

NetEdit: A Collaborative Editor

Ali Asghar Zafer

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Masters of Science
in

Computer Science

Clifford A. Shaffer, Chairman
Roger W. Ehrich

Manuel A. Pérez-Quiñones

April 23, 2001
Blacksburg, Virginia

Keywords: Computer-Supported Cooperative Work, Collaboration, Editor, Replication

Copyright 2001, Ali Asghar Zafer

NetEdit: A Collaborative Editor

Ali Asghar Zafer

(ABSTRACT)

Centralized systems are easier to build and maintain as compared to completely
distributed systems. However, distributed systems have the potential to be responsive and
robust relative to centralized systems. This thesis proposes an architecture and
concurrency algorithm for collaborative editing that lies between these extremes and
preserves the advantages of both approaches while minimizing their shortcomings

The Jupiter collaboration system at Xerox PARC uses a 2-party synchronization protocol
for maintaining consistency between two users performing unconstrained edits to the
document simultaneously. The primary goal of our work has been to extend this 2-party
synchronization protocol to an n-way synchronization algorithm. NetEdit is a prototype
collaborative editor built to demonstrate this n-way protocol. It uses a replicated
architecture with the processing and data distributed across all the clients and the server.
Due to replication, the response time of the local edits performed by the users is quite
close to a single user editor. The clients do not need to be aware of other clients in the
system since each of them synchronizes with their counterpart at the server. All
communication regarding editing operations takes place through this server. As a result
this system is quite scalable (linear growth) relative to distributed systems (quadratic
growth) in terms of number of communication paths required as the number of clients
grow. I discuss the details of this extension and illustrate it through an editing scenario.

NetEdit uses groupware widgets (telepointers, and radarview) to distribute awareness
information between participants. It supports completely unconstrained editing and
allows late joining into a session. It does not assume any structure in terms of roles of
participants or protocol for collaboration and thus allow users to form whatever protocol
suits them. The results and conclusions derived from a preliminary usability study of
NetEdit, discuss its efficacy. They also investigate the role of communication and its use
in a groupware setting.

iii

Acknowledgements

I am profoundly grateful to my advisor, Professor Clifford A. Shaffer, and co-adviser
Professor Roger W. Ehrich for their support, direction and ideas throughout this project. I
thank Dr. James Begole, of Sun Microsystems, for his initial help in defining the topic
and later in helping to understand some of his code that was reused in my system. I am
indebted to Dr Manuel A. Pérez-Quiñones, for providing background, focus and direction
during the usability study of this system. I would also like to thank Natasha Dannenberg
for her help in conducting and discussing conclusions derived from the usability
experiments. I thank Tejas Patel, Jason Zwolak, Faria Khalid, and Pete Schoenhoff for
taking notes during the usability experiment.

Finally, I express my deepest gratitude to my parents and grandparents for their
unceasing moral support through the course of my studies.

iv

Contents

Chapter 1 Introduction ... 1

1.1 Problem Description.. 1

1.2 Organization .. 2

Chapter 2 Background Research ... 3

2.1 Collaborative editing systems ... 3
2.1.1 Definitions... 3
2.1.2 Asynchronous Systems ... 4
2.1.3 Synchronous Systems.. 5

2.2 Interface Support for Workspace Awareness.. 14
2.2.1 Telepointers... 14
2.2.2 Multi-User Scroll Bar and Radar Views ... 14
2.2.3 Workspace Teleportals.. 15

2.3 Groupware Architecture Analysis... 16
2.3.1 Centralized/Replicated Architectures.. 16

Chapter 3 System Architecture.. 18

3.1 NetEdit .. 18
3.1.1 Editing a text document... 18
3.1.2 Awareness Information ... 19
3.1.3 Communication ... 20

3.2 Internal architectural details .. 22
3.2.1 Server components .. 22
3.2.2 Client components... 25

3.3 Integrated View... 26

Chapter 4 System Design .. 28

4.1 Session Architecture.. 28

4.2 Issues in the design of a concurrency control algorithm................................... 30
4.2.1 Divergence .. 30
4.2.2 Causality Violation.. 31
4.2.3 Intention Violation .. 31

4.3 Consistency model .. 32

4.4 Transformation of a message .. 33

v

4.5 Concurrency control in groupware systems .. 34
4.5.1 Distributed operational transformation algorithm..................................... 34
4.5.2 REDUCE approach ... 34
4.5.3 Jupiter approach .. 35
4.5.4 ADOPTED approach... 35

4.6 Motivation for this work ... 36

4.7 Algorithm details... 38
4.7.1 Data Structures .. 38
4.7.2 Description of the algorithm ... 39
4.7.3 An example of the algorithm... 41

Chapter 5 Usability Study .. 49

5.1 Usability goals... 49

5.2 Methodology ... 49
5.2.1 Participants .. 50
5.2.2 Experimental setup.. 50
5.2.3 Task details.. 50
5.2.4 Procedure... 51

5.3 Results ... 51
5.3.1 Notes/General observation .. 51
5.3.2 Chat usage pattern ... 53
5.3.3 Evaluation document... 54
5.3.4 Questionnaire responses.. 54

5.4 Analysis... 55

5.5 Redesign of the interface... 55

Chapter 6 Conclusion.. 58

6.1 Benefits of computer-based Collaboration for group editing............................ 58

6.2 Contribution of this work .. 58

6.3 Future Work .. 59
6.3.1 Software Areas .. 59
6.3.2 Usability Areas.. 61

References .. 62

Appendix A .. 65
A.1 Installation Instructions ... 65

A.2 Questionnaire .. 72

A.3 User Manual .. 78

vi

List of Figures

Figure 2.1: Gestalt view in SASSE ... 7
Figure 2.2: Outline view in SASSE .. 8
Figure 2.3: Calliope Text Editor ... 8
Figure 2.4: Habanero collaborative environment and mpEdit (a text editor) 10
Figure 2.5: ITeach Server and Editor .. 11
Figure 2.6: Network Text Editor ... 12
Figure 2.7: NetEdit’s Editor window showing Telecaret and Radarview......................... 15

Figure 3.1: NetEdit’s Editor Window ... 19
Figure 3.2: NetEdit’s Documents/Sessions Window .. 20
Figure 3.3: NetEdit’s Chat Window.. 21
Figure 3.4: High level architecture at the Server .. 22
Figure 3.5: Hierarchy of threads under ServerDaemon .. 23
Figure 3.6: Hierarchy of threads under ServerAwarenessManager 24
Figure 3.7: Hierarchy of threads under ChatServer .. 24
Figure 3.8: Hierarchy of threads under ClientDaemon... 25
Figure 3.9: Integrated Architecture of NetEdit ... 27

Figure 4.1: Architecture of objects (threads) involved in an editing session.................... 29
Figure 4.2: Sample editing scenario.. 30
Figure 4.3: Multi-component synchronization.. 37
Figure 4.4: State space .. 38
Figure 4.5: Initial state of the system .. 41
Figure 4.6: C1 and C2 perform an insert and remove operation respectively 42
Figure 4.7: S1 receives and processes insert ... 43
Figure 4.8: Insert processed by both S1 and S2 .. 44
Figure 4.9: S2 receives and processes remove.. 45
Figure 4.10: Remove processed by both S1 and S2.. 46
Figure 4.11: Remove processed by C1.. 47
Figure 4.12: Insert processed by C2.. 48

Figure 5.1: Chat usage graph... 53
Figure 5.2: Redesigned Edit Window ... 56

vii

List of Tables

Table 2.1: Feature comparison of research systems.. 13

1

Chapter 1

Introduction

We have been through various phases of Information Technology from centralized
mainframe computing to desktop systems and more recently distributed computing. With
the explosive growth of Internet and pervasive use of computers, we need to think about
shifting from personal computing to inter-personal computing. Since people perform a lot
of tasks working together, and because a computer is used in much of their work, it is
interesting to explore ways to use computers to allow this collaboration. With
organizations getting global and the cost of travel for face-to-face collaboration getting
higher and time consuming, it is becoming more appealing to research computer based
collaboration.

Collaboration can range from asynchronous, where an interactive activity is separated by
long periods of time (e.g. e-mail, discussion groups), to synchronous, where an
interactive activity is simultaneous and in real-time (e.g. video conferencing).
Synchronous collaborative systems are not as common as asynchronous systems. One of
the most widely used synchronous collaborative technologies is telephony, where two or
more people can remotely talk to each other in real-time. Computer based synchronous
collaborative systems like shared whiteboards, collaborative editor etc. are only
beginning to emerge recently.

This thesis describes the design, implementation and usability study of a collaborative
editor that allows users to remotely edit a document simultaneously. It describes various
architectures and design issues encountered while developing this system. This work
addresses both technical issues related to the development and human factors related to
the use of this system. The remainder of this chapter talks about the scope of this thesis
and a summary of the organization of later chapters.

1.1 Problem Description

This work describes NetEdit, the collaborative editor, technical issues in its design and
implementation, and its usability study. NetEdit allows two or more users to remotely
edit a document simultaneously. The editing is completely unconstrained and users can

Chapter 1: Introduction

2

insert and delete characters at any location. In fact, two or more users could be
performing insertions and deletions at exactly the same position.

In addition to maintaining consistency of state for all users in the session, we also wish to
preserve the intentions of the participants. Preserving the intention of a user is an
important issue and is discussed in detail in section 4.2.3. Consistency of the state for all
users can be achieved by enforcing a consistent global order for the operations, but
preserving intention requires more complex processing and transformations. To achieve
good response time between when the user types characters and when they get reflected
in the document, we replicate the document at all the user sites. This replication
introduced further complications that we had to take in to account.

The usability study of this system attempted to determine the usefulness of various group
widgets like radarview, telecaret etc., during collaborative editing. These widgets help
give awareness information to the user about remote participants like what part of the
document they are editing, etc. Since this system does not assume any social structure
during editing, the users in the session can form and follow whatever protocol suits them.
We also attempted to determine the usefulness of a chat utility for communication
between remote participants.

1.2 Organization

We start by discussing related systems and research done in Chapter 2. This chapter also
compares some research prototypes on various parameters. Chapter 3 describes the high
level architecture of the system. It discusses the interaction between its various
components. The core algorithm that makes the system do its task is the topic of Chapter
4. The usability study of the system is discussed in Chapter 5. Finally, Chapter 6 draws
conclusions from the work described and presents future research ideas.

3

Chapter 2

Background Research

This chapter reviews the current state of the art in collaborative editing and establishes
the context for this thesis. It begins with a classification of collaborative systems. Various
research prototypes that fall within this classification are described next. We then survey
groupware widgets and conclude with a discussion on groupware architectures.

2.1 Collaborative editing systems

Collaborative systems involve several people working together, sometimes in the same
place, sometimes from a distance, sometimes at the same time and sometimes at different
times. Thus we can have the following four categories[37]: same time/same place, same
time/different place, different time/same place and different time/different place. There
exist systems in each of these categories as follows:

Same time/Different place – application sharing, teleconferencing etc.

Different time/Different place – email, voice-mail, usenet news, fax etc.

Same time/Same place – electronic whiteboards, electronic meeting-rooms etc.

Different time/Same place – desktop computers, group rooms, blackboards etc.

This thesis focuses on the “Same time/Different place” category of application.
Applications in this category are sometimes referred to as synchronous applications. As
opposed to this, applications in the “Different time/Different place” category are referred
to as asynchronous applications. Let me first define a few terms and then discuss some of
the existing systems in the first two categories.

2.1.1 Definitions

• Document: This is a text file that a group of one or more users edit.

Chapter 2: Background Research

4

• Session: A group of users editing the same document form a session. Thus a
session consists of a file being edited and the users involved in the editing. A user
can participate in more than one session at a time.

• Having the floor [15]: In some systems, not all users can do edits simultaneously.

A user who wishes to edit must get a handle for the document, which signifies
that while he/she has this handle, no one except himself/herself can edit the
document. This handle gives exclusive access to the document for performing
editing operations. Getting the handle is often called “having the floor”. One
could get a handle, for example, by pressing a button or running some script. It
depends on how the system is implemented.

• Workspace Awareness [24]: Workspace awareness is the information about the

activity of the remote participants in the session.

• Task Coupling [10]: The degree to which the participants in a session work
closely together categorizes them into tight coupling and loose coupling. If they
are working independently on different parts of the document, then this is referred
to as loose coupling. On the other hand, if they are working closely, like say
brainstorming a paragraph, then their activity is tightly coupled.

• Local/Remote Operation: An operation is local if it is generated by the local

client due to activities like typing, or a paste operation by the local user. On the
other hand, an operation is said to be remote if it is generated by the remote
participant and notified to the local client through some communication
mechanism.

2.1.2 Asynchronous Systems

In asynchronous systems, the work is usually done in a sequential manner with versions
of the document passed between group members. This requires support for
communication of comments and changes within the document.

Quilt [28,12] – Quilt is an asynchronous collaborative authoring system developed at
Bellcore. It forms a superstructure that manages the collaborative aspects of group
authoring like coordination and information sharing. The primary mechanisms available
to its users are a hypermedia system representing the document along with annotations,
audit trail recording, and an integrated electronic mail and conferencing system.
Annotation provides a mechanism by which users can comment to each other about the
document material. Audit trail recording allows collaborators to review each other’s
activities. Electronic mail and conferencing provides the communication mechanism
between users. Here users have different roles in the production of the document, thereby
reducing any uncertainty about the character of each other’s changes.

Chapter 2: Background Research

5

PREP [9] – PREP is another asynchronous collaborative writing tool, which organizes
text in a columnar method. In this, successive versions of the same paragraph are
arranged horizontally in columns. New text is arranged vertically in the same column.
Like Quilt, PREP uses roles to delimit areas of responsibility and to control access to the
document. It has explicit annotation and structured or directed messaging to provide a
means for generating awareness and coordination information.

2.1.3 Synchronous Systems

Some of the challenges [8, 15, 40] faced in developing synchronous systems are as
follows:

Minimize response time: The response time is the time between when the user types
characters and he gets an acknowledgement of his update. The developer must strive to
bring response time associated with the local actions and latency for remote actions to a
minimum.

Flexible edits: Ideally, the users in the session will be given complete flexibility in where
they can edit in the document to facilitate natural cooperative editing. However, the
technical challenge then is to manage multiple streams of concurrent activities so that
system consistency is preserved. Having a consistent global ordering of operations could
help us achieve “flexible editing”, but the system might not have good responsiveness.
This is because each operation (say insertion of character ‘A’) would require round trip
network latency. These operations need to be acknowledged by the coordinating server.
NetMeeting[29], made by Microsoft Corporation, when used for collaboration on a
Microsoft Word document allows only one person to edit at a time. This person must
have the floor to do the editing. It maintains a lock at the entire document level. Thus
NetMeeting is at the other extreme of our ideal for providing flexible editing.

Collaborator Awareness: This can be defined as the knowledge of the state or actions of
other participants. The level of awareness that one may desire depends on the degree of
engagement. Hence, depending on how focused the activity is, collaboration may vary
from general awareness (where people know roughly what others are doing) to high
awareness (where people work together closely). The system must be able to support both
of these types of group dynamics.

Session Control: A collaborative editor should allow users to create, join, or leave
editing sessions at arbitrary times. It must also ensure that each user in the session,
whether he joined late or not, has the same version or view of the document.

Communication: It is essential to provide some kind of communication mechanism
among individuals who are collaborating on the document. They might want to
communicate about the object of their collaboration, exchange questions, revisions and
acceptances, and discuss courses of action and process plans to achieve their goal.

Chapter 2: Background Research

6

Undo facility [35]: Since collaborative writing is an interactive activity, support for
undoing changes might be provided. However, this gets tricky when we realize that there
are two types of “Undo”. First, global group undo applies undo to the last operation
executed, no matter who was the initiator. Secondly, local group undo affects only the
operations performed by the local user. With global group undo, the operation to be
executed only depends on the operation to be undone, e.g., being its inverse operation. In
the case of local undo, it additionally depends on remote operations that have been
executed after the last local operation.

