Review of Methods for Calculating Pressure Profiles of Explosive Air Blast and its Sample Application

by
J effrey M.K. Chock

Thesis submitted to the F aculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

```
MASTER OF SCIENCE
    in
Aerospace Engineering
```

APPROVED:

Rakesh K. Kapania, Chairman

April 29, 1999
Blacksburg, Virginia

Keywords: Explosive, Air Blast, Blast, Profile, Generation
©1999, J effrey M.K. Chock

Review of Methods for Calculating Pressure Profiles of Explosive Air Blast and its Sample Application

by
J effrey M.K. Chock
Rakesh K. Kapania, Chairman
Department of Aerospace and Ocean Engineering
(ABSTRACT)

Blast profiles and two primary methods of determining them werereviewed for use in the creation of a computer program for calculating blast pressures which serves as a design tool to aid engineers or analysts in the study of structures subjected to explosive air blast. These methods were integrated into a computer program, BLAST.F, to generate air blast pressure profiles by one of these two differing methods. These two methods were compared after the creation of the program and can conservatively model the effects of spherical air blast and hemispherical surface burst.

The code, BLAST.F, was used in conjunction with a commercial finite element code (NASTRAN) in a demonstration of method on a 30 by 30 inch aluminum 2519 quarter plate of fixed boundary conditions in hemispherical ground burst and showed good convergence with 256 elements for deflection and good agreement in equivalent stresses of a point near the blast between the 256 and 1024 element examples. Application of blasts to a hypothetical wing comprised of aluminum 7075-T6 was also conducted showing good versatility of method for using this program with other finite element models.

AcknowledgMents

First and foremost I would like to thank my thesis advisor, Dr. Kapania, for his patience over the past couple of years and in the final months of this endeavour. I would alsoliketothank Dr.J ohnson, Dr. Nikolaidis, and Dr. Schetz for serving on my committee. I would also like to thank Dr. Tom Stoumbos for his project which allowed me to work on this topic of research.

I would also like to thank my fellow student and project partner, J ohn Coggin, for helping me with my NASTRAN problems in the application of the blast methods. I would also like to thank my girlfriend Leah for her help and support during this project.

And finally I would liketothank my parents, Stephen and Elaine, for their loveand support.

Table of Contents

ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
TABLE OF TABLES vi
TABLE OF FIGURES vii
TABLE OF SYMBOLS xvi
1.0 INTRODUCTION 1
2.0 REVIEW OF LITERATURE 3
3.0 METHODS 5
3.1 Blast Profiles 5
3.2 Blast Scaling 10
3.2.1 Hopkinson Blast Scaling 10
3.2.2 Sachs Blast Scaling 12
3.3 Air Blast and Hemispherical Surface Blast methods 13
3.4 Air Blast Parameters by Methods in Explosions in Air, both Baker and U.S. Army 13
3.5 Air Blast Parameters for Air and Surface Burst as found by Kingery and28
3.6 Application to Hemispherical Surface Blasts 30
3.7 Reflected Pressure vs. Angle of Incidence 33
3.8 Limit of Regular Reflection 34
3.9 Program 36
3.9.1 Subroutine KINBUL 36
3.9.2 Subroutine EIA 37
4.0 RESULTS AND DISCUSSION 40
4.1 Comparison of Air Blast Pressure Profile Methods 40
4.2 Comparison of Hemispherical Surface Blast Pressure Profile M ethods 41
4.3 Example and Comparison of Time Varying Pressure Distribution of BlastPressure Across a Plate: 20lb of TNT at 24 inches Normal Blast Distance42
4.4 Example Semi-Hemispherical Ground Blast: a 5lb TNT mine 44
4.5 Example of an Arbitrary Aircraft Wing: 20lb TNT charge at 6 ft 73
5.0 CONCLUSIONS 80
APPENDIXI 82
APPENDIXII 120
BLAST.INP 120
EIA.DAT 121
PVSA.DAT 122
REFERENCES 124
Vita 126

Table of Tables

Table 1: Properties of Differing Explosives 16
Table 2a: Non-dimensional, Sachs Scaled, Shock-Front Air Blast Parameters for Incident(side-on) Blast waves. ($0.01423 \leq \leq 1.5$)17
Table 2b: Non-dimensional, Sachs Scaled, Shock-Front Air Blast Parameters for Incident(side-on) Blast waves. ($2.00 \leq \leq 1000$)18
Table 3: Compiled Sachs Scaled Shock Front Parameters for Reflected Shock Waves 21
Table 4: Compiled Sachs Scaled Decay Time Constant, b, for Incident Shock Waves 25
Table 5: Compiled Sachs Scaled Decay Time Constant, b_{r}, for Reflected Shock Waves 26
Table 6: Limit of Regular Reflection $\alpha_{\text {extreme }}$ vs the shock strength. 35

Table of Figures

Figure 1 An example of a canonical blast profile showing the positive phase and peak pressure of the blast after its time of arrival.

Figure $\mathbf{2}$ Comparison of (A) an incident blast wave of speed U traveling across a surface and (B) an incident blast wave traveling at speed U in normal reflection against a solid reflecting surface and leaving at speed U_{r}. 9

Figure $\mathbf{3}$ Graphical sample representation of Hopkinson blast scaling where the effects of a blast at distance R for a charge of dimension d is equivalent to a factor, K , multiplied against the equivalent parameters for a blast of dimension Kd at a distance of KR

Figure 4 Graphical representation in Log-Log scale, of the side-on, Sachs scaled blast parameters as presented in Table 2. Note that some parametric ranges of parameters have been scaled over a portion of the domain to fit the axes. . . . 19
Figure 5 Graphical representation in Log-Log scale of the normally reflected, Sachs scaled blast parameters as presented in Table 3. Note that some parametric ranges of parameters have been scaled over a portion of the domain to fit the axes. . . . 22

Figure 6 Graphical representation, on Log-Log axes, of the decay parameters for side-on and normal reflection, b and b_{r}, respectively, for use in the empirical Friedlander's equation.
Figure 7 Depiction of a generic, hemispherical surface detonation of an explosive charge on a rigid, reflecting surface in which successive shock waves are reinforced.

Figure 8 Reflected pressure coefficient vs. angle of attack for incident waves that reflect from oblique surfaces. The number in the legend corresponding to each curve indicates the peak side-on overpressure, P_{s}, in pounds per square inch. 33

Figure 9 A canonical detonation to demonstrate the different parameters tabulated in Table 6 for determining the critical angle for normal reflection. 34

Figure 10 Flowchart showing the structure and process by which the explosive blast profilegeneration programBLAST.F (ver 2.3), written by theauthor, works during a typical run.
Figure 11Comparison of reflected overpressures by the Explosions in Air and Kingery and

Bulmash methods for a 25 pound charge of TNT in a spherical air burst above a target at two feet blast normal distance. 40
Figure 12 Comparison of reflected overpressures by the Explosions in Air (for a ground reflectivity value of 1.7 and 1.8) and Kingery and Bulmash methods for a five pound charge of TNT in a spherical air burst above a target at sixteen inches blast normal distance.

Figure 13 A family of curves over six time steps showing the time varying overpressure across the surface of a plate. The pressure curves compare the results of normal reflection and adjustment for angle of incidence for 20 lbs of TNT at 24 inches calculated by the methods found in Kingery \& Bulmash. 43
Figure 14 Display of thefour by four quadrilateral element quarter plateof fixed boundary conditions, with the three colors denoting the loading areas for six, 12, and 16 inch radial distances from the blast center at the lower left corner.

Figure 15 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0004$ seconds. Displacements have been scaled to 10% of the model dimensions. 46
Figure 16 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0024$ seconds. Displacements have been scaled to 10% of the model dimensions.

46
Figure 17 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0052$ seconds. Displacements have been scaled to 10% of the model dimensions. 47
Figure 18 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0072$ seconds. Displacements have been scaled to 10% of the
model dimensions
Figure 19 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.01$ seconds. Displacements have been scaled to 10% of the model dimensions.

48
Figure $\mathbf{2 0}$ Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0136$ seconds. Displacements have been scaled to 10% of the model dimensions.
Figure 21 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0152$ seconds. Displacements have been scaled to 10% of the model dimensions.49

Figure 22 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0176$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure $\mathbf{2 3}$ Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.02$ seconds. Displacements have been scaled to 10% of the model dimensions.
Figure 24 Display of the eight by eight quadrilateral element quarter plate of fixed boundary conditions, showing the four loading areas for six, 12, and 16 inch radial distances from the blast center at the lower left corner. 51
Figure 25 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower
left corner at time $=0.0004$ seconds. Displacements have been scaled to 10% of the model dimensions. 52

Figure 26 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0024$ seconds. Displacements have been scaled to 10% of the model dimensions.52

Figure 27 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0052$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 28 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0072$ seconds. Displacements have been scaled to 10% of the model dimensions.
Figure 29 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.01$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 30 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0136$ seconds. Displacements have been scaled to 10% of the model dimensions.
Figure 31 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0152$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 32 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0176$ seconds. Displacements have been scaled to 10% of the model dimensions.

55
Figure 33 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.02$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 34 Display of the 16 by 16 quadrilateral element quarter plate of fixed boundary conditions, showing the loading areas for one, three, five, seven, nine, 11,13 , and 15 inch radial distances from the blast center at the lower left corner. 57

Figure 35 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0002$ seconds. Displacements have been scaled to 10% of the model dimensions.
Figure 36 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0024$ seconds. Displacements have been scaled to 10% of the model dimensions.

59
Figure 37 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.005$ seconds. Displacements have been scaled to 10% of the model dimensions.

60
Figure 38 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0074$ seconds. Displacements have been scaled to 10% of the
model dimensions. 60
Figure 39 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.01$ seconds. Displacements have been scaled to 10% of the model dimensions.

61
Figure 40 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0136$ seconds. Displacements have been scaled to 10% of the model dimensions. 61
Figure 41 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.015$ seconds. Displacements have been scaled to 10% of the model dimensions.

62
Figure 42 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0176$ seconds. Displacements have been scaled to 10% of the model dimensions. 62
Figure 43 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.02$ seconds. Displacements have been scaled to 10% of the model dimensions.63

Figure 44 Display of the 32 by 32 quadrilateral element quarter plate of fixed boundary conditions, showing the loading areas for one, three, five, seven, nine, 11,13 , and15 inch radial distances from the blast center at the lower left corner. 64
Figure 45 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower
left corner at time $=0.00032$ seconds. Displacements have been scaled to 10% of the model dimensions. 66

Figure 46 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.00224$ seconds. Displacements have been scaled to 10% of the model dimensions.66

Figure 47 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.00512$ seconds. Displacements havebeen scaled to 10% of the model dimensions.

Figure 48 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.00736$ seconds. Displacements have been scaled to 10% of the model dimensions.
Figure 49 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.01024$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 50 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.01344$ seconds. Displacements have been scaled to 10% of the model dimensions.68

Figure 51 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.01504$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 52 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.0176$ seconds. Displacements have been scal ed to 10% of the model dimensions.

69
Figure 53 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.02$ seconds. Displacements have been scaled to 10% of the model dimensions.
Figure 54 P lot of the vertical displacement for the corner of the quarter plate subjected to the five pound surface blast showing gradual convergence with the increase in the number of elements.

Figure 55 Plot of the equivalent stress for the center point of the element near the corner of the quarter plate subjected to the five pound surface blast showing gradual convergence with the increase in the number of elements
Figure 56 Three-dimensional view of the ARW-2 wing model to which blast loads were applied. The boundary conditions at the wing root were fixed during analysis.

Figure 57 View of the underside of the hypothetical wing model showing blast load application areas. 75
Figure 58 The hypothetical wing model at time $=0.0012$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have not traveled far beyond the loading area.
Figure 59 The hypothetical wing model at time $=0.0048$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. Stresses have begun building up at the control surfaces where the wing thickness is least. 76

Figure 60 The hypothetical wing model at time $=0.0076$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have begun traveling the length of the wing while highest stresses can still be found at the control surfaces
Figure 61 The hypothetical wing model at time $=0.01$ seconds subjected to a 20 pound

TNT blast at six feet (72 inches) blast normal distance. Stresses have traveled the length of the wing model.
Figure 62 The hypothetical wing model at time $=0.0124$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing. This and subsequent Figures of the ARW-2 wing have a different scale for the stress fringe plot. 78
Figure 63 The hypothetical wing model at time $=0.0148$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing and deflection of the wing can now be seen easily.

Figure 64 The hypothetical wing model at time $=0.0176$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing and are prevalent in the loading area and control surfaces. The formerly loaded areas of the wing can be seen to have deflected.

79
Figure 65 The hypothetical wing model at the final time step of the run, time $=0.02$ seconds, subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing and deflection of the wing can now be seen easily in the loading area, with stress concentration in the control surface area near the loading area.

Table of Symbols

Parameter	Symbol	Equation
Distance（range）	R	
Weight of explosive charge	W	
Energy of blast	E	W \times E／W
Weight specific energy of explosive	E／W	
Sea level atmospheric pressure	$\mathrm{p}^{\text {o }}$	$14.695957 \mathrm{lb} / \mathrm{in}^{2}$
Speed of sound，sea level	$\mathrm{a}_{\text {o }}$	$13397.390 \mathrm{in} / \mathrm{sec}$
Sea level atmospheric density	$\mathrm{r}_{\text {。 }}$	$1.146267 \mathrm{E}-7 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}^{4}$
Sea level atmospheric temperature	T。	$518.67^{\circ} \mathrm{R}=59.0^{\circ} \mathrm{F}$
Gravitational acceleration	go	$386.08858 \mathrm{in} / \mathrm{sec}^{2}$
Hopkinson scaled distance	Z	$\mathrm{R} / \mathrm{W}^{1 / 3}$ or R／E $\mathrm{E}^{1 / 3}$
Sachs scaled distance	R	$\left(\mathrm{R} \mathrm{po}{ }^{1 / 3}\right.$ ）／ $\mathrm{E}^{1 / 3}$
Sachs scaled Peak side－on overpressure	$\bar{P}_{\text {s }}$	$\mathrm{P}_{5} / \mathrm{p}_{0}$
Sachs scaled Peak normally reflected overpressure	$\bar{P}_{\text {r }}$	P_{r} / p_{0}
Sachs scaled peak dynamic pressure	$\overline{\mathrm{Q}}$	Q／po
Sachs scaled side－on overpressure	$\overline{\mathrm{p}}_{\text {s }}$	p_{s} / p_{0}
Sachs scaled normally reflected overpressure	$\overline{\mathrm{p}}_{\mathrm{r}}$	p_{r} / p_{0}
Sachs scaled dynamic pressure	q	q / p
Sachs scaled density	$\bar{\rho}$	ρ / ρ_{0}
Sachs scaled temperature	－	θ / θ_{0}
Sachs scaled shock velocity	ù	U / a 。
Sachs scaled peak particle velocity	$\bar{u}_{\text {s }}$	u_{s} / a_{0}
Sachs scaled particle velocity	u	u / a 。
Sachs scaled time of arrival	t_{a}	$\left(\mathrm{t}_{\mathrm{a}} \mathrm{a}_{0} \mathrm{p}_{0}^{1 / 3}\right) / \mathrm{E}^{1 / 3}$
Sachs scaled duration of positive side－on overpressure	$\overline{\mathrm{T}}$	$\left(\mathrm{T}_{5} \mathrm{a}_{0} \mathrm{p}_{0}^{1 / 3}\right) / \mathrm{E}^{1 / 3}$
Sachs scaled duration of positive normally reflected overpressure	$\overline{\bar{T}_{r}}$	$\left(T_{r} \mathrm{a}_{0} \mathrm{p}_{0}^{1 / 3}\right) / \mathrm{E}^{1 / 3}$
Sachs scaled time	－	$\left(\mathrm{ta}_{0} \mathrm{p}_{0}^{1 / 3}\right) / \mathrm{E}^{1 / 3}$
Sachs scaled side－on positive impulse	$i_{\text {s }}$	$\left(1{ }_{5} a_{0}\right) /\left(p_{0}{ }^{2 / 3} E^{1 / 3}\right)$
Sachs scaled normally reflected positive impulse	$i_{\text {r }}$	$\left(I_{r} a_{0}\right) /\left(p_{0}^{2 / 3} \mathrm{E}^{1 / 3}\right)$
Positive phase side－on pressure	$\mathrm{P}_{\text {s }}{ }^{+}$	
Positive phase time of duration	T^{+}	
Positive phase side－on impulse	Is^{+}	
Reflected temperature	θ_{r}	
Sideon temperature	$\theta_{\text {s }}$	
gamma，ratio of specific heats	γ	
Time of arrival	Ta	
Time of duration	T。	
Decay coefficient	b	

Decay coefficient, reflected
Explosive weight being scaled to
Explosive weight being scaled
Ambient Temperature
Ambient atmospheric pressure
Peak side-on overpressure (non-scaled)
Pressure scaling factor
Distance scaling factor
Time scaling factor
Impulse scaling factor

b_{r}	
Q_{1}	
Q_{2}	
$\mathrm{~T}_{\mathrm{a}}$	
p_{a}	
P_{s}	
S_{p}	$\mathrm{p}_{\mathrm{a}} / \mathrm{p}_{\mathrm{o}}$
S_{d}	$\left(\mathrm{Q}_{2} / \mathrm{Q}_{1}\right)^{1 / 3}\left(\mathrm{p}_{\mathrm{l}} / \mathrm{p}_{\mathrm{a}}\right)^{1 / 3}$
$\mathrm{~S}_{\mathrm{t}}$	$\left(\mathrm{Q}_{2} / \mathrm{Q}_{1}\right)^{1 / 3}\left(\mathrm{p}_{\mathrm{a}} / \mathrm{p}_{\mathrm{o}} / 1 / 3\left(\mathrm{~T}_{d} / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2}\right.$
S_{i}	$\left(\mathrm{Q}_{2} / \mathrm{Q}_{1}\right)^{1 / 3}\left(\mathrm{p}_{d} / \mathrm{p}_{\mathrm{a}}\right)^{1 / 3}\left(\mathrm{~T}_{\mathrm{L}} \mathrm{T}_{\mathrm{a}}\right)^{1 / 2}$

1.0 Introduction

While the technology and computational methods for finite element analysis of structures has been around for many years, there is a lack of a design tool for the engineer to use in the accurate analysis of structures to specific blast loadings. This became clear to the author while recently attached to a project for industry.

Such a tool should be easy to use and at the same time, correct to the recorded values of parameters for a specific threat condition. This would provide a tool for both an engineer working in design and also an analyst examining the predicted, or after effects, of an explosive blast. Thus, the design of structures which have some resistance or inherent protection to specific blast threats is possible. This would also allow the design of structures which would have qualities which would protect the structure's occupants.

Engineers within the military or their contractors have access to some codes which will predict, based on that code's method, the pressure results, and thus the blast effects, of the explosive blast itself. This has a wide application both for government and civilian use, but also in this age of terrorism, in the application of the design of civilian facilities to minimize both structural damage and collateral damage to personnel.

After beginning work, it became clear that there was no effective design tool that could do this while still providing an output that could be used in presentations, or more importantly, commercial finite element codes with a minimum of hassle. The author attempted to make use of a commercial code and a reference text in an effort to generate a pressure profile for a specific threat. Upon review of the method used by another scientist, it became clear that while a result had been obtained by that researcher, that result made use of the reference material in a manner so as to render those results questionable. This provided essential motivation to create a simple and versatile program that would do this easily and effectively.

First a method for determining these blast loads had to be arrived at, but upon review of literature, it was found that there were two primary methods. Then, these methods had to be accurately duplicated, first by hand calculations, then by tested computer subroutines.

The computer code developed, BLAST.F, is platform independent, small, and easy to use. This program has the capability of generating profiles for both conventional and nuclear blast pressure effects, giving it that wide application that would be needed in an
protective design, analysis, or an academic environment studying such loadings on structures and the protective design of buildings, structures, and vehicles, well as the analysis of a specific's threats effects, both potential and real.

This paper will first cover the background of the material including two methods of blast scaling. This research will then review two primary methods of determining the explosive blast pressure profiles which can be applied to a finite element model. The program, BLAST.F, and it's capabilities will be covered. Examples of this computer program loading applied to differing finite element models will be reviewed, in this case an aluminum plate and a model based on the geometry of an aeroelastic wing model.

2.0 Review of Literature

Duetothenature of explosives and their potential threat tothepublic in the hands of the ignorant as well as those who would inflict harm, the publically available literature on the exact effects of explosives is restricted. This restriction confined most of the referenced literature in the reviewed works inaccessible to this researcher. Much of this field's research and results are held in the U.S. Army's Ballistics Research Laboratory at Aberdeen's technical memos and works by the English Ministry of Defense, thus they are in some cases mentioned in passing throughout this work, but may not be specfically mentioned in the References at the end of this paper.

Of the works that were available in the open literature, the first and most informative was W.E. Baker's Explosions in Air (1973). This work covers the basics of explosiveair blast analysis, theoretical computational methods, experimental blast analysis, and the equipment used in its analysis and data gathering. It roughly parallels a hand book of a similar title by the U.S. Army Materiel Command, Explosions In Air (1975). While both cover similar material, in a similar manner, especially in the useful chapter on air blast parameters, the Army reference covered the topic of critical angle for reflected pressure waves and the calculation of reflected pressure waves that strike a target at an angle to the normal of a surface. Both of these references use a method of fitting to experimental scaled blast parameters, but they did not specifically make use of a separate ground reflection technique. Such a techniquewas mentioned in passingin both Explosions in Air when discussing the scaling of experimental data that had been gathered in hemispherical ground reflection. Also of good use, Baker's book includes three large scale (three foot square) graphs of blast parameters, which were of great help in finding interim values between tabulated values presented in Baker's and the Army's texts. However, these graphs had to be used with caution as they had the wrong axis markings or in some cases, the correct trend was drawn through the wrong points.

Kingery and Bulmash (1984) present similar data that has been scaled for use with a different form of scaled parameters. They then fitted functions to these parameters by computers within a Log-Log domain so that these parameters can be more easily determined, providing a second method that can be programmed and implemented. This work also provided some insight into ground reflection, while providing a specific set of results for that condition, and the application to nuclear weapons in ground burst.

Goodman's (1960) paper was gathered from test detonation of pentolite and was closer to Explosions in Air, but provided insight in the gathering and comparison of blast data.

Bulson (1997) provided a book on TheExpl osiveL oading of Engineering Structures and made a great deal of discussion of loadings that have been determined from nuclear tests as well as smaller scale conventional explosives. This book specifically mentions a method for the determination of blasts in ground reflection which matched, with the exception of a factor, the method extrapolated from Explosions in Air.

Finally, the Army Technical Manual (1992) on the protective design of structures for conventional weapons effects, TM5-855-1, essentially presented methods found in Kingery and Bulmash for calculation of blast loads, but provided some insight in what should be considered in a design tool.

More recently, a work by Türkmen and Mecitoğlu, the prediction of blast loads was instead replaced with an experimental result, then theseexperimental results wereapplied to a finite element model of a stiffened composite plate. In this setup, a shock tube was used to generate a dynamic pressure shock which was measured by a wooden board with pressure transducers. This is notable because unlike the other works, Türkmen and Mecitoğlu used an overpressure profile with a large negative phase. Using this, they were able to get a good correlation to experimental results with the same type of dynamic loading.

