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Stiffness Model of a Die Spring 
 
 
 

Merville K. Forrester 
 
 

(ABSTRACT) 
 
 

 
The objective of this research is to determine the three-dimensional stiffness matrix of a 
rectangular cross-section helical coil compression spring.  The stiffnesses of the spring 
are derived using strain energy methods and Castigliano’s second theorem. 
 
A theoretical model is developed and presented in order to describe the various steps 
undertaken to calculate the spring’s stiffnesses.  The resulting stiffnesses take into 
account the bending moments, the twisting moments, and the transverse shear forces.  In 
addition, the spring’s geometric form which includes the effects of pitch, curvature of 
wire and distortion due to normal and transverse forces are taken into consideration. 
 
Similar methods utilizing Castigliano’s second theorem and strain energy expressions 
were also used to derive equations for a circular cross-section spring.  Their results are 
compared to the existing solutions and used to validate the equations derived for the 
rectangular cross-section helical coil compression spring. 
 
A finite element model was generated using IDEAS (Integrated Design Engineering 
Analysis Software) and the stiffness matrix evaluated by applying a unit load along the 
spring’s axis, then calculating the corresponding changes in deformation.  The linear 
stiffness matrix is then obtained by solving the linear system of equations in changes of 
load and deformation.  This stiffness matrix is a six by six matrix relating the load (three 
forces and three moments) to the deformations (three translations and three rotations). 
The natural frequencies and mode shapes of a mechanical system consisting of an 
Additional mass and the spring are also determined. 
 
Finally, a comparison of the stiffnesses derived using the analytical methods and those 
obtained from the finite element analysis was made and the results presented. 
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Chapter One 
Introduction 

 
 
1.0 Project Overview 
 
The primary function of a mechanical spring is to store energy by deflections or 
distortions under an applied load.  The spring can be considered as an elastic member that 
exhibits linear elastic properties provided that the material is not stressed beyond its 
elastic limit.  In this investigation, a rectangular cross-section helical coil compression die 
spring was analyzed and is shown in Figure 1.1. 
 
This spring’s practical application can be found in brake controllers, where it is used to 
regain an equilibrium state once hydraulic pressure vanishes.  The spring is required to 
have significantly large lateral stiffness to minimize lateral displacements. 
 
The analysis is extended to the round wire cross-section spring and the correspondence of 
axial solutions to known axial stiffness equations is made.  In contrast to the rectangular 
cross-section spring, extensive study has been done by Wahl [1] and others in the design 
of circular cross-section helical compression springs. 
 
The dynamic system under investigation consists of a mass and helical coil compression 
spring that is fixed rigidly at the  base and allowed to oscillate about the spring’s three 
orthogonal axes x, y and z.  This system can be considered a multiple-degree-of-freedom 
system that allows six-degrees-of-freedom (three translations and three rotations) about 
the spring’s x, y and z axes.  The objective of this study is to determine the three-
dimensional stiffness matrix of the compression spring that is loaded by axial and shear 
forces and moments. 
 
The stiffnesses of the spring are derived using strain energy methods and Castigliano’s 
second theorem.  The resulting stiffnesses take into account bending moments, axial 
loads, shear loads and transverse shear forces.  In addition, the geometric effects of the 
spring’s cross-section were taken into consideration.  A model of the system was created 
using I-DEAS software, and static and dynamic analyses were performed.  These 
analyses resulted in stiffness terms, natural frequencies and mode shapes.  The completed 
stiffness matrix was developed using the flexibility method. 
 
A review of available literature was done in the area of helical compression spring design 
and a brief summary is presented in Chapter 2. 
 
The z axial stiffness of the spring was determined experimentally and compared to the 
manufacturer’s design specifications.  A diagram summarizing the procedure is shown in 
Figure 1.2. 
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Figure 1.1 A rectangular cross-section helical coil compression spring 
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Figure 1.2 Summary of analysis process 
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Chapter Two 
Literature Review 

 
 
In the analysis of a helical coil spring, one elementary model is often used, as by Haringx 
[2].  This model is comprised of a fictitious centerline that represents the coiled spring.  
However, effects of wire curvature, pitch and distortion due to loading conditions were 
neglected.  Further study by Haringx was conducted for axially loaded springs.  
Additional investigations by Biezeno and Grammel [3] resulted in the local stiffness of a 
point along the centerline. 
 
Lars Lindkvist [4] in his study, derived a model for the linear-deformation relationship 
for a small element of a coiled spring.  Figure 2.1 shows the spring element used in his 
study. 

 

 
 

Figure 2.1  The spring element and its coordinate systems [4] 
 
 
This element was used to calculate the three-dimensional stiffness matrix of an arbitrary 
loaded coiled spring.  The total spring was divided into small elements in which the 
deformation of each element was considered linear.  Two coordinates systems were 
defined and used to describe the elements.  The element under study was subjected to an 
arbitrary force F = {Fa, Fb, Fc} and moment M = {Ma, Mb, Mc} (which act along the a, b, 
b axes shown in Figure 2.1 above) at the center of the coil.  Matrix formulation was used 
for load transformation from the global system to the local system.  The elastic energy for 
a straight beam was written and Castigliano’s theorem used to obtain the displacement of 
the spring element.  The determination of the deformation resulted in elements of the 
stiffness matrix.  Experimental testing was conducted using an oscillation spring and 
cube, lying on an adjustable surface.  Various natural frequencies were calculated and 
compared at different tilting angles. 
 
As described by Cook and Young [5], Castigliano’s theorems are used to compute 
deflections.  The helical spring is loaded by uni-axial forces or by a twisting moment and 
has a circular cross-section.  Transverse shear deformation and direct stretching of the 
wire are considered negligibly small. 
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From Cook and Young and illustrated in Figure 2.2, the axial force F and twisting couple 
C are applied to the cross-section of the spring an dare resolved into a bending moment 
M and a twisting moment T. 
 

 
 

Figure 2.2 Forces and moments acting on spring coil [5] 
 
 
The complementary strain energy was determined using Equation 2.1. 
 

∫ 







+=∗

L

ds
GJ

T

EI

M
U

0

22

22
 

           (2.1) 
Where   
 

αα cossin CFRM +=  
 

αα cossin CFRT +=  
 

α

φ

cos

Pd
ds =  

 
)1(2 ν+= GE  

 

32

4d
J

π
=



 6 

This relative extension Ä and rotation è between ends of the helix are derived as follows: 

F

U

∂

∂
=∆

∗

 

    C

U

∂

∂
=∆

∗

                    (2.2) 

 
From the above equations, the stiffness is easily determined using the linear-load 
relationship. 
 
An additional solution to the lateral loading of a circular cross-section spring was 
presented by Belingardi [6].  The mechanical system investigated is shown in Figure 2.3. 
 