Let us review some of the existing collaborative editing systems and how close they are
to implementing the above said requirements.

ShrEdit [12]: This is a synchronous multi-user text editor, developed at University of
Michigan that runs on a network of Macintosh systems. There are three types of windows
in the system – Shared window, Private window and Control window. A user can have a
number of these windows open at any time. Shared windows contain documents that can
be edited by multiple users while private windows contain documents that only one user
can see and edit. ShrEdit uses a locking mechanism at the level of text selection for
concurrency control. That is the user can select certain text and lock it. Also it is not
permitted for two users to have their edit cursors at the same offset in the document. It
does not have telepointers, but cursor “collisions”, are indicated by an audio signal and a
pop-up window.

The control window shows the names of the participants in the editing session. Users can
track other users i.e. see other user’s view of the document along with his edit cursor and
locking areas. ShrEdit does not impose any structure upon the user’s activities. It
provides equal access to all participants. However, the awareness support is quite
rudimentary.

GROVE [15]: This is a text editor designed for use by a group of people simultaneously
editing an outline document (tree-structured document that may be viewed at various
levels of specificity) during a work session. Within a GROVE session, each user can see
and manipulate one or more views of the text being worked on. There are three categories
of views – private view, shared view, and public view. A private view contains elements
that only a particular user can read. A shared view contains items that only an enumerated
set of users can read. A public view contains items that everyone can read. The shared
view window shows the images or names of the participants who are allowed and
currently editing the document. Participants can enter and leave the session at any time.
When a user enters or re-enters a session, he receives an up-to-date document, unless he
chooses to retrieve a previously stored version.

Grove is designed to encourage and assist in tightly coupled collaboration. The default is
a mode where every one can see and edit everything, and there is no locking while
editing. They claim that after a learning period, it is not chaotic to do the editing
simultaneously because a social protocol acts as a mediator.

Chapter 2: Background Research

7

SASSE [1]: This is a second prototype after SASE, which was an interactive synchronous
writing tool. This version also supports asynchronous editing – an annotation mechanism
is provided that allows authors to exchange notes and comments. It uses a replicated
architecture with the shared document residing on each collaborator’s workstation. It has
a centralized communication server on Unix box that communicates with the clients
using TCP/IP protocol. The clients are Macintosh workstations.

SASSE assumes that users will communicate via telephone or some external audio/video
connection. It uses telepointers (described in section 2.2.1), color-coded text selections,
multi-user scroll bars (described in section 2.2.2) and two kinds of views for maintaining
collaborator awareness. There are two vertical scroll bars – one is the normal scroll bar of
the local user and the other has multiple color codes that correspond to collaborators
participating in an editing session. To avoid conflicting changes, SASSE locks text at the
user text selection level. One of the views supported by SASSE is gestalt view (see
Figure 2.1). It presents a condensed image of the entire document along with
collaborator’s positions and text selections. The observation view (see Figure 2.2) allows
users to “look over the shoulder” of another user and see exactly what he is seeing and
doing. Its like tracking the other participant.

Figure 2.1: Gestalt view in SASSE

Chapter 2: Background Research

8

Figure 2.2: Outline view in SASSE

Calliope [30]: This is a shared editor (see Figure 2.3), developed at University of
Toronto, Canada. It provides a main shared text workspace and a number of tools to
enhance collaborator awareness. It uses user-selectable locking to ensure a consistent
view of text at each user’s workstation. That is the user can select text and optionally lock
it to prevent other users from simultaneously editing it. It has facility for adding publicly
available annotations that can serve as comments on specific text in the document.

Figure 2.3: Calliope Text Editor

Calliope uses color-coded selections, telepointers (described in section 2.2.1), gestalt
view and shared scrollbars (described in section 2.2.2) to provide awareness of the
location and kind of actions being performed by the other collaborators. The color-coded

Chapter 2: Background Research

9

scrollbars for each remote user give his approximate location or view in the document.
Telepointers give more detailed information about remote participant’s position.

NetMeeting [3, 29]: This is a collaboration transparency system from Microsoft
Corporation. In a collaboration transparency system [4], multiple users simultaneously
collaborate with each other using a single user application. The conversion from a single
user system to multi-user system takes place dynamically only for that invocation.
NetMeeting only allows tightly coupled collaboration among participants. When
NetMeeting is used to collaborate on a Microsoft Word document, only one person can
edit at a time. The granularity of locking is the entire document and a user should obtain
the floor before performing his edits. Since it supports a tightly coupled collaboration, it
does not have groupware widgets like telepointer, radarview etc. Telepointers, and
radarview are discussed in detail in section 2.2.

Flexible JAMM (Java Applets Made Multi-user) [3, 4, 5]: This is another
collaboration transparency system that dynamically replaces single user objects with
collaboration-aware versions. Flexible JAMM was used to dynamically convert Notepad,
a java based single user editor, to allow multiple users to collaborate on the document.
The converted system allowed participants to simultaneously edit different parts of the
document. It provided telepointers, and a radarview, so that a user is aware of the
activities of the remote participants. Telepointers and radarview are discussed in detail in
section 2.2.

Habanero [6]: This was developed at NCSA (National Center for Supercomputing
Applications) and is a collaborative framework that allows development of collaborative
applications. It also has a number of collaborative applications (called hablets) like
mpEdit, shared whiteboard, audio chat, weather visualizer etc.

mpEdit (Figure 2.4) uses a centralized approach and tightly coupled collaboration. There
is a coarse-grained lock for the entire document and one has to obtain this lock to edit the
document. Hence it allows only one participant to edit the text (i.e. be active in the
document) at one time. This active user must release control so that other users could
make changes to the document. This kind of close collaboration does not seem to work
well with the dynamics of group activity. There is no provision for passing awareness
information to other users.

Chapter 2: Background Research

10

Figure 2.4: Habanero collaborative environment and mpEdit (a text editor)

ITeach [25]: This system (shown in Figure 2.5) has a multi-user text editor with a
centralized architecture and tightly coupled collaboration. Its development started at
Helsinki University of Technology, and then continued at the Institute for Advanced
Technology in the Humanities at the University of Virginia. Like mpEdit, there is a
locking mechanism and the granularity is over the entire document. Hence a user can edit
a document only if he has the floor. There is no mechanism to distribute awareness
information.

Chapter 2: Background Research

11

Figure 2.5: ITeach Server and Editor

MUSE [31]: MUSE was developed at University of Kentucky in Tcl/Tk. It is slightly
better than mpEdit in that the granularity of locking is one line. Also the lines are colored
differently depending on whether they have been locked or not. A line locked by a user
would appear as green in his window but would appear as red in other participant’s
window. Apart from these color codes, there is no awareness mechanism available. It
uses client-server architecture with the server managing all the locks held by various
clients.

Network Text Editor (NTE) [32]: (Figure 2.6) This is a shared text editor used during
conferencing. Users editing the document need to devise appropriate cooperation
protocol – like establishing roles for the participant, etc. It provides no locking
mechanism; the users can do the editing simultaneously without having to get the floor.
Hence, this could lead to conflicts between users doing the editing concurrently. The
system does not recover from these conflicts but only displays them – audio cue like
beeping, when they occur. It uses telepointers for the remote participants to provide
awareness information.

Chapter 2: Background Research

12

Figure 2.6: Network Text Editor

Table 2.1, as shown below, gives a quick preview of the features for some of these
systems and compares them against each other.

Chapter 2: Background Research

13

 Iteach Habanero MUSE nte

Cut, Copy,
Paste

Available Available Available Available

Undo, Redo Not available Not available Not available Not available

Groupware
Widgets

No such devices. In
fact the
collaboration is
very tightly
coupled. There
exists a kind of
Master-Slave
relationship
between the holder
of floor and the
other terminals.

No such devices.
The collaboration
is very tightly
coupled. There
exists a kind of
Master-Slave
relationship
between the holder
of floor and the
other terminals.

Color codes are used
in this case. These
codes are not for
individual person but
indicate what parts of
the document
different users are
editing concurrently.
The lines that say A
is editing will appear
in his window as
green and in others
window as pink and
vice versa.

The cursor changes
its appearance
while editing is
going on. This
gives the user the
illusion where other
user is.

Concurrency
Control

Control is through
the floor. The
person holding the
floor is allowed to
edit the document.
Not otherwise.

Control is through
the floor. The
person holding the
floor is allowed to
edit the document.
Not otherwise.
Also, there is a
minimum idle time
after which the
control is lost.

Here locks are used
to achieve
concurrency control.
The minimum level
of locking is one line.

There is no locking
or concurrency
control. The users
themselves have to
form some editing
protocol. The
system only
displays the
conflict but does
nothing to recover
from it.

Centralized Has a central
server. The
documents are
always stored on
this server. The
clients act like
dumb terminals
with little
functionality.

Has a central server
that serializes the
editing operations.
The document can
be stored on the
client or the server.

Has Client Server
architecture. The
Server maintains
manages the locks on
various clients and
ensures their
integrity.

NTE is a
multimedia
conferencing tool
and not an editor
per se. Hence it
allows unicast
session or multicast
conferencing
session.

Elegant to use Not much; unless a
protocol for
working
collaboratively is
devised.

Better than ITeach.
Also a protocol for
working
collaboratively is
necessary.

A bit better than the
previous two in terms
of granularity of
locking. Allows work
on separate parts of
the document by
different users
simultaneously

Not elegant to use.
At the time of this
writing, nte was in
a beta test version,
so it sometimes
behaves
abnormally.

Table 2.1: Feature comparison of research systems

Chapter 2: Background Research

14

2.2 Interface Support for Workspace Awareness

Collaborative editors use one of two styles of collaboration. The first is WYSIWIS (what
you see is what I see)[24, 38, 3], which corresponds to tightly coupled group activity.
Due to this high coupling, there is not much need to distribute awareness information, as
all the participants are working at the same position or on the same artifact. The second
type is called location-relaxed WYSIWIS[24, 38, 3] and corresponds to a more relaxed
and flexible collaboration. Here, the participants might be viewing different parts of the
document. Thus there is a need to provide appropriate widgets to make them aware of
each other’s activities. The following subsections discuss some groupware widgets.

2.2.1 Telepointers

Telepointers[24, 38, 3] give an indication of the remote participant’s pointer location. A
variant of this is a telecaret[3]. This corresponds to the caret position of the remote
participant. Figure 2.7 shows a telecaret.

Since there might be more than two remote participants, the telecaret or telepointer could
be appropriately colored according to the color of the remote participant. It could
additionally be appended with the remote participants name. Whatever is the mechanism,
the goal is to make explicit the precise location of the remote participant during group
editing. One could also associate a semantic[18] meaning with the shape, size or the
change to either pointer. For example, the shape of these pointers could change when a
button is clicked. This provides more awareness information to the remote participants
about each other’s activities.

It is to be noted that a telepointer or telecaret is useful and needed only when the two
remote participants are working in sections of the document that are close enough for
these pointers to be seen.

2.2.2 Multi-User Scroll Bar and Radar Views

Although telepointers give exact location of the remote participant, they do not provide
the extent of view in the document of the remote participant. Multi-User Scroll Bar[24, 3]
and RadarView[24, 3] help to provide this information. A Multi-User Scroll bar is a
scroll bar that not only displays the local user’s scroll bar but also the scroll bar of each
remote participant. This was used in SASE[1] system, discussed earlier. One of the
disadvantages of this is the amount of space it takes to convey this awareness
information. The space overhead occurs because there is a scroll bar for each remote
participant. Figure 2.3 displays a multi-user scroll bar.

A variant of this as advocated by SASSE[1] and Calliope[30] to save space, collapses all
the remote participant’s scroll bars in to a single scrollbar. Thus there are two scroll bars

Chapter 2: Background Research

15

– a local scroll bar for the local user, and a remote scroll bar displaying remote users
views in to the document. The remote scrollbar has colored rectangles on them to
differentiate between remote participants also provide information about the extent of
their view in to the document.

A radar-view compresses the entire document into a miniature view and displays that in a
window. The remote participant’s view in the document can be displayed by a shaded
rectangle of his color on this window as shown in Figure 2.7.

Figure 2.7: NetEdit’s Editor window showing Telecaret and Radarview

2.2.3 Workspace Teleportals

When one is interested in seeing another person’s entire view in full size, pressing a
mouse button temporarily ‘teleports’ him to that person’s location, and returning to his
original view when the button is released. This technique[21, 24] allows people to
‘glance’ at another’s work area without much effort. It works by rapidly scrolling to the
remote participant’s location when the mouse button is pressed, and then scrolling back
again when upon release.

Telecaret of remote
participants – grant
and ali, displayed in
their respective colors

Rectangles of remote
participants indicating
their view into the
document

Chapter 2: Background Research

16

2.3 Groupware Architecture Analysis

Groupware systems are inherently distributed, with their components having a protocol
for communication between them. Their architecture can range from completely
centralized to completely replicated[17, 11]. A middle ground between them corresponds
to a hybrid architecture[11] that is replicated but also has certain centralized components.
The following section describes each approach and the tradeoffs involved in using them
for developing a collaborative editor.

2.3.1 Centralized/Replicated Architectures

Dewan[11] associates an architecture with a replication degree – two extremes of which
are centralized and replicated. Centralized architectures[17] use a single application
program, residing on one central server machine to control all input and output to the
distributed participants. The data and the processing details reside on this central
machine. Client processes residing at each site are only responsible for passing requests
to the central program, and for displaying any output sent to it from the central program.
The advantage of a centralized scheme is that the synchronization is easy – state
information is consistent since it is all located in one place, and events are always
handled at the client processes in the same order because they are serialized by the server.

Replicated architectures[17, 11], on the other hand, execute a copy of the program at
every site. Both, the data and the processing are distributed to all the remote participants.
Thus each replica must coordinate explicitly both local and remote actions, and must
attend to synchronizing all copies so they do not get out of step. Centralized architectures
are easy to build, as it is simple to handle conflicts, concurrency issues and to maintain a
single state of the data; because all of the processing and data resides in one central place.
Its main drawbacks are latency, performance bottlenecks, and display issues in
heterogeneous environments of remote users. A centralized scheme implies sequential
processing – user’s inputs are transmitted from the remote machine to the central
application that must handle it and update the displays (if necessary) before the next input
request can be processed. Due to this round trip delay, the responsiveness of the system is
reduced and can be annoying especially in highly interactive applications like group
editing.

Centralized architectures might have problems dealing with heterogeneous environments,
as it is unlikely that a single process at the server can appropriately update remote clients
running on (say) a Windows 95 and a Macintosh environment, as they might have
different hardware capabilities – the server process tells each client how to display rather
than what to display. A replicated scheme, on the other hand, implies parallel processing,
where the handling of interactions and screen updates can occur in parallel at each
replica. Communication is efficient, as replicas need only exchange critical state
information to keep their copy of the data current. While remote activities may still be

Chapter 2: Background Research

17

delayed, a person’s local activities can be processed immediately. Processing bottlenecks
are less likely – each replica is responsible for drawing only the local view, unlike the
central model, which must update the graphics of all the client’s screens. Heterogeneous
environments can be easily handled since information regarding what to display rather
than how to display is sent to all the clients. However, the cost of replication is increased
complexity as issues of distributed systems like conflict management, concurrency
control, etc., must be handled.

Replicated systems have an enormous growth in terms of the number of communication
paths; it grows at the rate of n(n-1)/2, where n is the number of clients in the system. As
compared to this, centralized systems have linear growth: n. Thus, centralized systems
are more scalable in terms of communication requirements than replicated systems.

Somewhere in between are semi-replicated hybrid architectures[11] that contain both
centralized and replicated components. In such systems, the data and processing might be
replicated at each remote location but the communication between them might occur
through a central authority. Patterson[34] advocates a centralized notification server,
whose primary responsibility is to maintain the shared state, to respond to state change
requests by clients, and to notify others of the change when its state has changed. It is up
to the clients to decide how this data is rendered, and the display updated. Iris[26] is a
collaborative editing environment and has a two-layered architecture – storage and
notification layer and user interface layer. It uses a component-based approach for
development.