3.0 Methods

3.1 Blast Profiles

In this report, a great deal of time will be spent in the determination of the pressure timehistory at a point for an explosive blast. Theseblast profiles are the result of pressure waves that are created by the sudden and violent release of energy in the explosive charge which causes a sharp rise in the pressure of the surrounding gas or liquid medium. A generic blast profile at a point is shown in Figure 1. This profile is a time history of a blast overpressure wave that impinges on a point in space, where there is a positive and a negative phase denoted by T^{+}and T^{-}, respectively. It is this positive phase that is deemed the most important of the two phases, and is what is generally studied. This curve of the profile and to which a curve is "fit" concerns most researchers in this field.

In the calculation and presentation of the pressure blast profiles, numerous methods have been proposed. Baker reports [1] that Flynn proposed a linear decay of pressure given by:

$$
\begin{equation*}
\mathrm{p}(\mathrm{t})=\mathrm{p}_{\mathrm{o}}+\mathrm{P}_{\mathrm{s}}^{+}\left(1-\mathrm{t} / \mathrm{T}^{+}\right), \quad 0<t \leq \mathrm{T}^{+} \tag{1}
\end{equation*}
$$

where p_{0} is the ambient pressure, $\mathrm{P}_{\mathrm{s}}{ }^{+}$is the peak side-on overpressure, T^{+}is the positive phase duration and t is the time measured from the time of blast wave arrival. The peak side-on overpressure can usually be preserved at the original value, but the positive time duration, T^{+}, is altered to preserve the true positive duration impulse, $\mathrm{I}_{\mathrm{s}}{ }^{+}$, which can be found by integrating the pressure over the positive phase [1]:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{s}}^{+}=\int_{\mathrm{t}_{\mathrm{a}}}^{\mathrm{t}_{\mathrm{a}}+T^{+}}\left[p(\mathrm{t})-\mathrm{p}_{\mathrm{o}}\right] \mathrm{dt} \tag{2}
\end{equation*}
$$

again where t is measured from the time of arrival, t_{a}. Thus, this simplified form can be altered to fit the desired profile curve.

As the pressure profile is of a decaying nature, a better form was presented by Ethridge in his 1965 work as reported by Baker [1]:

$$
\begin{equation*}
\mathrm{p}(\mathrm{t})=\mathrm{p}_{\mathrm{o}}+\mathrm{P}_{\mathrm{s}}^{+} \mathrm{e}^{-\mathrm{ct}} \tag{3}
\end{equation*}
$$

wheret is measured from the time of arrival, $\mathrm{P}_{\mathrm{s}}{ }^{+}$is the peak side-on overpressure and is left
at its original value, and p_{o} is the ambient atmospheric pressure. Thus, by curve fitting to two parameters, the peak pressure and initial decay rate or the peak pressure and positive impulse, Equation (3) can be used to better fit transducer gathered data.

Thenext extension of this process is to curve fit experimental results by using three different parameters. This form is usually the modified Friedlander's equation as given in Baker [1]:

$$
\begin{equation*}
p(t)=p_{0}+P_{s}^{+}\left(1-\frac{t}{T^{+}}\right) e^{-b \frac{t}{T^{+}}} \tag{4}
\end{equation*}
$$

where again t is measured from the time of arrival, $\mathrm{P}_{\mathrm{s}}{ }^{+}$is the peak side-on overpressure, p_{0} is the ambient atmospheric pressure, and b is the decay coefficient. Thus, a curve fitting of experimental data may be done by matching any three of four blast characteristics: peak side-on overpressure, $\mathrm{P}_{\mathrm{s}}{ }^{+}$, positive phaseimpulse, I^{+}, positive phase duration, T^{+}, and initial decay rate. The peak overpressure is the highest pressure the initial blast wave creates over the ambient atmospheric pressure. The positive phase impulse is the area under the pressure curve for the duration of the time period of positive overpressure, that same time period is the positive phase duration, and the initial decay rate is a measure of how quickly the pressure returns from the spike of peak over pressure to the ambient pressure.

Similar curve fitting may be done to four or five parameters, but for the purposes of this paper and for the computer program that was written, using Friedlander's equation was considered to be adequate and simple to program, while matching methods used by other researchers.

Ignored in this study and not implemented by the computer program is the examination and use of the negative phase of the blast. Indeed, Baker [1] reports he could find only one proposed functional form for this phase from the works of Brode (1955):

$$
\begin{equation*}
\left.p(t)=p_{o}-P_{s}^{-(} \frac{t}{T^{-}}\right)\left(1-\frac{t}{T^{-}}\right) e^{-4 \frac{t}{T^{-}}} \tag{5}
\end{equation*}
$$

where p_{0} is the ambient pressure, $P_{s}{ }^{-}$is the peak negative phase overpressure, T is the duration of the negative phase, and t is measured from the end of the positive phase $\left(\mathrm{t}_{\mathrm{a}}+\mathrm{T}^{+}\right)$. In a recent work, in theJ ournal of Sound and Vibrations,Türkmen and Mecitoğlu [10] used a shock tube to generate dynamic shocks for experimental determination of pressurevalues for use on Finite Element models. In this work, the authors found a rather large negative phase result, however there was no method for determining this phase given in the work. The present researcher would hypothesize that the negative phase determined was of a
large portion due to the experimental setup of the shock tube and the wooden plate on which the pressure transducers were placed.

As explosives can vary in both composition and manner of destructive force, they are usually compared by the shattering effect of the sudden release of energy of each explosive (brisance) or their blast pressures. Thus, this work makes use of TNT as a reference explosive, with the adjustment to be made in altering the energy or weight of the explosive to match a desired, non-TNT explosive.

An incident, or side-on, blast wave is a blast wave that travels parallel to a surface. Thus, side-on pressure is the pressure on a surface parallel to the direction of the blast wave's direction of trave. This direction is assumed to be radial to the blast center. Reflected pressures are much higher and result when an incident wave impinges on any rigid reflecting surface at any angle not parallel to the direction of wave travel [5]. The relationship of angle vs. reflected pressure will be examined later in Section 3.2.1. The conceptual difference in these two different types of waves is shown in Figure 2.

Figure 1 An example of a canonical blast profile showing the positive phase and peak pressure of the blast after its time of arrival.

Figure 2 Comparison of (A) an incident blast wave of speed U traveling across a surface and (B) an incident blast wave traveling at speed U in normal reflection against a solid reflecting surface and leaving at speed U_{r}.

3.2 Blast Scaling

In blast analysis, there are many differing methods of scaling blast parameters. By scaling the parameters determined from experimental results of an explosion, the results are generalized and thus can be utilized for the simulation of blasts of varying energy or varying distances. Thetwo most common methods, and the ones used here, areH opkinson and Sachs blast scaling methods. These are described below.

3.2.1 Hopkinson Blast Scaling

Hopkinson blast scaling is based on cube root scaling and is referenced by Baker [1] as being formulated by Hopkinson in his 1915 paper. Essentially, Hopkinson put forth the idea that if you had two differing weights of the same explosive, say a one pound and a five pound charge of Composition B, and they were both detonated in similar atmospheric conditions, then at someidentical scaled distance, both charges producesimilar blast waves. Using this idea, he presented the idea of a dimensional scaled distance that will be used later in this work:

$$
\begin{equation*}
Z=\frac{R}{W^{\frac{1}{3}}} \text { or } Z=\frac{R}{E^{\frac{1}{3}}} \tag{6}
\end{equation*}
$$

where R is the distance (range) from the explosive blast center, W is the weight of the charge, and E is the energy of the charge. However, Baker [1] footnotes this explanation by noting that W is usually used only for a weight of standard explosives such as TNT, but energy E is a "much more physically realistic parameter." $[1]$ Thus, at somedistanceR from a blast, a transducer could detect a blast characteristic of some explosive of weight W , (or dimension d of a charge from which a weigh can be determined) with some peak pressure P, impulsel, time of duration T_{0}, and time of arrival T_{a}. Therefore, at some distance $k R$ one detects a blast of some peak pressure P , impulse kl , time of duration KT_{o}, and time of arrival $\mathrm{k} \mathrm{T}_{\mathrm{a}}$ for a blast characteristic of an explosive weight or dimension kd, as seen in Figure 3. Thus all distance and time factors arescaled by some factor k but the pressure and vel ocity remain unchanged at similarly analogous times. This also assumes that gravity and viscosity effects are negligible. [1]

Baker reports [1] that Kennedy in his 1946 work found that this scaling can be applied for varying distances if the geometry of the explosives being scaled is roughly similar. However, he notes that while the method is capable of being applied for varying distances, in some respects, the trends of reported scaled values have the same form, but can vary as much as a factor of two. Kingery found in his 1952 work that close agreement could be found between small charge blasts (one to eight pounds) and its larger 100 pound counterparts. Thus Kingery's paper as referenced by this work makes use of Hopkinson

Hopkinson Blast Scaling

Figure $\mathbf{3}$ Graphical sample representation of Hopkinson blast scaling where the effects of a blast at distance R for a charge of dimension d is equivalent to a factor, K, multiplied against the equivalent parameters for a blast of dimension Kd at a distance of KR.
scaling.

3.2.2 Sachs Blast Scaling

Sachs scaling was used by both Baker's Explosions in Air [1] and by the Army Materiel Commands Explosions in Air design manual [2]. Where Hopkinson scaling is based on the scaling of a blast in air conditions equivalent to thosefor the experimental test blast from which data was gathered, Sachs scaling was proposed in 1944 as a more general blast scaling law which is based on the blast parameters being unique functions of a scaled distance: [1]

$$
\begin{equation*}
\overline{\mathrm{R}}=\frac{\mathrm{Rp} \mathrm{p}_{\mathrm{o}}^{1 / 3}}{\mathrm{E}^{1 / 3}} \tag{7}
\end{equation*}
$$

where R is the distance (range), p_{o} is the ambient pressure, and E is the energy of the explosive charge. Thus Sachs scaling law states that pressure, time, impulse, and other parameters can be expressed as functions of this scaled distance, but assumes that air behaves as a perfect gas and assumes gravity and viscosity are negligible. [1]

Having been confirmed by many experimenters, Dewey and Sperazza's 1950 work involved the detonation of bare pentolite spheres in an altitude simulation chamber so as to vary temperature and pressure. In that work, Hopkinson scaling was shown to be consistent for varying distances but not for varying pressure. Therefore, each test at a different pressure produced a different impulse prediction. This was not true with Sachs scaling which produced excellent scaled results that were consistent for each change in blast distance and in pressure.

Thus, it could be shown that Hopkinson scaling is a special case of Sachs scaling (i.e., Sachs scaling reduces to Hopkinson scaling when there are no atmospheric changes between the explosive test data and the actual conditions of the desired explosive to which one is predicting for modeling or similar research). [1] Also, because of the perfect gas assumption, shock strengths must be low enough for a gaseous medium to behave as a perfect gas. Therefore, for some strong shock waves or for distances that are particularly close to the explosive, this law can no longer apply.

3.3 Air Blast and Hemispherical Surface Blast methods

Themethods reviewed below cover thedetermination of air blast parameters by the fitting of results to experimental data as presented by other researchers in differing design manuals.

3.4 Air Blast Parameters by Methods in Explosions in Air, both Baker and U.S. Army

Methods used in Explosions in Air, both the Army design manual [2] and Baker's book [1], make use of data compiled for Sachs scaling methods. Both the Expl osions in Air and Kingery methods make use of some form of Friedlander's Equation, in this case [1]:

$$
\begin{equation*}
p=P_{s}\left(1-\frac{\left(t-t_{a}\right)}{t_{s}}\right) e^{-b \frac{\left(t-t_{a}\right)}{t_{s}}} \tag{8}
\end{equation*}
$$

where P_{s} is the peak side-on overpressure, t_{a} is the time of arrival, t_{s} is the positive phase duration for the side-on overpressure, and b denotes the decay coefficient.

As theblast parameters arefunctions of the scaled distance, $\overline{\mathrm{R}}$, this parameter must be found first. The pertinent equation is:

$$
\begin{equation*}
\bar{R}=\frac{R p_{o}^{1 / 3}}{E^{1 / 3}} \tag{9}
\end{equation*}
$$

where the range is R, the ambient atmospheric pressure is p_{0}, and the energy of the blast is denoted by E . This energy of the blast may be found by multiplying the weight specific energy, E/ W, from Table 1 for the desired explosive by the weight of the charge.

Baker's and the Army's data are compiled from various sources for bare free air explosions of pentolite, and all parameters are presented for standard conditions. Baker references Shear and Day (1959) as the source for overpressure data for $\overline{\mathrm{P}}_{\mathrm{s}} \leq 3.5$ [1]:

$$
\begin{equation*}
\bar{u}_{s}^{2}=\frac{2 \overline{\mathrm{P}}_{\mathrm{s}}^{2}}{\gamma\left[(\gamma+1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma\right]} \tag{10}
\end{equation*}
$$

$$
\begin{gather*}
\bar{U}^{2}=1+\frac{\gamma+1}{2 \gamma} \overline{\mathrm{P}}_{\mathrm{s}} \tag{11}\\
\bar{\rho}_{\mathrm{s}}=\frac{(\gamma+1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma}{(\gamma-1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma} \tag{11}\\
\bar{\theta}_{\mathrm{s}}=1+\frac{(\gamma-1) \overline{\mathrm{P}}_{\mathrm{s}}}{\left.(\gamma+1) \overline{\mathrm{P}}_{\mathrm{s}}+2\right)} \tag{13}
\end{gather*}
$$

where \bar{P}_{s} is the scaled peak side on pressure, and $\gamma=1.4$, the ratio of specific heats. Baker continues by assuming that acoustic approximations hold for $\overline{\mathrm{P}}_{\mathrm{s}} \leq 10^{-3}$. The acoustic approximations are [1]:

$$
\begin{gather*}
\bar{P}_{s}=\frac{0.1153}{\bar{R}} \tag{14}\\
\bar{u}_{s}=\frac{\bar{P}_{s}}{\gamma}=\frac{0.0824}{\bar{R}} \tag{15}\\
\bar{\rho}_{s}=1+\frac{\bar{P}_{s}}{\gamma}=1+\frac{0.0824}{\bar{R}} \tag{16}\\
\bar{U}=1+\bar{P}_{s} \frac{\gamma+1}{4 \gamma}=1+\frac{0.0494}{\bar{R}} \tag{17}\\
\bar{\theta}_{s}=1+\bar{P}_{s} \frac{\gamma-1}{\gamma}=1+\frac{0.0330}{\bar{R}} \tag{18}
\end{gather*}
$$

The basic parameter necessary is the scaled peak side on over pressure $\overline{\mathrm{P}} \mathrm{S}_{\mathrm{s}}$. Baker combines the methods of Goodman (1960) and Lehto and Larson (1969) so as to take advantage of those ranges over which each researcher's method agrees with experimental data. Thus, over the range of $\overline{\mathrm{R}}=0.01423$ (at the surface of the explosive) to $\overline{\mathrm{R}}=1004$, Goodman's method is used by Baker, and for $\overline{\mathrm{R}}>1004$ the acoustic approximations in Equations (14) to (18) are used.

So, from $\bar{R}=0.01423$ to $\bar{R}=1.2$, Baker and the Army make use of the Hugoniot tables of Shear and Day (1959). For larger $\overline{\mathrm{R}}$, Equations (10) and (13) are used with $\gamma=1.4$, and
with peak dynamic pressure \bar{Q} determined from: [1]

$$
\begin{equation*}
\overline{\mathrm{Q}}=\frac{\gamma}{2} \bar{\rho}_{s} \bar{u}_{s}^{2} \tag{19}
\end{equation*}
$$

Both Baker and the U.S. Army manual then take scaled arrival time for the shock front from Goodman (1960). Thus, the compiled data can then be tabulated, and is presented in Tables 2 a and 2 b and in graphical form in Figure 4.

Table 1: Properties of Differing Explosives

Explosive	Specific Gravity	$\begin{aligned} & \text { Density, } \rho_{\mathrm{E}} \\ & \left(\mathrm{lb}_{\mathrm{m}} \mathrm{sec}^{2} / \mathrm{in}^{4}\right) \end{aligned}$	Weight Specific Energy, E / W $\left(\right.$ in- $^{-} \mathrm{b}_{\mathrm{f}} / \mathrm{lb}_{\mathrm{m}}$)	Volume Specific Energy, E/V $\text { (in- }-b_{f} / i^{3} \text {) }$	Radius, r, of 1-Ib sphere, inches
Pentolite (50/50)	1.66	1.551E-4	20.50E6	1.230 E 6	1.584
TNT	1.60	1.496E-4	18.13E6	1.048 E 6	1.604
RDX	1.65	1.542E-4	21.50E 6	1.283 E 6	1.588
Composition B	1.69	1.580E-4	20.80E 6	1.271 E 6	1.575
HBX-1	1.69	1.580E-4	15.42E6	0.944 E 6	1.575

Taken from Explosions in Air, U.S. Army M ateriel Command, 1975, Ch. 6, pp. 6-4.

Table 2a: N on-dimensional, Sachs Scaled, Shock-Front Air Blast Parameters for Incident (side-on) Blast waves. (0.01423
$\leq \bar{R} \leq 1.5$)

Scaled Range, R	Peak Side-on overpressure, \bar{P}_{s}	Time of Arrival, $\overline{\mathrm{T}}$	Side-on (specific) impulse, $\overline{\text { I }}$	Time of Duration, \bar{T}_{s}	Particle velocity, \bar{u}_{s}	Shock vel ocity, u	Density, ρ_{s}	Peak dynamic pressure, Q	Temp., ${ }^{\prime \prime} \theta_{\text {P }}$
0.01423	819	0	--	--	23.2	25.2	12.18	4570	39.9
0.016	703	7.16E-5	--	--	21.5	23.6	11.9	3850	36.7
0.018	605	1.66E-4	--	--	19.8	21.9	11.6	3240	34.7
0.02	531	2.58E-4	--	--	18.6	20.6	11.3	2760	33.1
0.03	324	8.05E-4	--	--	14.4	16.1	10.1	1450	26.0
0.04	225	1.48E-3	--	2.06E-2	12.0	13.5	9.28	935	21.1
0.05	170	2.27E-3	--	1.84E-2	10.4	11.7	8.88	670	17.7
0.08	90.5	$4.95 \mathrm{E}-3$	8.95E-2	1.75E-2	7.5	8.78	7.49	305	11.8
0.09	77.5	6.06E-3	8.24E-2	1.82E-2	6.9	7.8	7.25	245	10.7
0.1	67.9	7.62E-3	7.85E-2	1.91E-2	6.47	7.5	7.02	205	9.85
0.125	48.8	1.07E-2	7.5E-2	2.43E-2	5.38	6.27	6.36	127	7.85
0.15	37.2	$1.54 \mathrm{E}-2$	7.88E-2	3.41E-2	4.61	5.55	5.91	87.2	6.20
0.2	20.4	2.55E-2	0.106	8.85E-2	3.5	4.27	4.92	44.1	4.31
0.22	16.6	2.84E-2	0.108	0.126	3.13	3.78	4.55	34.4	3.44
0.24	13.4	3.29E-2	0.107	0.148	2.84	3.42	4.37	25	3.34
0.25	11.9	3.82E-2	0.103	0.157	2.69	3.33	4.20	20.8	3.21
0.3	7.28	5.41E-2	8.85E-2	0.171	1.95	2.66	3.59	9.45	2.48
0.4	3.46	9.90E-2	6.95E-2	0.158	1.25	2.00	2.66	2.79	1.68
0.5	2.05	0.157	5.7E-2	0.162	0.888	1.67	2.09	1.08	1.43
0.6	1.38	0.218	4.82E-2	0.181	0.672	1.48	1.81	0.570	1.30
0.8	0.772	0.340	3.71E-2	0.232	0.427	1.28	1.49	0.212	1.18
0.9	0.618	0.392	3.35E-2	0.254	. 363	1.21	1.39	. 144	1.16
1.0	0.506	0.466	3.02E-2	0.268	0.302	1.19	1.33	9.40E-2	1.12
1.5	0.254	0.830	$2.07 \mathrm{E}-2$	0.328	0.165	1.11	1.17	1.96E-2	1.07

Compiled from Baker, Explosions in Air with some values determined from large scale graphs in Baker.

Table 2b: N on-dimensional, Sachs Scaled, Shock-Front Air Blast Parameters for Incident (side-on) Blast waves.
($2.00 \leq \overline{\mathrm{R}} \leq 1000$)

Scaled Range, $\overline{\mathrm{R}}$	Peak Side-on overpressure, \bar{P}_{s}	$\begin{gathered} \text { Time of } \\ \text { Arrival, }, \bar{T}_{a} \end{gathered}$	Side-on (specific) impulse, \bar{I}_{s}	Time of Duration, \bar{T}_{s}	$\left[\begin{array}{c}\text { Particle } \\ \text { velocity, } \\ u_{s}\end{array}\right.$	$\begin{gathered} \text { Shock } \\ \text { velocity, ū } \end{gathered}$	$\begin{gathered} \hline \hline \text { Density, } \\ \bar{\rho}_{\mathrm{s}} \end{gathered}$	Peak dynamic pressure, $\overline{\mathrm{O}}$	Temp., $\bar{\theta}_{\text {s }}$
2.00	0.161	1.26	1.58E-2	0.362	0.107	1.0733	1.11	7.58E-3	1.0436
2.50	0.115	1.71	1.28E-2	0.39	7.97E-2	1.0481	1.0809	4.23E-3	1.0306
3.00	8.89E-2	2.20	1.08E-2	0.414	6.31E-2	1.0374	1.0628	2.70E-3	1.0247
4.00	6.16E-2	3.21	8.12E-3	0.445	$4.41 \mathrm{E}-2$	1.0257	1.0436	$1.37 \mathrm{E}-3$	1.0172
5.00	4.68E-2	4.21	6.56E-3	0.477	3.36E-2	1.0198	1.0332	8.20E-4	1.0134
6.00	3.74E-2	5.19	5.46E-3	0.495	2.68E-2	1.0159	1.0266	5.15E-4	1.0107
7.00	3.06E-2	5.84	4.67E-3	0.517	2.19E-2	1.0133	1.0223	3.67E-4	1.00895
8.00	2.61E-2	7.15	4.10E-3	0.532	1.90E-2	1.0111	1.0186	2.50E-4	1.00745
9.00	2.27E-2	7.64	3.62E-3	0.548	1.61E-2	1.00973	1.0162	1.98E-4	1.00650
10.0	1.98E-2	9.10	3.25E-3	0.564	$1.44 \mathrm{E}-2$	1.00850	1.0141	1.43E-4	1.00565
20.0	8.70E-3	18.9	1.58E-3	0.666	6.21E-3	1.00372	1.00620	2.76E-5	1.00248
30.0	5.43E-3	28.8	1.04E-3	0.737	$3.90 \mathrm{E}-3$	1.00232	1.00387	1.07E-5	1.00155
40.0	3.91E-3	38.9	7.64E-4	0.781	2.79E-3	1.00167	1.00279	5.52E-6	1.00112
50.0	3.04E-3	48.9	6.05E-4	0.825	2.17E-3	1.00130	1.00217	3.31E-6	1.000870
60.0	2.48E-3	58.8	4.98E-4	0.856	$1.77 \mathrm{E}-3$	1.00106	1.00177	2.19E-6	1.000709
80.0	1.81E-3	78.5	3.68E-4	0.916	$1.28 \mathrm{E}-3$	1.000618	1.00103	1.15E-6	1.000413
100	$1.41 \mathrm{E}-3$	98.5	2.93E-4	0.96	$1.00 \mathrm{E}-3$	1.000494	1.000824	6.95E-7	1.000330
250	5.17E-4	224	1.16E-4	1.16	3.79E-4	1.000775	1.000453	1.02E-7	1.000180
500	2.42E-4	499	5.75E-5	1.24	1.73E-4	1.0000988	1.000173	2.03E-8	1.0000660
1000	1.153E-4	1000	2.88E-5	1.25	8.20E-5	1.0000494	1.0000824	4.71E-9	1.0000330

Compiled from Baker, Expl osions in Air with some values determined from large scale graphs in Baker.