BC – coil spring 
AC – rigid beam  

      A – point of rotation 
B, C – supports 

 

 
 

Figure 2.3 Mechanical system investigated by Belingardi [6] 
 
 
The equations defining loads Q and M (not shown) acting at support C and the resulting 
torque T acting at B were derived.  The resulting stiffness was determined by methods 
similar to those used by Cook and Young [5]. 
 
Belingardi [6] concluded that the resulting coefficients of lateral deflection and stiffness 
proved to show strong non-linearity relating the applied force to the lateral deflection.  
This becomes apparent for a given change in normal force.  For a given lateral deflection, 
stresses were determined.  The total stress in the spring is a combination of the stress due 
to the normal load and lateral deflection.  The coefficients for lateral deflection, lateral 
stiffness and total stress were defined in a non-dimensionalized form to facilitate use in 
design. 
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This study focuses on the derivation of the three-dimensional stiffness matrix of a helical 
coil compression spring.  The derivation takes into consideration the curvature of the 
spring, the shear effects and the geometry effects of the rectangular cross-section.  An 
alternative approach to the matrix methods used by Lars Lindkvist [4] was implemented. 
 
This formulation required vector analysis to define the coordinates and load components 
of the spring. When developing the stiffness, the spring was considered to be restrained 
such that each deflection of the ends of the spring occurred without deflections along any 
of the other five axes.  Further, a lateral deflection of the top end of the spring must be 
resisted by a restoring moment in order to prevent rotation.  All displacements are 
infinitesimal and the helix angle is not considered negligible. 
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Chapter Three 
Finite Element Methods 

 
 
In this study, the finite element analysis (FEA) was performed using I-DEAS® Master 
Series version 2.1 and 4.0, designed b the Structural Dynamics Research Corporation.  
Master Series is a comprehensive software package composed of a number of modules or 
applications, each of which is subdivided into “tasks”.  The applications included in the 
software are, Design, Drafting, Simulation, Test, Manufacturing, Management and 
Geometry Translators. 
 
Finite element analysis was applied to determine the stiffness and natural frequencies of 
the system.  This method is based on the solution of differential equations with imposed 
boundary conditions.  The system under investigation is an assembly of nodes that serve 
to connect elements together.  The finite element model used is shown in Figure 3.1.  For 
simplification, the model is shown displaying only nodes, restraints and beam elements as 
lines. 
 
All elements used in I-DEAS have two defined sets of property tables; material and 
physical tables.  Beam elements, however, have an additional cross section property 
which stores the entire geometrical description of the cross-section.  In this analysis, solid 
rectangular beam cross-sections ere used.  Using the beam sections task of I-DEAS, 
properties such as moments of inertia and area are automatically computed form the 
section geometry. 
 
Polynomial expressions are used to interpolate a given field quantity (displacement) over 
each element and therefore over the entire structure.  It must be remembered that the 
finite element method is an approximate technique used to obtain a solution to a specific 
problem.  The following procedure was used in obtaining the finite element solution: 
 

a) Generate a solid model of the spring. 
b) Create a grid of nodes connected by elements. 
c) Apply boundary conditions. 
d) Solving of static and dynamic models. 
e) Model updating. 
f) Display and interpreting of results. 

 
3.1 Model Development 
 
The geometry for the helical coil compression spring was modeled in the design 
application of I-DEAS [7].  The spring’s rendering was created from primitives 
(rectangles and circles) and the revolving of a 2-D section.  An isometric view of the 
rectangular cross-section helical spring as modeled is shown in Figure 3.2.  The resulting 
solid geometry was shared wit the finite element analysis application. 
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Figure 3.1 Finite element model 
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Figure 3.2 Isometric view of the rectangular cross-section helical spring 
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Solid representation of the part geometry provided the required information about the 
surfaces between the 3-D lines in space that is used to represent the spring.  The solid 
geometry is a complete representation and therefore can be used to support the finite 
element analysis. 
 
In order to insure accuracy in the modeled spring, a few finite element modeling 
guidelines were followed.  First of all, various spring models with different number of 
elements per coil were generated and used as a standard for comparison (Table 3.1).  The 
final model consisting of eight elements per coil, which also exhibited convergence of 
displacement values was used as the analysis model.  For this model, the coil diameter 
was increased so that the combined length of the eight elements was equivalent to the 
circumference of the coil.  This modification improved the material volume and mass. 
 
The helical coil compression spring used throughout this investigation has the following 
specifications: 
 

 

 
Figure 3.3 Spring dimensions [11] 

 
 Hole Diameter (O.D.):  0.75 in 
 Rod Diameter (I.D.):  0.375 in 
 Free height: 1.785 in 
 Rectangular wire size:  0.163 in (orthogonal to spring axis) 
      0.073 in (parallel to spring axis) 
 Pitch (free):  0.205 in 
 Total number of coils (Nt): 10 
 Number of active coils (Na):  8 
 Both ends closed and ground. 
 Coil:  Right hand 
 
 Material:  Oil tempered wire, ASTM 229 
       E = 207 x 106 MPa = 30.023 x 106 psi 
       G = 79.3 x 106 MPa = 11.50 x 106 psi, Sut = 1400 MPa 
 
 Weight of spring,  wspring = 0.0557 lb 
 Therefore 
 Mass of spring,  mspring = wspring / g 
 
     g = 386.34 in/s2 
     mspring = 0.0001442  lbf.s2/in 
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3.2 Static Analysis: 
 
In the static modeling of the system, 1D linear beam elements were used to represent the 
helical coil compression spring.  These elements mathematically modeled the overall 
deflection and bending moments of the spring.  Their formulation is based on 
Timoshenko beam theory and includes transverse shear deformation.  The actual helical 
compression spring can be approximated by a series of straight beams connected 
together.  Two  nodes are needed to define a beam element.  The element’s x axis 
connecting nodes one and two define the centroidal axis.  The element y and z axes are 
the principal axes of the cross-section.  To ensure correct orientation of the beam 
sections, the beam’s cross-section geometry was displayed.  A beam element used in the 
FE model is shown in Figure 3.4. 
 

 

 
Figure 3.4 Beam element 

 
 
There are six degrees of freedom (three translational degrees of freedom and three 
rotational degrees of freedom) assigned to each  node. 
 
