

INTEGRATING

COLLISION AVOIDANCE, LANE KEEPING,

AND CRUISE CONTROL

WITH AN OPTIMAL CONTROLLER

AND FUZZY CONTROLLER

WILLIAM K. GREFE

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

Electrical Computer Engineering
APPROVED:

Pushkin Kachroo
Krishnan Ramu

Daniel J. Stilwell

April 29, 2005 Blacksburg, Virginia

Keywords: Collision Avoidance, Smart Vehicles, Autonomous, Optimal control

© 2005, William K. Grefe

INTEGRATING

COLLISION AVOIDANCE, LANE KEEPING,

AND CRUISE CONTROL

WITH AN OPTIMAL CONTROLLER

AND FUZZY CONTROLLER

WILLIAM K. GREFE

 ABSTRACT

This thesis presents collision avoidance integrated with lane keeping and adaptive cruise
control for a car. Collision avoidance is the ability to avoid obstacles that are in the
vehicle’s path, without causing damage to the obstacle or car. There are three types of
collision avoidance controllers, passive, active, and semi-active. This thesis is designed
using active collision avoidance controllers.

There are two controllers developed for collision avoidance in this paper. They are an
optimal controller and a fuzzy controller. The optimal vehicle trajectory, which
maximizes the distance to an obstacle and changes lanes, is derived. The optimal
collision avoidance controller is a closed loop controller; with the decisions based on the
current state. The fuzzy controller makes decisions based on the system rules. A
simulation environment was created to compare these two controllers as viable solutions
for collision avoidance.

The environment uses MATLAB/Simulink for simulation of the vehicle as well as the
optimal and fuzzy controllers. The simulation incorporates system blocks of the
kinematics of a car, navigation, states, control law, and velocity controller. Once the
controllers are fully developed and tested in the simulation environment, they are
implemented and tested on the platform vehicle. This verifies the real world performance
of the controllers.

The platform vehicle is a modified radio controlled car. This car is completely
autonomous. The car has onboard sensors that allow it to follow a white piece of tape as
well as detect obstacles.

iv

DEDICATIONS

Many thanks go to my adviser, Dr. Pushkin Kachroo, for allowing me to work on

such an interesting topic.

Thank you to my family and friends for standing by me.

v

ACKNOWLEDGMENTS

Many thanks go to my adviser, Dr. Pushkin Kachroo, for allowing me to work on such an

interesting topic.

Thank you to my family and friends for standing by me.

Also would like to thank the following companies for their donations

Hyde Park, Banner Engineering, Samtec, AMP/TYCO, Maxim, and Power One

vi

TABLE OF CONTENTS

 Page

ABSTRACT... ii

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... ix

CHAPTER I .. 1

INTRODUCTION... 1
1.1 Controllers... 2
1.2 Simulation ... 3
1.3 Car... 4
1.4 Highlights, Contributions, and Outline... 4

CHAPTER II... 6

REVIEW OF LITERATURE.. 6

CHAPTER III ... 9

MODELING AND APPLYING COLLISION AVOIDANCE..................................... 9
3.1 Determining Optimal Lane Change Trajectory for the Car 9

3.1.1 Dynamic System of the Car Model and State Equations................ 9
3.1.2 Cost Function .. 10
3.1.3 Hamiltonian, Kinematics & Optimal Lane Change Trajectory 11
3.1.4 Derive the Optimal Trajectory for Lane Changing....................... 12
3.1.5 Evaluated Cost Function of Various Trajectories......................... 19

3.1.5.1 Vehicle Stopped With One Fixed Obstacle 19
3.1.5.2 Vehicle Driving Into One Fixed Obstacle .. 20
3.1.5.3 Vehicle Avoiding One Fixed Obstacle ... 21
3.1.5.4 Vehicle Stopped With Two Fixed Obstacles 22
3.1.5.5 Vehicle Driving Into One Of Two Fixed Obstacles 23
3.1.5.6 Vehicle Avoiding Two Fixed Obstacles .. 24
3.1.5.7 Vehicle Stopped With One Fixed Obstacle and One Moving Obstacle
 25
3.1.5.8 Vehicle Driving into a fixed Obstacle with a moving obstacle 26
3.1.5.9 Vehicle Avoiding One Fixed Obstacle and One Moving Obstacle . 27

3.2 MATLAB/Simulink Simulation Environment ... 28
3.2.1 Car Path Control ... 29
3.2.2 Lane Changing .. 31
3.2.3 Obstacle Detection .. 32
3.2.4 Obstacle Avoidance .. 32
3.2.5 Control Law .. 33

vii

3.2.6 Adaptive Cruise Control ... 35
3.2.7 Car Behavior when avoiding obstacles and changing lanes 36
3.2.8 Example of 3 Cars and 3 Static Obstacles 38
3.2.9 Fuzzy Control.. 39
3.2.10 How to Work in the MATLAB/Simulink Simulation
Environment.. 51

3.2.10.1 Adding a Car.. 51
3.2.10.2 Adding an Obstacle.. 55
3.2.10.3 Modifying the Track Shape ... 55

3.3 Model Car ... 56
3.3.1 Model Car Operations... 56
3.3.2 Model Car Dynamics .. 56
3.3.3 Lane Changing .. 56
3.3.4 Obstacle Detection .. 57
3.3.5 Obstacle Avoidance .. 57
3.3.6 Car DSP Code ... 57

3.3.6.1 Control.c.. 57
3.3.6.2 Obstacle_avoidance_cost_function_control_law.c........................... 59
3.3.6.3 Lane Change.c... 60

CHAPTER IV.. 62

RESULTS .. 62
4.1 Simulation Results .. 62
4.2 Model Car Results... 63

CHAPTER V ... 65

CONCLUSION ... 65

CHAPTER VI.. 67

SUMMARY ... 67

LITERATURE CITIED... 68

APPENDIX A SIMULINK .. 70

Overview of Car Simulation ... 70
Car Dynamic Model.. 70
Overview of Navigation.. 71

Overview of Front and Rear IR Sensors... 71
Front IR Sensor Subsystem... 72
Rear IR Sensor Subsystem.. 72

Car Sensor Error ... 73
Heading Angle Calculation... 73
Curvature Calculation ... 73
Lane Changing .. 74
Obstacle Avoidance .. 75

viii

Overview of the States .. 75
State x2(t) .. 76
State x3(t) .. 76
State x4(t) .. 76

Control Law .. 77
Overview of V1 and V2.. 77

Alpha 1.. 78
dx2(t) Equations.. 79
dx2(t)/ds Equations ... 80
dx2(t)/dd Equations... 80
dx2(t)/dtheta_p Equations... 81
Alpha 2.. 81

Animation Update... 82

ix

 LIST OF FIGURES

Figure Page
Figure 1 Platform for Obstacle Avoidance (Car).. 4
Figure 2 Coordinate System for the Car ... 9
Figure 3 Model of State and Costate Equations with State Constraints 16
Figure 4 Model of State Equations with State Constraints Subsystem............................. 17
Figure 5 Model of Costate Equations Subsystem... 17
Figure 6 Optimal Path the Car takes when Changing Lanes .. 18
Figure 7 Steering Angle x4(t) (φ).. 19
Figure 8 Path of Car Driving Straight into Obstacle... 20
Figure 9 Path of the Car Avoiding the Obstacle while changing lanes 22
Figure 10 Path of a Car Driving Straight into Obstacle.. 23
Figure 11 Path of a Car Avoiding the Obstacle while changing lanes 25
Figure 12 Path of a Car Driving Straight into Obstacle.. 26
Figure 13 Path of a Car Avoiding the Obstacle while changing lanes 28
Figure 14 Overview of the Car Simulation... 29
Figure 15 Cost Function for Lane 1 and Rear Velocity=0 ... 34
Figure 16 Cost Function for Lane 2 and Rear Velocity=0 ... 34
Figure 17 Cost Function for Lane 3 and Rear Velocity=0 ... 35
Figure 18 Lane Changing Path ... 36
Figure 19 Lane Changing Path with 3 Cars and 3 Static Obstacles with Optimal control
... 39
Figure 20 Fuzzy Controller Overview .. 40
Figure 21 Fuzzy Control Input State1 .. 41
Figure 22 Fuzzy Control Input State13 .. 42
Figure 23 Fuzzy Control Input State17 .. 43
Figure 24 Fuzzy Control Input State21 .. 44
Figure 25 Fuzzy Control Output Control1 ... 45
Figure 26 Fuzzy Control Output Control2 ... 46
Figure 27 Fuzzy Control Output Control3 ... 47
Figure 28 Fuzzy Control Rules ... 48
Figure 29 Fuzzy Controller Output (Control2 vs State1 and State21)............................. 49
Figure 30 Fuzzy Controller Output (Control2 vs State13 and State21)........................... 49
Figure 31 Fuzzy Controller Output (Control1 vs State1 and State13)............................. 50
Figure 32 Lane Changing Path with 3 Cars and 3 Static Obstacles with a Fuzzy
Controller .. 50
Figure 33 Main Screen for the Car Simulation... 51
Figure 34 Vehicle Dynamics for New Car ... 52
Figure 35 Initial Lane for New Car... 53
Figure 36 Animation Update Vehicle Number for New Car.. 54
Figure 37 Car making first turn to avoid an obstacle.. 63
Figure 38 Car changed lanes to avoid an obstacle... 64
Figure 39 Car stopped after avoiding both obstacles... 64

 1

CHAPTER I

INTRODUCTION

Collision avoidance systems for cars are designed to reduce the number of accidents and
fatalities on the roadways and highways. Safety systems are designed to helped safe lives
like the seat belt when worn properly and the air bag.

In the United States in 2003, there were 42,643 people killed from motor vehicle
accidents and 2,889,000 people injured in motor vehicle accidents. With any of the
vehicle, accidents if there were a passive system to avoid an obstacle; it would have
greatly decreased the number of fatalities and injuries. Driving is not a right but a
privilege, we should treat driving seriously. The reason for researching collision
avoidance is so the fraction of a second where a driver is not paying attention, a passive
system could be implemented to keep the driver, passengers, and others safe. [9]

Currently, the marketplace is starting to see technology to help avoid motor vehicle
collisions. There are three different types of collision avoidance systems: passive, active,
and semi-active. Passive collision avoidance systems are typically audio or visual alarms
indicating the potential for a collision. Active collision avoidance systems take control of
the vehicle by controlling the throttle, braking, and steering to avoid or minimize a
collision. Semi-active collision avoidance systems minimize the impact the collision has
on the driver. These systems are starting to be available in the market today and the near
future.

Passive collision avoidance systems that are either on the market or soon to be on the
market Delphi has developed: lane change warning alarm, a vision system that detects
roadway markers and warns of unintended lane changes. [16] Roadway Departure
warning system that mimics the sound of rumble strips. The sound comes from the side
toward which the car veers. [18] Blind Spot collision avoidance system, which is a
combination of radar and vision systems to help a driver better sense his crash envelope.
[16]

2

Active collision avoidance systems that are either on the market or soon to be on the
market Delphi has developed: Forewarn Collision Avoidance Systems uses sensors
strategically located around the vehicle to collect data and recognize hazards within their
detection zone. Forewarn can then not only communicate when driver intervention is
necessary, but take automatic action when appropriate. Smart Cruise Control detects
traffic ahead, and using throttle control and limited braking, maintains a driver-selectable
gap. [17] Another example is Jaguar’s adaptive cruise control system. Jaguar’s
description of this system is: “Radar-based Adaptive Cruise Control (ACC) constantly
maintains a comfortable gap to the car ahead, taking 40 individual measurements during
each horizontal scan. ACC also offers Forward Alert, which provides a timely audible
warning if traffic ahead starts to slow down. Adaptive Cruise Control is available on all
models with automatic transmission.” [4]

Semi-active collision avoidance systems that are either on the market or soon to be on the
market Ford has developed: A video monitor embedded in the dashboard of a Ford
Explorer concept vehicle shows a vehicle ahead of it, with a green box around it. As the
concept vehicle gets too close for safety, the box turns to red, which senses that a crash
may be imminent. This makes the seat belts tighten automatically and a computerized
voice beckons, "Warning."

1.1 Controllers

The two controllers developed for collision avoidance are an optimal controller and a
fuzzy controller. The optimal controller is an open loop controller; designed to make the
obstacle avoidance decisions (control) by determining the optimal (minimal) cost based
on the current state of the system. The controller is created using parameters to allow
easy modification (tuning) of the operation of the controller. All possible useful vehicle
states are passed to the optimal controller function to allow the incorporation of
additional features easily. The distance to an obstacle in front of the vehicle, the velocity
of an object behind the vehicle, the x-axis location of the vehicle and the lane the vehicle
is in are the only states currently used in the optimal controller.

