck players were expressed as percent differences. 

Results 

Due to this being an observational study, a limited number of helmet-helmet impacts 

were able to be identified between instrumented players. Thus, only two helmet-helmet 

impacts between instrumented players on opposing teams were able to be verified via 

video analysis over the course of four years. After identifying and analyzing the helmet-

helmet impacts between VT and UNC players through biomechanical and video analysis, 

a force balance was completed for each impact (mr1a1= mr2a2) (Table 1). Where, mr1 and 

mr2 refer to the total mass recruited for each player involved in the impact, and a1 and a2 

refer to the linear acceleration of each player. For the impacts analyzed, the total mass 

recruited by the striking player was 28% to 77% more than that of the struck player. 

Impact Time 

Resultant Linear 

Acceleration (g) 

Estimated Resultant Rotational 

Acceleration (rad/sec^2) 

VT player 16:20.36.230 60.2 5209.6 

UNC player 16:20.36.240 77.4 4544.5 

Table 1. Example HITS data for matched impacts between players. 
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Discussion 

While this study provides insight into the differences in effective mass between players, 

there are limitations that must be acknowledged. The main limitation of this study is that 

the sample size of impacts between instrumented players is very low. The reason for the 

low number of samples stems from only some of the players were instrumented on either 

team. Therefore, having helmet-helmet impacts between instrumented players is rare. 

Also, due to rules put into place regarding flagrant impacts, helmet-helmet impacts are 

discouraged among the players. Due to this small sample size, current analysis of this 

study has yielded a large range in the ratio of the total mass recruited by the striking 

player over that of the struck player. A larger pool of data would allow a more detailed 

estimate of the ratio of total mass recruited between striking player and struck player to 

be identified. Another limitation of the study is the assumption of equal and opposite 

forces, both in magnitude and impact location. This assumption is based on assuming that 

a helmet has the same ability to modulate energy generated from an impact regardless of 

impact location or direction. Studying how a helmet specifically modulates energy for a 

generalized location would be a good addition to the study as acceleration values can be 

modified accordingly. Future analyses will also provide new insight to the effect of the 

musculature of the neck.  

 

The results also suggest that the striking player has a greater amount of total recruited 

mass than that of the struck player. This can be attributed to the fact that the striking 

player may be tense, expecting the impact. By tensing the neck, the striking player may 

recruit a greater amount of mass from the torso, with a better coupling of the head and 

torso, via the neck musculature. Whereas, with the struck player, it is possible that there 
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is less mass recruited due to the impact being unexpected. By not expecting the impact, 

the struck player is assumed to be less tense and have less of a coupling between the head 

and the torso, thus recruiting less mass than that of the striking player. 

 

In summary, this study investigated the role of the neck in total mass recruitment with 

relation to head accelerations experienced by players. In this preliminary analysis, 

differences in mass recruited during head impact were shown to vary up to 77%. It is 

important to understand the effect of the neck during head impacts due to implications on 

injury, as previous work has suggested that a stronger neck may result in a greater 

coupling with the torso that likely lowers risk of concussion. The methods presented in 

this study use head acceleration data from football players matched with video as a first 

step to quantifying effective mass during head impact. 
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Chapter 3: Head Impact Exposure in Youth Football 
 

Abstract 

The head impact exposure for athletes involved in football at the college and high school 

levels has been well documented; however, the head impact exposure of the youth 

population involved with football has yet to be investigated. The objective of this study 

was to investigate the head impact exposure in youth football. Impacts were monitored 

using a custom 12 accelerometer array equipped inside the helmets of 7 players aged 7-8 

years old during each game and practice for an entire season. A total of 748 impacts were 

collected from the 7 participating players during the season, with an average of 107 

impacts per player. Linear accelerations ranged from 10 g to 100 g, and the rotational 

accelerations ranged from 52 rad/s
2
 to 7694 rad/s

2
. The majority of the high level impacts 

occurred during practices, with 29 of the 38 impacts above 40 g occurring in practices. 

Although less frequent, youth football can produce high head accelerations such as the 

concussion-causing impacts measured in adults. In order to minimize these more severe 

head impacts, youth football practices should be modified to eliminate high impact drills 

that do not replicate the game situations. 