At the base of the model, the nodes representing the inactive coil were completely 
restrained.  This condition created the fixed base associated with the real system.  The 
applied load was considered to be concentrated at the centerline of the spring and as a 
result, a rigid bar element was used to connected the beam element to a central node.  The 
existence of the rigid bar element relates the motion of each node connecting the element 
to an infinitely rigid beam.  Six degrees of freedom are assigned to each node.  To 
represent the attached mass, a lumped mass element, which concentrates mass at a given 
node, was created at the central node.  Originating from the central node were two 
perpendicular rigid elements, where forces and displacements were applied and computed 
respectively. 
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The elements of the stiffness matrix were determined based upon the linear load-
deformation relationship 
     { } [ ]{ }xkf =      (3.1) 
 
As the spring is deformed, the spring exerts a force that is proportional to the 
displacement, but in an opposite direction.  For this six degrees of freedom system, the 
resulting stiffness elements were determined by applying a single force and restraining all 
other degrees of freedom.  The unit force applied at the position where displacements are 
defined determines respective elements of the stiffness matrix.  Where moments of unit 
magnitude are applied, the corresponding rotations are maintained and all others set to 
zero. 
 

 

 
Figure 3.5 Six degrees of freedom system 

 
 
For a unit force applied in the x direction, the corresponding stiffness element kxx is 
mathematically determined as follows: 
 

zxzyxyxxxzxzyxyxxxx KKKkkkF θθθδδδ +++++=   (3.2) 

 
Static equilibrium position, 
 
     0===== zyxzy θθθδδ    (3.3) 

 
Stiffness, 
 

      
x

x
xx

F
k

δ
=        (3.4) 

 
 
where k is the stiffness due to the applied force and K the stiffness due to the applied 
moments. 
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A similar procedure was carried out for forces and moments in x, y, z directions.  The 
complete stiffness matrix is written as a 6 x 6 matrix and is shown symbolically in 
Equation 3.5. 
 

[ ]



























=

ZZZYZXZzZyZx

YZYYYXYzYyYx

XZXYXXXzXyXx

zZzYzXzzzyzx

yZyYyXyzyyyx

xZxYxXxzxyxx

KKKKKK

KKKKKK

KKKKKK

KKKkkk

KKKkkk

KKKkkk

k  

           (3.5) 
 
where 
 k – linear translational stiffness 
 K – rotational stiffness 
 x, y, z – translational directions 
 X, Y, Z – rotational directions 
 
It should also be mentioned that the element stiffness matrix  is symmetric. 
 
The following stiffnesses were determined using the linear load-deformation relationship 
(explained above) and the FE model generated in IDEAS.  These stiffnesses were 
evaluated based on the coordinate system defined in Figure 3.5 and this coordinate 
system will be used throughout the investigation. 
 
 

[ ]



























=

11.21969.28100.12380.27700.21530.135

69.28172.13571.29171.37878.34300.277

00.12371.29172.13503.19954.6981.56

80.27771.37803.19968.19293.2258.23

00.21578.34354.6993.2212.6790.36

30.13500.27781.5658.2390.3912.67

K  

 
 

Convergence: 
 
Obtaining an accurate final solution is very important in achieving reliable results.  One 
sure way to accomplish this was to make additional models with increased number of 
beam elements per turn. 
 
Z-displacements values were computed for a unit force applied in the z direction 
(compression) and these displacements were compared and checked for convergence 
Table 3.1 shows the z-displacement values obtained. 
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Table 3.1 Displacement values used to determine convergence 
 
 

Number of Beam Elements per coil Maximum displacement in Z direction 

4 5.1600061 x 10-3 
5 5.1800061 x 10-3 
6 5.1900060 x 10-3 
7 5.1900060 x 10-3 
8 5.1900061 x 10-3 

 
 
3.3 Torque loading on a Rectangular cross-section 
 
The intent of this investigation is to accurately model the real spring using a finite 
element model.  The spring experiences distortion along its cross-section similar to that 
depicted in Figure 3.6. 
 

 
 

Figure 3.6 Distortion of spring section due to torque [5] 
 
According to Saint-Venant’s principle, a pure torque, constant along the length of the 
spring is applied as shear stresses that are distributed over the rectangular end cross-
sections and throughout the spring’s interior cross-sections.  Shear stresses across a beam 
cross-section of the modeled spring were computed using I-DEAS and compared to 
Prandtl’s membrane analogy relating to torsional stiffness.  This analogy may be 
described as follows:  A membrane is stretched over a flat rectangular plate and is 
subjected to a uniform tension at its edges.  A uniform lateral pressure is applied which 
causes the membrane to bulge outwards (See Figure 3.7). 



 16

 
 
 

Figure 3.7 Prandlt’s membrane analogy [5] 
 
Further, the maximum slope of the membrane at any point represents the shearing stress 
at the corresponding point on the section. 
 
Using I-DEAS, the computation of the shear stress involved a linear statics analysis test 
of one coil of the FE model shown in Figure 3.1.  A torsional moment of unit magnitude 
was applied to the unrestrained end.  The resulting shear stress distribution on the beam’s 
cross-section is shown in Figure 3.10 as a contour display. 
 
The maximum shear stress in a solid rectangular section loaded in torsion is located at A, 
(mid-points of long sides). 
 
 

 

 
Figure 3.8 Maximum shear stress in a rectangular cross-section 

 
By comparison, both IDEAS and Prandtl’s membrane analogy resulted in similar 
maximum shear stress distributions.  It is also worth mentioning that the shear stress is 
distributed according to Saint Venant’s torsion theory for non-circular cross-sections. 
 
Since strain energy methods were also used in the analytical solution, the resulting total 
strain energy was compared to the analytical solution.  The FEM model shown in Figure 
3.9 was created using solid parabolic tetrahedron elements. 
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The deformation of the coil that occurs when the initially unstressed coil is subjected to 
torsion stores work in the form of strain energy, U.  A unit volume of a linear elastic 
material can be considered as a linear spring in which the load and displacement are 
linearly related.  For this purpose, U and U* (strain energy and complementary strain 
energy respectively) are numerically equal.  As stated by Richards [11], the strain energy 
which varies along the spring is usually determined using the following: 
 
Circular section 
 

    ∗==== U
GJ

lT
T

l

GJ
U

22

1

2

22

θ
θ

   (3.6) 

 
 
and for a non-circular section 
 

∗==== U
GK

lT
T

l

GK
U

22

1

2

22

θ
θ

   (3.7) 

 
 
where 
 

3

3bt
K =  

 
Substituting the following into Equation 3.7 
 
G = shear modulus = 11.50 x 106 psi 
               t 
T = torque = 1lb.in 
 
b = 1 = length of midline for one complete turn of spring = 1.6902 in          

 
t = thickness = 0.163 in 
 
K = torsional constant = 0.00244 in4      
                          b 
 
 
The total strain energy is: 
 
U = 3.012 x 10-5 in (Analytical)  U = 3.371 x 10-5 in (I-DEAS) 
 
The preceding comparisons ensure the accuracy of IDEAS computations. 
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Figure 3.9 Spring model of a s ingle turn using solid tetrahedron elements 
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Figure 3.10 Shear stress distribution across beam’s cross-section 
 