According to Gupta [10], “Fuzzy logic, which was introduced by Lotfi A. Zadeh in 1965
(Zadeh 1965), is a powerful tool for modeling human thinking and cognition. Instead of
bivalent propositions, fuzzy logic systems deal with reasoning and multi-valued sets,
stored rules, and estimated sampled functions from linguistic input to linguistic output.”

The fuzzy controller makes decisions based on the system rules. These rules are based on
natural language. The decisions, formed from membership functions shape the controller
action. Membership functions can be looked on as filters, taking in certain inputs and
sending out certain outputs to form the desired response.

3

1.2 Simulation

The simulation environment was created using MATLAB/Simulink because it is heavily
used in science, industry, education and government. MATLAB/Simulink is used in a
wide range of applications, including signal and image processing, communications,
control design, test and measurement, financial modeling and analysis, and computational
biology. MATLAB/Simulink is a high-level technical computing language and object
orientated environment for algorithm development, data visualization, data analysis, and
numerical computation. Add-on toolboxes extend the MATLAB/Simulink environment
to solve particular classes of problems in various application areas. MATLAB/Simulink
allows the development of a solution to technical computing problems faster than with
traditional programming languages, such as C, C++, and Fortran. The easy of
development along with the extensive toolboxes and functions available were the major
reasons for selecting MATLAB/Simulink as the simulation environment.

The simulation environment starts as an overview of the vehicle controls and kinematic
emulation of the vehicle in a Simulink model. This model incorporates the high-level
system blocks representing, the kinematics of a car, navigation, states, control law,
graphic system update and velocity controller. The model also contains parameters
displays, constant blocks, as well as subsystems for two additional cars. The goals for the
simulation environment were to be able to add obstacles, vehicles, and to change the path
easily. The environment road map was created based on a grid capable of arbitrary lanes
and different paths.

The road map grid contains binary data representing the road and the white lines by zeros
and ones respectively. The line sensing sensors use this road map grid to detect the line
beneath car. Functions were created to draw the lines and arcs, which form the path the
vehicle, would follow on the road map. These functions allow the road map to be
modified easily. This environment is setup to allow the extension to other moving
obstacles not just vehicles following the path as well as changing the obstacle avoidance
controller to another type or design. The reason for having three lanes in the simulation
environment rather than two lanes is to test the controllers with a more complex
arrangement of obstacles and traffic.

The simulation environment is flexible and if someone is interested in testing out another
collision avoidance algorithm, the controller is a single function that can be
replaced/changed easily. This was confirmed when, after implementing the optimal
control first, the modifications needed to implement the fuzzy controller only consisted of
writing the fuzzy controller.

4

1.3 Car

Figure 1 Platform for Obstacle Avoidance (Car)

The platform used as a final test of the obstacle avoidance controller is the car. The main
hardware for the car is TI’s TMS320C6000 DSP, IR and magnetic sensor board, PIC
Microcontroller board, and the range finder. The sensors the car utilizes are the
Fairchild Semiconductor QRD1114 IR emitter/detector pairs, the HAL506UA-E Hall
effect sensors (magnetic sensors), and the Sharp GP2D12 range finder that is also IR
based. The IR emitter/detector pairs locate the white tape that is on the black road
surface. The magnetic sensors detect the magnetic line that is beneath the roadway by
detecting the presence of a magnetic south pole on a series of magnets. Finally, the range
finder sensor is used to detect any obstacles in front of the car. This IR range finder is
unique in the way that it emits a modulated 40kHz infrared pulse. This way the range
finder is less susceptible to ambient light.

1.4 Highlights, Contributions, and Outline

The following are the highlights and contributions made during this thesis work:

• A simulation environment to test various collision avoidance algorithms.

• Two controllers for collision avoidance optimal controller and fuzzy controller
were developed.

• Development of the optimal lane change trajectory.

5

• Documentation of the simulation and controllers for collision avoidance.

• Successful testing of the collision avoidance controller on the car.

Outline of the thesis

CHAPTER II – Literature Review, discusses prior work related to collision avoidance

CHAPTER III – Modeling and Applying Collision Avoidance, begins discussing the
optimal lane change trajectory and cost given various scenarios. The simulation is then
discussed in detail regarding the optimal and fuzzy controllers, including examples.
Next, a section discusses how to modify the simulation environment. Lastly, the platform
kinematics, operation, collision avoidance, and digital signal processing source code is
discussed.

CHAPTER IV– Results, discusses the simulation results and the car results with
photographs of the car avoiding obstacles.

CHAPTER V – Conclusion

CHAPTER VI – Summary, and discussion of future work

6

CHAPTER II

REVIEW OF LITERATURE

There has been much interesting research done for collision avoidance. Below are
descriptions of a few relevant research topics.

In [11], there is a formalization of human centered design principles and illustrate their
application using an automation system that assists drivers to avoid unsafe lane
departures. This paper recognizes the importance of the human-computer interaction as
related to collision avoidance. That the safety and effectiveness of a collision avoidance
system in an automobile is not only related to how well the automated system works, but
how the entire human-computer system performs.

“Technological advances have made plausible the design of automated systems that
share responsibility with a human operator. The decision to use automation to assist
or replace a human operator in safety-critical tasks must account for not only the
technological capabilities of the sensor and control subsystems, but also the
autonomy, capabilities, and preferences of the human operator. By their nature, such
human-centered automation problems have multiple attributes.” [11]

Making sensor-friendly vehicle and roadway systems would improve on the abilities of
collision avoidance systems. In [15], work was done to show the improvements possible
with complementary signal sensor and reflector technologies. These technologies can
assist or replace single vehicle-based systems. The four most promising technologies
passive license plates with enhanced radar return, roadside obstacle mounted radar-
reflecting corner cubes, fluorescent paint for lane and obstacle marking, and light
emitting diode brake light messaging are discussed especially on their improvement to
the signal to noise ratio for the collision avoidance sensors. These sensor friendly
systems should significantly improve collision avoidance systems.

In [12], a fuzzy logic enhanced car navigation and collision avoidance system has been
designed. Essentially, the control of a car in this system is based on the flexible use of a
fuzzy trajectory mapping unit that enables smooth trajectory management independent of

7

car’s initial position or position of the destination. This was done with a fuzzy controller
consisting of 28 rules and a state machine containing 4 states. For performing more
demanding tasks, however, additional blocks of “intelligence” are required. The latter is
quite possible thanks to the modular structure of the control system responsible for
different task in separate without jeopardizing overall performance.

In [13], a multi-sensor collision avoidance system (CAS) is described in this paper.
Measurements from radar, vision and sonar are combined using a fusion scheme that
utilizes fuzzy clustering and estimation techniques to estimate relative motion between
the vehicles. Fuzzy logic is used to generate audiovisual warnings for the driver. It also
implements a throttle relaxer and brake actuator to slow the vehicle down. A prototype
was implemented on a Humvee.

A fuzzy collision avoidance system for a fixed obstacle was designed and tested in [14].
This work describes a fuzzy trajectory controller with over 300 rules that is used with a
specially designed car-driving robot. The rules were created based on the trajectories
various drivers used to avoid a fixed obstacle. A laser was used as the obstacle detection
device. While the robot and fuzzy controller worked successfully about 60% of the time,
the reasons for failure are understood.

Using Game Theory as a basis for collision avoidance is a subject of much research. One
example would be from [3]. This work describes mathematically how an evader (car)
can avoid a pursuer (moving obstacle or static obstacle), using non-cooperative game
theory. There is no path to follow or limitation as to where the vehicle can go to avoid
the obstacle, outside its own physical path restrictions.

Another thesis [8] uses several methods discrete deterministic, stochastic, and non-
cooperative dynamic models. One of the key conclusions is, “differential pursuit-evasion
games are complicated to analyze even under the best circumstances, and that the
introduction of realistic complexity makes them formally inflexible.” [8] And,
“Although differential game theory provides a framework for describing the important
features of pursuit-evasion contests, and a set of normative results concerning optimal
strategies in simple cases, it cannot generally provide optimal strategies for practically
pursuit evasion problems, nor can it show how strategies can be implemented in a real
control system subjected to limited sensory capacities, sensory and motor noise,
component failure and constraints on processing speed and accuracy.”[8]

Neural Control would be another viable solution to collision avoidance. Neural Control
is using a network of simulated neurons, which learn the correct behavior when trained
with a set of desired scenarios. MAMMOTH uses ALVINN’s Neural Network for road
following and extends it for use in cross-country applications. The motivation behind
MAMMOTH is two parts: “vegetation is difficult to characterize using simple physical
models, and multiple features are needed to distinguish vegetation from other natural
objects. MAMMOTH uses a neural network to learn a model for vegetation by
associating video data with a human-driven classification of terrain.” [19]

8

The prototype vehicle platform used in this thesis is built on top of work done in [7].
This work included the lateral control of the car following the white piece of tape, which
symbolized a lane. A MATLAB simulation was created for a car as well as the DSP
software in the car to follow the white piece of tape. In the simulation pθ� is never from
the discrete version, it is always a continuous function which is never available from the
real car, since the IR sensors work in discrete form. When using the calculated c(s) from
the simulated sensors, the control was very unstable. The only solution that seemed to
work was to disable the calculation of c(s) from the sensors. This work gave the starting
parameters for the lateral controller for the car.

 9

CHAPTER III

MODELING AND APPLYING COLLISION AVOIDANCE

3.1 Determining Optimal Lane Change Trajectory for the Car

In this section, the optimal lane trajectory is derived using Variational Calculus. This
optimal trajectory will the be used by both the optimal and fuzzy lane change controllers.
The starting point for this derivation are the vehicle kinematic state equations.

3.1.1 Dynamic System of the Car Model and State Equations

The figure of the car below shows the symbols being used in the dynamics of the car.

Figure 2 Coordinate System for the Car

10

The location and orientation of the car on a coordinate system can be described by using
the State Equations 3.1-1. The states are described by: x1(t) is the x value of the center of
the rear axle of the car, x2(t) is the y value of the center of the rear axle of the car, x3(t) is
the heading of the car, x4(t) is the steering angle for the car, l is the length between the
axles, u1 is the car velocity, and u2(t) is the steering angle velocity. The following are the
state equations and the state constraint for the car’s kinematics.

3
1

3
2

1 24
3

4

((), ())
cos(())() 0
sin(())() 0

()tan(())() 0
() 10

x A x t u t
x tx t
x tx t

u u tx tx t
l

x t

=

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

�

�
�
�
�

 [3.1-1]

43 3
xπ π

− ≤ ≤ [3.1-2]

The state constraint 3.1-2 means the steering angle cannot exceed ±60o.

3.1.2 Cost Function

The obstacle avoidance goal is to maximize the distance L between the car and the
obstacle, minimize the control output u2 and maximize velocity u1. The cost function is
defined where a minimal cost is optimal. This is accomplished by multiplying the
distance squared and velocity u1 squared by -1. The cost function is then:

0

2 2 2
2 1() 10 ()

ft

t

J L t u t u dt= − + −∫ [3.1-3]

For this example, u1 is a constant velocity so it will not be considered an input to the
system. An optimal path is calculated using the kinematics of the car from the state
equations and the cost function that describes what is being optimized.

11

3.1.3 Hamiltonian, Kinematics & Optimal Lane Change Trajectory

Hamiltonian was used because it is a convenient form to express the necessary conditions
for optimality based on the principle of optimality.

The Hamiltonian needs to be calculated, so an optimal trajectory can be obtained. The
Hamiltonian is defined in equation 3.1-4 as a function of the state equations and the cost
function.

