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Review of Methods for Calculating Pressure Profiles of

Explosive Air Blast and its Sample Application

by

Jeffrey M.K. Chock
Rakesh K. Kapania, Chairman
Department of Aerospace and Ocean Engineering
(ABSTRACT)

Blast profiles and two primary methods of determining them were reviewed for use
in the creation of a computer program for calculating blast pressures which serves as a
design tool to aid engineers or analysts in the study of structures subjected to explosive air
blast. These methods were integrated into a computer program, BLAST.F, to generate air
blast pressure profiles by one of these two differing methods. These two methods were
compared after the creation of the program and can conservatively model the effects of
spherical air blast and hemispherical surface burst.

The code, BLAST.F, was used in conjunction with a commercial finite element code
(NASTRAN) in ademonstration of method on a 30 by 30 inch aluminum 2519 quarter plate
of fixed boundary conditions in hemispherical ground burst and showed good convergence
with 256 elements for deflection and good agreement in equivalent stresses of a point near
the blast between the 256 and 1024 element examples. Application of blasts to a
hypothetical wing comprised of aluminum 7075-T6 was also conducted showing good

versatility of method for using this program with other finite element models.
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1.0 INTRODUCTION

While the technology and computational methods for finite element analysis of
structures has been around for many years, there is a lack of a design tool for the engineer
to use in the accurate analysis of structures to specific blast loadings. This became clear
to the author while recently attached to a project for industry.

Such a tool should be easy to use and at the same time, correct to the recorded
values of parameters for a specific threat condition. This would provide a tool for both an
engineer working in design and also an analyst examining the predicted, or after effects,
of an explosive blast. Thus, the design of structures which have some resistance or
inherent protection to specific blast threats is possible. This would also allow the design of
structures which would have qualities which would protect the structure’s occupants.

Engineers within the military or their contractors have access to some codes which
will predict, based on that code’s method, the pressure results, and thus the blast effects,
of the explosive blast itself. This has a wide application both for government and civilian
use, but also in this age of terrorism, in the application of the design of civilian facilities to
minimize both structural damage and collateral damage to personnel.

After beginning work, it became clear that there was no effective design tool that
could do this while still providing an output that could be used in presentations, or more
importantly, commercial finite element codes with a minimum of hassle. The author
attempted to make use of a commercial code and a reference text in an effort to generate
a pressure profile for a specific threat. Upon review of the method used by another
scientist, it became clear that while a result had been obtained by that researcher, that
result made use of the reference material in a manner so as to render those results
questionable. This provided essential motivation to create a simple and versatile program
that would do this easily and effectively.

First a method for determining these blast loads had to be arrived at, but upon
review of literature, it was found that there were two primary methods. Then, these
methods had to be accurately duplicated, first by hand calculations, then by tested
computer subroutines.

The computer code developed, BLAST.F, is platform independent, small, and easy
to use. This program has the capability of generating profiles for both conventional and

nuclear blast pressure effects, giving it that wide application that would be needed in an
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protective design, analysis, or an academic environment studying such loadings on
structures and the protective design of buildings, structures, and vehicles, well as the
analysis of a specific’s threats effects, both potential and real.

This paper will first cover the background of the material including two methods
of blast scaling. This research will then review two primary methods of determining the
explosive blast pressure profiles which can be applied to a finite element model. The
program, BLAST.F, and it's capabilities will be covered. Examples of this computer
program loading applied to differing finite element models will be reviewed, in this case an

aluminum plate and a model based on the geometry of an aeroelastic wing model.



2.0 REVIEW OF LITERATURE

Due to the nature of explosives and their potential threat to the public in the hands
of the ignorant as well as those who would inflict harm, the publically available literature
on the exact effects of explosives is restricted. This restriction confined most of the
referenced literature in the reviewed works inaccessible to this researcher. Much of this
field's research and results are held in the U.S. Army’s Ballistics Research Laboratory at
Aberdeen’s technical memos and works by the English Ministry of Defense, thus they are
in some cases mentioned in passing throughout this work, but may not be specfically
mentioned in the References at the end of this paper.

Of the works that were available in the open literature, the first and most
informative was W.E. Baker’s Explosions in Air (1973). This work covers the basics of
explosive air blast analysis, theoretical computational methods, experimental blast analysis,
and the equipment used in its analysis and data gathering. It roughly parallels a hand
book of a similar title by the U.S. Army Materiel Command, Explosions In Air (1975).
While both cover similar material, in a similar manner, especially in the useful chapter on
air blast parameters, the Army reference covered the topic of critical angle for reflected
pressure waves and the calculation of reflected pressure waves that strike a target at an
angle to the normal of a surface. Both of these references use a method of fitting to
experimental scaled blast parameters, but they did not specifically make use of a separate
ground reflection technique. Such atechnique was mentioned in passing in both Explosions
in Air when discussing the scaling of experimental data that had been gathered in
hemispherical ground reflection. Also of good use, Baker’s book includes three large scale
(three foot square) graphs of blast parameters, which were of great help in finding interim
values between tabulated values presented in Baker’'s and the Army’s texts. However,
these graphs had to be used with caution as they had the wrong axis markings or in some
cases, the correct trend was drawn through the wrong points.

Kingery and Bulmash (1984) present similar data that has been scaled for use with
a different form of scaled parameters. They then fitted functions to these parameters by
computers within a Log-Log domain so that these parameters can be more easily
determined, providing a second method that can be programmed and implemented. This
work also provided some insight into ground reflection, while providing a specific set of

results for that condition, and the application to nuclear weapons in ground burst.
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Goodman’s (1960) paper was gathered from test detonation of pentolite and was
closer to Explosions in Air, but provided insight in the gathering and comparison of blast
data.

Bulson (1997) provided a book on The Explosive Loading of Engineering Structures
and made a great deal of discussion of loadings that have been determined from nuclear
tests as well as smaller scale conventional explosives. This book specifically mentions a
method for the determination of blasts in ground reflection which matched, with the
exception of a factor, the method extrapolated from Explosions in Air.

Finally, the Army Technical Manual (1992) on the protective design of structures
for conventional weapons effects, TM5-855-1, essentially presented methods found in
Kingery and Bulmash for calculation of blast loads, but provided some insight in what
should be considered in a design tool.

More recently, a work by Turkmen and Mecitoglu, the prediction of blast loads was
instead replaced with an experimental result, then these experimental results were applied
to a finite element model of a stiffened composite plate. In this setup, a shock tube was
used to generate a dynamic pressure shock which was measured by a wooden board with
pressure transducers. This is notable because unlike the other works, Turkmen and
Mecitoglu used an overpressure profile with a large negative phase. Using this, they were
able to get a good correlation to experimental results with the same type of dynamic

loading.



3.0 METHODS

3.1 Blast Profiles

In this report, a great deal of time will be spent in the determination of the pressure
time history at a point for an explosive blast. These blast profiles are the result of pressure
waves that are created by the sudden and violent release of energy in the explosive charge
which causes a sharp rise in the pressure of the surrounding gas or liquid medium. A
generic blast profile at a point is shown in Figure 1. This profile is a time history of a blast
overpressure wave that impinges on a point in space, where there is a positive and a
negative phase denoted by T and T-, respectively. It is this positive phase that is deemed
the most important of the two phases, and is what is generally studied. This curve of the
profile and to which a curve is “fit” concerns most researchers in this field.

In the calculation and presentation of the pressure blast profiles, numerous
methods have been proposed. Baker reports [1] that Flynn proposed a linear decay of

pressure given by:

p(t) = p, + Pq(1-/T*), O<t<T~ 1)

where p, is the ambient pressure, P, is the peak side-on overpressure, T* is the positive
phase duration and t is the time measured from the time of blast wave arrival. The peak
side-on overpressure can usually be preserved at the original value, but the positive time
duration, T7, is altered to preserve the true positive duration impulse, I;*, which can be

found by integrating the pressure over the positive phase [1]:
17 = [ P -py ot @

again where t is measured from the time of arrival, t,. Thus, this simplified form can be
altered to fit the desired profile curve.

As the pressure profile is of a decaying nature, a better form was presented by
Ethridge in his 1965 work as reported by Baker [1]:

p(t) = p,+Pye™ ©))

where t is measured from the time of arrival, P," is the peak side-on overpressure and is left



at its original value, and p, is the ambient atmospheric pressure. Thus, by curve fitting to
two parameters, the peak pressure and initial decay rate or the peak pressure and positive
impulse, Equation (3) can be used to better fit transducer gathered data.

The next extension of this process is to curve fit experimental results by using three
different parameters. This form is usually the modified Friedlander’s equation as given in
Baker [1]:

t

p(D) - pO+P;( 1Ti] T @
where again t is measured from the time of arrival, P," is the peak side-on overpressure, p,
is the ambient atmospheric pressure, and b is the decay coefficient. Thus, a curve fitting
of experimental data may be done by matching any three of four blast characteristics: peak
side-on overpressure, P,", positive phase impulse, I, positive phase duration, T*, and initial
decay rate. The peak overpressure is the highest pressure the initial blast wave creates
over the ambient atmospheric pressure. The positive phase impulse is the area under the
pressure curve for the duration of the time period of positive overpressure, that same time
period is the positive phase duration, and the initial decay rate is a measure of how quickly
the pressure returns from the spike of peak over pressure to the ambient pressure.

Similar curve fitting may be done to four or five parameters, but for the purposes
of this paper and for the computer program that was written, using Friedlander’s equation
was considered to be adequate and simple to program, while matching methods used by
other researchers.

Ignored in this study and not implemented by the computer program is the
examination and use of the negative phase of the blast. Indeed, Baker [1] reports he could
find only one proposed functional form for this phase from the works of Brode (1955):
ot t). 4
p(D) = p, - Ps(—][l—_]e ©)
T T
where p, is the ambient pressure, P, " is the peak negative phase overpressure, T " is the

duration of the negative phase, and t is measured from the end of the positive phase (t,+T).
In arecentwork, in the Journal of Sound and Vibrations, Tirkmen and Mecitoglu [10] used
a shock tube to generate dynamic shocks for experimental determination of pressure values
for use on Finite Element models. In this work, the authors found a rather large negative
phase result, however there was no method for determining this phase given in the work.

The present researcher would hypothesize that the negative phase determined was of a

6



large portion due to the experimental setup of the shock tube and the wooden plate on
which the pressure transducers were placed.

As explosives can vary in both composition and manner of destructive force, they
are usually compared by the shattering effect of the sudden release of energy of each
explosive (brisance) or their blast pressures. Thus, this work makes use of TNT as a
reference explosive, with the adjustment to be made in altering the energy or weight of the
explosive to match a desired, non-TNT explosive.

An incident, or side-on, blast wave is a blast wave that travels parallel to a surface.
Thus, side-on pressure is the pressure on a surface parallel to the direction of the blast
wave's direction of trave. This direction is assumed to be radial to the blast center.
Reflected pressures are much higher and result when an incident wave impinges on any
rigid reflecting surface at any angle not parallel to the direction of wave travel [5]. The
relationship of angle vs. reflected pressure will be examined later in Section 3.2.1. The

conceptual difference in these two different types of waves is shown in Figure 2.
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Figure 1 An example of a canonical blast profile showing the positive phase

and peak pressure of the blast after its time of arrival.
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reflecting surface and leaving at speed U,.



3.2 Blast Scaling

In blast analysis, there are many differing methods of scaling blast parameters. By
scaling the parameters determined from experimental results of an explosion, the results
are generalized and thus can be utilized for the simulation of blasts of varying energy or
varying distances. The two most common methods, and the ones used here, are Hopkinson

and Sachs blast scaling methods. These are described below.
3.2.1 Hopkinson Blast Scaling

Hopkinson blast scaling is based on cube root scaling and is referenced by Baker [1]
as being formulated by Hopkinson in his 1915 paper. Essentially, Hopkinson put forth the
idea that if you had two differing weights of the same explosive, say a one pound and a five
pound charge of Composition B, and they were both detonated in similar atmospheric
conditions, then at some identical scaled distance, both charges produce similar blast waves.
Using this idea, he presented the idea of a dimensional scaled distance that will be used

later in this work:

1 (6)
3

where R is the distance (range) from the explosive blast center, W is the weight of the
charge, and E is the energy of the charge. However, Baker [1] footnotes this explanation
by noting that W is usually used only for a weight of standard explosives such as TNT, but
energy E isa“much more physically realistic parameter.”[1] Thus, at some distance R from
a blast, a transducer could detect a blast characteristic of some explosive of weight W, (or
dimension d of a charge from which a weigh can be determined) with some peak pressure
P, impulse I, time of duration T,, and time of arrival T,. Therefore, at some distance kR one
detects a blast of some peak pressure P, impulse ki, time of duration kT,, and time of arrival
kT, for a blast characteristic of an explosive weight or dimension kd, as seen in Figure 3.
Thus all distance and time factors are scaled by some factor k but the pressure and velocity
remain unchanged at similarly analogous times. This also assumes that gravity and

viscosity effects are negligible. [1]
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Baker reports [1] that Kennedy in his 1946 work found that this scaling can be
applied for varying distances if the geometry of the explosives being scaled is roughly
similar. However, he notes that while the method is capable of being applied for varying
distances, in some respects, the trends of reported scaled values have the same form, but
can vary as much as a factor of two. Kingery found in his 1952 work that close agreement
could be found between small charge blasts (one to eight pounds) and its larger 100 pound

counterparts. Thus Kingery’'s paper as referenced by this work makes use of Hopkinson

Hopkinson Blast Sealing

Figure 3 Graphical sample representation of Hopkinson blast scaling where the effects
of a blast at distance R for a charge of dimension d is equivalent to a factor, K,
multiplied against the equivalent parameters for a blast of dimension Kd at a distance of
KR.

scaling.
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3.2.2 Sachs Blast Scaling

Sachs scaling was used by both Baker’'s Explosions in Air [1] and by the Army
Materiel Commands Explosions in Air design manual [2]. Where Hopkinson scaling is
based on the scaling of a blast in air conditions equivalent to those for the experimental test
blast from which data was gathered, Sachs scaling was proposed in 1944 as a more general
blast scaling law which is based on the blast parameters being unique functions of a scaled
distance: [1]

_ R 1/3
R - o @)
E 1/3

where R is the distance (range), p, is the ambient pressure, and E is the energy of the

explosive charge. Thus Sachs scaling law states that pressure, time, impulse, and other
parameters can be expressed as functions of this scaled distance, but assumes that air
behaves as a perfect gas and assumes gravity and viscosity are negligible. [1]

Having been confirmed by many experimenters, Dewey and Sperazza’s 1950 work
involved the detonation of bare pentolite spheres in an altitude simulation chamber so as
to vary temperature and pressure. In that work, Hopkinson scaling was shown to be
consistent for varying distances but not for varying pressure. Therefore, each test at a
different pressure produced a different impulse prediction. This was not true with Sachs
scaling which produced excellent scaled results that were consistent for each change in
blast distance and in pressure.

Thus, it could be shown that Hopkinson scaling is a special case of Sachs scaling
(i.e., Sachs scaling reduces to Hopkinson scaling when there are no atmospheric changes
between the explosive test data and the actual conditions of the desired explosive to which
one is predicting for modeling or similar research). [1] Also, because of the perfect gas
assumption, shock strengths must be low enough for a gaseous medium to behave as a
perfect gas. Therefore, for some strong shock waves or for distances that are particularly

close to the explosive, this law can no longer apply.
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3.3 Air Blast and Hemispherical Surface Blast methods

The methods reviewed below cover the determination of air blast parameters by the
fitting of results to experimental data as presented by other researchers in differing design

manuals.

3.4 Air Blast Parameters by Methods in Explosions in Air, both
Baker and U.S. Army

Methods used in Explosions in Air, both the Army design manual [2] and Baker’s
book [1], make use of data compiled for Sachs scaling methods. Both the Explosions in Air

and Kingery methods make use of some form of Friedlander’s Equation, in this case [1]:

) L ()
p =P, (1—(t ta)] e (®)

S

where P; is the peak side-on overpressure, t, is the time of arrival, t, is the positive phase

duration for the side-on overpressure, and b denotes the decay coefficient.
As the blast parameters are functions of the scaled distance, R , this parameter must

be found first. The pertinent equation is:

_ R 1/3
R - ©)
E1/3

where the range is R, the ambient atmospheric pressure is p,, and the energy of the blast

is denoted by E. This energy of the blast may be found by multiplying the weight specific
energy, E/W, from Table 1 for the desired explosive by the weight of the charge.

Baker's and the Army’s data are compiled from various sources for bare free air
explosions of pentolite, and all parameters are presented for standard conditions. Baker
references Shear and Day (1959) as the source for overpressure data for P < 3.5 [1]:

. 2p?

o vlv 1P 2v] o
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T (11)

S

2y
_ (yr1)Pgr2y
pg = ————— (12)
(y-1P+2y
- ~1)P (P +2
6, -1+ OPyPer2) f( 2 (13)
(y+1)P +2y

where P, is the scaled peak side on pressure, and y=1.4, the ratio of specific heats. Baker

continues by assuming that acoustic approximations hold for P, < 103 The acoustic

approximations are [1]:

p _ 01153 14
S I_? a4
P
b, - s - 0.0_824 (15)
Y R
_ P
b~ 1103 -1 0.0_824 (16)
Y R
U - 1+|58Y+1 _1,0:0494 an
4y R
_es = 1+§S=Y71 = 1+00_330 (18)

Y R
The basic parameter necessary is the scaled peak side on over pressure P,. Baker

combines the methods of Goodman (1960) and Lehto and Larson (1969) so as to take

advantage of those ranges over which each researcher’s method agrees with experimental
data. Thus, over the range of R=0.01423 (at the surface of the explosive) to rR=1004,

Goodman'’s method is used by Baker, and for R > 1004 the acoustic approximations in

Equations (14) to (18) are used.
So, from R=0.01423 to R =1.2, Baker and the Army make use of the Hugoniot tables

of Shear and Day (1959). For larger R, Equations (10) and (13) are used with y=1.4, and

14



with peak dynamic pressure Q@ determined from: [1]

Q - Tou? (19)

N

Both Baker and the U.S. Army manual then take scaled arrival time for the shock front
from Goodman (1960). Thus, the compiled data can then be tabulated, and is presented in

Tables 2a and 2b and in graphical form in Figure 4.
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Explosive

Table 1: Properties of Differing Explosives

Specific
Gravity

Density, pe
(Ib,, sec?/in®)

Weight
Specific
Energy,
E/W
(in-1b; /1b,,)

Volume
Specific
Energy,
E/V
(in-Ib; /in®)

Radius, r, of
1-Ib sphere,
inches

Pentolite (50/50)

20.50E6

1.230E6

TNT

18.13E6

1.048E6

RDX

21.50E6

1.283E6

Composition B

20.80E6

1.271E6

HBX-1

Taken from Explosions in Air, U.S. Army Materiel Command, 1975, Ch. 6, pp. 6-4.