 



 20

3.4 Dynamics Analysis: 
 
In this system, energy is transformed from kinetic energy to potential energy and back 
again.  This results in a vibrating system.  A vibrating system dissipates energy in the 
form of damping and the governing equation of motion representing this system is 
written in matrix form as: 
 

[ ]{ } [ ]{ }[ ]{ } { }FXKXCXM =+ &&&     (3.8) 
 

where 
 
{F} – a vector force on each DOF in the system 
[M] – mass matrix 
[K] – stiffness matrix 
 
{ } { } { }XXX &&& ,,  - displacement, velocity and acceleration of each DOF respectively  

(physical DOF) 
 
The I-DEAS software solves for the modes of vibration (natural frequencies and modes 
shapes) and uses these to calculate dynamic responses.  The resulting equations of motion 
now contain diagonalized mass, stiffness and damping matrices which simplifies the 
mathematical calculations.  In addition, the physical DOF’s { } { } { }XXX &&& ,,  are converted 
to modal degrees of freedom. 
 
Using the Simulation application in IDEAS, the dynamic analysis was used to compute 
first the natural frequencies of the dynamic problem.  The normal modes of vibration 
were solved using the SVI (Simultaneous Vector Iteration) method in the model solution 
task.  Next, the equations of motion are solved to plot frequency responses to given 
inputs in the modal response task.  This results in the frequency response function (FRF) 
graphs of given response points for a defined excitation function (see Figure 7.1).  The 
viscous damping used in this analysis was obtained from experimental modal analysis 
methods. 
 
To verify these results, an approximate value of the first natural frequency was 
calculated.  The natural frequency of the system shown in Figure 3.11 
 

 
 
 

Figure 3.11 Spring system 
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Was determined using Rayleigh’s method with effective mass [7].  Assuming that the 
velocity of an element in the spring, taken at a distance y from the fixed end varies 
linearly according to  
 
 

l

y
x&  

           (3.9) 
where  x&  is the velocity of the lumped mass m. 
 
The kinetic energy is generally written as: 
 
 

2

2

1
xmT eff &=  

           (3.10) 
 
and for the spring: 
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The resulting effective mass is  
 

3
springm

 

           (3.12) 
and the natural frequency used to verify the results is: 
 
 









+=

3
/

spring

blockn

m
mkω  

           (3.13) 
 
 
The primary interest of this method is to determine the natural frequency of vibration 
which is mainly a function of mass and stiffness of the system.  The spring is considered 
massless and the system’s mass is considered lumped. 
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Using the following: 
 
 Mass of Spring,    mspring = 0.0001442 lbf.s2/in 
 
 Mass of block,     mblock = 0.005317 lbf.s2/in 
 
 Stiffness (I-DEAS),    k = 192.678 lb/in (Z axis) 
 
 Stiffness (Manufacturer specification), k =  190.10 lb/in 
 
 
 
The natural frequencies computed using Equation 3.12 are: 
 
 I-DEAS  56.30=nω Hz (Z-translation mode) 

 
 Experimental:  Manufacturer specifications, 96.29=nω Hz 

 
 
 
 

Table 3.2 Modes and Frequency (I-DEAS) 
 
 

Modes Frequency (Hz) 
1 (y-translation) 5.813 
2 ( x-translation) 6.0346 

3 (z-bending) 19.91 
4 (y-bending) 20.292 
5 (x-bending) 21.441 

6 (z-translation) 30.556 
 

 
Plots of the modes shapes obtained from I-DEAS are given in Appendix B. 
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Chapter Four 
Theoretical Development of the Model 

 
 
In the analysis of the helical spring, vectorial methods were used in conjunction with 
Castigliano’s second theorem to derive lateral, axial and moment stiffnesses.  For 
simplification, the coiled spring can be represented as a centerline [Haringx].  Points 
along this line were described by a parametric vector u(è), origination from the origin O 
of he orthogonal, normalized coordinate system i, j, k. 
 
 

 
 

Figure 4.1 Analytical diagram 
 
The applied lateral and axial loads were concentrated at the centerline of the spring, with 
a rigid structure imposed between the load application point and the start of the first 
active coil.  The geometric effects of the rectangular cross-section were considered.  Its 
cross-section was defined by orthogonal unit vectors s, t, and n.  The spring’s cross-
section is shown below. 
 

 

 
 

Figure 4.2 Spring cross-section and coordinates 
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Unit vector s is directed perpendicular to the spring axis and is parallel to the longest side 
of the cross-section.  Unit vector t is directed axially through the cross-section and vector 
n is orthogonal to both s and t. 
 
In determining the spring’s stiffness, displacement (Di) of the ends of the spring is 
considered to occur as the only component of the resultant displacement.  To achieve this 
condition, the angular displacement due to the lateral load was resisted by a restoring 
moment (Mo) applied at the top end of the spring.  Only the desired lateral displacement 
component is then obtained. 
 
The complementary energy of the spring loaded by concentrated forces and moments is 
 
 

∑−=Π ∗∗
n

ii DPU
1

     (4.1) 

 
 

where Pi  was used to define loads of unit magnitude comprising of either force F or 
moment M acting about the orthogonal axes (I, j, k) of the spring.  For a force F acting 
along the x axis, Pi = Fxi or in-terms of moments Pi = Fxxi. 
 
Castigliano’s second theorem is mathematically represented as 
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     (4.2) 

 
 
and yields the displacement component of the loaded point in the direction of the load.  If 
load P includes forces F and moment M, the corresponding displacement D includes 
linear displacement Ä and angular displacement è. 
 
Equations 4.1 and 4.2 were used to determine these displacements.  The complementary 
strain energy expression for a given length L is given as 
 
 
 

  ∫ 












+++++=∗

L
z

z

y

y
z

z

y

y
dx

GA

V
k

GA

V
k

EA

N

GJ

T

EI

M

EI

M
U

0

222222

222222
 (4.3) 

 
 
and was computed as the sum of the work done by six independent moments and forces 
(Mz, My, T, Vy, Vz, N) acting along the cross-section shown in Figure 4.2 
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In determining the stiffnesses across a section of the spring, vectorial methods were used.  
The following development describes the formulation of the stiffness expressions given 
the six independent forces and moments (Mz, My, T, Vy, Vz, N) acting in Figure 4.3. 
 