((), (), (),) ((), (),) ()[((), (),)]TH x t u t p t t g x t u t t p t a x t u t t+� [3.1-4]

Substituting equations 3.1-1and 3.1-3 into the Hamiltonian 3.1-4 yields:

2 2 2
1 2 2 1 1 3

1 3 4
1 2 3 2 4

((), (), (),) () () 10 () () cos(())
() tan(())() sin(()) () ()

H x t u t p t t x t x t u t u p t x t
u p t x tu p t x t u t p t

l

= − − + + +

+ +
 [3.1-5]

The necessary conditions for optimal control expressed using the Hamiltonian 3.1-4 are:

0

*() (*(), *(), *(),)

*() (*(), *(), *(),) for all t [t ,]

0 (*(), *(), *(),)

f

Hx t x t u t p t t
p

Hp t x t u t p t t t
x

H x t u t p t t
u

∂ ⎫= ⎪∂ ⎪
∂ ⎪= − ∈⎬∂ ⎪

∂ ⎪= ⎪∂ ⎭

�

� [3.1-6]

Appling the necessary conditions of equations 3.1-6 to the Hamiltonian 3.1-5 yields the
following optimal state equations, costate equations, and control:

1 1 3

2 1 3

1 4
3

4 4

*() cos(*())
*() sin(*())

tan(*())*()

1*() *()
20

x t u x t
x t u x t

u x tx t
l

x t p t

=
=

=

= −

�
�

�

�

 [3.1-7]

12

1 1

2 2

3 1 1 3 1 2 3
2

1 3 4
4

*() 2 *()
*() 2 *()
*() *()sin(*()) *() cos(*())

*()(1 tan (*()))*()

p t x t
p t x t
p t u p t x t u p t x t

u p t x tp t
l

=
=
= −

+
= −

�
�
�

�

 [3.1-8]

2 4
1*() *()
20

u t p t= − [3.1-9]

3.1.4 Derive the Optimal Trajectory for Lane Changing

The first step in deriving the optimal trajectory for lane changing was to apply the
numerical method of variation of extremals. Even though this method does not allow for
the state constraints, it was used to see how close the solution could get to the optimal
trajectory. The variation of extremals algorithm from [6] is shown below.

The steps required to carry out the variation of extremals method:

1. Form the reduced differential equations by solving 0dH
du

= for u(t) in terms of

x(t), p(t), and substituting in the state and costate equations [which then contain
only x(t), p(t), and t].

2. Guess p(0)(t0), an initial value for the costate, and set the iteration index i to zero.

3. Using p(t0)= p(i)(t0) and x(t0)=x0 as initial conditions, integrate the reduced state-
costate equations and the influence function equations 3.1-10.

2 2
() () ()

0 0 02

2 2
() () ()

0 0 02

((), () ((),) () ((),)

((), () ((),) () ((),)

i i i
x x p

i

i i i
p x p

i i

d H HP p t t t P p t t t P p t t
dt p x p

d H HP p t t t P p t t t P p t t
dt x x p

⎡ ⎤ ⎡ ⎤∂ ∂⎡ ⎤ = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤∂ ∂⎡ ⎤ = + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

 [3.1-10]

13

with initial conditions:

()
0

()
0

() 0
0 0

0 ()

() 0
0 0

0 ()

()((),) 0 (the n x n zero matrix)
()

()((),) (the n x n identity matrix)
()

i

i

i
x

p t

i
p

p t

dx tP p t t
dp t

dp tP p t t I
dp t

= =

= =

 [3.1-11]

from t0 to tf. Store only the values p(i)(tf), x(i)(tf), and the n x n matrices Pp(p(i)(t0),tf) and
Px(p(i)(t0),tf).

4. Check to see if the termination criterion
()

() (()
()

i
fi

f

h x t
p t

x
γ

∂
− <

∂
 is satisfied. If

it is, use the final iterate of p(i)(t0) to reintegrate the state and costate equations and
print out (or graph) the optimal trajectory. If the stopping criterion is not
satisfied, use the iteration equation 3.1-12 to determine the value for p(i+1)(t0),
increase I by one, and return to step 3.

() 1(1) ()
0 0 0() () ((),) (() ())i i i i

x f f fp t p t P p t t x t x t
−+ = − − [3.1-12]

Pp(p(i)(t0), tf) in equation 3.1-12, the n x n costate influence function matrix evaluated at
t=tf is shown below.

()
0

1 1 1

1 2 2
()

0

1 2 ()

() () ()
() () ()

((),)
() () ()
() () () i

i
p

n n n

n p t

p t p t p t
dp t p t p t

P p t t
p t p t p t
p t p t p t

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

…

� # # # #

…

 [3.1-13]

Px(p(i)(t0), tf) in equation 3.1-12, the n x n state influence function matrix evaluated at t=tf
is shown below.

()
0

1 1 1

1 2 2
()

0

1 2 ()

() () ()
() () ()

((),)
() () ()
() () () i

i
x

n n n

n p t

x t x t x t
dp t p t p t

P p t t
x t x t x t
p t p t p t

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

…

� # # # #

…

 [3.1-14]

14

The notation []i means the enclosed terms are evaluated on the ith trajectory.

Substituting the Hamiltonian equation 3.1-5 into 3.1-10 results in the differential
influence function matrix Px shown below:

1 3 (3,1) 1 3 (3,2) 1 3 (3,3) 1 3 (3,4)

1 3 (3,1) 1 3 (3,2) 1 3 (3,3) 1 3 (3,4)
2

1 4

sin(()) () sin(()) () sin(()) () sin(()) ()
cos(()) () cos(()) () cos(()) () cos(()) ()

(1 tan ((()

x x x x

x x x x

x

u x t P t u x t P t u x t P t u x t P t
u x t P t u x t P t u x t P t u x t P t

u xP t

− − − −

+=� 2 2 2
(4,1) 1 4 (4,2) 1 4 (4,3) 1 4 (4,4)

(4,1) (4,2) (4,3) (4,4)

)) () (1 tan (()) () (1 tan (()) () (1 tan (()) ()

1 1 1 1
20 20 20 20

x x x x

p p p p

t P t u x t P t u x t P t u x t P t
l l l l

P P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

Equation above is [3.1-15]

Substituting the Hamiltonian equation 3.1-5 into 3.1-10 results in the differential
influence function matrix Pp shown below:

(1,1) (1,1)

(1,2) (1,2)

(1,3) (1,3)

(1,4) (1,4)

() 2 ()

() 2 ()

() 2 ()

() 2 ()

p x

p x

p x

p x

P t P t

P t P t

P t P t

P t P t

=

=

=

=

�

�

�

�

 [3.1-16]

(2,1) (2,1)

(2,2) (2,2)

(2,3) (2,3)

(2,4) (2,4)

() 2 ()

() 2 ()

() 2 ()

() 2 ()

p x

p x

p x

p x

P t P t

P t P t

P t P t

P t P t

=

=

=

=

�

�

�

�

 [3.1-17]

()
()

(3,1) 1 1 3 1 2 3 (3,1) 1 (1,1) 3 1 (2,1) 3

(3,2) 1 1 3 1 2 3 (3,2) 1 (1,2) 3 1 (2,2) 3

() () cos(() ()sin(()) () ()sin(()) cos(())

() () cos(() ()sin(()) () ()sin(()) cos(())
p x p p

p x p p

P t u p t x t u p t x t P t u P t x t u P x t

P t u p t x t u p t x t P t u P t x t u P x t

P

= + + −

= + + −

�

�

� ()
()

(3,3) 1 1 3 1 2 3 (3,3) 1 (1,3) 3 1 (2,3) 3

(3,4) 1 1 3 1 2 3 (3,4) 1 (1,4) 3 1 (2,4) 3

() () cos(() ()sin(()) () ()sin(()) cos(())

() () cos(() ()sin(()) () ()sin(()) cos(())
p x p p

p x p p

t u p t x t u p t x t P t u P t x t u P x t

P t u p t x t u p t x t P t u P t x t u P x t

= + + −

= + + −�

 Equation above is [3.1-18]

15

2 2
1 3 4 4 (4,1) 1 4 (3,1)

(4,1)

2 2
1 3 4 4 (4,2) 1 4 (3,2)

(4,2)

1 3 4
(4,3)

2 () tan(())(1 tan (())) () (1 tan (())) ()
()

2 () tan(())(1 tan (())) () (1 tan (())) ()
()

2 () tan((
()

x p
p

x p
p

p

u p t x t x t P t u x t P t
P t

l l
u p t x t x t P t u x t P t

P t
l l

u p t x
P t

+ +
= − −

+ +
= − −

= −

�

�

�
2 2

4 (4,3) 1 4 (3,3)

2 2
1 3 4 4 (4,4) 1 4 (3,4)

(4,4)

))(1 tan (())) () (1 tan (())) ()

2 () tan(())(1 tan (())) () (1 tan (())) ()
()

x p

x p
p

t x t P t u x t P t
l l

u p t x t x t P t u x t P t
P t

l l

+ +
−

+ +
= − −�

Equation above is [3.1-19]

Initial Conditions for differential influence function matrices Px & Pp

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

(0) (0)
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

x pP P

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 [3.1-20]

Initial Conditions of x(0) & p(0) for step 3.

1 1
0 1

(0) (0)
0 1
0 1

x p

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 [3.1-21]

Final Conditions of x(tf) for step 4.

0.3
()

0
0

f

free

x t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 [3.1-22]

Variation of Extremals (Convergence)

The method of variation of extremals will generally converge quite rapidly; however if
the initial guess for p(t0) is poor, the method may not converge at all. Making a good
initial guess is a difficult matter, because we have no insight to guide us in selecting

16

p(0)(t0). This was found to be true in this case as the system did not converge; this may
also have resulted because this method does not allow the state constraint to be used.

The next attempted method to solve the two-point boundary value problem was
Quasilinearization, but one of the matrices was always singular no matter what the initial
conditions of p were.

For the final attempt, MATLAB/Simulink was used to model the State and Costate
equations including the state constraints and the initial conditions. Below is the overview
of the Simulink model of the variation of extremals method including the state
constraints. Following the overview are the subsystem models of state and costate
equation blocks.

XY Graph

p

To Workspace1

xTo Workspace

v 2

v 1

x

phi

y

theta

State Equations

-K-

Gain

x1

x2

x3

x4

v 1

p1

p2

p3

p4

Costate Equations

1.5

Constant theta

phi

y

x

Figure 3 Model of State and Costate Equations with State Constraints

17

State Equations Subsystem

4
theta

3
y

2
phi

1
x

tan

Trigonometric
Function2

sin

Trigonometric
Function1

cos

Trigonometric
Function

Product2

Product1

Product

1
s

Integrator4
1
s

Integrator3

1
s

Integrator2

1
s

Integrator1

-K-

Gain

2
v1

1
v2

theta_dot

y_dot

x_dot

Figure 4 Model of State Equations with State Constraints Subsystem

Costate Equation Subsystem

4
p4

3
p3

2
p2

1
p1

tan

Trigonometric
Function2

cos

Trigonometric
Function1

sin

Trigonometric
Function

Product2

Product1

Product

|u|2

Math
Function

1
s

Integrator3

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

-K-

Gain2

2

Gain1

2

Gain

1

Constant

5
v1

4
x4

3
x3

2
x2

1
x1

p1_dot

p2_dot

p1

p2

p3_dot

p4_dot p4

Figure 5 Model of Costate Equations Subsystem

18

The Simulink model above was run and the costate initial conditions p(0) were adjusted
until the results came close to the desired x(tf) see equation 3.1-22. The final values for

p(0) are:

400,000
2,000

(0)
18,000
2,685

p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 yielding the final values of x(tf):

-0.54771
0.30313

()
0.0014119

-0.7854

fx t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

with

tf=0.3856 seconds.

Below are graphs one showing the values of x vs. y from the Simulink model above run
with the final values of p(0) and the other showing the steering angle x4(t) vs. time.

Figure 6 Optimal Path the Car takes when Changing Lanes

19

Figure 7 Steering Angle x4(t) (φ)

Obviously, state x4(t) is “Bang Bang” to reach an optimal trajectory. To maneuver the
car in an optimal trajectory when changing lanes, the car turns its wheel hard when
making the first turn of the lane change maneuver then hard the other way when making
the second turn of the lane change maneuver. Finally, the car is orientated in the new
lane and follows it. The next section proves that this lane-changing maneuver has the
optimal cost based on the previous definition of optimality.

3.1.5 Evaluated Cost Function of Various Trajectories

Now with the optimal lane change trajectory derived, various car-driving scenarios are
explored. There are nine scenarios with static obstacles and moving cars. The cost
function is numerically evaluated for each scenario.

3.1.5.1 Vehicle Stopped With One Fixed Obstacle

One option would have the car stop in front of an obstacle 1 meter away. The distance to
the obstacle would be L(t)=1 and u1=0 and u2=0. Using t0=0 and tf=0.66667 the same
time the next example will use. The cost function shown in equation 3.1-23 is when the
car is at rest.