1.580E-4
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15.42E6

0.944E6
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Table 2a: Non-dimensional, Sachs Scaled, Shock-Front Air Blast Parameters for Incident (side-on) Blast waves. (0.01423

<R<1.5)
Scaled | Peak Side-on | Time of Side-on Time of Particle Shock Density, Peak Temp., &
Range, | overpressure, | Arrival, (specific) Duration, | velocity, u, | Vvelocity, P dynamic
R P T, impulse, 1 . T, U pressure, Q
0.01423 |819 0 - - 23.2 25.2 12.18 4570 39.9
0.016 703 7.16E-5 |-- - 21.5 23.6 11.9 3850 36.7
0.018 605 1.66E-4 |-- - 19.8 21.9 11.6 3240 34.7
0.02 531 2.58E-4 |-- - 18.6 20.6 11.3 2760 33.1
0.03 324 8.05E-4 |[-- - 14.4 16.1 10.1 1450 26.0
0.04 225 1.48E-3 |-- 2.06E-2 12.0 13.5 9.28 935 21.1
0.05 170 2.27E-3 |-- 1.84E-2 10.4 11.7 8.88 670 17.7
0.08 90.5 4.95E-3 |8.95E-2 1.75E-2 7.5 8.78 7.49 305 11.8
0.09 77.5 6.06E-3 |8.24E-2 1.82E-2 6.9 7.8 7.25 245 10.7
0.1 67.9 7.62E-3 | 7.85E-2 1.91E-2 6.47 7.5 7.02 205 9.85
0.125 48.8 1.07E-2 |7.5E-2 2.43E-2 5.38 6.27 6.36 127 7.85
0.15 37.2 1.54E-2 |7.88E-2 3.41E-2 4.61 5.55 5.91 87.2 6.20
0.2 20.4 2.55E-2 |0.106 8.85E-2 3.5 4.27 4.92 44.1 4.31
0.22 16.6 2.84E-2 ]0.108 0.126 3.13 3.78 4.55 34.4 3.44
0.24 13.4 3.29E-2 [0.107 0.148 2.84 3.42 4.37 25 3.34
0.25 11.9 3.82E-2 |0.103 0.157 2.69 3.33 4.20 20.8 3.21
0.3 7.28 5.41E-2 |8.85E-2 0.171 1.95 2.66 3.59 9.45 2.48
0.4 3.46 9.90E-2 |6.95E-2 0.158 1.25 2.00 2.66 2.79 1.68
0.5 2.05 0.157 5.7E-2 0.162 0.888 1.67 2.09 1.08 1.43
0.6 1.38 0.218 4.82E-2 0.181 0.672 1.48 1.81 0.570 1.30
0.8 0.772 0.340 3.71E-2 0.232 0.427 1.28 1.49 0.212 1.18
0.9 0.618 0.392 3.35E-2 0.254 .363 1.21 1.39 144 1.16
1.0 0.506 0.466 3.02E-2 0.268 0.302 1.19 1.33 9.40E-2 1.12
1.5 0.254 0.830 2.07E-2 0.328 0.165 1.11 1.17 1.96E-2 1.07

Compiled from Baker, Explosions in Air with some values determined from large scale graphs in Baker.
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Table 2b: Non-dimensional, Sachs Scaled, Shock-Front Air Blast Parameters for Incident (side-on) Blast waves.
(2.00< R <1000)

Compiled from Baker, Explosions in Air with some values determined from large scale graphs in Baker.

Scaled | Peak Side-on Time of Side-on Time of Particle Shock Density, Peak Temp., 6,
Range, | overpressure, | Arrival, T, (specific) Duration, | velocity, u,| velocity, U P dynamic
R P impulse, 1 T, pressure,
Q
2.00 0.161 1.26 1.58E-2 0.362 0.107 1.0733 1.11 7.58E-3 1.0436
2.50 0.115 1.71 1.28E-2 0.39 7.97E-2 1.0481 1.0809 4.23E-3 1.0306
3.00 8.89E-2 2.20 1.08E-2 0.414 6.31E-2 1.0374 1.0628 2.70E-3 1.0247
4.00 6.16E-2 3.21 8.12E-3 0.445 4.41E-2 1.0257 1.0436 1.37E-3 1.0172
5.00 4.68E-2 4.21 6.56E-3 0.477 3.36E-2 1.0198 1.0332 8.20E-4 1.0134
6.00 3.74E-2 5.19 5.46E-3 0.495 2.68E-2 1.0159 1.0266 5.15E-4 1.0107
7.00 3.06E-2 5.84 4.67E-3 0.517 2.19E-2 1.0133 1.0223 3.67E-4 1.00895
8.00 2.61E-2 7.15 4.10E-3 0.532 1.90E-2 1.0111 1.0186 2.50E-4 1.00745
9.00 2.27E-2 7.64 3.62E-3 0.548 1.61E-2 1.00973 1.0162 1.98E-4 1.00650
10.0 1.98E-2 9.10 3.25E-3 0.564 1.44E-2 1.00850 1.0141 1.43E-4 1.00565
20.0 8.70E-3 18.9 1.58E-3 0.666 6.21E-3 1.00372 1.00620 |[2.76E-5 1.00248
30.0 5.43E-3 28.8 1.04E-3 0.737 3.90E-3 1.00232 1.00387 |1.07E-5 1.00155
40.0 3.91E-3 38.9 7.64E-4 0.781 2.79E-3 1.00167 1.00279 |5.52E-6 1.00112
50.0 3.04E-3 48.9 6.05E-4 0.825 2.17E-3 1.00130 1.00217 |3.31E-6 1.000870
60.0 2.48E-3 58.8 4.98E-4 0.856 1.77E-3 1.00106 1.00177 |2.19E-6 1.000709
80.0 1.81E-3 78.5 3.68E-4 0.916 1.28E-3 1.000618 |1.00103 |1.15E-6 1.000413
100 1.41E-3 98.5 2.93E-4 0.96 1.00E-3 1.000494 |1.000824 |6.95E-7 1.000330
250 5.17E-4 224 1.16E-4 1.16 3.79E-4 1.000775 |1.000453 |1.02E-7 1.000180
500 2.42E-4 499 5.75E-5 1.24 1.73E-4 1.0000988 |1.000173 |2.03E-8 1.0000660
1000 1.153E-4 1000 2.88E-5 1.25 8.20E-5 1.0000494 11.000082414 71E-9 1.0000330
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Figure 4 Graphical representation in Log-Log scale, of the side-on, Sachs scaled blast
parameters as presented in Table 2. Note that some parametric ranges of parameters have
been scaled over a portion of the domain to fit the axes.
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Making use of the condition that there is no velocity at a rigid reflecting surface,
one can determine the parameters behind a shockwave that would be normally reflected
[2].

For values of P, < 3.5, the equations for a normally reflected shockwave in a perfect

gas are [2]:
P, - zﬁs+% (20)
(Yfl)PerZY
i y(|_35+1>[('y+1)|_35+2'\{] (21)
g T T
o [v-1P+v]3y-1)P,2y] (22)

v[r )P 2y

where again vy is the ratio of specific heats and P, is the side-on pressure coefficient. The

acoustic asymptotes for the above parameters are given by [2]:

5,5 _ 0.2306
P, - 2P, = =Z (23)
R
2P
b~ 1.2%s ,01648 24)
t R
- 2(y-1)P
o 1. (r-1Ps |, 0.0660 (25)
t R

The Army design manual goes on to tabulate shock front parameters based on
Jack’s data (1963) for P, for high pressures, Shear and McCane's data (1960) for

intermediate pressures, and Equations (23) to (25) for low pressures (P, < 3.5). The

compiled data for the reflected shock waves are listed in Table 3 and shown in Figure 5.
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Table 3: Compiled Sachs Scaled Shock Front Parameters for Reflected Shock Waves

[ Scaled |  Peak | Timeol | Reflected | Density, o, [ Temperature]
distance, R reflected | duration, T, | (specific) 0,
pressure, P, Impulse, 1,
0.0538 1840 -- -- - -
0.07 1110 -- -- -- --
0.08 860 1.8E-2 1.86 37.8 20.7
0.09 699 1.98E-2 1.503 35.2 18.5
0.10 585 2.19E-2 1.27 33.2 16.8
0.125 397 2.67E-2 0.894 28.6 13.6
0.15 277 3.15E-2 0.667 24.4 12.1
0.20 146 4.25E-2 0.456 18.1 7.46
0.22 116 4.7E-2 0.408 16.1 6.41
0.24 91 5.2E-2 0.368 14.3 552
0.25 80.3 5.42E-2 0.355 13.5 5.15
0.30 37.7 6.84E-2 0.294 10.0 3.71
0.40 15.3 0.103 0.222 6.10 2.42
0.50 94 0.147 0.178 4.16 1.90
0.60 6.05 0.195 0.15 3.14 1.65
0.80 2.63 0.232 0.112 2.12 1.39
0.90 1.86 0.254 9.89E-2 1.86 1.32
1.00 1.31 0.268 8.85E-2 1.66 1.26
1.50 0.58 0.328 5.29E-2 1.32 1.13
2.00 0.358 0.362 3.77E-2 1.22 1.088
2.50 0.25 0.39 2.9E-2 1.16 1.0612
3.00 0.188 0.414 2.37E-2 1.12 1.0594
4.00 0.126 0.445 1.73E-2 1.087 1.0344
5.00 9.48E-2 0.477 1.37E-2 1.0664 1.0268
6.00 7.65E-2 0.495 1.12E-2 1.0532 1.0214
7.00 6.33E-2 0.517 9.49E-3 1.0457 1.0179
8.00 5.36E-2 0.532 8.40E-3 1.0392 1.0149
9.00 4.61E-2 0.548 7.31E-3 1.0334 1.0130
10.0 4.01E-2 0.564 6.58E-3 1.0282 1.0113
20.0 1.76E-2 0.666 3.20E-3 1.0124 1.00496
30.0 1.1E-2 0.737 2.08E-3 1.00774 1.00310
40.0 7.88E-3 0.781 1.54E-3 1.00558 1.00224
50.0 6.12E-3 0.825 1.22E-3 1.00434 1.00174
60.0 4.96E-3 0.856 9.96E-4 1.00354 1.00142
80.0 3.58E-3 0.916 7.39E-4 1.00206 1.000825
100 2.80E-3 0.96 5.86E-4 1.00165 1.000660
250 1.03E-3 1.16 2.33E-4 1.000898 1.000359
500 4.86E-4 1.24 1.15E-4 1.000330 1.000132
1000 12314 1125 IS /6E-5 11000165  11.0000660 |

From Engineering Design Handbook, Explosions in Air. U.S. Army Materiel Command and
from graphs found in Baker’'s Explosions in Air, 1973.
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Figure 5 Graphical representation in Log-Log scale of the normally reflected, Sachs scaled
blast parameters as presented in Table 3. Note that some parametric ranges of parameters
have been scaled over a portion of the domain to fit the axes.
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Also shown in Tables 2a, 2b, and 3 are tabulated values of the specific impulse.
Kingery's data from 1966, gathered from ground detonations and Goodman’s data from

1960 were drawn upon by the Army and by Baker in the creation of the tables. Baker
makes note of the acoustic asymptote for the specific side-on impulse, 1 as:

| - 0.0288 26
s R (26)

where R is the scaled blast distance for very large R. For R < 0.8, Baker uses the data of
Kingery (1966).

For the reflected specific impulse, Jack presented [1]:

!

r

(27)

r:|s

o

S

where P, is the reflected pressure parameter, P. is the side-on pressure parameter, and | s

is the specific side-on impulse parameter and is considered valid for a 0.6 < R < 100.
Beyond this range, the acoustic approximation may be used [2]:

1, =21, (28)

Baker reports that the data for T, do not exist for R > 0.7, but that Hoffman and

Mills (1956) experiments suggested that the data for T, can be used instead. This
procedure was used in this researcher’s computer program BLAST.F.

The determination of the impulse can also be obtained by integrating the
Friedlander’s equation given in Equation (8) over the positive phase. The decay constant
value can then be determined by iteratively solving for the constant, b, in the

transcendental equation [1]:

P, e _b)] (29)

where P, is the side-on pressure parameter, T, is the side-on positive phase duration

parameter, and 1 . is the specific side-on impulse parameter. Similarly, the decay value for

the reflected pressure case, b,, can be found from:

1 ) % 1@} (30)

b

r
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where P, is the side-on pressure parameter, T, is the side-on positive phase duration

parameter, and I ,isthe specific side-on impulse parameter. The decay coefficients and the
time constants used in their determination are presented in Table 4 for side-on decay
coefficients and Table 5 for reflected decay coefficients. Both side-on decay values and
reflected decay values are presented graphically in Figure 6. This researcher did not find
compiled data for both of these parameters as the decay value b is typically given, but not
b,. Thus the compiled values for both is usefully compiled here, but calculated in the
program BLAST.F for each specific case using the manner described above.

Once the data is in tabular or graphical form and R has been determined, the
appropriate values can be interpolated from the data tables. As the data and trends are
typically presented in a Log-Log format, the interpolation routine used must take the
logarithmic form into account. The computer program BLAST.F reads in these tabular
forms of the data and converts it into Log-Log format for interpolation with splines. Linear
interpolation has been used for quick estimates, but the graphical trend of the data should
be checked as well as using a Log-Log form of the interpolation as it is easy to miss changes

in data that occur between tabulated values. For example, the original data tables from

Baker and the Army did not contain any points between R = 0.1 and R = .15 and this

missing range would not show a local maximum in 1 between these points. If used, this
error would provide an incorrect decay coefficient. Thus, for the computer program, more
points were gathered for areas where distinct changes in the plots of the data took place so
that the program would more accurately interpolate parameters.

Conversion of the determined Sachs scaled parameters to their dimensionalized
forms can then occur and they can then be used in the empirical form of Friedlander’s

Equations shown in Equation (8).
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Table 4. Compiled Sachs Scaled Decay Time Constant, b, for Incident Shock Waves

cale [ Peak | Timeof | Reflected | Decay |
distance, R reflected duration, T, (specific) Constant, b
‘ pressure, P Impulse, 1 .
[lo.08 90.5 4.95E-3 8.95E-2 16.6
fl0.09 77.5 6.06E-3 8.24E-2 16.1
ffo.10 67.9 7.62E-3 7.85E-2 15.5
flo.125 48.8 1.07E-2 7.5E-2 14.7
l0.15 37.2 1.54E-2 7.88E-2 15.0
flo.20 20.4 2.55E-2 0.106 16.0
fl0.22 16.6 2.84E-2 0.108 18.3
flo.24 13.4 3.29E-2 0.107 17.5
[0.25 11.9 3.82E-2 0.103 17.1
flo.30 7.28 5.41E-2 8.85E-2 13.0
l0.40 3.46 9.90E-2 6.95E-2 6.69
{l0.50 2.05 0.157 5.7E-2 4.56
[0.60 1.38 0.218 4.82E-2 3.87
{l0.80 0.772 0.340 3.71E-2 3.48
0.90 0.618 0.392 3.35E-2 3.32
1.00 0.506 0.466 3.02E-2 3.11
1.50 0.254 0.830 2.07E-2 2.59
2.00 0.161 1.26 1.58E-2 2.20
2.50 0.115 1.71 1.28E-2 1.98
3.00 8.89E-2 2.20 1.08E-2 1.86
4.00 6.16E-2 3.21 8.12E-3 1.82
5.00 4.68E-2 4.21 6.56E-3 1.86
6.00 3.74E-2 5.19 5.46E-3 1.84
7.00 3.06E-2 5.84 4.67E-3 1.84
8.00 2.61E-2 7.15 4.10E-3 1.84
9.00 2.27E-2 7.64 3.62E-3 1.90
10.0 1.98E-2 9.10 3.25E-3 1.90
20.0 8.70E-3 18.9 1.58E-3 2.17
30.0 5.43E-3 28.8 1.04E-3 2.38
40.0 3.91E-3 38.9 7.64E-4 2.55
50.0 3.04E-3 48.9 6.05E-4 2.72
60.0 2.48E-3 58.8 4.98E-4 2.86
80.0 1.81E-3 78.5 3.68E-4 3.12
100 1.41E-3 98.5 2.93E-4 3.26
250 5.17E-4 224 1.16E-4 3.89
500 2.42E-4 499 5.75E-5 3.91
1000 1.153E-4 1000 2.88E-5 3.68
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Table 5: Compiled Sachs Scaled Decay Time Cons

tant, b,, for Reflected Shock Waves

cale [ Peak | Timeof | Reflected | Decay |
distance, R reflected duration, T, (specific) Constant, b,
‘ pressure, P, Impulse, 1 .
[lo.08 860 1.8E-2 1.86 7.16
fl0.09 699 1.98E-2 1.503 8.07
ffo.10 585 2.19E-2 1.27 8.96
flo.125 397 2.67E-2 0.894 10.8
l0.15 277 3.15E-2 0.667 12.0
flo.20 146 4.25E-2 0.456 12.5
fl0.22 116 4.7E-2 0.408 12.3
flo.24 91 5.2E-2 0.368 11.8
[0.25 80.3 5.42E-2 0.355 11.2
fl0.30 37.7 6.84E-2 0.294 7.62
l0.40 15.3 0.103 0.222 5.90
flo.50 9.4 0.147 0.178 6.59
[0.60 6.05 0.195 0.15 6.69
{l0.80 2.63 0.232 0.112 4.16
0.90 1.86 0.254 9.89E-2 3.43
1.00 1.31 0.268 8.85E-2 2.52
1.50 0.58 0.328 5.29E-2 2.09
2.00 0.358 0.362 3.77E-2 1.90
2.50 0.25 0.39 2.9E-2 1.81
3.00 0.188 0.414 2.37E-2 1.71
4.00 0.126 0.445 1.73E-2 1.66
5.00 9.48E-2 0.477 1.37E-2 1.73
6.00 7.65E-2 0.495 1.12E-2 1.83
7.00 6.33E-2 0.517 9.49E-3 1.91
8.00 5.36E-2 0.532 8.40E-3 1.85
9.00 4.61E-2 0.548 7.31E-3 1.92
10.0 4.01E-2 0.564 6.58E-3 1.90
20.0 1.76E-2 0.666 3.20E-3 2.17
30.0 1.1E-2 0.737 2.08E-3 2.44
40.0 7.88E-3 0.781 1.54E-3 2.55
50.0 6.12E-3 0.825 1.22E-3 2.72
60.0 4.96E-3 0.856 9.96E-4 2.86
80.0 3.58E-3 0.916 7.39E-4 3.05
100 2.80E-3 0.96 5.86E-4 3.22
250 1.03E-3 1.16 2.33E-4 3.81
500 4.86E-4 1.24 1.15E-4 3.93
1000 2.31E-4 1.25 5.76E-5 3,69
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Figure 6 Graphical representation, on Log-Log axes, of the decay parameters for side-on
and normal reflection, b and b,, respectively, for use in the empirical Friedlander’s equation.
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3.5 Air Blast Parameters for Air and Surface Burst as found by

Kingery and Bulmash

Kingery and Bulmash [3] gathered their data by detonating various charges from
one kilogram to 400,000 kilograms. This data was then scaled using Hopkinson and Sachs
scaling laws to standard atmospheric sea level conditions.

Measurement of shock arrival was recorded by various methods including
photographic analysis, electric switches which close at blast arrival so that there can be an
electric time stamp, and also by using overpressure transducers. These values were scaled

using the reciprocal of a distance scaling factor:

1 1
s, - | 2|3 | Po|3 (1)
Q, Pa
where S, is the scaling factor, Q, is the other explosive mass (in kilograms) being scaled to
the reference weight of one kilogram Q,, p, is the standard atmospheric sea level pressure,
and p, is the ambient atmospheric pressure. And the times were also scaled using the
reciprocal of a time scaling factor:

AHEAHEAE
S, = | =2 = 32
el e

a

where T, is the standard atmospheric temperature (288°K), and T, is the ambient
temperature in degrees Centigrade, Q, is the other explosive mass (in kilograms) being
scaled to the reference weight of one kilogram Q,.