 

 
Figure 4.3 Independent moments and forces 

 
 
4.1 Vector Formulation 
 
Each point along the spring is defined by a position vector, u  
 

    krjrix
P

u o
ˆsinˆcosˆ

2
θθ

π
θ

++





 +=    (4.4) 

 
where 
 
 P - pitch length 
 xo - offset 
 r - spring radius 
 è – parameter 
 

 

Figure 4.4 Vector formulation parameters 
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From which the following orthogonal unit vectors are derived: 
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ud
t

r
r
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P
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θθ
π
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r

    (4.5) 
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r

    (4.6) 
 
     tsn

rrr
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2
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2

Prˆ2 θ
π

θ
π
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   (4.7) 

 
 
The unit vectors s, t and n act as the origin through which the loads (forces and moments) 
are applied.  The resulting normalized vectors were determined as follows:  
 

    ( )2

1
2222 sincos θθ rrs +=

r
    (4.8) 

 
using the trigonometric identity 
 
     1sincos 22 =+ θθ     (4.9) 
 
the norm of vector s is 
 
      rs =ˆ   

 
and the normalized vector calculated as 
 

      
s

s
s r

r

=ˆ     (4.10) 

 
results in  
 

     kjs ˆsinˆcosˆ θθ +=  
 
 
A similar procedure was used for unit vectors t and n and resulted in the following 
normalized vectors: 



 27

  





 +−




















+

= krjri
P

P
r

t ˆcosˆsinˆ
2

2

1ˆ
2

2

θθ
π

π

   (4.11) 

 
 
 

  





 −+




















+

= k
P

j
P

ir
P

r

n ˆcos
2

ˆsin
2

ˆ

2

1
ˆ

2
2

θ
π

θ
π

π

   (4.12) 

 
 
Since a position vector was defined for points along the spring, moment Mp, taken at an 
arbitrary point P (along the spring) was first defined in-terms of the global coordinates (i, 
j, k) then individual moments were taken along coordinates of interest (s, t, n). 
 
 
Moment Mp, 
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           (4.13) 
 
 
Initially, unit loads (H, V and L) were applied a the global origin O (Figure 4.1) and used 
in the derivations at point P along the spring. 
 
Moment in the s direction is 
 

     sMsM p ˆˆ ⋅=
r

     (4.14) 

 
which results in 
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To simplify the following expressions, an additional constant, c was defined 
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Moment in the n direction 
 

     nMnM p ˆˆ ⋅=
r

     (4.16) 
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where H and L are applied lateral forces along the y and x axes respectively and V is the 
applied axial force along the z axis. 
 
The torque in the t direction 
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The axial force in the t direction is 
 
     tHtvN ⋅+⋅=     (4.18) 
 
which when simplified results in 
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Similarly, the shear forces in the s
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 and n
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In determining the restoring moment Mo that prevented rotation at the origin, the 
complementary strain energy 
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M
     (4.20) 

 
was set to 

0=oθ  

 
and the moment Mo determined in terms of the lateral force (H) only.  Mathematically 
this is represented as 
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(4.21) 

where 
R - the helix angle 
E   - elastic modulus 
A   - cross-sectional area 
G   -  shear modulus 
I ŝ   - area moment of inertia about s direction 
I n̂   - area moment of inertia about n direction 
k ŝ  - shear factor for s direction 
k n̂  - shear factor for n direction 

 
For V = 0 and L = 0 
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where: 
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Evaluation of equation 4.22 results in an expression for the restoring moment 
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Using the Castigliano’s second theorem, the displacement components of the loaded end 
of the spring are obtained as 
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and the angular displacement as 
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Substituting these displacements into the linear load relationship (F=kx) and applying a 
unit load yields the following stiffness equations for the diagonal terms of the stiffness 
matrix (See Appendix A for the complete set of stiffness equations).  In the following 
equations, the subscripts V, H and L are the stiffnesses along the z, y and x axes 
respectively. 
 
Axial stiffness, kv 
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Lateral stiffness, kH (y axis) 
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Lateral stiffness, kL (x axis) 
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Moment Stiffness, Kv 
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Moment stiffness, KH 
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Moment stiffness, KL 
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           (4.32) 
 
 
Parameters used in evaluation of stiffnesses: 
 
Loads: 
L = H = V = 1lbf (forces) 
MH = ML = MV = 1 lb.in (moments) 
 
Pitch, P = 0.205 in 
Spring radius, r = 0.0815 in 
Off-set distance, xo = 0.073 in 
 
Constant, c = 0.8779 
Parameter, è = 6.473� = 0.113 rad  
Cos[ö] = 0.9284  
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Cross-sectional area, A = 0.0119 in2 
Shear modulus of elasticity, G = 11.50 x 106 psi 
Modulus of elasticity, E = 30.023 x 106 psi 
 

20.1ˆ =nk   
20.1ˆ =sk  [Wahl, pg. 231:  Table 7.2.1] 

 
Length of midline of cross-section, b = 1.6902 in 
Thickness, t = 0.163 in 
 
JR = 2.551 x 10-3 in4 (non-circular) 
J = 6.930 x 10-5 in4 (circular) 
 

 

 

 
Figure 4.5 Loads acting on cross-section 

 
 
Substitution of the stiffness parameters into Equations 4.27, 4.28, 4.29, 4.30, 4.31 and 
4.32 results in the following stiffness values: 
 
Lateral stiffness, kH = kL = 69.32 lb/in Moment Stiffness, KH = KL=119.40 lb-in/rad 
 
Axial Stiffness,kV =197.10 lb/in  Axial Moment stiffness,Kv=203.00 lb-in/rad 
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The calculation of the complete stiffness matrix involved obtaining solutions to equations 
resulting from the following matrix expression: 
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           (4.33) 
 

 
A complete listing of the equations for the individual stiffness elements is shown in 
Appendix A. 
 
The following matrix contains the numerical values for the complete linear stiffness 
matrix derived analytically: 
 
 

[ ]



























=

00.20300.27000.14100.14100.23500.143

00.27040.11900.31900.39120.35600.292

00.14100.31940.11900.21950.8110.65

00.30000.39100.21910.19711.3730.36

00.23520.35650.8111.3732.6900.48

00.14300.29210.6530.3600.4832.69

AnalyticalK  

           (4.34) 
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Chapter Five 
Experimental Testing 

 
 
5.1 Axial stiffness determination 

 
To check the validity of the calculations in the previous sections (specifically the stiffness 
in the z direction), an experiment was conducted to evaluate the kzz stiffness term of the 
stiffness matrix.  The arrangement of the experiment simply consists of a Texture 
analyzer shown in Figure 5.2, which was used to apply an incremental compressive load 
to the test systems shown. 
 
 

 

   Bearing attached (a)  MDOFsystem (b) 
 
 

Figure 5.1 Test systems 
 
System (a) consists of a bearing attached to a spring, whose base is rigidly fixed.  This 
ensures that a normal load would be applied along the spring’s axis (z-axis). 
System (b) is the actual multi-degree of freedom system under investigation and used 
here for comparison. 
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Figure 5.2 Texture Analyzer 
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The following table is a summary of the test conditions: 
 
 

Table 5.1 Test conditions used by the Texture analyzer 
 

Maximum force applied 220.65N 
Minimum force applied 0 N 
Maximum displacement 8 mm 
Minimum displacement 0 mm 
Force pre-speed 2.0 mm/s 
Force post-speed 1.0 mm/s 

 
 
A plot of force verses displacement generated by the Texture analyzer is given in Figure 
5.4. 
 