20

0

2 2 2
2 1() 10 0.66667

ft

stop
t

J L t u u dt= − + − = −∫ [3.1-23]

3.1.5.2 Vehicle Driving Into One Fixed Obstacle

Equation 3.1-24 is the distance from the car to an obstacle one meter in front of it, if the
car drives straight into the obstacle. Figure 8 shows the trajectory of the car.

1 0() 1 ()L t u t t= − − [3.1-24]

Figure 8 Path of Car Driving Straight into Obstacle

Equation 3.1-25 is the time when the car collides with the object Using t0=0, and u1=1.5
yields tf=0.66667.

0
1

1
ft t

u
= + [3.1-25]

The cost function equation 3.1-26 uses 3.1-24, t0=0, u1=1.5, tf=0.66667, and u2=0.

21

0

2 2 2
2 1() 10 -1.722222222

ft

straight
t

J L t u u dt= − + − =∫ [3.1-26]

3.1.5.3 Vehicle Avoiding One Fixed Obstacle

Next, the car uses “Bang Bang” control on state x4(t), which avoids obstacles, by
changing lanes to maximize the distance between the obstacle and the car.

Integrating the state equations 3.1-1 gives equations for x1(t) and x2(t) in terms of x3(t).

31
1 2

32

cos(())() 0
()

sin(())() 0
x tx t

u u t dt
x tx t

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
∫ [3.1-27]

x3(t) is expressed in terms of x4(t) in the equation below:

()4
3 1 2

tan(())() 0 ()x tx t u u t dt
l

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ [3.1-28]

The “Bang Bang” control of x4(t) can be expressed piecewise as:

0 1

4 1 2

2

3

()
3
0 f

t t t

x t t t t

t t t

π

π

⎧ ≤ ≤⎪
⎪
⎪= − < ≤⎨
⎪

< ≤⎪
⎪⎩

 [3.1-29]

t1, t2, tf, are calculated from the equations below given u1=1.5, t0=0, l=0.2413, lane
distance=0.3, and the equations 3.1-27, 3.1-28, and 3.1-29

()
2 1 1

2 1 0 0 2

1

_ () 0.1902674305
2

2 0.3805348610
1 () 0.7495067304f f

lane distance x t t

t t t t t
x t t

= ⇒ =

= − + ⇒ =

= ⇒ =

 [3.1-30]

The distance to an obstacle 1 meter in front of the car is shown in equation 3.1-31 and the
path is shown in Figure 9:

22

2 2
1 2() (() 1) ()L t x t x t= − + [3.1-31]

Figure 9 Path of the Car Avoiding the Obstacle while changing lanes

The cost function using equations 3.1-27, 3.1-28, 3.1-29, 3.1-30, and 3.1-31 is shown
below.

0

2 2 2
_ 2 1() 10 2.005327312

ft

lane change
t

J L t u u dt= − + − = −∫ [3.1-32]

This cost function is lower than the preceding two examples.

3.1.5.4 Vehicle Stopped With Two Fixed Obstacles

The fourth option would have the car stop in front of two obstacles. One obstacle is 1
meter directly in front of the car and the other obstacle is in another lane 0.5 meters in
front of the car in the x direction and -0.3 in the y direction. The sum of the distances to
the two obstacles would be L(t)= 1.583095190 and u1=0 and u2=0. Using t0=0 and
tf=0.66667 the same time the next example will use. The cost function shown in equation
3.1-34 is when the car is at rest.

2 2() 1 .5 .3 1.583095190L t = + + = [3.1-33]

0

2 2 2
2 2 1() 10 -1.670793397

ft

stop
t

J L t u u dt= − + − =∫ [3.1-34]

23

3.1.5.5 Vehicle Driving Into One Of Two Fixed Obstacles

Equation 3.1-35 is the sum of the distances from the car to the two obstacles as described
above, assuming the car drives straight into the obstacle in front of it. Figure 10 shows
the trajectory of the car.

()2 2
1 0 1 0() 1 () 1 () .5 (0.3)L t u t t u t t= − − + − − − + − [3.1-35]

Figure 10 Path of a Car Driving Straight into Obstacle

Equation 3.1-36 is the time when the car collides with the object. Using t0=0, and u1=1.5
yields tf=0.66667.

0
1

1
ft t

u
= + [3.1-36]

The cost function, equation 3.1-37 uses 3.1-35, t0=0, u1=1.5, tf=0.66667, and u2=0.

0

2 2 2
2 2 1() 10 -2.109170581

ft

straight
t

J L t u u dt= − + − =∫ [3.1-37]

24

3.1.5.6 Vehicle Avoiding Two Fixed Obstacles

Next, the car uses “Bang Bang” control on state x4(t), which avoids obstacles, by
changing lanes to maximize the distance between the obstacle and the car.

Integrating the state equations 3.1-1 gives equations for x1(t) and x2(t) in terms of x3(t).

31
1 2

32

cos(())() 0
()

sin(())() 0
x tx t

u u t dt
x tx t

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
∫ [3.1-38]

x3(t) is expressed in terms of x4(t) in the equation below:

()4
3 1 2

tan(())() 0 ()x tx t u u t dt
l

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ [3.1-39]

The “Bang Bang” control of x4(t) can be expressed piecewise as:

0 1

4 1 2

2

3

()
3
0 f

t t t

x t t t t

t t t

π

π

⎧ ≤ ≤⎪
⎪
⎪= − < ≤⎨
⎪

< ≤⎪
⎪⎩

 [3.1-40]

t1, t2, tf, are calculated from the equations below given u1=1.5, t0=0, l=0.2413, lane
distance=0.3, and the equations 3.1-27, 3.1-28, and 3.1-29

()
2 1 1

2 1 0 0 2

1

_ () 0.1902674305
2

2 0.3805348610
1 () 0.7495067304f f

lane distance x t t

t t t t t
x t t

= ⇒ =

= − + ⇒ =

= ⇒ =

 [3.1-41]

Equation 3.1-42 is the sum of the distances from the car to the two obstacles as described
above. Figure 11 shows the trajectory of the car.

() () ()2 2 22
1 2 1 2() () 1 () () .5 () 0.3L t x t x t x t x t= − + + − + + [3.1-42]

25

Figure 11 Path of a Car Avoiding the Obstacle while changing lanes

The cost function using equations 3.1-38, 3.1-39, 3.1-40, 3.1-41, 3.1-42 is shown below.

0

2 2 2
_ 2 2 1() 10 -2.820447717

ft

lane change
t

J L t u u dt= − + − =∫ [3.1-43]

This cost is lower than the cost of the two preceding examples.

3.1.5.7 Vehicle Stopped With One Fixed Obstacle and One Moving Obstacle

Another option would have the car stop in front of an obstacle that is in front of it and
have another vehicle keep going down the highway. The static obstacle is 1 meter
directly in front of the car and the other vehicle is in another lane starting 0.5 meters in
front of the car in the x direction with a velocity of 1.75 m/s and -0.3 in the y direction.
The sum of the distances to the two obstacles would be L(t) in equation 3.1-44 and u1=0
and u2=0. Using t0=0 and tf=0.66667 the same time the next example will use. The cost
function is shown in equation 3.1-45 when the car is at rest.

()2 2() 1 1 1.75 0.5 0.3L t t= + − − + + [3.1-44]

0

2 2 2
3 2 1() 10 -3.089128653

ft

stop
t

J L t u u dt= − + − =∫ [3.1-45]

26

3.1.5.8 Vehicle Driving into a fixed Obstacle with a moving obstacle

Equation 3.1-46 is the sum of the distances from the car to the two obstacles as described
above. Assuming the car drives straight into the obstacle in front of it. Figure 12 shows
the trajectory of the car.

()()()2 2
1 0 1 0 0() 1 () 1 () 1.75 0.5 (0.3)L t u t t u t t t t= − − + − − − − − + − [3.1-46]

Figure 12 Path of a Car Driving Straight into Obstacle

Equation 3.1-47 is the time when the car collides with the object. Using t0=0, and u1=1.5
yields tf=0.66667.

0
1

1
ft t

u
= + [3.1-47]

The cost function, equation 3.1-48 uses 3.1-46, t0=0, u1=1.5, tf=0.66667, u2=0, and the
moving vehicle going 1.75 m/s.

0

2 2 2
4 2 1() 10 -2.756857316

ft

straight
t

J L t u u dt= − + − =∫ [3.1-48]

27

3.1.5.9 Vehicle Avoiding One Fixed Obstacle and One Moving Obstacle

Next, is the car uses “Bang Bang” control on state x4(t), which avoids obstacles, by
changing lanes to maximize the distance between the obstacle and the car.

Integrating the state equations 3.1-1 gives equations for x1(t) and x2(t) in terms of x3(t).

31
1 2

32

cos(())() 0
()

sin(())() 0
x tx t

u u t dt
x tx t

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
∫ [3.1-49]

x3(t) is expressed in terms of x4(t) in the equation below:

()4
3 1 2

tan(())() 0 ()x tx t u u t dt
l

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ [3.1-50]

The “Bang Bang” control of x4(t) can be expressed piecewise as:

0 1

4 1 2

2

3

()
3
0 f

t t t

x t t t t

t t t

π

π

⎧ ≤ ≤⎪
⎪
⎪= − < ≤⎨
⎪

< ≤⎪
⎪⎩

 [3.1-51]

t1, t2, tf, are calculated from the equations below given u1=1.5, t0=0, l=0.2413, lane
distance=0.3, and the equations 3.1-27, 3.1-28, and 3.1-29

()
2 1 1

2 1 0 0 2

1

_ () 0.1902674305
2

2 0.3805348610
1 () 0.7495067304f f

lane distance x t t

t t t t t
x t t

= ⇒ =

= − + ⇒ =

= ⇒ =

 [3.1-52]

Equation 3.1-53 is the sum of the distances from the car to the two obstacles as described
above. Figure 13 shows the trajectory of the car.

() ()()() ()
22 22

1 2 1 0 2() () 1 () () 1.75 0.5 () 0.3L t x t x t x t t t x t= − + + − − − + + [3.1-53]

28

Figure 13 Path of a Car Avoiding the Obstacle while changing lanes

The cost function using equations 3.1-49, 3.1-50, 3.1-51, 3.1-52, 3.1-53 is shown below.

0

2 2 2
_ 3 2 1() 10 -3.695199822

ft

lane change
t

J L t u u dt= − + − =∫ [3.1-54]

This cost function is lower than the preceding two examples.

3.2 MATLAB/Simulink Simulation Environment

Starting with [7], a MATLAB/Simulink simulation environment was created for the car.
The simulation environment was designed for the car to go around an oval track with 3
lanes. The track was created as a 3 m by 8 m grid of 1 mm square points. The white line
was simulated as ones in this 3000 by 8000 matrix and black as zeros. Most of the
simulation functions in [7] were written as MATLAB M files and the simulations were
run from MATLAB. These functions were rewritten in Simulink and the simulation runs
from the Simulink model. This graphical approach with multiple subsystems allows for
an easy understanding and easy of use as well as ease of debugging. It also makes it
clearer as to exactly what is going on from signal to signal. The top-level overview of the
Simulink model is shown in Figure 14 below.

29

Overview of the Flash Car Simulation

0

speed in mph1

0

speed in mph

-C- k3-C- k2-C-k10c20c1

v 2

v 1

x

phi

y

theta

Vehicle Dynamic Model

d

c(
s) u1 u2

th
et

a_
p

ph
i

c1 c2

v1 v2

V1_V2

0

Time_Interval1

Time_Interval

Time_Interval

d

c(s)

theta_p

c1

phi

x2

x3

x4

States

x

y

theta

v 1

u1

d

theta_p

c(s)

Navigation

.5 Gain

Flash Car 2

f(u)

Fcn

x2 u1 k1 k2 x3 k3 x4

u2

Control_Law

x y th
et

a

ph
i Animation_Update

<phi>

<c1>

<theta_p>

<c(s)>

v 2

<x4><k3><x3><k2><k1><u1><x2>

v 1

<c2>
<c1>

<phi><theta_p><u2><u1><c(s)>

<d>

u2x4x3x2

k3k2k1c2

c1

Time_Interv al

theta

phi

phi

y

x

Figure 14 Overview of the Car Simulation

The rest of the models and subsystems are included in Appendix A Simulink

The simulation of lane changing, car behavior when changing lanes, obstacle detection,
obstacle avoidance and control law are discussed next.

