

Integration of Open-Source GSM Networks

Thomas A. Cooper

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Jeffrey H. Reed, Co-Chair

T. Charles Clancy, Co-Chair

Tamal Bose

April 27, 2012

Blacksburg, Virginia

Keywords: Open-Source Software, Network Architecture, Wireless, Software-Defined

Radio, Cellular Network, GSM, Base Transceiver Station, Protocol Layers

Copyright 2012, Thomas A. Cooper

Integration of Open-Source GSM Networks

Thomas A. Cooper

ABSTRACT

Global System for Mobile Communications (GSM) networks are receiving increasing

attention in the open-source community. Open-source software allows for deployment of a

mobile cellular network with lower costs, more customization, and scalable control. Two

popular projects have emerged that offer varying network architectures and allow users to

implement a GSM network in different capacities depending on individual needs. Osmocom

provides more network control and scalability but requires commercial Base Transceiver Station

(BTS) hardware with limited availability and closed source code. OpenBTS provides minimal

GSM network functionality with more easily available and open-source hardware; however, it

does not allow multi-cellular network configuration.

This thesis offers a significant contribution towards a fully open-source GSM network by

integrating the two major open-source communities, Osmocom and OpenBTS. Specifically, the

Osmo-USRP program provides an inter-layer interface between the different network

architectures of two GSM base station projects. Inter-layer primitive messages are processed in

a thread multiplexer that manages logical channels across the interface. Downstream flow

control is implemented in order to receive data frames on time for transmitting at the appropriate

GSM frame number (FN). Uplink measurements, which are necessary for decision making in

the Base Station Controller (BSC), are also gathered in the physical layer of Osmo-USRP and

reported to Osmocom.

Osmo-USRP operation is tested using a Universal Software Radio Peripheral (USRP), a

relatively inexpensive and accessible Software-Defined Radio (SDR). Standard GSM events are

investigated for single cell and multi-cellular network configurations. These tests include

subscriber authentication and encryption, location updating, International Mobile Subscriber

Identity (IMSI) attach and detach, Short Message Service (SMS) storage and delivery, voice

calls with the full-rate audio codec, and uplink and downlink measurement reporting. While

most functionality is successfully tested, inter-cell handover is not currently implemented.

Further details on the proposed implementation of program limitations, especially inter-cell

handover, are also discussed.

This work is supported by the U.S. Army Communications-Electronics Research, Development

and Engineering Center (CERDEC).

iii

Acknowledgments

I would like to thank Dr. Reed and Dr. Tim Newman for supporting me in undergraduate

research and convincing me to continue my education into graduate school.

I would also like to thank my other committee members, Dr. Clancy and Dr. Bose, and the

always helpful students in the MPRG labs for their constant support and encouragement.

Finally, I would like to thank Tom Tsou for his continuous guidance and allowing me to run

most of my ideas past him.

iv

Contents

1. Introduction ... 1

2. Background ... 4

2.1 GSM Overview ... 4

2.2 Network Components ... 7

2.2.1 MS/SIM ... 7

2.2.2 BTS ... 7

2.2.3 BSC ... 7

2.2.4 MSC/GMSC .. 8

2.2.5 HLR/VLR/EIR .. 8

2.2.6 AuC ... 9

2.2.7 GGSN/SGSN .. 9

2.3 Protocol Layers ... 9

2.3.1 L1: FDMA/TDMA .. 9

2.3.2 L1: Logical Channels .. 10

2.3.3 L2: LAPDm .. 14

2.3.4 L3: RR ... 14

2.3.5 L3: MM ... 15

2.3.6 L3: CM .. 15

2.4 Open-Source Projects .. 15

2.4.1 OpenBSC .. 17

2.4.2 OsmoBTS/OpenBTS-Osmo .. 18

2.4.3 OsmocomBB ... 18

2.4.4 Libosmocore/Libosmo-Abis ... 19

2.4.5 OsmoSGSN/OpenGGSN .. 19

2.4.6 USRP ... 19

2.4.7 GNU Radio/UHD .. 20

2.4.8 OpenBTS ... 20

2.5 Available Network Configurations ... 21

2.5.1 Commercial BTS and OpenBSC ... 21

v

2.5.2 USRP and OpenBTS ... 22

3. Objectives ... 23

4. Implementation ... 26

4.1 Osmo-USRP Architecture ... 26

4.2 OpenBTS Modifications ... 27

4.2.1 Thread Multiplexer ... 28

4.2.2 Logical Channels... 29

4.2.3 L1 Processors .. 30

4.3 L1-L2 Primitives ... 32

4.3.1 System Primitives ... 33

4.3.2 L1 Primitives ... 34

4.3.3 Special Cases for L1 Primitives .. 35

4.4 OsmoBTS Modifications .. 36

5. Results ... 38

5.1 Single Cell ... 39

5.2 Multiple Cells .. 39

5.3 Intra-BSC Handover ... 40

6. Discussion ... 42

6.1 Limitations .. 42

6.2 Future Work .. 43

7. Conclusion .. 45

Bibliography ... 47

Appendix A: Software Guide ... 49

A.1 Installation ... 49

A.1.1 Libosmocore ... 49

A.1.2 Libosmo-Abis ... 50

A.1.3 OpenBSC .. 50

A.1.4 OsmoBTS .. 50

A.1.5 Osmo-USRP .. 51

A.2 Operation... 51

A.2.1 OpenBSC .. 52

A.2.2 OsmoBTS .. 52

A.2.3 Osmo-USRP .. 53

vi

A.2.4 Osmo-NITB VTY ... 53

A.3 Configuration Files ... 55

vii

List of Figures

2.1 Hierarchical structure of a GSM network.……………………………………........ 5

2.2 Layers of the GSM protocol stack………………………………………………… 6

2.3 Multiframe configuration for downlink of C1…………………………………….. 12

2.4 Multiframe configuration (#1) for downlink of C5……………………………….. 13

2.5 Multiframe configuration (#2) for downlink of C5……………………………….. 13

2.6 Multiframe configuration (#1) for uplink of C5…………………………………… 13

2.7 Multiframe configuration (#2) for uplink of C5…………………………………… 13

2.8 Multiframe configuration (#1) for downlink of C7……………………………….. 13

2.9 Multiframe configuration (#2) for downlink of C7……………………………….. 13

2.10 Multiframe configuration (#1) for uplink of C7…………………………………… 14

2.11 Multiframe configuration (#2) for uplink of C7…………………………………… 14

2.12 GSM implementations of open-source projects……………………………………. 17

2.13 Hybrid GSM/SIP architecture of OpenBTS………………………………………. 21

3.1 Comparison of GSM networks composed of open-source programs and

traditional GSM components……………………………………………………… 23

4.1 Basic system architecture and interface connections of Osmo-USRP……………. 27

4.2 Inter-layer flow control between Osmo-USRP and OsmoBTS…………………… 32

5.1 Laboratory test setup for Osmo-USRP operation…………………………………. 38

5.2 Intra-BSC handover procedure……………………………………………………. 41

viii

List of Tables

2.1 Overview of logical channel types and functionality……………………………… 11

2.2 Composition of predefined logical channel combinations (C1-C10)…………….... 12

4.1 System primitive types used in the Osmo-USRP interface……………………….. 34

4.2 L1 primitive types used in the Osmo-USRP interface…………………………….. 35

ix

List of Abbreviations

3GPP 3rd Generation Partnership Project

AB Access Burst

AGCH Access Grant Channel

ARFCN Absolute Radio Frequency Channel Number

AuC Authentication Center

BB Baseband

BCCH Broadcast CCH

BCH Broadcast Channel

BSC Base Station Controller

BSIC Base Station Identity Code

BSS Base Station Subsystem

BTS Base Transceiver Station

CBCH Cell Broadcast Channel

CC Call Control

CCCH Common CCH

CCH Control Channel

CDMA Code Division Multiple Access

CM Connection Management

DCCH Dedicated CCH

EIR Equipment Identity Register

FACCH Fast Associated CCH

FB Frequency Correction Burst

FCCH Frequency Correction Channel

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FER Frame Error Rate

FIFO First In First Out

FN Frame Number

GGSN Gateway GPRS Support Node

GMSC Gateway MSC

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GSMA GSM Association

GTP GPRS Tunneling Protocol

HLR Home Location Register

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

IP Intellectual Property, Internet Protocol

ISDN Integrated Services Digital Network

L# Layer #

LAPDm Link Access Procedure on Dm Channel

LCS Location Services

x

ME Mobile Equipment

MM Mobility Management

MO Mobile Originated

MS Mobile Station

MSC Mobile Switching Center

MT Mobile Terminated

MTP Message Transfer Part

NB Normal Burst

NCH Notification Channel

NITB Network in the Box

NSS Network Switching Subsystem

OML Operation and Maintenance Link

PBX Public Branch Exchange

PCH Paging Channel

PSTN Public Switched Telephone Network

RA Random Access

RACH RA Channel

RR Radio Resource Management

RSL Radio Signaling Link

RSSI Received Signal Strength Indication

SABM Set Asynchronous Balanced Mode

SACCH Slow Associated CCH

SAP Service Access Point

SAPI SAP Identifier

SB Synchronization Burst

SCCP Signaling Connection Control Part

SCH Synchronization Channel

SDCCH Stand-alone DCCH

SDR Software-Defined Radio

SGSN Serving GPRS Support Node

SI System Information

SIM Subscriber Identity Module

SIP Session Initiation Protocol

SMS Short Message Service

SS Supplementary Services

SS7 Signaling System 7

TA Timing Advance

TCH Traffic Channel

TDMA Time Division Multiple Access

TMSI Temporary Mobile Subscriber Identity

TS Timeslot

UA Unnumbered Acknowledge

UHD USRP Hardware Driver

USRP Universal Software Radio Peripheral

VLR Visitor Location Register

VoIP Voice over Internet Protocol

Thomas A. Cooper 1. Introduction 1

1. Introduction

The Global System for Mobile Communications (GSM) network is a budding area of

research in the open-source community. This technology is more favorable to developers than its

Code Division Multiple Access (CDMA) counterpart because of several reasons: The GSM

specifications are publicly available through the 3rd Generation Partnership Project (3GPP) and

not protected Intellectual Property (IP); the capacity and bandwidth are more scalable for small

cells; and the physical layer can be deployed via an inexpensive Software-Defined Radio (SDR)

[1].