Using the manufacturers specifications, the z-axial stiffness was determined. 
 
Spring’s specifications: 
 

Table 5.2 Spring specifications 
 

Load at 50% deflection (0.8925 in) Load at 1/10 deflection 
154 lb 17.6 lb 
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Figure 5.3 Force vs. Displacement (specifications) 
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Figure 5.4 Force vs. displacement (Texture analyzer) 
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The axial stiffness is determined as: 
 

     
x

f
k

∆
∆

=      (5.10) 

 
Substituting: 
 
  f2 = 154 lb  x2 = 0.8925 in 
  f1 = 17.60 lb  x1 = 0.175 in 
 
into Equation (5.8), the axial stiffness is: 
 
     kv = 190.10 lb/in 
 
It is interesting to  note that the accuracy of the z-axial stiffness depends upon the point 
of application of the applied load.  This conclusion was verified using the FE model in 
which a unit load was applied as an incremental ten percent offset form the springs z axis 
(see Figure 5.5 for load application results). 
 
A plot of the incremental offset of the applied load verses the axial stiffness is illustrated 
below in Figure 5.5. 
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Figure 5.5 Load application result 
 
 
A ten percent change in load application position results in approximately two percent 
difference in axial stiffness. 
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Chapter Six 
Evaluation of Parameters 

 
6.1 System Properties: 
 
Throughout the investigation, various properties were used and determined from 
calculations.  The weight of the spring and block were measured using a balance and the 
inertia properties defined as follows: 
 

 
 

Figure 6.1 Dimensions used in parameter evaluation 
 
 
Where b = 1.75 in 
 a = 2.375 in 
 c = 1.75 in 
 
Material:  steel, alloy 
 E = 30.023 x 106 psi 
 G = 11.50 x 106 psi 
 õ = 0.28 
 
Specific gravity = 7.8 
 
weight density, = 0.28 lb/in3 
 
Mass of block,  mblock = 0.005317 lbf.s2/in 
 
Free length, Lo = 1.785 in 
Rectangular wire size, t = 0.073 in  (parallel to spring axis) 
Na = 8 
 

Pitch of spring coils: =
−

=
a

o

N

tL
P

2
0.205 in      (6.1) 
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6.2 System Mass and Inertia matrix 
 
The mass and inertial matrix emphasizes the inertial properties of the attached mass.  For 
the system’s mass, 
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and mass inertia 
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Knowing that the mass moments of inertia about the x. y, and z axes passing through the 
mass center G of the mass is given as: 
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Since both of the orthogonal planes are planes of symmetry for the mass, the product of 
inertia with respect to these planes will be zero. 
 
( ) ( ) ( ) 0=== GxzGyzGxx III lbf.in2 

 
the mass moment of inertia about the base of the mass (where the spring is attached) is 
determined using the parallel axis theorem. 
 

( ) ( ) 322 1078473.6 −×=++= GGGxxxx zymII lbf.in2 

( ) ( ) 322 109273.7 −×=++= GG
Gyyyy zxmII  lbf.in2 

( ) ( ) 322 108562.3 −×=++= GGGzzzz yxmII  lbf.in2 

0=== xzyzxy III  lbf.in2 
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For the six degree of freedom system, the actual mass matrix is: 
 

   [ ]















=

005317.000

0005317.00

00005317.0

M    (6.4) 

 
 
 
and the mass inertia matrix taken at the base of the attached mass is: 
 
 

   [ ]















=

0038562.000

00079273.00

000067847.0

I    (6.5) 
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Chapter Seven 
Discussion of Results 

 
The work done due to the deformation of one coil of the spring is stored as strain energy.  
For a unit volume of the linear elastic spring, it was determined by comparison of results 
that the strain energy in the FE model adequately represented the strain energy 
determined analytically.  For this reason, it can be assumed that the analytical 
assumptions are valid and were taken into consideration in I-DEAS calculations. 
 
In determining the shear stresses across the rectangular cross-section, it is evident that the 
maximum shear stress is located at the midpoint of the long sides, as is suggested in 
Prandtl’s membrane analogy.  Equally important is the fact that under pure torsion 
circular and non-circular cross-sections behave differently.  For the rectangular cross-
section FE model (Figure 3.9), the coupled force used to apply pure torsion resulted in a 
warped cross-section.  A similar load applied to a circular cross-section coil yielding no 
such effect. 
 
The primary objective of this investigation was to derive expressions for the stiffness 
elements in the stiffness matrix for a rectangular cross-section spring.  The resulting 
stiffness matrix is a symmetrical matrix containing 36 elements.  A comparison between 
stiffnesses determined by analytical and finite element analysis methods is illustrated in 
the following figure.  For simplification, only the symmetric stiffness terms are shown. 
     

 
 
 
 

Figure 7.1 Symmetrical stiffness elements 
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In order to verify the accuracy of the equations derived for the stiffnesses in the 
rectangular cross-section, similar procedures were used to determine the expressions for a 
circular cross-section spring and their results compared to existing solutions.  A 
comparative summary of the results is shown in Figure 7.2. 
 

 
 

 
 
 

Figure 7.2 Circular cross-section stiffness values 
 
The model response analysis task in I-DEAS displayed the frequency response function 
(FRF) of one input degree of freedom (DOF) location.  An FRF is the ration of output to 
input taken at a given DOF, graphed verses frequency.  The FRF was represented as 
magnitude and phase diagrams (Bode plots) on a logarithmic scale. 
 
A graph oh the FRF function taken at the “driving point”, where the response was 
measured at the same point as the input (node 81-central node) and is shown in Figure 
7.3. 
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Figure 7.3 Frequency response function (I-DEAS) 
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7.1 Circular cross-section 
 
This investigation primarily focuses on the analysis of rectangular cross-section helical 
coil compression springs.  A similar analysis has been extended to circular cross-section 
helical coil springs and is discussed in the following section. 
 
The analytical methods used were formulated in terms of vector quantities in which the 
applied forces, displacements and positions along the spring’s helix are defined.  As 
stated in section 3.2, the spring is considered linearly elastic and undergoes small 
deflections. 
 
Static loads are applied to the spring and complementary energy methods and 
Castigliano’s second theorem are used to compute deflections. 
 
A volume element, dx, of the spring is considered with one end fixed. 
 