Figure 4 Graphical representation in Log-Log scale, of the side-on, Sachs scaled blast parameters as presented in Table2. Note that some parametric ranges of parameters have been scaled over a portion of the domain to fit the axes.

Making use of the condition that there is no velocity at a rigid reflecting surface, one can determine the parameters behind a shockwave that would be normally reflected [2].

For values of $\bar{P}_{r}<3.5$, the equations for a normally reflected shockwave in a perfect gas are [2]:

$$
\begin{gather*}
\overline{\mathrm{P}}_{\mathrm{r}}=2 \overline{\mathrm{P}}_{\mathrm{s}}+\frac{(\gamma+1) \overline{\mathrm{P}}_{\mathrm{s}}^{2}}{(\gamma-1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma} \tag{20}\\
\bar{\rho}_{\mathrm{r}}=\frac{\gamma\left(\overline{\mathrm{P}}_{\mathrm{s}}+1\right)\left[(\gamma+1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma\right]}{\left[(\gamma-1) \overline{\mathrm{P}}_{\mathrm{s}}+\gamma \|(\gamma-1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma\right]} \tag{21}\\
\bar{\theta}_{\mathrm{r}}=\frac{\left[(\gamma-1) \overline{\mathrm{P}}_{\mathrm{s}}+\gamma \|(3 \gamma-1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma\right]}{\gamma\left[(\gamma+1) \overline{\mathrm{P}}_{\mathrm{s}}+2 \gamma\right]} \tag{22}
\end{gather*}
$$

where again γ is the ratio of specific heats and $\overline{\mathrm{P}}_{\mathrm{s}}$ is the side-on pressure coefficient. The acoustic asymptotes for the above parameters are given by [2]:

$$
\begin{gather*}
\bar{P}_{r}=2 \bar{P}_{s}=\frac{0.2306}{\bar{R}} \tag{23}\\
\bar{\rho}_{r}=1+\frac{2 \bar{P}_{s}}{\gamma}=1+\frac{0.1648}{\bar{R}} \tag{24}\\
\bar{\theta}_{r}=1+\frac{2(\gamma-1) \bar{P}_{s}}{\gamma}=1+\frac{0.0660}{\bar{R}} \tag{25}
\end{gather*}
$$

The Army design manual goes on to tabulate shock front parameters based on J ack's data (1963) for $\overline{\mathrm{P}}_{\mathrm{r}}$ for high pressures, Shear and McCane's data (1960) for intermediate pressures, and Equations (23) to (25) for low pressures ($\overline{\mathrm{P}}_{\mathrm{r}}<3.5$). The compiled data for the reflected shock waves are listed in Table 3 and shown in Figure 5.

Table 3: Compiled Sachs Scaled Shock Front Parameters for Reflected Shock Waves

$\begin{aligned} & \text { Scaled } \\ & \text { distance, } \bar{R} \end{aligned}$	Peak reflected pressure, \bar{p}	$\begin{aligned} & \text { Time of } \\ & \text { duration, } \overline{\mathrm{T}}_{r} \end{aligned}$	Reflected (specific) Impulse -	Density, $\bar{\rho}_{\mathrm{r}}$	lemperature $\bar{\theta}_{r}$
0.0538	1840	--	--	--	--
0.07	1110	--	--	--	--
0.08	860	1.8E-2	1.86	37.8	20.7
0.09	699	1.98E-2	1.503	35.2	18.5
0.10	585	2.19E-2	1.27	33.2	16.8
0.125	397	2.67E-2	0.894	28.6	13.6
0.15	277	3.15E-2	0.667	24.4	12.1
0.20	146	4.25E-2	0.456	18.1	7.46
0.22	116	4.7E-2	0.408	16.1	6.41
0.24	91	5.2E-2	0.368	14.3	5.52
0.25	80.3	5.42E-2	0.355	13.5	5.15
0.30	37.7	6.84E-2	0.294	10.0	3.71
0.40	15.3	0.103	0.222	6.10	2.42
0.50	9.4	0.147	0.178	4.16	1.90
0.60	6.05	0.195	0.15	3.14	1.65
0.80	2.63	0.232	0.112	2.12	1.39
0.90	1.86	0.254	9.89E-2	1.86	1.32
1.00	1.31	0.268	8.85E-2	1.66	1.26
1.50	0.58	0.328	5.29E-2	1.32	1.13
2.00	0.358	0.362	3.77E-2	1.22	1.088
2.50	0.25	0.39	2.9E-2	1.16	1.0612
3.00	0.188	0.414	2.37E-2	1.12	1.0594
4.00	0.126	0.445	1.73E-2	1.087	1.0344
5.00	9.48E-2	0.477	1.37E-2	1.0664	1.0268
6.00	7.65E-2	0.495	1.12E-2	1.0532	1.0214
7.00	6.33E-2	0.517	9.49E-3	1.0457	1.0179
8.00	5.36E-2	0.532	8.40E-3	1.0392	1.0149
9.00	4.61E-2	0.548	7.31E-3	1.0334	1.0130
10.0	4.01E-2	0.564	6.58E-3	1.0282	1.0113
20.0	1.76E-2	0.666	3.20E-3	1.0124	1.00496
30.0	1.1E-2	0.737	2.08E-3	1.00774	1.00310
40.0	7.88E-3	0.781	1.54E-3	1.00558	1.00224
50.0	6.12E-3	0.825	1.22E-3	1.00434	1.00174
60.0	4.96E-3	0.856	9.96E-4	1.00354	1.00142
80.0	3.58E-3	0.916	7.39E-4	1.00206	1.000825
100	2.80E-3	0.96	5.86E-4	1.00165	1.000660
250	1.03E-3	1.16	2.33E-4	1.000898	1.000359
500	4.86E-4	1.24	1.15E-4	1.000330	1.000132
1000	2.31E-4	1.25	5,76E-5	1.000165	1.0000660

FromEngineering Design Handbook, Expl osions in Air. U.S. Army Materiel Command and from graphs found in Baker's Explosions in Air, 1973.

Figure5Graphical representation in Log-Log scale of the normally reflected, Sachs scaled blast parameters as presented in Table 3. Notethat some parametric ranges of parameters have been scaled over a portion of the domain to fit the axes.

Also shown in Tables 2a, 2b, and 3 are tabulated values of the specific impulse. Kingery's data from 1966, gathered from ground detonations and Goodman's data from 1960 were drawn upon by the Army and by Baker in the creation of the tables. Baker makes note of the acoustic asymptote for the specific side-on impulse, \bar{i}_{s} as:

$$
\begin{equation*}
\bar{I}_{s}=\frac{0.0288}{\bar{R}} \tag{26}
\end{equation*}
$$

where \bar{R} is the scaled blast distance for very large \bar{R}. For $\bar{R}<0.8$, Baker uses the data of Kingery (1966).

For the reflected specific impulse, J ack presented [1]:

$$
\begin{equation*}
\bar{i}_{r}=\bar{I}_{s} \frac{\bar{P}_{r}}{\bar{P}_{s}} \tag{27}
\end{equation*}
$$

where $\overline{\mathrm{P}}_{\mathrm{r}}$ is the reflected pressure parameter, $\overline{\mathrm{P}}_{\mathrm{s}}$ is the side-on pressure parameter, and $\overline{\mathrm{I}}_{\mathrm{s}}$ is the specific side-on impulse parameter and is considered valid for a $0.6 \leq \bar{R} \leq 100$. Beyond this range, the acoustic approximation may be used [2]:

$$
\begin{equation*}
\overline{\mathrm{I}}_{\mathrm{r}}=2 \overline{\mathrm{I}}_{s} \tag{28}
\end{equation*}
$$

Baker reports that the data for \bar{T}_{r} do not exist for $\overline{\mathrm{R}}>0.7$, but that Hoffman and Mills (1956) experiments suggested that the data for \bar{T}_{s} can be used instead. This procedure was used in this researcher's computer program BLAST.F.

The determination of the impulse can also be obtained by integrating the Friedlander's equation given in Equation (8) over the positive phase. The decay constant value can then be determined by iteratively solving for the constant, b, in the transcendental equation [1]:

$$
\begin{equation*}
\overline{\mathrm{I}}_{\mathrm{s}}=\frac{\overline{\mathrm{P}}_{\mathrm{s}} \overline{\mathrm{~T}}_{s}}{\mathrm{~b}}\left[1-\frac{\left(1-\mathrm{e}^{-\mathrm{b}}\right)}{\mathrm{b}}\right] \tag{29}
\end{equation*}
$$

where \bar{P}_{s} is the side-on pressure parameter, \bar{T}_{s} is the side-on positive phase duration parameter, and \bar{i}_{s} is the specific side-on impulse parameter. Similarly, the decay valuefor the reflected pressure case, b_{r}, can be found from:

$$
\begin{equation*}
\overline{\mathrm{I}}_{\mathrm{r}}=\frac{\overline{\mathrm{P}}_{\mathrm{r}} \overline{\mathrm{~T}}_{\mathrm{r}}}{\mathrm{~b}_{\mathrm{r}}}\left[1-\frac{\left(1-\mathrm{e}^{\left.-\mathrm{b}_{r}\right)}\right.}{\mathrm{b}_{\mathrm{r}}}\right] \tag{30}
\end{equation*}
$$

where $\overline{\mathrm{P}}_{\mathrm{r}}$ is the side-on pressure parameter, $\overline{\mathrm{T}}_{\mathrm{r}}$ is the side-on positive phase duration parameter, and \bar{i}_{r} is the specific side-on impulse parameter. Thedecay coefficients and the time constants used in their determination are presented in Table 4 for side-on decay coefficients and Table 5 for reflected decay coefficients. Both side-on decay values and reflected decay values are presented graphically in Figure 6. This researcher did not find compiled data for both of these parameters as the decay value b is typically given, but not b_{r}. Thus the compiled values for both is usefully compiled here, but calculated in the program BLAST.F for each specific case using the manner described above.

Once the data is in tabular or graphical form and $\overline{\mathrm{R}}$ has been determined, the appropriate values can be interpolated from the data tables. As the data and trends are typically presented in a Log-Log format, the interpolation routine used must take the logarithmic form into account. The computer program BLAST.F reads in these tabular forms of the data and converts it into Log-Log format for interpolation with splines. Linear interpolation has been used for quick estimates, but the graphical trend of the data should be checked as well as using a Log-Log form of the interpolation as it is easy to miss changes in data that occur between tabulated values. F or example, the original data tables from Baker and the Army did not contain any points between $\overline{\mathrm{R}}=0.1$ and $\overline{\mathrm{R}}=.15$ and this missing range would not show a local maximum in \bar{i}_{s} between these points. If used, this error would provide an incorrect decay coefficient. Thus, for the computer program, more points were gathered for areas where distinct changes in the plots of the data took place so that the program would more accurately interpolate parameters.

Conversion of the determined Sachs scaled parameters to their dimensionalized forms can then occur and they can then be used in the empirical form of Friedlander's Equations shown in Equation (8).

Table 4: Compiled Sachs Scaled Decay Time Constant, b, for Incident Shock Waves

Scaled distance, \bar{R}	Peak reflected pressure, \bar{p}	$\begin{aligned} & \text { IIme of } \\ & \text { duration, } \overline{\mathrm{T}}_{\mathrm{s}} \end{aligned}$	Reflected (specific) Impulse, $\overline{1}$	$\begin{gathered} \text { Decay } \\ \text { Constant, } \mathrm{b} \end{gathered}$
0.08	90.5	$4.95 \mathrm{E}-3$	8.95E-2	16.6
0.09	77.5	6.06E-3	8.24E-2	16.1
0.10	67.9	7.62E-3	7.85E-2	15.5
0.125	48.8	1.07E-2	7.5E-2	14.7
0.15	37.2	1.54E-2	7.88E-2	15.0
0.20	20.4	2.55E-2	0.106	16.0
0.22	16.6	2.84E-2	0.108	18.3
0.24	13.4	3.29E-2	0.107	17.5
0.25	11.9	3.82E-2	0.103	17.1
0.30	7.28	5.41E-2	8.85E-2	13.0
0.40	3.46	9.90E-2	6.95E-2	6.69
0.50	2.05	0.157	5.7E-2	4.56
0.60	1.38	0.218	4.82E-2	3.87
0.80	0.772	0.340	3.71E-2	3.48
0.90	0.618	0.392	3.35E-2	3.32
1.00	0.506	0.466	3.02E-2	3.11
1.50	0.254	0.830	2.07E-2	2.59
2.00	0.161	1.26	1.58E-2	2.20
2.50	0.115	1.71	1.28E-2	1.98
3.00	8.89E-2	2.20	1.08E-2	1.86
4.00	6.16E-2	3.21	8.12E-3	1.82
5.00	4.68E-2	4.21	6.56E-3	1.86
6.00	3.74E-2	5.19	5.46E-3	1.84
7.00	3.06E-2	5.84	4.67E-3	1.84
8.00	2.61E-2	7.15	4.10E-3	1.84
9.00	2.27E-2	7.64	3.62E-3	1.90
10.0	1.98E-2	9.10	3.25E-3	1.90
20.0	8.70E-3	18.9	1.58E-3	2.17
30.0	5.43E-3	28.8	1.04E-3	2.38
40.0	3.91E-3	38.9	7.64E-4	2.55
50.0	3.04E-3	48.9	6.05E-4	2.72
60.0	2.48E-3	58.8	4.98E-4	2.86
80.0	1.81E-3	78.5	3.68E-4	3.12
100	1.41E-3	98.5	2.93E-4	3.26
250	5.17E-4	224	1.16E-4	3.89
500	2.42E-4	499	5.75E-5	3.91
1000	1.153E-4	1000	2.88E-5	3.68

Decay constants are calculated by fixed point iteration of Equation (29).

Table 5: Compiled Sachs Scaled Decay Time Constant, b_{r}, for Reflected Shock Waves

$\begin{aligned} & \text { Scaled } \\ & \text { distance, } \overline{\mathrm{R}} \end{aligned}$	Peak reflected pressure, $\overline{\mathrm{P}}$	$\begin{aligned} & \text { IIme of } \\ & \text { duration, } \bar{T}_{r} \end{aligned}$	Reflected (specific) Impulse, I	$\begin{gathered} \text { Decay } \\ \text { Constant, } b_{r} \end{gathered}$
0.08	860	1.8E-2	1.86	7.16
0.09	699	$1.98 \mathrm{E}-2$	1.503	8.07
0.10	585	2.19E-2	1.27	8.96
0.125	397	2.67E-2	0.894	10.8
0.15	277	3.15E-2	0.667	12.0
0.20	146	4.25E-2	0.456	12.5
0.22	116	4.7E-2	0.408	12.3
0.24	91	5.2E-2	0.368	11.8
0.25	80.3	5.42E-2	0.355	11.2
0.30	37.7	6.84E-2	0.294	7.62
0.40	15.3	0.103	0.222	5.90
0.50	9.4	0.147	0.178	6.59
0.60	6.05	0.195	0.15	6.69
0.80	2.63	0.232	0.112	4.16
0.90	1.86	0.254	9.89E-2	3.43
1.00	1.31	0.268	8.85E-2	2.52
1.50	0.58	0.328	5.29E-2	2.09
2.00	0.358	0.362	3.77E-2	1.90
2.50	0.25	0.39	2.9E-2	1.81
3.00	0.188	0.414	2.37E-2	1.71
4.00	0.126	0.445	1.73E-2	1.66
5.00	9.48E-2	0.477	1.37E-2	1.73
6.00	7.65E-2	0.495	$1.12 \mathrm{E}-2$	1.83
7.00	6.33E-2	0.517	9.49E-3	1.91
8.00	5.36E-2	0.532	8.40E-3	1.85
9.00	4.61E-2	0.548	7.31E-3	1.92
10.0	4.01E-2	0.564	6.58E-3	1.90
20.0	1.76E-2	0.666	3.20E-3	2.17
30.0	1.1E-2	0.737	2.08E-3	2.44
40.0	7.88E-3	0.781	1.54E-3	2.55
50.0	6.12E-3	0.825	1.22E-3	2.72
60.0	4.96E-3	0.856	9.96E-4	2.86
80.0	3.58E-3	0.916	7.39E-4	3.05
100	2.80E-3	0.96	5.86E-4	3.22
250	1.03E-3	1.16	2.33E-4	3.81
500	4.86E-4	1.24	1.15E-4	3.93
1000	$2.31 \mathrm{E}-4$	1.25	5.76E-5	3.69

Reflected constants are calculated by fixed point iteration of Equation (30).

Figure 6 Graphical representation, on Log-Log axes, of the decay parameters for side-on and normal reflection, b and b_{r}, respectively, for usein theempirical Friedlander's equation.

3.5 Air Blast Parameters for Air and Surface Burst as found by Kingery and Bulmash

Kingery and Bulmash [3] gathered their data by detonating various charges from one kilogram to 400,000 kilograms. This data was then scaled using Hopkinson and Sachs scaling laws to standard atmospheric sea level conditions.

Measurement of shock arrival was recorded by various methods including photographic analysis, electric switches which close at blast arrival sothat there can bean electric time stamp, and al so by using overpressuretransducers. These values were scaled using the reciprocal of a distance scaling factor:

$$
\begin{equation*}
S_{d}=\left(\frac{Q_{2}}{Q_{1}}\right)^{\frac{1}{3}}\left(\frac{p_{0}}{\mathrm{p}_{\mathrm{a}}}\right)^{\frac{1}{3}} \tag{31}
\end{equation*}
$$

where S_{d} is the scaling factor, Q_{2} is the other explosive mass (in kilograms) being scaled to the reference weight of one kilogram Q_{1}, p_{0} is the standard atmospheric sea level pressure, and p_{a} is the ambient atmospheric pressure. And the times were also scaled using the reciprocal of a time scaling factor:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{t}}=\left(\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}\right)^{\frac{1}{3}}\left(\frac{\mathrm{p}_{\mathrm{a}}}{\mathrm{p}_{\mathrm{o}}}\right)^{\frac{1}{3}}\left(\frac{\mathrm{~T}_{\mathrm{o}}}{\mathrm{~T}_{\mathrm{a}}^{+273}}\right)^{\frac{1}{2}} \tag{32}
\end{equation*}
$$

where T_{0} is the standard atmospheric temperature $\left(288^{\circ} \mathrm{K}\right)$, and T_{a} is the ambient temperature in degrees Centigrade, Q_{2} is the other explosive mass (in kilograms) being scaled to the reference weight of one kilogram Q_{1}.

Measured values of peak overpressure were taken by direct transducer measurement of the shock wave and were al so inferred from the vel ocity of the shock front. The data were scaled to standard atmospheric pressures by using the reciprocal of a pressure scaling factor:

$$
\begin{equation*}
S_{p}=\frac{P_{a}}{P_{o}} \tag{33}
\end{equation*}
$$

where P_{a} is the ambient pressure, and P_{o} is the standard atmospheric pressure at sea level. And distances were scaled again by using the inverse of Equation (31).

Kingery and Bulmash measured the impulse as an area under the curve formed by the pressure profile. This made it a function of the overpressure, duration, and decay rate
of the blast. These impulses were scaled to one kilogram and one pound charge weights by using the reciprocal of an impulse blast scaling factor:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{i}}=\left(\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}\right)^{\frac{1}{3}}\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{a}}}\right)^{\frac{2}{3}}\left(\frac{\mathrm{~T}_{\mathrm{o}}}{\mathrm{~T}_{\mathrm{a}}^{+273}}\right)^{\frac{1}{2}} \tag{34}
\end{equation*}
$$

where again, Q_{2} is the other explosive mass (in kilograms) being scaled to the reference weight of one kilogram Q_{1}, p_{o} is the standard atmospheric sea level pressure, p_{a} is the ambient atmospheric pressure, T_{0} is the standard atmospheric temperature $\left(288^{\circ} \mathrm{K}\right)$, and T_{a} is the ambient temperature in degrees Centigrade. English units would be used in lieu of metric when scaling to pounds.

Positive durations from various sources werescaled by K ingery and Bulmash to one kilogram of charge mass by using the reciprocals of the distance scaling factor, in Equation (31), and the time scaling factor in Equation (32).

For the reflected pressure data, Kingery and Bulmash gathered data from other sources noting that the reflected pressure data is not usually measured directly and that their data presented was only from cases where blasts impinged upon a surface from the normal direction. They [3] note that the following relationship is used for calculating the peak reflected overpressure:

$$
\begin{equation*}
P_{r}=\left(P_{s}+p_{0}\right) \frac{\left(2+\frac{\gamma+1}{\gamma-1}\right)\left(\frac{P_{s}+p_{o}}{p_{o}}\right)-1}{\frac{\gamma+1}{\gamma-1}+\frac{P_{s}+p_{o}}{p_{o}}}-p_{o} \tag{35}
\end{equation*}
$$

where P_{s} is the peak side-on overpressure, p_{0} is the ambient pressure, and γ is the variable ratio of specific heats. Kingery and Bulmash state that γ is a function of peak overpressure and that this relationship can be found in graphical format in Kingery and Pannill's BRL report of 1964.

Their [3] tabulated data was then converted in a computer codeto equations within the Log-Log domain in the form of:

$$
\begin{equation*}
Y=C_{0}+C_{1} U+\ldots+C_{N}^{N} \tag{36}
\end{equation*}
$$

where:

$$
\begin{equation*}
U=K_{0}+K_{1} T \tag{37}
\end{equation*}
$$

and where Y is the common logarithm of the parameter under evaluation, T is the common
logarithm of the scaled distance, and N is the order of fit. Parameters C and K are calculated and will not be explicitly listed here, but can be found for English units in the computer program BLAST.F in Appendix I.

Upon completion of their tabulation of their [3] data, Kingery and Bulmash compared it to the results of other sources by graphically comparing the fits of their results to graphical representations of their source data and found that they had what they considered to be very favorable results.