Measured values of peak overpressure were taken by direct transducer
measurement of the shock wave and were also inferred from the velocity of the shock front.
The data were scaled to standard atmospheric pressures by using the reciprocal of a

pressure scaling factor:
Sp = — (33)

where P, is the ambient pressure, and P, is the standard atmospheric pressure at sea level.
And distances were scaled again by using the inverse of Equation (31).
Kingery and Bulmash measured the impulse as an area under the curve formed by

the pressure profile. This made it a function of the overpressure, duration, and decay rate
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of the blast. These impulses were scaled to one kilogram and one pound charge weights by

using the reciprocal of an impulse blast scaling factor:
1 2 1
S_(&)E[E)E T |2 )
1
Q) (Pa) (71,7

where again,Q, is the other explosive mass (in kilograms) being scaled to the reference
weight of one kilogram Q,, p, is the standard atmospheric sea level pressure, p, is the
ambient atmospheric pressure, T, is the standard atmospheric temperature (288°K), and
T, is the ambient temperature in degrees Centigrade. English units would be used in lieu
of metric when scaling to pounds.

Positive durations from various sources were scaled by Kingery and Bulmash to one
kilogram of charge mass by using the reciprocals of the distance scaling factor, in Equation
(31), and the time scaling factor in Equation (32).

For the reflected pressure data, Kingery and Bulmash gathered data from other
sources noting that the reflected pressure data is not usually measured directly and that
their data presented was only from cases where blasts impinged upon a surface from the

normal direction. They [3] note that the following relationship is used for calculating the

(2+l+1] P5+p° _
Y71 Po

v+l PP,
Y71 Po

peak reflected overpressure:

Pr - (Ps+po>

“Po (35)

where P, is the peak side-on overpressure, p, is the ambient pressure, and v is the variable
ratio of specific heats. Kingery and Bulmash state that vy is a function of peak overpressure
and that this relationship can be found in graphical format in Kingery and Pannill's BRL
report of 1964.

Their [3] tabulated data was then converted in a computer code to equations within

the Log-Log domain in the form of:

N

Y = Cy+CU+..+Cy (36)

where:
U =K,+K/T (37)

and where Y is the common logarithm of the parameter under evaluation, T is the common
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logarithm of the scaled distance, and N is the order of fit. Parameters C and K are
calculated and will not be explicitly listed here, but can be found for English units in the
computer program BLAST.F in Appendix I.

Upon completion of their tabulation of their [3] data, Kingery and Bulmash
compared it to the results of other sources by graphically comparing the fits of their results
to graphical representations of their source data and found that they had what they
considered to be very favorable results.

Once the common log of a desired parameter has been determined, it is desirable
to convert them to a dimensional form for use. For English units, pressures would be
converted by taking an inverse common logarithm of the parameter to get pounds per
square inch, and for times and impulses, the inverse common log must be multiplied
against the cube root of the charge weight to get units of psi-milliseconds and milliseconds
respectively. Once the parameters of peak overpressure, time of arrival, and time of
duration have been determined, they can be used in a form of the Modified Friedlander’s

Equation: [5]:

- ()
p =P, (1—( tt ta)) e ° (38)

S

where P, is the peak overpressure, t , is the time of arrival, and t  is the positive phase
duration. While the, decay coefficient, b, can be determined by fixed point iteration of
Equation (29) again, they must be converted to a dimensional form in units of milliseconds:

where b is the determined decay coefficient, P is the peak overpressure, t, is the time of

0 - b
b2-—2(b+e °-1)
b (39)
) Pt
2b-—2(1-e7)

duration for the positive phase, and I is the specific impulse.

3.6 Application to Hemispherical Surface Blasts

While Kingery and Bulmash present equations for the simulation of hemispherical
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surface blast, similar methods were not explicitly presented by Baker in his book or by the
Army in their handbook. Thus, a third method was developed in consultation with other
weapons effects specialists at General Dynamics Land Systems and with mentioned
references in the Army manual and in Bulson. For a perfect reflecting surface, the shock
waves would be instantaneously “reinforced” by the reflecting waves as shown in a generic
representation in Figure7. This would give the effect of twice the weight of the actual
charge. Similar to representing sources or sinks by its mirror image, the ground would, in
effect, be creating a mirror charge at its surface at the point of explosion. As the ground
is not a perfect reflector, a ground reflectivity value greater than one but less than two
would be appropriate. Thus, Bulson suggests that the number is close to 1.7 [7] and
references the work of Reisler in 1966 as proof that the free air equations can be used with
only the alteration of 1.7W replacing W. Thus, the weight of the explosive would be
multiplied by this ground reflectivity value and then the new weight would be used in the
calculation of explosive blast profiles. Other specialists suggested a number closer to 1.8,
and both Kingery and the Army Design Manual, Explosions in Air, makes use of a 1.8
ground reflectivity factor in converting other references data from hemispherical surface
bursts to their equivalent free air values. The default value used in the computer program
is 1.7, but the input file allows for the use of any value.

In this case, the tables and figures in the Army's Explosions in Air and W.E. Baker's
Explosions in Air, 1973 were used for the generation of blast profiles for a completely
reflected ground blast. In this method, the equivalent TNT weight is multiplied by a
ground reflectivity factor of 1.7 (i.e. 70% ground reflectivity). The new equivalent TNT is
used at the same normal blast distance in the spline calculated values of time of arrival (t,),
reflected time of duration (t,), reflected impulse (I,), and peak reflected overpressure (p,).
A new reflected value of the blast decay profile is calculated from the reflected impulse,
overpressure, and time parameters and used in the Modified Friedlander's equation for the
creation of the blast profiles. In this way the same routines used for free air explosions
could be used for the calculation of hemispherical surface bursts.

It is interesting to note that Kingery and Bulmash conclude that the application of
their parameters (and indeed, also the parameters determined in other methods) could be
extended to the blast parameters of surface burst nuclear devices beyond a Hopkinson

1/3

scaled distance of 2 ft/Ibm™*, if the assumption is made that one half of the charge weight

goes into production of the parameters. Thus, the charge weight of a two kiloton tactical
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nuclear device in ground burst could be modeled by modifying the ground reflectivity factor

to 0.5 as its surface burst condition.[3]

Hemispherical Ground Burst

h15'|11i5-;r|h1!ri|'5|| shock wavea
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reinforesd
shock waves
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Figure 7 Depiction of a generic, hemispherical surface detonation of an explosive
charge on a rigid, reflecting surface in which successive shock waves are reinforced.
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3.7 Reflected Pressure vs. Angle of Incidence

An approximation for the area of normal reflection can be made by assuming that
the limit of normal reflection will be within an area of a structure that lies within an
unobstructed 45° angle of attack cone to the explosion. While this can be considered a
simple rule of thumb that is easy to implement for use in commercial FEM codes, a different
method is presented in the Army’s Engineering Design Handbook based on the work of
Kingery and Panill. [2] For the calculation of this reflected pressure, the side-on pressure
value is interpolated in Figure 8, then a coefficient is determined for the angle of incidence.
This coefficient is then multiplied by that side-on pressure for the reflected pressure value
on the surface. This figure is given, in a tabular format, to the program BLAST.F which

has the option of correcting calculated blast pressures for angle of incidence.
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Figure 8 Reflected pressure coefficient vs. angle of attack for incident waves that reflect
from oblique surfaces. The number in the legend corresponding to each curve indicates
the peak side-on overpressure, P, in pounds per square inch.
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3.8 Limit of Regular Reflection

An approximation for the area of normal reflection can be made by assuming that
the limit of normal reflection will be within an area of a structure that lies within an
unobstructed 45° angle of attack cone to the explosion. While this can be considered a
simple rule of thumb that is easy to implement for use in commercial FEM codes, a different
method is presented in the Army’s Engineering Design Handbook based on the work of
Kingery and Panill. [2]

As an example of how this is used, we will examine the case for which one of the
later examples will be done, that of a quantity of TNT detonating 16 inches from a plate
in hemispherical surface burst. The side-on overpressure can be determined at a point on
the plate some distance from the blast. This side-on overpressure can then be used to
interpolate the value of the critical angle given in Table 6. Thus, a point can then be shown
to be inside or outside of the area of normal reflectivity. Similarly, the general critical angle
can be determined by interpolating with the slant distance, R, to the blast from a point or
by interpolating with the height of the blast.

A canonical detonation is shown to demonstrate the parameters shown in Table 6.
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Figure 9 A canonical detonation to demonstrate the different parameters tabulated in
Table 6 for determining the critical angle for normal reflection.
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Table 6: Limit of Regular Reflection ¢, VS the shock strength.

¢ (p/P+P,) Ol xtreme Peak Side-on |Slant Range, | Height of Horizontal
a,,, deg | Overpressure, P R (ft) Burst, H (ft)| diatance, d (ft)
(psi)

0.002 46.57 7335 0.1969 0.1353 0.1430
0.003 45.52 4885 0.2734 0.1915 0.1951
0.004 45.02 3660 0.3452 0.2440 0.2442
0.005 44.80 2925 0.4134 0.2933 0.2913
0.006 44.50 2435 0.4779 0.3408 0.3350
0.007 44.16 2085 0.5397 0.3871 0.3760
0.008 43.79 1822 0.5989 0.4323 0.4145
0.009 43.45 1618 0.6556 0.4759 0.4509
0.01 43.15 1455 0.7099 0.5179 0.4855
0.02 41.51 720.3 1.154 0.8642 0.7650
0.03 40.72 475.3 1.482 1.123 0.9674
0.04 40.32 352.8 1.745 1.330 1.129
0.05 40.04 279.3 1.968 1.507 1.266
0.06 39.83 230.3 2.165 1.662 1.386
0.07 39.67 195.3 2.340 1.801 1.494
0.08 39.56 169.0 2.502 1.929 1.594
0.09 39.48 148.6 2.653 2.048 1.687
0.1 39.42 132.3 2.795 2.159 1.775
0.15 39.26 83.30 3.414 2.643 2.160
0.2 39.32 58.80 3.955 3.059 2.506
0.25 39.53 44.10 4.462 3.441 2.840
0.3 39.88 34.30 4.960 3.806 3.180
0.35 40.34 27.30 5.467 4.167 3.539
0.4 40.93 22.05 5.997 4.530 3.929
0.45 41.65 17.96 6.567 4.906 4.365
0.5 42.52 14.70 7.158 5.275 4.838
0.55 43.55 12.02 7.914 5.735 5.453
0.6 44.77 9.800 8.731 6.198 6.150
0.65 46.22 7.915 9.734 6.734 7.029
0.7 47.97 6.300 10.99 7.363 8.169
0.75 50.09 4.900 12.69 8.146 9.740
0.8 52.73 3.675 15.16 9.179 12.06
0.85 56.15 2.594 19.16 10.67 15.92
0.9 60.82 1.633 27.13 13.22 23.69
0.95 68.02 7736 50.88 19.03 47.18

Data compiled for 1lb. pentolite spheres. (From Explosions In Air, U.S. Army)
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3.9 Program

The code written and used, BLAST.F, is a program written as in modular form to
examine the two different methods for determining explosive blast pressure profiles. Itis
a user input file driven program in which all pertinent run parameters are put into the
input file titled BLAST.INP. BLAST.INP requires the input of the charge weightin TNT,
type of method desired (Kingery & Bulmash or Explosions in Air), type of output desired
(air blast or hemispherical surface burst/mine blast), time step controls, and the radial
values ( x and y coordinate pairs are converted to radial values) of the loading areas from
the point normal to the blast center.

The program, written in FORTRAN 77, formerly made use of more dynamic data
storage structures, but this was abandoned so as to allow more platform independence
when it came to compiler choice. Time step controls and an epsilon value are specified in
the input file to facilitate this independence, where the epsilon value is used in the fixed
point iteration decay function.

After the reading of the user input file, the program selects the appropriate
subroutine, one duplicating Kingery’s method or one duplicating the method presented in
Explosions in Air. Both subroutines first determine the correct blast parameters, then the
blast profiles, these are stored in a subroutine passable array structure. These profiles, one
for each loading area, are then output to the file BLAST.OUT, in English units. The
structure of the program is presented in the flowchart in Figure 10.

The program has the option for making an adjustment of reflected pressure waves
with varying angles of incidence, but does not determine if the areas given the program lie
within the area for which normal reflection of blast waves occurs. BLAST.F makes use
of the information in Figure 8 such that the blast pressures determined have not only a
correction in the reflected pressure for varying incident angles of incidence, but the new

decay coefficient is calculated accordingly to correspond to this new pressure.

3.9.1 Subroutine KINBUL

KINBUL, an abbreviation of KINgery and BULmash, makes use of Kingery and

Bulmash’s Log-Log curve fitting routines to TNT scaled explosive charges, as presented in
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their April, 1984 paper. This routine makes use of a large number of arrays all containing
the appropriate curve fitting values used in doing Kingery’s Log-Log fitting. The arrays
are initialized for spherical surface burst parameters and if the logical flag, mine (short for
mine blast), informs the routine that air blast is desired, the routine then resets the values
as appropriate for the determination of spherical air blast.

First, the Hopkinson scaled distance is determined and stored for each radial value.
Then each appropriate parameter for the determination of the complete blast profile is
calculated through the use of the predetermined Log-Log curves and stored in an
appropriate array. The blast decay coefficient is first determined by the use of the fixed
point iteration DECAY function using the epsilon value from the user input file, but the
decay value is then converted to dimensionalized form by way of Equation (39). The
individual arrays storing blast parameters for each loading area are then used by the
Modified Friedlander’s equation in Equation (38) to generate the full blast profiles over the
desired time lengths using the time step controls from the input file, BLAST.INP. The
stored profiles are then passed to the output routine OUTFIL and output to BLAST.F.

3.9.2 Subroutine EIA

The EIA subroutine (an abbreviation of Explosions In Air) first reads in the input
file EIA.DAT, found in Appendix I1, which contains the Sach’s scaled parameters from both
Baker's and the Army’s Explosions in Air. This file contains the side-on and reflected
parameters to be interpolated. These selected values can be found in tabular form in Tables
2a, 2b, 3, 4, and 5, or graphical form in Figures 4, 5, and 6. These values are converted to
their Logarithmic form for interpolation within the code to avoid the alteration of the
interpolation routines to the Log-Log domain. EIA makes use of the spline routines
XSPLINT and XSPLINE found in Numerical Recipes [9] to cubically extrapolate the values
necessary for the Explosions in Air routines. After reading in these converted Sach’s
scaled parameter values, the routine determines the first derivative of each paramter’s
curve at the end points, as this is required by the SPLINT routine. For each parameter,
SPLINT is called once which establishes the second derivatives needed in the SPLINE
routine. Then for each parameter, the SPLINE routine is called, cubically interpolating or

extrapolating a parameter. This parameter is stored, converted to dimensional form and
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stored again. The non-dimensional form is used by the DECAY function with the epsilon
value from BLAST.INP in the determination of the blast decay parameter, b. The
dimensional form is used in the Empirical Friedlander’s equation, Equation (8), to generate
the blast profiles over the desired time periods using the BLAST.INP time step controls.
As in KINBUL, the stored profiles are then passed to the output routine OUTFIL and
stored in the outfile BLAST.F.
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Figure 10 Flowchart showing the structure and process by which the explosive blast
profile generation program BLAST.F (ver 2.3), written by the author, works during a
typical run.
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4.0 ResuLTts AND DiscussionN

4.1 Comparison of Air Blast Pressure Profile Methods

The Explosions in Air method when compared to the method by Kingery and
Bulmash produce results that are similar, as seen in Figure 11 for a spherical air burst of
25 pounds at 24 inches normal distance to a target. In this case, the reflected peak
pressures are on a similar order of magnitude with over 14,300 psi peak overpressure for
Kingery's method and over 13,700 psi for the methods in Explosions in Air. The difference
lies not in the pressures, but mostly in the specific impulses delivered to the target. The
Explosions in Air method results in a reflected specific impulse of about 700.6 psi-msec and
1212 psi-msec for the methods by Kingery and Bulmash. Additionally, the Explosions in
Air method has an arrival time in advance of Kingery and Bulmash. Unfortunately, as
both of these methods are based on experimental data, without repeatedly detonating
explosives, this researcher cannot determine which one is most likely to be correct on this

point.
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Figure 11 Comparison of reflected overpressures by the Explosions in Air and Kingery and
Bulmash methods for a 25 pound charge of TNT in a spherical air burst above a target at
two feet blast normal distance.
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4.2 Comparison of Hemispherical Surface Blast Pressure Profile

Methods

The Explosions in Air method when compared to the method by Kingery and
Bulmash produce results that are similar, as seen in Figure 12 for a hemispherical surface
burst of five pounds charge at 16 inches normal distance to a target. In this case, the peak
pressures are on a similar order of magnitude with over 13,300 psi peak overpressure for
Kingery’s method and over 15,550 psi and almost 15,000 psi for the methods in Explosions
in Air for 1.8 and 1.7 ground reflectivity values, respectively. Also, the Explosions in Air
method results in a specific impulse of about 577 psi-msec and 541 psi-msec for 1.8 and 1.7
ground reflectivity values respectively, and 958 psi-msec for the methods by Kingery and
Bulmash.

Though a ground reflectivity value of 1.7 is closer to Kingery's method both
Explosions in Air methods have a lower impulse and an early arrival time, just as with the
spherical air burst. This arrival time disagreement can be reduced if the arrival time for
an unmodified blast is used. That s, using the original amount of TNT before modification
by a ground reflectivity factor. But that changes the arrival time to near 0.08 milliseconds,

which is still earlier than Kingery’s arrival time of near 0.09 milliseconds, so though an
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Figure 12 Comparison of reflected overpressures by the Explosions in Air (for a ground
reflectivity value of 1.7 and 1.8) and Kingery and Bulmash methods for a five pound charge
of TNT in a spherical air burst above a target at sixteen inches blast normal distance.
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improvement that would allow closer agreement, it really doesn’t seem like that much of
an improvement. This raises the question of why are there differences in two seemingly
accepted methods. Goodman, Baker, and Bulson make a point of the fact that due to
conditions, differing materials, differing instruments, and other things, that it is hard to
get two explosions by differing researchers to agree. Both Explosions in Air and Kingery
and Bulmash make use of research data from others, and Kingery notes that various
parameters have been measured in different ways [3]. Thus, though the pressures are
close, the impulses differ by a lot. This could be attributed to differing values for the length
of duration of a blast as well as a change in the way that the decay values were determined,

thus differing impulses.

4.3 Example and Comparison of Time Varying Pressure
Distribution of Blast Pressure Across a Plate: 20lb of TNT at

24 inches Normal Blast Distance

BLAST.F was used to demonstrate the pressure distribution and comparision of the
time varying pressure across a plate due to a 20 pound charge of TNT 24 inches from the
plate. Figure 13 show six timesteps of a pressure distribution across a plate. In this
Figure, one can see the way in which a pressure wave translates across the plate. This
Figure also compares the blasts calculated with the Kingery & Bulmash methods both with
and without the adjustment for angle of incidence of the blast waves (“Angle” and “Normal,”

in the Figure, respectively).
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Figure 13 A family of curves over six time steps showing the time varying overpressure
across the surface of a plate. The pressure curves compare the results of normal reflection
and adjustment for angle of incidence for 20lbs of TNT at 24 inches calculated by the methods
found in Kingery & Bulmash.
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4.4 Example Semi-Hemispherical Ground Blast: a 51b TNT mine

In order to demonstrate the usefulness of the program and how the method works,
a test case was done. This test case was an assumed five pound charge of TNT in
hemispherical ground blast against a plate. No adjustment was made for angle of attack
as was explained above where the reflected pressure is adjusted for the incident angle of
the blast wave to render the test conservative. The area covered was set to be the area
within an area with an angle of incidence to the blast at 45 degrees. These models were
analyzed with NASTRAN using non-linear analysis with double strain hardening curves
for the material, that is, the stress strain curve was represented by two linear segments for
the elastic and plastic regions of the material.