18

Chapter 3

System Architecture

This chapter discusses the architecture and the implementation details of the NetEdit
system. It starts by describing the functionality of the system from user’s perspective. It
then gives a detailed description of the server and client components. Lastly, it puts
together all the pieces discussed and talks about how they interact with each other.

3.1 NetEdit

This section talks about the components of NetEdit from a user’s perspective. NetEdit
provides the following broad set of facilities:

• Allows editing of a text document
• Provides awareness about who else is participating in the same session
• Allows communication with collaborators through chat utility.

3.1.1 Editing a text document

All the files that users can edit through NetEdit are stored at the server. These files could
be organized hierarchically in directories and sub-directories. When a person logs into
NetEdit, he is presented with this hierarchical view of the files at the server. He can select
any file in this hierarchy for editing. A session consists of one or more users participating
in editing a particular file. He can either join an existing session or create a new session.

Figure 3.1 shows a file being edited by users scott, grant and ali. From the perspective of
scott, the left section is the document window where you edit the text for the file. Apart
from showing scott’s cursor, it also shows telecursor locations for remote participants –
grant and ali.

Chapter 3: System Architecture

19

Figure 3.1: NetEdit’s Editor Window

3.1.2 Awareness Information

Awareness information consists of cues that make a user aware of the other users in the
system and their activities (like what sessions they are participating in, where in the
document they are performing changes, etc.).

There are four places in the system where awareness information is provided to the user.
First is a list of sessions that are currently active. By right clicking on any session, a user
can determine the list of users participating in that session. Figure 3.2 shows three
sessions active in the system. It additionally shows 3 users (scott, ali, and grant)
participating in an editing session for the file C:\NetServer\files\invest.txt.

When editing any file, the right-hand side of the edit window has 2 sections – an
awareness list at the top and radar view at the bottom (see Figure 3.1). The awareness list
specifies all participants presently working on the current document. This list keeps
changing as users log in/out of the session. The radar view contains a miniature version
of the document along with a shaded rectangle for each participant of that session. This
rectangle indicates his view into the document. These rectangles are color-coded and
correspond with the color assigned to that participant in the awareness list section. The
radar view gives an approximate location of the user’s viewport in the document. To get
more detailed information (e.g. the exact position of the user’s cursor in the document),
telecursors are used. These telecursors are also color-coded to correspond to the color of
the users in the awareness list section.

Chapter 3: System Architecture

20

Figure 3.2: NetEdit’s Documents/Sessions Window

3.1.3 Communication

NetEdit has a chat utility that allows remote users to communicate with each other. It
allows sending a message to all users, sending a message to users in a certain session
only or sending a personal message to some user. Figure 3.3 shows the chat window for
user scott. Scott is in a session with two other users – grant and ali, for editing a file
C:\NetServer\files\invest.txt.

Chapter 3: System Architecture

21

Figure 3.3: NetEdit’s Chat Window

A user can broadcast a general message to all the users in the system. The color of these
messages is black. However, he could also send a personalized message (displayed in
red) to a specific user. Finally the system also supports sending a message to only a group
of users in a session. The group messages are shown in green color.

Chapter 3: System Architecture

22

3.2 Internal architectural details

This section describes the internal functioning with respect to the organization of
different pieces of the system and their interaction that makes NetEdit’s functionality
possible. It is divided in to two subsections – Server-side components and Client-side
components:

3.2.1 Server components

Figure 3.4 shows the high level architecture of the server:

start service start service
 start

 service

Figure 3.4: High level architecture at the Server

When the server is started, four services (ServerLogin, ServerDaemon,
ServerAwarenessManager, and ChatServer) are forked. These services are threads
running in the system. ServerLogin listens at a port known to the clients. The ports at
which the other three services listen are chosen non-deterministically from a pool of
available port numbers. Since the port numbers are allocated in this manner, this system
might not work if there is a firewall between the server and a client. ServerLogin knows
the ports at which the other services are listening. After establishing a socket connection
with ServerLogin, the client sends the username/password to it. If this client is an
authorized user, then ServerLogin sends port numbers of the other three services to the
client. The client can then establish socket connections with these services directly. Thus,
ServerLogin serves only as a starting point for entering into the system. The following
subsections describe the functionality of ServerDaemon, ServerAwarenessManager and
ChatServer.

ServerDaemon

When the client establishes a socket connection with this service, a proxy called
ClientProxy is created at the server. This proxy is responsible for maintaining the client’s

ServerLogin

ServerDaemon
ServerAwarenessManager

ChatServer

Chapter 3: System Architecture

23

view of the file hierarchy at the server. On behalf of the user, it executes requests like
renaming a file, deleting a file, opening a file etc. Thus a proxy (ClientProxy) for each
client is created and maintained by ServerDaemon. These proxies are threads forked by
ServerDaemon. ServerDaemon also maintains the sessions that are currently active in the
system. A session consists of one or more users participating in the editing of a
document. An object EditServer is created for each session. When a client is participating
in a session for editing a document, a proxy for it called EditClientProxy is created at the
server. This proxy, which runs as a thread at the server, maintains communication
regarding insertions and deletions from the document, with its counterpart at the client.
These proxies (EditClientProxy) of all the clients together implement the core conflict
and consistency management server-side algorithm for group editing. This algorithm is
described in detail in the section 4.7.

Figure 3.5 shows the hierarchy of objects that implement the above two functions.

 …

 …
 …

 …

Figure 3.5: Hierarchy of threads under ServerDaemon

Thus as we see above, ClientProxy is responsible for performing administrative tasks like
renaming a file, deleting a file, etc., and EditClientProxy is responsible for implementing
the protocol that allows group editing.

ServerAwarenessManager

Figure 3.6 shows the architecture responsible for transferring awareness information –
telecursor and radarpane updates, participant’s list, etc., to the clients. Each client, after
getting an authorization from the ServerLogin, establishes a socket connection with the
ServerAwarenessManager. This creates a proxy (a thread), called ClientAwarenessProxy,
at the server. This proxy is responsible for transferring all the awareness information

ServerDaemon

ClientProxy

EditClientProxy

EditServer EditServer

EditClientProxy EditClientProxy

Chapter 3: System Architecture

learned from other clients to this client. Each client has one ClientAwarenessProxy at the
server, regardless of the number of sessions in which it is participating.

 …

Figure 3.6: Hierarchy of threads under ServerAwarenessManager

ChatServer

This has architecture similar to ServerAwarenessManager. It is responsible for managing
the chat communication system. Figure 3.7 shows the hierarchy of threads under
ChatServer.

Figure 3.7: Hier

Each client, after getting an author
connection with the ChatServer. Thi
at the server. This proxy is responsi
clients to this client depending on w
all) or multicast (message to a group
passing messages from this client t
broadcast, multicast or a personalize
the server, regardless of the number o

ServerAwarenessManager

ChatClientProxy

ClientAwarenessProxy
ClientAwarenessProxy ClientAwarenessProxy

C

ChatServer
24

 …

archy of threads under ChatServer

ization from the ServerLogin, establishes a socket
s creates a proxy (a thread) called ChatClientProxy,
ble for transferring all the chat messages from other
hether the message is a simple broadcast (message to
) or personalized to a user. It is also responsible for

o other clients depending on the type of message –
d message. Each client has one ChatClientProxy at
f sessions in which it is participating.

hatClientProxy ChatClientProxy

Chapter 3: System Architecture

3.2.2 Client components

Figure 3.8 shows the architecture at the client side.

ClientDaemon is an object that first establishes a socket connection with the ServerLogin
and sends it username and password. If the user is authorized to use the system,
ServerLogin replies back with the port numbers of other services – ServerDaemon,
ServerAwarenessManager and ChatServer. The Client then forks the threads –
ClientAwarenessManager, EditClient and ChatClient, shown in Figure 3.8, which
connect to the appropriate services at the server. These are described further in the
following subsections

Figure 3.8: Hierarch

ClientAwarenessManager

ClientAwarenessManager is respons
updates, obtained from the server
graphical user interface widgets – rad
client. These widgets help a user to b
establishes a socket connection with C
get the updates. It also sends updates b
client changes – like scrolling to differ

EditClient

EditClient is a thread object forked for
editing. It communicates all the inserti
EditClientProxy at the server. The pro
the communication between them
management algorithm that manages g
messages that are exchanged, is discus

ClientAwarenessManager

t

ClientDaemon
25

 …

y of threads under ClientDaemon

ible for distributing the aware
(specifically ClientAwarenessPr
ar views, telecursors, participan
e aware of other user’s activities
lientAwarenessProxy at the serve
ack to ClientAwarenessProxy wh
ent part of the document, exiting a

 each document that the user is p
ons and deletions through a socke
cessing at both EditClient and Ed
constitutes the core conflict

roup editing. The details of this p
sed in detail in the section 4.7.

t

tEditClient
ChatClien
EditClien
EditClien
ness information
oxy), to various
t’s list etc, at the
 in the system. It
r to continuously
en the state of the
 session etc.

articipating in for
t connection with
itClientProxy and
and consistency
rocessing and the

Chapter 3: System Architecture

26

ChatClient

ChatClient creates the chat window to display the transcripts of the chat messages and
provides a space for the user to type his messages. It establishes a socket connection with
ChatClientProxy at the server and exchanges streams of chat messages with it.

3.3 Integrated View

Having discussed the server components and client components in detail, let me put them
together to describe how they interact with each other. Figure 3.9 shows an integrated
view of the complete system. As can be seen, the server has three main systems – chat
system, awareness distributor system, and editing system. These systems are further
divided into smaller components. These components communicate with their counterparts
at the clients. The different types of arrows depict distinct kinds of message types being
exchanged between the client and the server. The arrows that connect server components
to client components indicate socket streams. Thus ChatClientProxy at the server has a
socket connection with ChatClient at the client. Similar are the connections for awareness
distributor system and editing system.

Figure 3.9 also shows three clients currently logged in the system. There are two editing
sessions – EditServer 1 and EditServer 2, presently active and managed by
ServerDaemon. Each session has a file associated with it. Thus, there are two files that
are being edited by the users. All three users are participating in the first session
(EditServer 1). Client 2 and Client 3 are also editing the file associated with Session 2
(EditServer 2). Due to this architecture, the system supports a many-to-many relationship
between sessions in the system and users participating in these sessions. That is, a user
could be participating in multiple sessions and a session could have more than one user.

Chapter 3: System Architecture

27

Figure 3.9: Integrated Architecture of Ne

ChatServer

ServerAwarenessManager

EditServer 1

ChatClientProxy

ChatClientProxy

ChatClientProxy

ClientAwarenessProxy

ClientAwarenessProxy

ClientAwarenessProxy

ClientAwarenessManager

ChatClient

ClientAwarenessManager

ChatClient

EditClientProxy

EditClientProxy

EditClient EditClient EditClient

ServerDaemon

EditClientProxy

ServerLoginChat
System

Awareness Distributor System

r
Session 2
Session 1
EditServer 2

EditClientProxy

EditClientProxy

Client 1
tEdit
Client 3
Client 2
Clients
Serve
ClientAwarenessManager

ChatClient

EditClient EditClient

28

Chapter 4

System Design

NetEdit is designed to have the following characteristics:

Real-Time response: The response to a local user’s edits must be extremely fast, as
close as possible to the response when using a single user editor. Also the latency
for reflecting remote users actions must be low, governed mostly by the external
communication network latency.

Unconstrained editing: Multiple users should be allowed to simultaneously and
freely edit any part of the document without any prior locking.

Distributed architecture: The users of this system should be allowed to work from
remote locations, connected by different communication networks with non-
deterministic latency.

This chapter reiterates the architecture of the components involved in group editing,
discusses the problems in the design of a synchronization algorithm, surveys some
existing concurrency algorithms, and explains the motivation behind this work. It further
discusses our approach and concludes with an example illustrating how our algorithm
works.

4.1 Session Architecture

Let me reiterate the high-level architecture of a session, as discussed in the Chapter 3,
that involves editing of a document by one or more users. It has a star topology as shown
below, in Figure 4.1.

Before proceeding forward, let me describe the terms “user”, “client” and “server”. A
user is the person who is doing the editing. He is also referred to as a participant. The
client is the client-side interface or the graphical user interface tool in which the editing
occurs (see Figure 3.1). It corresponds to EditClient in the session architecture shown in
Figure 4.1. The server is a service that holds a session. This corresponds to EditServer

Chapter 4: System Design

(see Figure 4.1). Although EditServer is shown as a single component, it actually consists
of many sub-parts that will be discussed in detail later.

Whenever a user joins a session for editing a document, his client establishes a socket
connection with EditServer. EditServer sends a copy of the document in its current state
to the client. The client then displays this document in the edit window and also
maintains it, as the local user and remote users make edits to the document. Thus if there
are four users in a session, there will be five copies of the document in the system – one
at each user’s workstation and one at the server. The users make changes to their local
copies of the document. Local edits are applied directly to the local copy, buffered, and
sent to the server to distribute it to the remote clients. The server receives similar updates
from all the clients. It processes these operations in real-time, updates its own copy and
sends the processed updates to the clients so that they can do further processing and
update their copy. The processing done at the clients and the server makes sure that all
the contentions and conflicts are resolved and the copies at all the clients and the server
are consistent.

Figure 4.1: Architecture of

r

1
EditServe
 …

 2
EditClient
29

objects (threads) involved in an edi
EditClient n
EditClient
ting session

Chapter 4: System Design

30

4.2 Issues in the design of a concurrency control algorithm

To achieve good responsiveness from NetEdit, a replicated architecture is used. A copy
of the document resides at all the clients. Thus there is a replication of the document at all
the distributed sites. Due to the use of this architecture, maintaining consistency between
replicated copies is a difficult task. To appreciate the complexities in dealing with this
problem consider the following scenario.

Suppose there are three clients C1, C2 and C3 that are performing the edits on behalf of
their users as shown in Figure 4.2:

 O1

 O2 O4
 O3

Figure 4.2: Sample editing scenario

In this example, O1, O2, O3 and O4 represent four operations to modify the document.
Suppose that the edits are applied to the local copy immediately after they are generated
and sent to the remote clients where they are applied in their original form (without
transformation of any kind). Transformation (discussed in detail in section 4.4) consists
of changing the offset of the operation at which it is applied in the document, so that the
new offset is consistent with the execution of other concurrent local operations. As a
result the following inconsistency problems might arise.

4.2.1 Divergence

Due to non-deterministic communication delays, the messages might arrive and be
executed in different order at different clients. In Figure 4.2, the order of execution of

time C1 C2 C3

Chapter 4: System Design

31

messages is O1, O2, O3, O4 at C1; O1, O3, O2, O4 at C2; O4, O2, O1, O3 at C3. These
messages O1, O2, O3 and O4 could be insertions and deletions and hence are not
commutative. Thus the state of the document at the three clients will be different. This is
unacceptable for a group-editing tool such as this.

4.2.2 Causality Violation

As shown in the above time-line diagram (Figure 4.2), O2 is executed after the execution
of O1 at C1. Thus O2 is causally dependant on O1. As a result, it is necessary that this
order of execution be preserved at all the clients. However, due to non-deterministic
communication delay, this cannot be guaranteed. But out-of-causal-order execution
should be prohibited.

According to Lamport [27], let me formally define the causal ordering relation on
operations in terms of their generation and execution.

Causal Ordering Relation “ –>”: Given two operations Oa and Ob, generated at
sites i and j, Oa –> Ob if and only if

1. i = j, and the generation of Oa happened before the generation of Ob.
2. i is not equal to j, and the execution of Oa at site j happened before the

generation of Ob
3. there exists an operation Ox, such that Oa –> Ox and Ox –> Ob.

Dependent operations: Given any two operations Oa and Ob, Ob is said to be
dependant on Oa if and only if Oa –> Ob.

Independent operations: Given any two operations Oa and Ob, they are said to be
independent (occurring simultaneously or concurrently) if and only if neither Oa –>
Ob, nor Ob –> Oa. This can be expressed as Oa || Ob.