Once the common log of a desired parameter has been determined, it is desirable to convert them to a dimensional form for use. For English units, pressures would be converted by taking an inverse common logarithm of the parameter to get pounds per square inch, and for times and impulses, the inverse common log must be multiplied against the cube root of the charge weight to get units of psi-milliseconds and milliseconds respectively. Once the parameters of peak overpressure, time of arrival, and time of duration have been determined, they can be used in a form of the Modified Friedlander's Equation: [5]:

$$
\begin{equation*}
p=P_{0}\left(1-\frac{\left(t-t_{a}\right)}{t_{s}}\right) e^{-\frac{\left(t-t_{a}\right)}{\theta}} \tag{38}
\end{equation*}
$$

where P_{0} is the peak overpressure, t_{a} is the time of arrival, and t_{s} is the positive phase duration. While the, decay coefficient, b , can be determined by fixed point iteration of Equation (29) again, they must be converted to a dimensional form in units of milliseconds: where b is the determined decay coefficient, P is the peak overpressure, t_{0} is the time of

$$
\begin{equation*}
\theta=\frac{t_{0}}{b-\frac{b^{2}-\frac{P_{o}}{l}\left(b+e^{-b}-1\right)}{2 b-\frac{P t_{0}}{1}\left(1-e^{-b}\right)}} \tag{39}
\end{equation*}
$$

duration for the positive phase, and I is the specific impulse.

3.6 Application to Hemispherical Surface Blasts

While K ingery and Bulmash present equations for thesimulation of hemispherical
surface blast, similar methods were not explicitly presented by Baker in his book or by the Army in their handbook. Thus, a third method was developed in consultation with other weapons effects specialists at General Dynamics Land Systems and with mentioned references in the Army manual and in Bulson. F or a perfect reflecting surface, the shock waves would be instantaneously "reinforced" by the reflecting waves as shown in a generic representation in Figure7. This would give the effect of twice the weight of the actual charge. Similar to representing sources or sinks by its mirror image, the ground would, in effect, be creating a mirror charge at its surface at the point of explosion. As the ground is not a perfect reflector, a ground reflectivity value greater than one but less than two would be appropriate. Thus, Bulson suggests that the number is close to 1.7 [7] and references the work of Reisler in 1966 as proof that the free air equations can be used with only the alteration of 1.7 W replacing W . Thus, the weight of the explosive would be multiplied by this ground reflectivity value and then the new weight would be used in the calculation of explosive blast profiles. Other specialists suggested a number closer to 1.8, and both Kingery and the Army Design Manual, Explosions in Air, makes use of a 1.8 ground reflectivity factor in converting other references data from hemispherical surface bursts to their equivalent freeair values. The default value used in the computer program is 1.7 , but the input file allows for the use of any value.

In this case, the tables and figures in the Army's Expl osions in Air and W.E. Baker's Explosions in Air, 1973 were used for the generation of blast profiles for a completely reflected ground blast. In this method, the equivalent TNT weight is multiplied by a ground reflectivity factor of 1.7 (i.e. 70% ground reflectivity). The new equivalent TNT is used at the same normal blast distance in the spline cal culated values of time of arrival (t_{a}), reflected time of duration $\left(\mathrm{t}_{\mathrm{r}}\right)$, reflected impulse $\left(\mathrm{I}_{\mathrm{r}}\right)$, and peak reflected overpressure $\left(\mathrm{p}_{0}\right)$. A new reflected value of the blast decay profile is calculated from the reflected impulse, overpressure, and time parameters and used in the M odified F riedlander's equation for the creation of the blast profiles. In this way the same routines used for free air explosions could be used for the calculation of hemispherical surface bursts.

It is interesting to note that Kingery and Bulmash conclude that the application of their parameters (and indeed, also the parameters determined in other methods) could be extended to the blast parameters of surface burst nuclear devices beyond a Hopkinson scaled distance of $2 \mathrm{ft} / \mathrm{lbm}^{1 / 3}$, if the assumption is made that one half of the charge weight goes into production of the parameters. Thus, the charge weight of a two kiloton tactical
nuclear device in ground burst could be modeled by modifying the ground reflectivity factor to 0.5 as its surface burst condition.[3]

Hemispherical Ground Burst

Figure 7 Depiction of a generic, hemispherical surface detonation of an explosive charge on a rigid, reflecting surface in which successive shock waves are reinforced.

3.7 Reflected Pressure vs. Angle of Incidence

An approximation for the area of normal reflection can be made by assuming that the limit of normal reflection will be within an area of a structure that lies within an unobstructed 45° angle of attack cone to the explosion. While this can be considered a simple rule of thumb that is easy toimplement for use in commercial FEM codes, a different method is presented in the Army's Engineering Design Handbook based on the work of Kingery and Panill. [2] For the calculation of this reflected pressure, the side-on pressure value is interpolated in Figure 8, then a coefficient is determined for the angle of incidence. This coefficient is then multiplied by that side-on pressure for the reflected pressure value on the surface. This figure is given, in a tabular format, to the program BLAST.F which has the option of correcting calculated blast pressures for angle of incidence.

Figure 8 Reflected pressure coefficient vs. angle of attack for incident waves that reflect from oblique surfaces. The number in the legend corresponding to each curve indicates the peak side-on overpressure, P_{s}, in pounds per square inch.

3.8 Limit of Regular Reflection

An approximation for the area of normal reflection can be made by assuming that the limit of normal reflection will be within an area of a structure that lies within an unobstructed 45° angle of attack cone to the explosion. While this can be considered a simple rule of thumb that is easy toimplement for use in commercial FEM codes, a different method is presented in the Army's Engineering Design Handbook based on the work of Kingery and Panill. [2]

As an example of how this is used, we will examine the case for which one of the later examples will be done, that of a quantity of TNT detonating 16 inches from a plate in hemispherical surface burst. The side-on overpressure can be determined at a point on the plate some distance from the blast. This side-on overpressure can then be used to interpolatethevalue of thecritical anglegiven in Table 6. Thus, a point can then beshown to beinside or outside of the area of normal reflectivity. Similarly, the general critical angle can be determined by interpolating with the slant distance, R , to the blast from a point or by interpolating with the height of the blast.

A canonical detonation is shown to demonstrate the parameters shown in Table 6.

Figure 9 A canonical detonation to demonstrate the different parameters tabulated in Table 6 for determining the critical angle for normal reflection.

Table 6: Limit of Regular Reflection $\alpha_{\text {extreme }}$ vs the shock strength.

$\xi\left(p_{d} P_{s}+P_{\mathrm{o}}\right)$	$\alpha_{\text {extreme }}$ $\alpha_{\text {ex }}$ deg	Peak Side-on Overpressure, P_{s} (psi)	STant Range, R (ft)	Height of Burst, H (ft)	Horizontal diatance, d (ft)
0.002	46.57	7335	0.1969	0.1353	0.1430
0.003	45.52	4885	0.2734	0.1915	0.1951
0.004	45.02	3660	0.3452	0.2440	0.2442
0.005	44.80	2925	0.4134	0.2933	0.2913
0.006	44.50	2435	0.4779	0.3408	0.3350
0.007	44.16	2085	0.5397	0.3871	0.3760
0.008	43.79	1822	0.5989	0.4323	0.4145
0.009	43.45	1618	0.6556	0.4759	0.4509
0.01	43.15	1455	0.7099	0.5179	0.4855
0.02	41.51	720.3	1.154	0.8642	0.7650
0.03	40.72	475.3	1.482	1.123	0.9674
0.04	40.32	352.8	1.745	1.330	1.129
0.05	40.04	279.3	1.968	1.507	1.266
0.06	39.83	230.3	2.165	1.662	1.386
0.07	39.67	195.3	2.340	1.801	1.494
0.08	39.56	169.0	2.502	1.929	1.594
0.09	39.48	148.6	2.653	2.048	1.687
0.1	39.42	132.3	2.795	2.159	1.775
0.15	39.26	83.30	3.414	2.643	2.160
0.2	39.32	58.80	3.955	3.059	2.506
0.25	39.53	44.10	4.462	3.441	2.840
0.3	39.88	34.30	4.960	3.806	3.180
0.35	40.34	27.30	5.467	4.167	3.539
0.4	40.93	22.05	5.997	4.530	3.929
0.45	41.65	17.96	6.567	4.906	4.365
0.5	42.52	14.70	7.158	5.275	4.838
0.55	43.55	12.02	7.914	5.735	5.453
0.6	44.77	9.800	8.731	6.198	6.150
0.65	46.22	7.915	9.734	6.734	7.029
0.7	47.97	6.300	10.99	7.363	8.169
0.75	50.09	4.900	12.69	8.146	9.740
0.8	52.73	3.675	15.16	9.179	12.06
0.85	56.15	2.594	19.16	10.67	15.92
0.9	60.82	1.633	27.13	13.22	23.69
0.95	68.02	.7736	50.88	19.03	47.18

Data compiled for 1lb. pentolite spheres. (F rom Explosions In Air, U.S. Army)

3.9 Program

The code written and used, BLAST.F, is a program written as in modular form to examine the two different methods for determining explosive blast pressure profiles. It is a user input file driven program in which all pertinent run parameters are put into the input file titled BLAST.INP. BLAST.INP requires the input of the charge weight in TNT, type of method desired (Kingery \& Bulmash or Explosions in Air), type of output desired (air blast or hemispherical surface burst/mine blast), time step controls, and the radial values (x and y coordinate pairs are converted to radial values) of the loading areas from the point normal to the blast center.

The program, written in FORTRAN 77, formerly made use of more dynamic data storage structures, but this was abandoned so as to allow more platform independence when it came to compiler choice. Time step controls and an epsilon value are specified in the input file to facilitate this independence, where the epsilon value is used in the fixed point iteration decay function.

After the reading of the user input file, the program selects the appropriate subroutine, one duplicating Kingery's method or one duplicating the method presented in Explosions in Air. Both subroutines first determine the correct blast parameters, then the blast profiles, these arestored in a subroutinepassablearray structure. These profiles, one for each loading area, are then output to the file BLAST.OUT, in English units. The structure of the program is presented in the flowchart in Figure 10.

The program has the option for making an adjustment of reflected pressure waves with varying angles of incidence, but does not determine if the areas given the program lie within the area for which normal reflection of blast waves occurs. BLAST.F makes use of the information in Figure 8 such that the blast pressures determined have not only a correction in the reflected pressure for varying incident angles of incidence, but the new decay coefficient is calculated accordingly to correspond to this new pressure.

3.9.1 Subroutine KINBUL

KINBUL, an abbreviation of KINgery and BULmash, makes use of Kingery and Bulmash's Log-Log curve fitting routines to TNT scaled explosive charges, as presented in
their April, 1984 paper. This routine makes use of a large number of arrays all containing the appropriate curve fitting values used in doing Kingery's Log-Log fitting. The arrays are initialized for spherical surface burst parameters and if the logical flag, mine (short for mine blast), informs the routine that air blast is desired, the routinethen resets the values as appropriate for the determination of spherical air blast.

First, the H opkinson scaled distance is determined and stored for each radial value. Then each appropriate parameter for the determination of the complete blast profile is calculated through the use of the predetermined Log-Log curves and stored in an appropriate array. The blast decay coefficient is first determined by the use of the fixed point iteration DECAY function using the epsilon value from the user input file, but the decay value is then converted to dimensionalized form by way of Equation (39). The individual arrays storing blast parameters for each loading area are then used by the Modified Friedlander's equation in Equation (38) to generatethefull blast profiles over the desired time lengths using the time step controls from the input file, BLAST.INP. The stored profiles are then passed to the output routine OUTFIL and output to BLAST.F.

3.9.2 Subroutine EIA

The EIA subroutine (an abbreviation of Explosions In Air) first reads in the input fileEIA.DAT, found in Appendix II, which contains the Sach's scaled parameters from both Baker's and the Army's Explosions in Air. This file contains the sideon and reflected parameters to be interpolated. These selected values can befound in tabular form in Tables $2 \mathrm{a}, 2 \mathrm{~b}, 3,4$, and 5, or graphical form in Figures 4, 5, and 6. These values are converted to their Logarithmic form for interpolation within the code to avoid the alteration of the interpolation routines to the Log-Log domain. EIA makes use of the spline routines XSPLINT and XSPLINE found in Numerical Recipes [9] to cubically extrapolatethe values necessary for the Explosions in Air routines. After reading in these converted Sach's scaled parameter values, the routine determines the first derivative of each paramter's curve at the end points, as this is required by the SPLINT routine. F or each parameter, SPLINT is called once which establishes the second derivatives needed in the SPLINE routine. Then for each parameter, the SPLINE routine is called, cubically interpolating or extrapolating a parameter. This parameter is stored, converted to dimensional form and
stored again. The non-dimensional form is used by the DECAY function with the epsilon value from BLAST.INP in the determination of the blast decay parameter, b. The dimensional form is used in the Empirical Friedlander's equation, Equation (8), to generate the blast profiles over the desired time periods using the BLAST.INP time step controls. As in KINBUL, the stored profiles are then passed to the output routine OUTFIL and stored in the outfile BLAST.F.

Figure 10 F lowchart showing the structure and process by which the explosive blast profile generation program BLAST.F (ver 2.3), written by the author, works during a typical run.

4.0 Results and Discussion

4.1 Comparison of Air Blast Pressure Profile Methods

The Explosions in Air method when compared to the method by Kingery and Bulmash produce results that are similar, as seen in Figure 11 for a spherical air burst of 25 pounds at 24 inches normal distance to a target. In this case, the reflected peak pressures are on a similar order of magnitude with over 14,300 psi peak overpressure for Kingery's method and over 13,700 psi for the methods in Explosions in Air. The difference lies not in the pressures, but mostly in the specific impulses delivered to the target. The Explosions in Air method results in a reflected specificimpulse of about 700.6 psi-msec and 1212 psi-msec for the methods by Kingery and Bulmash. Additionally, the Explosions in Air method has an arrival time in advance of Kingery and Bulmash. Unfortunately, as both of these methods are based on experimental data, without repeatedly detonating explosives, this researcher cannot determine which one is most likely to be correct on this point.

Figure 11 Comparison of reflected overpressures by the Explosionsin Air and Kingery and Bulmash methods for a 25 pound charge of TNT in a spherical air burst above a target at two feet blast normal distance.

4.2 Comparison of Hemispherical Surface Blast Pressure Profile Methods

The Explosions in Air method when compared to the method by Kingery and Bulmash produce results that are similar, as seen in Figure 12 for a hemispherical surface burst of five pounds charge at 16 inches normal distance to a target. In this case, the peak pressures are on a similar order of magnitude with over 13,300 psi peak overpressure for Kingery's method and over 15,550 psi and almost 15,000 psi for the methods in Explosions in Air for 1.8 and 1.7 ground reflectivity values, respectively. Also, the Explosions in Air method results in a specific impulse of about 577 psi-msec and 541 psi-msec for 1.8 and 1.7 ground reflectivity values respectively, and 958 psi-msec for the methods by Kingery and Bulmash.

Though a ground reflectivity value of 1.7 is closer to Kingery's method both Explosions in Air methods have a lower impulse and an early arrival time, just as with the spherical air burst. This arrival time disagreement can be reduced if the arrival time for an unmodified blast is used. That is, using the original amount of TNT before modification by a ground reflectivity factor. But that changes the arrival time to near 0.08 milliseconds, which is still earlier than Kingery's arrival time of near 0.09 milliseconds, so though an

Figure 12 Comparison of reflected overpressures by the Explosions in Air (for a ground reflectivity value of 1.7 and 1.8) and Kingery and Bulmash methods for a five pound charge of TNT in a spherical air burst above a target at sixteen inches blast normal distance.
improvement that would allow closer agreement, it really doesn't seem like that much of an improvement. This raises the question of why are there differences in two seemingly accepted methods. Goodman, Baker, and Bulson make a point of the fact that due to conditions, differing materials, differing instruments, and other things, that it is hard to get two explosions by differing researchers to agree. Both Explosions in Air and Kingery and Bulmash make use of research data from others, and Kingery notes that various parameters have been measured in different ways [3]. Thus, though the pressures are close, the impulses differ by a lot. This could be attributed to differing values for the length of duration of a blast as well as a changein theway that the decay values were determined, thus differing impulses.

4.3 Example and Comparison of Time Varying Pressure Distribution of Blast Pressure Across a Plate: 201b of TNT at 24 inches Normal Blast Distance

BLAST.F was used todemonstratethepressuredistribution and comparision of the time varying pressure across a plate due to a 20 pound charge of TNT 24 inches from the plate. Figure 13 show six timesteps of a pressure distribution across a plate. In this Figure, one can see the way in which a pressure wave translates across the plate. This Figureal so compares theblasts calculated with the Kingery \& Bulmash methods both with and without the adjustment for angle of incidence of theblast waves ("Angle" and "Normal," in the Figure, respectively).

Figure 13 A family of curves over six time steps showing the time varying overpressure across the surface of a plate. The pressure curves compare the results of normal reflection and adjustment for angle of incidence for 20 lbs of TNT at 24 inches cal culated by themethods found in Kingery \& Bulmash.

4.4 Example Semi-Hemispherical Ground Blast: a 5lb TNT mine

In order to demonstrate the usefulness of the program and how the method works, a test case was done. This test case was an assumed five pound charge of TNT in hemispherical ground blast against a plate. No adjustment was made for angle of attack as was explained above where the reflected pressure is adjusted for the incident angle of the blast wave to render the test conservative. The area covered was set to be the area within an area with an angle of incidence to the blast at 45 degrees. These models were analyzed with NASTRAN using non-linear analysis with double strain hardening curves for the material, that is, the stress strain curve was represented by twolinear segments for the elastic and plastic regions of the material.

In order to show a convergence of the tests, blasts were done for four by four, eight by eight, 16 by 16, and 32 by 32 quadrilateral elements in a quarter plate analysis for a simulated 60 by 60 inch plate of fixed boundary conditions. The plate was made of aluminum 2519 and set for a thickness of one inch, simulating an unstiffened floor of a lightly armoured vehicle. The blast normal distance was 16 inches as this distance is the U.S. Army's minimum ground clearance distance for combat vehicles.

For the four by four quarter plate, the blast was done for three different loading areas, and four of the elements were loaded for blasts of radial distances of six, 12,and 16 inches. These loading areas are shown in Figure 14.

The equivalent stresses from NASTRAN for the 16 element quarter plate are plotted in Figures 15 to 23. Theseplots areall on deformed displacement geometry that has been scaled to 10% of the model dimensions. By keeping the fringe scale the same through the plots, it is possible to observe the stress waves traveling across the material from the
point of blast application

Figure 14 Display of the four by four quadrilateral element quarter plate of fixed boundary conditions, with the three col ors denoting the loading areas for six, 12, and 16 inch radial distances from the blast center at the lower left corner.

Figure 15 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.0004 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 16 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.0024 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 17 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.0052 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 18 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0072 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 19 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at thelower left corner at time $=0.01$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 20 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0136 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 21 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0152 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 22 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 23 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 16 elements subjected to a five pound charge in hemispherical ground detonation at thelower left corner at time $=0.02$ seconds. Displacements have been scaled to 10% of the model dimensions.

For the eight by eight element quarter plate, the blast was done for four different loading areas, and thirteen elements of the elements were loaded for blasts of radial distances of six, 12, and 16 inches. These loading areas are shown in Figure 24.

The equivalent stresses from NASTRAN for the 64 element quarter plate are plotted in Figures 25 to 33. Theseplots areall on deformed displacement geometry that has been scaled to 10% of the model dimensions. By keeping the fringe scale the same through the plots, it is possible to observe the stress waves traveling across the material from the point of blast application.

Figure 24 Display of the eight by eight quadrilateral element quarter plate of fixed boundary conditions, showing thefour loading areas for six, 12, and 16 inch radial distances from the blast center at the lower left corner.

Figure 25 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0004 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 26 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.0024 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 27 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0052 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 28 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.0072 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 29 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at thelower left corner at time $=0.01$ seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 30 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.0136 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 31 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0152 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 32 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 33 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 64 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=0.02$ seconds. Displacements have been scaled to 10% of the model dimensions.

For the 16 by 16 quarter plate, the blast was done for eight different loading areas, and the appropriate elements were loaded for blasts of radial distances of one, three, five, seven, nine, 11, 13, and 15 inches from the point under the center of the blast. These loading areas are shown in Figure 34.

Figure 34 Display of the 16 by 16 quadrilateral element quarter plate of fixed boundary conditions, showing the loading areas for one, three, five, seven, nine, 11, 13, and 15 inch radial distances from the blast center at the lower left corner.

The equivalent stresses from NASTRAN for the 256 element quarter plate are plotted in Figures 35 to 43 . These plots areall on deformed displacement geometry that has been scaled to 10% of the model dimensions. By keeping the fringe scale the same through the plots, it is possible to observe the stress waves traveling across the material from the point of blast application. It is at this point wherethis researcher thinks the most accurate results due to increased resolution begin in the selection of the mesh. In Figure 35, right after the application of the blast loads, it can be seen here, and later in the 32 by 32 element case, that this initial application of the blast causes dramatic deformation in theimmediate area of the blast while being rapid enough that the stress waves have not yet begun to travel out from the center of the plate, thus the rest of the plate remains stress free.

Through out the time spans, the stress waves can be seen to be traveling across the plate, and with very little exception, the points of greatest stress are seen to be the corners of the quarter plate that are on the lines of symmetry, while the least stress can be found at the corner formed by the two edges of fixed boundary conditions (upper right).

Figure 35 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0002 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 36 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0024 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 37 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.005 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 38 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0074 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 39 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.01 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 40 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0136 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 41 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.015 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 42 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 43 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 256 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.02 seconds. Displacements have been scaled to 10% of the model dimensions.

For the 32 by 32 quarter plate, the blast was done for eight different loading areas, and the appropriate elements were loaded for blasts of radial distances of one, three, five, seven, nine, 11, 13, and 15 inches. These loading areas are shown in Figure 44, though the element numbers are not shown for clarity. The blast center is at the lower left corner.

Figure 44 Display of the 32 by 32 quadrilateral element quarter plate of fixed boundary conditions, showing the loading areas for one, three, five, seven, nine, 11, 13, and15 inch radial distances from the blast center at the lower left corner. Element numbers are not shown.

The equivalent stresses from NASTRAN for the 1024 element quarter plate are plotted in Figures 45 to 53 . These plots areall on deformed displacement geometry that has been scal ed to 10% of the model dimensions. By keeping the fringe scale the same through the plots, it is possible to observe the stress waves traveling across the material from the point of blast application. This example was done to obtain better resolution of the effects of the blast seen in the 256 element quarter plate, but al so to check the convergence of the 16 by 16 element mesh. While obvious advantages in increased accuracy can be obtained with 32 by 32 element size, for this model, it corresponds to less than one inch square per element, for a different model, this could become compuationally expensive to implement
with such a small element, thus a larger element for roughly the same results would be desired.

Again, it can be seen that great deformation occurs as the blast strikes the plate, but that the effect is so rapid that stresses have not formed far beyond the area being loaded. This model showed similar deflections and stresses, but the resolution provided a much clearer picture of the behaviour of the plate. As a design tool, this would be very hel pful, however, computationally limiting for large models. The vibration of the plate is interesting to observe and compare over the increasing resol ution of themesh as the coarse mesh does not show therotation and deformation of themodel under load as well as thefine model does, especially near time $=0.0136$ seconds.