In order to show a convergence of the tests, blasts were done for four by four, eight
by eight, 16 by 16, and 32 by 32 quadrilateral elements in a quarter plate analysis for a
simulated 60 by 60 inch plate of fixed boundary conditions. The plate was made of
aluminum 2519 and set for a thickness of one inch, simulating an unstiffened floor of a
lightly armoured vehicle. The blast normal distance was 16 inches as this distance is the
U.S. Army’s minimum ground clearance distance for combat vehicles.

For the four by four quarter plate, the blast was done for three different loading
areas, and four of the elements were loaded for blasts of radial distances of six, 12,and 16
inches. These loading areas are shown in Figure 14.

The equivalent stresses from NASTRAN for the 16 element quarter plate are
plotted in Figures 15 to 23. These plots are all on deformed displacement geometry that has
been scaled to 10% of the model dimensions. By keeping the fringe scale the same through

the plots, it is possible to observe the stress waves traveling across the material from the
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point of blast application

13 14 15 16

Figure 14 Display of the four by four quadrilateral element quarter plate of
fixed boundary conditions, with the three colors denoting the loading areas for
six, 12, and 16 inch radial distances from the blast center at the lower left
corner.
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Figure 15 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0004 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 16 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0024 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 17 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0052 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 18 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0072 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 19 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =0.01
seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 20 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0136 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 21 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0152 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 22 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 23 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time = 0.02
seconds. Displacements have been scaled to 10% of the model dimensions.
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For the eight by eight element quarter plate, the blast was done for four different
loading areas, and thirteen elements of the elements were loaded for blasts of radial
distances of six, 12, and 16 inches. These loading areas are shown in Figure 24.

The equivalent stresses from NASTRAN for the 64 element quarter plate are
plotted in Figures 25 to 33. These plots are all on deformed displacement geometry that has
been scaled to 10% of the model dimensions. By keeping the fringe scale the same through
the plots, it is possible to observe the stress waves traveling across the material from the

point of blast application.

57 58 59 60 61 62 63 64
49 5@ 51 52 53 54 55 56
41 4z 43 44 45 46 47 48
33 34 15 36 37 38 39 10
pd =S pd =3 pdr z8 P 30 31 3z
ze 21 zz 23 24
12 13 14 15 16
+ 5 6 rd 8

Figure 24 Display of the eight by eight quadrilateral element quarter plate of fixed
boundary conditions, showing the four loading areas for six, 12, and 16 inch radial distances
from the blast center at the lower left corner.
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Figure 25 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0004 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 26 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0024 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 27 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0052 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 28 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0072 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 29 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =0.01
seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 30 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0136 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 31 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0152 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 32 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 33 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a
five pound charge in hemispherical ground detonation at the lower left corner at time =0.02
seconds. Displacements have been scaled to 10% of the model dimensions.
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For the 16 by 16 quarter plate, the blast was done for eight different loading areas,
and the appropriate elements were loaded for blasts of radial distances of one, three, five,
seven, nine, 11, 13, and 15 inches from the point under the center of the blast. These

loading areas are shown in Figure 34.
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Figure 34 Display of the 16 by 16 quadrilateral element quarter plate of fixed boundary
conditions, showing the loading areas for one, three, five, seven, nine, 11, 13, and 15 inch
radial distances from the blast center at the lower left corner.

The equivalent stresses from NASTRAN for the 256 element quarter plate are
plotted in Figures 35 to 43. These plots are all on deformed displacement geometry that has
been scaled to 10% of the model dimensions. By keeping the fringe scale the same through
the plots, it is possible to observe the stress waves traveling across the material from the
point of blast application. Itis atthis point where this researcher thinks the most accurate
results due to increased resolution begin in the selection of the mesh. In Figure 35, right
after the application of the blast loads, it can be seen here, and later in the 32 by 32 element
case, that this initial application of the blast causes dramatic deformation in the immediate
area of the blast while being rapid enough that the stress waves have not yet begun to

travel out from the center of the plate, thus the rest of the plate remains stress free.
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Through out the time spans, the stress waves can be seen to be traveling across the plate,
and with very little exception, the points of greatest stress are seen to be the corners of the
guarter plate that are on the lines of symmetry, while the least stress can be found at the

corner formed by the two edges of fixed boundary conditions (upper right).
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Figure 35 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0002 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 36 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0024 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 37 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.005 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 38 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0074 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 39 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.01 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 40 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0136 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 41 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.015 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 42 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 43 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.02 seconds. Displacements have been scaled to 10% of the model dimensions.
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For the 32 by 32 quarter plate, the blast was done for eight different loading areas,
and the appropriate elements were loaded for blasts of radial distances of one, three, five,
seven, nine, 11, 13, and 15 inches. These loading areas are shown in Figure 44, though the

element numbers are not shown for clarity. The blast center is at the lower left corner.

Figure 44 Display of the 32 by 32 quadrilateral element quarter plate of fixed boundary
conditions, showing the loading areas for one, three, five, seven, nine, 11, 13, and15 inch
radial distances from the blast center at the lower left corner. Element numbers are not
shown.

The equivalent stresses from NASTRAN for the 1024 element quarter plate are
plotted in Figures 45 to 53. These plots are all on deformed displacement geometry that has
been scaled to 10% of the model dimensions. By keeping the fringe scale the same through
the plots, it is possible to observe the stress waves traveling across the material from the
point of blast application. This example was done to obtain better resolution of the effects
of the blast seen in the 256 element quarter plate, but also to check the convergence of the
16 by 16 element mesh. While obvious advantages in increased accuracy can be obtained
with 32 by 32 element size, for this model, it corresponds to less than one inch square per

element, for a different model, this could become compuationally expensive to implement
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with such a small element, thus a larger element for roughly the same results would be
desired.

Again, it can be seen that great deformation occurs as the blast strikes the plate,
but that the effect is so rapid that stresses have not formed far beyond the area being
loaded. This model showed similar deflections and stresses, but the resolution provided a
much clearer picture of the behaviour of the plate. As a design tool, this would be very
helpful, however, computationally limiting for large models. The vibration of the plate is
interesting to observe and compare over the increasing resolution of the mesh as the coarse
mesh does not show the rotation and deformation of the model under load as well as the fine

model does, especially near time = 0.0136 seconds.
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Figure 45 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.00032 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 46 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.00224 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 47 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.00512 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 48 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.00736 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 49 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.01024 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 50 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.01344 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 51 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.01504 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 52 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.
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Figure 53 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30
inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to
a five pound charge in hemispherical ground detonation at the lower left corner at time =
0.02 seconds. Displacements have been scaled to 10% of the model dimensions.
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As can be seen in Figure 54, the displacements of the plate converged rapidly for
the model, even with the refinement of both the blast loading areas and the mesh itself.
The displacements for the center point under the immediate area of blast loading are
plotted. Not only does the displacements converge rapidly, but they can almost be
approximated as being a decaying oscillation.

As any finite element model cannot be considered to be converged for displacements
alone, the stresses are shown in Figure 55 for the corner elements under load. As this
corner element decreases in area by a factor of four with each refinement of the mesh, the
point for which the stress is being analyzed changes too, as that point lies at the center of
the element, with that center point “moving” towards the corner point by half the distance
with each mesh refinement. This trend, similarly, can be seen to almost halve with the
refinement of the mesh first from 16 (four by four) elements, to 64 (eight by eight) elements,
then to 256 (16 by 16) elements. The stress plotted for the 1024 (32 by 32) element case is
not the stress at the center of the corner element. Instead, the stress for the four corner
elements was averaged to determine the average stress at what was formerly the center of
the corner element of the 256 element case. This enabled a more direct comparison of the
stresses and showed that though the exact values of the stresses had not converged, they

were of a closer order of magnitude and showed the same trends.
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Figure 54 Plot of the vertical displacement for the corner of the quarter plate subjected to
the five pound surface blast showing gradual convergence with the increase in the number
of elements.
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Figure 55 Plot of the equivalent stress for the center point of the element near the corner
of the quarter plate subjected to the five pound surface blast showing gradual convergence
with the increase in the number of elements.
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4.5 Example of an Arbitrary Aircraft Wing: 20lb TNT charge at 6 ft.

Using NASTRAN, the model of the NASA's Aeroelastic Research Wing-2 (ARW-2)
was modified to represent a more generic, full sized aircraft wing. The ARW-2 model has
a leading edge sweep of 28.8 degrees and an aspect ratio of 10.8. The mesh of the ARW-2
wing model consists of an 11 x 13 mesh of 312 nodes. There are 952 elements including 56
two-dimensional stiffener elements with the remaining 896 elements being triangular three
noded shell elements including elements comprising the ribs and spars of the wing model.
An isotropic material was selected for application of the loads [11].

To do this scaling, the geometric coordinates of the ARW-2 wing were changed from
units of inches to units of feet. This provided a larger wing with which to work while not
modifying the properties of the wing itself, essentially providing a wing 12 times larger
than the original model. This model can be seen in a captured image from PATRAN in
Figure 56. This wing was then further modified by adjusting the material properties to
feet. The material selected was aluminum 7075-T6, a common aircraft material. This was
input into the NASTRAN input deck as a two linear segment elastic (until yield stress) and
plastic (until ultimate stress) stress-strain curve which provided the model with non-linear
properties. Thus, a non-linear dynamic response analysis was run.

To provide the blast loads, BLAST.F was used to generate the angle of incident
adjusted curves from the Kingery and Bulmash calculation routine for 20lbs of TNT at a
six foot normal distance. This was done for four loading areas seen in Figure 57. The 20
pound charge was an arbitrarily chosen value based on warhead sizes of common air-to-air
missile threats [7] [8].

For simplification of the model, and also because this is a demonstration of the
method and this model is not a design tool, the wing body joint was replaced with fixed
boundary conditions along the length of the wing root edge of the finite element model.
The runtime for this model was limited to a short time beyond the time of blast load
application due to file size constraints on the system running NASTRAN. Figures 58 to
65 have the stresses plotted on the deformed model. The deformed model is not scaled in
any way and shows the correct, unaltered deformations. After Figure 61, the scale of the
fringe plot was changed to a higher maximum, there by allowing better stress resolution

for the earlier time steps. The runs used approximately 10 hours of CPU time per run
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including several aborted runs, though the limiting factor seemed to be not the queue’s run
time limits, but the storage space allowed for the scratch files used by NASTRAN in
conducting the runs. This limitation was solved by using an Aerospace Department
computer account with a much larger storage space allocation. The number of elements
and the load application changed not only the run time, but also the necessary storage

space.
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Figure 56 Three-dimensional view of the ARW-2 wing model to which blast loads
were applied. The boundary conditions at the wing root were fixed during analysis.

Figure 57 View of the underside of the hypothetical wing model showing blast load
application areas.
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Figure 58 The hypothetical wing model at time = 0.0012 seconds subjected to a 20
pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have
not traveled far beyond the loading area.
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Figure 59 The hypothetical wing model at time = 0.0048 seconds subjected to a 20
pound TNT blast at six feet (72 inches) blast normal distance. Stresses have begun
building up at the control surfaces where the wing thickness is least.
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Figure 60 The hypothetical wing model at time = 0.0076 seconds subjected to a 20
pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have
begun traveling the length of the wing while highest stresses can still be found at the
control surfaces.
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Figure 61 The hypothetical wing model at time = 0.01 seconds subjected to a 20 pound
TNT blast at six feet (72 inches) blast normal distance. Stresses have traveled the
length of the wing model.
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Figure 62 The hypothetical wing model at time = 0.0124 seconds subjected to a 20
pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have
traveled the length of the wing. This and subsequent Figures of the ARW-2 wing have a
different scale for the stress fringe plot.
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Figure 63 The hypothetical wing model at time = 0.0148 seconds subjected to a 20
pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have
traveled the length of the wing and deflection of the wing can now be seen easily.

78



e EATH Rendirear Hissse. Bpiscaler Ko

FAALL YIS, Tiwse- il T Dois plasorsay s, Treoms babosal - WS AS

[LEEEEE]

Bl

Figure 64 The hypothetical wing model at time = 0.0176 seconds subjected to a 20
pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have
traveled the length of the wing and are prevalent in the loading area and control
surfaces. The formerly loaded areas of the wing can be seen to have deflected.
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Figure 65 The hypothetical wing model at the final time step of the run, time = 0.02
seconds, subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance.
The stress waves have traveled the length of the wing and deflection of the wing can
now be seen easily in the loading area, with stress concentration in the control surface
area near the loading area.
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5.0 CoNCLUSIONS

Blast profiles and two methods of blast scaling were covered. Kingery and Bulmash
as well as both Baker’s and the U.S. Army’s Explosions in Air methods of determining
pressure profiles were likewise reviewed for use in the creation of an automated design tool
to aid engineers or analysts in the study of structures subjected to blast pressures.
Flexibility of this tool provided increased resolution and calculation of blast parameters not
found in the tabulated data in the sources reviewed, providing other researchers another
resource. Ground reflection and reflected pressures due to varying angles of incidence were
also reviewed as a matter of course in this work.

The program created for use as a design tool works well with commercial codes and
lends itself towards modular integration with other programs. It provides a user flexibility
with two differing methods of determining the pressure profiles of explosive air blast.
These two methods may exist due to the differing ways of analysis and equipment used in
the compilation of blast parameters which, while similar, produce profiles of differing
impulses and differing arrival times which this researcher cannot resolve without the use
of explosives (and its accompanying training in their safe use) and an experimental facility
to handle that type of study. These two methods have been successfully integrated into a
single program that can conservatively model the effects of spherical air blast and
hemispherical surface burst, can later be expanded to include alteration of the peak
reflected pressure with changes in the angle of incidence.

This tool was used with a commercial code (NASTRAN) in a demonstration of
method on a 30 by 30 inch aluminum 2519 quarter plate in hemispherical ground burst and
showed good convergence with 256 elements for deflection and good agreement in
equivalent stresses of a point near the blast between the 256 and 1024 element examples.

The method was also used to demonstrate blast response of wings and to validate
the versatility of the code by applying a blast load to an aeroelastic wing model.

Using this loading, one can observe stresses and oscillations in structures struck
by dynamic loadings, in this case, explosive blast loads. While it was observed that a
limitation of this method is that a structure, without enough mass, will deform rapidly and
massively under extreme loadings resulting in diverging FEM solutions, it also shows that

it can simulate the massive damage associated with this type of blast source.
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Due to the modular nature of the code, it can be incorporated into a different
program to facilitate the creation of loaded FEM models. In future work, this program
could be expanded to account for non-normal reflection. Future studies with this tool
should include the application of blasts to points not symmetrical in the geometry of the
target to observe blast reaction and migration of stress waves, as well as the application to

composite structures subjected to an explosive blasts high impulse loading.
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APPENDIX |

C**********************************************************************C

C
C
C
C

EXPLOSIVE AIR

BLAST PRESSURE PROFILE GENERATION PROGRAM v2.3
BY J.M.K. CHOCK

C
C
C
C

C**********************************************************************C

OO OO0 OO OO0 OO0 OO0 0000 OO0 00O OO0 0000 OO0 O OOoO-0n

DESCRIPTION:

DEFINITION OF
OF SYMBOLS:

THIS PROGRAM IS TO GENERATE THE PRESSURE PROFILES
DUE TO EITHER A MINE BLAST (IE A SEMI-HEMISPHERICAL
SURFACE EXPLOSION) OR EXPLOSIVE AIR BURST.

IT WILL DUPLICATE THE METHOD PRESENTED BY KINGERY
AND BULMASH, AS WELL AS DUPLICATE THE METHODS USED
BY THE ARMY MANUAL "EXPLOSOINS IN AIR, PART 1,"
DENOTED BY EIA. THE KINGERY/BULMASH METHOD WILL BE
DENOTED BY KINBUL.

DUE TO THE DIFFERING METHODS (AND SIMILARITIES
BETWEEN ETC AND EIA METHODS) THERE WILL BE TWO

MAIN BRANCHES. THE TWO RESPECTIVE BRANCHES

OF THE PROGRAM (ONE FOR KINBUL, THE OTHER FOR
E.I.A.) WILL USE TERMS AS SIMILAR TO THE ORIGINAL
REFERENCE AS POSSIBLE.

THIS PROGRAM IS Y2K COMPLIANT.

BLAST.F DOES MAKE ADJUSTMENT FOR A BLAST'S ANGLE OF
INCIDENCE

EXPLOSION IN AIR PARAMETERS ARE TAKEN FROM TABLES
IN CHAPTER SIX AND FROM FULL SIZE LOG-LOG GRAPHS
FROM W.E. BAKER'S BOOK OF THE SAME TITLE.

Psb ->Ps bar ->SCALED PEAK SIDE-ON (INCIDENT)
OVERPRESSURE

Prb ->Pr bar ->SCALED PEAK REFLECTED
OVERPRESSURE

Rb ->R  bar ->SCALED DISTANCE

Tab ->Ta bar ->SCALED TIME OF ARRIVAL

Tsb ->Ts bar ->SCALED TIME, SIDE-ON (INCIDENT)
DURATION
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OO OO0 O O OO0 OO0 OO0 000 0O OO0 00O OO0 00O OO OO0 O§OB OO OOL OO OLOLOO O OO

Trb ->Tr bar ->SCALED TIME, DURATION (REFLECTED)

Irb ->Ir bar ->SCALED REFLECTED IMPULSE

Isb ->Is bar ->SCALED SIDE-ON (INCIDENT) IMPULSE

Ub ->U  bar ->SHOCK SPEED

EW ->ENERGY /WEIGHT OF EXPLOSIVE

E ->ENERGY OF CHARGE

b ->DECAY COEFFICIENT (DIMENTIONLESS)

THETA ->DECAY COEFFICIENT (MSEC)

TNT ->equivalent pounds of TNT

THE FOLLOWING ARE STANDARD CONDITIONS

a0 ->SPEED OF SOUND (IN/SEC)

rho0 ->DENSITY (LB SEC"2/IN"4)

go ->GRAVITATIONAL ACCELERATION
(IN/SEC"2)

theta0 ->TEMPERATURE (deg F)

pO ->PRESSURE (PSI)

REVISION HISTORY:
v0.5 BASIC STRUCTURE OF PROGRAM CREATED
v1.0 KINBUL SECTION AND INPUT FILE STRUCURE CREATED FOR

vi.

V2.

V2.

V2.

V2.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
"EIA.DAT" AND "MINEBLST.INP" v1.x WILL ONLY DEAL WITH C
MINE BLASTS. C
SPLINE/SPLINT STRUCTURE ADDED FOR USE IN EIA PROCEDURE C
EIA DEBUGGED, CH6 STRUCTURE ADDED TO EIA. C
FILE OUTPUT PROBLEMS SOLVED. STRUCTURE ADDED TO ALLOW C
MORE FLEXIBLE OUTPUT OF BLAST PROFILES. DEBUGGING OUTPUTS C
ADDED TO PROGRAM IN KINBUL AND EIA SECTIONS FOR OUTPUT C
OF DETERMINED PARAMETERS. C
DEBUGGING COMPLETE. INPUT FILE STRUCTURE FOR MINE BLAST C
COMPLETE. C
AIR BLAST PARAMETERS ADDED TO KINBUL PROCEDURE. INPUT C
PARAMETERS CHANGED TO ALLOW MORE FLEXIBILITY IN PROGRAM. C
NAME OF PROGRAM CHANGED TO "BLAST.F" AND INPUT FILE C
CHANGED TO "BLAST.INP." SORTING ROUTINE ADDED TO OUTFILE C
SUBROUTINE (BUBBLE SORT). C
MODIFICATION OF CH6 METHOD TO INCLUDE AIR BLAST C
CALCULATION. C
DELTA-T, EPSILON, AND NUMBER OF STEPS MOVED TO INPUT FILE, C
THIS DECREASES DYNAMIC STRUCTURE OF PROGRAM FOR INCREASED C
PLATFORM FLEXIBILITY. C
ADJUSTMENT FOR BLAST ANGLE OF INCIDENCE. USER DICTATED C
DEBUGGING OUTPUT OF CALCULATION ROUTINES ALLOWED IN INFILE.C
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C

C

C234567****************************************************************C

C$ NOEXTENSIONS NOWARNINGS

OO 00

OO0 0 OO0 0

PROGRAM BLAST

cnwpYN (KinBUL Y/N) is a logical for determining the use of ETC or
KINBUL profiles. etcYN (ETC Y/N) is a logical for determining if
the program should duplicate ETC's results or what is probably the
correct way of using the Explosions In Air Chapter 6 Data tables.