GSM is also the most widespread mobile technology with over 5 billion connections in

2010 according to the GSM Association (GSMA) [2]. Although Europe is the most heavily

penetrated region, GSM is the only option in many developing and conflicted areas of Africa and

Asia, in which growth is highest. Open-source software allows for deployment of a mobile

network with lower costs and more customization and control. Originally intended to promote

research and experimentation, the role of open-source systems as competitors to traditional GSM

network providers has increased. Companies such as Range Networks and Sysmocom GmbH

have brought these custom deployments to realization by using cheaper hardware and software

than other commercial GSM networks. These small-scale networks are operated at about a tenth

of the cost of traditional networks by using SDRs and Voice over Internet Protocol (VoIP)

backhaul, according to Range Networks [3].

This work, the creation of an open-source software program named Osmo-USRP, offers a

significant contribution towards a fully open GSM network by integrating the two major open-

source projects, OpenBTS and Osmocom. Osmo-USRP allows Osmocom developers to use

Thomas A. Cooper 1. Introduction 2

cheap and available SDR hardware, much like the many OpenBTS users. OpenBTS advocates

can also use this program to interface with standard GSM network components and extend

control over multiple cells in their networks; the primary capability enabled by this work is the

multi-cellular network configuration. Multiple Osmo-USRP processes can be controlled

simultaneously via the Virtual Teletype Terminal (VTY) command interface of an OpenBSC

process. From a centralized access point, OpenBSC manages a subscriber database, neighboring

cell arrangements, and network functions such as location updating; inter-cell handover will also

be supported in future work. For example, a Mobile Station (MS) can change its current serving

cell based on the measured signals of neighboring cells; when also moving between location

areas, the location update procedure is undergone to update the corresponding Visitor Location

Registers (VLR). Specifically, Osmo-USRP allows multi-cellular functionality and

configuration among cells using the Universal Software Radio Peripheral (USRP) SDR platform.

Osmo-USRP provides a foundation for open-source developers from both communities to

expand this work through their own contributions. OpenBTS-Osmo serves as a foundation for

this work; like Osmo-USRP, the project is intended to connect OsmoBTS and OpenBTS but is

unfinished in its current state. Some part of Osmo-USRP is expected to be eventually integrated

into the Osmocom project’s repository. Both Osmocom software and the public release of

OpenBTS are compatibly licensed under the GNU Affero General Public License, version 3

(AGPLv3); therefore, there are no significant issues with merging code from the two projects

into Osmo-USRP.

In order to test the operation of Osmo-USRP, standard GSM events are investigated for

single cell and multi-cellular network configurations. These tests include subscriber

authentication and encryption, location updating, International Mobile Subscriber Identity

Thomas A. Cooper 1. Introduction 3

(IMSI) attach and detach, Short Message Service (SMS) storage and delivery, mobile originated

(MO) and mobile terminated (MT) voice calls with the full-rate audio codec, and uplink and

downlink measurement reporting. Most of the standard functionality is successfully tested, but

the inter-cell handover procedure is not currently implemented. This work provides a discussion

of the proposed handover implementation for future work.

Section 2 provides extensive background on the GSM network and its components,

protocol layers, and functions; the publicly available open-source projects and their network

configurations are also described here. Section 3 outlines the objectives of this work and the

approaches required to fulfill them. The design and implementation of the Osmo-USRP

interface program are found in Section 4. Section 5 covers the results of testing Osmo-USRP in

an open-source GSM network of single and multiple cells, as well as concerns with inter-cell

handover. Section 6 discusses the limitations in the current version of the work along with

recommendations for addressing these in future work. Finally, concluding remarks on this work

are found in Section 7.

Thomas A. Cooper 2. Background 4

2. Background

 This section describes the network architecture, components, and protocol layers of the

GSM technical specification. Current open-source projects and their available network

configurations are also provided.

2.1 GSM Overview

A GSM cellular network functions to maintain a continuous connection for mobile users.

Figure 2.1 shows the hierarchical structure of the network. Each cell contains a Base

Transceiver Station (BTS) that provides an Um air interface to multiple MSs. The regional

functionality and interconnectivity of multiple BTSs is controlled by a Base Station Controller

(BSC). Routing and switching controls between multiple BSCs, as well as the Authentication

Center (AuC) and VLR, Home Location Register (HLR), and Equipment Identity Register (EIR)

databases, are managed by a Mobile Switching Center (MSC). Section 2.2 describes each of

these major components of the GSM network structure in more detail.

Thomas A. Cooper 2. Background 5

Figure 2.1: Hierarchical structure of a GSM network.

The GSM protocol stack in Figure 2.2 contains three primary layers that provide

messaging communication between different components of the network system; the highlighted

layer blocks are studied in this work. Layer 1 (L1) contains the physical Time Division Multiple

Access (TDMA) channels of the Um interface between BTS and MSs. In Layer 2 (L2) of Um,

the data link layer contains Link Access Procedure on Dm Channel (LAPDm), a GSM version of

LAPD from ISDN. Layer 3 (L3) is composed of several management sub-layers; on the network

side, Radio Resource (RR) management resides mostly in the BSC with some functionality in the

BTS and MSC, and Mobility Management (MM) and Connection Management (CM) exist only

in the MSC. RR manages the allocation, configuration, and connection of radio channels. MM

handles mobility-related functions of the MS, such as location updating, authentication, and

security. CM is concerned with managing Call Control (CC) and other service entities, such as

Short Message Service (SMS) [4]. The Radio Signaling Link (RSL) of the A-bis interface

Thomas A. Cooper 2. Background 6

carries RR messages between BTS and BSC, as well as transparent MM and CM messages

between MS and MSC; additionally, the Operation and Maintenance Link (OML) transports

messages for network management and BTS monitoring. On the A interface, Message Transfer

Part (MTP) of Signaling System 7 (SS7) is used in L1-3. Section 2.3 provides more information

about these important pieces of the GSM protocol stack.

This work directly involves L1-L2 inter-layer communication within the BTS; therefore,

the L1 logical channels described in Section 2.3.2, as well as TDMA structure on the Um

interface, contain the most relevant background information. Some RR functions such as

channel activation are also important to managing the BTS L1; however, higher layer functions,

such as the L3 RR, MM, and CM procedures, are mostly transparent to L1-L2 of the BTS. These

L3 messages must still be analyzed when studying and testing standard GSM events.

Figure 2.2: Layers of the GSM protocol stack.

Thomas A. Cooper 2. Background 7

2.2 Network Components

A traditional GSM network is composed of several hierarchical entities, which are

described in this section at a level necessary for basic understanding.

2.2.1 MS/SIM

The MS is a user handset that connects to the BTS over the Um air interface. It consists

of Mobile Equipment (ME) that contains a unique International Mobile Equipment Identity

(IMEI) and a Subscriber Identity Module (SIM) card that stores a unique International Mobile

Subscriber Identity (IMSI) and authentication key. These secure numbers are also stored in the

network and used to properly identify and authorize the subscriber. Also of note, the MS does

not authenticate the network to which it connects, enabling malicious attacks by falsifying a

man-in-the-middle BTS.

2.2.2 BTS

The BTS provides the Um radio interface for MSs within its serving cell. A BTS can

contain multiple transceivers for transmitting and receiving on multiple frequencies and sectors

in one cell. The actual management and functionality is controlled by the BSC over the A-bis

interface. A network of BTSs and the governing BSC makes up the Base Station Subsystem

(BSS).

2.2.3 BSC

The BSC manages the resources, services, and networking of multiple BTSs. Radio

frequencies are mapped into logical channels, and dedicated channels are allocated as needed for

Thomas A. Cooper 2. Background 8

signaling and traffic connections. A MS sends location update requests to the BSC to allow the

network to track it. The BSC also collects periodic measurement reports from a connected MS

in order to decide if handover to a better quality cell (inter-BTS) or frequency (intra-BTS) is

required, including during a call. Further elaboration on procedures of RR, MM, and CM is

found in Sections 2.3.3-5.

2.2.4 MSC/GMSC

The MSC connects to a BSC via A interface and to another MSC via E interface. A

single MSC provides regional network management to multiple BSCs, including functions such

as call routing, MS authentication and location tracking, inter-BSC handover, and SMS delivery.

If the target MS is not located on the original MSC, the Gateway MSC (GMSC) is responsible

for locating which MSC contains the target MS. The GMSC also connects the mobile network

to the Public Switched Telephone Network (PSTN) and therefore other mobile networks. The

MSC and its VLR, HLR, EIR, and AuC make up the Network Switching Subsystem (NSS).

2.2.5 HLR/VLR/EIR

The HLR is a central database that stores the unique IMSI of each MS subscriber on the

network, as well as other subscriber data. This database is accessed in order to update a VLR

database when the MS roams to another MSC. The VLR also informs the HLR of the new

location of an MS. While the MS stays within the network of the governing MSC, the VLR is

used for authentication and location updating. Together, the original HLR and current VLR help

the MSC to find the specific cell containing an MS anywhere in the mobile network.

The EIR is another database that contains IMEIs of handsets that are identified as stolen

and can be tracked.

Thomas A. Cooper 2. Background 9

2.2.6 AuC

The AuC uses an encrypted procedure to verify that the IMSI and authentication key

stored in a SIM card matches those authorized by the network. If a connected MS is

authenticated, the AuC also provides the appropriate BSC with an encryption key to protect

further communication with the MS.

2.2.7 GGSN/SGSN

When the network supports General Packet Radio Service (GPRS), a Gateway GPRS

Support Node (GGSN) is used to connect to other packet switched networks, such as the

Internet. The GGSN routes incoming data to the Serving GPRS Support Node (SGSN) that

contains the BSS of the target MS. The SGSN handles mobility, connection, and authentication

management in its network area, as well as storing GPRS users and their locations in a database.

The GGSN also formats and routes outgoing GPRS data to external packet data networks.