It is to be noted that the above two inconsistency problems can be solved easily by
enforcing a total ordering on the messages. This can be done through the use of a central
coordinator who time-stamps each message before sending to the clients who then
execute the instructions based on this total order. But the drawback of this approach is
that, it does not have good responsiveness (round trip delay before the local operation can
be applied to the document stored locally) and also cannot solve the third inconsistency
problem, intention violation, described in the next section.

4.2.3 Intention Violation

As shown in Figure 4.2, O2 and O3 were generated and applied when the document was
in the same state at both C1 and C2. O2 was generated without any knowledge of O3 and
vice-versa. Thus O2 is independent of O3 and vice-versa (see the definition of

Chapter 4: System Design

32

independent operations above). Due to this concurrent generation of operations, the
actual effect of an operation at the time of its execution may be different from the
intended effect at the time of its generation. To understand this better, let us consider the
following example:

Suppose the document at C1 and C2 before the execution of O2 and O3 is
“ABCDEFGH”. Let O2 be insert[“1234”, 4] (insertion of “1234” at offset 4). Let O3 be
remove[2, 4] (delete 2 characters at offset 4 – removal of “EF”). After the execution of
both these operations and preserving the intention of C1 and C2, the final state after the
execution of O2 and O3 should be “ABCD1234GH”. However the state at C1 would be
“ABCD34EFGH”. This violates the intention of operation O2 as “12” that it inserted are
not there in the document and also the intention of operation O3 since “EF” is yet present
in the document.

It should be noted that the above three inconsistency problems, divergence, causality
violation, and intention violation, are independent of each other and the resolution of one
does not guarantee the resolution of others. Also the problem of divergence and intention
violation are of different nature. Applying some serialization technique can solve the
former but the latter needs some transformation to the operations before applying to the
document.

4.3 Consistency model

Having talked about the above problems let me state the model (from Sun et al. [8]) of
consistency that must always be maintained by cooperative editing system.

Convergence: At quiescence, when all the operations that were generated are applied
at all the clients, all the copies of the replicated document must be the same.

Causality preservation: For any pair of operations Oa and Ob, if Oa –> Ob, then Oa
is applied to the document before Ob at all the clients.

Intention preservation: For any operation O, the effects of applying O on
documents at all the clients are the same as the intention of O, and the effect of
applying O does not change the effects of independent operations.

The convergence property ensures that the state of the document is same at all the clients
at the end of an editing process. The causality property ensures that dependant operations
are always applied in their causal order at all the clients. Both these properties are
necessary for the correctness of the system. The intention preservation property ensures
two things. First, the effect of applying an operation at the remote clients is the same as
the effect of its application at the local site at the time of its generation and secondly, the
execution of independent operations do not interfere with each other.

Chapter 4: System Design

33

4.4 Transformation of a message

Transformation[14] consists of changing the offset of the message at which it is applied
in the document, so that the new offset is consistent with the execution of other
concurrent local operations. As noted earlier, imposing some global order on the
operations can take care of convergence and causality. But to take care of intention
preservation, this ordering is not sufficient. It is necessary to transform independent
operations with respect to each other appropriately. This is explained as follows.

Consider the operations O2 and O3 from Figure 4.2. Both these operations have
originated when the document is in the same state at C1 and C2. Lets say the document
contains “ABCDEF” before the execution of either O2 or O3. Also consider that O2 is
insert[“123”, 2] and O3 is insert[“abc”, 4]. When C1 receives O3, the document at C1
after applying O2 but before executing O3 is “AB123CDEF”. Since (1) O2 and O3 were
independent operations, (2) Both O2 and O3 were generated from the same state of the
document and (3) the offset of O3 is greater than the offset of O2, O3 needs to be
transformed with respect to O2 at Client C1. The transformation essentially consists of
adding 3 (size of O2) to the offset of O3. Thus O3 now gets transformed into
insert[“abc”, 7]. This when applied to the document gives “AB123CDabcEF”. Similarly,
at client C2, O2 will be transformed with respect to O3 giving the final state of the
document at C2 as “AB123CDabcEF”. Thus we see that the intentions of both O2 and O3
were preserved. Similar transformations are required for delete-delete, insert-delete and
delete-insert combinations. It is to be noted that when you have delete as one of the
operations, it might involve subtraction as well.

It is important to realize that the transformation of two operations is warranted only when
they originate from the same state of the document. To emphasize this point, consider
operations O3 and O4. O3 has seen the effect of execution of O1 but this is not the case
with O4. Hence these two operations in their original form cannot be transformed.

Chapter 4: System Design

34

4.5 Concurrency control in groupware systems

Some of the algorithms developed to perform unconstrained editing are discussed in this
section. These algorithms use a replicated architecture as far as processing and data is
concerned. They use optimistic concurrency control where the basic idea is to take an
operation executed in some past state and to transform it in a way so that it can be applied
to the current state. However, they assume there is already some mechanism for
exchanging messages between participants. For example, one could have a centralized
communication server and each participant would communicate with the other through
this server, or some other mechanism for exchanging messages.

4.5.1 Distributed operational transformation algorithm

Ellis et al. suggested a concurrency control algorithm for group editing based on
distributed operational transformation[14, 7]. Here there is no central entity. All the
clients have a copy of the document that is being edited collaboratively. They update
their own copy. The operations that they apply to their local copy are also sent to all other
clients. When the remote clients receive these operations, the state of their local
document might be in conflict with the incoming operation. Hence these incoming
operations are transformed i.e. their offset changed (incremented or decremented)
depending on whether they are inserts or deletes and the type of conflict. Since the
processing of these remote and local operations (remote and local operations are defined
in section 2.1.1) is distributed at all the clients and the remote operations get transformed
when they occur concurrent to local operation, this algorithm is referred to as distributed
operational transformation (dOpt).

However, two research groups[8, 36], working independently on this problem, discovered
a flaw in this algorithm. When two users are participating in editing a document, and one
of them issues and executes more than one operation concurrently with an operation by
the other user, the document at both sites becomes inconsistent i.e. the state of the
document stored locally at both the user’s workstations becomes different. For example,
O2 and O3 (Figure 4.2) are generated in the same state and can be transformed against
each other. However, O2 and O4 (Figure 4.2) are generated from different state of the
document and hence cannot be transformed against each other. The dOpt algorithm did
not take this into account and did the transformation in both cases. Both of these research
groups have proposed a solution – Reduce approach and Adopted approach, as discussed
below, to this problem.

4.5.2 REDUCE approach

REDUCE [8, 7] approach performs two types of transformations to the incoming
messages: inclusion transformation and exclusion transformation. Inclusion
transformation involves transformation of messages when they are generated from the

Chapter 4: System Design

35

same state of the document. Exclusion transformation involves more processing since
here messages are not generated from the same state of the document. It also maintains a
history buffer (HB) that keeps track of all the operations that have been executed and is
used to perform the transformations.

As in the above algorithm, there is no central entity. All the clients have a copy of the
document that is being edited collaboratively. They update their own copy. The
operations that they apply to their local copy are also sent to all other clients. When a new
operation O at a client’s site is causally ready for execution, the following is done: First,
all the operations in HB that causally follow this operation are undone to restore the
document in a state before their execution. Next, operation O is applied to the document.
Finally all the undone operations are redone. These undo/do/redo operations must all be
done as a single transaction.

4.5.3 Jupiter approach

The Jupiter collaboration system[33, 7] was developed at Xerox PARC. They describe a
two-way synchronization protocol that allows 2 participants to be in sync with each other
during editing. They further suggest that one can use this 2 party synchronization
protocol to achieve n-way synchronization. That is, a client does not synchronize with
other clients. Instead each client synchronizes only with the server. Hence, due to this 2
party (client and server) protocol, one can achieve n-way consistency protocol for group
editing. It uses a 2 – dimensional state space graph, instead of a HB as in REDUCE
approach, to keep track of paths to follow during operation transformation. The state
graph ensures that the pair of messages, undergoing transformation, has originated from
the same state of the document. The state space is discussed in detail in section 4.7.1.

4.5.4 ADOPTED approach

In the ADOPTED approach[36, 7], there is no central entity. All the clients have a copy
of the document that is being edited collaboratively. They update their own copy. The
operations that they apply to their local copy are also sent to all other clients.

In addition to performing the above discussed transformation when the two operations are
generated from the same state of the document, the ADOPTED approach maintains an N-
dimensional interaction model graph to keep track of all valid paths of operation
transformations. This N-dimensional interaction model graph can be viewed as a
generalization of the 2 dimensional state space graph in the Jupiter algorithm. By
choosing the right paths in this interaction model, the algorithm ensures that any pair of
operations involved in the transformation originate from the same state of the document.

Chapter 4: System Design

36

4.6 Motivation for this work

This section discusses the differences between the synchronization algorithms, their
advantages and disadvantages, the motivation behind our work, and finally gives a brief
overview of our protocol. It is interesting to observe that the Reduce and Adopted
approaches are completely distributed with no central entity. Since in a collaborative
system, no client has ownership of the document, it is not clear in these approaches where
the document will be stored and maintained. However, both systems are more resilient to
failure as compared to the centralized Jupiter system – a failure of one client does not
affect the other collaborating participants. And, due to the distributed nature of Adopted
and Reduce approaches, their algorithm is also more complex than Jupiter algorithm.

In Reduce and Adopted approach, each client needs to know all the other participants in
the system and establish a communication path with them. Hence this architecture is not
very scalable. To cope with this enormous growth in communication paths, they might
communicate with each other through a central server. If this is done, then the
communication server becomes the bottleneck and its failure will cause the entire system
to fail. As compared to this the Jupiter algorithm uses a centralized component for
communication of messages, processing and storage of the documents. However the
clients are not dumb terminals, but need to do their part of processing to the messages
received from the server. Thus although the architecture is centralized, it involves
replication of the documents at all the clients. The Jupiter collaboration approach
discusses a 2-way synchronization protocol for unconstrained editing of a document
between two participants. They further suggest how this could be extended to n-way
synchronization.

Our goal is a collaborative editing system that is scalable, simple, and resilient to failure.
The 2-way synchronization protocol developed for the Jupiter collaboration system
served as a good starting point for us to achieve n-way synchronization. By our literature
review in this field, it appeared that almost all the group editing systems were built before
1995 and were not being maintained by the research groups. For example, SASSE[1],
discussed in Chapter 2, was built in the early 90’s for Macintosh workstations. It is our
thinking that the current state of the art in distributed technology and programming
environment makes it relatively simple and efficient, as compared to early 90’s, to
develop collaborative editing systems.

Thus in this thesis, we worked out the details of extending this two-way protocol to
multi-way protocol. We used multiple two-way component synchronization to achieve
multi-component synchronization protocol. This is shown in Figure 4.3 as follows:

Chapter 4: System Design

37

Figure 4.3: Multi-component synchronization

Here C1, C2, C3, … Cn correspond to the software components (clients in our context),
while S1, S2, S3, … Sn are their counterparts at the server. The arrows show the
communication paths between components. C1 synchronizes with S1, C2 with S2 and so
on. We developed a communication protocol between S1, S2, S3 … Sn so that C1, C2,
C3 … Cn synchronize with each other without each being aware of the other. Thus we
see that C1, C2, C3, … Cn coordinate with each other through their counterparts at the
server.

S1 S2 S3 … Sn

C1 C2 C3 … Cn

Communication
paths between
components

Server

software
component

(client)

Chapter 4: System Design

4.7 Algorithm details

This section describes the multi-party synchronization protocol discussed in brief earlier.
It starts with discussing the data structures used, then formally specifies the algorithm and
finally ends with an example illustrating its steps.

4.7.1 Data Structures

All the clients and the server (one for each client) maintain a state space [33] as shown in
Figure 4.4.

2,0

3,0

The state space is used so that
where the other is, relative to it,
through this state space as they p
of messages from the client an
example, if the client is in the sta
own, and has received and proce
in state (0,2), it has generated an
processed 0 messages from the
server while the first correspon
messages in the same order, then

r
Client Serve
38

0,0

1,0 0,1

 1,1 0,2

2,1 1,2 0,3

- -

- -

Figure 4.4: State space

 each client-server pair could maintain information of
in the editing process. Both the client and the server pass
rocess messages. Each state is labeled with the number
d server that have been processed to that point. For
te (2,1), it has generated and processed 2 messages of its
ssed 1 message from the server. Similarly if the server is
d processed 2 messages of its own, and has received and
client. Hence the second component corresponds to the
ds to the client. If the server and client process the

 they will follow the same path in the state space graph.

Chapter 4: System Design

39

The algorithm labels each message with the state the sender was in just before the
message was generated. The recipient uses these labels to detect conflicts. One can
transform two concurrent messages only when they are generated from the same state of
the document, or special handling is required.

The clients and the server (one for each client) also maintain a buffer that contains
operations that have been generated and applied locally but have not been acknowledged
by the other party.

4.7.2 Description of the algorithm

This description is divided in to 2 parts – Client and Server, as follows:

Client

When the client receives a message, say s1, from the server with state space value of (a1,
a2) then you search its buffer from the beginning (i.e. the oldest entry in it) and start
discarding those messages (with state space (b1, b2)) from it (buffer) such that b1 < a1.
These are those messages that server has already received and processed.

Next transform s1 with respect to the next message (the first message after the discarded
messages) in the buffer. This is the message that was executed in parallel to s1 and also
when the document was in the same state. It might be that there are no messages left in
the buffer after discarding; in that case you simply apply the message directly to the
document. Otherwise, call this transformed message 1′s . Next transform 1′s with each
remaining message in the buffer in order until you reach the end as follows

1′s = transforms (1′s , next message in the buffer);

Apply the final transformed message to the document in its current state. While you are
transforming s1 with the messages in the buffer, also transform those messages (ones in
the buffer) say c2, c3, c4 … into 2′c , 3′c , 4′c … and store them accordingly in the buffer
along with updated state space values (i.e. with their original state space values except
that the server component – second component of the 2 valued tuple, in each will be
incremented by one). The state of the client now goes from (x, y) to (x, y+1). This
procedure is repeated for all the messages that it receives from the server (i.e. for remote
operations).

The operations that are generated locally are applied to the document directly and also
stored in the buffer with proper state values (i.e. the state the document was in when the
local operation was generated). After applying this local operation, the client moves from
state (x, y) to (x+1, y).

Chapter 4: System Design

40

Server

Assume that there are 4 clients (C1, C2, C3 and C4) in the system and S1, S2, S3 and S4
respectively are proxies for them. Let the buffers of S1 through S4 be named as q1, q2,
q3 and q4 respectively. Suppose S1, which maintains communication with C1, is in state
(x1, y1). Similarly S2, S3 and S4 are in states (x2, y2), (x3, y3), and (x4, y4) respectively.

Suppose that a message c1 comes from client C1 having state space value (a1, b1). S1
will search its buffer (q1) from the beginning (i.e. the oldest entry in it) and start
discarding those messages that have state space (u1, v1) from it (q1) such that v1 < b1.
These are those messages that client C1 has already received and processed.

Next transform c1 with respect to the next message (the first message after the discarded
messages) in the buffer q1 of S1. This is the message that was executed in parallel to c1
and also when the document was in the same state. It might be that there are no messages
left in the buffer q1 after discarding; in that case you simply apply c1 directly to the
document. Otherwise, call this transformed message 1′c . Next transform 1′c with each
remaining message in the buffer (q1) in order until you reach the end as follows

1′c = transforms (1′c , next message in the outgoing queue(q1));

Apply the final transformed message (say m1) to the document in its current state. While
you are transforming c1 with the messages in the buffer (q1), also transform those
messages (ones in the buffer q1) say s2, s3, s4 … into 2′s , 3′s , 4′s … and store them
accordingly in the buffer (q1) along with updated state space values (i.e. with their
original state space values except that the client component – second component of the 2
valued tuple, in each will be incremented by one). Also increment the client component
of the state for S1, that is, its state changes from (x1, y1) to (x1+1, y1).