Authors: R. Daniel
1
, S. Rowson

1
, and S. Duma

1
 

Affiliation: 
1
Virginia Tech – Wake Forest University, Blacksburg, VA 
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Introduction 

Sports related concussions have received increased public awareness, with many states 

considering or implementing laws directing the response to suspected brain injury. This is 

a result of new research suggesting possible links to long-term consequences from 

repetitive concussions.
13, 22, 23

 Emergency department visits for concussions increased 

62% between 2001 and 2009, and researchers estimate that between 1.6 and 3.8 million 

sports related concussions occur each year in the United States.
5, 19

 Of all sports, football 

accounts for the highest incidence of concussion, and therefore receives the most 

attention.
34

 One of the leading thoughts to minimize the incidence of concussion in 

football is to limit players’ exposure to head impacts.
9
 Strategies to reduce a player’s 

exposure to head impact include teaching proper tackling techniques and modifying the 

rules of the game.  

 

To make educated decisions towards reducing the incidence of concussion in football, 

head impacts in football have been extensively studied over the past decade.
3, 8, 10-12, 15, 16, 

21, 24, 27, 31
 The National Football League (NFL) was the first to investigate this problem in 

detail by reconstructing concussive impacts through analysis of game film using 

instrumented crash test dummies.
24-27

 While this work was of high quality, it was limited 

by a dataset that did not account for the full exposure to head impacts that players 

experienced.
30, 31

 Since then, new technology, the Head Impact Telemetry (HIT) System 

(Simbex, Lebanon, NH), has allowed for the direct instrumentation of headgear in 

sports.
7, 14, 18, 28

 The HIT System consists of a series of accelerometers that fit inside 
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football helmets, and records a player’s biomechanical head response to every head 

impact they receive. Since Virginia Tech first instrumented college football players with 

the HIT System in 2003, over 1.5 million head impacts have been collected and analyzed 

across participating institutions.
12

 This has allowed head impact exposure and injury risk 

to be investigated at the high school and college level.
2-4, 8, 10, 11, 15, 16, 20, 29-31, 33

 Based on 

this research, some colleges have made educated recommendations about contact in 

practices in an effort to reduce the head impact exposure of players. Furthermore, this 

research has led to design guidelines for improved adult football helmets.
31

 

 

There are approximately 5 million athletes participating in organized football in the 

United States; with 2000 NFL players, 100,000 college players, 1.3 million high school 

players, and 3.5 million youth players.
17, 27

 Previous research has investigated head 

impacts in high school football, college football, and the NFL; however, this population 

only accounts for 30% of football players. To date, no work has been performed 

investigating head impact exposure in youth football, which accounts for 70% of all 

football players. Investigating head impact exposure at the youth level would allow 

researchers to understand when head impacts occur most frequently and which activities 

cause the most severe impacts. With this increased understanding, educated decisions can 

be made to effectively minimize head impact exposure in youth football. 

 

The objective of this study was to investigate the head impact exposure in youth football. 

This was accomplished by instrumenting the helmets of a youth football team with head 

acceleration measurement devices similar to the HIT System. Youth head impact data are 
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reported and compared to that of the high school and college levels of play. These data 

are the first step towards educated decisions about changes to youth football, and have 

applications towards youth-specific football helmet designs. 

Materials and Methods 

A youth football team consisting of children ranging in age from 6 to 9 years old 

participated in this study approved by the Virginia Tech Institutional Review Board. Each 

player gave assent and their parental guardians provided written informed permission. 

This study investigated head impact exposure in youth football by instrumenting the 

helmets of youth football players with a custom six degree of freedom (6DOF) head 

acceleration measurement device.
29, 30

 Of the 26 players on the youth team, the helmets of 

7 players were instrumented with the 6DOF measurement device. The 7 players had an 

average body mass 31.7 kg ± 6.44 kg and were all 7 or 8 years old. The players were 

chosen due to anticipation of high participation in practices and games, as well as playing 

both offense and defense. Furthermore, these players wore youth medium or youth large 

sized Riddell Revolution (Elyria, OH) helmets that were compatible with the 6DOF 

measurement device. 