2.3 Protocol Layers

The layers and interfaces of interest in GSM protocol stack are examined in this section.

These include L1 and L2 of Um interface and the resource, mobility, and connection

management functions in L3. GPRS-specific mobility and session management functions in L3

are not discussed.

2.3.1 L1: FDMA/TDMA

GSM uses Frequency Division Multiple Access (FDMA) to divide larger spectrum bands

into smaller 200 kHz channels. Each pair of downlink and uplink channels in a given GSM band

Thomas A. Cooper 2. Background 10

is assigned an Absolute Radio Frequency Channel Number (ARFCN) in order to identify the

specific frequencies with a standard integer number.

In addition to FDMA, GSM uses TDMA to further divide each frequency channel into

eight timeslots (TS), allowing eight users to share a single frequency. Each timeslot is 576.9

microseconds in length, and a TDMA frame consisting of eight timeslots is 4.615 milliseconds in

length [5]. A Control Channel (CCH) multiframe contains 51 TDMA frames, while a Traffic

Channel (TCH) multiframe contains 26 TDMA frames. A CCH superframe contains 26 CCH

multiframes and a TCH superframe contains 51 TCH multiframes; therefore both types of

superframe contain 1326 TDMA frames. The Frame Number (FN) restarts every hyperframe, or

2048 superframes.

2.3.2 L1: Logical Channels

Certain TDMA frames in each timeslot are organized into logical channels, adhering to

the specific configuration of a BTS [6]. This organization allows specific data to be addressed

by TS and FN. The three categories of signaling channels are Broadcast Channel (BCH) for

unidirectional broadcast functions, Common Control Channel (CCCH) for point-to-multipoint

access functions, and Dedicated Control Channel (DCCH) for bidirectional point-to-point

functions; there is also the TCH for carrying encoded speech and data. The different types of

logical channels [7] are briefly described in Table 2.1.

Thomas A. Cooper 2. Background 11

Table 2.1: Overview of logical channel types and functionality.

Channel Type Brief Description

FCCH BCH Broadcasts unmodulated frequency correction bursts (all zeros) to

synchronize the frequency of the MS.

SCH BCH Broadcasts Base Station Identity Code (BSIC) and FN to identify the BTS

and synchronize FN of the MS.

BCCH BCH Broadcasts cell identification parameters, including network codes, logical

channel configurations, frequencies of neighbor cells, and synchronization

information.

CBCH BCH Optionally assigned to SDCCH; broadcasts network-defined messages such

as public service announcements to all MSs; not used in this work.

RACH CCCH Receives random access (RA) bursts on uplink when the MS requests a

SDCCH.

AGCH CCCH Broadcasts replies to grant access to a specific MS when assigning a

SDCCH.

PCH CCCH Broadcasts paging requests to inform a specific MS of incoming traffic data.

NCH CCCH Broadcasts notifications to inform a specific MS of incoming group and

broadcast calls; not used in this work.

SDCCH DCCH Carries signaling for functions between MS and BTS, such as location

updating and call setup; carries SMS data when MS is not in call.

SACCH DCCH Always associated with SDCCH or TCH; carries signaling for power

control, synchronization, and channel measurements, as well as MS power

and timing measurements; carries SMS data when MS is in call.

FACCH DCCH Steals frames from TCH (at expense of data rate) instead of establishing

stand-alone channel; carries signaling for call setup and handover control.

TCH TCH Carries encoded speech and data for single direction, at either full rate (24

frames of 26 in multiframe) or half rate (12 frames).

Logical channels are grouped into the predefined combinations shown in Table 2.2,

which repeat every multiframe [5], [7].

Thomas A. Cooper 2. Background 12

Table 2.2: Composition of predefined logical channel combinations (C1-C10).

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

TCH/F 1 1 1 1

TCH/H 1 2

FACCH/F 1 1

FACCH/H 1 1

SACCH 1 1 1 4 8 1 1 1

SDCCH 4 8

FCCH 1 1

SCH 1 1

BCCH 1 1 1

CCCH 1 1 1

At least one combination with BCHs (e.g. C5) is required, and the remaining timeslots

can be filled with DCCH (e.g. C7) and TCH (e.g. C1) combinations as dictated by the intended

cell capacity. Only BCHs and CCCHs are allowed in the first ARFCN. Some examples of

common combinations, C1, C5, and C7, are illustrated in Figures 2.3-2.11 [8]; these three

combinations are used in the timeslot configuration of this work. In C5 and C7, there are two

alternating multiframe configurations; when a Slow Associated CCH (SACCH) is associated

with a Stand-alone Dedicated CCH (SDCCH), it only requires half as many frames. There is

also an offset between downlink and uplink of 15 frames, which allows the MS to receive on a

certain logical channel and transmit a response in 15 frames instead of waiting an extra

multiframe. Note that the uplink multiframe for C1 is the same as Figure 2.3 except for this 15-

frame shift.

Figure 2.3: Multiframe configuration for downlink of C1.

Thomas A. Cooper 2. Background 13

Figure 2.4: Multiframe configuration (#1) for downlink of C5.

Figure 2.5: Multiframe configuration (#2) for downlink of C5.

Figure 2.6: Multiframe configuration (#1) for uplink of C5.

Figure 2.7: Multiframe configuration (#2) for uplink of C5.

Figure 2.8: Multiframe configuration (#1) for downlink of C7.

Figure 2.9: Multiframe configuration (#2) for downlink of C7.

Thomas A. Cooper 2. Background 14

Figure 2.10: Multiframe configuration (#1) for uplink of C7.

Figure 2.11: Multiframe configuration (#2) for uplink of C7.

2.3.3 L2: LAPDm

L2 of the Um interface uses LAPDm, a modified version of LAPD from ISDN. LAPDm

accounts for uncertainty in wireless data link establishment by implementing contention

resolution [9]. This process is required when two MSs attempt to establish a SDCCH using

identical RA bursts, therefore the first L3 frame is echoed back to the MS to verify that it has

rightful access of the data link. LAPDm also only supports two Service Access Point Identifiers

(SAPIs) for connecting to L3 services: 0 for RR, MM, and CC and 3 for SMS.

2.3.4 L3: RR

The Radio Resource (RR) management sublayer is the lowest sublayer of L3, providing

services to the MM sublayer [10]. These services include establishing control and traffic channel

connections, ciphering mode indication, releasing control channel connections, and control data

transfer. The overall purpose of RR procedures is to establish, maintain, and release RR

connections in order to manage physical channels and control data links. An RR connection in

dedicated mode performs procedures such as channel assignment, handover, and channel mode

Thomas A. Cooper 2. Background 15

modify.

2.3.5 L3: MM

The Mobility Management (MM) sublayer of L3 provides services to CM sublayer

entities [10]. The general purpose of these services is to support the mobility and registration of

MSs throughout the GSM network. MM procedures always require an RR connection between

MS and the network; these procedures include authentication, identification, Temporary Mobile

Subscriber Identity (TMSI) reallocation, IMSI attach and detach, location updating, and periodic

updating.

2.3.6 L3: CM

The Connection Management (CM) sublayer of L3 consists of four main entities: Call

Control (CC), Supplementary Services (SS), Short Message Service (SMS), and Location

Services (LCS). CC services include mobile originated (MO) and mobile terminated (MT)

normal call establishment, MO emergency call establishment, call maintenance and termination,

and call related support of SS [10]. SS contains support for functions such as call forwarding,

barring, holding, and waiting. SMS is used for sending point-to-point text messages along

dedicated control channels (SDCCH or SACCH) [11]. LCS initiates and supports positioning

measurements at the MS [12].

2.4 Open-Source Projects

There exist many active open-source projects in the area of GSM network components.

The bulk of these projects are common libraries, tools, and GSM components managed by

Osmocom developers. These components implement integrated and stand-alone features of

Thomas A. Cooper 2. Background 16

network components, yet require specific BTS hardware. Several of the more relevant projects

are described in Sections 2.4.1-5.

The other primary open-source project is OpenBTS, which implements minimal

functionality of a GSM network to operate as a single femtocell. As the original creators of

OpenBTS, Range Networks is responsible for developing the commercial closed source release

and maintaining the public open-source release. For purposes of research and experimentation,

only the open-source code is available and therefore further mention of OpenBTS, unless

explicitly stated, is referring to this branch of the program. The related projects and hardware are

described in Sections 2.4.6-8.

The two projects allow users to implement a GSM network in different capacities

depending on individual needs. Osmocom provides more network control, functionality, and

scalability but requires commercial BTS hardware with limited availability and higher cost. On

the other hand, OpenBTS provides a stand-alone software implementation of a BTS with more

easily available hardware but does not allow as much multi-cellular network functionality as

Osmocom. Until this work, these two projects were not compatible with each other. Further

motivations and objectives for this work are discussed in Section 3.

Figure 2.12 illustrates the components of the GSM network and portions of the GSM

stack that each open-source project implements; the Osmo-USRP program, which interfaces

OsmoBTS software and USRP hardware, is highlighted.

Thomas A. Cooper 2. Background 17

Figure 2.12: GSM implementations of open-source projects.

2.4.1 OpenBSC

OpenBSC is the primary project group for GSM-related components in Osmocom [13].

It consists of many software utilities and stand-alone programs tailored for specific GSM

configurations. There are two separate main BSC applications within the project, Osmo-NITB

and Osmo-BSC; these programs must be built with Libosmocore and Libosmo-Abis libraries.

Osmo-NITB (Network in the Box) is a stand-alone GSM network that combines functionality

from a BSC, MSC, HLR, VLR, EIR, and AuC into one package. The A-bis interface connects

via IP or E1 to one of three commercial BTSs: Siemens BS11 microBTS, ip.access nanoBTS, or

Ericsson RBS 2000 series; there are also plans to use OsmoBTS to support the upcoming

SysmoBTS hardware by Sysmocom GmbH and even an experimental OsmocomBB phone setup.

Using Osmo-NITB, it is possible to configure and control multiple BTSs via terminal commands

Thomas A. Cooper 2. Background 18

without connecting to GSM core network components such as an MSC.