Add m1 to the buffers of C2, C3 and C4. The state stored in the buffer q2 for message m1
would be (x2, y2). Similarly m1 in q3 and q4 will have state (x3, y3) and (x4, y4)
respectively associated with it. This corresponds to the state that S2, S3 and S4
respectively were when the message m1 was processed by S1.

m1 will then be sent to all the clients, that is, m1 with state value (x2, y2) will be sent to
C2; m1 with state value (x3, y3) will be sent to C3; m1 with state value (x4, y4) will be
sent to C4. S2 goes to state (x2, y2+1). S3 goes to state (x3, y3+1). And S4 goes to state
(x4, y4+1). It must be noted that all the above must be executed as one atomic operation.

Similar processing is required for messages from other clients as well. At quiescence, S1
must have state same as the state of client C1. Similarly S2 must have state same as the
state of client C2 and so on for all the clients in the system.

Chapter 4: System Design

41

4.7.3 An example of the algorithm

This section discusses the steps of the algorithm by taking a specific example.

Suppose there are 2 clients in the system. Hence there will be 4 state graphs that are
maintained – 2 by the clients (one each), and 2 by the server (one for each client).
Assume that the initial state of the document at all these entities is (0, 0) and the buffers
are empty. Also assume that the document in this state contains “ABCDEF”. They are as
shown in Figure 4.5.

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

Figure 4.5: Initial state of the system

Each entity’s current state in the state graph is displayed by bold font and buffers are
shown as empty. At this point, suppose that C1 performs insert[“a”, 2] (insertion of

ABCDEF

ABCDEFABCDEF

Chapter 4: System Design

42

character ‘a’ at offset 2 in the document) and C2 performs remove[1, 4] (removal of a
character at offset 4 in the document). Both these local operations are performed at the
local copy of the document. This causes them to move to a new state and the buffers also
get modified as shown in Figure 4.6.

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

Figure 4.6: C1 and C2 perform an insert and remove operation respectively

The state of (1,0) of C1 and C2 implies that both have generated and processed 1
message of their own, and has received and processed 0 from the server. After applying
to the local copy, both C1 and C2 send their operations to S1 and S2 respectively. It is to
be noted that all local operations are buffered at the point of their generation and no
remote operation is buffered.

Ins[‘a’,2] 0,0Ins[‘a’,2]

ABaCDEF

rem[1,4] 0,0

ABCDF

rem[1,4]

ABCDEF

Chapter 4: System Design

43

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

Figure 4.7: S1 receives and processes insert

All messages that are going from clients to server get serialized at the server and are
processed in this sequence. Suppose that C1’s message (ins[‘a’, 2] 0,0) (henceforth called
M1) reaches server before C2’s message. The same final result would have been obtained
if we had assumed otherwise. M1 is a remote operation for S1 with respect to C1. Hence
M1 will not be buffered at S1. As can be seen from Figure 4.7, M1 causes S1 to go from
0,0 to 1,0 (generated and processed 0 messages of its own, and has received and
processed 1 message from the client C1). M1 is first transformed with respect to
operations in the buffer at S1, and then this transformed message is applied to the
document and handed over to S2 for further processing and also to send it to C2.

Ins[‘a’,2] 0,0Ins[‘a’,2]

ABaCDEF

rem[1,4] 0,0

ABCDF

rem[1,4]

Ins[‘a’,2]

ABaCDEF

Chapter 4: System Design

44

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

Figure 4.8: Insert processed by both S1 and S2

With respect to C2, M1 is a local operation at S2. Hence it causes S2 to go from 0,0 to
0,1 (generated and processed 1 message of its own, and has received and processed 0
messages from the client C2). Since M1 is a local operation at S2 with respect to C2, it is
also buffered at S2 as shown in Figure 4.8. This message is then sent to C2.

Suppose the server now receives the operation from C2 (rem[1,4] 0,0 – henceforth called
M2). M2 will first be transformed against all the messages in the buffer of S2 that have
not been seen by C2. This is done by removing all messages, from the buffer of S2,
whose server-component of their state is less than the server-component of the message.
After this elimination, M2 will be transformed with all the remaining messages in the
buffer. These are those messages that were executed in parallel with M2.

Ins[‘a’,2] 0,0Ins[‘a’,2]

ABaCDEF

rem[1,4] 0,0

ABCDF

Ins[‘a’,2] 0,0

ABaCDEF

rem[1,4]

Ins[‘a’,2]
Ins[‘a’,2]

Chapter 4: System Design

45

After transformation, M2 would become rem[1,5] (henceforth called 2′M). While M2
was being transformed, the messages in the buffer are also transformed with respect to
M2 and stored back into the buffer. The result is shown in the buffer of S2 in Figure 4.9.
M2 is then applied to the document and passed on to S1 for further processing and also to
send to C1. S2 now goes in to state 1,1 (generated and processed 1 message of its own,
and has received and processed 1 message from the client C2).

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

Figure 4.9: S2 receives and processes remove

Note that since 2′M was a remote operation for S2, it is not stored in its buffer. But for
S1, it is a local operation as far as C1 is concerned. Hence it causes it to go from 1,0 to
1,1 (generated and processed 1 message of its own, and has received and processed 1
message from the client C1). It is also stored in its buffer and then sent to C1 as shown in
Figure 4.10.

Ins[‘a’,2] 0,0Ins[‘a’,2]

ABaCDEF

rem[1,4] 0,0

ABCDF

Ins[‘a’,2] 1,0

ABaCDF

rem[1,4]

Ins[‘a’,2]
Ins[‘a’,2]

rem[1,5]

Chapter 4: System Design

46

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2

Figure 4.10: Remove processed by both S1 and S2

Note that the state information sent with 2′M to C1 is 1,0 and not 0,0 tha
had when it was sent from C2 to S2. This is because 2′M is a local operati
the state that S1 was in when this local operation is generated is actuall
When C1 receives 2′M , it does all the operations similar to those that S2 h
it received M2 from C2. That is, it first removes all the operations from t
have been seen by S1 because the effect of those operations is present in
operation. This is to obtain all the operations that were executed in p
received operation. On doing this, the saved message in C1’s buffer gets de
client-component of the state is less than the client-component of 2′M . Th
Figure 4.11.

Ins[‘a’,2] 0,0Ins[‘a’,2]

ABaCDEF F

Ins[‘a’,2] 1,0

ABaCDF

rem[1,4]

Ins[‘a’,2]
Ins[‘a’,2]

rem[1,5]

rem[1,5] 1,0

rem[1,5]
ABCD

0,3

t it originally
on for S1 and
y sent to C1.
ad done when
he buffer that
 the received
arallel to the
leted since its
is is shown in

rem[1,4] 0,0

Chapter 4: System Design

47

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

Figure 4.11: Remove processed by C1

Since there are no more messages left in the buffer, 2′M is applied directly to the local
copy of C1. Since this was a remote operation for C1, it is not stored in its buffer. Also
note that C1 now moves to state 1,1. To complete the entire cycle, suppose that the
operation ins[‘a’, 2] 0,0 (called as M1) sent by S2 to C2 is now received by C2. Once
again, M1 will be transformed with messages in C2’s buffer. Since M1’s offset is less
than M2’s offset, it will remain unchanged. It is then applied to the document at C2. This
causes C2 to go to state 1,1 as shown in Figure 4.12:

 Ins[‘a’,2]

ABaCDF

rem[1,4] 0,0

ABCDF

Ins[‘a’,2] 1,0

ABaCDF

rem[1,4]

Ins[‘a’,2]
Ins[‘a’,2]

rem[1,5]

rem[1,5] 1,0

rem[1,5]

rem[1,5]

Chapter 4: System Design

48

S1 S2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

C1 C2

0,0 0,0

1,0 0,1 1,0 0,1

2,0 1,1 0,2 2,0 1,1 0,2

3,0 2,1 1,2 0,3 3,0 2,1 1,2 0,3

Figure 4.12: Insert processed by C2

All the parties are now in the same state and the document at each is also the same. This
is a condition that occurs at quiescence when all the messages that have been generated
are applied at all the clients. This implies that the first condition of the consistency model
is satisfied. It is easy to observe that the way a client sends a message to other clients (i.e.
through centralized server where they are serialized), the causality property between
messages is preserved. Since a transformation engine does some bookkeeping and
transforms multiple independent messages with respect to each other, the intention
preservation property is also preserved. It is interesting to observe how S2 and C2
traverse different paths in the state graph, but ultimately converge to a common state.
This is because they both execute operations in different order. The above example
showed that the two were displaced from each other by just one operation, but in practical
situations, they might deviate by multiple operations. The key that makes them converge
to a common state is the buffering of operations at each site.

 Ins[‘a’,2]

ABaCDF

rem[1,5] 0,1

ABaCDF

Ins[‘a’,2] 1,0

ABaCDF

rem[1,4]

Ins[‘a’,2]
Ins[‘a’,2]

rem[1,5]

rem[1,5] 1,0

rem[1,5]

rem[1,5] Ins[‘a’,2]

49

Chapter 5

Usability Study

This chapter describes our goals in the usability study for NetEdit, talks about the
methodology for collecting the data, discusses the results, and finally derives conclusions
from the analysis.

5.1 Usability goals

When users work in groups in the same physical space, they are aware of each other’s
activities through what they see and hear. Since in a collaborative system the participants
are geographically separated from each other, workspace awareness is an important
functionality[15, 21, 24, 18] that should be supported. Telepointers and radarview are the
primary widgets in NetEdit that provide this information to the users. Apart from external
modes of communication like telephone etc., the participants in NetEdit communicate
with each other through a chat window.

In our study, our goal was

1. To determine the efficacy of these awareness widgets during group editing,
whether the users were able to correctly interpret their change, whether the users
were distracted by them, etc.

2. To study the amount of use of the chat window and whether it was sufficient for

communication during the group activity.

3. To determine the user-friendliness of other functionality in the system.

5.2 Methodology

We used observation, self-reporting, questionnaire and discussions to gather information
for addressing our questions. This section describes the participant groups, the
experimental setup and the task that the participants were asked to perform.

Chapter 5: Usability Study

50

5.2.1 Participants

We did the experiment with three groups – two groups consisting of three participants
each and one group consisting of four participants. One of the groups, with three
participants, acted as pilot subjects to test our experimental setup, and task to be
performed. The three participants in the pilot study were graduate students (one female
and two males) in computer science. All other participants (males) were also majoring in
computer science (six undergraduate students from an undergraduate level Human
Computer Interaction class and one graduate student).

5.2.2 Experimental setup

Participants worked on Windows machines from separate closed rooms. The only way
they could communicate with each other was through the chat utility provided in the
system. An experimenter was assigned to each participant to observe his/her activities,
and take notes from whatever he/she said during the course of the experiment. The
participants were asked to speak aloud their intentions and any remarks they had while
performing the assigned task. All their communication and editing activities were logged.

5.2.3 Task details

The task was to write a document no longer than 3 pages as a group. The topic of the
document was their evaluation of the usability of the interface of NetEdit. The interface
consists of 3 components – a Documents/Sessions window, a Chat window and an Editor
window. Each user was responsible for doing the usability evaluation of one of these
components. They had to decide amongst themselves, after they were assigned to their
workstations, which component each of them would evaluate. Even though they were
evaluating one window, the final document was to be organized based on the following
eight characteristics.

1. Visibility, Mapping, Feedback
2. Did the responses from the system make sense
3. User control and freedom
4. Recognition rather than recall
5. Aesthetic and minimalist design
6. Ability to help users recognize, diagnose, and recover from errors
7. Online help and documentation
8. Gulf of evaluation and execution

Hence this exercise made them work in a loosely coupled manner when they were doing
their own evaluation and in a tightly coupled manner when they were putting together all
the details. The entire process was required to be completed within 45 minutes. All
participants were familiar with the above usability principles.

Chapter 5: Usability Study

51

5.2.4 Procedure

Participants were introduced to the entire experimental setup and asked to sign the
consent forms. They were then given a demonstration of NetEdit, briefly describing its
components, widgets and how they worked. Finally the task was explained to them and
they were sent to their workstations in different rooms. Each participant was assigned an
experimenter, who observed his/her activities and noted any remarks they said aloud. The
participants were asked to speak aloud their activity/intentions while performing the task.

After around 45 minutes, participants were given a questionnaire that analyzed their
experience with the system. Some responses in the questionnaire and any eccentric
activity we observed were then discussed briefly with them.

5.3 Results

This section discusses the notes taken by the experimenters during the editing session,
some of their observations, the evaluation document produced by the participants, and the
responses in the questionnaire.

5.3.1 Notes/General observation

Eight out of ten participants had not used a collaborative tool before. The participants
started by playing around with the system. They liked radarview and also found it useful
during the editing process. Initially when they were concentrating on their own
evaluation, radarview was used often to determine what other participants were doing.
Telecursor gained importance when the groups started combining their work together. In
fact, one of the participants kept watching the telecursors of other users to find out what
they were doing and infer their intentions. He remarked that it was difficult during editing
to have to continually switch back and forth between the chat and editing window. He
further suggested that a voice channel for communication would have been more
effective. These observations were substantiated by the responses from the questionnaire
and the brief discussion we had with the participants after the experiment.

Two different styles of working were observed. One of the groups with three participants
made sections in the edit window and each were working in their own section. But they
took some time to decide on this organization. They were allowed to communicate only
through NetEdit – Chat window. The frustration of not being able to get themselves
organized was clearly indicated by their messages in the chat window. They had initially
started preparing the document as if they were using a single user editor. And it took
them a little while to realize that in order for the group activity to be effective, they
needed to work a little differently. It clearly showed that after some learning of not only
how to use a collaborative tool but also how to work remotely in groups, the session can
be productive. It all came down to establishing a social protocol for editing the same
document.

Chapter 5: Usability Study

52

The editing started getting chaotic when they began combining their evaluation into a
single coherent document. Some participants tried to move their work closer to the work
of other participants without realizing that even these other participants were trying to do
the same thing. Thus all of them were trying to move their text in between the text of
other users. Although there were a lot of chat messages between them so that they could
get synchronized, it seemed that communicating using chat window was too slow. By the
time a user typed some chat message and returned to the edit window, the state of the
document was changed. Hence his comments were no longer valid. This caused a lot of
irritation between participants. Also, to avoid having to switch back and forth between a
chat window and an edit window, they started communicating using the edit window
itself. Section 5.3.2 discusses the usage of chat window by the two groups in more detail.
The document now started to look a little confusing, as lot of chat messages got inserted
between their texts. They needed a high bandwidth communication mode like audio
conferencing tool within the system. However at the end of the session, they were able to
produce a document that was a little unorganized but had some valuable comments. Some
of these comments are discussed in section 5.3.3.

We had explicitly imposed a structure on the group with four users. One of the
participants was to act as a director overlooking the activities of all the participants and
guide the preparation of the document. However, this group could not get oriented and
instead focused on what they were doing. One of the participants in this group felt a need
for the system to provide tools to automatically know the intentions of his group
members. It seemed to us that since there were four participants (a bigger group than
other groups), identifying and synchronizing the activity was more difficult. And the slow
mechanism for communication (chat messages) exacerbated the problem.

One of the problems that three users complained of was quite interesting and a good
research issue. This system tried to preserve the intentions of the users as explained in
section 4.2.3. Hence whenever there were characters inserted or deleted from the part of
the document above the point where a user is working, the user notices a sudden
movement of his cursor location. This movement is especially significant when a new
line character is inserted. This is because the entire line of the user along with his cursor
suddenly goes to a new line. When this happens, he looses the context of his surrounding
text and gets confused. We thought this could be solved in two ways. First is that of a
gradual change of his position so that the sudden movement is avoided. This means that
the incoming remote operations might be processed further before applying to the
document. One could use the cloud burst model[15] for this. In cloud burst model, the
local operations appear in the window immediately but a cloud appears over remote
operations. The text associated with these remote operations is then progressively
revealed as the cloud starts fading. Secondly, the JScrollPane and JTextPane widgets that
contain the document could be modified or rewritten so that they grew both ways instead
of just growing in one direction (bottom). Thus if characters are inserted above the local
users cursor position, the document would grow upwards but if the characters are inserted
below the local users cursor position, the document would grow downwards.