LOGICAL cnwpYN, etcYN, mine, radial, reflYN, dbugYN, aoa¥YN

INTEGER nmax, numR, Nsteps

PARAMETER (nmax=64)

REAL TNT, xy(nmax,2), r(nmax), Gref, alpha(nmax)

DOUBLE PRECISION deltaT, epsiln

PRINT *, 'Air Blast Pressure Profile Generation Program v2.3'
PRINT *, 'by J.M.K. Chock, March 2, 1999'

Get the (x,y) or R values for use in the program, including
determining to use EIA or KINBUL blast profiles. The amount of TNT,
ground reflectivity, normal to distance to blast, and equivalent TNT
factor are input in this file. The (x,y) pairs are radial distances
on the surface of the plate, and will be converted to radial distances
from the blast center.

CALL RdFile (nmax, r, xy, NumR, TNT, cnwpYN, etcYN, mine, radial

|, Gref, reflYN, Nsteps, DeltaT, epsiln, alpha, dbug¥YN, aoaYN)

Calculate the Blast Profiles
CALL Clcbls (nmax, r, xy, NumR, TNT, cnwpYN, etcYN, mine, radial
|, Gref, reflYN, Nsteps, DeltaT, epsiln, alpha, dbug¥YN, aoaYN)

PRINT *, 'Done.’

FUNCTION FRIED (p,t,ta,ts,b)

C PRE: Blast profile parameters have been calculated and handed to
C the function
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C POST: The pressure at a time, t, is calculated for the positive
C phase
C ACTION: Friedlander's Equation as a function is used
REAL FRIED, p, t, ta, ts, b
FRIED=p*(1- (t-ta)/ts)*EXP(-b*(t-ta)/ts)
RETURN
END

FUNCTION MFRIED (p,t,ta,to,b)

C PRE: Blast profile parameters have been calculated and handed to
C the function

C POST: The pressure at a time, t, is calculated for the positive

C phase

C ACTION: Modified Friedlander's Equation as a function is used
REAL MFRIED, p, t, ta, to, b
MFRIED=p* (1- (t-ta)/to)*EXP(-(t-ta)/b)
RETURN
END

FUNCTION Cintrp (x, x0, x1, x2, x8, y0, y1, y2, y3)

C PRE: The x and y values are input
C POST: An interpolated/extrapolated value of y(x) is stored in
C the Cintrp variable by cubic interpolation

C ACTION: A function for cubic interpolation/extrapolation is used

REAL Cintrp, x, x0, x1, x2, x8, y0, y1, y2
Cintrp=y0+(y1-y0)/(x1-x0)*(x-x0)+((y2-y1)/(x2-x1)-(y1-y0)/(x1-

[X0)) / (X2-X0)* (X-XO0)* (X-X1)+(XO**2* (x1* (y2-y3)+x2* (y3-y1)+x3* (y1-y2

[)) -XO* (xA1*¥*2% (y2-y3)+X2**2* (y3-y1)+X3**2* (y1-y2) )+x1**2* (x2* (y0-y3

[Y+x3* (y2-y0) ) -x1* (x2**2* (yO-y3)+x3**2* (y2-y0) ) +x2*x3* (x2-x3) * (yO0-

[y1))/ ((X0-x1)*(x0-X2)* (X0-X3)* (x1-X2)* (x1-X3)*(x2-x3) ) * (x-x0)*(x-

[ x1)* (x-x2)

RETURN

END

SUBROUTINE Clcbls (nmax, r, xy, NumR, TNT, cnwpYN, etcYN, mine,
|radial, Gref, reflYN, Nsteps, deltaT, epsiln, alpha, dbug¥N,
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| a0a¥YN)

C PRE: all control variables from input are created and input

C POST: The blast loads and histories have been calculated and output
C ACTION: The blast loads are calculated by the appropriate procedure

C as selected in the input.

LOGICAL cnwpYN, etcYN, mine, radial, reflYN, dbugYN, aoaY¥YN
INTEGER nmax, numR, Nsteps

REAL TNT, xy(nmax,2), r(nmax), Bprofl(0:(128+3),2,64)
REAL Gref, alpha(nmax), PvsA(0:38,0:20)

DOUBLE PRECISION deltaT, epsiln

C Call appropriate subroutines for desired calculation methods
IF (cnwpYN) THEN
CALL KINBUL (nmax, r, NumR, TNT, Nsteps, deltaT, Bprofl,
|[mine, reflYN, epsiln, alpha, dbug¥YN, aoa¥YN, PvsA)
ELSE
CALL EIA(nmax, r, NumR, TNT, etcYN, Nsteps, deltaT, Bprofl,
|[mine, Gref, reflYN, epsiln, alpha, dbug¥YN, aoa¥YN, PvsA)
END IF

C Output the blast profiles
CALL Outfil (Bprofl, Nsteps, NumR, XY, Radial, nmax)

RETURN
END

SUBROUTINE RdFile (nmax, r, xy, NumR, TNT, cnwpYN, etcYN, mine,
|radial, Gref, reflYN, Nsteps, deltaT, epsiln, alpha, dbug¥N,

| a0aYN)
PRE: all variables are empty
POST: The selection of program options and input is complete as is

the array of selected values (of radial distances from blast
center) for use in the program
ACTION: The values are input from an infile MINEBLST.INP

LOGICAL cnwpYN, etcYN, mine, radial, reflYN, dbugYN, aoa¥YN

INTEGER isel, NumR, nmax, Nsteps

REAL rsel, TNT, bndist, r(nmax), xy(nmax,2), rval

REAL Gref, alpha(nmax)

DOUBLE PRECISION deltaT, epsiln, Pi

OO 000
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C Have computer calculate a value of pi and store it
Pi = 4.*DATAN(DBLE(1.))

C To store the (x,y) or radial values, it will be stored in xy, where
C xy(I,1) is x and xy(I,2) is y. R values will be stored in xy(I,1) if
C only r values are given.
DO 100 I = 1, nmax, 1
xy(I,1) 0.
100 xy(I,2) 0.

OPEN (unit=12, FILE='blast.inp')

C determine selection, KINBUL or EIA w/ground reflection.

C chwpYN etcYN
C KINBUL .TRUE. .FALSE.
C EIA ch. 6 w/ground .FALSE. .FALSE.

cnwpYN = .FALSE.
etcYN = .FALSE.
READ (12,110) isel
110 FORMAT (1I19)
IF (isel .EQ. 1) cnwpYN . TRUE.
IF (isel .EQ. 2) etcYN = .TRUE.

C read blast normal distance
READ (12, 120) bndist
120 FORMAT (1F19.2)

C read pounds of TNT
READ (12,120) TNT

C read equivalent factor and convert TNT
READ (12,120) rsel
TNT = rsel*TNT

C read ground reflectivity and convert if necessary for EIA ch. 6
READ (12,120) Gref

C used before modification to EIA/CH6 for time of arrival adjustment

c IF ((.NOT. cnwpYN) .AND. (.NOT. etcYN)) TNT = rsel*TNT

C read the number of time steps, Nsteps
READ (12,110) Nsteps
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C read the length of the time steps, deltaT
READ (12,130) deltaT
130 FORMAT (1D19.10)

C read the minimum epsilon for the decay function
READ (12,130) epsiln

C read if mine or airblast calculation is desired
read (12,110) isel
mine = .FALSE.
IF (isel .EQ. 1) mine = .TRUE.

C Read if step-by-step debugging output is desired from the calculation
C routines

read (12,110) isel

dbugYN = .FALSE.

IF (isel .EQ. 1) dbugYN = .TRUE.

C Read if adjustment in reflected pressure for angle of incidence is to

O

be made in the calculations

C routines

read (12,110) isel

aoa¥YN = .FALSE.

IF (isel .EQ. 1) aoaYN = .TRUE.

C Read if normally reflected values are desired. This will only be
C used if the air blast function is used. All mine calculations will be
C done with normally reflected blast values.

read (12,110) isel

reflYN = .FALSE.

IF (isel .EQ. 1) reflYN = .TRUE.

C read if radial or (x,y) values are given in listing
READ (12, 110) isel
radial = .FALSE.
IF (isel .EQ. 1) radial = .TRUE.

C read the number of values given in the list
READ (12, 110) NumR

C allow for blank/skipped line:
Read (12,*)
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C read the list and make appropriate radial values from blast center
C in array for use in program. This assumes the (x,y) pairs are in the
C same plane as the object being struck by the blast.
DO 150 I = 1, NumR, 1
IF (radial) THEN
READ (12,120) xy(I,1)
rval = xy(I,1)

C PRINT *, xy(I,1), rval
ELSE
READ (12,140) xy(I,1), xy(I,2)
140 FORMAT (2F9.2)
rval = (xy(I,1)**2 + xy(I,2)**2)**0.5
C PRINT *, xy(I,1), xy(I,2), rval
END IF

r(I) = (rval**2 + bndist**2)**0.5
alpha(I) = ATAN(rval/bndist)*180./Pi
IF (cnwpYN) r(I)=r(I)/12.

c PRINT *, r(I)
150 continue

CLOSE (12)

RETURN

END
C=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-C

SUBROUTINE RdPVA (PvsA)

C PRE: all variables are empty
C POST: The values of the coefficients for Pressure vs. incident
C angle have been read into an array structure.
C ACTION: The values are input from an infile PVSA.DAT
INTEGER I, J

REAL PvsA(0:38,0:20)

DO 1000 I = 0, 38, 1
DO 1000 J = 0, 20, 1
1000 PvsA(I,J) = O.

OPEN (unit=14, FILE='PVSA.DAT')

C Read past header line
READ (14,*)
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C Read the tabular values for reflected pressure coefficients vs. angle
C of incidence
DO 1007 I = 0, 38, 1
READ (14,1005) (PvsA(I,J), J=0,20,1)
1005 FORMAT (21F6.3)

C The following lines are for debugging only to assure values are being
C read correctly by the program

c DO 1020 I = 0, 38, 1
c WRITE (*,1022) (PvsA(I,J), J=0,20,1)
c1022 FORMAT (21F7.3)

1007 continue

CLOSE (14)

RETURN
END

SUBROUTINE PAitrp (PvsA, Ps, alpha, Pr)

C PRE: The array of side-on pressure vs. incident angle, the
C incident angle, and the side-on pressure (psi)
C POST: The reflected pressure is returned in psi
C ACTION: Pr is calculated by cubic interpolation routines
REAL PvsA(0:38,0:20), Ps, alpha, Pr, Pval(0:3)
INTEGER I, J, a(0:3)
C Make adjustments in angle for those angles greater out of the range
C of 0 <= alpha <= 90
C PRINT *, alpha
C IF (ABS(alpha) .LT. 0.001) alpha = 0.

IF (alpha .GT. 90.) alpha = 180. - alpha
IF (alpha .LT. 0.) alpha 0. - alpha

C Determine the interpolation domain for the angles of incidence
IF (alpha .LT. PvsA(2,0)) THEN

a(0)

a(1)

a(2)

a(3)

n n n
WO N =
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C print *, 'a=1'
END IF
DO 2000 I = 2, 36, 1
IF ((alpha .GE. PvsA(I,0)).AND.(alpha .LT. PvsA(I+1,0))) THEN

a(0) = I-1
a(1) =1
a(2) = I+1
a(3) = I+2
C print *, 'a=', I
END IF

2000 continue
IF (alpha .GE. PvsA(37,0)) THEN

a(0) = 35
a(1) = 36
a(2) = 37
a(3) = 38
C print *, 'a=38'
END IF
C Determine the reflected pressure coefficient by the use of
C interpolation routines. First an interpolated pressure curve for a
C short area is determined, then this is used to calulate the
C interpolated value for the correct alpha.
IF (Ps .GT. PvsA(0,2)) THEN
DO 2100 I=0,3,1
2100 Pval(I) = Cintrp (Ps,PvsA(0,1),PvsA(0,2),PvsA(0,3),PvsA(0,4)
| ,PvsA(a(I),1),PvsA(a(I),2),PvsA(a(Il),3),PvsA(a(l),4))
C print *,'p<2’
END IF

DO 2115 J = 2, 18, 1
IF ((Ps .LE. PvsA(0,J)).AND.(Ps .GT. PvsA(0,J+1))) THEN
DO 2110 I=0,3,1
2110 Pval(I) = Cintrp (Ps,PvsA(0,J-1),PvsA(0,J),PvsA(0,J+1)
| ,PVsA(0,J+2) ,PvsA(a(I),J-1),PvsA(a(I),J),PvsA(a(l),d+1)
| ,PvsA(a(I),J+2))
C print *,'p=', J
END IF
2115 continue

IF (Ps .LE. PvsA(0,19)) THEN
DO 2120 I1=0,3,1
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2120

END

Pval(I) = Cintrp (Ps,PvsA(0,17),PvsA(0,18),PvsA(0,19)
| ,PvsA(0,20),PvsA(a(I),17),PvsA(a(l),18),PvsA(a(Il),19)
| ,PvsA(a(I),20))

print *,'p>19'
IF

C Determine reflected pressure and return it.
Pr = Ps*Cintrp(alpha,PvsA(a(0),0),PvsA(a(1),0),PvsA(a(2),0),
|PvsA(a(3),0),Pval(0),Pval(1),Pval(2),Pval(3))

C PRINT *, 'Pr/Ps =', Pr/Ps
C PRINT *, Pr
RETURN
END
C=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-C
SUBROUTINE KINBUL (nmax, r, NumR, W, Nsteps, deltaT, Bprofl, mine
|, reflYN, epsiln, alpha, dbug¥YN, aoaYN, PvsA)
C PRE: The input variables from the input file are filled.
C POST: The pressure, duration, arrival time, and decay coefficients
C for calculations by the methods in Kingery & Bulmash
C ACTION: Kingery & Bulmash's methods of Log-Log fitting to pentolite
C results are used to calculate results for blast
C pressure profiles.

INTEGER nmax, tmax, nnmax

PRECISION PrC(0:11), PrkK(0:1), IrC(0:3), IrK(0:1)
PRECISION TaC(0:11), TaK(0:1), ToC1(0:8), ToKi(0:1)
PRECISION ToC2(0:8), ToK2(0:1), deltaT, epsiln
PRECISION PsK(0:1), IsK1(0:1), IsK2(0:1), ToK3(0:1)
PRECISION PsC(0:11), IsC1(0:4), IsC2(0:8), ToC3(0:7)
PRECISION UC(0:14), UK(0:1)

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

PARAMETER (tmax=64,

INTEGER Nsteps, NumR,

REAL
REAL
REAL
REAL
REAL
REAL

nnmax=64)

I, J, M, K(nnmax)

R(nmax), Bprofl(0:(128+3),2,64), Clow, Cmid, Chigh
Z, W, Pr(nnmax), Ir(nnmax), Ps(nnmax), Is(nnmax), Mfried

Ta(nnmax), To(nnmax), B(nnmax), T, T1, Br(nnmax)

PrLogU, rYO03,
PsLogU, sY03,
TalLogU, aYO03,

rY47, rY811, IrLogU, IrLogY, alpha(nmax)
sY47, sY811, IsLogU, IsLogY, U(64)
aY47, a¥s811, TolLogU, TolLogY
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REAL

ULogU,
LOGICAL Peak(nnmax), mine,

uyos,

uY47,

uysii,
reflYN, dbug¥YN,

uY1214, PvsA(0:38,0:20)
aoa¥YN

C Data needed for Log-Log interpolation and determination of mine

C blast parameters
DATA PrK(0),
DATA PsK(0),
DATA IrK(0),
DATA IsK1(0)
DATA IsK2(0)
DATA TaK(O0),
DATA ToK1(0)
DATA ToK2(0)
DATA ToK3(0)
DATA UK(0),
DATA PrC(0),
DATA PrC(2),
DATA PrC(4),
DATA PrC(6),
DATA PrC(8),
DATA PrC(10)
DATA PsC(0),
DATA PsC(2),
DATA PsC(4),
DATA PsC(6),
DATA PsC(8),
DATA PsC(10)
DATA IrC(0),
DATA IrC(2),
DATA IsC1(0)
DATA IsC1(2)
DATA IsC1(4)
DATA IsC2(0)
DATA IsC2(2)
DATA IsC2(4)
DATA IsC2(6)
DATA IsC2(8)
DATA TaC(0),
DATA TaC(2),
DATA TaC(4),
DATA TaC(6),
DATA TaC(8),

PrK(1)
PsK(1)
Irk(1)
IsK1(1)
Isk2(1)
TaK(1)
ToK1 (1)
ToK2(1)
ToK3 (1)
UK(1)

Prc(1)
Prc(3)
Prc(5)
Prc(7)
Prc(9)
Prc(11)
PsC(1)
PsC(3)
PsC(5)
PsSC(7)
PsSC(9)
PsC(11)
Irc(1)
IrC(3)
IsC1(1)
IsC1(3)

IsC2(1)
IsC2(3)
IsC2(5)
IsC2(7)

TaC (1)
TaC(3)
TaC(5)
TaC(7)
TaC(9)

/-
/-
/-
/
/-
/-
/-
/-
/-
/-
/
/-
/
/-
/
/-
/
/-
/
/-
/
/
/
/
/
/
/-
/
/-
/
/-
/
/-

/ 0.0524902798645,
/-0.0601770052288, 0.
/ 0.0215297490092,
/-0.00232531970294, O.

OOOOOOO—kO—kOOOOO—kOOOOOI\)O-bU'IOOI\)OOOO

. 789312405513,
. 756579301809,
.781951689212,
.832468843425,
.91358616806,

. 755684472698,
.1790217052,
.85909812338,
.92699491141,

. 755684472698,
.56431321138,
.218536586295,
.24989009775,
.11791682383,
.0245620259375,
.00191930738887,
.94225020183,

. 154159376846,
.0088534365274,
.0268112345019,
.00162846756311,
.0001456723382,
. 75291677799,
.112136118689,
.57159240621 ,

.0118964626402
. 719852655584,

.014544526107, -0
.00284189327204, O

.173607601251, 1
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1.36637719229
1.35034249993
1.33422049854
3.0760329666
2.40697745406
1.37784223635
5.25099193925
9.2996288611
3.46349745571
1.37784223635
2.21030870597
0.8953195809372
-0.
0.224131161411
0.0455116002694 /
0.00361471193389/
1.6958988741 /
0.514060730593

0
0
0
0
-0

-0.
.0260816706301, 0.

.35706496258
-0.

-0.