Osmo-BSC functions solely as a BSC to connect to an IP GSM network, with the same

A-bis interface types but also with an A interface using Signaling Connection Control Part

(SCCP) over IP. Therefore it also requires the Libosmo-SCCP library to be built.

2.4.2 OsmoBTS/OpenBTS-Osmo

OsmoBTS is an incomplete BTS for use with different hardware L1 implementations

[14]; it contains A-bis over IP interface, L3, L2, and hooks for L1 primitives. OsmoBTS is

primarily targeted for the upcoming SysmoBTS hardware by Sysmocom GmbH, although it also

supports an experimental OsmocomBB phone setup. This project is still under heavy

development and lacks some functionality such as handover procedure.

The OpenBTS-Osmo project [15] aims to connect OpenBTS L1 to OsmoBTS in order for

Osmocom to support USRP hardware. However, this incomplete program is still in the early

stages of a slow development process; OpenBTS-Osmo provides a foundational structure for the

work presented.

2.4.3 OsmocomBB

OsmocomBB (Baseband) is a full MS GSM protocol stack that mirrors L2-L3 in

OsmoBTS, along with L1 firmware [16]. Hardware drivers support the Texas Instruments

Calypso/Iota/Rita GSM baseband chipset. Although there is only a command line UI,

OsmocomBB allows a user to build and operate an entire MS with open-source software.

Thomas A. Cooper 2. Background 19

2.4.4 Libosmocore/Libosmo-Abis

The Libosmocore library [17] contains utility functions and GSM specifications that are

deemed as common to multiple Osmocom projects, especially OpenBSC and OsmocomBB.

Libosmo-Abis [18] contains common GSM functions specific to the A-bis interface, as well as

drivers for A-bis over IP and E1 interfaces.

2.4.5 OsmoSGSN/OpenGGSN

OsmoSGSN is an implementation of the SGSN component used in a GPRS network [19].

The application connects to OpenBSC via the Gb interface and to OpenGGSN via GPRS

Tunneling Protocol (GTP). OpenGGSN implements the GGSN component of the GPRS

network [20]. Since GPRS is not supported by OpenBTS or OsmoBTS, these elements are not

further discussed in this work.

2.4.6 USRP

The USRP is a relatively inexpensive SDR hardware platform built by Ettus Research

[21]. The price and availability, as well as the wide selection of tools already developed for its

use, make the USRP a valuable tool for anyone conducting research and experimentation.

Considering the difficulty of acquiring a commercial BTS for use with Osmocom projects, the

USRP serves as a major motivation for integrating the USRP support of OpenBTS with

Osmocom.

The USRP is essentially an FPGA board with interchangeable RF daughterboards for

transmitting and receiving in different frequency ranges. There are several USRP products

designed by Ettus Research: the original USRP 1, B100, discontinued 2, N200, N210, E100, and

Thomas A. Cooper 2. Background 20

E110. These variations offer a range in prices, USB 2.0 vs. GigE host interface, host

bandwidths, MIMO capability, and embedded CPU. Depending on the individual experimental

setup and application, an external reference clock may also be necessary for clock stability.

2.4.7 GNU Radio/UHD

GNU Radio is an extensive library of SDR blocks and applications [22]. Its Libusrp sub-

library is required to build OpenBTS when configured with a USRP 1. When using any other

USRP, Ettus Research’s USRP Hardware Driver (UHD) library is required with OpenBTS.

More information on configuring OpenBTS for a specific USRP is found in the Appendices.

2.4.8 OpenBTS

The OpenBTS project [23] implements an independent BTS that interfaces with a Public

Branch Exchange (PBX) via Session Initiation Protocol (SIP) in L3; the USRP is used to present

the Um air interface in L1. By providing minimally integrated BSC and MSC functionality and

using the PBX for L3 switching and calling functions, OpenBTS functions as a GSM access

point that is more independent than a traditional BTS that requires a controlling BSC and core

network. With this lack of a standard A-bis interface, OpenBTS does not connect to existing

GSM networks or the Osmocom family of GSM components. The open-source version of this

program does not allow the control or functionality of a BSC, including handover and multi-

cellular parameter configuration. Asterisk or FreeSWITCH is used as the software PBX that

handles private call routing and VoIP connection to the PSTN or Internet. Figure 2.13 [23]

shows the architecture of the interconnecting layers and components of a standard OpenBTS

network.

Thomas A. Cooper 2. Background 21

Figure 2.13: Hybrid GSM/SIP architecture of OpenBTS.

(Original online image retrieved from [23] on April 26, 2012.)

2.5 Available Network Configurations

There are two currently available options for running an open-source GSM network. One

can attempt to acquire a commercial BTS and control it using OpenBSC, or one can purchase a

relatively inexpensive USRP to use as the radio hardware for OpenBTS. The appropriate

configuration choice depends on price as well as size and functionality of the user’s desired

GSM network.

2.5.1 Commercial BTS and OpenBSC

Using a commercial BTS with OpenBSC allows for the operation of a scalable multi-

cellular network. However, commercial BTSs are much more expensive and difficult to buy

Thomas A. Cooper 2. Background 22

than USRP family counterparts; they are also closed source unlike OpenBTS. Only a few

models are supported by OpenBSC, and these BTSs are hard to acquire in single units for the

average researcher or hobbyist. Sysmocom GmbH offers custom pre-configured GSM networks

and services, including commercial BTSs; this method may be the easiest option if a user

requires a commercial BTS.

OpenBSC also connects to OsmoBTS, allowing developers to hook into interchangeable

L1 hardware. Sysmocom GmbH is planning on releasing a new SysmoBTS product in order to

provide an affordable alternative to the commercial BTS.

This work also uses the OpenBTS-Osmo foundation to allow support for the USRP

hardware in OsmoBTS as another alternative configuration.

2.5.2 USRP and OpenBTS

Using a USRP product with OpenBTS allows for the operation of a single access point

with minimal GSM network components. While it is easy to deploy OpenBTS by connecting to

a PBX, there is no multi-cellular control or functionality. Additionally, OpenBTS does not

connect to legacy GSM core infrastructure as is possible with OpenBSC.

As previously stated, this work allows OpenBTS to hook into OsmoBTS, providing

OpenBTS with a connection into the GSM core network via OpenBSC. This configuration also

allows an open-source BTS component, composed of OpenBTS L1 and Transceiver code, for a

more completely open-source GSM network.

Thomas A. Cooper 3. Objectives 23

3. Objectives

Integrating OpenBTS and OpenBSC connects two major open-source projects together,

allowing for more control and customization of GSM components and protocols. Osmo-USRP is

designed to provide such an inter-layer interface between OpenBTS L1, written in C++, and

OsmoBTS L2, written in C. Figure 3.1 shows the highlighted position of Osmo-USRP in a GSM

network constructed from open-source programs. The standard GSM network structure is also

included for comparison.

Figure 3.1: Comparison of GSM networks composed of open-source programs and

traditional GSM components.

Thomas A. Cooper 3. Objectives 24

In order to ensure the successful operation and debugging of the Osmo-USRP program,

many typical GSM events are tested for different network configurations. These events include

authentication and encryption for an authorized subscriber; IMSI attach and detach; location and

periodic updating; SMS storage, paging, and delivery via SDCCH; paging and MO and MT

voice calling using the full-rate audio codec [24]; monitoring TCH, SDCCH, and idle channels to

send uplink measurement reports; and sending downlink measurement reports via SACCH for

serving and neighboring cells. Authorization, IMSI attach and detach, and location updating are

necessary for the MS to initially access the network. SMS delivery and voice calling are desired

practical operations for the MS. Uplink and downlink measurement reporting is necessary for

the network to make informed decisions about cell selection, handover, RF power control, and

determining radio link failure [25].

For a multi-cellular network, these standard GSM events are also tested across cells.

Intra-BSC handover procedure [26] is also tested during a voice call for a MS moving into a new

cell region.

Additionally, several software and hardware configurations are tested. For a single cell,

OpenBSC and Osmo-USRP run on a single PC, or OpenBSC and Osmo-USRP run on separate

networked PCs. For multiple cells, OpenBSC and a first Osmo-USRP instance run on one PC

while a second Osmo-USRP instance runs on a separate networked PC. All configurations are

tested using a USRP 1 with two RFX-900 daughterboards and a USRP 2 with a WBX

daughterboard.

An important issue with MS-BTS radio synchronization is clock accuracy due to

oscillator drift. The clock accuracy required by GSM specification [27] is 0.05 parts per million

(ppm), or 0.1 ppm for a pico class BTS. The MS uses the Frequency Correction Channel

Thomas A. Cooper 3. Objectives 25

(FCCH) to lock its internal clock to that of the BTS, and all other carriers on that BTS are

derived from that same source clock. The standard USRP clock does not meet the GSM

requirements, although the FCCH can still be locked onto when the MS searches for carriers

despite the clock offset. However, if multiple BTSs in a network are not synchronized, the

carriers of neighbor cells are not found by the MS if there is any significant clock offset; the

neighbor cell carrier will not be located at the frequency expected by the MS and no search is

undergone. Therefore, a shared external reference clock (locked from a function generator) is

used in this work for testing handover to reduce the combined clock offset between two USRPs.

By implementing the Osmo-USRP interface and testing the resulting GSM network, a

foundational program is provided for further testing and development by the open-source

community. More users can operate and develop OpenBSC-related projects with the

inexpensive and available USRP hardware. Other users can connect OpenBTS to a GSM core

network using the A-bis-over-IP interface of OsmoBTS. The overall objective is increased

functionality and network configuration options for running a fully open-source GSM network.

Thomas A. Cooper 4. Implementation 26

4. Implementation

 This section provides details of the design of the Osmo-USRP software architecture,

while describing the inter-layer primitives and modifications of the existing OpenBTS and

OsmoBTS programs.