Chapter 5: Usability Study

53

5.3.2 Chat usage pattern

Figure 5.1 shows distribution of the number of chat messages against time, during the
experiment. The time on the graph is divided in five-minute intervals. Thus Group 1 had
three messages passed around during the first five minutes and seven messages during the
next 5 minutes. Group 1 had three participants and Group 2 had four participants.

Figure 5.1: Chat usage graph

Group 1 started by playing for a little while with NetEdit; exploring its widgets, going
through different options on various windows etc. There were messages for deciding who
would write what and how they would later combine their evaluation. As they proceeded
with the activity, the number of chat messages kept increasing for the first 20 minutes.
After this, they began to combine their work and contrary to our notion, the chat activity
started decreasing significantly. This is because the users were getting annoyed by
continually having to switch back and forth between the chat window and the edit
window. They preferred to communicate with each other through the edit window itself.
That explains the low activity in the chat window during the latter 20 minutes of the
experiment.

Group 2 started by discussing with each other how they would get organized. This is
explained by heavy activity in the chat window during the first five minutes. Then they
went on to exploring NetEdit – its features, different windows etc. Even with this group,
we see a dip in the number of messages during the latter part of the experiment for the
same reason explained above. This group was a little unorganized. They continued to
chat for extended periods then shift to doing only editing and then again come back to

Chapter 5: Usability Study

54

only chatting and so on. They emphatically felt the irritation of switching between chat
and edit windows.

5.3.3 Evaluation document

The document produced by the two groups was quite unorganized. The participants spoke
aloud what they were about to do, their thoughts, assumptions, etc. during the entire
experiment. The experimenters captured almost all this feedback during the editing
session.

Some important comments that the document had are “green color is hard to see”, “the
rename icon is confusing… it needs a better image”, “This window does not refresh itself
fast enough”, “sometimes the people's cursors sit on top of what I am trying to write and
it makes it hard to see”, “wonder what happens when you delete a file that people are
working in…haha…kicked everyone out”, etc.

The participants enjoyed working with NetEdit, particularly because for many of them
this was their first experience with a collaborative tool. The comment in the document
“sometimes the people's cursors sit on top of what I am trying to write and it makes it
hard to see” was quite noteworthy. Two participants complained about getting distracted
by the telecursors. However, both of them felt that it provided important information and
suggested that it be customizable according to the look and feel of the user’s choice.

5.3.4 Questionnaire responses

The participants felt that the response time of the editor was 3.0 on a scale of 1 to 5 with
1 being extremely slow and 5 being very fast. They had mixed reactions over the efficacy
of telecursors and radarview. Some preferred telecursors while others thought radarview
was more useful. But they definitely wanted both of them. These widgets seemed to
distract a few of them (2 participants), while for others (8 participants) it complimented
their editing activity. Six participants felt the need to color-code the text with the color
assigned to them, to identify who wrote what text; but they also wanted an option to turn
the coloring off.

The amount of use of chat utility was 3.2 on a scale of 1 to 4 with 4 being extensive
usage and 1 being not used at all. This rating is amply substantiated by our observations
during the experiment. The chat system has three modes of sending a message to the
remote users of the system. This was to address the issue of the users getting
overwhelmed with messages. Although the participants felt that it was important to have
these modes, they did not like the coloring scheme used for distinguishing different types
of messages. They were confused between the coloring scheme of these messages and the
colors in the edit window. They did not realize that both were independent of each other.

Chapter 5: Usability Study

55

Their overall experience with the system was 3.2 on a scale of 1 to 5 with 1 being
completely confusing and 5 being extremely intuitive. The first thing they wanted to be
changed was a better and faster communication mechanism. They felt that their group
activity would have been much better if they were able to communicate as they do while
working from the same physical space.

5.4 Analysis

This section analyzes the data we collected during the usability experiment of NetEdit.

The coloring scheme in the chat window and edit window needs to be made more
intuitive. One could have more than one chat window – say one global where every one
can communicate with each other and the other local to each session attached to the edit
window. The chat window specific to a session could color-code the messages with the
color assigned to the participants in that session. This would resolve the difficulty of
identifying which message came from whom.

As the users insert text in the edit window, it should be colored with the color assigned to
them. However there should also be an option to turn this coloring off. The need for this
mechanism was realized during the observation and discussion with the participants.
Whenever the participants wanted to communicate with each other about certain text
written by someone, they had to first identify who wrote that text, and then talk about that
text. The earlier round of messages for discovery simply added to the volume of
messages being passed around without serving any useful purpose.

There was an earnest need for a faster communication mechanism between participants.
One quick solution to this problem that was suggested is to have another chat window,
attached to the edit window, specific to each session. This would avoid having the users
to continually switch back and forth between typing some text in the edit window and
typing messages in the chat window to communicate with the participants in their
session. The other option was to incorporate an audio channel in NetEdit for
communication between participants.

A gradual change in the cursor position of a user when characters (especially new line
character) get inserted before his location in the document. Two solutions to this problem
were discussed in Section 5.3.1.

5.5 Redesign of the interface

This section does a brief redesign of the interface to address some of the usability
concerns discovered during the experiment. Figure 5.2 shows the edit window modified
to now incorporate a chat window. The chat messages appear in the color of the
participant who sent them. The chat “send to” control panel also displays an icon for

Chapter 5: Usability Study

56

assigning colors to the participants in a session. The messages that are addressed to all
appear in black in the chat window. Individual messages have two asterisks before them.

Thus there is a chat window associated with each session. The user is given the flexibility
of assigning the color he/she likes, to each remote participant. This might avoid
confusion between the colors in the edit window and those in the chat window as they are
now controlled by the user and are not independent of each other as was the case earlier.
Since now the chat window is below the edit window, there is no switching between
windows. They both appear, in front, in the same parent window. And since there is a
chat window specific to each session, message overload problem is also addressed – as
chat messages belonging to a session will only appear in the chat window associated with
that session.

Figure 5.2: Redesigned Edit Window

grant to group: Lets put the 2nd parah at the end
scott to group: I think you are correct
ali to group: But it does not seem logical to do that
ali to all: Any one interested in helping us with this summary
**ali to grant: Why do you want to delete that text

Color
assignment
icon

Chapter 5: Usability Study

57

The text inserted by the remote participants in the edit window can be colored with the
color assigned to them. However, one might provide a button or a menu option to turn
this coloring off. This is not to say that one must preserve the coloring over the lifetime
of the document but should manage the coloring for an active session.

The above said features are quite simple to implement, as there is no global information
that needs to be maintained. It requires modification only at the client’s end.

Incorporating an option for an audio mode can significantly improve the communication
between remote participants. However, this might require some effort both at the server
and at the client. A balance would also need to be determined since many users doing
audio communication could cause a lot of confusion.

58

Chapter 6

Conclusion

This chapter summarizes the benefits of computer-based collaboration for group editing,
discusses the contribution of this work and suggests ideas for future research.

6.1 Benefits of computer-based Collaboration for group editing

Due to the explosive growth of Internet and pervasive use of computers, it is important to
explore ways to use computers for group activities. Shared document editing could be
important for organizations that are global in nature and have geographically distributed
teams. Instead of passing a document from one team member to another for review, all of
them could brainstorm simultaneously. This is a cost-effective tool that can save travel
time and make a team more productive.

This tool also provides a platform for studying how people work in groups. This study
could lead to the creation of group work environments that result in more productive
activity from group members.

6.2 Contribution of this work

The research in collaborative editing systems can be categorized into (1) application level
– where the focus is coordination and consistency management between remote software
components, and (2) human level – where group dynamics, collaborative widgets etc. are
studied in detail.

This thesis has primarily focused on the application level, although a preliminary
usability study of the groupware widgets and group dynamics is also performed. A
number of distributed algorithms [8, 36, 7] for achieving consistency between
collaborators exist. These algorithms do not scale, as the number of participants grow and
are also quite complex. On the other hand, Jupiter collaboration system [33, 7] discusses
a 2-way synchronization protocol for group editing. As suggested by them, we explored
the details of extending this 2-way protocol to n-way synchronization protocol. We

Chapter 6: Conclusion

59

implemented a prototype in Java 2.0 (jdk1.3.0), NetEdit, to demonstrate the mechanics of
our extension.

6.3 Future Work

This research has brought to light many future ideas categorized into software areas and
usability areas. The software area relates to improvements in fault tolerance, efficiency,
firewall issues etc., while usability area discusses ideas about studying group dynamics
during group activity, the semantics of version control, etc. Although we have this
categorization, the ideas discussed are inter-dependant and require acumen from both
software and usability domain.

6.3.1 Software Areas

• Fault Tolerance: The system has a centralized architecture with the processing
distributed between clients and the server. However, if the server fails, then the
entire system comes to a halt. Thus there is no secondary server that could mirror
all the data and operations, and dynamically replace the faulty server. It will be
interesting to explore this possibility, keeping in mind that while the switch is
taking place, there could be operations being performed by the clients. Also, it
needs to be researched whether the existing algorithm will be able to scale to this
requirement or if it would require significant fundamental changes.

• Algorithm Extension: The core algorithm, described in section 4.7, that manages

consistency of the document at all the clients processes single characters.
However, it is seen that multiple characters inserted or removed in succession, in
a short period of time, go through the same kind of transformation. Hence it will
be interesting to modify this algorithm so that strings of arbitrary length, instead
of single characters, can be transformed. This might potentially increase the
speed, as lesser number of operations now needs to be processed, and also reduce
the memory space required, as lesser number of operations would be needed to be
stored in the buffers.

• Improving Efficiency: While implementing this prototype, we noticed two

bottlenecks that affected the performance of the system. One is the bandwidth
used for passing messages between clients. There are large numbers of small
messages that are being broadcasted to the clients. These messages include
operations being performed by the users, awareness information such as change in
caret position etc. One could aggregate some of them and thus potentially
improve the bandwidth utilization. However, one needs to explore the optimum
point beyond which the response time becomes noticeable by the remote users.
The other bottleneck is the slow display refresh mechanism of the java virtual
machine. Some of the widgets where this was noticeable were JTextPane (which

Chapter 6: Conclusion

60

holds the document being edited), and JScrollPane (which provides scrolling
support). It will be interesting to explore ways to address this issue.

• Supporting Large Documents: The JTextPane widget that holds the document

during editing has a limitation that it can only support files that are a couple of
megabytes long. For bigger size documents, it stops responding and behaves
abnormally. Reading only a window’s worth of text at a time from a larger
document and displaying it could potentially overcome this limitation. However,
application level caching might be required, by exploiting the locality of reference
property, to reduce the latency involved in frequent disk accesses.

• Firewall and Security: Firewalls can be configured to allow certain specified

traffic while preventing other traffic to pass through. NetEdit allocates ports from
a pool of free ports non-deterministically. Thus one does not have control on what
ports or range of ports could be used. This causes access problems if one is using
NetEdit from behind a firewall. It will be important to explore ways to solve this
and make NetEdit operate in versatile environments. NetEdit currently has a
single password file that stores the login ids and passwords of users. One could
replace this with more robust and fine-grained security and authentication
capabilities. The channels of communication between the clients and the server
could be encrypted using state of the art encryption algorithms.

• Editor features: There is support for cut, copy and paste operations during

editing. However, it is important to support other features like page or paragraph
alignment, different styles and sizes of font, etc. It might be interesting to import
images in to the document and allow them to be manipulated collaboratively. The
system provides two groupware widgets – telecaret and radarview for providing
awareness information during text editing. It will be interesting to investigate
whether these widgets would suffice during image manipulation or one would
require a fundamentally new set of groupware widgets.

• Communication: Our preliminary usability study of NetEdit revealed that the

existing communication mechanism between participants through a chat window
is extremely slow and unacceptable. The various options to address this issue
need to be explored. For example one could provide an audio channel between
participants in the same session and have a chat window for communicating with
participants in other sessions etc. These two modes are suggested to avoid the user
from getting overwhelmed by audio messages.

• Web Enabling: Currently, the system is an application written in Java 2.0

(jdk1.3.0). One could web enable this system by converting to applets or through
some other mechanism taking into account the Java security model.

Chapter 6: Conclusion

61

6.3.2 Usability Areas

• Version Control and Undo facility: Keeping track of different versions of the

document and reverting to an earlier version can be an important utility. However,
it is difficult to determine, to which version one must roll back. Is it the version
where only the operations done by the local user must be reverted or is it the
version where both local and remote operations need to be undone. It really
depends on the type of group activity. If it’s tightly coupled collaboration – like
brainstorming a paper where all the participants are working very closely, then
one might want to revert to a previous version undoing both local and remote
operations. However, if the collaboration is loosely coupled, where the
participants are working in different parts of the document, one might want to
rollback to a previous version undoing only local operations. This was our
observation during the usability study of the system and needs to be more
thoroughly studied. It is interesting to realize that this might be more of a social
issue than a technical problem.

• Text Coloring Scheme: The system does not color the inserted characters with

the local color of the participant. It is interesting to explore whether this coloring
is necessary and if it allows more awareness information to be shared between
users. One might also study whether it is necessary to retain this coloring over the
lifetime of the document or it should go away after each session. We assign an
unused local color to each remote participant during an editing session. Thus the
same participant might have different colors in different sessions. Is this
confusing? Is there a need for consistent global color assignment so that the
participant has the same color in all the sessions? It might be interesting to
explore these questions more thoroughly by a comprehensive usability study.

• Studying Group Mechanics: Since the system does not assume or impose any

protocol for group activity, the participants can form the editing structure that
suits them. These structures could be decided explicitly at the beginning of the
session or could be formed implicitly as the group activity proceeds. It might be
interesting to observe this behavior with different types of groups collaborating in
a tightly coupled or in a loosely coupled manner. The system logs all the activities
including the messages exchanged by the users. This log could be used to replay
the entire group activity and perform further usability analysis.

62

References

1. Baecker, R.M., Nastos, D., Posner, I.R., and Mawby, K.L. “The User-centred Iterative Design of
Collaborative Writing Software”, Proceedings of InterCHI'93, ACM, 1993, 399-405, 541.

2. Bardram, Jakob, “Designing for the dynamics of cooperative work activities”, Proceedings of the

ACM, CSCW 1998, Pages 89 – 98.

3. Begole J., “Flexible Collaboration Transparency: Supporting Worker Independence in Replicated
Application – Sharing Systems ”, PhD Thesis, Virginia Polytechnic Institute and State University,
Department of Computer Science, 1998.

4. Begole J., Craig A. Struble, Clifford A. Shaffer, and Randall B. Smith, “Transparent Sharing of

Java Applets: A Replicated Approach”, Proceedings of the ACM, UIST, 1997, Pages: 55 – 64.

5. Begole, James , Rosson, Mary Beth, and Shaffer, Clifford A., “Supporting Worker Independence
in Collaboration Transparency”, Proceedings of the ACM, Symposium on UIST 1998, Pages: 133
– 142.

6. Chabert Annie, Ed Grossman, Larry S. Jackson, Stephen R. Pietrowiz and Chris Seguin, “Java

object-sharing in Habanero”, Communications of the ACM, June 1998/Vol. 41, No. 6, Pages 69 –
76.

7. Chengzheng Sun, Clarence (skip) Ellis, “Operational Transformation in Real-Time Group Editors:

Issues, Algorithms, and Achievements”, Proceedings of the ACM, CSCW 1998, Pages: 59 – 68

8. Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang and David Chen, “Achieving
Convergence, Causality Preservation, and Intention Preservation in Real-Time Cooperative
Editing Systems”, ACM Transactions on Computer-Human Interaction, pages 63-108, March
1998.

9. Christine M. Neuwirth, David S. Kaufer, Ravinder Chandhok and James H. Morris, “Computer

Support for Distributed Collaborative Writing: Defining parameters of Interaction”, Proceedings
of CSCW ’94 Computer-Supported Cooperative Work (Chapel Hill, NC, USA, October 1994).

