Acute Toxicity of Ammonia and Nitrite to White Shrimp (L. vannamei) at Low Salinities Dominic Joseph Schuler

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science In Environmental Engineering

Dr. Gregory Boardman Dr. Andrea Dietrich Dr. Stephen Smith

April 30th, 2008 Blacksburg, Virginia

Keywords: Pacific White Shrimp, *Litopenaeus vannamei*, ammonia toxicity, nitrite toxicity, salinity

Abstract			vi		
Acknowle	vii				
Chapter 1 "Introduction"					
Chapter 2	apter 2 "Literature Review"				
	2.1	Introduction	3		
	2.2	Exposure to Ammonia and Nitrite	4		
		2.2.1 Toxic properties of ammonia	4		
		2.2.2 Effects of Ammonia on Survival and Growth	5		
		2.2.3 Toxic properties of nitrite	7		
		2.2.4 Effects of Nitrite on Survival and Growth	8		
		2.2.5 Ammonia and Nitrite Combined	9		
	2.3	Factors affecting toxicity of ammonia and nitrite	9		
		2.3.1 pH	9		
		2.3.2 Salinity	10		
		2.3.3 Dissolved Oxygen (DO)	11		
		2.3.4 Temperature	11		
		2.3.5 Age	12		
	2.4	Conclusions	12		
	2.5	Research Needs	12		
Chapter 3 "Acute toxicity of ammonia and nitrite to Pacific White			14		
Shrimp (L. vannamei) at low salinities"					
	3.1	Abstract	15		

3.2	.2 Introduction			
3.3	Materials and Methods	19		
	3.3.1 Animals	19		
	3.3.2 Seawater	19		
	3.3.3 Test Protocol	20		
	3.3.4 Ammonia Toxicity Trials	21		
	3.3.5 Nitrite Toxicity Trials	21		
	3.3.6 Ammonia and Nitrite Toxicity Trials	21		
	3.3.7 Statistical Analysis	22		
3.4	Results	22		
	3.4.1 Ammonia Toxicity Trials	22		
	3.4.2 Nitrite Toxicity Trials	23		
	3.4.3 Ammonia and Nitrite Toxicity Trials	23		
3.5	3.5 Discussion			
	3.5.1 Ammonia Toxicity Trials	24		
	3.5.2 Nitrite Toxicity Trials	25		
	3.5.3 Ammonia and Nitrite Toxicity Trials	25		
	3.5.4 Salinity	26		
	3.5.5 Application to Wild Populations	27		
Jοι	ournal References			
Tables and Figures:				
	Table 1: 48 h LC50 values for varying species and	31		
	ages of shrimn			

	Table 2: Water quality maintained in AHAB	32
	systems	
	Table 3: Methods for monitoring water quality.	33
	Table 4: LC results for Ammonia-N at 10 ppt	34
	salinity	
	Table 5: LC results for NO ₂ -N at 10 ppt salinity	35
	Table 6: LC50 results for TAN at varying salinities	36
	Table 7: LC50 results for NO ₂ -N tests with and	37
	without TAN at 30.0 mg/l	
	Figure 1: Percent mortality over time due to	38
	varying TAN-N concentrations at 10 ppt salinity.	
	Figure 2: Percent mortality over time due to	39
	varying NO ₂ -N concentrations at 10 ppt salinity.	
	Figure 3: Percent mortality over time due to	40
	varying TAN-N concentrations with an adjusted	
	concentration of NO ₂ -N at 133 mg/L and 10 ppt	
	salinity.	
	Figure 4: Percent mortality over time due to	41
	varying NO ₂ -N concentrations with an adjusted	
	concentration of TAN-N at 30.0 mg/L and 10 ppt	
	salinity.	
Chapter 4 "Co	onclusions and Research Needs"	42
References		43

Appendix A: Raw Data	48
Appendix B: Toxcalc Summary Reports	54

Acute Toxicity of Ammonia and Nitrite to White Shrimp (L. vannamei) at Low Salinities

Dominic Joseph Schuler

ABSTRACT

The Pacific white leg shrimp, <u>Litopenaeus vannamei</u>, is a potential species for low salinity inland aquaculture. Due to several independent variables, such as species, age, size, salinity and pH, that must be taken into account, there are gaps in the literature pertaining to the toxicity of ammonia and nitrite to shrimp. This study was conducted to investigate the individual and combined effects of ammonia and nitrite on L. vannamei postlarvae (25-45 days old) at 10 ppt salinity, 28 C and a pH of 7.8. The independent variables were salinity, total ammonia as nitrogen (TAN) and nitrite-N (NO₂-N), separately and combined. The TAN experiments were conducted at 18 and 10 ppt salinity while the NO₂-N test was conducted at 10 ppt salinity. Combined TAN and NO₂ tests were also conducted at 10 ppt salinity. The LC50 values for TAN at 18 ppt salinity, TAN at 10 ppt salinity, and NO_2 -N at 10 ppt were observed to be 42.92, 39.72 mg/L (2.26 and 2.09 mg/L unionized ammonia-N), and 153.75 mg/L, respectively. When NO₂-N was adjusted to the LOEC level and TAN concentrations were varied, synergistic effects were observed, with an LC50 calculated to be 28.2 mg/L TAN (1.49 mg/L unionized ammonia-N). However, when the ammonia level was adjusted to the LOEC and nitrite was varied, antagonistic effects were observed with an LC50 calculated to be 163.3 mg/L NO₂-N. The results suggest that further investigations into the combined effects of ammonia and nitrite at varying concentrations and lower salinities will be important in developing "standard operating procedures" for the shrimp industry.