 

The 6DOF measurement device consists of 12 accelerometers and is designed to integrate 

into Riddell Revolution football helmets (Figure 3). While the 6DOF measurement 

device was originally designed for adult Revolution football helmets, the device is 

compatible with youth helmets due to the same sizing conventions and identical padding 

geometries between adult and youth Revolution helmets. Instrumented helmets were 

worn by youth football players during each game and practice they participated in. Each 
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time an instrumented helmet was impacted and an accelerometer exceeded a specified 

threshold, data acquisition was automatically triggered. A total of 40 ms of data from 

each accelerometer were recorded, including 8 ms of pre-trigger data. Once data 

acquisition was complete, data were wirelessly transmitted to a computer on the sideline. 

Acceleration data were then processed to compute linear and rotational head acceleration 

using a novel algorithm.
6, 29

 While a brief overview of the 6DOF measurement device is 

presented here, a detailed technical description has previously been reported.
29

  

 

Figure 3. The helmets of youth football players were instrumented with the 6DOF 

head acceleration measurement device. Each time an instrumented player 

experienced a head impact, data were collected and then wirelessly transmitted to a 

computer on the sideline (Photo by author, 2012). 

 

Impact location for each head impact recorded was determined from the acceleration 

traces using methods that have been previously described.
14

 All head impacts were 

generalized into 1 of 4 impact locations on the helmet: front, side, rear, and top. Overall 

acceleration distributions were analyzed by impact location. Overall accelerations 

distributions were also analyzed by session type, which was divided into practices and 
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games. Head impact exposure is presented in terms of the frequency of impacts, median 

accelerations, and 95
th

 percentile accelerations. Furthermore, empirical cumulative 

distribution functions (CDF) with 95
th

 percentile confidence intervals were computed for 

linear and rotational acceleration. Results of this study are then compared to studies 

quantifying head impact exposure in high school and college football players. 

Results 

Both the linear and rotational acceleration distributions were right-skewed, and heavily 

weighted toward low magnitude impacts. Cumulative distribution functions for resultant 

linear and rotational accelerations with 95
th

 percentile confidence intervals were 

determined (Figure 4). Linear accelerations ranged from 10 g to 100 g. The distribution 

of linear acceleration had an average value of 18 g, a median value of 15 g, and a 95
th

 

percentile value of 40 g. Rotational accelerations ranged from 52 rad/s
2
 to 7694 rad/s

2
. 

The distribution of rotational acceleration had an average value of 901 rad/s
2
, a median 

value of 671 rad/s
2
, and a 95

th
 percentile value of 2347 rad/s

2
. 
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Figure 4. Cumulative distribution functions for linear and rotational accelerations 

show that the distribution of impacts were right skewed and heavily weighted 

toward low magnitude impacts. 

 

The 6DOF data set also allows for the analysis of head acceleration data about each axis 

of the head. Distributions of each axis’ peak linear acceleration for every recorded impact 

were then determined (Figure 5). The median linear head acceleration along the x-axis 

was 7 g. Along the y-axis, the median linear head acceleration was 6 g. And, the median 

head acceleration along the z-axis was 11 g. Large peak linear accelerations were most 

common along the z-axis, while lower peak linear accelerations were most common 

along the y-axis. 
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Figure 5. Distributions of peak linear acceleration values for all impacts with 

respect to axis. 

 

Distributions of each axis’ peak angular acceleration for every recorded impact were also 

determined (Figure 6). The median value for angular head acceleration about the x-axis 

was 266 rad/s
2
. About the y-axis, the median value for angular head acceleration was 341 

rad/s
2
. And, the median value for angular head acceleration about the z-axis was 450 

rad/s
2
. Large peak angular accelerations were more common about the z-axis, while low 

peak angular accelerations were more common about the x-axis. 
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Figure 6. Distributions of peak angular acceleration values for all impacts with 

respect to axis. 

 

A total of 748 impacts were recorded during practices and games for the 7 instrumented 

players during the youth football season. During games, 307 impacts (41% of total) were 

collected, while 441 impacts (59% of total) were collected during practices. The average 

instrumented player experienced at least one impact greater than 10 g in 14.1 sessions, 

consisting of 4.7 games and 9.4 practices. The average instrumented player experienced 

107 head impacts, which included 44 impacts during games and 63 impacts during 
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practices. Furthermore, the average player experienced 6.7 impacts per practice and 5.8 

impacts per game. A total of 38 impacts above 40 g were collected, 29 of which occurred 

during practices. A total of 6 impacts were collected with linear accelerations above 80 g, 

with all 6 occurring in practices. No instrumented players sustained a concussion 

throughout the season. 