10. Dewan Prasun and Choudhary Rajiv, “Flexible User Interface Coupling in a Collaborative

System”, Proceedings of ACM CHI 1991, Conference on Human Factors in Computing Systems.
Pages 41 – 48.

11. Dewan, Prasun, “Architectures for Collaborative Applications”, In Beaudouin-Lafon, M. (Ed.),

Computer Supported Cooperative Work, Trends in Software Series 7, John Wiley and Sons Ltd.
1999.

12. Dourish, Paul, and Bellotti, Victoria, “Awareness and Coordination in Shared Workspaces”,

CSCW November 92 proceedings of ACM.

13. Du Li, Muntz, Richard, “COCA: Collaborative Object Coordination Architecture”, Proceedings of
the ACM, CSCW 1998, Pages 179 – 188.

References

63

14. Ellis, C. A., S. J. Gibbs, “Concurrency Control in Groupware Systems”, Proceedings of the ACM,
SIGMOD Conference on Management of Data, May 1989, Pages: 399 – 407.

15. Ellis, C.A., Gibbs, S.J., and Rein, G.L. “Groupware: Some Issues and Experiences”, CACM 34(1),

1991, 38-58. Reprinted in Baecker, R.,M. Readings in Groupware and Computer-supported
Cooperative Work: Facilitating Human-Human Collaboration, Morgan Kaufmann, 1993.

16. Fish, Robert S., Kraut, Robert E., Leland Mary D. P., and Cohen, M., “Quilt – A Collaborative

Tool for Cooperative Writing”, Proc. COIS’88 Office Information Systems (Palo Alto, CA, March
1988).

17. Greenberg, Saul and Mark Roseman, “Groupware Toolkits for Synchronous Work”, In

Beaudouin-Lafon, M. (Ed.), Computer Supported Cooperative Work, Trends in Software Series 7,
John Wiley and Sons Ltd. 1999.

18. Greenberg, Saul, Carl Gutwin and Mark Roseman, “Semantic Telepointers for Groupware”,

Proceedings of OzCHI November 1996 Sixth Australian Conference on Computer-Human
Interaction.

19. Grudin, Jonathan, “Eight Challenges for Developers”, Communications of the ACM, January

1994, Vol 37, No. 1, Pages: 93 – 105.

20. Gutwin, C., and Greenberg, S. “Workspace Awareness for groupware”, CHI 96, Conference
Companion (Vancouver, 1996), 208-209

21. Gutwin, C., Greenberg, S. and Roseman, M. (1996). “Workspace Awareness in Real-Time

Distributed Groupware: Framework, Widgets, and Evaluation. in Sasse”, R.J., A. Cunningham,
and R. Winder, Editors. People and Computers XI (Proceedings of the HCI'96), pages 281 - 298,
Springer-Verlag. Conference held at Imperial College, London, August 20-23.

22. Gutwin, C., Greenberg, S., & Roseman, M., “Workspace Awareness in Real-Time Distributed

Groupware: Framework, Widgets, and Evaluation”, People and Computers XI (Proceedings of the
HCI'96) Springer-Verlag, Pages 281-298.

23. Gutwin, C., Greenberg, S., and Roseman, M. “Workspace Awareness support with Radar Views”,

CHI 96, Conference Companion (Vancouver, 1996), 210-211

24. Gutwin, C., S. Greenberg and M. Roseman, “A usability study of awareness widgets in a shared
workspace groupware system”, Proc. CSCW, ACM Press, New York, November 1996, Pages 258
- 267.

25. ITeach, A Collaborative editing environment, at Institue of Advanced studies in Humanities.

URL: http://jefferson.village.virginia.edu/ITeach/

26. Koch, Michael, Jürgen Koch, “Using Component Technology for Group Editors - The Iris Group
Editor Environment.” Proceedings of Workshop on Object Oriented Groupware Platforms,
Lancaster, UK, G. H. ter Hofte, H. J. van der Lugt(ed.), September 1997.

27. Lamport, L, “Time, clocks and the ordering of events in a distributed system”, CACM 21(7),

Pages: 558 – 565, July 1978.

28. Leland, Mary, Fish, Robert and Kraut, Robert, “Collaborative Document Production Using Quilt”,
Proc. CSCW ’88 Computer-Supported Cooperative Work (Portland, Or., September 1988).

29. Microsoft NetMeeting, April 2001.

URL: http://www.microsoft.com/windows/netmeeting/default.asp

http://jefferson.village.virginia.edu/ITeach/
http://www.microsoft.com/windows/netmeeting/default.asp

References

64

30. Mitchell, A., “Communication and Shared Understanding in Collaborative Writing”, MS Thesis,
University of Toronto, Department of Computer Science, 1996.
URL: http://home.pacific.net.sg/~kamitchell/portfolio/calliope.html

31. Mullick, Sachin, Raphael A Finkel, MUSE, A Collaborative editor. Masters Project. University of

Kentucky.
URL: http://www.cs.engr.uky.edu/~raphael/studentWork/muse.html

32. Network Text Editor, an application developed at Networked Multimedia Research Group,

University College London.
URL: http://www-mice.cs.ucl.ac.uk/multimedia/software/nte/

33. Nichols, David A., Pavel Curtis, Michael Dixon, and John Lamping, “High-Latency, Low-

Bandwidth Windowing in the Jupiter Collaboration System”, ACM, UIST 1995, pages: 111 – 120.

34. Patterson J. F., Day M. and Kucan J. “Notification servers for synchronous groupware”,
Proceedings of the ACM, Conference on Computer Supported Cooperative Work, 1996.

35. Prakash, Atul, Michael J. Knister, “Undoing Actions in Collaborative Work”, Proceedings of

ACM on Computer Supported Cooperative Work 1992, Pages 273-280

36. Ressel, Matthias, Doris Nitsche-Ruhland, and Rul Gunzenhauser, “An Integrating,
Transformation-Oriented Approach to Concurrency Control and Undo in Group Editors”,
Proceedings of the ACM, Conference on Computer Supported Cooperative Work, 1996, Pages:
288-297.

37. Schlichter, Johann, Michael Koch, Martin Bürger, “Workspace Awareness for Distributed

Teams”, Proceedings of Workshop Coordination Technology for Collaborative Applications,
Singapore, Wolfram Conen(ed.), 1997.

38. Stefik, M., D. G. Bobrow, G. Foster, S. Lanning and D. Tatar, “WYSIWIS revised: early

experiences with multiuser interfaces”, ACM transactions on Office Information Systems, April
1987, Pages 147 – 167

39. Yun Yang, Chengzheng Sun, Yanchun Zhang, Xiaohua Jia, “Real-Time Cooperative Editing on

the Internet”, IEEE Internet Computing pages 18-25, May-June 2000.

40. Yun Yang, Chengzheng Sun, Yanchun Zhang, Xiaohua Jia, “Real-Time Cooperative Editing on
the Internet”, IEEE Internet Computing, May-June 2000, Pages 18-25.

http://home.pacific.net.sg/~kamitchell/portfolio/calliope.html
http://www.cs.engr.uky.edu/~raphael/studentWork/muse.html
http://www-mice.cs.ucl.ac.uk/multimedia/software/nte/

65

Appendix A

A.1 Installation Instructions

The following are the installation instructions for downloading and setting up the
environment for executing NetEdit.

Installing the Server:

This can be done in two ways as follows:

From Internet

1. First download the server side files from the following URL:
http://csgrad.cs.vt.edu/~azafer/thesis/thesisPage.html. There will be a link to the
.zip file at the top of the page.

2. Create a new directory named NetServer under the root directory say C:\, and go to

this directory.

3. Extract the contents of the .zip file in the directory created in Step 2.

4. If you do not have java runtime environment installed, then go to the following

URL:http://www.java.sun.com/j2se/1.3/download-windows.html
Download Java 2 SDK, v 1.3.0 Software for Windows 95/98/2000/NT 4.0 as a one
large bundle. Then install this environment by double clicking on the downloaded
file and following the instructions. Select the default directory and drive to install
the program.

5. Set up the PATH and CLASSPATH as follows (assuming you have selected the

default locations for installation of the java runtime environment). This may be
done directly or by executing the .bat file, server.bat.

Direct Method:

Type the following 2 commands from the DOS console:

path=%path%;C:\<directory in which java was installed>\bin;

Appendix A

66

set CLASSPATH=%CLASSPATH%;C:\<directory in which java was
installed>\src.jar;C:\<directory in which java was
installed>\lib\tools.jar;C:\<directory in which java was installed>\lib\dt.jar;.;

Easy method:

Type C:\NetServer\server from the DOS console:

6. Go to the directory C:\NetServer created in Step 2 and give the following command
from the console:

java ServerLogin <Server address> <Port number>

Here Server address corresponds to the IP address of the machine on which the
above steps are being performed. The port number can be any free port (say 2500).

e.g. java ServerLogin thyme.cs.vt.edu 2500

7. Create a directory C:\NetServer\files. Any files to be edited should be placed in this

directory. The name of this directory can be changed by adding the following to the
file C:\NetServer\server.cfg:

FILES: <file directory path>

From CD ROM

1. Create a new directory named NetServer under the root directory say C:\, and go to
this directory.

2. Copy the contents of Server directory on the CD ROM in the directory created in

Step 1.

3. Install Java runtime environment by double clicking on the file j2sdk-1_3_0_02-

win.exe and following the instructions. Select the default directory and drive to
install the program.

4. Set up the PATH and CLASSPATH as follows (assuming you have selected the

default locations for installation of the java runtime environment). This may be
done directly or by executing the .bat file, server.bat.

Direct Method:

Type the following 2 commands from the DOS console:

path=%path%;C:\<directory in which java was installed>\bin;

Appendix A

67

set CLASSPATH=%CLASSPATH%;C:\<directory in which java was
installed>\src.jar;C:\<directory in which java was
installed>\lib\tools.jar;C:\<directory in which java was installed>\lib\dt.jar;.;

Easy method:

Type C:\NetServer\server from the DOS console:

5. Go to the directory NetServer created in Step 1 and give the following command
from the console:

java ServerLogin <Server address> <Port number>

Here Server address corresponds to the IP address of the machine on which the
above steps are being performed. The port number can be any free port (say 2500).

e.g. java ServerLogin thyme.cs.vt.edu 2500

6. Create a directory C:\NetServer\files. Any files to be edited should be placed in this

directory. The name of this directory can be changed by adding the following to the
file C:\NetServer\server.cfg:

FILES: <file directory path>

Restarting the Server:

In case the server crashes or needs to be restarted, do the following:

1. Set up the PATH and CLASSPATH as follows (assuming you have selected the
default locations for installation of the java runtime environment). This may be
done directly or by executing the .bat file, server.bat. This step may be skipped if
the path and CLASSPATH are still set up from a previous session.

Direct Method:

Type the following 2 commands from the DOS console:

path=%path%;C:\<directory in which java was installed>\bin;

set CLASSPATH=%CLASSPATH%;C:\<directory in which java was
installed>\src.jar;C:\<directory in which java was
installed>\lib\tools.jar;C:\<directory in which java was installed>\lib\dt.jar;.;

Easy method:

Appendix A

68

Type C:\NetServer\server from the DOS console:

2. Go to the directory NetServer and give the following command from the console:

java ServerLogin <Server address> <Port number>

Here Server address corresponds to the IP address of the machine on which the
above steps are being performed. The port number can be any free port (say 2500).

e.g. java ServerLogin thyme.cs.vt.edu 2500

Appendix A

69

Installing the Client:

This can be done in two ways as follows:

From Internet

1. First download the client side files from the following

URL: http://csgrad.cs.vt.edu/~azafer/thesis/thesisPage.html. There will be a link to
the .zip file at the top of the page.

2. Create a new directory named NetClient under the root directory say C:\, and go to

this directory.

3. Extract the contents of the .zip file in the directory created in Step 2.

4. If you do not have the Java runtime environment installed, then go to the following

URL:http://www.java.sun.com/j2se/1.3/download-windows.html
Download Java 2 SDK, v 1.3.0 Software for Windows 95/98/2000/NT 4.0 as a one
large bundle. Then install this environment by double clicking on the downloaded
file and following the instructions. Select the default directory and drive to install
the program.

5. Set up the PATH and CLASSPATH as follows (assuming you have selected the

default locations for installation of the Java runtime environment). This may be
done directly or by executing the .bat file, client.bat.

Direct Method:

Type the following 2 commands from the DOS console:

path=%path%;C:\<directory in which java was installed>\bin;

set CLASSPATH=%CLASSPATH%;C:\<directory in which java was
installed>\src.jar;C:\<directory in which java was
installed>\lib\tools.jar;C:\<directory in which java was installed>\lib\dt.jar;.;

Easy method:

Type C:\NetClient\client from the DOS console:

6. Go to the directory NetClient created in Step 2 and give the following command

from the console:

java ClientDaemon

http://www.java.sun.com/j2se/1.3/download-windows.html

Appendix A

70

From CD ROM

1. Create a new directory named NetClient under the root directory say C:\ and go to
this directory.

2. Copy the contents of Client directory on the CD ROM in the directory created in

Step 1.

3. Install java runtime environment by double clicking on the file j2sdk-1_3_0_02-

win.exe and following the instructions. Select the default directory and drive to
install the program. Please note that you have to install the Java runtime
environment only if you don’t have it installed already.

4. Set up the PATH and CLASSPATH as follows (assuming you have selected the

default locations for installation of the Java runtime environment). This may be
done directly or by executing the .bat file, client.bat.

Direct Method:

Type the following 2 commands from the DOS console:

path=%path%;C:\<directory in which java was installed>\bin;

set CLASSPATH=%CLASSPATH%;C:\<directory in which java was
installed>\src.jar;C:\<directory in which java was
installed>\lib\tools.jar;C:\<directory in which java was installed>\lib\dt.jar;.;

Easy method:

Type C:\NetClient\client from the DOS console:

5. Go to the directory C:\NetClient created in Step 1 and give the following command

from the console:

java ClientDaemon

Restarting the Client:

1. Set up the PATH and CLASSPATH as follows (assuming you have selected the
default locations for installation of the Java runtime environment). This may be
done directly or by executing the .bat file, client.bat. This step may be skipped if
the path and CLASSPATH are still set up from a previous session.