Figure 45 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.00032 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 46 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.00224 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 47 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.00512 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 48 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.00736 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 49 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.01024 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 50 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.01344 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 51 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time $=$ 0.01504 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 52 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.0176 seconds. Displacements have been scaled to 10% of the model dimensions.

Figure 53 Equivalent stress plots on a deformed representation of an Aluminum 2519, 30 inch by 30 inch quarter plate of fixed boundary conditions with 1024 elements subjected to a five pound charge in hemispherical ground detonation at the lower left corner at time = 0.02 seconds. Displacements have been scaled to 10% of the model dimensions.

As can be seen in Figure 54, the displacements of the plate converged rapidly for the model, even with the refinement of both the blast loading areas and the mesh itself. The displacements for the center point under the immediate area of blast loading are plotted. Not only does the displacements converge rapidly, but they can almost be approximated as being a decaying oscillation.

As any finite element model cannot beconsidered tobeconverged for displacements alone, the stresses are shown in Figure 55 for the corner elements under load. As this corner element decreases in area by a factor of four with each refinement of the mesh, the point for which the stress is being analyzed changes too, as that point lies at the center of the element, with that center point "moving" towards the corner point by half the distance with each mesh refinement. This trend, similarly, can be seen to almost halve with the refinement of themesh first from 16 (four by four) elements, to 64 (eight by eight) elements, then to 256 (16 by 16) elements. The stress plotted for the 1024 (32 by 32) element case is not the stress at the center of the corner element. Instead, the stress for the four corner elements was averaged to determine the average stress at what was formerly the center of the corner element of the 256 element case. This enabled a more direct comparison of the stresses and showed that though the exact values of the stresses had not converged, they were of a closer order of magnitude and showed the same trends.

Figure 54 Plot of the vertical displacement for the corner of the quarter plate subjected to the five pound surface blast showing gradual convergence with the increase in the number of elements.

Figure 55 Plot of the equivalent stress for the center point of the element near the corner of the quarter plate subjected to the five pound surface blast showing gradual convergence with the increase in the number of elements.

4.5 Example of an Arbitrary Aircraft Wing: 201b TNT charge at 6 ft .

Using NASTRAN, the model of the NASA's Aeroelastic Research Wing-2 (ARW-2) was modified to represent a more generic, full sized aircraft wing. The ARW- 2 model has a leading edge sweep of 28.8 degrees and an aspect ratio of 10.8 . The mesh of the ARW-2 wing model consists of an 11×13 mesh of 312 nodes. There are 952 elements including 56 two-dimensional stiffener elements with theremaining 896 elements being triangular three noded shell elements including elements comprising the ribs and spars of the wing model. An isotropic material was selected for application of the loads [11].

To do this scaling, the geometric coordinates of the ARW-2 wing werechanged from units of inches to units of feet. This provided a larger wing with which to work while not modifying the properties of the wing itself, essentially providing a wing 12 times larger than the original model. This model can be seen in a captured image from PATRAN in Figure 56. This wing was then further modified by adjusting the material properties to feet. The material selected was aluminum 7075-T6, a common aircraft material. This was input into the NASTRAN input deck as a two linear segment elastic (until yield stress) and plastic (until ultimate stress) stress-strain curvewhich provided themodel with non-linear properties. Thus, a non-linear dynamic response analysis was run.

To provide the blast loads, BLAST.F was used to generate the angle of incident adjusted curves from the Kingery and Bulmash calculation routine for 20 lbs of TNT at a six foot normal distance. This was done for four loading areas seen in Figure 57. The 20 pound charge was an arbitrarily chosen value based on warhead sizes of common air-to-air missile threats [7] [8].

For simplification of the model, and also because this is a demonstration of the method and this model is not a design tool, the wing body joint was replaced with fixed boundary conditions along the length of the wing root edge of the finite element model. The runtime for this model was limited to a short time beyond the time of blast load application due to file size constraints on the system running NASTRAN. Figures 58 to 65 have the stresses plotted on the deformed model. The deformed model is not scaled in any way and shows the correct, unaltered deformations. After Figure 61, the scale of the fringe plot was changed to a higher maximum, there by allowing better stress resolution for the earlier time steps. The runs used approximately 10 hours of CPU time per run
including several aborted runs, though the limiting factor seemed to be not thequeue's run time limits, but the storage space allowed for the scratch files used by NASTRAN in conducting the runs. This limitation was solved by using an Aerospace Department computer account with a much larger storage space allocation. The number of elements and the load application changed not only the run time, but also the necessary storage space.

Figure 56 Three-dimensional view of the ARW-2 wing model to which blast loads were applied. The boundary conditions at the wing root were fixed during analysis.

Figure 57 View of the underside of the hypothetical wing model showing blast load application areas.

Figure 58 The hypothetical wing model at time $=0.0012$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have not traveled far beyond the loading area.

Figure 59 The hypothetical wing model at time $=0.0048$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. Stresses have begun building up at the control surfaces where the wing thickness is least.

Figure 60 The hypothetical wing model at time $=0.0076$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have begun traveling the length of the wing while highest stresses can still be found at the control surfaces.

Figure 61 The hypothetical wing model at time $=0.01$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. Stresses have traveled the length of the wing model.

Figure 62 The hypothetical wing model at time $=0.0124$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing. This and subsequent Figures of the ARW-2 wing have a different scale for the stress fringe plot.

Figure 63 The hypothetical wing model at time $=0.0148$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing and deflection of the wing can now be seen easily.

Figure 64 The hypothetical wing model at time $=0.0176$ seconds subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing and are prevalent in the loading area and control surfaces. The formerly loaded areas of the wing can be seen to have deflected.

Figure 65 The hypothetical wing model at the final time step of the run, time $=0.02$ seconds, subjected to a 20 pound TNT blast at six feet (72 inches) blast normal distance. The stress waves have traveled the length of the wing and deflection of the wing can now be seen easily in the loading area, with stress concentration in the control surface area near the loading area.

5.0 Conclusions

Blast profiles and twomethods of blast scaling were covered. Kingery and Bulmash as well as both Baker's and the U.S. Army's Explosions in Air methods of determining pressure profiles were likewise reviewed for use in the creation of an automated design tool to aid engineers or analysts in the study of structures subjected to blast pressures. Flexibility of this tool provided increased resolution and calculation of blast parameters not found in the tabulated data in the sources reviewed, providing other researchers another resource. Ground reflection and reflected pressures duetovarying angles of incidencewere also reviewed as a matter of course in this work.

The program created for use as a design tool works well with commercial codes and lends itselftowards modular integration with other programs. It provides a user flexibility with two differing methods of determining the pressure profiles of explosive air blast. These two methods may exist due to the differing ways of analysis and equipment used in the compilation of blast parameters which, while similar, produce profiles of differing impulses and differing arrival times which this researcher cannot resolve without the use of explosives (and its accompanying training in their safe use) and an experimental facility to handle that type of study. These two methods have been successfully integrated into a single program that can conservatively model the effects of spherical air blast and hemispherical surface burst, can later be expanded to include alteration of the peak reflected pressure with changes in the angle of incidence.

This tool was used with a commercial code (NASTRAN) in a demonstration of method on a 30 by 30 inch aluminum 2519 quarter plate in hemispherical ground burst and showed good convergence with 256 elements for deflection and good agreement in equivalent stresses of a point near the blast between the 256 and 1024 element examples.

The method was also used to demonstrate blast response of wings and to validate the versatility of the code by applying a blast load to an aeroel astic wing model.

Using this loading, one can observe stresses and oscillations in structures struck by dynamic loadings, in this case, explosive blast loads. While it was observed that a limitation of this method is that a structure, without enough mass, will deform rapidly and massively under extreme loadings resulting in diverging FEM solutions, it al so shows that it can simulate the massive damage associated with this type of blast source.

Due to the modular nature of the code, it can be incorporated into a different program to facilitate the creation of loaded FEM models. In future work, this program could be expanded to account for non-normal reflection. Future studies with this tool should include the application of blasts to points not symmetrical in the geometry of the target to observe blast reaction and migration of stress waves, as well as the application to composite structures subjected to an explosive blasts high impulse loading.

Appendix I


```
C
C234567***********************************************************************
C$ NOEXTENSIONS NOWARNINGS
    PROGRAM BLAST
C=========================MAIN PROCEDURE==============================
C cnwpYN (KinBUL Y/N) is a logical for determining the use of ETC or
C KINBUL profiles. etcYN (ETC Y/N) is a logical for determining if
C the program should duplicate ETC's results or what is probably the
C correct way of using the Explosions In Air Chapter 6 Data tables.
    LOGICAL cnwpYN, etcYN, mine, radial, reflYN, dbugYN, aoaYN
    INTEGER nmax, numR, Nsteps
    PARAMETER (nmax=64)
    REAL TNT, xy(nmax,2), r(nmax), Gref, alpha(nmax)
    DOUBLE PRECISION deltaT, epsiln
    PRINT *, 'Air Blast Pressure Profile Generation Program v2.3'
    PRINT *, 'by J.M.K. Chock, March 2, 1999'
C Get the (x,y) or R values for use in the program, including
C determining to use EIA or KINBUL blast profiles. The amount of TNT,
C ground reflectivity, normal to distance to blast, and equivalent TNT
C factor are input in this file. The ( }x,y\mathrm{ ) pairs are radial distances
C on the surface of the plate, and will be converted to radial distances
C from the blast center.
    CALL RdFile (nmax, r, xy, NumR, TNT, cnwpYN, etcYN, mine, radial
    |, Gref, reflYN, Nsteps, DeltaT, epsiln, alpha, dbugYN, aoaYN)
C Calculate the Blast Profiles
    CALL Clcbls (nmax, r, xy, NumR, TNT, cnwpYN, etcYN, mine, radial
        |, Gref, reflYN, Nsteps, DeltaT, epsiln, alpha, dbugYN, aoaYN)
            PRINT *, 'Done.'
        STOP
        END
C===============================FUNCTIONS=================================== C
    FUNCTION FRIED (p,t,ta,ts,b)
C PRE: Blast profile parameters have been calculated and handed to
C
    the function
```

```
C POST: The pressure at a time, t, is calculated for the positive
C phase
C ACTION: Friedlander's Equation as a function is used
    REAL FRIED, p, t, ta, ts, b
                FRIED=p*(1-(t-ta)/ts)*EXP(-b*(t-ta)/ts)
    RETURN
    END
```



```
    FUNCTION MFRIED (p,t,ta,to,b)
C PRE: Blast profile parameters have been calculated and handed to
C the function
C POST: The pressure at a time, t, is calculated for the positive
C phase
C ACTION: Modified Friedlander's Equation as a function is used
    REAL MFRIED, p, t, ta, to, b
        MFRIED=p*(1-(t-ta)/to)*EXP(-(t-ta)/b)
    RETURN
    END
```



```
    FUNCTION Cintrp (x, x0, x1, x2, x3, y0, y1, y2, y3)
C PRE: The x and y values are input
C POST: An interpolated/extrapolated value of }y(x)\mathrm{ is stored in
C the Cintrp variable by cubic interpolation
C ACTION: A function for cubic interpolation/extrapolation is used
    REAL Cintrp, x, x0, x1, x2, x3, y0, y1, y2
            Cintrp=y0+(y1-y0)/(x1-x0)* (x-x0)+((y2-y1)/(x2-x1)-(y1-y0)/(x1-
    |x0) )/(x2-x0)* (x-x0)*(x-x1)+(x0**2* (x1* (y2-y3)+x2* (y3-y1)+x3* (y1-y2
    |)) -x0*(x1**2* (y2-y3)+x2**2* (y3-y1)+x3**2* (y1-y2))+x1**2* (x2* (y0-y3
    |)+x3*(y2-y0))-x1*(x2**2* (y0-y3)+x\mp@subsup{3}{}{**}\mp@subsup{2}{}{*}(y2-y0))+x\mp@subsup{2}{}{*}x\mp@subsup{3}{}{*}(x2-x3)*(y0-
    |y1))/((x0-x1)* (x0-x2)* (x0-x3)* (x1-x2)* (x1-x3)* (x2-x3) )* (x-x0)* (x-
    |x1)*(x-x2)
    RETURN
    END
C===============================PROCEDURES================================== C
SUBROUTINE Clcbls (nmax, \(r, x y, N u m R, ~ T N T, ~ c n w p Y N, ~ e t c Y N, ~ m i n e, ~\) |radial, Gref, reflYN, Nsteps, deltaT, epsiln, alpha, dbugYN,
```

|aoaYN)
C PRE: all control variables from input are created and input
C POST: The blast loads and histories have been calculated and output
C ACTION: The blast loads are calculated by the appropriate procedure
C as selected in the input.
LOGICAL cnwpYn, etcYn, mine, radial, reflyn, dbugYn, aoaYN
INTEGER nmax, numR, Nsteps
REAL TNT, xy(nmax,2), r(nmax), Bprofl(0:(128+3),2,64)
REAL Gref, alpha(nmax), PvsA(0:38,0:20)
DOUBLE PRECISION deltaT, epsiln

C Call appropriate subroutines for desired calculation methods IF (cnwpYN) THEN

CALL KINBUL(nmax, r, NumR, TNT, Nsteps, deltaT, Bprofl, |mine, reflyn, epsiln, alpha, dbugYn, aoaYn, PvsA)

ELSE
CALL EIA(nmax, r, NumR, TNT, etcYN, Nsteps, deltaT, Bprofl, |mine, Gref, reflYN, epsiln, alpha, dbugYN, aoaYN, PvsA)

END IF

C Output the blast profiles
CALL Outfil (Bprofl, Nsteps, NumR, XY, Radial, nmax)

RETURN
END

SUBROUTINE RdFile (nmax, r, xy, NumR, TNT, cnwpYn, etcYN, mine, |radial, Gref, reflYN, Nsteps, deltaT, epsiln, alpha, dbugYn, |aoaYN)
C PRE: all variables are empty
C POST: The selection of program options and input is complete as is
C the array of selected values (of radial distances from blast
C center) for use in the program
C ACTION: The values are input from an infile MINEBLST.INP
LOGICAL cnwpYN, etcYN, mine, radial, reflYN, dbugYN, aoaYN
INTEGER isel, NumR, nmax, Nsteps
REAL rsel, TNT, bndist, $r(n \max), x y(n m a x, 2)$, rval
REAL Gref, alpha(nmax)
DOUBLE PRECISION deltaT, epsiln, Pi

```
C Have computer calculate a value of pi and store it
    Pi = 4.*DATAN(DBLE(1.))
C To store the (x,y) or radial values, it will be stored in xy, where
C xy(I,1) is x and xy(I,2) is y. R values will be stored in xy(I,1) if
C only r values are given.
            DO 100 I = 1, nmax, 1
                xy(I,1) = 0.
                xy(I,2) = 0.
            OPEN (unit=12, FILE='blast.inp')
C determine selection, KINBUL or EIA w/ground reflection.
C cnwpYN etcYN
C KINBUL .TRUE. .FALSE.
C EIA ch. 6 w/ground .FALSE. .FALSE.
            cnwpYN = .FALSE.
            etcYN = .FALSE.
            READ (12,110) isel
110 FORMAT (1I19)
            IF (isel .EQ. 1) cnwpYN = .TRUE.
            IF (isel .EQ. 2) etcYN = .TRUE.
C read blast normal distance
            READ (12, 120) bndist
120 FORMAT (1F19.2)
C read pounds of TNT
    READ (12,120) TNT
C read equivalent factor and convert TNT
    READ (12,120) rsel
    TNT = rsel*TNT
C read ground reflectivity and convert if necessary for EIA ch. 6
    READ (12,120) Gref
    C used before modification to EIA/CH6 for time of arrival adjustment
    C IF ((.NOT. cnwpYN) .AND. (.NOT. etcYN)) TNT = rsel*TNT
    C read the number of time steps, Nsteps
        READ (12,110) Nsteps
```

C read the length of the time steps, deltaT
READ $(12,130)$ deltaT
130
FORMAT (1D19.10)
C read the minimum epsilon for the decay function
READ $(12,130)$ epsiln

C read if mine or airblast calculation is desired
read $(12,110)$ isel
mine $=$. FALSE.
IF (isel .EQ. 1) mine = . TRUE.

C Read if step-by-step debugging output is desired from the calculation
C routines
read $(12,110)$ isel
dbugYN $=$. FALSE.
IF (isel .EQ. 1) dbugYN = .TRUE.

C Read if adjustment in reflected pressure for angle of incidence is to
C be made in the calculations
C routines
read $(12,110)$ isel
aoaYN = .FALSE.
IF (isel .EQ. 1) aoaYN = .TRUE.

C Read if normally reflected values are desired. This will only be
C used if the air blast function is used. All mine calculations will be
C done with normally reflected blast values.
read $(12,110)$ isel
reflyN = .FALSE.
IF (isel .EQ. 1) reflYN = .TRUE.

C read if radial or (x, y) values are given in listing
READ (12, 110) isel
radial $=$.FALSE.
IF (isel .EQ. 1) radial = .TRUE.
C read the number of values given in the list
READ (12, 110) NumR
C allow for blank/skipped line:
Read (12,*)

C read the list and make appropriate radial values from blast center
C in array for use in program. This assumes the (x, y) pairs are in the
C same plane as the object being struck by the blast.
DO 150 I = 1, NumR, 1
IF (radial) THEN
READ $(12,120)$ xy ($I, 1$) rval $=x y(I, 1)$
C
ELSE
READ $(12,140) \quad x y(I, 1), x y(I, 2)$

END IF
$r(I)=\left(r v a l * * 2+\text { bndist }^{* *} 2\right)^{* *} 0.5$
alpha(I) $=\operatorname{ATAN}(r v a l / b n d i s t) * 180 . / P i$
IF (cnwpYN) $r(I)=r(I) / 12$.
C PRINT *, r(I)
150 continue
CLOSE (12)

RETURN
END

SUBROUTINE RdPVA (PvsA)
C PRE: all variables are empty
C POST: The values of the coefficients for Pressure vs. incident
$C \quad$ angle have been read into an array structure.
C ACTION: The values are input from an infile PVSA.DAT
INTEGER I, J
REAL PvsA(0:38,0:20)

DO $1000 \mathrm{I}=0,38,1$ DO $1000 \mathrm{~J}=0,20,1$
$1000 \quad \operatorname{PvsA}(I, J)=0$.

OPEN (unit=14, FILE='PVSA.DAT')
C Read past header line
$\operatorname{READ}(14, *)$

```
C Read the tabular values for reflected pressure coefficients vs. angle
C of incidence
    DO 1007 I = 0, 38, 1
        READ (14,1005) (PvsA(I,J), J=0,20,1)
1005 FORMAT (21F6.3)
C The following lines are for debugging only to assure values are being
C read correctly by the program
C DO 1020 I = 0, 38, 1
C WRITE (*,1022) (PVsA(I,J), J=0,20,1)
C1022 FORMAT (21F7.3)
1007 continue
    CLOSE (14)
    RETURN
    END
```



```
    SUBROUTINE PAitrp (PvsA, Ps, alpha, Pr)
C PRE: The array of side-on pressure vs. incident angle, the
C incident angle, and the side-on pressure (psi)
C POST: The reflected pressure is returned in psi
C ACTION: Pr is calculated by cubic interpolation routines
    REAL PvsA(0:38,0:20), Ps, alpha, Pr, Pval(0:3)
    INTEGER I, J, a(0:3)
C Make adjustments in angle for those angles greater out of the range
C of 0 <= alpha <= 90
C PRINT *, alpha
C IF (ABS(alpha) .LT. 0.001) alpha = 0.
    IF (alpha .GT. 90.) alpha = 180. - alpha
    IF (alpha .LT. 0.) alpha = 0. - alpha
C Determine the interpolation domain for the angles of incidence
    IF (alpha .LT. PvsA(2,0)) THEN
            a(0) = 1
            a(1) = 2
            a(2) = 3
            a(3) = 4
```

C
print *, 'a=1'
END IF
DO 2000 I = 2, 36, 1
IF ((alpha .GE. PvsA(I,0)).AND.(alpha .LT. PvsA(I+1,0))) THEN
$a(0)=I-1$
$a(1)=I$
$a(2)=I+1$
$a(3)=I+2$
C
print *, 'a=', I
END IF
2000 continue
IF (alpha .GE. PvsA $(37,0)$) THEN
$a(0)=35$
$a(1)=36$
$a(2)=37$
$a(3)=38$
C print *, 'a=38'
END IF

C Determine the reflected pressure coefficient by the use of
C interpolation routines. First an interpolated pressure curve for a
C short area is determined, then this is used to calulate the
C interpolated value for the correct alpha.
IF (Ps . GT. PvsA $(0,2)$) THEN
DO $2100 \mathrm{I}=0,3,1$
$2100 \quad \operatorname{Pval}(I)=C i n t r p(\operatorname{Ps}, \operatorname{PvsA}(0,1), \operatorname{PvsA}(0,2), \operatorname{PvsA}(0,3), \operatorname{PvsA}(0,4)$
$\mid, \operatorname{PvsA}(a(I), 1), \operatorname{PvsA}(a(I), 2), \operatorname{PvsA}(a(I), 3), \operatorname{PvsA}(a(I), 4))$
$C \quad$ print *, $p<2$ '
END IF

DO $2115 \mathrm{~J}=2$, 18, 1
IF ((Ps .LE. PvsA(0,J)).AND.(Ps .GT. PvsA(0,J+1))) THEN
DO $2110 \mathrm{I}=0,3,1$
$2110 \quad \operatorname{Pval}(I)=\operatorname{Cintrp}(\operatorname{Ps}, \operatorname{PvsA}(0, J-1), \operatorname{PvsA}(0, J), \operatorname{PvsA}(0, J+1)$
$\mid, \operatorname{PvsA}(0, J+2), \operatorname{PvsA}(a(I), J-1), P \vee s A(a(I), J), P \vee s A(a(I), J+1)$
|, PvsA(a(I), J+2))
print *,'p=', J
END IF
2115 continue