/
/
/
/
/
/
/
/
/
/
/
/
569249436807 /
/

/
.293912623038 /
.109097496421 /
.0214631030242 /
.00167847752266/
.949516092853 /
.0250659183287 /
.502992763686 /
.171335645235, 0. /

/

/

0450176963051

384519026965
00595798753822/

.00663289334734/
.0013644816227 /

196563954086
0696360270891
0161658930785

/
/
/
/
/
00147752067524/



DATA TaC(10), TaC(11) .0, 0.0 /
DATA ToC1(0), ToC1i(1) /-0.728671776005, 0.130143717675 |
DATA ToC1(2), ToC1(3) .134872511954, 0.0391574276906 |
DATA ToC1(4), ToC1(5) /-0.00475933664702, -0.00428144598008/
DATA ToC1(6), ToCi(7) .0, 0.0 /
DATA ToC1(8) .0 /
DATA ToC2(0), ToC2(1) .20096507334, -0.0297944268976 |
DATA ToC2(2), ToC2(3) .030632954288, 0.0183405574086 |/

DATA ToC2(4), ToC2(5)
DATA ToC2(6), ToC2(7)
DATA ToC2(8)

DATA ToC3(0), ToC3(1)
DATA ToC3(2), ToC3(3)
DATA ToC3(4), ToC3(5)

.0173964666211, -0.00106321963633/
.00562060030977, 0.0001618217499 /
.000686018944 /
.572462469964, 0.0933035304009 /
.0005849420883, -0.00226884995013/
.00295908591505, 0.00148129868929/

e T e T T
O O O O O O O O O O O O O O O O o oo o o o o

DATA ToC3(6), ToC3(7) .0, 0.0 /
DATA UC(0), UC(1) .449774310005,  -0.698029762594 /
DATA UC(2), UC(3) .158916781906, 0.443812098136 /
DATA UC(4), UC(5) -0.113402023921,  -0.369887075049 /
DATA UC(6), UC(7) . 129230567449, 0.19857981197 |/
DATA UC(8), UC(9) -0.0867636217397, -0.0620391900135 /
DATA UC(10), UC(11) .0307482926566, 0.0102657234407 /
DATA UC(12), UC(13) /-0.00546533250772, -0.000693180974 /
DATA UC(14) .0003847494916 /

C If the program is to do the air blast profile, different parameters
C will be needed:
IF (.NOT. mine) THEN

PrK(0) = -0.756579301809
PrK(1) = 1.35034249993
IrK(0) = -0.757659920369
IrK(1) = 1.37882996018
IsK1(0) = 1.04504877747
IsK1(1) = 3.24299066475
IsK2(0) = -2.67912519532
IsK2(1) = 2.30629231803
TaK(0) = -0.80501734056
TaK(1) = 1.37407043777
ToK1(0) = 0.209440059933
ToK1(1) = 5.11588554305
ToK2(0) = -5.06778493835
ToK3(0) = -4.39590184126
ToK3(1) = 8.1524725264
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UK(0)
UK(1)
Prc(0)
Prc(1)
Prc(2)
Prc(3)
Prc(4)
Prc(5)
Prc(6)
Prc(7)
Prc(8)
Prc(9)
Prc(10)
Prc(11)
PsC(0)
PsC(1)
PsC(2)
PsC(3)
PsC(4)
PsC(5)
PsC(6)
PsSC(7)
PsC(8)
PsSC(9)
PsC(10)
PsC(11)
IrC(0)
Irc(1)
Irc(2)
IrC(3)
IsC1(0)
IsC1(1)
IsC1(2)
IsC1(3)
IsC1(4)
IsC2(0)
IsC2(1)
IsC2(2)
IsC2(3)
IsC2(4)
IsC2(5)
IsC2(6)

'
O O 0O OO0 O —+~ 00O 0O - 00 O 0O 00 O0OO0LbOobo -~ = 00 00O OO0 oo oo MM NM = o

o '
O O O O O

. 756579301809
.35034249993
.39106134946
.21400538997
.035119031446
.657599992109
.0141818951887
.243076636231
.0158699803158
.0492741184234
.00227639644004
.00397126276058
.0

.0

. 77284970457
.69012801396
.00804973591951
.336743114941
.00516226351334
.0809228619888
.00478507266747
.00793030472244
.0007684469735
.0

.0

.0

.60579280091
.903118886091
.101771877942
.0242139751146
.43534136453
.443749377691

. 168825414684
.0348138030308
.010435192824
.599008468099
.40463292088
.014272194608
.00912366316617
.0006750681404
.00800863718901
.00314819515931
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IsC2(7)
IsC2(8)
TaC(0)
TaC (1)
TaC(2)
TaC(3)
TaC (4)
TaC(5)
TaC(6)
TaC(7)
TaC(8)
TaC(9)
TaC(10)
TaC(11)
ToC1(0)
ToC1 (1)
ToC1(2)
ToC1(3)
ToC1 (4)
ToC1(5)
ToC1(6)
ToC1(7)
ToC1(8)
ToC2(0)
ToC2(1)
ToC2(2)
ToC2(3)
ToC2(4)
ToC2(5)
ToC2(6)
ToC2(8)
ToC3(0)
ToC3(1)
ToC3(2)
ToC3(3)
ToC3(4)
ToC3(5)
ToC3(6)
ToC3(7)
uc(0)

uc(1)

uc(2)

(@]

(@]

O O O O O O O O O O O 0O O OO0 OQOLOLOOLOOLOOLOO OO OOV o o o o

(@]

o = O

o O

.00152044783382
.0007470265899
.0423733936826
.36456871214
.0570035692784
. 182832224796
.0118851436014
.0432648687627
.0007337367834
.00436073555033
.0

.0

.0

.0
.801052722864

. 164953518069

. 127788499497
.00291430135946
.00187957449227
.0173413962543
.00269739758043
.00361976502798
.00100926577934
.115874238335
.0297944268969
.0306329542941
.0183405574074
.0173964666286
.00106321963576
.0056206003128
.0006860188944
.50659210403
.0967031995552
.00801302059667
.00482705779732
.00187587272287
.00246738509321
.000841116668
.0006193291052
.371369593444
.650507560471
.291320654009
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uc(3) = 0.307916322787

UC(4) = -0.183361123489
UC(5) = -0.197740454538
UC(6) = 0.0909119559768
Uc(7) = 0.0898926178054
Uc(8) = -0.0287370990248
UC(9) = -0.0248730221702
UC(10) = 0.00496311705671
UC(11) = 0.00372242076361
Uc(12) = -0.0003533736952
UC(13) = -0.0002292913709
uc(14) = 0.0

END IF

C Tell user which routine is running:
PRINT *,'Kingery & Bulmash calculation routine'

O

Read in the reflected pressure coeffients vs. angle of incidence

O

if needed.
IF (aoaYN) CALL RdPVA(PvsA)

C recall Log10(ZZ)=L0G(ZZ)/LOG(10)
DO 400 I = 1, NumR,1

C Calculate the scaled distance (scaled, non-dimentional, detonation
C parameter) for this iteration's radial distance, r. Hopkinson
C scaling.

Z = R(I)/W**(1./3.)
IF (dbugYN) PRINT *, 'Distance, R:', R(I)
IF (dbugYN) PRINT *, 'Scaled Distance, Z:', Z

C Calculations for Log-Log fit for side-on pressure, Ps
PsLogU = PsK(0) + Log10(Z)*PsK(1)
sYO3 = PsC(0)+PsLogU* (PsC(1)+PsLogU* (PsC(2)+PsLogU*PsC(3)))
sY47 = (PsC(4)+PsLogU*(PsC(5)+PsLogU* (PsC(6)+PsLogU*PsC(7))))*
|PsLogU**4
sY811 = (PsC(8)+PsLogU* (PsC(9)+PsLogU* (PsC(10)+PsLogU*PsC(11)))
| )*PsLogU**8
Ps(I) = 10.**(sY03 + sY47 + sY811)
IF (dbug¥YN) PRINT *,'Incident Pressure, Ps (psi):', Ps(I)

C adjust the ranges for mine or air blast:
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IF (mine) THEN

Clow = 0.17

Cmid = 2.41
ELSE

Clow = .134

Cmid = 2.0
END IF

C Calculation for Log-Log fit for side-on (specific) impulse, Is
IF ((Z .LE. Cmid) .AND. (Z .GE. Clow)) THEN
IsLogUu IsK1(0) + Log10(z)*IsKi(1)
IsLogY IsC1(0)+IsLogU*(IsC1(1)+IsLogU*(IsC1(2)+IsLogU*
| (IsC1(3)+IsLogU*IsC1(4))))
ELSE
IF ((Z .LE. 100.) .AND. (Z .GT. Cmid)) THEN
IsLogu IsK2(0) + Log10(z)*IsK2(1)
IsLogY IsC2(0)+IsLogU*(IsC2(1)+IsLogU*(IsC2(2)+IsLogU*
| (IsC2(3)+IsLogU*(IsC2(4)+IsLogU*(IsC2(5)+IsLogU*(IsC2(6)+IsLogU*
[1sC2(7)))))))

ELSE
IsLogY = 0.
ENDIF
END IF
Is(I) = (10.**IsLogY)*W**(1./3.)
IF (dbug¥YN) PRINT *,'Incident Impulse, Is (psi-msec):', Is(I)

C Calculations for Log-Log fit for reflected pressure, Pr
IF (aocaYN) THEN
CALL PAitrp (PvsA, Ps(I), alpha(I), Pr(I))
ELSE
PrLogU = PrkK(0) + Logl10(Z)*PrK(1)
ryo3 = PrC(0)+PrLogU*(PrC(1)+PrLogU*(PrC(2)+PrLogU*PrcC
[(3)))
ry47s = (PrC(4)+PrLogU*(PrC(5)+PrLogU*(PrC(6)+PrLogU*PrC
[ (7))))*PrLogU**4
rygii1 = (PrC(8)+PrLogU*(PrC(9)+PrLogU*(PrC(10)+PrLoguU*
[PrC(11))))*PrLogU**8
Pr(I) = 10.**(rY03 + rY47 + rY811)
END IF
IF (dbugYN) PRINT *,'Reflected Pressure, Pr (psi):', Pr(I)

C Calculations for Log-Log fit for the reflected (specific) impulse, Ir
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IrLogu IrK(0) + Log10(Z)*IrK(1)
IrLogY IrC(0)+IrLogU*(IrC(1)+IrLoguU*(IrC(2)+IrLogU*IrC(3)))
Ir(I) = (10.**IrLogY)*W**(1./3.)

IF (dbugYN) PRINT *,'Reflected Impulse, Ir (psi-msec):', Ir(I)

C Calculations for Log-Log fit for blast time of arrival, Ta

TaLogU = TaK(0) + Log10(Z)*TaK(1)

aY03 = TaC(0)+TaLogU*(TaC(1)+TaLogU*(TaC(2)+TaLogU*TaC(3)))

aY47 = (TaC(4)+TalLogU*(TaC(5)+TaLogU*(TaC(6)+TaLogU*TaC(7))))*
| TaLogU**4

ay811 = (TaC(8)+TaLogU*(TaC(9)+TaLogU*(TaC(10)+TaLogU*TaC(11)))
| )*TaLogU**8

Ta(I) = (10.**(aY03 + aY47 + a¥Y811))/1000.*W**(1./3.)

IF (dbug¥YN) PRINT *,'time of arrival, Ta (msec):', Ta(I)*1000.

C adjust the ranges for mine or air blast:
IF (mine) THEN

Clow = 0.45

Cmid = 2.54

Chigh = 7.0
ELSE

Clow = 0.37

Cmid = 2.24

Chigh = 5.75
END IF

C Calculation for Log-Log fit for positive blast duration, To
IF ((Z .LE. Cmid) .AND. (Z .GE. Clow)) THEN
ToLogU = ToK1(0) + Log10(z)*ToK1 (1)
ToLogY = ToC1(0)+ToLogU*(ToC1(1)+ToLogU*(ToC1(2)+ToLogU*
| (ToC1(3)+ToLogU*(ToC1(4)+ToLogU*ToC1(5)))))
ELSE
IF ((Z .LE. Chigh) .AND. (Z .GT. Cmid)) THEN

ToLogU = ToK2(0) + Log10(z)*ToK2(1)

ToLogY = ToC2(0)+ToLogU*(ToC2(1)+ToLogU*(ToC2(2)+ToLogU*
| (ToC2(3)+ToLogU*(ToC2(4)+ToLogU* (ToC2(5)+ToLogU*(ToC2(6)+ToLogU*
| (ToC2(7)+ToLogU*ToC2(8))))))))

ELSE
IF (Z .GT. Chigh) THEN
ToLogU = ToK3(0) + Log10(z)*ToK3(1)
ToLogY = ToC3(0)+ToLogU*(ToC3(1)+ToLogU*(ToC3(2)+
| ToLogU* (ToC3(3)+ToLogU* (ToC3(4)+ToLogU*ToC3(5)))))
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ELSE
ToLogY = 0.
ENDIF
ENDIF
END IF
To(I) = (10.**ToLogY)/1000.*W**(1./3.)
IF (dbugYN) PRINT *,'time of duration, To (msec):', To(I)*1000.

C Calculations for Log-Log fit for shock velocity, U
ULogU = UK(0) + Log10(Z)*UK(1)

uYo3 = UC(0)+ULogU* (UC(1)+ULogU* (UC(2)+ULogU*UC(3)))
uY47 = (UC(4)+ULogU* (UC(5)+ULogU* (UC(6)+ULogU*UC(7))))*
|ULogU**4
uYs811 = (UC(8)+ULogU* (UC(9)+ULogU* (UC(10)+ULogU*UC(11)))
| ) *ULogU**8

uY1214 = (UC(12)+ULogU* (UC(13)+ULogU*UC(14)))*ULogU**12
U(I) = (10.**(uY03 + uY47 + uY811 + uY1214))/1000.*W**(1./3.)
IF (dbugYN) PRINT *,'Shock Velocity, U (in/sec):', U(I)*1000.

C Use DECAY procedure to help calculate the blast decay values for the
C side-on and reflected cases
CALL DECAY(Ir(I), Pr(I), To(I)*1000, Br(I), epsiln)
Br(I)=To(I)/(Br(I)-(Br(I)**2-Pr(I)*To(I)*1000/Ir(I)*(Br(I)+
[EXP(-Br(I))-1))/(2*Br(I)-Pr(I)*To(I)*1000/Ir(I)*(1-EXP(-Br(I)))))
IF (dbugYN) PRINT *,'Reflected Decay coefficient (msec), Br:', Br
| (I)*1000.

CALL DECAY(Is(I), Ps(I), To(I)*1000, B(I), epsiln)
B(I)=To(I)/(B(I)-(B(I)**2-Ps(I)*To(I)*1000/Is(I)*(B(I)+
[EXP(-B(I))-1))/(2*B(I)-Ps(I)*To(I)*1000/Is(I)*(1-EXP(-B(I)))))
IF (dbug¥YN) PRINT *,'Decay coefficient (msec), B:', B(I)*1000.

400 continue

C Initialize the blast profile structure.
DO 401 I = 0, 128+3, 1
DO 401 J = 1,2,1
DO 401 M=1,64,1
401 Bprofl(I,J,M)=0.

C Set the variable to determine if the peak has already been arrived at
C to FALSE ie, "not yet."
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DO 405 M = 1, NumR, 1
405 Peak(M) = .FALSE.

C Actually calculate the blast profiles based on the determined values
C from above. This will work for mine or air blast profiles.
DO 410 I = 1, NumR, 1
410 K(I) =0
DO 415 M 1, Nsteps, 1
DO 415 J 1, NumR, 1
IF (Peak(J)) THEN
T = (Float(K(J))-2.)*deltaT
ELSE
T = Float(K(J))*deltaT
END IF
T1 = (Float(K(J))+1.)*deltaT
Bprofl(K(J),1,J) =T

C All "reflYN" calls are to check if the reflected values are to be
C returned. This will only be the case for air bursts. All mine
C blasts (hemispherical surface blasts) are considered to be producing
C normally reflected values.
IF (reflYN) THEN
Bprofl(K(J),2,J) = MFried(Pr(J), T, Ta(J), To(J), Br(J))
ELSE
Bprofl(K(J),2,J) = MFried(Ps(J), T, Ta(J), To(J), B(J))
END IF
IF (T .LE. Ta(J)) Bprofl(K(J),2,J) = 0.
IF ((T .LE. Ta(J)) .AND. (T1 .GT. Ta(J))) THEN

Bprofl(K(J)+1,1,J) = Ta(J) - deltaT/5.

Bprofl(K(J)+2,1,J) = Ta(J)
Bprofl(K(J)+3,1,J) = T1
Bprofl(K(J)+1,2,J) = 0.

IF (reflYN) THEN
Bprofl(K(J)+2,2,J) = MFried(Pr(J),Ta(J),Ta(J),To(J),
|Br(J))
Bprofl(K(J)+3,2,J) = MFried(Pr(J),T1, Ta(J),To(J),
|Br(J))
ELSE
Bprofl(K(J)+2,2,J)

MFried(Ps(J),Ta(J),Ta(J),To(J),
|B(J))
Bprofl(K(J)+3,2,J) = MFried(Ps(J),T1, Ta(J),To(J),
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[B(J))
END IF

K(J) = K(J)+3
Peak(J) = .TRUE.
END IF
IF (T .GE. (Ta(J)+To(J))) Bprofl(K(J),2,J) = 0.
K(J) = K(J)+1
415 continue

RETURN
END

SUBROUTINE ReadIn (Rb, Psb, Prb, Tab, Tsb, Trb, Isb, Irb, Ub,size)
C PRE: all variables are empty
C POST: The variables and arrays are filled with the respective table
C values from Baker's _Explosions in Air,_ 1974, Chapter 6.

C ACTION: The values are input from an infile EIA.DAT

INTEGER I, size
REAL Rb(size), Psb(size), Prb(size), Tab(size), Isb(size)
REAL Tsb(size), Trb(size), Irb(size), Ub(size)

C Open the input file, EIA.DAT, which contains the blast parameters
C from Explosions in Air, Chapter 6 and other data points taken from
C full scale Log-Log plots of that data.

OPEN (unit=8, FILE='eia.dat')

C Read past a header line in EIA.DAT
READ (8,*)
C Iteratively read in the values of EIA.DAT
DO 210 I = 1, size, 1
READ (8,200) Rb(I),Psb(I),Prb(I),Tab(I),Tsb(I),Trb(I),Isb(I),
|Irb(I),Ub(I)
200 FORMAT (1F9.4, 7F10.7, 1F13.9)

C Convert the data to Log-Log format so that the interpolation routines

C will work without alteration to Log-Log domain. The commenting out
C the following lines is necessary to prevent conversion of the data
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C to Log-Log format

Rb(I) LOG10 (Rb(I))
Psb(I) = LOG10(Psb(I))
Prb(I) = LOG10(Prb(I))
Tab(I) = LOG10(Tab(I))
Tsb(I) = LOG10(Tsb(I))
Trb(I) = LOG10(Trb(I))
Isb(I) = LOG10(Isb(I))
Irb(I) = LOG10(Irb(I))
Ub(I) LOG10 (Ub(I))

C End commenting out of lines if removing Log-Log alteration.

210 continue
CLOSE (8)
RETURN
END
C=-=-=-=-=-=-=-.=-.=-=-=.=.=.=-.=.=.=.=-.=.=-=.=.=.=-=.=.=-.=.=-=-=-=.=-=-=-C
SUBROUTINE EIA (nmax, r, NumR, TNT, etcYN, Nsteps, deltaT,
|Bprofl, mine, Gref, reflYN, epsiln, alpha, dbugYN, aoaYN, PvsA)
C PRE: Subroutine is handed the input values of the explosion
C parameters
C POST: The values of the necessary pressures, decay values,
C durations are calculated and the pressure profiles output for
C use in other programs for the desired x translation across
C the plate surface.
C ACTION: The appropriate coefficients are calculated via 3rd order
C Legendre interpolation for the respective values of the
C scaled range. These values are then converted from their
C scaled form back into their english unit equivalents.
C These values are then used in Friedlander's modified equation
C for the desired timesteps for the calculation of the
C appropriate blast pressure profiles. The order of
C calculation/interpolation is Prb, Tab, Isb, b, then the
C profiles.