 

Impacts to the sides of the helmet were most common, accounting for 36% of all impacts. 

The front of the helmet received approximately 31% of all the impacts. The top and rear 

of the helmet were impacted least frequently, accounting for 18% and 14% of all impacts, 

respectively. Impacts to the top of the helmet exhibited the greatest magnitudes of linear 

acceleration, while impacts to the sides of the helmet resulted in the greatest magnitudes 

of rotational acceleration (Table 2). 

  
Linear Acceleration (g) 

Rotational Acceleration 

(rad/s
2
) 

Impact 

Location 

Number of 

Impacts 

Median 

(50%) 
95% 

Median 

(50%) 
95% 

Front 235 14.4 27.6 670 1516 

Side 272 14.2 24.7 747 2104 

Rear 106 15.4 30.3 679 2057 

Top 135 19.6 44.9 467 1483 

Table 2. Comparison of head impact exposure across impact locations. 

Discussion 

This study reports, for the first time, the head impact biomechanics experienced with 

participation in youth football. From these data, how frequently and how severely 7 and 8 

year old children impact their heads while playing in organized tackle football can be 

characterized. Interestingly, high magnitude impacts (>80 g) were experienced by the 

instrumented children during play. This level of severity is similar to some of the more 
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severe impacts that college players experience, even though the youth players have less 

body mass and play at slower speeds.
31

 These data serve as the basis of educated 

decisions related to rule changes and practice structure in youth football, as well as 

design criteria for youth-specific football helmets. 

 

Of the 107 head impacts the average player sustained, 59% occurred during practices and 

41% occurred during games. This was not solely attributed to the average player 

participating in more practices than games (9.4 practices to 4.7 games), as players 

experienced 15% more impacts per practice than per game. More notably, impacts of 

higher magnitude were associated with practices rather than games, where 76% of 

impacts greater than 40 g and 100% of impacts greater than 80 g occurred during 

practices. This contrasts trends exhibited in high school and college football, where more 

severe impacts are associated with games.
3, 8, 10, 34

 Head impact exposure in youth 

football, particularly at higher severities, can be reduced through evaluating and 

restructuring practices. This can be achieved through teaching proper tackling techniques 

and minimizing drills that involve full contact; and instead, focusing on practicing 

fundamental skill sets needed in football at these young ages. 

 

Head impact exposure in football has two components: frequency of impacts and 

magnitude of impacts. While this study is the first to report on head impact exposure in 

youth football, research quantifying head impact exposure in high school and college 

football has been ongoing for the last decade.
12

 When comparing the frequency 

component of head impact exposure across level of play, the number of head impacts a 
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player sustains each season rises with increasing level of play (Table 3). This is not 

unexpected, as the youth football season (in terms of the number of practices and games, 

as well as session length) is shorter than the high school football season, which is shorter 

than the college football season. When comparing the magnitude component of head 

impact exposure across level of play, the 95
th

 percentile impact increases with level of 

play for both linear and rotational acceleration, which is indicative of how frequently 

high magnitude impacts are sustained by players (Table 3). This finding is also not 

surprising, as the size of the players and speed of play both increase with age. With that 

said, it is important to note that all levels of play experience high magnitude impacts (>80 

g), but these impacts occur more frequently as the player gets older. 

  Linear 

Acceleration 

(g) 

Rotational 

Acceleration 

(rad/s
2
) 

Level of Play 
Impacts 

per Season 

Median 

(50%) 
95% 

Median 

(50%) 
95% 

Youth (7-8 yrs) 107 15 40 672 2347 

High School (14-18 yrs) 565 21 56 903 2527 

College (19-23 yrs) 1000 18 63 981 2975 

Table 3. Comparison of head impact exposure between youth, high school, and 

college football. These data were quantified from studies using similar 

methodologies to instrument youth, high school, and college football players.
1, 2, 31, 33

 

 

The head impact data can be further analyzed by the distribution of helmet impact 

locations. The instrumented youth players impacted the side of their helmets most 

frequently. When compared to high school and college impact distributions, youth 

players experienced a substantially higher percentage of impacts to the side of the helmet 

and a substantially lower percentage of impacts to the rear of the helmet (Figure 7). This 

can likely be attributed to the differences in the style of play between the different age 
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groups, as well as the youth players having a tendency to fall to the side while being 

tackled. Furthermore, the helmets that the youth players wear may influence some of 

these trends. Youth football helmets are very similar in size and mass to adult football 

helmets. With that said, the neck muscles of 7-8 year olds are undeveloped in comparison 

to high school and college football players. These two factors may result in a youth 

player being more susceptible to impacting his head on the ground while being tackled 

than a high school or college player. 