4.1 Osmo-USRP Architecture

The variation of system architectures of OpenBTS and OsmoBTS has been a major

obstacle to progressing development in the Osmocom community. In OpenBTS, each of the

GSM logical channels processes inter-layer messages in an individual thread. However,

OsmoBTS features an event-driven design that handles all messages consecutively. Osmo-

USRP uses inter-layer primitives already defined in OsmoBTS to process messages passed

between the multi-threaded L1 and the event-driven L2 via Unix domain sockets. In the

downstream direction, a thread multiplexer functions to route the message to the appropriate

OpenBTS L1 logical channel specified by the L2 header. In the reverse direction, L2 header

information is attached to L1 messages, which are then written to the upstream socket and

processed in OsmoBTS L2.

The Osmo-USRP interface is designed be compatible with mainstream OsmoBTS, so

OpenBTS is heavily adapted. The L2 and hybrid L3 is stripped from OpenBTS, leaving the

remaining Transceiver, L1 processors, and logical channels. The original L1 processors still

connect to the Transceiver, which organizes radio bursts and interfaces with the USRP hardware.

Each logical channel, with its own L1 processor depending on channel type, feeds into the thread

multiplexer. This system architecture, along with the connections to USRP and OsmoBTS, is

Thomas A. Cooper 4. Implementation 27

shown in Figure 4.1.

Figure 4.1: Basic system architecture and interface connections of Osmo-USRP.

4.2 OpenBTS Modifications

As previously mentioned, most of the modifications to existing code are implemented in

OpenBTS. Although the existing framework is very incomplete, the OpenBTS-Osmo project is

used as a foundation for this work. OpenBTS-Osmo severs L2 and up from the required L1 code

and also contains an empty skeleton of logical channels and thread multiplexer that are filled in

Thomas A. Cooper 4. Implementation 28

with functionality in Osmo-USRP [28]. The details of the specific changes are described in this

section.

4.2.1 Thread Multiplexer

Aside from some missing L1 functionality and logical channel structuring, the thread

multiplexer entity contains most of the processing added in Osmo-USRP. When the Osmo-

USRP program starts, four First In First Out (FIFO) files are created in the “/dev/msgq/” system

directory, which are required and opened by OsmoBTS to communicate between processes via

Unix domain sockets. There are two socket pairs for sending separate L1 and System primitive

messages in both directions.

Four threads are spawned at start-up, two for receiving messages on the L1 and System

sockets, one for sending messages on the L1 socket, and one for sending MphTimeInd messages

to L2 every TDMA frame. The thread for sending L1 type messages contains a FIFO queue for

aggregating all outgoing messages from multiple logical channels. However, a separate thread

for sending messages on the System socket is not required because this type of message is

processed infrequently.

The MphTimeInd loop is started when the Synchronization Channel (SCH) is activated

and stopped when the SCH is deactivated. While active, OsmoBTS runs a “keep alive” timer

that ensures L1 is responsive; if no MphTimeInd message is received after five seconds,

OsmoBTS is terminated. Additionally, OsmoBTS requires the included frame number to know

when to compute uplink channel measurements that have been aggregated over a full

measurement period. These uplink measurements are acquired over a SACCH multiframe (480

ms) for TCH and SDCCH logical channels, or 104 frames and 102 frames respectively [25]. The

average RXLEV (received signal strength) and RXQUAL (frame error rate) values are then sent

Thomas A. Cooper 4. Implementation 29

to OpenBSC in a MEASurement RESult message on the RSL of A-bis L3 [29].

Another issue is the conversion between two data structures, BitVector of OpenBTS and

msgb of OsmoBTS. For incoming PhDataReq messages from L2, the msgb contains a

“msgUnitParam” field with a byte buffer and corresponding size. If the logical channel is TCH,

Osmo-USRP packs the 33 byte buffer into a VocoderFrame data structure and adds it to a FIFO

queue of speech frames in the TCH L1 processor. If the incoming data message is for any other

logical channel, the 23 byte buffer is packed into a BitVector which is added to an L2Frame data

structure and sent to the appropriate L1 processor. Further details of L1 processing are found in

Subsection 4.2.3.

4.2.2 Logical Channels

Logical channels are responsible for organizing the flow of messages between L2 and

target L1 processors. In OpenBTS, a logical channel served as an inter-layer connection between

L1 processor, Service Access Point (SAP) multiplexer, and L2 LAPDm processor. Each logical

channel in Osmo-USRP, which simply contains an L1 processor that runs in its own thread,

corresponds to one of the same type in OsmoBTS. The thread multiplexer holds references to all

logical channels within the eight timeslots preconfigured in Osmo-USRP. The only channel

combinations currently supported are C1, C5, and C7, which are previously described in

Subsection 2.3.2.

There are several special cases in the organization of these logical channels. Since the

FCCH processor simply transmits frequency correction bursts (FB) consisting of all zero-value

bits in order to generate a pure sine wave [5], the L1 encoder runs in a self-contained loop with

no logical channel. The loop can only be started and stopped via MphActivateReq and

MphDeactivateReq messages, and it does not receive any L2 frames. A full-rate TCH and its

Thomas A. Cooper 4. Implementation 30

Fast Associated CCH (FACCH) are contained within a single logical channel, although there are

separate transport functions for TCH speech frames and FACCH frames. OsmoBTS primitive

messages intended for the FACCH are ignored because identical TCH messages are also sent and

processed instead. Finally, each SDCCH or TCH logical channel contains a reference to its

sibling SACCH, and vice versa; this organization ensures that a processed SACCH message is

always associated with a corresponding sibling channel.

4.2.3 L1 Processors

As previously mentioned, each logical channel contains an L1 processor running in its

own thread. The L1 processor is composed of at least one of two entities depending on the

directionality of the specific channel type. These encoders and decoders operate according to the

Forward Error Correction (FEC) channel coding rules for their specific channel type [30]. For

the uplink direction, FEC decoding transforms each group of four received normal bursts (NB)

into an L2 frame. For the downlink direction, a FEC encoder generates four NBs from each L2

frame. Unlike NBs grouped into fours, there are other single burst types used on certain logical

channels. A FCCH encoder generates FBs, a SCH encoder generates synchronization bursts

(SB), and a RACH decoder handles uplink access bursts (AB) [5]. Downlink dummy bursts,

used for idle transmission when there are no bursts from L1, are taken from a filler burst table in

the Transceiver.

Whereas OpenBTS directly generates SBs for the SCH and NBs for the BCCH based on

preconfigured L3 information, Osmo-USRP is adapted to receive this L3 information from

OsmoBTS. Standard L2 frames are sent to the appropriate BCCH logical channel and processed

by the typical L1 encoder for NBs. The L2 message for the SCH has only four bytes, which are

processed by a new L1 encoder designed for SBs.

Thomas A. Cooper 4. Implementation 31

In order to support the uplink channel measurements described in Section 3, a L1 decoder

acquires three parameters from each radio burst received from the Transceiver. These physical

channel parameters are taken from a single AB or averaged over four NBs: received signal

strength indication (RSSI) which corresponds to the signal power at the BTS; timing advance

(TA) which corresponds to the propagation time of the signal from MS to BTS; and frame error

rate (FER) which corresponds to the quality of the signal at the BTS. FER is determined by a

40-bit parity check [30] of each burst, aggregated over a sliding window with a length of 10

frames (known as FER decay time). The channel measurements are added to the “measParam”

field of the msgb for PhDataInd and PhRaInd primitive messages. As previously mentioned, the

PhDataInd measurements are only processed for RXLEV (RSSI) and RXQUAL (FER) values on

TCH and SDCCH channels; the PhRaInd includes the TA for further use in the IMMediate

ASSignment procedure [10].

For inter-layer flow control [9] in the downlink direction, OsmoBTS also expects a

PhReadyToSendInd primitive message to know when to pull a L2 message from a LAPDm

queue or create a new PhDataReq message. Then the PhDataReq, or PhEmptyFrameReq when a

TCH or FACCH has no L2 frame queued, is written to the downlink L1 socket. The

PhEmptyFrameReq messages are ignored by the thread multiplexer because TCH and FACCH

filler bursts are generated in the associated L1 encoder when there is no VocoderFrame or

L2Frame in the TCH or FACCH message queues respectively. The cycle of PhReadyToSend

and PhDataReq begins when the logical channel is activated and ends when the logical channel

is deactivated. After each PhDataReq is processed by the L1 encoder, the next PhReadyToSend

signal is triggered for that logical channel, and the following PhDataReq is received in time to be

transmitted at the requested frame. For the uplink direction, PhDataInd messages are simply sent

Thomas A. Cooper 4. Implementation 32

to OsmoBTS L2 as they arrive on the Um radio interface. Figure 4.2 shows a diagram of these

data flow controls in both the downlink and uplink directions of the L1-L2 interface.

Figure 4.2: Inter-layer flow control between Osmo-USRP and OsmoBTS.

4.3 L1-L2 Primitives

There are two groups of primitives for sending messages between L1 and L2, System and

L1 (respectively named “FemtoBts” and “GsmL1” in OsmoBTS). These inter-layer primitives

are not publicly released but are reverse-engineered by looking at the messages sent and received

by OsmoBTS. An L1-L2 primitive is one of three types similar to the L2-L3 primitive types

Thomas A. Cooper 4. Implementation 33

defined in [9]: REQuest, CONFirm, and INDication. A REQ message is sent from L2 to L1 to

request a service. A CONF message is returned from L1 to L2 to acknowledge that a REQ

message was received. An IND message is similar to a REQ message but sent from L1 to L2 to

request a service. The fourth type of primitive, RESPonse, is unnecessary and not included in

OsmoBTS due to the reliable inter-layer connectivity. CONF messages in OsmoBTS typically

include a status indicating how the processing ended, such as “success”, “uninitialized”,

“unsupported”, or “already deactivated”.

Subsections 4.3.1-2 cover the descriptions and typical processing of System and L1

primitives. Subsection 4.3.3 is concerned with the special cases of processing some L1

primitives in the Osmo-USRP thread multiplexer.

4.3.1 System Primitives

OsmoBTS sends System primitives in order to initialize and configure the originally

intended L1 hardware. Since the USRP hardware is preconfigured by the Transceiver and

“main()” function when Osmo-USRP starts, Osmo-USRP performs minimal to no processing

depending on the specific primitive. The used System primitives and how they are processed in

Osmo-USRP are listed in Table 4.1. These System primitives could be used to control low-level

USRP functions, such as activating and deactivating the RF transmitter, in future work.