Direct Method:

Appendix A

71

Type the following 2 commands from the DOS console:

path=%path%;C:\<directory in which java was installed>\bin;

set CLASSPATH=%CLASSPATH%;C:\<directory in which java was
installed>\src.jar;C:\<directory in which java was
installed>\lib\tools.jar;C:\<directory in which java was installed>\lib\dt.jar;.;

Easy method:

Type C:\NetClient\client from the DOS console:

2. Go to the directory C:\NetClient and give the following command from the console:

java ClientDaemon

Appendix A

72

A.2 Questionnaire

Questions Responses

1. The response time from the editor after you do the edits like
insertions/deletions, etc was: Please circle your choice.

a. Extremely noticeable … Very slow
b. Noticeable, slightly unacceptable
c. Neutral
d. Noticeable, but acceptable
e. Not noticeable … Very fast
f. Do not know

3.0 (5.0 being “Extremely
noticeable” and 1.0 being
“Not noticeable”)

2. Rank the awareness widgets in order of your liking; with 1
being the widget you liked the most and 4 being the least
favorite.
____ Telecursors
____ RadarView
____ Active participant’s list in an Editing session
____ Active sessions list

Radarview(13)
Telepointers(18)
Active Participants list(19)
Active Sessions list(26)

[The number in bracket
indicates the sum of ranks
assigned. Hence lower the
sum better is the ranking]

3. Rank the widgets in order that, you think, made you
collaborate more efficiently with your group members; with
1 being the widget you liked the most and 4 being the least
favorite.
____ Telecursors
____ RadarView
____ Active participant’s list in an Editing session
____ Chat Window

Telepointers(15)
Chat Window(21)
Radarview(23)
Active Participants list(28)

[The number in bracket
indicates the sum of ranks
assigned. Hence lower the
sum better is the ranking]

4. Rank the widgets in order of usefulness; with 1 being the
most useful widget and 4 being the least useful.

____ Telecursors
____ RadarView
____ Active participant’s list in an Editing session
____ Chat Window

Telepointers(16)
Radarview(22)
Chat Window(22)
Active Participants list(27)

[The number in bracket
indicates the sum of ranks
assigned. Hence lower the
sum better is the ranking]

5. Did you notice the logging in and logging out of participants
from your session? Please circle your choice.

a. Yes
b. No
c. Do not know

4 out of 10 – Yes
6 out of 10 – No

Appendix A

73

6. The movements of the shaded rectangles in the radarpane
were: <Please circle your choice>

a. Very helpful
b. Quite helpful
c. Slighly helpful
d. Neutral
e. Totally useless
f. Do not know

3.5 (5.0 being “Very
helpful” and 1.0 being
“Totally useless”)

7. The movement of the telecursors allowed me to identify
what each person was editing. Please circle your choice.

a. Yes … (agree)
b. No … (disagree)
c. Do not know

10 out of 10 – Yes
0 out of 10 – No

8. Rate the usefulness of “Telecursors” in identifying what
each person was editing. Please circle your choice.

a. Very useful
b. Useful
c. Neutral
d. Not useful
e. Totally useless
f. Do not know

4.2 (5.0 being “Very
useful” and 1.0 being
“Totally useless”)

9. Rate the usefulness of “Active participant’s list” to be aware
of other active participants in the session? Please circle your
choice.

a. Very useful
b. Useful
c. Neutral
d. Not useful
e. Totally useless
f. Do not know

3.7 (5.0 being “Very
useful” and 1.0 being
“Totally useless”)

10. Rate the usefulness of “RadarView” to know other
participants view into the document? Please circle your
choice.

a. Very useful
b. Useful
c. Neutral
d. Not useful
e. Totally useless
f. Do not know

3.9 (5.0 being “Very
useful” and 1.0 being
“Totally useless”)

Appendix A

74

11. Would you have preferred if the text inserted by the remote
participant appeared in the same color as is assigned to him?
Please circle your choice.

a. Yes. I would have preferred
b. No. I would not have preferred.
c. Do not know

3 out of 10 – Yes
4 out of 10 – No
3 out of 10 – Do not know

12. Did you feel the need to know “who wrote what text”?
Please circle your choice.

a. Yes
b. No
c. Do not know

8 out of 10 – Yes
2 out of 10 – No

13. How was your experience with this editing window in terms
of knowing its purpose? Please circle your choice.

a. Extremely intuitive
b. Quite intuitive
c. Slightly intuitive
d. Neutral
e. Slightly confusing
f. Quite confusing
g. Extremely confusing
h. Do not know

5.2 (7.0 being “Extremely
intuitive” and 1.0 being
“Extremely confusing”)

14. Was the directory listing (left-hand component) in
Collaborative Editor Document/Sessions window intuitive?
Please circle your choice.

a. extremely clear
b. slightly clear
c. neutral
d. slightly confusing
e. extremely confusing
f. Do not know

4.5 (5.0 being “extremely
clear” and 1.0 being
“extremely confusing”)

15. Was the session list on the right-side of Collaborative Editor
Document/Sessions window useful? Please circle your
choice.

a. Very useful
b. Useful
c. Neutral
d. Not useful
e. Totally useless
f. Do not know

3.7 (5.0 being “Very
useful” and 1.0 being
“Totally useless”)

Appendix A

75

16. Rate the usefulness of knowing the history of who was in
the session, when, and other details? Please circle your
choice.

a. Very useful
b. Useful
c. Neutral
d. Not useful
e. Totally useless
f. Do not know

3.6 (5.0 being “Very
useful” and 1.0 being
“Totally useless”)

17. The names of the sessions are files that are associated with
that session. Was this what you expected? Please circle your
choice.

a. Yes
b. No
c. Do not know

9 out of 10 – Yes
1 out of 10 – No

18. As a continuation of question – 17, would you have
preferred an alias instead of a filename for the session
name? Please circle your choice.

a. Yes
b. No
c. Do not know

0 out of 10 – Yes
10 out of 10 – No

19. How was your experience with this Collaborative Editor
administrative window in terms of knowing its purpose?
Please circle your choice.

a. Extremely intuitive
b. Quite intuitive
c. Slightly intuitive
d. Neutral
e. Slightly confusing
f. Quite confusing
g. Extremely confusing
h. Do not know

5.4 (7.0 being “Extremely
intuitive” and 1.0 being
“Extremely confusing”)

20. Did you use the chat utility during your editing? Please
circle your choice.

a. Used extensively
b. Used somewhat
c. Barely used
d. Not used at all
e. Do not know

3.2 (4.0 being “Used
extensively” and 1.0 being
“Not used at all”)

Appendix A

76

21. Was the chat utility effective in communicating with other
collaborators? Please circle your choice.

a. Very useful
b. Useful
c. Neutral
d. Not useful
e. Totally useless
f. Do not know

3.7 (5.0 being “Very
useful” and 1.0 being
“Totally useless”)

22. Were you being overwhelmed by the chat messages that
were coming? Please circle your choice.

a. Extremely overwhelmed
b. Quite overwhelmed
c. Slightly overwhelmed
d. Neutral
e. Not overwhelmed at all
f. Do not know

3.9 (5.0 being “Extremely
overwhelmed” and 1.0
being “Not overwhelmed at
all”)

23. Did you like the 3 modes of sending and receiving a
message to/from other participants in the system? Please
circle your choice.

a. Yes
b. No
c. Do not know

6 out of 10 – Yes
4 out of 10 – No

24. Rank the 3 modes of sending the message based on how
much you used each of them; with 1 being the most used
option and 3 being the least used option.
____ Send to All
____ Send to group
____ Send a personalized message to an individual

All(12)
Group(18)
Individual(24)

[The number in bracket
indicates the sum of ranks
assigned. Hence lower the
sum better is the ranking]

25. Did you find it difficult to continually have to switch
between editing a document and sending chat messages to
other participants? Please circle your choice.

a. Yes
b. No
c. Do not know

10 out of 10 – Yes
0 out of 10 – No

26. As a continuation of question 25 – Would you have
preferred if the chat window were part of the Editing
Window so as to avoid this continuous switching back and
forth? Please circle your choice.

a. Yes
b. No
c. Do not know

10 out of 10 – Yes
0 out of 10 – No

Appendix A

77

27. Rate the usefulness of color-coding of the message types in
distinguishing them? Please circle your choice.

a. Very useful
b. Useful
c. Neutral
d. Not useful
e. Totally useless
f. Do not know

3.2 (5.0 being “Very
useful” and 1.0 being
“Totally useless”)

28. How was your experience with Chat window in terms of
knowing its purpose? Please circle your choice.

a. Extremely intuitive
b. Quite intuitive
c. Slightly intuitive
d. Neutral
e. Slightly confusing
f. Quite confusing
g. Extremely confusing
h. Do not know

5.6 (7.0 being “Extremely
intuitive” and 1.0 being
“Extremely confusing”)

29. Have you used any similar collaborative tool before? Please
circle your choice.

a. Yes
b. No
c. Do not know

2 out of 10 – Yes
8 out of 10 – No

30. Was the system more tuned to what you would want from a
collaborative editor? Please circle your choice.

a. Yes
b. No
c. Do not know

4 out of 10 – Yes
1 out of 10 – No
5 out of 10 – Do not know

31. How was your experience with System as a whole? Please
circle your choice.

a. Extremely intuitive
b. Quite intuitive
c. Slightly intuitive
d. Neutral
e. Slightly confusing
f. Quite confusing
g. Extremely confusing
h. Do not know

4.4 (7.0 being “Extremely
intuitive” and 1.0 being
“Extremely confusing”)

Appendix A

78

A.3 User Manual

This section describes the user manual for NetEdit. It begins by explaining the login
procedure, and then discusses other windows and functionality of the system.

A.2.1 Login procedure

When the application is initially started, a login window appears asking for username and
password. It might also additionally ask for the server name and its port number. Give the
server name (e.g. thyme.cs.vt.edu) and port number (e.g. 2500) given by your
administrator. The server name (IP address of the machine on which the server is
running) and port number (an integer) is asked only once, when the application is started
the first time after installation. Later invocations of the application ask only for username
and password.

A.2.2 Chat Window

Chat window initially appears in the right hand side of the screen. At the top is a white
pane that logs all the messages that you send or receive from other users. Next comes the
“send to” control panel that has three modes of sending the chat messages. Users type
their messages in the text field at the bottom of the screen.

“Send to” control panel

This panel contains three options as follows:

"Individual" checkbox: This combo-box lists the usernames of all the currently logged-
on users who have their chat window open. By clicking the check box ("Individual")
beside this combo-box causes the system to send the typed messages only to the
individual whose name is selected in the combo-box.

"Group" checkbox: This combo-box lists the sessions that are active in the system. A
session corresponds to a file being collaboratively edited by a group of individuals. By
clicking the check box ("Group") beside this combo-box causes the system to send the
typed messages only to the users of the session selected in the combo box.

"All" checkbox: By clicking the check box ("All") causes the system to send the typed
messages to all the users who are currently logged and have their chat window open.

Appendix A

79

Shortcut keys

1. You can reply to the sender of the last message by typing "\r message or /r
message"

2. You can talk to an individual by typing "\t message or /t message". The recipient

of this message is the user whose name appears in the first combo list.

3. You can send a message to the group by typing "\g message or /g message". The
recipients of this message are the users who are participating in the session shown
in the second combo list.

4. You can send a message to all the users by typing "\a message or /a message".

Audio cues

A user can set up audio cues (beep from the system) to inform him when a message from
specified group of individuals or message to specified sessions arrives.

A.2.3 Documents/Sessions Window

Documents/Sessions window appears in the upper left side of the screen. It has two parts
that display dynamic content reflecting the server file system state (File Explorer) and the
sessions (Session List) currently active in the system. They are described as follows:

File Explorer

This is the left part of the Document/Sessions window. It displays the hierarchical
directory structure and the .txt files residing at the server under the directory given by the
root of the tree. It contains five buttons at the top that allows one to create a new file,
create a new directory, open an existing file, deleting a file or directory (along with all the
files in it) and renaming a file or directory. These operations are described further as
follows:

Create a New File: First select the directory in which to create the file. Then either right
click on the selected directory and choose “New File” menu item or click the first button
from left on the toolbar for creating the new file. A dialog then appears asking to choose
a name for this file. Give a name and press “Enter” key on the keyboard or click the
“Enter” button at the right end of the dialog. An “Edit Window” for editing this file
appears on the screen. The details of the “Edit Window” are given in section A.2.4.

Create a New Directory: First select the directory in which to create the new directory.
Then either right click on the selected directory and choose “New Directory” menu item

Appendix A

80

or click the second button from left on the toolbar for creating the new directory. A
dialog then appears asking to choose a name for this directory. Give a name and press
“Enter” key on the keyboard or click the “Enter” button at the right end of the dialog. An
acknowledgment whether this operation was successful or not is displayed on the screen.
If the operation is successful, then the directory hierarchy is updated accordingly.

Open an existing file: There are three ways in which this can be done:

• Double click the file you want to open.
• Right click on the file you want to open and select “Open File” menu item from

the popup menu list.
• Select the file you want to open by left clicking on it and then click the third

button from left on the toolbar for opening the file.

Deleting a file: This can be done in two ways as follows:

• Select the file you want to delete by left clicking on it and then click the fourth
button from left on the toolbar for deleting the file.

• Right click on the file you want to delete and select “Delete File” menu item from
the popup menu list.

Deleting a directory: This can be done in two ways as follows:

• Select the directory you want to delete by left clicking on it and then click the
fourth button from left on the toolbar for deleting the directory.

• Right click on the directory you want to delete and select “Delete Directory”
menu item from the popup menu list.

It is important to note that when you are deleting a directory it will recursively delete all
the files and subdirectories under that directory.

Renaming a file: This can be done in two ways as follows:

• Select the file you want to rename by left clicking on it and then click the fifth
button from left on the toolbar for renaming the file.

• Right click on the file you want to rename and select “Rename File” menu item
from the popup menu list.

A dialog asking for a new name will popup. Give a new name and press “Enter” key on
the keyboard or click the “Enter” button at the right end of the dialog. An
acknowledgment whether this operation was successful or not is displayed on the screen.

Renaming a directory: This can be done in two ways as follows:

• Select the directory you want to rename by left clicking on it and then click the
fifth button from left on the toolbar for renaming the directory.

Appendix A

81

• Right click on the directory you want to rename and select “Rename Directory”
menu item from the popup menu list.

A dialog asking for a new name will popup. Give a new name and press “Enter” key on
the keyboard or click the “Enter” button at the right end of the dialog. An
acknowledgment whether this operation was successful or not is displayed on the screen.

Session List

This is a list of files on the server that are currently being edited by active users. More
than one user could be editing a file in this list. To start editing a file for which a session
is already going on, double click on that file in this list. You could also search the file in
the File Explorer window and open that file. In any case you will join the active session
for that file. To see the users who are in a session editing a certain file, right click on that
session. A list displaying the usernames of the users who are editing that file will appear.

A.2.4 Edit Window

Edit Window has 3 sections. The left section is the place where you write your text. It
also displays telecursors of the remote participants. The right-top section displays a list of
users (in different colors) who are in a session with you, editing the same file. The right-
bottom section is the RadarPane. It displays a rectangle for each user showing his view in
to the document. This gives one an idea of where the other users are relative to his
location in the document, which may span multiple pages. The rectangle for a user say
Jack is of the same color as the color of his name in the right-top section of the edit
window.

Cut operation: First select the text you want to Cut and put on the clipboard. Then press
CTRL + X or select the Cut option from Edit Menu

Copy operation: First select the text you want to Copy and put on the clipboard. Then
press CTRL + C or select the Copy option from Edit Menu

Paste operation: Go to the position where you want to put the previously copied or cut
text. Then press CTRL + V or select the Paste option from Edit Menu

82

Vita

Ali Asghar Zafer was born in Mumbai, India on September 23, 1976. He began his
undergraduate studies at University of Mumbai, in August 1994. As an undergraduate, he
participated in one year of industrial training program, working for Datamatics Ltd. in
Mumbai, India.

He received his Bachelor of Engineering in Computer Engineering from University of
Mumbai in May 1998. He worked for a year with Tata Infotech Ltd., a consulting firm in
India, before coming to Virginia Tech for pursuing graduate studies. His interests are in
distributed computing, concurrency management, and networking. He will be graduating
with a Masters of Science degree in Computer Science in May 2001.

	Introduction
	Problem Description
	Organization

	Background Research
	Collaborative editing systems
	Definitions
	Asynchronous Systems
	Synchronous Systems

	Interface Support for Workspace Awareness
	Telepointers
	Multi-User Scroll Bar and Radar Views
	Workspace Teleportals

	Groupware Architecture Analysis
	Centralized/Replicated Architectures

	System Architecture
	NetEdit
	Editing a text document
	Awareness Information
	Communication

	Internal architectural details
	Server components
	Client components

	Integrated View

	System Design
	Session Architecture
	Issues in the design of a concurrency control algorithm
	Divergence
	Causality Violation
	Intention Violation

	Consistency model
	Transformation of a message
	Concurrency control in groupware systems
	Distributed operational transformation algorithm
	REDUCE approach
	Jupiter approach
	ADOPTED approach

	Motivation for this work
	Algorithm details
	Data Structures
	Description of the algorithm
	An example of the algorithm

	Usability Study
	Usability goals
	Methodology
	Participants
	Experimental setup
	Task details
	Procedure

	Results
	Notes/General observation
	Chat usage pattern
	Evaluation document
	Questionnaire responses

	Analysis
	Redesign of the interface

	Conclusion
	Benefits of computer-based Collaboration for group editing
	Contribution of this work
	Future Work
	Software Areas
	Usability Areas

	References
	Appendix A
	A.1	Installation Instructions
	A.2	Questionnaire
	A.3	User Manual