 

Figure 7. Comparison of helmet impact location distributions between youth, high 

school, and college football. 

 

Moreover, these data have applications towards future youth helmet design. Currently, 

youth football helmets are remarkably similar to adult helmets in relation to size, mass, 

and design materials. In the past, researchers have used data collected from instrumented 

college football players to develop the STAR evaluation system that assesses a helmet’s 
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overall ability to reduce the probability of concussion.
29

 This evaluation system is derived 

from quantified head impact exposure in college football. Head impact exposure 

measured on the field is related to laboratory tests that evaluate impact performance. The 

results of the laboratory tests are then disseminated to the public to provide information 

to consumers on relative helmet performance. Furthermore, the STAR evaluation system 

provides manufacturers with design guidelines to improve future helmet safety. 

Unfortunately, this system cannot be extrapolated to youth football helmets because the 

head impact exposure of youth football is different than that of college football. This 

study is an important step towards development of a helmet evaluation system for youth 

football, which would provide guidelines for designing youth-specific football helmets. 

While this study provides a first glimpse of head impact exposure in youth football, more 

data is currently needed across the age continuum (6 to 13 years old) of youth football. 

 

This study has several limitations. First, it should be noted that a total of 7 youth football 

players were included in this study. This is a small sample size in comparison to some of 

the studies investigating head impact exposure in high school (95 players) and college 

(>300 players) football.
3, 29

 Second, the instrumented players ranged in age from 7 to 8 

years old. However, youth football encompasses players ranging in age from 6 to 13 

years old. A larger sample size of players ranging from 6 to 13 years old is needed to 

completely define head impact exposure in youth football. Third, the 6DOF measurement 

device is associated with some measurement error. However, average acceleration 

measurement error is on the order of 1-3%.
29

 While there may be greater error associated 



  26 

 

with individual data points, these errors are of little consequence when working with the 

overall data distributions. 

 

In conclusion, this study is the first to report the head impact biomechanics associated 

with youth football. Valuable insight to the head impact exposure in youth football has 

been presented. While youth football players impact their heads less frequently than high 

school and college players, and have impact distributions more heavily weighted toward 

low magnitude impacts; high magnitude impacts still occur. Interestingly, the majority of 

these high magnitude impacts occur during practice. Restructuring youth football 

practices may be an effective method of reducing the head impact exposure in youth 

football. These data are the basis of educated decisions about future changes to youth 

football and have applications towards determining guidelines for youth-specific helmet 

design.  

 



  27 

 

Chapter 4: Closing Remarks 

Research Summary 

The research presented in this thesis investigates the head biomechanics of two 

specialized groups during impacts in football. In the past, there has been much related 

research focusing on biomechanics.
34-174

 By utilizing available video and innovative 

technologies, insightful data regarding human biomechanics was collected. Instrumented 

helmets on both sides of the competition allows for biomechanical comparison between 

striking players and struck players during game scenarios. The instrumentation of a youth 

population gives insight to the exact exposure conditions that youth players endure during 

football. By taking note of the specific impact scenarios that occur more often in the 

youth population, specific regulations or regiments can be augmented to better protect 

such a large population of football players. While these studies provide the beginning 

datasets for theses specialized groups, expanded datasets can be created in the future by 

utilizing the same methodologies. 

 

Although there were no concussions noted in either study, the work presented herein 

provides the most comprehensive biomechanical analysis for two specialized and 

important groups involved with playing football to date. Furthermore, the expansion of 

head acceleration datasets to include concussive impacts would have applications beyond 

the football field. This is especially true for the youth study, where quantifying the human 

brain biomechanics as a result of impact will lead to a better understanding of pediatric 

brain injury and perhaps developmental differences in injury tolerance. In addition, this 

data may serve as validation for computational models. By applying these techniques to 
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other sport scenarios in which concussive impacts occur, considerable progress can be 

made towards improving equipment safety, and augmenting rules and regulations to 

better protect the player from injury.
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