 
 

Figure 7.4 Differential element and applied loads [5] 
 
 
The applied forces and moments at the free end causes displacement and rotations of the 
helix.  Work is done by the applied forces and moments and is stored as strain energy.  
The strain energy is computed as the sum of the work done by the individual forces and 
moments as defined is section 4.0 using Equation 4.4. 
 
In order to determine the properties used in the complementary strain energy expression 
(Equation 4.4), the following must be determined. 
For a solid circular cross-section of radius r, the polar moment of inertia of the cross-
section, J is 
 

      
2

4r
J

π
=     (7.1) 

 
Factors, ky = 1.11 and kz = 1.11, which account for the variation of transverse shear stress 
over the cross-section were obtained from table 7.21, Cook and Young [5]. 



 47

The transverse shear force, bending moment and torque at an arbitrary point along the 
curved section of the spring can be determined using Biezenzo’s theorem.  Biezenzo’s 
theorem states that at a given point A, on the section, the transverse shear force V, 
bending moment M, and torque T are 
 

     ∑
=

=
n

i
iA PV

1

     (7.2) 

     ∑
=

=
n

i
iiA RPM

1

sin φ     (7.3) 

     ( )i

n

i
iA RPT φcos1

1

−= ∑
=

   (7.4) 

 
where 
 

Pi – reduced loads = 
π

φ
2

ii F  

n – number of forces applied to the curved section 
R – radius 

iφ  - angle from point of interest to ith normal force 

 

 
 

Figure 7..5 Curved section used in Bienzenzo’s theorem 
 
7.3 Development of Stiffness equations 
 
The theoretical development of the stiffness equations is discussed in the following 
section and parallels that used in Chapter four.  Using vectorial methods, a parametric 
vector u (è) was defined as: 
 

    krjrix
P

u o
ˆsinˆcosˆ

2
θθ

π
θ

++





 +=    (7.5) 
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The components of the externally applied lateral forces and restoring moments about 
orthogonal unit vectors s, t, n defining the spring’s cross-section were determined. 
 
The complimentary strain energy due to bending, torsion, axial forces and shear forces in 
conjunction with Castigliano’s second theorem was used to determine the moments in 
terms of the lateral forces. 
 
The complimentary strain energy and Castigliano’s second theorem were again used to 
determine the lateral deflection of the spring due to the lateral forces.  Specifically, the 
partial derivative of the complimentary strain energy with respect to the lateral force was 
found and set equal to the lateral deflection.  The lateral stiffness was obtained by 
dividing the lateral force by the lateral deflection.  The resulting stiffness equation was 
derived as: 
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To determine the axial stiffness, components of the externally applied axial forces acting 
alone about the orthogonal unit vectors s, t, and n defining the spring’s cross-section were 
determined.  The complimentary strain energy (Equation4.4) and Castigliano’s second 
theorem were used to determine the axial deflection due to the axial force.  The resulting 
axial stiffness was obtained by evaluating the following equation: 
 

     
v

vk
δ
1

=      (7.5) 

and was derived as: 
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A similar procedure was used to determine the moment stiffness and this procedure 
resulted in the following equation for the moment stiffness: 
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Using the following parameters: 
 
Loads:       Spring specifications: 
 
L = H = V = 1 lbf (forces)    Rod Diameter (I.D.) = 0.375 in 
MH = ML = MV = 1 lb.in (moments)   Hole Diameter (O.D.) = 0.75 in 
Constant, c = 0.8779     Pitch, P = 0.205 in 
Parameter, è = 6.473� = 0.113 rad    Spring radius, r = 0.0815 in 
Cos [ö] = 0.9284     Off-set distance, xo = 0.073 in 
Shear modulus of elasticity, G = 11.50 x 106 psi Cross-sectional area, A = 0.0119 in2 
Modulus of elasticity, E = 30.023 x 106 psi  Thickness, t = 0.163 in 
       Free length: 1.785 in 

20.1ˆ =nk       Number of active coils (Nt) = 8 
20.1ˆ =sk  [Wahl, pg. 231: Table 7.2.1]  Coil: Right hand 

     Material:  Oil tempered  
      
 

-section, b = 1.6902 in
 
J = 6.930 x 10 5 in   (circular) 

 
The stiffnesses were determined as:
 
Lateral stiffness H = k  = 57.32 lb/in    Moment Stiffness H = K =110.13 lb-  
 

, kV 193.13 lb/in Axial Moment stiffness, K =197.20 lb-  
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As stated, extensive work has been done by Wahl [5] and others and their analysis is used 
here to compare and justify the methods and results obtained in this investigation. 
 
Axial stiffness: 
 
Wahl [5] in his analysis stated that an element of an axially loaded helical spring of 
circular cross-section behaves essentially as a straight bar in pure torsion.  The deflection 
of the spring will be: 
 

    3

4

3

107767.4
8 −×==
Gd

nPD
δ in  [1]   (7.6) 

 
where 
P = load. P = 1 lb 
 D = mean coil diameter, D = 0.5625 in 
 n = number of active coils, n = 8 
 d = bar diameter, d = 0.12 in 
 G = 11.50 x 106 psi 
 
From which the axial stiffness is determined as 
 

     
v

v

P
k

δ
=  

          = 209.50 lb/in    (7.7) 
 
Moment stiffness: 
 
To calculate the deflection of a coiled spring subjected to moment in the plane of the axis 
of the spring (Figure 7.3a), Wahl [1] suggests considering a quarter coil subjected to a 
moment M at its end (Figure 7.3b).  The moment being represented by a vector and at a 
cross-section at an angle, ö, the bending moment Mb, will be Mcosö and the twisting 
moment, Mt will be Msinö.  For a given length ds = rdö as shown in Figure 7.3 c, the 
component of the angular twist about the axis of the moment is given as: 
 

    
p

tb

GI

dsSinM

EI

dsCosM
d

ϕϕ
θ +=    (7.8) 

 
where 
 
 è = angular twist of a single coil of the spring 
 d = diameter of wire 
 n = number of active coils 
 M = moment in the plane of the spring 
 I, Ip = area and polar moment of inertia, Ip = 2I (for circular cross-sections) 
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Further analysis by Wahl [1] defines the total angular twist, è, for one complete turn as 
 

   







=

pGIEI

Mr
θ     

 
p = torsional rigidity of the cross sectoin 

-section of th  
 

-section wire, Equation 7.9 is written as:
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The moment stiffness in the lateral direction is then: 
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EIM
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πθ
   (7.11) 

 
given that M is the applied moment at the end of the spring coil. 
 