3.2.1 Car Path Control

The complete kinematic model for each car is based on equation (9.10) in [5] and is in the
subsystem Car Dynamic Model shown in Appendix A:

1 2

sin 0
cos 0
tan 0

10

x
y

v v
l

θ
θ
θθ

φ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

�
�
�
�

 [3.2-1]

30

The lateral controller used to control each car is based on a state space feedback system.
These states, shown below are defined by equations (10.4-10.6) in [5] and are
implemented in Overview of the States subsystem shown in Appendix A:

2 2

2 2 2

1 sin (1 ()) tan'() tan ()(1 ())
cos cos

p
p

p p

d c sx c s d c s d c s
l

θ φθ
θ θ

+ −
= − − − + [3.2-2]

3 (1 ()) tan px d c s θ= − [3.2-3]

4x d= [3.2-4]

The control law equations, shown below are defined by equation (10.13) in [5] and are
included in the subsystem Control Law shown in Appendix A:

2 1 1 2 2 1 3 3 1 4() () ()u k u t x k u t x k u t x= − − − [3.2-5]

Below are the best values of the gains that were determined experimentally for the
controller:

k1 = 4000

k2 = 1200

k3 = 60

The inputs to the car kinematic equations are v1 and v2 as defined by equations (10.7 &
10.8) in [5] where v1 is the linear velocity of the rear wheels and v2 is the angular velocity
of the steering wheels. The equations for a1 and a2 are given in [5] following equations
(10.7 & 10.8). These equations below are contained in the Overview of V1 and V2
subsystem shown in Appendix A.

1 1
1 ()

cos p

d c sv u
θ

−
= [3.2-6]

2 2 2 1 1()v a u a u= − [3.2-7]

2 2 2
1

tan (1 ()(1 ()) tan ()
cosp

p p

x x x d c sa d c s c s
s d l

φθ
θ θ

⎡ ⎤∂ ∂ ∂ −
= + − + −⎢ ⎥
∂ ∂ ∂ ⎢ ⎥⎣ ⎦

 [3.2-8]

31

3 2

2 2

cos cos
(1 ())

pl
a

d c s
θ φ

=
−

 [3.2-9]

The following equations came from [7], and are included in the subsystem above.

2
2

2 3

1 sin 2(1 ()) () tan() tan (() 2 () ())
cos cos

p
p

p p

x d c s d c sc s d c s d c s c s
s l

θ φθ
θ θ

+∂ −
= − − + −

∂
��� � � [3.2-10]

2
22

2 3

1 sin 2 () (1 ()) tan()
cos cos

p

p p

x c s d c sc s
d l

θ φ
θ θ

+∂ −
= −

∂
 [3.2-11]

2
2

2 3

1 () 4 tan 3(1 ()) tan tan
()

cos cos
p p

p p p

d c s d c sx c s
l

θ φ θ
θ θ θ

− −∂
= − +

∂
 [3.2-12]

3.2.2 Lane Changing

The Lane Changing subsystem shown in Appendix A takes in all the sensor data, and the
System Mode.

When the System_Mode is set to 0, then sensor_d, sensor_theta_p, and sensor_c(s) go to
the car controller and the car continues on its way following the white line.

When the System_Mode is set to 1, then the lane_change.m file is called to make the car
change lanes. The sensor data includes the IR sensor and the range finder. The state
machine that controls the car lane changing maneuver is the lane_change function. This
function takes in turn_left_or_right, front_error_dist, theta, System_Mode,
lane_we_are_in, In_Lane_Change, theta1, lane_change_direction_latched and outputs
the curvature:

c(s)= lane_change_direction_latched
Rad_of_Lane_Change_Turn

The car controller and states use this curvature, so that the car turns its wheel hard when
making the first turn of the lane change maneuver, then hard the other way when making
the second turn of the lane change maneuver, and finally changes to the new lane and
follows it.

32

The car turns until theta and theta1±Turn_Alpha are approximately equal; it is ± because
it depends on whether the car is turning left or right. The car repeats the curve executed
at the beginning of the lane change maneuver except in the opposite direction to align the
car with the white line. In addition, the lane_change.m file updates the lane_we_are_in.
The reason for the delays (1/Z) is to retain the previous values of the lane_we_are_in,
In_Lane_Change, theta1, lane_change_direction_latched. Since there are multiple cars,
the delays remember the previous values for each car separately. This way the same
functions can be used for each car.

3.2.3 Obstacle Detection

The obstacle detection system models ultrasonic or range finder distance sensors, and
when there is an obstacle in the region the sensor detects it. The region for each sensor is
defined by 360 degrees divided by the number of sensors. The obstacle_sensor_function
uses the current x,y, and theta and returns an array with the distance the closest obstacle
is away from each sensor. If there is no obstacle closer than max_dist the
obstacle_sensor_function outputs max_dist. There is an array static_obstacles, which
includes obstacles that do not move, and the cars’ positions. It is a 2 dimensional array
which has a row for each obstacle, in each row there is a column for x-position, y-
position, and obstacle radius.

3.2.4 Obstacle Avoidance

The Obstacle Avoidance subsystem shown in Appendix A, takes in x, y, and theta which
goes to the obstacle sensor function which simulates the distance sensors, using the
MATLAB function obstacle_sensor_function.m The discrete derivative is used to
calculate the velocity of the obstacles. Impulse_to_zero function eliminates the impulse
that occurs when a sensor rotates and detects a nearby object. The
obstacle_avoidance_cost_function_control_law.m has twenty-one different states, each
distance sensor, velocity from each distance sensor, lane we are in (1=outer 3=inner),
car velocity V1, car heading theta, System Mode, and x location. The outputs for the cost
function are u1 (car linear velocity), turn left or right, and System Mode. The cost
function calculates using optimal control, the optimal control outputs. For the fuzzy
obstacle avoidance controller the function fuzzy_law.m is substituted for
obstacle_avoidance_cost_function_control_law.m

33

3.2.5 Control Law

The control law 3.2-13 is the heart of the optimal control obstacle avoidance controller.
It determines which way the car turns when there is an obstacle in the way.

2

2 2 2
1 1 2 1 2 2 3 13 2 2 17

2
u [1,0, 1] 2 17 2 21 21

* (-1)-(+) + (<-.5) +(= =-1)(= =1)+

(= =1)(= =3)+5 (>) | (<)min
x k u x k u k x u u x

u
u x u x maxcurvex x mincurvex= −

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 [3.2-13]

This term changes lanes if obstacle gets too close in the front x1

2 2
1 1 2 1 2 2(-1)-(+)x k u x k u [3.2-14]

This term changes lanes if an obstacle is behind the car and is approaching at a speed of
less than -0.5

2
3 13 2(<-.5)k x u [3.2-15]

This term increases the cost so if the car is in lane 1 then it won’t make a right turn

2 17(= =-1)(= =1)u x [3.2-16]

This term increases the cost so if the car is in lane 3 then it won’t make a left turn

2 17(= =1)(= =3)u x [3.2-17]

This term increases the cost so the car will not try to change lanes on the curves at either
end of the track since the lane change maneuver does not currently work on the curves.

2
2 21 215 (>) | (<)u x maxcurvex x mincurvex [3.2-18]

Figure 15, Figure 16, and Figure 17 below show the costs for the three choices of
changing lanes with the cost as the Y-axis and the Distance an Object is in front of the car
as the X-axis, all three graphs have no car approaching from the rear.

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

Distance an Obstacle is in front of Vehicle "X1"

C
os

t

Lane Change Turn Direction=-1
Lane Change Turn Direction=0
Lane Change Turn Direction=1

Figure 15 Cost Function for Lane 1 and Rear Velocity=0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Distance an Obstacle is in front of Vehicle "X1"

C
os

t

Lane Change Turn Direction=-1
Lane Change Turn Direction=0
Lane Change Turn Direction=1

Figure 16 Cost Function for Lane 2 and Rear Velocity=0

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

Distance an Obstacle is in front of Vehicle "X1"

C
os

t

Lane Change Turn Direction=-1
Lane Change Turn Direction=0
Lane Change Turn Direction=1

Figure 17 Cost Function for Lane 3 and Rear Velocity=0

3.2.6 Adaptive Cruise Control

Adaptive cruise control is included in the model, because it is an important part of
collision avoidance. This make the simulation more realistic, in the sense that a driver
will not always changes lanes when they see a car in front of them that is going slower
than they are. When the car in front of them slows down too much then changing lanes is
preferable. The following equation is what adjusts the car’s velocity based on the
distance to the obstacle in front of it.

In equation, 3.2-19 x1 is distance the obstacle is in front of the vehicle and once the
obstacle gets closer than 1 meter, the speed of the vehicle decreases to 0 when the
obstacle gets within 0.2 meters. The max function makes sure the vehicle does not travel
backwards. This is included in obstacle_avoidance_cost_function_control_law.m

1
1

3(-0.2)=max 0
0.8

xu ⎛ ⎞
⎜ ⎟
⎝ ⎠

 [3.2-19]

36

3.2.7 Car Behavior when avoiding obstacles and changing lanes

When the car detects an obstacle and it needs to change lanes it performs the following
maneuver. The car turns its wheel hard when making the first turn of the lane change
maneuver, then hard the other way when making the second turn of the lane change
maneuver, and finally changes to the new lane and follows it. This path is shown below
in Figure 18.

Figure 18 Lane Changing Path

The obstacle avoidance is based on a set of states that are used to create optimal control.
The input states for the obstacle avoidance controller are:

1

8

9

16

17

18 1

19

20

21

distance sensor 1

distance sensor 8
velocity from distance sensor 1

velocity from distance sensor 8
lane we are in

System Mode
x location o

x

x
x

x
x
x v
x
x
x

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

#

f vehicle

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 [3.2-20]

The control variables are:

37

1 1

2

3

turn_direction
System Mode

u u
u
u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 [3.2-21]

The cost function that needs to be minimized over u2=[-1,0,1] to optimally control the
obstacle avoidance/lane changing behavior as defined by:

2

2 2 2
1 1 2 1 2 2 3 13 2 2 17 2 17

2
u [1,0, 1] 2 21 21

* (-1)-(+) + (<-.5) +(= =-1)(= =1)+(= =1)(= =3)

+5 (>) | (<)min
xk u x k u k x u u x u x

J
u x maxcurvex x mincurvex= −

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 [3.2-22]

Below are the optimal gains for the cost function:

k1 = 2.2

k2 = 0.5

k3 = -1.0

A state machine with four states is used to control the lane change behavior and its
behavior is described below.

The first state is when the car is following the white line and is not changing lanes. The
state machine sends d, θp, and c(s), to the car controller (state and calculations for v1 and
v2).

The second state is when the obstacle avoidance system first determines the car needs to
change lanes. This state initializes the lane change parameters, and d, θp, and c(s) are
now calculated by the lane change function and are not based on the simulated IR
sensors. The following variables are set as shown below.

In_Lane_Change=1

θi=θ

c(s)=0

d=0

θp=0

38

lane_change_direction_latched=lane_change_direction

The third state is when the car makes the first turn. This turn is executed by forcing the
path curvature value c(s) such that the car controller believes that it is following a curved
path that is smaller then the limit on phi will allow. This forces the wheel to the limit as
fast as possible for the “Bang Bang” optimal control on phi. The state is terminated
when the car θ has turned by Turn_Alpha radians, the state machine then advances to the
next state.

_ _ _()
_ _ _ _

lane change direction latchedc s
Rad of Lane Change Turn

= [3.2-23]

The fourth state is when the car makes the second turn in the opposite direction, to come
back to the original θ. This turn is executed by forcing the path curvature value c(s) such
that the car controller believes that it is following a curved path that is smaller then the
limit on phi will allow. This forces the wheel to the limit as fast as possible for the
“Bang Bang” optimal control on phi.

_ _ _()
_ _ _ _

lane change direction latchedc s
Rad of Lane Change Turn
−

= [3.2-24]

The state is terminated when the car θ has turned back to θi, the state machine is then
reset to the first state. The lane the car is in state is now updated. The following variables
are set as shown below.

In_Lane_Change=0

System_Mode=0

lane_we_are_in=lane_we_are_in+lane_change_direction_latched [3.2-25]

3.2.8 Example of 3 Cars and 3 Static Obstacles

The example shown in Figure 19 below shows the paths of three vehicles each one has
adaptive cruise control along with the optimal control collision avoidance controller.
When the vehicle detects the static obstacle and there is a car in another lane that it will

39

slow down and change lanes to avoid the static obstacle and the vehicle that is in the next
lane over.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Figure 19 Lane Changing Path with 3 Cars and 3 Static Obstacles

with Optimal control

3.2.9 Fuzzy Control

The fuzzy controller was created using the FIS Editor in MATLAB. The four input states
that are currently used in the optimal control subroutine
obstacle_avoidance_cost_function_control_law.m were defined as inputs for the fuzzy
controller as were the three outputs. Membership functions for each input and output
were created so that rules could be written to perform the tasks required for collision
avoidance and adaptive cruise control. The fuzzy controller overview in the FIS editor is
shown below.