IF (Ps .LE. PvsA $(0,19)$) THEN DO 2120 I=0,3,1

```
2120 Pval(I) = Cintrp (Ps,PvsA(0,17),PvsA(0,18),PvsA(0,19)
    |,PvsA(0,20),PvsA(a(I),17),PvsA(a(I),18),PvsA(a(I),19)
    |,PvsA(a(I),20))
C print *,'p>19'
            END IF
C Determine reflected pressure and return it.
    Pr = Ps*Cintrp(alpha,PvsA(a(0),0),PvsA(a(1),0),PvsA(a(2),0),
    |PvsA(a(3),0),Pval(0),Pval(1),Pval(2),Pval(3))
c PRINT *, 'Pr/Ps =', Pr/Ps
C PRINT *, Pr
    RETURN
    END
```



```
SUBROUTINE KINBUL (nmax, r, NumR, W, Nsteps, deltaT, Bprofl, mine |, reflYn, epsiln, alpha, dbugYn, aoaYn, PvsA)
\(C\) PRE: The input variables from the input file are filled.
C POST: The pressure, duration, arrival time, and decay coefficients
C for calculations by the methods in Kingery & Bulmash
C ACTION: Kingery & Bulmash's methods of Log-Log fitting to pentolite
C results are used to calculate results for blast
C pressure profiles.
INTEGER nmax, tmax, nnmax
DOUBLE PRECISION \(\operatorname{PrC}(0: 11), \operatorname{PrK}(0: 1), \operatorname{IrC}(0: 3), \operatorname{IrK}(0: 1)\)
DOUBLE PRECISION TaC(0:11), \(\operatorname{TaK}(0: 1), \operatorname{ToC1}(0: 8), \operatorname{ToK} 1(0: 1)\)
DOUBLE PRECISION ToC2(0:8), ToK2(0:1), deltaT, epsiln
DOUBLE PRECISION PsK(0:1), IsK1(0:1), IsK2(0:1), ToK3(0:1)
DOUBLE PRECISION PsC(0:11), IsC1(0:4), IsC2(0:8), ToC3(0:7)
DOUBLE PRECISION UC ( \(0: 14\) ), UK ( \(0: 1\) )
PARAMETER ( \(\mathrm{tmax}=64\), nnmax \(=64\) )
INTEGER Nsteps, NumR, I, J, M, K(nnmax)
REAL \(\mathrm{R}(\mathrm{nmax})\), Bprofl(0:(128+3),2,64), Clow, Cmid, Chigh
REAL \(Z, W, \operatorname{Pr}(n n m a x), \operatorname{Ir}(n n m a x), \operatorname{Ps}(n n m a x), I s(n n m a x)\), Mfried
REAL \(\mathrm{Ta}(\mathrm{nnmax}), \mathrm{To}\left(\mathrm{nnmax}^{2}\right), \mathrm{B}\left(\mathrm{nnmax}^{\prime}\right), \mathrm{T}, \mathrm{T} 1, \mathrm{Br}(\mathrm{nnmax})\)
REAL PrLogU, rY03, rY47, rY811, IrLogU, IrLogY, alpha(nmax)
REAL PsLogU, sY03, sY47, sY811, IsLogU, IsLogY, U(64)
REAL TaLogU, aY03, aY47, aY811, ToLogU, ToLogY
```

REAL ULogU, uY03, uY47, uY811, uY1214, PvsA(0:38,0:20) LOGICAL Peak(nnmax), mine, reflYN, dbugYN, aoaYN

C Data needed for Log-Log interpolation and determination of mine C blast parameters

A PrK(0),	PrK(1)	/-0.789312405513,	1.36637719229
DATA PsK(0),	PsK (1)	/-0.756579301809,	1.35034249993
DATA $\operatorname{IrK}(0)$,	IrK(1)	/-0.781951689212,	1.33422049854
DATA IsK1 (0),	IsK	/ 0.832468843425,	3.0760329666
DATA IsK2(0),	IsK2 (1)	/-2.91358616806,	2.40697745406
DATA TaK(0),	TaK (1)	/-0.755684472698,	1.37784223635
DATA Tok	T	1	5.25099193925
DATA ToK2 (0),	ToK2(1)	/-5.85909812338,	9.2996288611
DATA ToK3(0),	ToK3(1)	/-4.92699491141,	3.46349745571
DATA UK(0),	UK (1)	/-0.755684472698,	1.37784223635
DATA PrC(0),	$\operatorname{PrC}(1)$	/ 2.56431321138 ,	-2.21030870597
DATA PrC(2),	$\operatorname{PrC}(3)$	/-0.218536586295	0.895319589372
DATA PrC(4),	$\operatorname{PrC}(5)$	/ 0.24989009775,	-0.569249436807
DATA $\operatorname{PrC}(6)$,	$\operatorname{PrC}(7)$	/-0.11791682383,	0.224131161411
DATA PrC(8),	$\operatorname{PrC}(9)$	/ 0.0245620259375,	-0.0455116002694
DATA PrC(10),	$\operatorname{PrC}(11)$	/-0.00191930738887,	0.00361471193389 /
DATA PsC(0),	PsC (1)	/ 1.94225020	58988741
DATA PsC(2),	PsC (3)	/-0.154159376846,	0.514060730593
DATA PsC(4),	PsC (5)	/ 0.0988534365274,	-0.293912623038
DATA PsC (6),	PsC (7)	/-0.0268112345019,	0.109097496421
DATA PsC(8),	PsC (9)	/ 0.00162846756311,	-0.0214631030242
DATA PsC(10),	PsC(11)	/ 0.0001456723382,	$0.00167847752266 /$
DATA $\operatorname{IrC}(0)$,	$\operatorname{IrC}(1)$	/ 1.75291677799,	-0.949516092853
DATA IrC(2),	$\operatorname{Irc}(3)$	/ 0.112136118689,	-0.0250659183287
DATA IsC1(0),	IsC1(1)	/ 1.57159240621,	-0.502992763686
DATA IsC1(2),	IsC1	/ 0.171335645235,	0.0450176963051
DATA IsC1(4)		/-0.0118964626402	
DATA IsC2(0),	IsC2(1)	/ 0.719852655584,	-0.384519026965
DATA IsC2(2),	IsC2 (3)	/-0.0260816706301,	$0.00595798753822 /$
DATA IsC2(4),	Isc2 (5)	/ 0.014544526107,	-0.00663289334734/
DATA IsC2(6),	Isc2(7)	/-0.00284189327204	0.0013644816227
DATA IsC2(8)		10.0	
DATA TaC(0),	TaC (1)	/-.173607601251,	1.35706496258
DATA TaC(2),	TaC (3)	/ 0.052492798645,	-0.196563954086
DATA TaC(4),	TaC (5)	/-0.0601770052288,	0.0696360270891
DATA TaC(6),	Tac (7)	/ 0.0215297490092,	-0.0161658930785
DATA TaC(8),	TaC (9)	/-0.00232531970294,	$0.00147752067524 /$

DATA TaC (10),	TaC(11) / 0.0,	0.0 /
DATA ToC1(0),	ToC1(1) /-0.728671776005,	0.130143717675 /
DATA ToC1(2),	ToC1(3) / 0.134872511954,	0.0391574276906 /
DATA ToC1(4),	ToC1 (5) /-0.00475933664702,	-0.00428144598008/
DATA ToC1(6),	ToC1(7) / 0.0,	0.0 /
DATA ToC1 (8)	10.0	1
DATA Toc2(0),	ToC2(1) / 0.20096507334,	-0.0297944268976/
DATA ToC2(2),	ToC2(3) / 0.030632954288,	0.0183405574086 /
DATA ToC2(4),	Toc2(5) /-0.0173964666211,	-0.00106321963633/
DATA ToC2(6),	ToC2(7) / 0.00562060030977,	0.0001618217499 /
DATA ToC2(8)	/-0.000686018944	1
DATA ToC3(0),	ToC3(1) / 0.572462469964,	0.0933035304009 /
DATA ToC3(2),	Toc3(3) /-0.0005849420883,	-0.00226884995013/
DATA ToC3(4),	Toc3(5) /-0.00295908591505,	0.00148129868929 /
DATA ToC3(6),	Toc3(7) / 0.0,	0.0 /
DATA UC(0),	UC(1) / 0.449774310005,	-0.698029762594 /
DATA UC(2),	UC(3) / 0.158916781906,	0.443812098136 /
DATA UC(4),	UC (5) /-0.113402023921,	-0.369887075049 /
DATA UC (6),	UC (7) / 0.129230567449,	0.19857981197 /
DATA UC (8),	UC (9) /-0.0867636217397,	-0.0620391900135 /
DATA UC(10),	UC(11) / 0.0307482926566,	0.0102657234407 /
DATA UC(12),	UC(13) /-0.00546533250772,	-0.000693180974 /
DATA UC(14)	/ 0.0003847494916	1

C If the program is to do the air blast profile, different parameters C will be needed:

IF (.NOT. mine) THEN
$\operatorname{PrK}(0)=-0.756579301809$
$\operatorname{PrK}(1)=1.35034249993$
$\operatorname{IrK}(0)=-0.757659920369$
$\operatorname{IrK}(1)=1.37882996018$
IsK1 (0) = 1.04504877747
IsK1(1) $=3.24299066475$
IsK2 (0) $=-2.67912519532$
IsK2(1) = 2.30629231803
$\operatorname{TaK}(0)=-0.80501734056$
$\operatorname{TaK}(1)=1.37407043777$
ToK1 (0) $=0.209440059933$
ToK1 (1) $=5.11588554305$
ToK2 (0) $=-5.06778493835$
ToK3(0) $=-4.39590184126$
ToK3(1) $=3.1524725264$

```
UK(0) = -0.756579301809
UK(1) = 1.35034249993
PrC(0) = 2.39106134946
PrC(1) = -2.21400538997
PrC(2) = 0.035119031446
PrC(3) = 0.657599992109
PrC(4) = 0.0141818951887
PrC(5) = -0.243076636231
PrC(6) = -0.0158699803158
PrC(7) = 0.0492741184234
PrC(8) = 0.00227639644004
PrC(9) = -0.00397126276058
PrC(10) = 0.0
PrC(11) = 0.0
PsC(0) = 1.77284970457
PsC(1) = -1.69012801396
PsC(2) = 0.00804973591951
PsC(3) = 0.336743114941
PsC(4) = -0.00516226351334
PsC(5) = -0.0809228619888
PsC(6) = -0.00478507266747
PsC(7) = 0.00793030472244
PsC(8) = 0.0007684469735
PsC(9) = 0.0
PsC(10) = 0.0
PsC(11) = 0.0
IrC(0) = 1.60579280091
IrC(1) = -0.903118886091
IrC(2) = 0.101771877942
IrC(3) = -0.0242139751146
IsC1(0) = 1.43534136453
IsC1(1) = -0.443749377691
IsC1(2) = 0.168825414684
IsC1(3) = 0.0348138030308
IsC1(4) = -0.010435192824
IsC2(0) = 0.599008468099
IsC2(1) = -0.40463292088
IsC2(2) = -0.014272194608
IsC2(3) = 0.00912366316617
IsC2(4) = -0.0006750681404
IsC2(5) = -0.00800863718901
IsC2(6) = 0.00314819515931
```

```
IsC2(7) = 0.00152044783382
IsC2(8) = -0.0007470265899
TaC(0) = -0.0423733936826
TaC(1) = 1.36456871214
TaC(2) = -0.0570035692784
TaC(3) = -0.182832224796
TaC(4) = 0.0118851436014
TaC(5) = 0.0432648687627
TaC(6) = -0.0007337367834
TaC(7) = -0.00436073555033
TaC(8) = 0.0
TaC(9) = 0.0
TaC(10) = 0.0
TaC(11) = 0.0
ToC1(0) = -0.801052722864
ToC1(1) = 0.164953518069
ToC1(2) = 0.127788499497
ToC1(3) = 0.00291430135946
ToC1(4) = 0.00187957449227
ToC1(5) = 0.0173413962543
ToC1(6) = 0.00269739758043
ToC1(7) = -0.00361976502798
ToC1(8) = -0.00100926577934
ToC2(0) = 0.115874238335
ToC2(1) = -0.0297944268969
ToC2(2) = 0.0306329542941
ToC2(3) = 0.0183405574074
ToC2(4) = -0.0173964666286
ToC2(5) = -0.00106321963576
ToC2(6) = 0.0056206003128
ToC2(8) = -0.0006860188944
ToC3(0) = 0.50659210403
ToC3(1) = 0.0967031995552
ToC3(2) = -0.00801302059667
ToC3(3) = 0.00482705779732
ToC3(4) = 0.00187587272287
ToC3(5) = -0.00246738509321
ToC3(6) = -0.000841116668
ToC3(7) = 0.0006193291052
UC(0) = 0.371369593444
UC(1) = -0.650507560471
UC(2) = 0.291320654009
```

```
UC(3) = 0.307916322787
UC(4) = -0.183361123489
UC(5) = -0.197740454538
UC(6) = 0.0909119559768
UC(7) = 0.0898926178054
UC(8) = -0.0287370990248
UC(9) = -0.0248730221702
UC(10) = 0.00496311705671
UC(11) = 0.00372242076361
UC(12) = -0.0003533736952
UC(13) = -0.0002292913709
UC(14) = 0.0
```

END IF

C Tell user which routine is running:
PRINT *,'Kingery \& Bulmash calculation routine'
C Read in the reflected pressure coeffients vs. angle of incidence C if needed.

IF (aoaYN) CALL RdPVA(PvsA)

C recall $\log 10(Z Z)=\operatorname{LOG}(Z Z) / \operatorname{LOG}(10)$
DO 400 I = 1, NumR,1
C Calculate the scaled distance (scaled, non-dimentional, detonation
C parameter) for this iteration's radial distance, r. Hopkinson
C scaling.
$Z=R(I) / W^{* *}(1 . / 3$.
IF (dbugYN) PRINT *, 'Distance, R:', R(I)
IF (dbugYN) PRINT *, 'Scaled Distance, Z:', Z

C Calculations for Log-Log fit for side-on pressure, Ps
PsLogU $=\operatorname{PsK}(0)+\log 10(Z) * P s K(1)$
sY03 = PsC (0) +PsLogU*(PsC(1)+PsLogU* (PsC (2) +PsLogU*PsC(3)))
sY47 $=\left(\operatorname{PsC}(4)+\operatorname{PsLogU*}^{*}(\operatorname{PsC}(5)+\operatorname{PsLogU*}(\operatorname{PsC}(6)+\operatorname{PsLogU*PsC}(7)))\right)^{*}$
|PsLogU**4
sY811 $=\left(\operatorname{PsC}(8)+\right.$ PsLogU* $^{(P s C}(9)+\operatorname{PsLogU*}^{*}\left(\operatorname{PsC}(10)+\right.$ PsLogU*PsC $\left.^{(11))}\right)$
|) *PsLogU**8
Ps(I) $=10 . * *(s Y O 3+s Y 47+s Y 811)$
IF (dbugYN) PRINT *,'Incident Pressure, Ps (psi):', Ps(I)

C adjust the ranges for mine or air blast:

```
        IF (mine) THEN
            Clow = 0.17
            Cmid = 2.41
        ELSE
            Clow = . }13
            Cmid = 2.0
        END IF
C Calculation for Log-Log fit for side-on (specific) impulse, Is
            IF ((Z .LE. Cmid) .AND. (Z .GE. Clow)) THEN
                IsLogU = IsK1(0) + Log10(z)*IsK1(1)
                IsLogY = IsC1(0)+IsLogU*(IsC1(1)+IsLogU*(IsC1(2)+IsLogU*
    |(IsC1(3)+IsLogU*IsC1(4))))
        ELSE
            IF ((Z .LE. 100.) .AND. (Z .GT. Cmid)) THEN
                        IsLogU = IsK2(0) + Log10(z)*IsK2(1)
                IsLogY = IsC2(0)+IsLogU*(IsC2(1)+IsLogU*(IsC2(2)+IsLogU*
    |(IsC2(3)+IsLogU*(IsC2(4)+IsLogU*(IsC2(5)+IsLogU*(IsC2(6)+IsLogU*
    |Isc2(7)))))|)
                ELSE
                    IsLogY = 0.
            ENDIF
        END IF
        Is(I) = (10.**IsLogY)*W**(1./3.)
    IF (dbugYN) PRINT *,'Incident Impulse, Is (psi-msec):', Is(I)
C Calculations for Log-Log fit for reflected pressure, Pr
        IF (aoaYN) THEN
            CALL PAitrp (PvsA, Ps(I), alpha(I), Pr(I))
                ELSE
                    PrLogU = PrK(0) + Log10(Z)*PrK(1)
                rY03 = PrC(0)+PrLogU*(PrC(1)+PrLogU*(PrC(2)+PrLogU*PrC
    |(3)))
        rY47 = (PrC(4)+PrLogU* (PrC(5)+PrLogU* (PrC(6)+PrLogU*PrC
    |(7))))*PrLogU**4
            rY811 = (PrC(8)+PrLogU*(PrC(9)+PrLogU* (PrC(10)+PrLogU*
    |PrC(11))))*PrLogU**8
            Pr(I) = 10.**(rY03 + rY47 + rY811)
        END IF
    IF (dbugYN) PRINT *,'Reflected Pressure, Pr (psi):', Pr(I)
C Calculations for Log-Log fit for the reflected (specific) impulse, Ir
```

```
    IrLogU = IrK(0) + Log10(Z)*IrK(1)
    IrLogY = IrC(0)+IrLogU*(IrC(1)+IrLogU*(IrC(2)+IrLogU*IrC(3)))
    Ir(I) = (10.**IrLogY)*W**(1./3.)
    IF (dbugYN) PRINT *,'Reflected Impulse, Ir (psi-msec):', Ir(I)
C Calculations for Log-Log fit for blast time of arrival, Ta
            TaLogU = TaK(0) + Log10(Z)*TaK(1)
            aY03 = TaC(0)+TaLogU*(TaC(1)+TaLogU*(TaC(2)+TaLogU*TaC(3)))
            aY47 = (TaC(4)+TaLogU*(TaC(5)+TaLogU*(TaC(6)+TaLogU*TaC(7))))*
    |TaLogU**4
            aY811 = (TaC(8)+TaLogU*(TaC(9)+TaLogU*(TaC(10)+TaLogU*TaC(11)))
    |)*TaLogU**8
        Ta(I) = (10.**(aY03 + aY47 + aY811))/1000.*W**(1./3.)
        IF (dbugYN) PRINT *,'time of arrival, Ta (msec):', Ta(I)*1000.
C adjust the ranges for mine or air blast:
    IF (mine) THEN
            Clow = 0.45
            Cmid = 2.54
            Chigh = 7.0
        ELSE
            Clow = 0.37
            Cmid = 2.24
            Chigh = 5.75
        END IF
C Calculation for Log-Log fit for positive blast duration, To
            IF ((Z .LE. Cmid) .AND. (Z .GE. Clow)) THEN
            ToLogU = ToK1(0) + Log10(z)*ToK1(1)
            ToLogY = ToC1(0)+ToLogU*(ToC1(1)+ToLogU*(ToC1(2)+ToLogU*
    |(ToC1(3)+ToLogU*(ToC1(4)+ToLogU*ToC1(5)))))
        ELSE
            IF ((Z .LE. Chigh) .AND. (Z .GT. Cmid)) THEN
                ToLogU = ToK2(0) + Log10(z)*ToK2(1)
                ToLogY = ToC2(0)+ToLogU*(ToC2(1)+ToLogU*(ToC2(2)+ToLogU*
    |(ToC2(3)+ToLogU*(ToC2(4)+ToLogU* (ToC2 (5)+ToLogU*(ToC2(6)+ToLogU*
    |(ToC2(7)+ToLogU*ToC2(8))))))))
        ELSE
            IF (Z .GT. Chigh) THEN
                ToLogU = ToK3(0) + Log10(z)*ToK3(1)
            ToLogY = ToC3(0)+ToLogU*(ToC3(1)+ToLogU*(ToC3(2)+
    |ToLogU*(ToC3(3)+ToLogU*(ToC3(4)+ToLogU*ToC3(5)))))
```

```
            ELSE
            ToLogY = 0.
            ENDIF
        ENDIF
    END IF
    To(I) = (10.**ToLogY)/1000.*W**(1./3.)
    IF (dbugYN) PRINT *,'time of duration, To (msec):', To(I)*1000.
C Calculations for Log-Log fit for shock velocity, U
            ULogU = UK(0) + Log10(Z)*UK(1)
            uY03 = UC(0)+ULogU*(UC(1)+ULogU*(UC (2)+ULogU*UC(3)))
            uY47 = (UC(4)+ULogU*(UC(5)+ULogU*(UC(6)+ULogU*UC(7))))*
        |ULogU**4
            uY811 = (UC(8)+ULogU*(UC(9)+ULogU*(UC(10)+ULogU*UC(11)))
        |)*ULogU**8
            uY1214 = (UC(12)+ULogU*(UC(13)+ULogU*UC(14)))*ULogU**12
            U(I) = (10.**(uY03 + uY47 + uY811 + uY1214))/1000.*W**(1./3.)
            IF (dbugYN) PRINT *,'Shock Velocity, U (in/sec):', U(I)*1000.
C Use DECAY procedure to help calculate the blast decay values for the
C side-on and reflected cases
            CALL DECAY(Ir(I), Pr(I), To(I)*1000, Br(I), epsiln)
            Br(I)=To(I)/(Br(I)-(Br(I)**2-Pr(I)*To(I)*1000/Ir(I)* (Br (I)+
        | EXP(-Br(I))-1))/(2*Br(I)-Pr(I)*To(I)*1000/Ir(I)*(1-EXP(-Br(I)))))
        IF (dbugYN) PRINT *,'Reflected Decay coefficient (msec), Br:', Br
        |(I)*1000.
            CALL DECAY(Is(I), Ps(I), To(I)*1000, B(I), epsiln)
            B(I)=To(I)/(B(I)-(B(I)**2-Ps(I)*To(I)*1000/Is(I)* (B(I)+
    | EXP(-B(I))-1))/(2*B(I)-Ps(I)*To(I)*1000/Is(I)*(1-EXP(-B(I)))))
    IF (dbugYN) PRINT *,'Decay coefficient (msec), B:', B(I)*1000.
400 continue
    C Initialize the blast profile structure.
        DO 401 I = 0, 128+3, 1
            DO 401 J = 1,2,1
            DO 401 M=1,64,1
401 Bprofl(I,J,M)=0.
\(C\) Set the variable to determine if the peak has already been arrived at C to FALSE ie, "not yet."
```

```
    DO 405 M = 1, NumR, 1
4 0 5
    Peak(M) = .FALSE.
```