Using the following: 
 
r = D/2, r = 0.28125 in 

5
4

10018.1
64

−×==
d

I
π

in4 

G = 11.50 x 106 psi 
 
E = 30.023 x 106 psi 
 
And from Equation 7.11, the moment stiffness, 
 
KH = KL = 150.045 lb-in/rad 
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Figure 7.6 Moment stiffness [1] 
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Lateral stiffness: 
 
A frequent application of helical springs is as vibration isolators, where they are laterally 
loaded by a force F while being compressed by a vertical force P.  The only resistance to 
lateral deflection is the stiffness of the spring.  Figure 7.4 illustrates this condition and the 
following theoretical analysis [Wahl] is used to determine the axial stiffness in the lateral 
direction. 
 
For the given loading condition, Wahl states that the lateral stiffness is reduced by the 
presence of the axial load.  The lateral stiffnesses determined by: 
 

    ( )22

46

265.0204.0
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DhnDC

dF
k

slx
H

+
==

δ
  (7.12) 

 
where 
 äx = lateral deflection due to force F 
 D = mean coil diameter 
 d = bar diameter 
 hs = compressed length of spring = 1o – äst 
 äst = vertical deflection due to load P 
 C1 = factor depending on the ratio äst/1o and 1o/D 
 1o = free length of the spring, 1o = 1.785 in 
 
Values of C1 may be taken from the chart shown in Figure 7.5. 
 
The ratio of axial stiffness, kzz = P/äst to lateral stiffness kxx for a steel spring of round 
wire cross-section with E = 30.023 x 106 psi and G = 11.50 x 106 psi as derived by Wahl 
is 
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1o = 1.785 in 
äst = 0.00519 in (from IDEAS) 
hs = 1o – äst = 1.780 in 
D = 0.5625 in 
C1 = 1.03, äst/1o = 0.00291, 1o/D = 3.173 
 
 
And substituting into Equation 7.12, lateral stiffness 
 
KH = kL = 61.27 lb/in 
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From Equation 7.13, Axial stiffness, kV 
 
KV = 209.72 lb/in 
 
 
Moment stiffness, KV 

 

In the analysis of a torsion spring, Shigley [15] determined the stiffness of one coil of a 
spring as: 
 

     
Dn

Ed
KV 10

4

=      (7.14) 

 
where 
 
 D = mean coil diameter = 0.5625 in 
 N = number of active coils = 8 
 d = bar diameter = 0.12 in 
 E = modulus of elasticity = 30.023 x 106 psi 
 
Using Equation 7.14, the moment stiffness KV 
 
KV = 138.34 lb.in/rad 
 
A summary of the stiffnesses is shown in Table 7.1 below and illustrated here for 
comparison. 
 

Table 7.1 Stiffness comparison 
 
 

Method kv kH KL KV KH KL 
Analytical 193.13 57.32 57.32 197.2 110.13 110.13 
Wahl 209.50 61.27 61.27 138.34 150.045 150.045 
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Figure 7.7 Spring under combined lateral and axial loading [1] 
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Figure 7.8 Chart for finding factor C1  [1] 
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Chapter Eight 
Conclusions and Recommendations 

 
 
The primary objective of spring design is to obtain a spring which will be most 
economical for a given application and will have satisfactory life in service.  Equally 
important is the spring’s resistance to deformation under a given load. 
 
In the preliminary investigation it was evident that extensive study has been done (Wahl 
[1] and others) in the design of circular cross-section springs, specifically in determining 
the stiffnesses due to various loading conditions.  However, little analysis has been done 
for rectangular cross-section helical compression springs. 
 
This investigation focused on determining the three-dimensional stiffness matrix for a 
rectangular cross-section helical compression spring and utilized Analytical methods, 
Finite element analysis and Experimental testing. 
 
In the analytical analysis, the stiffness equations for axial, lateral and moment stiffness 
elements in the matrix were derived using Castigliano’s second theorem and strain energy 
methods.  The total stiffness matrix comprises of expressions derived for each element. 
 
The FEA using I-DEAS which may be considered an “ideal case scenario”, resulted in 
the stiffnesses, natural frequencies and mode shapes of the modeled spring.  This was use 
in conjunction to experimental testing to verify the numerical results and equations 
derived. 
 
To solve for the normal modes of vibration, the SVI (Simultaneous Vector Iteration) 
method was used.  It is reported in I-DEAS Engineering Analysis User’s Guide [12] that 
significant differences in natural frequencies may result from using other methods such as 
Guyan Reduction.  In the future, the FE model may be solved using these methods and 
their solutions compared to the SVI solutions to see if the natural frequencies are 
significantly altered. 
 
The analysis is also based on the linearity between load and deformation and the results 
of the analysis must be accepted subjected to the validity of this assumption.  This 
assumption may be the primary cause of the erroneous data, specifically in the off 
diagonal terms of the stiffness matrix. 
 
The finite element method is an approximate numerical technique for solving structural 
problems.  It must also be remembered that inaccuracy may arise from the fact that the 
FE model is rarely an exact representation of the physical structure.  The element mesh 
may not exactly fit the structure’s geometry.  In addition, the actual distribution of the 
load and possibly elastic properties may be approximated by simple interpolation 
functions.  Boundary conditions simulating the rigid base may also be approximated. 
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If these factors are exactly represented, it is unlikely that the true displacement field can 
be exactly represented by the piecewise interpolation field permitted by a model having 
only a finite number of degrees of freedom. 
 
As an additional verification procedure, similar analytical methods were used to derive 
equations for a circular cross-section helical coil compression spring and their numerical 
values compared to existing stiffness equations.  Based on the comparison of the results, 
it is evident that correct formulation and procedures were implemented in deriving the 
stiffness equations for the rectangle cross-section spring.  However, a fifteen-percent 
difference was determined and may have resulted due to explanations outlined in this 
chapter. 
 
One important outcome  worth noting is that the point of application of the load is 
important in determining the stiffness along the given axis.  As shown in section 5.2, 
considerable error is induced if loads are applied offset to the spring’s axis. 
 
Further studies can also be done in the application of the stiffness equations to various 
configurations of mechanical systems.  It may also be necessary to develop a computer 
based tool that may be used to predict the three dimensional stiffness o fan arbitrarily 
loaded spring.  Similar investigations may lead to the analysis of more complex cross-
sections. 
 
Finally, it must be remembered that even correctly computed results are developed from a 
conceptual model and not from reality itself thus may account for variations in results. 
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Appendix A. Equations for stiffness matrix elements 
 
The total symbolic stiffness matrix and the equations for the individual elements are 
given in the following: 
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where 
 k – linear translational stiffness 
 K – rotational stiffness 
 x, y, z – translational directions 
 X, Y, Z – rotational directions 
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Appendix B. Mode shapes (I-DEAS) 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure B.1 Y-translation 
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Figure B.2 X-translation 
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Figure B.3 Z-bending 
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Figure B.4 Y-bending 
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Figure B.5 X-bending 
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Figure B.6 Z-translation 
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