40

Figure 20 Fuzzy Controller Overview

The input state1 is the distance an obstacle is in front of the car has four membership
functions: turn, do not turn, acc, and slow down. These membership functions are
shown in the FIS Editor below. The reason for the zmf membership function for turn is
because the car needs to turn when the obstacle distance is less than 0.4 meters away.
The reason for the sigmf for do not turn is because the car does not need to turn when the
obstacle distance is more than 0.4 meters away. See Figure 29 on page 49. The slow
down and the acc memberships functions are pimf and trimf respectively. These
membership functions were chosen so that the closer the car got to an obstacle the slower
the vehicle would go (slow down) and the farther the car was from an obstacle the faster
it would go (acc). The shapes and positions were adjusted such that automatic cruise
control would respond as desired. See Figure 31 on page 50.

41

Figure 21 Fuzzy Control Input State1

42

The input state13 is the velocity of objects from the rear of the vehicle. There is one
membership function turn_rear_speed. The membership function is shown in the FIS
Editor below. The reason for the zmf membership function for the turn_rear_speed is
because the car needs to turn when another car approaches from the rear with a velocity
less than -0.35 meters per second. See Figure 30 on page 49.

Figure 22 Fuzzy Control Input State13

43

The input state17 is the lane we are in. There are three membership functions for the car
inlane1, lane2, and inlane3. The membership functions are shown in the FIS Editor
below. The membership function for inlane1 is trimf so inlane1 would be true when
state17 equals 1. The membership function for lane2 is trapmf so lane2 would be true
when state17 equals 2. The membership function for inlane3 is trimf so inlane3 would
be true when state17 equals 3. These are used to ensure the car turns in the correct
direction based on the lane it is in.

Figure 23 Fuzzy Control Input State17

44

The input state21 is the x location of the car. There are two membership functions
no_turn_x_curve1 and no_turn_x_curve2. The membership functions are shown in the
FIS Editor below. The reason for the zmf membership function for no_turn_x_curve1 is
so the car does not turn on the curve on the left side of the track. The reason for the
sigmf membership function for no_turn_x_curve2 is so the car does not turn on the curve
on the right side of the track.

Figure 24 Fuzzy Control Input State21

45

The output Control1 is the vehicle speed of the car. There are two membership functions
brake and speed. The membership functions are shown in the FIS Editor below. The
membership function for speed is smf because for the automatic cruise control, it needs to
increase speed according the fuzzy logic rules. The membership function for brake is
zmf because for the automatic cruise control, it needs to decrease speed according the
fuzzy logic rules. See Figure 31 on page 50.

Figure 25 Fuzzy Control Output Control1

46

The output Control2 is the turn direction of the car. There are three membership
functions turn_right, do_not_turn and turn_left. The membership functions are shown
in the FIS Editor below. The membership function for turn_right is trimf, so when the
fuzzy logic rules determine that the car should turn right, control2 will have a value of -1.
The membership function for do_not_turn is trimf, so when the fuzzy logic rules
determine that the car should not turn, control2 will have a value of 0. The membership
function for turn_left is trimf, so when the fuzzy logic rules determine that the car should
turn left, control2 will have a value of 1.

Figure 26 Fuzzy Control Output Control2

47

The output Control3 is the System Mode for the car. There are two membership
functions no_lane_change and lane_change. The membership functions are shown in
the FIS Editor below. The membership function for no_lane_change is zmf, so when the
fuzzy logic rules determine that the car should not change lanes, control3 will have a
value of 0. The membership function for lane_change is sigmf, so when the fuzzy logic
rules determine that the car should change lanes, control3 will have a value of 1.

Figure 27 Fuzzy Control Output Control3

48

The rules that describe how the fuzzy logic calculates the outputs given the inputs are
shown in the FIS editor below.

Figure 28 Fuzzy Control Rules

49

The figure below shows the output control 2 lane change direction varies versus state 1
(distance from obstacle in front of the car) and state 21 (x location of the car)

Figure 29 Fuzzy Controller Output (Control2 vs State1 and State21)

The figure below shows the output control2 lane change direction versus State13
(velocity of the car approaching from the rear) and State21 (x location of the car)

Figure 30 Fuzzy Controller Output (Control2 vs State13 and State21)

50

The figure below shows the output control1 car velocity versus State1 (distance the
obstacle is in front of the car) and State13 (velocity of the car approaching from the rear)

Figure 31 Fuzzy Controller Output (Control1 vs State1 and State13)

The optimal control obstacle avoidance controller was replaced by the fuzzy controller in
the simulation. The simulation was run again with the same settings and the results
(below) were virtually the same.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Figure 32 Lane Changing Path with 3 Cars and 3 Static Obstacles

with a Fuzzy Controller

51

3.2.10 How to Work in the MATLAB/Simulink Simulation Environment

3.2.10.1 Adding a Car

The way to add more cars is to copy either the car 2 or 3 subsystem and paste it anywhere
in the main window of Simulink.

Figure 33 Main Screen for the Car Simulation

52

Next, go into the vehicle dynamics of the new car model that was just created and change
the initial condition of each the integrators to a new variable. See example below.

Figure 34 Vehicle Dynamics for New Car

53

Then go to the lane changing block and change the initial conditions of the unit delay by
the red note. Again, see the example below.

Figure 35 Initial Lane for New Car

54

Go to update animation block and change the constant number to the number of the car
just created. See details below.

Figure 36 Animation Update Vehicle Number for New Car

Update the MATLAB function initialize_function_graphic.m by adding the car# in the
global variables. Copy Car 2 location and paste it below car 2 renaming all variables
car#. Go to the end of the initialize function and copy the create car information, re-
labeling the location and car# where it is highlighted in yellow below.

car3 = CreateCar(Width_Between_Rear_Wheels, Width_Between_Front_Wheels,
Length_between_axles, Height_of_Car,...Diameter_of_Rear_Wheels,
Diameter_of_Front_Wheels,Width_of_Front_Wheels, Width_of_Rear_Wheels,'blue');
locate(car3,[x2 y2 0]);
aim(car3,[x2+cos(theta2) y2+sin(theta2) 0]);
turn(car3.tire_fl,'z',phi2*180/pi);
turn(car3.tire_fr,'z',phi2*180/pi);

55

Next, edit the update_obstacle.m file by copying and pasting the statements below

if (inputvar(7)==3)
 static_obstacle(maxobstacle+3,1)=inputvar(1);
 static_obstacle(maxobstacle+3,2)=inputvar(2);
 static_obstacle(maxobstacle+3,3)=Length_between_axles/2;
 end

Changing what is highlighted to the next number.

Lastly, change update_animation.m file, copy what is below, changing what is
highlighted to the next number and the ‘+b’ is the color and shape of the trails for the
vehicle.

if car_number==3
 plot(x0,y0,'+b');
 display_car=car3;

end

3.2.10.2 Adding an Obstacle
Add another x,y, and radius coordinate location as another row to the variable below in
the initialize_function_graphic.m file.

static_obstacle=[3 2.45 .050;4 .25 .050; 5 .85 .050]; %Creates an obstacle on the track

3.2.10.3 Modifying the Track Shape

The create_road_map.m file uses two subroutines to create the white lines. One creates
horizontal lines and an example is shown below

temp=h_line(1.5,.85,6.5,.85,tape_width);
x_road=cat(2,x_road,temp(1,1:length(temp)));
y_road=cat(2,y_road,temp(2,1:length(temp)));

The half circles at either end of the track are created with another routine, as in the
example shown below.

temp=curves(6.5,1.5,.950,3*pi/2,tape_width);
x_road=cat(2,x_road,temp(1,1:length(temp)));
y_road=cat(2,y_road,temp(2,1:length(temp)));

56

3.3 Model Car

3.3.1 Model Car Operations

As it stands the car can detect and avoid an obstacle with the IR sensor mounted in the
front. The car changes lanes if the obstacle gets too close to the front. The car will not go
off the road since the cost function increases the cost to make a right turn from the right
lane or a left turn from the left lane. This makes the cost of those choices not optimal.

3.3.2 Model Car Dynamics

Since the original car software did not have any need to estimate the car’s heading based
on the car’s dynamics, there needed to be a function added that estimated the heading so
the car could use the same lane changing function the simulation used.

Equation 3.3-1 is from [5] and Equation 3.3-2 is the discrete time integral of Equation
3.3-1.

 theta_dot=actual_velocity*tan(phi)/L; [3.3-1]

 theta=theta_dot*T+theta; [3.3-2]

3.3.3 Lane Changing

The car’s lane changing worked just like the simulation except that the vehicle’s
maximum value of phi was different depending on if the vehicle was turning to the left or
right. A second variable turn_alpha1 was created to compensate for this discrepancy.
Parameters that are different compared to the simulation are turn_alpha = 0.82,
turn_alpha1 = 1, and LANE_CHANGE_FE_DIST = 0.002.

57

3.3.4 Obstacle Detection

There is an IR sensor on the front of the car that detects the obstacles. The car uses the
Sharp GP2D12 range finder, which can detect obstacles from 10 to 80 cm away. Unlike
the simulation the car has only one sensor that detects obstacles in the front.

3.3.5 Obstacle Avoidance

Obstacle Avoidance is done using optimal control. There is a cost function that
calculates the cost of whether to turn left or right or stay in the same lane when it sees an
obstacle in its way. The function selects the control with the lowest cost.

3.3.6 Car DSP Code

The car DSP code was taken from [5] and [7]. Changes were made to the control.c
program along with adding the subroutines lane_change.c and
obstacle_avoidance_cost_function_control_law.c. The two subroutines were adapted
from the MATLAB m files of the same names used in the simulation. The existing range
finder that is on the front of the vehicle was used for obstacle detection. The steering
control in the existing car code had the calculated value for phi_dot being used as phi.
This is modified to integrate phi_dot to calculate phi, and then to send it to the servo.

3.3.6.1 Control.c

The changes to the control.c are described below:

When the vehicle is following the white line, ie. it is not changing lanes, then theta_p and
d are calculated from the sensors. When the car is changing lanes (System Mode=1) then
theta_p and d are set to 0. Theta_p_dot was changed to be always 0. The code for this is
shown below.
 if (System_Mode==0)
 {
 theta_p = atan((front_error-back_error)/L);
 d = back_error;
 }
 else
 {
 theta_p=0;
 d=0;

58

 }

The original car had no need for calculating the vehicle heading theta, however in order
to do the lane change maneuver; we need to have an arbitrary heading when the vehicle
starts the maneuver in order to control the vehicle during the lane change maneuver. The
code below is the discretized version of the vehicle state equations for theta.

 theta_dot=actual_velocity*tan(phi)/L;
 theta=theta_dot*T+theta;

Next, the states for the obstacle_avoidance_cost_function_control_law for the subroutine
are setup. These states match the states in the MATLAB simulation.

 states[1]=distance; //front distance
 states[5]=1.0; // rear distance
 states[DISTANCE_SENSORS+1]=(distance-p_distance)/T; //front vel
 states[DISTANCE_SENSORS+5]=0.0; //rear vel.
 p_distance=distance;
 states[2*DISTANCE_SENSORS+1]=(float)(lane_we_are_in);
 states[2*DISTANCE_SENSORS+2]=actual_velocity;
 states[2*DISTANCE_SENSORS+3]=theta;
 states[2*DISTANCE_SENSORS+4]=System_Mode;

The obstacle_avoidance_cost_function_control_law is called and returns the control
variables in the variable controls. Again, this corresponds to the MATLAB simulation.
The controls outputs are stored in the variables System_Mode, lane_change_direction,
and u1.

 obstacle_avoidance_cost_function_control_law(states,controls);
 System_Mode=controls[3];
 lane_change_direction=controls[2];
 u1=controls[1];

The lane_change subroutine is called to change lanes as directed by the
obstacle_avoidance_cost_function_control_law. This subroutine corresponds to the
MATLAB function with the same name. The values in return_val are then assigned to
the appropriate variables.

lane_change(lane_change_direction,front_error,theta,System_Mode,
lane_we_are_in, In_lane_Change, theta1,
lane_change_direction_latched,loop_counter, return_val);

 c=return_val[1];
 System_Mode=return_val[2];
 lane_we_are_in=return_val[3];
 In_lane_Change=return_val[4];
 theta1=return_val[5];