C Actually calculate the blast profiles based on the determined values
C from above. This will work for mine or air blast profiles.
DO 410 I = 1, NumR, 1
$410 \quad K(I)=0$
DO 415 M = 1, Nsteps, 1
DO $415 \mathrm{~J}=1$, NumR, 1
IF (Peak(J)) THEN
$T=(F l o a t(K(J))-2) * d e l t a$.
ELSE
$T=$ Float $(\mathrm{K}(\mathrm{J}))^{*}$ delta T
END IF
$T 1=(F l o a t(K(J))+1)$.$* delta T$
Bprofl $(\mathrm{K}(\mathrm{J}), 1, \mathrm{~J})=T$
C All "reflYN" calls are to check if the reflected values are to be
C returned. This will only be the case for air bursts. All mine
C blasts (hemispherical surface blasts) are considered to be producing
C normally reflected values.
IF (reflYN) THEN
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J}), 2, \mathrm{~J})=\operatorname{MFried}(\operatorname{Pr}(\mathrm{J}), \mathrm{T}, \mathrm{Ta}(\mathrm{J}), \mathrm{To}(\mathrm{J}), \mathrm{Br}(\mathrm{J}))$
ELSE
Bprofl(K(J),2,J) = MFried(Ps(J), T, Ta(J), To(J), B(J))
END IF
IF (T .LE. Ta(J)) Bprofl(K(J),2,J) = 0 .
IF ((T .LE. Ta(J)) .AND. (T1 .GT. Ta(J))) THEN
Bprofl(K $(J)+1,1, J)=$ Ta(J) - deltaT/5.
Bprofl(K(J)+2,1,J) = Ta(J)
Bprofl $(\mathrm{K}(\mathrm{J})+3,1, \mathrm{~J})=\mathrm{T} 1$
Bprofl(K $(J)+1,2, J)=0$.
IF (reflyN) THEN
Bprofl $(\mathrm{K}(\mathrm{J})+2,2, \mathrm{~J})=\mathrm{MFried}(\operatorname{Pr}(\mathrm{J}), \mathrm{Ta}(\mathrm{J}), \mathrm{Ta}(\mathrm{J}), \mathrm{To}(\mathrm{J})$,
|Br(J))
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J})+3,2, \mathrm{~J})=\mathrm{MFried}(\operatorname{Pr}(\mathrm{J}), \mathrm{T} 1, \quad \mathrm{Ta}(\mathrm{J}), \mathrm{To}(\mathrm{J})$,
$\mid \operatorname{Br}(J))$
ELSE
Bprofl(K(J)+2,2,J) = MFried(Ps(J),Ta(J),Ta(J),To(J),
| $\mathrm{B}(\mathrm{J})$)
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J})+3,2, \mathrm{~J})=\mathrm{MFried}(\operatorname{Ps}(\mathrm{J}), \mathrm{T} 1, \quad \mathrm{Ta}(\mathrm{J}), \mathrm{To}(\mathrm{J})$,

```
        |B(J))
                END IF
                    K(J) = K(J)+3
                    Peak(J) = .TRUE.
                END IF
                IF (T .GE. (Ta(J)+To(J))) Bprofl(K(J),2,J) = 0.
                K(J) = K(J)+1
415 continue
    RETURN
        END
```



```
    SUBROUTINE ReadIn (Rb, Psb, Prb, Tab, Tsb, Trb, Isb, Irb, Ub,size)
C PRE: all variables are empty
C POST: The variables and arrays are filled with the respective table
C values from Baker's _Explosions in Air,_ 1974, Chapter 6.
C ACTION: The values are input from an infile EIA.DAT
    INTEGER I, size
    REAL Rb(size), Psb(size), Prb(size), Tab(size), Isb(size)
    REAL Tsb(size), Trb(size), Irb(size), Ub(size)
C Open the input file, EIA.DAT, which contains the blast parameters
C from Explosions in Air, Chapter 6 and other data points taken from
C full scale Log-Log plots of that data.
    OPEN (unit=8, FILE='eia.dat')
C Read past a header line in EIA.DAT
    READ (8,*)
C Iteratively read in the values of EIA.DAT
    DO 210 I = 1, size, 1
        READ (8,200) Rb(I),Psb(I),Prb(I),Tab(I),Tsb(I),Trb(I),Isb(I),
    |Irb(I),Ub(I)
200 FORMAT (1F9.4, 7F10.7, 1F13.9)
C Convert the data to Log-Log format so that the interpolation routines C will work without alteration to Log-Log domain. The commenting out \(C\) the following lines is necessary to prevent conversion of the data
```

```
C to Log-Log format
    Rb(I) = LOG10(Rb(I))
    Psb(I) = LOG10(Psb(I))
    Prb(I) = LOG10(Prb(I))
    Tab(I) = LOG10(Tab(I))
    Tsb(I) = LOG10(Tsb(I))
    Trb(I) = LOG10(Trb(I))
    Isb(I) = LOG10(Isb(I))
    Irb(I) = LOG10(Irb(I))
    Ub(I) = LOG10(Ub(I))
C End commenting out of lines if removing Log-Log alteration.
210 continue
    CLOSE (8)
    RETURN
    END
```



```
    SUBROUTINE EIA (nmax, r, NumR, TNT, etcYN, Nsteps, deltaT,
    |Bprofl, mine, Gref, reflYN, epsiln, alpha, dbugYN, aoaYN, PvsA)
C PRE: Subroutine is handed the input values of the explosion
C parameters
C POST: The values of the necessary pressures, decay values,
C durations are calculated and the pressure profiles output for
C use in other programs for the desired x translation across
C the plate surface.
C ACTION: The appropriate coefficients are calculated via 3rd order
C Legendre interpolation for the respective values of the
C scaled range. These values are then converted from their
C scaled form back into their english unit equivalents.
C These values are then used in Friedlander's modified equation
C for the desired timesteps for the calculation of the
C appropriate blast pressure profiles. The order of
C calculation/interpolation is Prb, Tab, Isb, b, then the
C profiles.
```

INTEGER size, nmax, tmax, Nsteps, I, J, K(64), M
DOUBLE PRECISION deltaT, $a 0, r h o 0, ~ g 0, ~ t h e t a 0, ~ p 0, ~ e p s i l n ~$
PARAMETER (size=37, tmax=64)
LOGICAL etcYN, mine, Peak(64), reflyN, dbugYN, aoaYN

REAL $\mathrm{Rb}($ size $), \mathrm{Psb}($ size $), \mathrm{Prb}($ size $), \mathrm{Tab}($ size), Isb(size)
REAL Irb(size), Ub(37), Tsb(size), BB(size), BBr(size)
REAL Psb2(size), Prb2(size), Tab2(size), Isb2(size), Irb2(size)
REAL Tsb2(size), Trb(size), Trb2(size), alpha(nmax), Ub2(37)
REAL $\quad \mathrm{R}(\mathrm{nmax})$, Bprofl(0: $(128+3), 2,64)$, Gref, Is(size)
REAL Rrb(size), $\operatorname{Pr}($ size $), \mathrm{Ta}($ size $), \mathrm{Ts}($ size), $\operatorname{Ir}(\mathrm{size}), \mathrm{U}(37)$
REAL Tr(size), Ps(size), PPr, PPs, IIs, IIr, TTa, TTs, TTr
REAL PvsA(0:38,0:20)
C Tell user which routine is running:
PRINT *, 'EIA Routine', TNT, ' equivalent pounds of TNT.'
IF ((mine) .AND. .NOT. (etcYN)) PRINT *, 'Ground reflectivity |value:', Gref

C Sea level parameters for the atmosphere from Minzner, Champion, and
c Pond (1969)
$\mathrm{a} 0=13397.324$
rhoo $=1.146277 \mathrm{e}-7$
$\mathrm{go}=386.08859$
theta0 $=518.688$
p0 $=14.695951$

C Find energy of the TNT
$\mathrm{EW}=18.13 \mathrm{e} 6$
C Alter the amount of TNT for use in the calculation of the "mine" C blasts for ground reflectivity.

IF ((mine) .AND. (.NOT. etcYN)) TNT = Gref*TNT
$\mathrm{E}=\mathrm{EW} * \mathrm{TNT}$

C Get the Explosions In Air Blast Parameters
CALL ReadIn (Rb, Psb, Prb, Tab, Tsb, Trb, Isb, Irb, b, size)

C Call Spline to make the second derivative sets needed for splint for
C each parameter, yp1 and ypn are the derivatives at the end segments
$y p 1=(\operatorname{Psb}(2)-\operatorname{Psb}(1)) /(R b(2)-R b(1))$
$y p n=(P s b(s i z e)-P s b(s i z e-1)) /(R b(s i z e)-R b(s i z e-1))$
CALL Spline (Rb, Psb, size, yp1, ypn, Psb2)
$\mathrm{yp} 1=(\operatorname{Prb}(2)-\operatorname{Prb}(1)) /(\operatorname{Rb}(2)-\operatorname{Rb}(1))$
$y p n=(\operatorname{Prb}($ size $)-\operatorname{Prb}($ size-1) $) /(\operatorname{Rb}($ size $)-\operatorname{Rb}($ size-1) $)$
CALL Spline (Rb, Prb, size, yp1, ypn, Prb2)

```
yp1 = (Tab(2)-Tab(1))/(Rb(2)-Rb(1))
ypn = (Tab(size)-Tab(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Tab, size, yp1, ypn, Tab2)
yp1 = (Tsb(2)-Tsb(1))/(Rb(2)-Rb(1))
ypn = (Tsb(size)-Tsb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Tsb, size, yp1, ypn, Tsb2)
yp1 = (Trb(2)-Trb(1))/(Rb(2)-Rb(1))
ypn = (Trb(size)-Trb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Trb, size, yp1, ypn, Trb2)
yp1 = (Isb(2)-Isb(1))/(Rb(2)-Rb(1))
ypn = (Isb(size)-Isb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Isb, size, yp1, ypn, Isb2)
yp1 = (Irb(2)-Irb(1))/(Rb(2)-Rb(1))
ypn = (Irb(size)-Irb(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Irb, size, yp1, ypn, Irb2)
yp1 = (Ub(2)-Ub(1))/(Rb(2)-Rb(1))
ypn = (Ub(size)-Ub(size-1))/(Rb(size)-Rb(size-1))
CALL Spline (Rb, Ub, size, yp1, ypn, Ub2)
```

C The interpolation of the values from EIA.DAT. Certain commented C lines are for the conversion of the interpolation from Log-Log to C simple interpolation of the straight data. This requires C conversion of some of the following lines (shown but commented), C changes in the Readin procedure where the data is converted to C Log-Log format, and a change in the splint procedure. Print C statements are for debugging or output use, but are also commented C out.

C Additional lines are provided for potential output of determined C values for hard copy and debugging use.

DO 301 I=1, NumR, 1
C Calculate the Sach's scaled distances

$$
\operatorname{RRb}(I)=r(i) * p 0^{* *}(1 . / 3 .) / E^{* *}(1 . / 3 .)
$$

C For debugging purposes, this line allows the hard coding of a C scaled distance value and the output of that value.

```
C
            rrb(I) = . 314
            IF (dbugYN) PRINT *, 'Scaled distance, Rbar:', RRb(I)
C
            IF (mine) etcYN = .FALSE.
            IF (etcYN) THEN
            PRINT *, 'ETC calculation subroutine'
C Determine side-on pressure, Ps
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                    Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
    |, Psb(1), Psb(2), Psb(3), Psb(4))
                ELSE
                    IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                    Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Psb(size-3), Psb(size-2), Psb(size-1),
    |Psb(size))
                    ELSE
                    CALL Splint (Rb, Psb, Psb2, size, RRb(I), Ps(I))
                    END IF
        ENDIF
            IF (dbugYN) PRINT *, 'Ps_bar=',10.**Ps(I)
            IF (dbugYN) PRINT *, 'LOG(Ps)=', Ps(I)
            PPs = 10.**Ps(I)
            Ps(I) = 2.*10.**Ps(I)*p0
C
                            IF (dbugYN) Ps(I) = 2.*Ps(I)*pO
            IF (dbugYN) PRINT *, 'Peak side-on overpressure, Ps
    |(psi):',Ps(I)
C Determine reflected pressure, Pr
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                Pr(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
    |, Prb(1), Prb(2), Prb(3), Prb(4))
            ELSE
            IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                            Pr(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Prb(size-3), Prb(size-2), Prb(size-1),
    |Prb(size))
                    ELSE
                            CALL Splint (Rb, Prb, Prb2, size, RRb(I), Pr(I))
            END IF
        ENDIF
```

```
IF (dbugYN) PRINT *, 'Pr_bar=',10.**Pr(I)
IF (dbugYN) PRINT *, 'LOG(Pr)=', Pr(I)
```

C ETC doubled the reflected impulse values for ground reflection, but
C left all other variables untouched.
$\operatorname{PPr}=10 . * * \operatorname{Pr}(\mathrm{I})$
$\operatorname{Pr}(I)=2 . * 10 . * * \operatorname{Pr}(I) * p 0$

C
IF (dbugYN) $\operatorname{Pr}(\mathrm{I})=2 . * \operatorname{Pr}(\mathrm{I}) * \mathrm{pO}$
IF (dbugYN) PRINT *, 'Peak reflected overpressure, Pr
|(psi):', Pr(I)
C Determine time of arrival, Ta
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
$\mathrm{Ta}(\mathrm{I})=\operatorname{Cintrp}(\operatorname{LOG10(Rrb(I)),Rb(1),Rb(2),Rb(3),Rb(4)}$
|, $\operatorname{Tab}(1), \operatorname{Tab}(2), \operatorname{Tab}(3), \operatorname{Tab}(4))$
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
$\mathrm{Ta}(\mathrm{I})=$ Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
|2), $\mathrm{Rb}(\mathrm{size}-1), \mathrm{Rb}($ size $), \mathrm{Tab}($ size-3), Tab(size-2), Tab(size-1),
|Tab(size))
ELSE
CALL Splint (Rb, Tab, Tab2, size, RRb(I), Ta(I))
END IF
ENDIF
C PRINT *, 'Ta_bar=', 10.**Ta(I)
C PRINT *,'LOG(Ta)=', Ta(I)
$\mathrm{TTa}=10 . * * \mathrm{Ta}(\mathrm{I})$
$\mathrm{Ta}(\mathrm{I})=10 . * * \mathrm{Ta}(\mathrm{I}) * \mathrm{E}^{* *}(1 . / 3) /.\left(\mathrm{aO} \mathrm{A}^{\mathrm{p}} 0^{* *}(1 . / 3).\right)$
C
$\mathrm{Ta}(\mathrm{I})=\mathrm{Ta}(\mathrm{I}) * \mathrm{E}^{* *}(1 . / 3) /.\left(\mathrm{aO} \mathrm{A}^{*} \mathrm{O}^{* *}(1 . / 3).\right)$
IF (dbugYN) PRINT *, 'Time of arrival, Ta (sec):', Ta(I)
C Determine positive phase duration, Ts
C ETC used the Ts instead of Tr in its calculations
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Ts(I) $=\operatorname{Cintrp(LOG10(Rrb(I)),~Rb(1),~Rb(2),~Rb(3),~Rb(4)~}$
|, Tsb(1), Tsb(2), Tsb(3), Tsb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Ts(I) $=$ Cintrp (LOG10 (Rrb(I)) , Rb(size-3), Rb(size-
|2), $\mathrm{Rb}(\mathrm{size}-1), \mathrm{Rb}(\mathrm{size}), \mathrm{Tsb}(\mathrm{size}-3), \mathrm{Tsb}(\mathrm{size}-2), \mathrm{Tsb}(\mathrm{size}-1)$,
|Tsb(size))
ELSE
CALL Splint (Rb, Tsb, Tsb2, size, RRb(I), Ts(I))

END IF
ENDIF
IF (dbugYN) PRINT *, 'Ts_bar=',10.**Ts(I)
IF (dbugYN) PRINT *,'LOG(Ts)=', Ts(I)
$\mathrm{TTs}=10 . * * \mathrm{Ts}(\mathrm{I})$
$\mathrm{Ts}(\mathrm{I})=10 . * * \mathrm{Ts}(\mathrm{I}) * E * *(1 . / 3) /.(\mathrm{a} 0 * \mathrm{p} 0 * *(1 . / 3)$.
C $\operatorname{Ts}(\mathrm{I})=\operatorname{Ts}(\mathrm{I}) * \mathrm{E}^{* *}(1 . / 3) /.\left(\mathrm{a} 0^{*} \mathrm{pO}^{* *}(1 . / 3).\right)$
IF (dbugYN) PRINT *, 'Side-on duraion, Ts (sec):',Ts(I)

C Determine side-on impulse, Is
IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
Is(I) $=$ Cintrp (LOG10(Rrb(I)), $\mathrm{Rb}(1), \mathrm{Rb}(2), \mathrm{Rb}(3), \mathrm{Rb}(4)$
|, Isb(1), Isb(2), Isb(3), Isb(4))
ELSE
IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
Is (I) $=$ Cintrp (LOG10 (Rrb(I)), Rb(size-3), Rb(size-
|2), Rb(size-1), Rb(size), Isb(size-3), Isb(size-2), Isb(size-1), |Isb(size))

ELSE
CALL Splint (Rb, Isb, Isb2, size, RRb(I), Is(I))
END IF
ENDIF
IF (dbugYN) PRINT *, 'Is_bar=', 10.**Is(I)
IF (dbugYN) PRINT *, 'log(Is)=', Is(I)
IIs = 10.**Is(I)
$\operatorname{Is}(\mathrm{I})=10 .{ }^{* *} \operatorname{Is}(\mathrm{I})^{*}\left(\mathrm{E}^{* *}(1 . / 3 .)^{*} \mathrm{p} 0^{* *}(2 . / 3).\right) / \mathrm{aO}$
C
$\operatorname{Is}(\mathrm{I})=\operatorname{Is}(\mathrm{I}) *\left(\mathrm{E}^{* *}(1 . / 3.){ }^{*} \mathrm{pO}^{* *}(2 . / 3).\right) / \mathrm{aO}$
IF (dbugYN) PRINT *, 'Side on impulse, Is (psi-sec):',
|Is(I)

C Determine the non-dimentional decay coefficient, br
C ETC used b instead of br
C CALL Decay (Is(I), Ps(I), Ts(I), BB(I), epsiln)
CALL Decay (IIs, PPs, TTs, BB(I), epsiln)
PRINT *, 'Decay value, B', BB(I)

C End of ETC calculation section ELSE

PRINT *, 'EIA', TNT, ' lbs'

C Explosions in Air calculation section, used for air/mine blast.

```
C Calculate the reflected pressure, Ps
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                        Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
    |,Psb(1),Psb(2), Psb(3), Psb(4))
            ELSE
                IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                            Ps(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Psb(size-3), Psb(size-2),Psb(size-1),
    |Psb(size))
                    ELSE
                            CALL Splint (Rb, Psb, Psb2, size, RRb(I), Ps(I))
                END IF
        END IF
            IF (dbugYN) PRINT *, 'Ps_bar=',10.**Ps(I)
            IF (dbugYN) PRINT *, 'LOG(Ps)=', Ps(I)
            PPs = 10.**Ps(I)
            Ps(I) = 10.**Ps(I)*p0
C
            Ps(I) = Ps(I)*pO
            IF (dbugYN) PRINT *, 'Peak side-on overpressure, Ps (psi)
    |:',Ps(I)
C Calculate the reflected pressure, Pr
            IF (aoaYN) THEN
                CALL PAitrp (PvsA, Ps(I), alpha(I), Pr(I))
                Pr(I) = LOG10(Pr(I)/pO)
            ELSE
                IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                    Pr(I)=Cintrp(LOG1O(Rrb(I)), Rb(1), Rb(2), Rb(3),
    |Rb(4),Prb(1),Prb(2), Prb(3), Prb(4))
            ELSE
                        IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                        Pr(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3),
    |Rb(size-2), Rb(size-1), Rb(size), Prb(size-3), Prb(size-2),Prb(
    |size-1), Prb(size))
                                    ELSE
                                    CALL Splint (Rb, Prb, Prb2, size, RRb(I),
    |Pr(I))
                END IF
            END IF
        END IF
            IF (dbugYN) PRINT *, 'Pr_bar=',10.**Pr(I)
```

```
    IF (dbugYN) PRINT *, 'LOG(Pr)=', Pr(I)
    PPr = 10.**Pr(I)
    Pr(I) = 10.**Pr(I)*p0
C
    Pr(I) = Pr(I)*pO
    IF (dbugYN) PRINT *, 'Peak reflected overpressure, Pr (ps
        |i):',Pr(I)
C Calculate time of arrival, Ta
    IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                        Ta(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
        |, Tab(1),Tab(2), Tab(3), Tab(4))
            ELSE
        IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                        Ta(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
        |2), Rb(size-1), Rb(size), Tab(size-3), Tab(size-2), Tab(size-1),
        |Tab(size))
            ELSE
                            CALL Splint (Rb, Tab, Tab2, size, RRb(I), Ta(I))
                END IF
            ENDIF
            IF (dbugYN) PRINT *, 'Ta_bar=',10.**Ta(I)
            IF (dbugYN) PRINT *,'LOG(Ta)=', Ta(I)
            TTa = 10.**Ta(I)
            Ta(I) = 10.**Ta(I)*E**(1./3.)/(a0*p0**(1./3.))
C
            Ta(I) = Ta(I)*E**(1./3.)/(a0*p0**(1./3.))
            IF (dbugYN) PRINT *, 'Time of arrival, Ta (sec):', Ta(I)
C Calculate the time of reflected duration, Tr
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                Tr(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
    |, Trb(1), Trb(2), Trb(3), Trb(4))
            ELSE
            IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                            Tr(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Trb(size-3), Trb(size-2), Trb(size-1),
    |Trb(size))
                    ELSE
                    CALL Splint (Rb, Trb, Trb2, size, RRb(I), Tr(I))
                END IF
    ENDIF
            IF (dbugYN) PRINT *, 'Tr_bar=',10.**Tr(I)
            IF (dbugYN) PRINT *,'LOG(Tr)=', Tr(I)
```

```
    TTr = 10.**Tr(I)
    Tr}(\textrm{I})=10.**Tr(I)*E**(1./3.)/(a0*p0**(1./3.)
C
    Tr}(I)=\operatorname{Tr}(I)*E**(1./3.)/(a0*p0**(1./3.)
    IF (dbugYN) PRINT *, 'Time of reflected duration, Tr (sec
    |):',}\operatorname{Tr}(I
C Calculate the time of incident duration, Ts
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                            Ts(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
    |, Tsb(1), Tsb(2), Tsb(3), Tsb(4))
            ELSE
            IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                    Ts(I)=Cintrp(LOG1O(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Tsb(size-3), Tsb(size-2), Tsb(size-1),
    |Tsb(size))
                    ELSE
                            CALL Splint (Rb, Tsb, Tsb2, size, RRb(I), Ts(I))
                END IF
            ENDIF
            IF (dbugYN) PRINT *, 'Ts_bar=',10.**Ts(I)
            IF (dbugYN) PRINT *,'LOG(Ts)=', Ts(I)
            TTs = 10.**Ts(I)
            Ts(I) = 10.**Ts(I)*E**(1./3.)/(a0*pO**(1./3.))
                    C
            Ts(I) = Ts(I)*E**(1./3.)/(a0*p0**(1./3.))
            IF (dbugYN) PRINT *, 'Time of duration, Ts (sec):',Ts(I)
C Calculate the reflected specific impulse, Ir
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                            Ir(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
    |, Irb(1), Irb(2), Irb(3), Irb(4))
            ELSE
                        IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                            Ir(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Irb(size-3), Irb(size-2), Irb(size-1),
    |Irb(size))
                    ELSE
                            CALL Splint (Rb, Irb, Irb2, size, RRb(I), Ir(I))
            END IF
        ENDIF
            IF (dbugYN) PRINT *, 'Ir_bar=',10.**Ir(I)
            IF (dbugYN) PRINT *, 'log(Ir)=', Ir(I)
            IIr = 10.**Ir(I)
```

```
        Ir}(\textrm{I})=10.**\operatorname{Ir}(\textrm{I})*(\mp@subsup{E}{}{**}(1./3.)*pO**(2./3.))/a
C
    Ir(I) = Ir(I)*(E**(1./3.)*p0**(2./3.))/a0
        IF (dbugYN) PRINT *, 'Reflected impulse, Ir (psi-sec)',Ir(I)
    C Calculate the incident specific impulse, Is
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                        Is(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
        |, Isb(1), Isb(2), Isb(3), Isb(4))
            ELSE
                IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                    Is(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Isb(size-3), Isb(size-2), Isb(size-1),
        |Isb(size))
            ELSE
                    CALL Splint (Rb, Isb, Isb2, size, RRb(I), Is(I))
                END IF
            ENDIF
            IF (dbugYN) PRINT *, 'Is_bar=',10.**Is(I)
            IF (dbugYN) PRINT *, 'log(Is)=', Is(I)
            IIs = 10.**Is(I)
            Is(I) = 10.**Is(I)*(E**(1./3.)*pO**(2./3.))/a0
C
            Is(I) = Is(I)*(E**(1./3.)*pO**(2./3.))/a0
            IF (dbugYN) PRINT *, 'Side-on impulse, Is (psi-sec):',
    |s(I)
C Calculate the shock velocity, U
            IF (LOG10(Rrb(I)) .LT. Rb(1)) THEN
                U(I)=Cintrp(LOG10(Rrb(I)), Rb(1), Rb(2), Rb(3), Rb(4)
    |, Ub(1), Ub(2), Ub(3), Ub(4))
            ELSE
            IF (LOG10(Rrb(I)) .GT. Rb(size)) THEN
                            U(I)=Cintrp(LOG10(Rrb(I)), Rb(size-3), Rb(size-
    |2), Rb(size-1), Rb(size), Ub(size-3), Ub(size-2), Ub(size-1),
    |Ub(size))
                    ELSE
                            CALL Splint (Rb, Ub, Ub2, size, RRb(I), U(I))
                END IF
        ENDIF
            IF (dbugYN) PRINT *, 'U_bar=',10.**U(I)
            IF (dbugYN) PRINT *,'LOG(U)=', U(I)
            U(I) = 10.**U(I)*E**(1./3.)/(a0*pO**(1./3.))
                    C
            U(I) = U(I)*E**(1./3.)/(a0*pO**(1./3.))
```

IF (dbugYN) PRINT *, 'Shock Velocity, U (in/sec):',U(I)

C Calculate the reflected decay coefficient
$C \quad$ CALL Decay ($\operatorname{Ir}(I), \operatorname{Pr}(I), \operatorname{Tr}(I), \operatorname{BBr}(I)$, epsiln)
CALL Decay (IIr, PPr, TTr, BBr(I), epsiln)
IF (dbugYN) PRINT *, 'Reflectd decay value, br:', BBr(I)

C Calculate the decay coefficient
C
CALL Decay (Is(I), Ps(I), Ts(I), BB(I), epsiln)
CALL Decay (IIs, PPs, TTs, BB(I), epsiln)
IF (dbugYN) PRINT *, 'Decay value, b:', BB(I)

END IF
301
continue

C Initialize the blast profile structure
DO 303 I = 0, 128+3, 1
DO $303 \mathrm{~J}=1,2,1$ DO $303 \mathrm{M}=1,64,1$
303
$\operatorname{Bprofl}(I, J, M)=0$.