Thomas A. Cooper 4. Implementation 34

Table 4.1: System primitive types used in the Osmo-USRP interface.

Primitive

Received from L2

Primitive Sent

to L2

Processing

SystemInfoReq SystemInfoCnf Return supported GSM band and arbitrary hardware

versions

ActivateRfReq ActivateRfCnf Return success status

DeactivateRfReq DeactivateRfCnf Return success status

SetTraceFlagsReq None None

Layer1ResetReq Layer1ResetCnf Return success status

4.3.2 L1 Primitives

L1 primitives in OsmoBTS are used to configure the radio parameters, timeslot

combinations, and logical channels of L1, as well as transport data frames in both directions.

Several messages include L1 and L2 IDs, which are used as unique handles to refer to a specific

L1 (Osmo-USRP thread multiplexer) or L2 (Osmo-BTS logical channel) entity. The L1 ID is

specified in the MphInitCnf message and stored in OsmoBTS for subsequent messages. The

used L1 primitives and how they are processed in Osmo-USRP are described in Table 4.2. Since

the “main()” function preconfigures the radio parameters and timeslot combinations when Osmo-

USRP starts, MphInitReq and MphConnectReq processing ignores the incoming configuration

values defined in OpenBSC. These L1 primitives could be used to initialize radio and timeslot

configurations in future work, while removing hard-coded and redundant values from Osmo-

USRP configuration.

Thomas A. Cooper 4. Implementation 35

Table 4.2: L1 primitive types used in the Osmo-USRP interface.

Primitive

Received from L2

Primitive Sent to

L2

Processing

MphInitReq MphInitCnf Return L1 ID and success status

MphConnectReq MphConnectCnf Check L1 ID, return success status

MphConfigReq MphConfigCnf Check L1 ID, store payload type for TCH, return

appropriate status

MphActivateReq MphActivateCnf Check L1 ID, store L2 ID in specified logical

channel and start its L1 processor, signal to return

PhReadyToSendInd, store payload type for TCH,

return appropriate status

MphDeactivateReq MphDeactivateCnf Check L1 ID, clear L2 ID in specified logical

channel and stop its L1 processor, return appropriate

status

PhDataReq None Check L1 ID, send data buffer to L1 processor of

specified logical channel

PhEmptyFrameReq None Check L1 ID, check if specified logical channel is

TCH or FACCH

None PhRaInd Send channel measurements, RA data, and L2 ID of

logical channel

None PhDataInd Send channel measurements, data, and L2 ID of

logical channel

None PhReadyToSendInd Send L1 ID, requested GSM time, and L2 ID of

logical channel

None MphTimeInd Send current GSM time

4.3.3 Special Cases for L1 Primitives

There are several L1 primitive messages that require atypical processing depending on

the associated logical channel.

The MphActivateReq processor contains special handling for five certain logical

channels. Since Osmo-USRP has no logical channel for FCCH, the L1 processor is started

directly. Also, since a TCH and FACCH share a logical channel in Osmo-USRP, an L2

REQuest to activate a FACCH is ignored and replied with a “success” status. If the logical

Thomas A. Cooper 4. Implementation 36

channel type is a SACCH, the L2 ID is checked with that of the SACCH’s sibling logical

channel. Activating the SCH logical channel starts the loop for sending MphTimeInd messages

to L2. Finally, if the RACH is activated, no signal is triggered for starting the

PhReadyToSendInd cycle because the RACH logical channel functions only in the uplink

direction.

MphDeactivateReq has special cases similar to MphActivateReq: for FCCH, the L1

processor is stopped directly; for FACCH, deactivation is ignored and a “success” status is

replied; and for SCH, the loop for sending MphTimeInd messages is stopped.

Both PhDataReq and PhDataInd processors handle special frame formats for the TCH

and SACCH data buffers; these unique formats allow OsmoBTS to accommodate the originally

intended L1 hardware. For a TCH frame, there is an extra byte inserted before the standard byte

buffer that indicates the payload type of the logical channel; in the PhDataReq case, this payload

type is checked against the configured payload type of the receiving logical channel. For a

SACCH frame, there are two extra bytes, inserted before the standard byte buffer, that are

reserved for MS power and timing measurements.

4.4 OsmoBTS Modifications

Although Osmo-USRP contains most of the design implementations of this work,

OsmoBTS is slightly modified from its mainstream branch. The correct number of bytes is read

from the upstream sockets depending on the primitive type, since L1 and System messages are

different lengths. The System Information (SI) messages [5] generated for BCCH L2 frames

repeat in a 1-2-3-4-3-2-3-4 pattern, as originally done in the BCCH L1 encoder of OpenBTS. A

bug fix with merging BTS attributes on the OML of A-bis L3 is reverted to bypass a

Thomas A. Cooper 4. Implementation 37

segmentation fault error; this reversion does not have an effect on any tested OsmoBTS

operation. These minor changes are necessary for running Osmo-USRP as a L1 hardware entity

[31].

Thomas A. Cooper 5. Results 38

5. Results

 The configurations and results of testing the Osmo-USRP program for single- and

multiple-cell networks are covered in this section. Details of the intra-BSC handover procedure

are also discussed.

 Figure 5.1 shows the laboratory test setup that is used for the results of this work. The

USRP 1 and USRP 2 hardware, two MS handsets, and a laptop running four terminals with

separate processes: Osmo-USRP, OsmoBTS, OpenBSC, and the OpenBSC VTY interface.

Figure 5.1: Laboratory test setup for Osmo-USRP operation.

Thomas A. Cooper 5. Results 39

5.1 Single Cell

In order to test the operation of the Osmo-USRP program in a GSM network, a setup of

open-source software and hardware similar to Figure 3.1 is configured. Single cell operation is

tested using the Osmo-NITB application of OpenBSC, a USRP 1 with two RFX-900

daughterboards, and several Nokia 3120 mobile handsets. Tests are conducted in the EGSM-900

band on ARFCN 61. Typical GSM events are completed successfully, including subscriber

authentication and encryption, location updating, IMSI attach and detach, SMS storage and

delivery, voice calling with the full-rate audio codec, and uplink and downlink measurement

reporting. SMS messaging and voice calls are conducted using the appropriate UI functions on

the MS. Detailed instructions for installation, configuration, and operation are found in the

Appendices.

5.2 Multiple Cells

For multi-cellular network operation, a second computer with the Osmo-USRP program

and a USRP 2 with WBX daughterboard are used in addition to the single cell configuration.

The second Osmo-USRP instance is connected to Osmo-NITB on the first computer. The two

USRP hardware setups are located approximately 5 m apart from each other. Tests are

conducted in the EGSM-900 band on ARFCNs 51 and 61. Again, typical GSM events are

completed successfully, including SMS delivery, paging, IMSI attach and detach, and voice

calling across the two cells.

Thomas A. Cooper 5. Results 40

5.3 Intra-BSC Handover

Additionally, intra-BSC (or inter-cell) handover [26] is tested in the multi-cellular

configuration. In terms of physical channel establishment, the non-synchronized cell case [10] is

considered for an active TCH. Figure 5.2 describes the intra-BSC handover process, based on

[32] and [33], where the MS is moving from BTS 1 to BTS 2 during a voice call. The BSC

receives MEASurement RESult messages that contain downlink and uplink measurements on the

current and neighboring cells, and decides to relocate the MS from BTS 1 to a new cell. The

new TCH, which is configured to process L1 ABs, is allocated on the neighboring BTS 2 and the

Handover Command is sent to the MS on the FACCH of BTS 1. The MS tunes to the new TCH,

but it does not know the TA value yet and therefore is not time synchronized, so Handover

Access messages are sent as ABs. When an AB is detected on the new TCH, the BSC reroutes

the voice path through BTS 2. A PHYsical INFOrmation message is sent to the MS containing

TA and frequency corrections, after which the MS can send TCH speech frames as NBs. A Set

Asynchronous Balanced Mode (SABM) and Unnumbered Acknowledge (UA) handshake

establishes the LAPDm signaling connection. The MS responds with a Handover Complete

message and the BSC finally releases the old TCH on BTS 1.

Thomas A. Cooper 5. Results 41

Figure 5.2: Intra-BSC handover procedure.

This procedure is unsuccessful due to lack of handover processing in L1 and L2 of

Osmo-USRP and Osmo-BTS. Mainly, the TCH in Osmo-USRP is not properly configured to

handle Handover Access ABs from the MS. Section 6.2 provides more details of the proposed

handover implementation in L1 and L2.

Thomas A. Cooper 6. Discussion 42

6. Discussion

 This section provides a discussion of the results and limitations of the Osmo-USRP

program, as well as proposed implementations of these limitations for guidance in future work.

6.1 Limitations

As described in the implementation and results sections, most of the functionality of a

standard BTS is present in Osmo-USRP and OsmoBTS. However, the OpenBTS L1 only

supports full-rate speech, and GPRS data is not supported. Multiple ARFCNs, intra-BTS

handover, and intra-BSC handover are also not implemented. Osmo-USRP also uses only two of

three available CCCHs in the C5 timeslot configuration, one for the AGCH and one for the PCH.

Many of the network and configuration values are hard-coded in Osmo-USRP and not

dynamically controlled by OpenBSC.

Occasionally, GSM events experience unexpected failure during testing. The MS does

not access the network, the BTS does not release SDCCH or TCH resources after their operation

has ended, or voice calls are not routed properly through the BTS. The reliability of the tested

MSs is one reason for unexpected behavior; sometimes only certain handsets can access the test

network, and only a subset of those can make voice calls or send SMS messages. There are also

certain to be unknown bugs in the code at this early stage of development and testing. As the

Osmocom and OpenBTS communities use Osmo-USRP more extensively, these bugs and hard-

coded configuration values will be fixed; development is an ongoing process that requires testing

of all possible configurations.

Thomas A. Cooper 6. Discussion 43

6.2 Future Work

The primary concerns for future work on Osmo-USRP are increasing the operational

reliability and implementing missing BTS functionality. For the former, more network

configurations should be tested, including a network of three or more cells. Testing and

development by the open-source community would be encouraged if the code is eventually

integrated into the official OpenBTS-Osmo project as expected; however, it remains to be seen if

OpenBTS-Osmo will be developed separately or jointly with Osmo-USRP.