59

 lane_change_direction_latched=return_val[6];

3.3.6.2 Obstacle_avoidance_cost_function_control_law.c

The obstacle_avoidance_cost_function_control_law subroutine is virtually the same in
the MATLAB with the same name. The differences are due to C starting with an array
index 0 instead of 1 for the simulation and the find function in MATLAB had to be
created for the C program. MATLAB allowed for matrix arithmetic so in the C program,
each element of the vector J was calculated separately

void obstacle_avoidance_cost_function_control_law(float *state, float *control)

{
int i, imin;
float k1, k2, k3, J[3], Jmin, u2[3];

/*
 control[3]=state[2*DISTANCE_SENSORS+4];
 i=1;
 k1=2.5;k2=.5;k3=-1; //weights for cost function k1 was 1.95
 u2[0]=-1.0; //all possible values for control(2)
 u2[1]=0.0; //all possible values for control(2)
 u2[2]=1.0; //all possible values for control(2)

 J[0]=state[1]*k1*(u2[0]*u2[0]-1)+(state[1]+k2)*(-u2[0]*u2[0])+k3*(float)(state[13]<-
.5)*(u2[0]*u2[0])+(float)(u2[0]==-1)*(float)(state[2*DISTANCE_SENSORS+1]
==1.0)+(float)(u2[0]==1.0)*(float)(state[2*DISTANCE_SENSORS+1]==MAX_NUM_
LANES);

 J[1]=state[1]*k1*(u2[1]*u2[1]-1)+(state[1]+k2)*(-u2[1]*u2[1])+k3*(float)(state[13]<-
.5)*(u2[1]*u2[1])
 +(float)(u2[1]==-1)*(float)(state[2*DISTANCE_SENSORS+1]
==1.0)+(float)(u2[1]==1.0)*(float)(state[2*DISTANCE_SENSORS+1]==MAX_NUM_
LANES);

 J[2]=state[1]*k1*(u2[2]*u2[2]-1)+(state[1]+k2)*(-u2[2]*u2[2])+k3*(float)(state[13]<-
.5)*(u2[2]*u2[2]) +(float)(u2[2]==-1)*(float)(state[2*DISTANCE_SENSORS+1]
==1.0)+(float)(u2[2]==1.0)*(float)(state[2*DISTANCE_SENSORS+1]
==MAX_NUM_LANES);

The code below replaces the find MATLAB function.

 state(1)*k1*(u2.*u2-1)+(state(1)+k2)*(-u2.*u2)
 Jmin=500.0;
 for (i=0;i<=2;i=i+1)
 {

60

 if (J[i]<=Jmin)
 {
 Jmin=J[i];
 imin=i;
 }
 }
 control[2]=u2[imin];

The following code differs only in syntax to the code in MATLAB.

 if (control[2]!=0)
 {
 control[3]=1;
 }
 if ((state[1]-.2)>0)
 {

control[1]=CAR_SPEED*(state[1]-.2)/.8; //acc
 }
 else
 {control[1]=0;}
}

3.3.6.3 Lane Change.c

The lane_change subroutine is virtually the same in the MATLAB with the same name.
The differences are due to C starting with an array index 0 instead of 1 for the simulation.
During testing it was discovered that the vehicle turns with a different radius, when
turning right or left. This causes the vehicle to not be able to change from right lane to
left lane and back again, and still follow the white line. To overcome this, two different
values of turn_alpha are used depending on the direction of the lane change.

void lane_change(int lane_change_direction,float front_error_dist,float theta,
 int System_Mode, int lane_we_are_in, int In_Lane_Change,float theta1,
 int lane_change_direction_latched,int loop_counter,float *c_val)
{
float Turn_angle;
if (System_Mode!=1)
 {c_val[1]=0;}
if (System_Mode==1)
{

Below is the code for the state machine that controls the lane change maneuver. Case 0
initializes the state machine, state 1 is the first turn, state 2 is the second turn of the lane
change maneuver.

61

 switch (In_Lane_Change)
 {
 case 0: //initalize lane change parameters
 In_Lane_Change=1;
 theta1=theta;
 c_val[1]=0;
 lane_change_direction_latched=lane_change_direction;
 break;
 case 1: //1st curve of lane change
 Turn_angle=Turn_Alpha;
 if (lane_change_direction_latched==-1)
 Turn_angle=Turn_Alpha1;
 c_val[1]=lane_change_direction_latched/Rad_of_Lane_Change_Turn;
 if (fabs((theta1+lane_change_direction_latched*Turn_angle)-

theta)<=TURN_COMPLETE_ERROR)
 {
 In_Lane_Change=2;
 }
 break;
 case 2: //2nd curve of lane change
 c_val[1]=-1*lane_change_direction_latched/Rad_of_Lane_Change_Turn;
 if (fabs(theta1-theta)<=TURN_COMPLETE_ERROR)
 {
 In_Lane_Change=0;
 System_Mode=0;
 lane_we_are_in=lane_we_are_in+lane_change_direction_latched;
 }
 break;
 }
 }

The variables below are returned to the calling program control.c.

c_val[2]=System_Mode;
c_val[3]=lane_we_are_in;
c_val[4]=In_Lane_Change;
c_val[5]=theta1;
c_val[6]=lane_change_direction_latched;
}

62

CHAPTER IV

RESULTS

4.1 Simulation Results

After all the work deriving the optimal lane change trajectory, the simulation was a lot
easier to complete. The simulation car avoids nonmoving obstacles as well as moving
obstacles coming from behind it. When the simulated car avoids obstacles it takes the
optimal trajectory when changing lanes. The simulated ultrasonic sensor behaves as the
actual sensor does. The simulation was run under various conditions of obstacles and
various speeds of the cars. Updating the vehicle position on the screen every 20ms
makes a great improvement on the speed of the simulation over the simulation time
interval of 0.4 ms. Running the simulation with a fixed step time in Simulink
approximated the actual program of the real car, which calculates its parameters at the
same fixed time interval of 0.4 ms. The simulation was run with the vehicle in all lanes
and thoroughly tested obstacles and pursuing vehicles in various lanes, and everything
worked as was expected.

The fuzzy controller works as well as the optimal control, but it is significant slower than
the optimal control model. There are many advantages of fuzzy control over optimal
control. The fuzzy control gives you a clearer understanding of the inputs and outputs.
The rules are easier to understand than the numerical formulas of optimal control.
Expanding the rules to include other collision avoidance behaviors are much easier using
fuzzy control. The tools that are available in MATLAB to optimize the behavior of the
controller are easier to use. There are no tools for the optimal control; you have to create
your own tools. It is easier to see the different shapes and graphs because they are built
into the fuzzy logic toolbox that you would otherwise have to create yourself for the
optimal control. The disadvantages of fuzzy control over optimal control are; the

63

program runs much slower, at times there seems to be too many options to have the
optimal solution, they are not as precise, and the decisions points are less clear.

4.2 Model Car Results

After all the simulation work was finished, converting the MATLAB/Simulink
simulation to c code and integrating the code with the existing code was not difficult.
The biggest issue was the car not being symmetric. When changing lanes to the left or
right the car behaved differently. The servo was not calibrated correctly, which makes
changing lanes to the right or left different. The minimum radius the car could turn is
different if it turns right or left. The car track was limited to two lanes instead of the
three lanes that were used in the simulation. Below are several photographs of the car as
it changes lanes.

Figure 37 Car making first turn to avoid an obstacle

64

Figure 38 Car changed lanes to avoid an obstacle

Figure 39 Car stopped after avoiding both obstacles

 65

CHAPTER V

CONCLUSION

The problem that was looked into was collision avoidance with lane changing and lane
keeping. The open loop lane change maneuver was derived from the principal of
optimality and resulted in bang bang control of the car’s steering. One of the proposed
solutions was using an open loop lane change maneuver with optimal control as the
decision base. Another was using Fuzzy controller as the decision base. The fuzzy
controller was designed after the optimal controller. The desired final states from the
optimal control were used in the design of the fuzzy controller. This was first worked out
in a simulation using MATLAB/Simulink.

Working out all the bugs and problems in the simulation made it easy to implement in the
prototype car. For the DSP code in the car the MATLAB m files just had to be converted
line by line to c code. The MATLAB m files were written with similar function routines
as the c code, so the converting was not very difficult.

The optimal controller was designed and tested first. As more functions were added to
the optimal controller, it became more difficult to come up with the formulas to have the
car behave correctly. When deciding to turn or not to turn the distances could be set
exactly. The next controller that was worked on was the Fuzzy controller. Fuzzy
programming was easier to use and manipulate and to describe the rules needed for
obstacle avoidance. With the Fuzzy controller, it was easy to add more rules and
functions. Although setting exactly when to turn or not turn was difficult, because of the
fuzzy nature of the controller. Also, it is so flexible, and has so many adjustments that it
takes time to setup optimally.

The curvature estimation formula included from [7], made the vehicle perform poorly
when it was used in both the simulation and the model car. The reason was because of
the discrete nature of the sensors which cause the term Error! Objects cannot be
created from editing field codes. to generate noisy data. The car and the simulation

66

behaved significantly better with a higher gain and the curvature output going to the
controller set to zero except when doing the lane change maneuver.

We are now at the forefront of designing Smarter/Safer vehicles, when it comes to
avoiding obstacles. We have hybrid-powered cars now, maybe one day soon hybrid
(Human/Computer) controlled steering vehicles will be on the roads.

67

CHAPTER VI

SUMMARY

This project has been very interesting and opened other possibilities for making cars
safer. Optimal control seems like the one of the better methods when it comes to
collision avoidance, another idea would be a neural system or a hybrid system (optimal
control and neural system). When starting to implement a neural system it gets complex
rather quickly. Trying to get a system that learns and grows with each experience would
be ideal, it is just complex to create as well as difficult to verify. What would happen in a
real vehicle if the learning system, decides that crashing is a “better” solution? After
getting the simulation working properly and then implementing it on the model car and
seeing it work well, it was very interesting to watch.

Future work on improving the software for collision avoidance system would include,
creating an optimal lane change trajectory for the curves, designing a Neural / Fuzzy
Hybrid Collision Avoidance with Human factor control system, and an auto tuning for
the Fuzzy Controller. Adding feedback to the lane change trajectory would make the
system more robust to compensate for differences in the real-world car and lane
characteristics. Another future software improvement would be to incorporate a factor
for the comfort of the ride, because with bang bang steering then everything would be
shaking around in the car. There needs to be a comfortable ride controller added to the
collision avoidance for normal collision avoidance. In an emergency, the bang bang
controller might still be needed to assure collision avoidance. Changing the cost function
so the vehicle will not change lanes into an obstacle next to it rather then relying on
adaptive cruise control to avoid the collision is one last area for future software work.

Future work on improving the hardware for collision avoidance system would include
adding ultrasonic sensors and the supporting hardware for the sensors. The ultrasonic
sensors would be mounted to all four sides of the car so the vehicle will not change lanes
into an obstacle next to it rather then relying on adaptive cruise control to avoid the
collision. Adding the hardware to the car is more difficult given there is only one spare
analog to digital input channel. Adding an additional analog to digital converters and
DC-DC converters would require a new PIC printed circuit board to be designed and
manufactured.

 68

 LITERATURE CITIED

[1] Balkcom, Devin J. and Mason, Matthew T., “Extremal Trajectories for Bounded Velocity
Mobile Robots,” ICRA, May, 2002.

[2] Benli, Ömer S., INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING.
INDUSTRIAL ENGINEERING APPLICATIONS AND PRACTICE: USERS
ENCYCLOPEDIA® http://benli.bcc.bilkent.edu.tr/~omer/research/dynprog.html
Copyright 1999

[3] Howells, Christopher C., “Game-Theoretic Approach with Cost Manipulation to
Vehicular Collision Avoidance,” Thesis. Virginia Polytechnic Institute and State
University, 2004.

[4] Jaguar, “Adaptive Cruise Control,” http://www.jaguar.com/uk/en/_glossary/acc_2.htm

[5] Kachroo, Pushkin and Mellodge, Patricia, “Mobile Robotic Car Design,” The McGraw-
Hill Companies Inc., New York, Copyright 2005.

[6] Kirk, Donald E., “Optimal Control Theory An Introduction,” Dover Publications,
Mineola, New York, Copyright 1998.