INTEGER size, nmax, tmax, Nsteps, I, J, K(64), M

DOUBLE PRECISION deltaT, a0, rhoO, g0, thetaO, pO, epsiln
PARAMETER (size=37, tmax=64)

LOGICAL etcYN, mine, Peak(64), reflYN, dbugYN, aoa¥N
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REAL Rb(size), Psb(size), Prb(size), Tab(size), Isb(size)
REAL Irb(size), Ub(37), Tsb(size), BB(size), BBr(size)

REAL Psb2(size), Prb2(size), Tab2(size), Isb2(size), Irb2(size)

REAL Tsb2(size), Trb(size), Trb2(size), alpha(nmax), Ub2(37)
REAL R(nmax), Bprofl(0:(128+3),2,64), Gref, Is(size)

REAL Rrb(size), Pr(size), Ta(size), Ts(size), Ir(size), U(37)
REAL Tr(size), Ps(size), PPr, PPs, IIs, IIr, TTa, TTs, TTr
REAL PvsA(0:38,0:20)

Tell user which routine is running:
PRINT *, 'EIA Routine', TNT, ' equivalent pounds of TNT.'
IF ((mine) .AND. .NOT.(etcYN)) PRINT *, 'Ground reflectivity
|[value:', Gref

Sea level parameters for the atmosphere from Minzner, Champion, and
Pond (1969)

a0 = 13397.324
rho0 = 1.146277e-7
g0 = 386.08859
thetaO = 518.688

pO = 14.695951

Find energy of the TNT

EW = 18.13e6
Alter the amount of TNT for use in the calculation of the "mine"
blasts for ground reflectivity.

IF ((mine) .AND. (.NOT. etcYN)) TNT = Gref*TNT

E = EW*TNT

Get the Explosions In Air Blast Parameters
CALL ReadIn (Rb, Psb, Prb, Tab, Tsb, Trb, Isb, Irb, b, size)

Call Spline to make the second derivative sets needed for splint for
each parameter, yp1 and ypn are the derivatives at the end segments
yp1 = (Psb(2)-Psb(1))/(Rb(2)-Rb(1))
ypn (Psb(size)-Psb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Psb, size, ypi1, ypn, Psb2)

ypl (Prb(2)-Prb(1))/(Rb(2)-Rb(1))
ypn (Prb(size)-Prb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Prb, size, ypi1, ypn, Prb2)
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ypl (Tab(2)-Tab(1))/(Rb(2)-Rb(1))
ypn (Tab(size)-Tab(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Tab, size, ypl, ypn, Tab2)

ypl (Tsb(2)-Tsb(1))/(Rb(2)-Rb(1))
ypn (Tsb(size)-Tsb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Tsb, size, ypl, ypn, Tsb2)

ypl = (Trb(2)-Trb(1))/(Rb(2)-Rb(1))
ypn = (Trb(size)-Trb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Trb, size, yp1, ypn, Trb2)

ypl (Isb(2)-Isb(1))/(Rb(2)-Rb(1))
ypn (Isb(size)-Isb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Isb, size, ypl, ypn, Isb2)

ypl (Irb(2)-Irb(1))/(Rb(2)-Rb(1))
ypn (Irb(size)-Irb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Irb, size, ypl, ypn, Irb2)

yp1 = (Ub(2)-Ub(1))/(Rb(2)-Rb(1))
ypn (Ub(size)-Ub(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Ub, size, ypi, ypn, Ub2)

The interpolation of the values from EIA.DAT. Certain commented
lines are for the conversion of the interpolation from Log-Log to
simple interpolation of the straight data. This requires
conversion of some of the following lines (shown but commented),
changes in the ReadIn procedure where the data is converted to
Log-Log format, and a change in the splint procedure. Print
statements are for debugging or output use, but are also commented
out.

Additional lines are provided for potential output of determined
values for hard copy and debugging use.

DO 301 I=1, NumR, 1
Calculate the Sach's scaled distances

RRb(I)=r(i)*p0**(1./3.)/E**(1./3.)

For debugging purposes, this line allows the hard coding of a
scaled distance value and the output of that value.
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C rrb(I) = .314
IF (dbugYN) PRINT *, 'Scaled distance, Rbar:', RRb(I)

c IF (mine) etcYN = .FALSE.
IF (etcYN) THEN

PRINT *, 'ETC calculation subroutine'

C Determine side-on pressure, Ps
IF (LOG1O(Rrb(I)) .LT. Rb(1)) THEN
Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Psb(1), Psb(2), Psb(3), Psb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(size-8), Rb(size-
|2), Rb(size-1), Rb(size), Psb(size-3), Psb(size-2), Psb(size-1),
|Psb(size))
ELSE
CALL Splint (Rb, Psb, Psb2, size, RRb(I), Ps(I))
END IF
ENDIF
IF (dbug¥YN) PRINT *, 'Ps_bar=',10.**Ps(I)
IF (dbug¥YN) PRINT *, 'LOG(Ps)=', Ps(I)
PPs = 10.**Ps(I)
Ps(I) = 2.*10.**Ps(I)*p0
C IF (dbug¥YN) Ps(I) = 2.*Ps(I)*p0
IF (dbugYN) PRINT *, 'Peak side-on overpressure, Ps
| (psi):",Ps(I)

C Determine reflected pressure, Pr
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Pr(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Prb(1), Prb(2), Prb(3), Prb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Pr(I)=Cintrp(LOG10(Rrb(I)), Rb(size-8), Rb(size-
|2), Rb(size-1), Rb(size), Prb(size-3), Prb(size-2), Prb(size-1),
|[Prb(size))
ELSE
CALL Splint (Rb, Prb, Prb2, size, RRb(I), Pr(I))
END IF
ENDIF
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IF (dbugYN) PRINT *, 'Pr_bar=',10.**Pr(I)

IF (dbugYN) PRINT *, 'LOG(Pr)=', Pr(I)
ETC doubled the reflected impulse values for ground reflection, but
left all other variables untouched.

PPr = 10.**Pr(I)

Pr(I) = 2.%10.**Pr(I)*p0

IF (dbug¥YN) Pr(I) = 2.*Pr(I)*p0
IF (dbug¥YN) PRINT *, 'Peak reflected overpressure, Pr
| (psi):",Pr(I)

Determine time of arrival, Ta
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Ta(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Tab(1),Tab(2), Tab(3), Tab(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ta(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Tab(size-3), Tab(size-2), Tab(size-1),
| Tab(size))
ELSE
CALL Splint (Rb, Tab, Tab2, size, RRb(I), Ta(I))
END IF
ENDIF
PRINT *, 'Ta_bar=',10.**Ta(I)
PRINT *,'LOG(Ta)=', Ta(I)
TTa = 10.**Ta(I)
Ta(I) = 10.**Ta(I)*E**(1./8.)/(a0*p0**(1./3.))
Ta(I) = Ta(I)*E**(1./3.)/(a0*p0**(1./3.))
IF (dbugYN) PRINT *, 'Time of arrival, Ta (sec):', Ta(I)

Determine positive phase duration, Ts
ETC used the Ts instead of Tr in its calculations
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Ts(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Tsb(1), Tsb(2), Tsb(3), Tsb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ts(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Tsb(size-3), Tsb(size-2), Tsb(size-1),
[ Tsb(size))
ELSE
CALL Splint (Rb, Tsb, Tsb2, size, RRb(I), Ts(I))
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END IF
ENDIF
IF (dbugYN) PRINT *, 'Ts_bar=',10.**Ts(I)
IF (dbugYN) PRINT *,'LOG(Ts)=', Ts(I)
TTs = 10.**Ts(I)
Ts(I) = 10.**Ts(I)*E**(1./3.)/(a0*p0**(1./3.))
c Ts(I) = Ts(I)*E**(1./3.)/(a0*p0**(1./3.))
IF (dbug¥YN) PRINT *, 'Side-on duraion, Ts (sec):',Ts(I)

C Determine side-on impulse, Is
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Is(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|,Isb(1), Isb(2), Isb(3), Isb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Is(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Isb(size-3), Isb(size-2), Isb(size-1),
|Isb(size))
ELSE
CALL Splint (Rb, Isb, Isb2, size, RRb(I), Is(I))
END IF
ENDIF
IF (dbugYN) PRINT *, 'Is bar=',10.**Is(I)
IF (dbugYN) PRINT *, 'log(Is)=', Is(I)
IIs = 10.**Is(I)
Is(I) = 10.**Is(I)*(E**(1./3.)*p0**(2./3.))/a0
c Is(I) = Is(I)*(E**(1./3.)*p0**(2./3.))/a0
IF (dbugYN) PRINT *, 'Side on impulse, Is (psi-sec):',

[Is(I)
C Determine the non-dimentional decay coefficient, br
C ETC used b instead of br

C CALL Decay (Is(I), Ps(I), Ts(I), BB(I), epsiln)
CALL Decay (IIs, PPs, TTs, BB(I), epsiln)
PRINT *, 'Decay value, B',BB(I)

C End of ETC calculation section
ELSE

PRINT *, 'EIA', TNT, ' lbs'

C Explosions in Air calculation section, used for air/mine blast.
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C Calculate the reflected pressure, Ps
IF (LOG1O(Rrb(I)) .LT. Rb(1)) THEN
Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
| ,Psb(1),Psb(2), Psb(3), Psb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(size-8), Rb(size-
|2), Rb(size-1), Rb(size), Psb(size-3), Psb(size-2),Psb(size-1),
|Psb(size))
ELSE
CALL Splint (Rb, Psb, Psb2, size, RRb(I), Ps(I))
END IF
END IF
IF (dbug¥YN) PRINT *, 'Ps_bar=',10.**Ps(I)
IF (dbug¥YN) PRINT *, 'LOG(Ps)=', Ps(I)
PPs = 10.**Ps(I)
Ps(I) = 10.**Ps(I)*p0
C Ps(I) = Ps(I)*p0
IF (dbugYN) PRINT *, 'Peak side-on overpressure, Ps (psi)
[:',Ps(I)

C Calculate the reflected pressure, Pr
IF (aoa¥YN) THEN
CALL PAitrp (PvsA, Ps(I), alpha(Il), Pr(I))
Pr(I) = LOG10(Pr(I)/p0)
ELSE
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Pr(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3),
|Rb(4),Prb(1),Prb(2), Prb(3), Prb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Pr(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3),
|Rb(size-2), Rb(size-1), Rb(size), Prb(size-3), Prb(size-2),Prb(
|size-1), Prb(size))
ELSE
CALL Splint (Rb, Prb, Prb2, size, RRb(I),
[Pr(I))
END IF
END IF
END IF
IF (dbug¥YN) PRINT *, 'Pr_bar=',10.**Pr(I)
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IF (dbugYN) PRINT *, 'LOG(Pr)=', Pr(I)
PPr = 10.**Pr(I)
Pr(I) = 10.**Pr(I)*p0
C Pr(I) = Pr(I)*p0
IF (dbugYN) PRINT *, 'Peak reflected overpressure, Pr (ps
[1):',Pr(I)

C Calculate time of arrival, Ta
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Ta(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Tab(1),Tab(2), Tab(3), Tab(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ta(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Tab(size-3), Tab(size-2), Tab(size-1),
| Tab(size))
ELSE
CALL Splint (Rb, Tab, Tab2, size, RRb(I), Ta(I))
END IF
ENDIF
IF (dbugYN) PRINT *, 'Ta_bar=',10.**Ta(I)
IF (dbugYN) PRINT *,'LOG(Ta)=', Ta(I)
TTa = 10.**Ta(I)
Ta(I) = 10.**Ta(I)*E**(1./8.)/(a0*p0**(1./3.))
c Ta(I) = Ta(I)*E**(1./3.)/(a0*p0**(1./3.))
IF (dbugYN) PRINT *, 'Time of arrival, Ta (sec):', Ta(I)

C Calculate the time of reflected duration, Tr
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Tr(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Trb(1), Trb(2), Trb(3), Trb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Tr(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Trb(size-3), Trb(size-2), Trb(size-1),
[Trb(size))
ELSE
CALL Splint (Rb, Trb, Trb2, size, RRb(I), Tr(I))
END IF
ENDIF
IF (dbugYN) PRINT *, 'Tr_bar=',10.**Tr(I)
IF (dbugYN) PRINT *,'LOG(Tr)=', Tr(I)
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TTr = 10.**Tr(I)
Tr(I) = 10.**Tr(I)*E**(1./3.)/(a0*p0**(1./3.))

c Tr(I) = Tr(I)*E**(1./3.)/(a0*p0**(1./3.))
IF (dbugYN) PRINT *, 'Time of reflected duration, Tr (sec

[):",Tr(I)

C Calculate the time of incident duration, Ts
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Ts(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Tsb(1), Tsb(2), Tsb(3), Tsb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ts(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Tsb(size-3), Tsb(size-2), Tsb(size-1),
[ Tsb(size))
ELSE
CALL Splint (Rb, Tsb, Tsb2, size, RRb(I), Ts(I))
END IF
ENDIF
IF (dbugYN) PRINT *, 'Ts_bar=',10.**Ts(I)
IF (dbugYN) PRINT *,'LOG(Ts)=', Ts(I)
TTs = 10.**Ts(I)
Ts(I) = 10.**Ts(I)*E**(1./8.)/(a0*p0**(1./3.))
c Ts(I) = Ts(I)*E**(1./3.)/(a0*p0**(1./3.))
IF (dbugYN) PRINT *, 'Time of duration, Ts (sec):',Ts(I)

C Calculate the reflected specific impulse, Ir
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Ir(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Irb(1), Irb(2), Irb(3), Irb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ir(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Irb(size-3), Irb(size-2), Irb(size-1),
[Irb(size))
ELSE
CALL Splint (Rb, Irb, Irb2, size, RRb(I), Ir(I))
END IF
ENDIF
IF (dbugYN) PRINT *, 'Ir_bar=',10.**Ir(I)
IF (dbugYN) PRINT *, 'log(Ir)=', Ir(I)
IIr = 10.**Ir(I)
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Ir(I) = 10.**Ir(I)*(E**(1./3.)*p0**(2./3.))/a0
c Ir(I) = Ir(I)*(E**(1./83.)*p0**(2./3.))/a0
IF (dbugYN) PRINT *, 'Reflected impulse, Ir (psi-sec)',Ir(I)

C Calculate the incident specific impulse, Is
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Is(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Isb(1), Isb(2), Isb(3), Isb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Is(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Isb(size-3), Isb(size-2), Isb(size-1),
|Isb(size))
ELSE
CALL Splint (Rb, Isb, Isb2, size, RRb(I), Is(I))
END IF
ENDIF
IF (dbugYN) PRINT *, 'Is bar=',10.**Is(I)
IF (dbugYN) PRINT *, 'log(Is)=', Is(I)
IIs = 10.**Is(I)
Is(I) = 10.**Is(I)*(E**(1./3.)*p0**(2./3.))/a0
c Is(I) = Is(I)*(E**(1./3.)*p0**(2./3.))/a0
IF (dbugYN) PRINT *, 'Side-on impulse, Is (psi-sec):',
|Is(1)

C Calculate the shock velocity, U
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
U(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
|, Ub(1), Ub(2), Ub(3), Ub(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
U(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Ub(size-3), Ub(size-2), Ub(size-1),
|Ub(size))
ELSE
CALL Splint (Rb, Ub, Ub2, size, RRb(I), U(I))
END IF
ENDIF
IF (dbug¥YN) PRINT *, 'U_bar=',10.**U(I)
IF (dbug¥YN) PRINT *,'LOG(U)="', U(I)
U(I) = 10.**U(I)*E**(1./3.)/(a0*p0**(1./3.))
C U(I) = U(I)*E**(1./3.)/(a0*p0**(1./3.))
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IF (dbugYN) PRINT *, 'Shock Velocity, U (in/sec):',U(I)

C Calculate the reflected decay coefficient
C CALL Decay (Ir(I), Pr(I), Tr(I), BBr(I), epsiln)
CALL Decay (IIr, PPr, TTr, BBr(I), epsiln)
IF (dbugYN) PRINT *, 'Reflectd decay value, br:', BBr(I)

C Calculate the decay coefficient

C CALL Decay (Is(I), Ps(I), Ts(I), BB(I), epsiln)
CALL Decay (IIs, PPs, TTs, BB(I), epsiln)
IF (dbug¥YN) PRINT *, 'Decay value, b:', BB(I)

END IF
301 continue

C Initialize the blast profile structure
DO 303 I = 0, 128+3, 1
DO 303 J = 1, 2, 1
DO 303 M=1, 64, 1
303 Bprofl(I,J,M) = 0.

C Initialize the flag array for determining if the peak has
C been reached. False means that it has not.

DO 305 M = 1, NumR, 1
305 Peak (M) = .FALSE.

C Calculate the blast profiles.
DO 310 I = 1, NumR, 1
310 K(I) =0
DO 315 M = 1, Nsteps, 1
DO 315 J = 1, NumR, 1
IF (Peak(J)) THEN
T = (Float(K(J))-2.)*deltaT
ELSE
T = Float(K(J))*deltaT
END IF
T1 = (Float(K(J))+1.)*deltaT
Bprofl(K(J),1,J) =T
IF (etcYN) THEN
Bprofl(K(J),2,J) = FRIED(Pr(J),T,Ta(J),Ts(J),BB(J))
ELSE
C Only if there is not ETC's method, not a mine blast, and the normally
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C reflected values not desired will this program output the side-on
C pressure profiles. Mine blast will give reflected values always.
C Air blast is the only case in which the refleced value choice works.
C ETC's method will only work for mine blast calculations.
IF ((.NOT. reflYN) .AND. (.NOT. mine))THEN
Bprofl(K(J),2,J) = FRIED(Ps(J),T,Ta(J),Ts(J),BB(J))
ELSE
Bprofl(K(J),2,J)
END IF
END IF
IF (T .LE. Ta(J)) Bprofl(K(J),2,J) = 0.
IF ((T .LE. Ta(J)) .AND. (T1 .GT. Ta(J))) THEN

FRIED(Pr(J),T,Ta(J),Tr(J),BBr(J))

Bprofl(K(J)+1,1,J) = Ta(J) - deltaT/5.

Bprofl(K(J)+2,1,J) = Ta(J)
Bprofl(K(J)+3,1,J) = T1
Bprofl(K(J)+1,2,J) = 0.