The main limitation needing implementation is the intra-BSC handover procedure in L1

and L2. In OsmoBTS, the RSL of L3 receives a CHANnel ACTIVation REQuest [29], which

needs to be checked for an Activation Type value related to inter-cell channel change. If the

activation is handover related, OsmoBTS sends a request to Osmo-USRP to activate the RACH

L1 processor on the new TCH logical channel; this activation is performed using a new L1-L2

primitive or modifying the current MphActivateReq primitive type. Then Osmo-USRP receives

an AB on this TCH and sends the PhRaInd message to OsmoBTS, where it is processed as a

Handover Access message. Finally, OsmoBTS deactivates the RACH L1 processor and

activates the normal TCH/FACCH and SACCH logical channels required for a call in Osmo-

USRP. At this point, the standard L2 establishment continues as it is currently implemented. As

indicated, Osmo-USRP must also be restructured to support assigning a certain type of L1

processor to a specific logical channel; currently, the type of L1 processor that a logical channel

contains is hard-coded. Other modifications in the ARFCN manager are required to dynamically

overwrite the demultiplexing table when installing a new RACH L1 decoder in a TCH timeslot.

As of now, the demultiplexing table is statically initialized and decoder types are limited to

certain frames, since decoding ABs on a TCH timeslot during handover is an unusual

Thomas A. Cooper 6. Discussion 44

circumstance that is not accounted for in the original L1 of OpenBTS.

Additionally, the management of CCCHs can be improved by using a pool system similar

to that of OpenBTS. When an AGCH or PCH is needed, an available CCCH is chosen based on

minimum load, and the message is sent to that CCCH. The current load of a CCCH is

determined by the number of messages waiting in the CCCH’s transmission queue. The number

of CCCHs used for each pool of AGCHs and PCHs can be configured at initialization.

The issues of hard-coded parameters during initialization and using three separate

configuration files can be remedied. Many values are currently repeated in the Osmo-USRP and

OpenBSC configuration files; the OsmoBTS configuration file contains minimal values for

identifying the BTS on a network. When the values are received in Osmo-USRP from

OpenBSC, they are ignored because the radio parameters and logical channel configurations

have already been set at startup. Osmo-USRP can be restructured to only start the thread

multiplexer and wait on configuration messages from OsmoBTS to initialize timeslot

combinations, radio parameters such as the ARFCN, and network values such as the BSIC.

Ideally, only the OpenBSC and minimal OsmoBTS configuration files are needed since

OsmoBTS and Osmo-USRP run on the same system.

Thomas A. Cooper 7. Conclusion 45

7. Conclusion

Osmo-USRP provides a method of connecting an open-source software BTS L1 to an

open-source GSM network that previously included only L2-L3 of a software BTS. Standard

GSM events function at a reasonably reliable level for single cell and multi-cellular network

configurations. Much of this work has involved understanding the GSM technical specifications

and procedures for these events, as well as how they are processed on the L1-L2 interface of the

BTS. The development of an interface to an existing program has provided insight to the

methods of controlling data flow between layers. The management of messages intended for

specific logical channels is based on predefined primitives that inform the thread multiplexer of

the correct processing function. Message FIFO queues are also used for asynchronous inter-

process communication between Osmo-USRP and OsmoBTS. Ready-to-send indication

messages notify the upper layer that the lower layer is prepared to process a new data request.

By probing the OsmoBTS L2-L1 request messages and the processing function of the expected

reply messages, the correct responses are built in Osmo-USRP L1. This method of analyzing

and constructing the L1-L2 primitive messages has provided a deeper understanding of reverse-

engineering an inter-layer protocol.

Ideally, the Osmo-USRP interface will be tested on a larger scale network with many

cells using the Virginia Tech Cognitive Radio Network Testbed (VTCORNET) [34]. The

VTCORNET system provides a highly configurable method of operating multiple BTS radios in

different locations, which is helpful for testing GSM network-related events such as intra-BSC

handover.

In the current push towards a fully open, low-cost mobile network, every component

Thomas A. Cooper 7. Conclusion 46

offers a significant contribution. Many of the developers in the Osmocom community are in

need of cheaper, readily available hardware. Commercial BTS vendors do not sell single units to

hobbyists and researchers; however, the USRP has emerged as a prominent choice for building

cheap SDRs. Osmo-USRP allows Osmocom developers to use the USRP, much like the many

OpenBTS users. OpenBTS users can also now deploy larger multi-cellular networks by using

Osmo-USRP with OpenBSC.

Although there is still future work to be done for the noted limitations, this project serves

as a foundation for developers to expand on through their own contributions. As mentioned in

Section 6.2, inter-cell handover is the next logical functionality to implement. Applications

related to cognitive radio networks are enabled by the fully open-source BTS stack with

handover support. For instance, dynamic spectrum access (DSA) techniques can be researched

and implemented using frequency hopping in coordination with the BSC; this functionality

allows a multi-cellular GSM network to operate in unlicensed “white spaces” spectrum.

Additionally, research areas such as indoor position location and anticipatory handover for multi-

access networks [35] can be investigated in the context of GSM networks. These example

applications show how one can use the BTS stack enabled by Osmo-USRP in order to customize

an open-source GSM network for future research and development.

 47

Bibliography

[1] D. Burgess and H. Samra. (2008, Oct.) The OpenBTS Project. [Online]. Available:

http://www.ahzf.de/itstuff/papers/OpenBTSProject.pdf

[2] GSMA. (2010, Jul.) GSMA Announces that Global Mobile Connections Surpass 5 Billion.

[Online]. Available: http://www.gsma.com/articles/gsma-announces-that-global-mobile-

connections-surpass-5-billion/17632

[3] Range Networks. [Online]. Available: http://www.rangenetworks.com

[4] 3GPP, “Mobile Radio Interface Signalling Layer 3; General Aspects,” TS 04.07, v7.3.0, Dec.

1999.

[5] 3GPP, “Multiplexing and Multiple Access on the Radio Path,” TS 05.02, v8.11.0, Jun. 2003.

[6] 3GPP, “Mobile Station - Base Station System (MS - BSS) Interface; Channel Structures and

Access Capabilities,” TS 04.03, v8.0.2, May 2002.

[7] J. Eberspächer, H.-J. Vögel, C. Bettstetter, and C. Hartmann, GSM Switching, Services, and

Protocols, 3rd ed. West Sussex, United Kingdom: John Wiley and Sons, 2009. ISBN: 0-4700-

3070-4.

[8] GSM Logical Channels. [Online]. Available: http://www.gsmfordummies.com/tdma/logical.shtml

[9] 3GPP, “Mobile Station - Base Station System (MS - BSS) Interface; Data Link (DL) Layer

Specification,” TS 04.06, v8.4.0, Dec. 2008.

[10] 3GPP, “Mobile Radio Interface Layer 3 Specification,” TS 04.08, v7.21.0, Dec. 2003.

[11] 3GPP, “Point to Point (PP) Short Message Service (SMS) Support on Mobile Radio Interface,”

TS 04.11, v7.1.0, Sep. 2000.

[12] 3GPP, “Location Services (LCS); Mobile Radio Interface Layer 3 Location Services (LCS)

Specification,” TS 04.71, v8.4.0, Jul. 2002.

[13] Osmocom OpenBSC. [Online]. Available: http://openbsc.osmocom.org

[14] OsmoBTS. [Online]. Available: http://openbsc.osmocom.org/trac/wiki/OsmoBTS

[15] OpenBTS-Osmo. [Online]. Available: http://cgit.osmocom.org/cgit/openbts-osmo

[16] OsmocomBB. [Online]. Available: http://bb.osmocom.org

[17] Libosmocore. [Online]. Available: http://bb.osmocom.org/trac/wiki/libosmocore

[18] Libosmo-Abis. [Online]. Available: http://openbsc.osmocom.org/trac/wiki/libosmo-abis

 48

[19] OsmoSGSN. [Online]. Available: http://openbsc.osmocom.org/trac/wiki/osmo-sgsn

[20] OpenGGSN. [Online]. Available: http://openbsc.osmocom.org/trac/wiki/OpenGGSN

[21] Ettus Research. [Online]. Available: http://www.ettus.com

[22] GNU Radio. [Online]. Available: http://gnuradio.org

[23] OpenBTS. [Online]. Available:

http://gnuradio.org/redmine/projects/gnuradio/wiki/OpenBTSBackground

[24] 3GPP, “Full Rate Speech; Transcoding,” TS 06.10, v8.2.0, Jun. 2001.

[25] 3GPP, “Radio Subsystem Link Control,” TS 05.08, v8.23.0, Nov. 2005.

[26] 3GPP, “Handover Procedures,” TS 03.09, v7.0.0, Aug. 1999.

[27] 3GPP, “Radio Subsystem Synchronization,” TS 45.010, v10.1.0, Mar. 2011.

[28] Osmo-USRP. [Online]. Available: http://github.com/tacooper/Osmo-USRP

[29] 3GPP, “Base Station Controller - Base Transceiver Station (BSC-BTS) Interface; Layer 3

Specification,” TS 08.58, v8.6.0, Nov. 2000.

[30] 3GPP, “Channel Coding,” TS 05.03, v8.9.0, Jan. 2005.

[31] OsmoBTS Modifications. [Online]. Available: http://github.com/tacooper/osmo-bts

[32] GSM Overview 11. [Online]. Available:

http://www.hexazona.com/nexwave/docs/training/GSM%20Overview%2011.pdf

[33] GSM Handover Call Flow (Intra MSC). [Online]. Available:

http://www.eventhelix.com/realtimemantra/telecom/GSM_Handover_Call_Flow.pdf

[34] Virginia Tech Cognitive Radio Network Testbed (VTCORNET). [Online]. Available:

http://cornet.wireless.vt.edu/trac/wiki/CORNET

[35] V. A. de Sousa Jr., R. A. de O. Neto, F. de S. Chaves, L. S. Cardoso, and F. R. P. Cavalcanti,

“Access Selection with Anticipatory Vertical Handover for Multi-Access Networks,” IEEE 17th

International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1-5, Sep.