[7] Mellodge, Patricia, “Feedback Control for a Path Following Robotic Car,” Thesis.
Virginia Polytechnic Institute and State University, 2002.

[8] Shedied, Samy A., “Optimal Control for a Two Player Dynamic Pursuit Evasion Game;
The Herding Problem,” Thesis. Virginia Polytechnic Institute and State University, 2002.

[9] “Traffic Safety Facts 2003,” National Highway Traffic Safety Administration, Report
#DOT HS 809 640.

[10] Gupta, Madan M., Jin, Liang, and Homma, Noriyasu. “Static and Dynamic Neural
Networks: From Fundamentals to Advanced Theory,” John Wiley & Sons, Inc.
Hoboken, New Jersey. Copyright 2003

[11] Goodrich, Michael A. and Boer, Erwin R., “Designing Human-Centered Automation
Tradeoffs in Collision Avoidance System Design” IEEE Transactions on Intelligent
Transportation Systems, Vol. 1, No. 1, March 2000.

[12] Riid, Andri, Pahhomov, Dmitri and Rustern, Ennu, “Car Navigation and Collision
Avoidance with Fuzzy Logic,” Fuzzy Systems, 2004. Proceedings. 2004 IEEE
International Conference on Volume 3, 25-29 July 2004 Page(s):1443 - 1448 vol.3

[13] Cheok , Ka C., Smid, G. E.and McCune, D.J., “A Multisensor-Based Collision
Avoidance System With Application To A Military HMMWV,” 2000 IEEE Intelligent
Transportation Systems Conference Proceedings Dearborn (MI), USA Octoberl-3, 2000

69

[14] Lages, Ulrich, “Collision Avoidance System for fixed Obstacles - Fuzzy Controller
Network for Robot Driving of an Autonomous Vehicle-,” 2001 IEEE Intelligent
Transportation Systems Conference Proceedings - Oakland (CA), USA - August 25-29,
2001

[15] Griffiths, P., Langer, D., Misener, J.A., Siegel, M., and Thorpe, C., “Sensor-friendly
vehicle and roadway systems,” Instrumentation and Measurement Technology
Conference, 2001. IMTC 2001. Proceedings of the 18th IEEE Volume 2, 21-23 May
2001 Page(s):1036 - 1040 vol.2

[16] Runkle, Donald, Sensors Expo and Conference,
http://www.delphi.com/pdf/media/DonRunkle_SensorsExpo_June8_2004.pdf

[17] Delphi, Safety Warning Systems http://www.delphi.com/products/auto/safety/warning/

[18] Smart Car
http://www.memagazine.org/backissues/mar03/features/smartcar/smartcar.html

[19] Autonomous Cross-Country Navigation
http://www.frc.ri.cmu.edu/~axs/cross_country.html

 70

 APPENDIX A SIMULINK
Overview of Car Simulation

Overview of the Flash Car Simulation

0

speed in mph1

0

speed in mph

-C- k3-C- k2-C-k10c20c1

v 2

v 1

x

phi

y

theta

Vehicle Dynamic Model

d

c(
s) u1 u2

th
et

a_
p

ph
i

c1 c2

v1 v2

V1_V2

0

Time_Interval1

Time_Interval

Time_Interval

d

c(s)

theta_p

c1

phi

x2

x3

x4

States

x

y

theta

v 1

u1

d

theta_p

c(s)

Navigation

.5 Gain

Flash Car 2

f(u)

Fcn

x2 u1 k1 k2 x3 k3 x4

u2
Control_Law

x y th
et

a

ph
i Animation_Update

<phi>

<c1>

<theta_p>

<c(s)>

v 2

<x4><k3><x3><k2><k1><u1><x2>

v 1

<c2>
<c1>

<phi><theta_p><u2><u1><c(s)>

<d>

u2x4x3x2

k3k2k1c2

c1

Time_Interv al

theta

phi

phi

y

x

 Car Dynamic Model

4
theta

3
y

2
phi

1
x

tan

Trigonometric
Function2

sin

Trigonometric
Function1

cos

Trigonometric
Function

Product2

Product1

Product

1
s

Integrator4

1
s

Integrator3

1
s

Integrator2

1
s

Integrator1

-K-

Gain

2
v1

1
v2

theta_dot

y _dot

x_dot

71

Overview of Navigation

Navigation

4 c(s)
3theta_p

2d

1 u1

x y

th
et

a v1

S
ys

te
m

_M
od

e

la
ne

_w
e_

ar
e_

in

tu
rn

_l
ef

t_
or

_r
ig

ht

u1 Sy
st

em
_M

od
e_

O
ut

obstacle_avoidance

c(
s)

_s
en

so
r

c(s) calculation

rear_sensor_array

f ront_sensor_array

Rear_error_distance

Front_error_distance

Vehicle_Sensor_Error

se
ns

or
_d

se
ns

or
_t

he
ta

_p

se
ns

or
_c

(s
)

fro
nt

_e
rr

or
_d

is
t

th
et

a

tu
rn

_l
ef

t_
or

_r
ig

ht

S
ys

te
m

_M
od

e

d th
et

a_
p

c(
s)

S
ys

te
m

_M
od

e_
O

ut

la
ne

_w
e_

ar
e_

in
_O

ut

Lane Changing

Rear_error_distance

Front_error_distance

Heading_Error

Heading_Error1

x

y

theta

rear_sensor_array

f ront_sensor_array

Front and Rear Sensors

4v1

3
theta

2
y

1
x

u1

d theta_p c(s)

Overview of Front and Rear IR Sensors

Front and Rear Sensors

2
front_sensor_array

1
rear_sensor_array

sin

Trigonometric
Function1

cosTrigonometric
Function

x

y

theta

sensor_array

Rear Sensor Subsystem

Product1

Product

-C-

Length_between_axles

x

y

theta

sensor_array

Front Sensor Subsystem

0

Display3

0

Display1

3
theta

2
y

1
x

72

Front IR Sensor Subsystem

Front Sensor Subsystem

1
sensor_array

-C-

spacing between sensors

-C-

sensors

MATLAB
Function

sensor_function1

3
theta

2
y

1
x

Rear IR Sensor Subsystem

Rear Sensor Subsystem

1
sensor_array

-C-

spacing between sensors

-C-

sensors

MATLAB
Function

sensor_function1

3
theta

2
y

1
x

73

 Car Sensor Error

2
Front_error_distance

1
Rear_error_distance

-C-

spacing between sensors
1

-C-

spacing between sensors

z

1

Unit Delay1

z

1

Unit Delay

MATLAB
Function

Rear_Vehicle_Sensor_Error

MATLAB
Function

Front_Vehicle_Sensor_Error1
2

front_sensor_array

1
rear_sensor_array

Heading Angle Calculation

1

Heading_Error

atan

Trigonometric
Function

Product-C-

1/Length_between_axles

2
Front_error_distance

1
Rear_error_distance

Curvature Calculation

Curvature Calculation

1
c(s)_sensor

0

Constant1

74

Lane Changing

1=turn left
-1=turn right

0=normal follow tape path
1=lane change mode

Lane Changing

5
lane_we_are_in_Out

4
System_Mode_Out

3
c(s)

2
theta_p

1
d

MATLAB
Function

lane_change

z

1

Unit Delay4

z

1

Unit Delay3

z

1

Unit Delay2

1/z Unit Delay1

z

1

Unit Delay

Multiport
Switch

0

Display4

0

Constant

7
System_Mode

6
turn_left_or_right

5
theta

4
front_error_dist

3
sensor_c(s)

2
sensor_theta_p

1
sensor_d

75

Obstacle Avoidance

rear vel

Obstacle Avoidance

3
System_Mode_Out

2
u1

1
turn_left_or_right

MATLAB
Function

obstacle_sensor_function

MATLAB
Function

obstacle_avoidance_cost_function

MATLAB
Function

impulse_to_zero

ustates1

To Workspace1

xstates

To Workspace

0

Obstacle Distance States2

0

Display2

0

Display1

0

Display

K (z-1)
Ts z

Discrete Derivative

6
lane_we_are_in

5
System_Mode

4
v1

3
theta

2
y

1
x

Overview of the States

3
x4

2
x3

1
x2

d x4

State_x4

c(s)

d

theta_p

x3

State_x3

d

c(s)

phi

theta_p

c1

x2

State_x2

5
phi

4
c1

3
theta_p

2
c(s)

1

d

76

State x2(t)

State_x2

1
x2

-C-

Length_between_axles

f(u)

Fcn

5
c1

4
theta_p

3
phi

2
c(s)

1

d

State x3(t)

State_x3

1
x3

f(u)

Fcn
3

theta_p

2
d

1
c(s)

State x4(t)

State_x4

1
x4

1
d

x4
x4

77

Control Law

1
u2

Product2

Product1

Product

7

x4

6
k3

5

x3

4
k2

3
k1

2
u1

1

x2

Overview of V1 and V2

v2
2
v2

1
v1

cosTrigonometric
Function

Subtract1

Subtract

Saturation

Product3

Product2

Product1

Product

Multiply

1

theta_p

phi

c(s)

d

Alpha_2

Alpha_2

d c(
s)

th
et

a_
p

ph
i

c1 c2

Al
ph

a_
1

Alpha_1

|u|

Abs

8 c27c1

6
phi

5
theta_p

4
u2

3
u1

2
c(s)

1
d

v 1

78

Alpha 1

1
Alpha_1

c(s)_double_dot

d

theta_p

c(s)_dot

c(s)

phi

dx2ds

dx2dd

dx2theta_p

dx2_equations

cos

Trigonometric
Function2

tan

Trigonometric
Function1

tan

Trigonometric
Function

Subtract1

Subtract

Product4

Product3

Product2

Product1

Product

-C-

Length_between_axles

Divide

1

Constant

Add

6
c2

5
c1

4
phi

3
theta_p

2
c(s)

1
d

79

dx2(t) Equations

dx2 equations

3
dx2theta_p

2
dx2dd

1
dx2ds

d

theta_p

c(s)

phi

dx2theta_p

dx2_theta_p

c(s)_double_dot

d

theta_p

c(s)_dot

c(s)

phi

dx2ds

dx2_ds

d

theta_p

c(s)

phi

dx2dd

dx2_dd

6
phi

5
c(s)

4
c(s)_dot

3
theta_p

2
d

1
c(s)_double_dot

80

dx2(t)/ds Equations

dxds = -c2*d*tan(th)-(c1+2*d*c*c1)*((1+sin(th)*sin(th))/(cos(th)*cos(th)))-(2*(1-d*c)*d*c1*tan(phi0))/(Length_between_axles*(cos(th)^3));

1
dx2ds

-C-

Length_between_axles

f(u)

Fcn

6
phi

5
c(s)

4
c(s)_dot

3
theta_p

2
d

1
c(s)_double_dot

dx2(t)/dd Equations

dxdd = c*c*(1+sin(th)*sin(th))/(cos(th)*cos(th))-2*c*(1-d*c)*tan(phi0)/(Length_between_axles*(cos(th))^3);

1
dx2dd

-C-

Length_between_axles

f(u)

Fcn

4
phi

3
c(s)

2
theta_p

1
d

81

dx2(t)/dtheta_p Equations

dxdtheta = -c*(1-d*c)*4*tan(th)/(cos(th))^2+3*(1-d*c)^2*tan(phi0)*tan(th)/(Length_between_axles*(cos(th))^3);

1
dx2theta_p

-C-

Length_between_axles

f(u)

Fcn

4
phi

3
c(s)

2
theta_p

1
d

Alpha 2

1
Alpha_2

cos

Trigonometric
Function1

cos

Trigonometric
Function

Subtract

Product1

Product

u2

Math
Function2

u2

Math
Function1

uv

Math
Function

-C-

Length_between_axles

Divide

1

Constant1

3

Constant

4
d

3
c(s)

2
phi

1
theta_p

82

Animation Update

Animation Update

MATLAB
Function

update obstacle

MATLAB
Function

Update_Animation

z

1

Unit Delay1

z

1

Unit Delay

0

Display
1

Constant

4
phi

3
theta

2
y

1
x

83

Vita
William K. Grefe was born in Livingston, New Jersey and graduated from Roxbury High
School in 1999. In 2003 he received a Bachelors degree in Electrical Engineering from
Rensselaer Polytechnic Institute (RPI). After graduating from RPI he decided to continue
onto the Masters Program at Virginia Tech. His research interests are Research & Design,
Autonomous Vehicles, Obstacle Avoidance, & Automated Control Systems.

The motto he lives by is

“Why Not Change the World”