C Initialize the flag array for determining if the peak has
C been reached. False means that it has not.
DO $305 \mathrm{M}=1$, NumR, 1
$305 \operatorname{Peak}(M)=. F A L S E$.
C Calculate the blast profiles.
DO 310 I = 1, NumR, 1
$310 \quad K(I)=0$
DO $315 \mathrm{M}=1$, Nsteps, 1
DO $315 \mathrm{~J}=1$, NumR, 1
IF (Peak(J)) THEN
$T=(F l o a t(K(J))-2) * d e l t a$.
ELSE
$T=$ Float $(K(J)) * d e l t a T$
END IF
T1 = (Float $(\mathrm{K}(\mathrm{J}))+1)$.$* delta T$
Bprofl(K(J), $1, \mathrm{~J})=T$
IF (etcYN) THEN
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J}), 2, \mathrm{~J})=\operatorname{FRIED}(\operatorname{Pr}(\mathrm{J}), \mathrm{T}, \operatorname{Ta}(\mathrm{J}), \operatorname{Ts}(\mathrm{J}), \mathrm{BB}(\mathrm{J}))$
ELSE
C Only if there is not ETC's method, not a mine blast, and the normally

C reflected values not desired will this program output the side-on C pressure profiles. Mine blast will give reflected values always. C Air blast is the only case in which the refleced value choice works. C ETC's method will only work for mine blast calculations.

IF ((.NOT. refiYN) .AND. (.NOT. mine)) THEN
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J}), 2, \mathrm{~J})=\operatorname{FRIED}(\operatorname{Ps}(\mathrm{J}), \mathrm{T}, \mathrm{Ta}(\mathrm{J}), \operatorname{Ts}(\mathrm{J}), \mathrm{BB}(\mathrm{J}))$
ELSE
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J}), 2, \mathrm{~J})=\operatorname{FRIED}(\operatorname{Pr}(\mathrm{J}), \mathrm{T}, \mathrm{Ta}(\mathrm{J}), \operatorname{Tr}(\mathrm{J}), \operatorname{BBr}(\mathrm{J}))$
END IF
END IF
IF (T.LE. Ta(J)) Bprofl $(\mathrm{K}(\mathrm{J}), 2, \mathrm{~J})=0$.
IF ((T .LE. Ta(J)) .AND. (T1 .GT. Ta(J))) THEN

Bprofl $(\mathrm{K}(\mathrm{J})+1,1, \mathrm{~J})=\mathrm{Ta}(\mathrm{J})$ - deltaT/5.
Bprofl $(\mathrm{K}(\mathrm{J})+2,1, \mathrm{~J})=\mathrm{Ta}(\mathrm{J})$
Bprofl $(\mathrm{K}(\mathrm{J})+3,1, \mathrm{~J})=\mathrm{T} 1$
Bprofl $(K(J)+1,2, J)=0$. IF (etcYN) THEN
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J})+2,2, \mathrm{~J})=\operatorname{FRIED}(\operatorname{Pr}(\mathrm{J}), \mathrm{Ta}(\mathrm{J}), \mathrm{Ta}(\mathrm{J}), \operatorname{Ts}(\mathrm{J}), \mathrm{BB}(\mathrm{J}))$
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J})+3,2, \mathrm{~J})=\operatorname{FRIED}(\operatorname{Pr}(\mathrm{J}), \mathrm{T} 1, \quad \operatorname{Ta}(\mathrm{~J}), \mathrm{Ts}(\mathrm{J}), \mathrm{BB}(\mathrm{J}))$
ELSE
IF ((.NOT. reflYN) .AND. (.NOT. mine)) THEN
Bprofl $(\mathrm{K}(\mathrm{J})+2,2, \mathrm{~J})=\operatorname{FRIED}(\operatorname{Ps}(\mathrm{J}), \mathrm{Ta}(\mathrm{J}), \mathrm{Ta}(\mathrm{J}), \mathrm{Ts}(\mathrm{J})$,
|BB(J))

$$
\operatorname{Bprofl}(K(J)+3,2, J)=\operatorname{FRIED}(\operatorname{Ps}(J), T 1, \quad \operatorname{Ta}(J), T s(J),
$$

|BB(J))
ELSE
$\operatorname{Bprofl}(\mathrm{K}(\mathrm{J})+2,2, \mathrm{~J})=\operatorname{FRIED}(\operatorname{Pr}(\mathrm{J}), \operatorname{Ta}(\mathrm{J}), \operatorname{Ta}(\mathrm{J}), \operatorname{Tr}(\mathrm{J})$,
$\mid \operatorname{BBr}(J))$

$$
\operatorname{Bprofl}(K(J)+3,2, J)=\operatorname{FRIED}(\operatorname{Pr}(J), T 1, \quad \operatorname{Ta}(J), \operatorname{Tr}(J),
$$

$\mid \operatorname{BBr}(J))$
END IF
END IF
$K(J) \quad=K(J)+3$
Peak (J) = .TRUE.
END IF
IF (etcYN) THEN
IF (T.GE. (Ta(J)+Ts(J))) Bprofl(K(J),2,J)=0. ELSE

IF (T.GE. (Ta(J)+Tr(J))) Bprofl(K(J),2,J) = 0. ENDIF

```
        K(J) = K(J)+1
315
    continue
    RETURN
    END
```


SUBROUTINE DECAY (Is, Ps, Ts, b, epsiln)
C PRE: The values of $I s, P s, T s$, and b are input.
C POST: A calculated/root solved value of the decay coefficient is
C calculated.
C ACTION: The new value of b is calculated by fixed point iteration.
LOGICAL done
REAL Is, Ps, Ts, b, bnew
DOUBLE PRECISION epsiln
b $\quad=0.1$
C Epsiln is the lowest difference between the iterations by which
C convergence is determined. Epsilon (epsiln) is part of the input
C file to allow platform and flexibility without the need for
C recompiling. Epsilon must be adjusted if the program enters an
C an infinite Decay loop.
done = .FALSE.
500 bnew $=$ Ps*Ts/Is*(1-(1-EXP(-b))/b)
IF ((ABS(bnew-b)) .LE. epsiln) THEN
b = bnew
done = .TRUE.
ELSE
b = bnew
END IF
IF (.NOT. done) GOTO 500
RETURN
END

SUBROUTINE Outfil (BProfl, Nsteps, NumR, XY, radial, nmax)
C PRE: BProfl (Blast profiles) are created in the array
C POST: The profiles have been tabularly out put to a file
C ACTION: The profiles have been tabularly out put by iteration.

```
    INTEGER I, J, nmax, Nsteps, numR
    REAL BProfl(0:(128+3),2,64), XY(nmax,2)
    LOGICAL radial
C open the outfile for output of the blast profiles
        OPEN (unit=8, FILE='blast.out')
C sort the profiles so they are in order by time via Bubble Sort
C (an order O(N^2) sort routine). Includes a swap routine determined
C by the time order.
    DO 600 I = 1, NumR, 1
        DO 600 J = 0, ((128+3)-1), 1
            IF (BProfl(J,1,I) .GT. Bprofl(J+1,1,I)) THEN
                swapT = BProfl(J,1,I)
                    swapP = BProfl(J,2,I)
                    BProfl(J,1,I) = BProfl(J+1,1,I)
                BProfl(J,2,I) = BProfl(J+1,2,I)
                    BProfl(J+1,1,I) = swapT
                    BProfl(J+1,2,I) = swapP
                END IF
600 continue
        DO 650 I = 1, NumR, 1
        IF (radial) THEN
    C "ZONE" notation used by NASTRAN input decks. Comment out if using
    C "R" header notation
    WRITE (8, 610) I
    610 FORMAT ('ZONE# =',I11)
    C "R = " notation for general use. Comment out if using "ZONE"
C WRITE (8, 610) XY(I,1)
C610 FORMAT ('R = ', 1F8.2)
        ELSE
            WRITE (8, 620) XY(I,1), XY(I, 2)
6 2 0
    FORMAT ('X = ', 1F8.2,' Y = ',1F8.2)
        END IF
    C Print out Nsteps number of steps, not the entire array
        DO 650 J = 0, Nsteps, 1
        WRITE (8,630) BProfl(J,1,I), BProfl(J,2,I)
630 FORMAT (1F9.7,1F9.3)
```

END

SUBROUTINE spline(X, Y, N, Yp1, Ypn, Y2)
C PRE: $\quad Y p 1$ and $Y p n$ have been determined as the slopes at the end C points. X and Y are arrays of the values to be splined. $C \quad$ This routine is taken from _Numeric Recipies._ C POST: The second derivatives have been created for Splint and C are stored in Y2 C ACTION: The second derivatives for interpolation of by piecewise C splines are calculated and stored.

INTEGER I, K, N, Nmax
PARAMETER (Nmax $=500$)
REAL Yp1, Ypn, $X(N), Y(N), Y 2(N), P, Q n$, sig, Un, U(Nmax)

IF (Yp1 .GT. .99e30) THEN
$Y 2(1)=0$.
$U(1)=0$.
ELSE
$Y 2(1)=-0.5$
$U(1)=(3 . /(X(2)-X(1)))^{*}((Y(2)-Y(1)) /(X(2)-X(1))-Y p 1)$
END IF
do $700 \mathrm{I}=2, \mathrm{~N}-1,1$
$\operatorname{sig}=(X(I)-X(I-1)) /(X(I+1)-X(I-1))$
$P \quad=$ sig*Y2(I-1)+2.
$Y 2(I)=(s i g-1) /$.
700
$U(I)=(6 . *((Y(I+1)-Y(I)) /(X(I+1)-X(I))-(Y(I)-Y(I-1)) /(X(I)-$
$\left.\mid X(I-1))) /(X(I+1)-X(I-1))-\operatorname{sig}^{\star} U(I-1)\right) / P$

IF (Ypn .GT. .99e30) THEN
$Q n=0$.
$\mathrm{Un}=0$.
ELSE
$Q n=0.5$
Un $=(3 . /(X(N)-X(N-1))) *(Y p n-(Y(N)-Y(N-1)) /(X(N)-X(N-1)))$
END IF

```
    Y2(N) = (Un-Qn*(U(N-1)))/(Qn*Y2(N-1)+1.)
    do 701 K = N-1, 1, -1
7 0 1
    Y2(K) = Y2(K)*Y2(K+1)+U(K)
    RETURN
    END
```



```
    SUBROUTINE Splint (Xa, Ya, Y2a, N, XX, Y)
C PRE: Spline has been run for Xa and Ya and is given in Y2a, the
C desired value of }Y\mathrm{ is to be found at }X\mathrm{ . This routine is
C taken from _Numeric Recipies._
C POST: The value desired at X is returned, stored in Y
C ACTION: The interpolation of by piecewise splines is done.
    INTEGER N, K, Khi, Klo
    REAL XX, Y, Xa(N), Y2a(N), Ya(N), a, b, H
C Swapping the following lines is necessary if the data is not converted
C to LOG-LOG format for spline interpolation.
C print *,xx
    X = LOG10(XX)
C print *,x
C X = XX
    Klo = 1
    Khi = N
800 IF (Khi-Klo .GT. 1) THEN
        K = (Khi+Klo)/2
        IF (Xa(K) .GT. X) THEN
            Khi=K
            ELSE
                Klo=K
        END IF
    GOTO 800
    END IF
    H = Xa(Khi) - Xa(Klo)
    IF (H .EQ. O.) PAUSE 'bad Xa input in splint'
    a = (Xa(Khi)-X)/H
    b = (X-Xa(Klo))/H
    Y = a*Ya(Klo)+b*Ya(Khi)+((a**3.-a)*Y2a(Klo)+(b**3.-b)*Y2a(Khi))*
```

|(H**2.)/6.

RETURN
END

Appendix II

An example of the input file BLAST.INP used by the program BLAST.F. This example is for a ground blast ("mine blast") of 5 pounds of TNT at 16 inches normal distance from a target. The file specifies the blast method (Explosions in Air in this case), ground reflectivity value (1.7 or 70\%), time step parameters (number of steps and $\Delta \mathrm{t}$), an epsilon value for fixed point iteration convergence (epsilon), and the number of points as well as their radial values. Options for output of debugging statements and the use of the correction routines for angles of incidence are also included.

BLAST.INP:

```
3
16.
5.0
1.0
1.7 ;ground reflectivity, default is 70%=1.7
50 ;number of time steps, nsteps
0.00005 ;length of time step, deltaT
0.00000001
2
0 ;Calculation debug statements 1=on, 0=off
1 ;Angle of Incidence Pr adjustment 1=on, 0=off
1 ;1=use normally reflected values (airblast), 2=side-on
1 ;1=radial values, 2=(x,y) pairs
9 ;number of radial or (x,y) values
;blank, (x,y) or r values follow:
0.
0.5
1.5
3.5
5.5
7.5
9.5
11.5
13.5
15.5
```

This is the input file EIA.DAT which contains blast parameters used by the program to calculate the blast profiles in its Explosions in Air routines. This data is converted to Log-Log form by the program and then interpolated by splines for the determination of each profile parameter used in Friedlander's equation. Note that this program does not use all the parameters presented in Chapter 6 of Baker's Explosions in Air, or in Chapter 6 of the Army design manual, Explosions in Air.

EIA.DAT

R bar	Ps bar	Pr bar	Ta bar	Ts bar	Tr bar	Is bar	Ir bar	b
0.08	90.5	860.	$4.95 \mathrm{E}-03$	0.0175	0.018	0.0895	1.86	17.2
0.09	77.5	699.	$6.06 \mathrm{E}-03$	0.0182	0.0198	0.0824	1.503	15.8
0.1	67.9	585.	$7.62 \mathrm{E}-03$	0.0191	0.0219	0.0785	1.27	15.45
0.125	48.8	397.	0.0107	0.0243	0.0267	0.075	0.894	15.1
0.15	37.2	277.	0.0154	0.0341	0.0315	0.0788	0.667	15.02
0.2	20.4	146.	0.0255	0.0885	0.0425	0.106	0.456	15.96
0.22	16.6	116.	0.0284	0.126	0.047	0.108	0.408	16.7
0.24	13.4	91.	0.0329	0.148	0.052	0.107	0.368	17.2
0.25	11.9	80.3	0.0382	0.157	0.0542	0.103	0.355	17.
0.3	7.28	37.7	0.0541	0.171	0.0684	0.0885	0.294	12.9
0.4	3.46	15.3	0.099	0.158	0.103	0.0695	0.222	6.76
0.5	2.05	9.4	0.157	0.162	0.147	0.057	0.178	4.562
0.6	1.38	6.05	0.218	0.181	0.195	0.0482	0.15	3.871
0.8	0.772	2.63	0.34	0.232	0.232	0.0371	0.112	3.484
0.9	0.618	1.86	0.392	0.254	0.254	0.0335	0.0989	3.27
1.	0.506	1.31	0.466	0.268	0.268	0.0302	0.0885	3.08
1.5	0.254	0.58	0.83	0.328	0.328	0.0207	0.0529	2.51
2.	0.161	0.358	1.26	0.362	0.362	0.0158	0.0377	2.196
2.5	0.115	0.25	1.71	0.39	0.39	0.0128	0.029	1.977
3.	0.0889	0.188	2.2	0.414	0.414	0.0108	0.0237	1.875
4.	0.0616	0.126	3.21	0.445	0.445	$8.12 \mathrm{E}-03$	0.0173	1.81
5.	0.0468	0.0948	4.21	0.477	0.477	$6.56 \mathrm{E}-03$	0.0137	1.856
6.	0.0374	0.0765	5.19	0.495	0.495	$5.46 \mathrm{E}-03$	0.0112	1.84
7.	0.0306	0.0633	5.84	0.517	0.517	$4.67 \mathrm{E}-03$	$9.49 \mathrm{E}-03$	1.828
8.	0.0261	0.0536	7.15	0.532	0.532	$4.10 \mathrm{E}-03$	$8.40 \mathrm{E}-03$	1.83
9.	0.0227	0.0461	7.64	0.548	0.548	$3.62 \mathrm{E}-03$	$7.31 \mathrm{E}-03$	1.85
10.	0.0198	0.0401	9.1	0.564	0.564	$3.25 \mathrm{E}-03$	$6.58 \mathrm{E}-03$	1.87
20.	$8.70 \mathrm{E}-03$	0.0176	18.9	0.666	0.666	$1.58 \mathrm{E}-03$	$3.20 \mathrm{E}-03$	2.17
30.	$5.43 \mathrm{E}-03$	0.011	28.8	0.737	0.737	$1.04 \mathrm{E}-03$	$2.08 \mathrm{E}-03$	2.382
40.	$3.91 \mathrm{E}-03$	$7.88 \mathrm{E}-03$	38.9	0.781	0.781	$7.64 \mathrm{E}-04$	$1.54 \mathrm{E}-03$	2.553
50.	$3.06 \mathrm{E}-03$	$6.12 \mathrm{E}-03$	48.9	0.825	0.825	$6.05 \mathrm{E}-04$	$1.22 \mathrm{E}-03$	2.754
60.	$2.48 \mathrm{E}-03$	$4.96 \mathrm{E}-03$	58.8	0.856	0.856	$4.98 \mathrm{E}-04$	$9.96 \mathrm{E}-04$	2.87
80.	$1.81 \mathrm{E}-03$	$3.58 \mathrm{E}-03$	78.5	0.916	0.916	$3.68 \mathrm{E}-04$	$7.39 \mathrm{E}-04$	3.08
100.	$1.41 \mathrm{E}-03$	$2.80 \mathrm{E}-03$	98.5	0.96	0.96	$2.93 \mathrm{E}-04$	$5.86 \mathrm{E}-04$	3.25

250.	$5.17 \mathrm{E}-04$	$1.03 \mathrm{E}-03$	224.	1.16	1.16	$1.16 \mathrm{E}-04$	$2.33 \mathrm{E}-04$	3.87
500.	$2.42 \mathrm{E}-04$	$4.86 \mathrm{E}-04$	499.	1.24	1.24	$5.75 \mathrm{E}-05$	$1.15 \mathrm{E}-04$	3.911
1000.	$1.15 \mathrm{E}-04$	$2.31 \mathrm{E}-04$	1000.	1.25	1.25	$2.88 \mathrm{E}-05$	$5.76 \mathrm{E}-05$	3.67

This is the input filePVSA.DAT which contains angle of incident reflected pressure blast parameters used by the program to calculatetheblast profiles in either theExplosions in Air routines, or those of Kingery \& Bulmash. This data is the tabular form of Figure 8.

PVSA.DAT

$\bigcirc \div$

 ．

 ！
 ナ $\dot{\sim}$

 の

人

 －

 －

REFERENCES

[1] Baker, W.E., Explosions in Air, University of Texas Press, Austin, 1973.
[2] U.S. Army Materiel Command, Enginering Design Handbook. Explosions in Air. Part one. AD/A-003 817 (AMC Pamphlet AMCP 706-181), Alexandria, VA, 1974.
[3] Kingery, C.N. and Bulmash, G., "Technical Report ARBRL-TR-02555: Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst." AD-B082 713, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1984.
[4] Goodman, H.J., "Compiled Free-Air Blast Data on Bare Spherical Pentolite." AD No. 235275, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1960.
[5] U.S. Army, TM 5-855-1 F undamentals of ProtectiveDesign for Conventional Weapons, 1992, pp. 3-1-3-29.
[6] Bulson, P.S., Explosive Loading of Engineering Structures, E \& FN Spon, London, 1997.
[7] Gunston, Bill, Modern Airborne Missiles, Prentice Hall Press, New York, 1986, pp. 52-55.
[8] Laur, Col. Timothy M., Llanso, Stephen L, Encyclopedia of Modern U.S. Military Weapons, Berkley Publishing Group, New York, 1995, pp. 241-242.
[9] Press, William H., Flannery, Brian P., Teukolsky, Saul A., Vetterling, William T., Numerical Recipes, Cambridge University Press, Cambridge, 1984, pp. 88-89.
[10] Türkmen, H.S. and Mecitoğlu, Z., "Dynamic Response of a Stiffened Laminated Composite Plate Subjected to Blast Load," J ournal of Sound and Vibration (1999), V. 221,
pp. 371-389.
[11] M.C. Sanford, D.A. Seidel, C.V. Eckstrom, C.V. Spain, "Geometrical and Structural Properties of an Aeroelastic Research Wing (ARW-2)," NASA TM 4110, April 1989.

Vita: J effrey M. K. Chock

The author was born on J uly 27, 1974 at Camp K uwae Army Hospital, Chattan-Son Prefecture, Okinawa, J apan. He received a Bachel or of Science in Aerospace Engineering in 1996, from Virginia Polytechnic Institute and StateUniversity. Heentered the Masters Program in Aerospace Engineering at Virginia Polytechnic Institute and State University in the fall of 1996.