2006.

 49

Appendix A: Software Guide

A.1 Installation

The programs needed for this work should be installed in the order given in Subsections

A.1.1-5. There are a few options for the “configure” step of Osmo-USRP installation. GNU

Radio must be installed when using a USRP 1; for other USRP devices, UHD must be installed.

Flags are used to specify certain setups: “--with-usrp1” for USRP 1, “--with-extref” for an

external reference clock, and “--with-resamp” for 64 MHz clock rate. When resampling 64 MHz

to 52 MHz, the value of masterClockRate in Transceiver52M/USRPDevice.cpp should be 64.0e6

(which is the default); otherwise use 52.0e6.

It is strongly recommended to use an external reference clock instead of the USRP stock

clock in order to meet GSM specifications and ensure stable BTS operation.

A.1.1 Libosmocore

git clone git://git.osmocom.org/libosmocore.git

cd libosmocore

autoreconf -i

./configure

make

sudo make install

cd ..

 50

A.1.2 Libosmo-Abis

git clone git://git.osmocom.org/libosmo-abis.git

cd libosmo-abis

autoreconf -i

./configure

make

sudo make install

cd ..

A.1.3 OpenBSC

git clone git://git.osmocom.org/openbsc.git

cd openbsc/openbsc

autoreconf -i

./configure

make

sudo make install

cd ../..

A.1.4 OsmoBTS

git clone git://github.com/tacooper/osmo-bts.git

cd osmo-bts

autoreconf -i

./configure --enable-sysmocom-bts

 51

make

sudo make install

cd ..

A.1.5 Osmo-USRP

git clone git://github.com/tacooper/Osmo-USRP.git

cd Osmo-USRP/public-trunk

autoreconf -i

./configure --with-usrp1 --with-resamp

make

sudo make install

cd ../..

A.2 Operation

Operation must be conducted in four separate Terminal windows. These Terminals are

used for running the programs in Subsections A.2.1-4. Note that “sudo” is required for running

OsmoBTS and Osmo-USRP because of the inter-process FIFO files created in /dev/msgq.

Also, many of the values must be repeated across configuration files because they are not

dynamically configured in Osmo-USRP by OpenBSC.

 52

A.2.1 OpenBSC

cd openbsc/openbsc/src/osmo-nitb

For operating single BTS:

Place the file and edit the values in openbsc.cfg (Section A.3).

./osmo-nitb --debug=DRLL:DCC:DMM:DRR:DRSL:DNM:DLMUX:DHO -T -e 0

-c openbsc.cfg

For operating multiple BTSs:

Place the file and edit the values in multi-bts.cfg (Section A.3).

./osmo-nitb --debug=DRLL:DCC:DMM:DRR:DRSL:DNM:DLMUX:DHO -T -e 0

-c multi-bts.cfg

For testing handover with multiple BTSs:

Place the file and edit the values in multi-bts.cfg (Section A.3); be sure to enter a value of

1 next to the “handover” parameter. Also include the -P flag to enable RTP proxy mode needed

for handover.

./osmo-nitb --debug=DRLL:DCC:DMM:DRR:DRSL:DNM:DLMUX:DHO -T -e 0

-c multi-bts.cfg -P

A.2.2 OsmoBTS

cd osmo-bts/src/osmo-bts-sysmo

Edit the values in the included file, osmo-bts.cfg.

sudo ./sysmobts

 53

OsmoBTS will not function until the four FIFO files are created by Osmo-USRP. Often,

this step requires running Osmo-USRP first, and then repeatedly running OsmoBTS until the

main program starts (typically 4-5 iterations).

A.2.3 Osmo-USRP

cd Osmo-USRP/public-trunk/apps

Edit the values in the included file, TrueBTS.config.

sudo ./TrueBTS

As mentioned previously, Osmo-USRP is often required to run while OsmoBTS is run

repeatedly until the four FIFO files are opened.

A.2.4 Osmo-NITB VTY

The VTY interface allows the user to configure BSC options and inspect the GSM

network.

telnet localhost 4242

Note that the BSC must have full-rate audio enabled, as it is the only codec compatible

with Osmo-USRP.

enable

configure terminal

mncc-int

default-codec tch-f fr

This command shows the current configuration of the network, which is used here to

 54

check that the codec is indeed full-rate (FR).

show running-config

exit

Additionally, the HLR database must be properly configured to allow subscribers to

access the network. The IMSI of the subscriber must be known; if unknown, it will be shown in

the debug logging output of Osmo-NITB when the MS is rejected by the network. The

following commands are then used to assign a subscriber name for ease of reference, assign a

telephone extension number for calling, authorize the subscriber, and display the subscriber’s

information, respectively. The subscriber can also be referenced by the ID number displayed

with the show command.

subscriber imsi 012340123456789 name Cooper

subscriber imsi 012340123456789 extension 5555

subscriber imsi 012340123456789 authorized 1

show subscriber imsi 012340123456789

This command is helpful for viewing the statuses of all connected BTSs. The channel

load figures are of particular interest, as TCH and SDCCH slots are known to not be released

after errors.

show bts

 55

A.3 Configuration Files

These two OpenBSC configuration files are provided here since they are not part of the

Osmo-USRP and OsmoBTS codebases. The specific parameters are compatible with the

configuration files included in Osmo-USRP and OsmoBTS.

For operating single BTS:

!

! OpenBSC configuration saved from vty

! !

password foo

!

line vty

 no login

!

e1_input

 e1_line 0 driver ipa

network

 network country code 001

 mobile network code 02

 short name Osmo-USRP

 long name Osmo-USRP

 auth policy closed

 location updating reject cause 13

 encryption a5 0

 neci 1

 rrlp mode none

 mm info 1

 handover 0

 handover window rxlev averaging 10

 handover window rxqual averaging 1

 handover window rxlev neighbor averaging 10

 handover power budget interval 6

 handover power budget hysteresis 3

 handover maximum distance 9999

 timer t3101 10

 timer t3103 0

 timer t3105 0

 timer t3107 0

 timer t3109 0

 timer t3111 0

 56

 timer t3113 60

 timer t3115 0

 timer t3117 0

 timer t3119 0

 timer t3141 0

 bts 0

 type nanobts

 band GSM900

 cell_identity 98

 location_area_code 1

 training_sequence_code 5

 base_station_id_code 37

 ms max power 15

 cell reselection hysteresis 4

 rxlev access min 0

 channel allocator ascending

 rach tx integer 9

 rach max transmission 7

 ip.access unit_id 1802 0

 oml ip.access stream_id 255 line 0

 gprs mode none

 trx 0

 rf_locked 0

 arfcn 61

 nominal power 23

 max_power_red 20

 rsl e1 tei 0

 timeslot 0

 phys_chan_config CCCH+SDCCH4

 timeslot 1

 phys_chan_config SDCCH8

 timeslot 2

 phys_chan_config TCH/F

 timeslot 3

 phys_chan_config TCH/F

 timeslot 4

 phys_chan_config TCH/F

 timeslot 5

 phys_chan_config TCH/F

 timeslot 6

 phys_chan_config TCH/F

 timeslot 7

 phys_chan_config TCH/F

 57

For operating multiple BTSs:

!

! OpenBSC configuration saved from vty

! !

password foo

!

line vty

 no login

!

e1_input

 e1_line 0 driver ipa

network

 network country code 001

 mobile network code 02

 short name Osmo-USRP

 long name Osmo-USRP

 auth policy closed

 location updating reject cause 13

 encryption a5 0

 neci 1

 rrlp mode none

 mm info 1

 handover 1

 handover window rxlev averaging 10

 handover window rxqual averaging 1

 handover window rxlev neighbor averaging 10

 handover power budget interval 6

 handover power budget hysteresis 3

 handover maximum distance 9999

 timer t3101 10

 timer t3103 0

 timer t3105 0

 timer t3107 0

 timer t3109 0

 timer t3111 0

 timer t3113 60

 timer t3115 0

 timer t3117 0

 timer t3119 0

 timer t3141 0

 bts 0

 type nanobts

 band GSM900

 cell_identity 99

 location_area_code 1

 training_sequence_code 5

 58

 base_station_id_code 37

 ms max power 15

 cell reselection hysteresis 4

 rxlev access min 0

 channel allocator ascending

 rach tx integer 9

 rach max transmission 7

 ip.access unit_id 1801 0

 oml ip.access stream_id 255 line 0

 gprs mode none

 trx 0

 rf_locked 0

 arfcn 51

 nominal power 23

 max_power_red 20

 rsl e1 tei 0

 timeslot 0

 phys_chan_config CCCH+SDCCH4

 timeslot 1

 phys_chan_config SDCCH8

 timeslot 2

 phys_chan_config TCH/F

 timeslot 3

 phys_chan_config TCH/F

 timeslot 4

 phys_chan_config TCH/F

 timeslot 5

 phys_chan_config TCH/F

 timeslot 6

 phys_chan_config TCH/F

 timeslot 7

 phys_chan_config TCH/F

 bts 1

 type nanobts

 band GSM900

 cell_identity 98

 location_area_code 1

 training_sequence_code 5

 base_station_id_code 37

 ms max power 15

 cell reselection hysteresis 4

 rxlev access min 0

 channel allocator ascending

 rach tx integer 9

 rach max transmission 7

 ip.access unit_id 1802 0

 oml ip.access stream_id 255 line 0

 59

 gprs mode none

 trx 0

 rf_locked 0

 arfcn 61

 nominal power 23

 max_power_red 20

 rsl e1 tei 0

 timeslot 0

 phys_chan_config CCCH+SDCCH4

 timeslot 1

 phys_chan_config SDCCH8

 timeslot 2

 phys_chan_config TCH/F

 timeslot 3

 phys_chan_config TCH/F

 timeslot 4

 phys_chan_config TCH/F

 timeslot 5

 phys_chan_config TCH/F

 timeslot 6

 phys_chan_config TCH/F

 timeslot 7

 phys_chan_config TCH/F