IF (etcYN) THEN
Bprofl(K(J)+2,2,J)
Bprofl(K(J)+3,2,J)

ELSE
IF ((.NOT. reflYN) .AND. (.NOT. mine)) THEN

Bprofl(K(J)+2,2,J) = FRIED(Ps(J),Ta(J),Ta(J),Ts(J),

FRIED(Pr(J),Ta(J),Ta(J),Ts(J),BB(J))
FRIED(Pr(J),T1, Ta(J),Ts(J),BB(J))

|BB(J))
Bprofl(K(J)+3,2,J) = FRIED(Ps(J),T1, Ta(J),Ts(J),
|BB(J))
ELSE
Bprofl(K(J)+2,2,J) = FRIED(Pr(J),Ta(J),Ta(J),Tr(J),
|BBr(J))
Bprofl(K(J)+3,2,J) = FRIED(Pr(J),T1, Ta(J),Tr(J),
|BBr(J))
END IF
END IF
K(J) = K(J)+3
Peak(J) = .TRUE.
END IF
IF (etcYN) THEN
IF (T .GE. (Ta(J)+Ts(J))) Bprofl(K(J),2,J) = 0.
ELSE
IF (T .GE. (Ta(J)+Tr(J))) Bprofl(K(J),2,J) = 0.
ENDIF
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K(J) = K(J)+1
315 continue

RETURN
END

SUBROUTINE DECAY (Is, Ps, Ts, b, epsiln)

C PRE: The values of Is, Ps, Ts, and b are input.
C POST: A calculated/root solved value of the decay coefficient is
C calculated.
C ACTION: The new value of b is calculated by fixed point iteration.
LOGICAL done
REAL Is, Ps, Ts, b, bnew
DOUBLE PRECISION epsiln
b = 0.1
C Epsiln is the lowest difference between the iterations by which
C convergence is determined. Epsilon (epsiln) is part of the input
C file to allow platform and flexibility without the need for
C recompiling. Epsilon must be adjusted if the program enters an
C an infinite Decay loop.

done = ,FALSE.
500 bnew = Ps*Ts/Is*(1-(1-EXP(-b))/b)
IF ((ABS(bnew-b)) .LE. epsiln) THEN

b = bnew
done = .TRUE.
ELSE
b = bnew
END IF

IF (.NOT. done) GOTO 500

RETURN
END

SUBROUTINE Outfil (BProfl, Nsteps, NumR, XY, radial, nmax)
C PRE: BProfl (Blast profiles) are created in the array
C POST: The profiles have been tabularly out put to a file
C ACTION: The profiles have been tabularly out put by iteration.
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INTEGER I, J, nmax, Nsteps, numR
REAL BProfl(0:(128+3),2,64), XY(nmax,2)
LOGICAL radial

C open the outfile for output of the blast profiles
OPEN (unit=8, FILE='blast.out')

C sort the profiles so they are in order by time via Bubble Sort
C (an order O(N"2) sort routine). Includes a swap routine determined
C by the time order.

DO 600 I = 1, NumR, 1

DO 600 J 0, ((128+3)-1), 1
IF (BProfl(J,1,I) .GT. Bprofl(J+1,1,I)) THEN
swapT = BProfl(J,1,I)
swapP = BProfl(J,2,I)

BProfl(J,1,I)
BProfl(J,2,I)

BProfl(J+1,1,I)
BProfl(J+1,2,1)

BProfl(J+1,1,I) = swapT
BProfl(J+1,2,I) = swapP
END IF
600 continue

DO 650 I = 1, NumR, 1
IF (radial) THEN

C "ZONE" notation used by NASTRAN input decks. Comment out if using
C "R" header notation
WRITE (8, 610) I

610 FORMAT ('ZONE# =',I11)
C "R = " notation for general use. Comment out if using "ZONE"
c WRITE (8, 610) XY(I,1)
C610 FORMAT ('R = ', 1F8.2)

ELSE

WRITE (8, 620) XY(I,1), XY(I,2)

620 FORMAT ('X = ', 1F8.2," Y = ',1F8.2)

END IF

C Print out Nsteps number of steps, not the entire array
DO 650 J = 0, Nsteps, 1
WRITE (8,630) BProfl(J,1,I), BProfl(J,2,I)

630 FORMAT (1F9.7,1F9.3)
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650 continue
CLOSE (8)

RETURN
END

SUBROUTINE spline(X, Y, N, Yp1, Ypn, Y2)

C PRE: Yp1 and Ypn have been determined as the slopes at the end
C points. X and Y are arrays of the values to be splined.
C This routine is taken from _Numeric Recipies._

C POST: The second derivatives have been created for Splint and

C are stored in Y2

C ACTION: The second derivatives for interpolation of by piecewise
C splines are calculated and stored.

INTEGER I, K, N, Nmax

PARAMETER (Nmax = 500)

REAL Yp1, Ypn, X(N), Y(N), Y2(N), P, Qn, sig, Un, U(Nmax)

IF (Ypi .GT. .99e30) THEN

Y2(1) = 0.

ue(t) = o.
ELSE

Y2(1) = -0.5

U() = (3./7(X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-Yp1)
END IF

do 700 I = 2, N-1, 1

sig = (X(I)-X(I-1))/(X(I+1)-X(I-1))
P = sig*Y2(I-1)+2.
Y2(I) = (sig-1.)/P
700 U(I) = (6. *((Y(I+1)-Y(I))/(X(I+1)-X(I))-(Y(I)-Y(I-1))/(X(I)-

[X(I-1)))/ (X(I+1)-X(I-1))-sig*U(I-1))/P

IF (Ypn .GT. .99e30) THEN

Qn = 0.

Un = 0.
ELSE

Qn = 0.5

Un = (3./(X(N)-X(N-1)))*(Ypn-(Y(N)-Y(N-1)) /(X(N)-X(N-1)))
END IF
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Y2(N) = (Un-Qn*(U(N-1)))/(Qn*Y2(N-1)+1.)
do 701 K = N-1, 1, -1

701 Y2(K) = Y2(K)*Y2(K+1)+U(K)
RETURN
END
C=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-C
SUBROUTINE Splint (Xa, Ya, Y2a, N, XX, Y)
C PRE: Spline has been run for Xa and Ya and is given in Y2a, the
C desired value of Y is to be found at X. This routine is
C taken from _Numeric Recipies._
C POST: The value desired at X is returned, stored in Y
C ACTION: The interpolation of by piecewise splines is done.

OO0

800

INTEGER N, K, Khi, Klo
REAL XX, Y, Xa(N), Y2a(N), Ya(N), a, b, H

Swapping the following lines is necessary if the data is not converted
to LOG-LOG format for spline interpolation.

print *,xx
X = LOG10 (XX)
print *,x
X = XX
Klo = 1
Khi = N
IF (Khi-Klo .GT. 1) THEN
K = (Khi+Klo)/2
IF (Xa(K) .GT. X) THEN
Khi=K
ELSE
Klo=K
END IF
GOTO 800
END IF

H = Xa(Khi) - Xa(Klo)
IF (H .EQ. 0.) PAUSE 'bad Xa input in splint'

a = (Xa(Khi)-X)/H
b = (X-Xa(Klo))/H
Y = a*Ya(Klo)+b*Ya(Khi)+((a**3.-a)*Y2a(Klo)+(b**3.-b)*Y2a(Khi))*
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| (H**2.)/6.

RETURN
END
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AprPPENDIX |1

An example of the input file BLAST.INP used by the program BLAST.F. This
example is for a ground blast (“mine blast”) of 5 pounds of TNT at 16 inches normal
distance from a target. The file specifies the blast method (Explosions in Air in this case),
ground reflectivity value (1.7 or 70%), time step parameters (number of steps and At), an
epsilon value for fixed point iteration convergence (epsilon), and the number of points as
well as their radial values. Options for output of debugging statements and the use of the

correction routines for angles of incidence are also included.

BLAST.INP:

3 ; 1=CONWEP, 3=EIA,ch.6(mine & air burst)
16. ;blast normal distance, in inches
5.0 ;pounds of TNT
1.0 ;equivalent factor of TNT
1.7 ;ground reflectivity, default is 70%=1.7
50 ;number of time steps, nsteps
0.00005 ;length of time step, deltaT
0.00000001 ;epsilon for decay function
2 ;1=Mineblast, 2=Airblast
0 ;Calculation debug statements 1=on, O=off
1 ;Angle of Incidence Pr adjustment 1=on, O=off
1 ;1=use normally reflected values (airblast), 2=side-on
1 ;1=radial values, 2=(x,y) pairs
9 ;number of radial or (x,y) values

;blank, (x,y) or r values follow:
0.
0.5
1.5
3.5
5.5
7.5
9.5
11.5
13.5
15.5
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This is the input file EIA.DAT which contains blast parameters used by the
program to calculate the blast profiles in its Explosions in Air routines. This data is
converted to Log-Log form by the program and then interpolated by splines for the
determination of each profile parameter used in Friedlander’s equation. Note that this
program does not use all the parameters presented in Chapter 6 of Baker’s Explosions in

Air, or in Chapter 6 of the Army design manual, Explosions in Air.

EIA.DAT
R bar Ps bar Pr bar Ta bar Ts bar Tr bar Is bar Ir bar b
0.08 90.5 860. 4.95E-03 0.0175 0.018 0.0895 1.86 17.2
0.09 77.5 699. 6.06E-03 0.0182 0.0198 0.0824 1.503 15.8
0.1 67.9 585. 7.62E-03 0.0191 0.0219 0.0785 1.27 15.45
0.125 48.8 397. 0.0107 0.0243 0.0267 0.075 0.894 15.1
0.15 37.2 277. 0.0154 0.0341 0.0315 0.0788 0.667 15.02
0.2 20.4 146. 0.0255 0.0885 0.0425 0.106 0.456 15.96
0.22 16.6 116. 0.0284 0.126 0.047 0.108 0.408 16.7
0.24 13.4 91. 0.0329 0.148 0.052 0.107 0.368 17.2
0.25 11.9 80.3 0.0382 0.157 0.0542 0.108 0.355 17.
0.3 7.28 37.7 0.0541 0.171 0.0684 0.0885 0.294 12.9
0.4 3.46 15.83 0.099 0.158 0.108 0.0695 0.222 6.76
0.5 2.05 9.4 0.157 0.162 0.147 0.057 0.178 4.562
0.6 1.38 6.05 0.218 0.181 0.195 0.0482 0.15 3.871
0.8 0.772 2.63 0.34 0.232 0.232 0.0371 0.112 3.484
0.9 0.618 1.86 0.392 0.254 0.254 0.0335 0.0989 3.27
1. 0.506 1.31 0.466 0.268 0.268 0.0302 0.0885 3.08
1.5 0.254 0.58 0.83 0.328 0.328 0.0207 0.0529 2.51
2. 0.161 0.358 1.26 0.362 0.362 0.0158 0.0377 2.196
2.5 0.115 0.25 1.71 0.39 0.39 0.0128 0.029 1.977
3. 0.0889 0.188 2.2 0.414 0.414 0.0108 0.0237 1.875
4. 0.0616 0.126 3.21 0.445 0.445 8.12E-03 0.0173 1.81
5. 0.0468 0.0948 4.21 0.477 0.477 6.56E-03 0.0137 1.856
6. 0.0374 0.0765 5.19 0.495 0.495 5.46E-03 0.0112 1.84
7. 0.0306 0.0633 5.84 0.517 0.517 4.67E-03 9.49E-03 1.828
8. 0.0261 0.0536 7.15 0.532 0.532 4.10E-03 8.40E-03 1.83
9. 0.0227 0.0461 7.64 0.548 0.548 3.62E-03 7.31E-03 1.85
10. 0.0198 0.0401 9.1 0.564 0.564 3.25E-03 6.58E-03 1.87
20. 8.70E-03 0.0176 18.9 0.666 0.666 1.58E-03 3.20E-03 2.17
30. 5.43E-03 0.011 28.8 0.737 0.737 1.04E-03 2.08E-03 2.382
40. 3.91E-03 7.88E-03 38.9 0.781 0.781 7.64E-04 1.54E-03 2.553
50. 3.06E-03 6.12E-03 48.9 0.825 0.825 6.05E-04 1.22E-03 2.754
60. 2.48E-03 4.96E-03 58.8 0.856 0.856 4.98E-04 9.96E-04 2.87
80. 1.81E-03 3.58E-03 78.5 0.916 0.916 3.68E-04 7.39E-04 3.08
100. 1.41E-03 2.80E-03 98.5 0.96 0.96 2.93E-04 5.86E-04 3.25
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250. 5.17E-04 1.03E-03 224. 1.16 1.16 1.16E-04 2.33E-04 3.87
500. 2.42E-04 4.86E-04 499. 1.24 1.24 5.75E-05 1.15E-04 3.911
1000. 1.15E-04 2.31E-04 1000. 1.25 1.25 2.88E-05 5.76E-05 3.67

12345678901234567890123456789012345678901234567890123456789012345678901234567890

Thisis the input file PVSA.DAT which contains angle of incident reflected pressure
blast parameters used by the program to calculate the blast profiles in either the Explosions

in Air routines, or those of Kingery & Bulmash. This data is the tabular form of Figure 8.

PVSA.DAT
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20

19
0.5

12 13 14 15 16 17 18
50. 30. 20. 10.
2.05 2.05 2.

11

10

1

ang
0.

0.2

100. 70.
5.

150.
5.6

3000. 2000. 1000. 500. 400. 300. 200.
8.6 7.8 7.
5.5

5000.

2.1

2.2
2.2

2.5
2.5
2.5

3.35 3.

4.45 4.

6.65 6.

10.

12.25 10.8

12.

0.

2.05 2.05 2.

2.1

3.9

4.95 4.4

5.9

10.7 9.95 8.45 7.65 6.95 6.6

2.05 2.05 2.

2.1

5.85 5.45 4.85 4.35 3.85 3.25 3.

8.25 7.45 6.85 6.5

11.65 10.55 9.8
11.2

10.
15.
20.
25.
30.

2.05 2.05 2.

2.1

2.2

3.2 2.95 2.5

4.25 3.8

10.3 9.55 7.95 7.25 6.75 6.35 5.75 5.35 4.8

2.05 2.05 2.

2.1

2.2
2
2

2.5

4.65 4.15 3.7 3.15 2.9

5.65 5.2

7.65 6.95 6.55 6.2

10.65 9.95 9.2
10.05 9.4

2.05 2.05 2.

2.1

.2
.2

2.85 2.5

3.65 3.1

5.45 5.05 4.55 4.1

6.3 5.9

6.7

8.75 7.3
8.2
8.125 7.65 6.5

2.05 2.05 2.

2.1

2.85 2.5

3.55 3.1

4.4

4.8

5.65 5.2

6.35 6.

6.9

2.1 2.05 2.05 2.

2.5
2

3.125 2.9

4.275 3.85 3.5

5.95 5.675 5.35 4.925 4.6

5.85 5.6

8.7

35.

2.05 2.05 2.

2.1

2.2
2
2

.5

3.15 2.9

4.6 4.25 3.85 3.5

5.3

6.4

7.5

8.55 8.
8.4

36.
37.

2.05 2.05 2.

2.1

.2
.2

5.55 5.275 4.925 4.625 4.275 3.9 3.55 3.175 2.95 2.5

7.85 7.375 6.325 5.8

2.05 2.05 2.

2.1

3.2 2.95 2.5

3.95 3.6

5.25 4.95 4.65 4.3

8.25 7.75 7.25 6.25 5.75 5.5

8.1

38.

2.1 2.05 2.05 2.

2.5

5.325 5.05 4.775 4.475 4.125 3.85 3.35 3.

5.4

5.725 5.5

7.625 7.15 6.2

39.

2.05 2.05 2.

2.1

2.2

3.05 2.5

3.5

4.

4.65 4.3

5.15 4.9
5.4

7.95 7.5 7.05 6.15 5.7 5.5
5.7

40.

2.05 2.05 2.

2.2 2.1

3.55 3.2 2.6

4.25 4.

5.15 4.7

6.95 6.05 5.8

7.85 7.4
7.7

41.

3.325 2.675 2.275 2.1 2.05 2.05 2.

3.975 3.65 3.3

7.325 6.875 6.025 5.925 5.925 5.9 5.475 5.075 4.5

42.

2.05 2.05 2.

3.725 3.375 3.075 3.325 2.725 2.325 2.1

6.025 5.425 4.975 4.3

7.55 7.275 6.85 6.075 6.275 6.2

7.45 7.3

43,
44,
45,

2.05 2.05 2.

6.433 6.017 5.35 4.85 4.117 3.517 3.15 2.833 3.167 2.833 2.35 2.1

6.6
6.5

6.933 6.467 6.7

7.1

2.05 2.05 2.

2.35 2.1

3.

5.95 5.25 4.75 3.95 3.35 2.95 2.75 3.

5.85 5.1
5.7

7.35 7.4

2.05 2.05 2.

3.2 2.37 2.1

2.75 3.25 2.45 2.1

2.6

2.8

4.65 3.75 3.2

4.45 3.6

7.35 8.2 8.

46.

2.05 2.05 2.
2.05 2.05 2.

2.65 3.15 2.52 2.1

3.05 2.65 2.5
2.55 2.4

5.
5.55 4.85 4.35 3.45 2.9

6.55 6.1

8.05 7.2

8.65 8.25 7.45 6.75 6.3
7.7

9.05 8.5

a7
48.
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2.55 3.025 2.635 2.12 2.05 2.05 2.

2.45 2.9

2.425 2.3

3.35 2.8
2

49. 6.875 6.275 5.85 5.35 4.7 4.2

50.
51.

2.75 2.15 2.05 2.05 2.

2.2

5.13 4.55 4.05 3.25 2.7 .3

7.35 6.55 6. 5.6

8.35 7.7

2.12 2.35 2.78 2.95 2.17 2.05 2.05 2.

2.2
2.1

3.13 2.6

5.32 4.93 4.37 3.91
5.04 4.71

6.23 5.7

7.89 7.18 6.91

2.04 2.25 2.66 3.15 2.19 2.05 2.05 2.

2.5

4.19 3.77 3.01

5.4

7.43 6.66 6.47 5.91

52.
53.
54.
55.
57.

6.922 6.161 6.033 5.544 5.083 4.756 4.478 4.011 3.622 2.889 2.406 2.028 1.967 2.167 2.556 3.206 2.22 2.056 2.05 2.

6.367 5.683 5.6

2.467 3.117 2.267 2.067 2.05 2.

2.1

5.133 4.75 4.467 4.233 3.833 3.467 2.767 2.317 1.983 1.9

1.939 1.833 2.033 2.378 3.028 2.311 2.078 2.05 2.

1.85
1.67

5.811 5.206 5.167 4.722 4.417 4.178 3.989 3.656 3.311 2.644 2.28

4.7

2.2 2.85 2.4 2.1 2.05 2.

.9

1

1.7

1.61

2.05

1

2.4

3.75 3.6 3.5

3.9

4.25 4.3

2.82 2.19 2.05 2.

1.78 2.02 2.61

.9

2.87 2.79 2.52 2.16

1.9
1.3

3.35 3.17 3.19 3.03 2.97 2.91

1.9
1.3

60.

2.025 1.812 1.663 1.425 1.425 1.578 1.762 2.225 2.937 2.537 2.137 2.

1.9 1.9 1.9 1.9 2.2
1.3 1.3 1.3 1.8 1.7

1.3

1.9
1.3

65.

1.45 1.3 1.3 1.4 1.55 1.9 2 3.1 2.05
2.833 2.083
3.1

1.6

70.
72.
74.
75.
80.
85.
90.

2.8

1.233 1.233 1.233 1.233 1.233 1.233 1.233 1.667 1.667 1.533 1.383 1.267 1.267 1.333 1.517 1.767 2.2

1.15
1.12

2.15

2.5

1.65 2.
1

1.45
1.4
1.25

1.15

1.27
1.25

1.12

1

1.22
1.2
1.12

1.05

1.22
1.2

1.3
1.25
1.2

1.1

1.45
1.4
1.25

.6
.3
1.1

1
1

1.55
1.5

1.15 1.15 1.15 1.15 1.15
1.12 1.12 1.12 1.12

1.12

1.15
1.12

2.35 3.05 2.2

1.9
1.52

1

.6

1.75 2.15 3.05
1.3

1.35
1.2

1.12

1.05

1.2

1.35
1.1

1.15

1.45 1.7

.2
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