Acknowledgments

The authors would like to acknowledge funding for this study from United States

Department of Agriculture Cooperative State Research Education and Extension Services

(USDA-CSREES), and the Edna Bailey Sussman Foundation.

Chapter 1: Introduction

Pacific white leg shrimp (<u>Litopenaus vannamei</u>) are one of the most intensively cultivated shrimp species in the world (Pe´rez Farfante 1997). In the wild, they are found throughout tropical Pacific waters, from Mexico to Peru. In aquacutural settings, their ability to thrive in low salinity seawater has been observed, making them an especially good species for inland aquaculture (Pan et al. 2007). The reduction of salinity for inland aquaculture firms is a major goal. Prepared salts can be purchased and applied or ion supplements can be developed to mimic natural seawater conditions. No matter how the water is salinated, it is expensive. Recirculating aquaculture systems (RAS) reuse 90% of their water daily, but there is a direct proportionality between the salinity and cost of the 10% that is discharged. If shrimp can be cultivated at lower salinities, extensive costs to the producing firm are avoided.

Reducing the salinity of the water can lead to problems. The initial, and most apparent problem, is finding a species that can tolerate a shift in the iso-osmotic balance between the internal and external environments. Many marine species would experience an influx of water due to the osmotic pressure driven by the higher concentration of ions within the shrimp as compared to the surrounding water. Another problem that can result when decreased salinities are applied is decreased resiliency of shrimp to toxins, such as ammonia and nitrite.

Nitrogenous wastes products, such as ammonia and nitrite, can become concentrated in aquaculture systems (Frias-Espericueta et al. 1999). Ammonia is the resulting waste product of the cultured shrimp. It can also accumulate in the water due to the decomposition of organic solids such as excess feed and feces (Lin and Chen 2003).

For intensive RAS, the most common removal technique involves utilizing nitrifying bacteria to convert ammonia-nitrogen to nitrate-nitrogen (Ebeling et al. 2006). Of the resulting species, ammonia is more toxic than nitrite, which in turn is more toxic than nitrate. The total ammonia concentration as nitrogen (TAN) is comprised of two forms, unionized ammonia (NH₃) and ionized ammonium (NH₄⁺) (Armstrong et al. 1978). The form of the TAN is dependent on the pH, salinity, and temperature (Bower and Bidwell 1978). Of the two, unionized ammonia is the more toxic (Smart 1978). The small uncharged particle can easily cross the lipid membrane of aquatic organism's gill cells.

The purpose of this study was threefold. The toxicity of ammonia was first studied at 18 and 10 ppt salinity. Secondly, nitrite was studied individually at 10 ppt. The background tests helped to provide reference data when developing and analyzing combined TAN and NO₂ tests. These studies were directed to validate data of previous studies as well as to generate new data at specific environmental parameters and ages. The third objective was to conduct two experiments at differing combinations of ammonia and nitrite in order to better understand any combined effects resulting from exposure to elevated levels of both agents.

Chapter 2: Literature Review

2.1 Introduction

The control of ammonia and nitrite in aquaculture systems is the second most important factor impacting survival and growth of cultured organisms, following dissolved oxygen (Ebeling et al. 2006). The build up of nitrogenous waste products from feed decomposition and organism excretion can lead to reduced productivity as well as the collapse of an entire aquaculture system. The cycle of nitrogen in intensive recirculating aquaculture systems (RAS) can be easily characterized using a systematic approach that analyzes the inputs, outputs, and recycled materials.

Accumulation of nitrogen in RAS originates from feed being added to the system. The metabolism pathway of protein ultimately leads to the production of ammonia (NH₃) which is excreted (Hargreaves 1998). Total ammonia as nitrogen (TAN) is the measured combination of ammonia (NH₃) and ammonium (NH₄⁺), the unionized and ionized versions. Once the TAN has been measured, the concentrations of the two separate species can be calculated based on the pH, temperature, and salinity of the water (Bower and Bidwell 1978).

Of the nitrogen excreted, two forms can be found, dissolved and particulate.

According to Folke and Kautsky (1989), of the 75% of nitrogen added as food that becomes excrement, 62% can be classified as dissolved. Dissolved nitrogenous compounds can be taken up by aquatic organisms through the gills during respiration.

Removal processes of dissolved nitrogen compounds, can vary. For intensive RAS, the most common practice involves utilizing nitrifying bacteria to convert ammonianitrogen to nitrate-nitrogen (Ebeling et al. 2006). The nitrification process is

characterized by two oxidation steps, resulting in the transformation of NH₃ (ammonia) to NO₂ (nitrite) and finally NO₃ (nitrate). This process is essential in the natural world to reduce the toxicity of nitrogenous wastes. Conversion of ammonia to nitrite is accomplished by ammonia oxidizing bacteria (AOB). AOB are also commonly knows as Nitrosomonas bacteria. Nitrite oxidizing bacteria (NOB) metabolically oxidize nitrite to nitrate. NOB are also commonly known as Nitrobacter bacteria. The rate limiting step of this process is the oxidation of ammonia (Vadivelu et al. 2007). Incomplete nitrification occurs when a lack of NOB productivity is present, leading to increased concentrations of nitrite.

Volatilization is not a major factor in the removal of ammonia in recirculating aquaculture systems. Significant loss of ammonia due to volatilization only occurs at pHs above 9, when most TAN is in the unionized form. This is relevant for pond aquaculture systems and should be taken into account in nitrogen mass balances due to variation in cyclical pond characteristics (Hargreaves 1998).

2.2 Exposure to Ammonia and Nitrite

2.2.1 Toxic properties of ammonia

The toxic properties of ammonia are based on the irritative properties of the compound (CDC 2004). Unlike mammals that convert nitrogenous wastes to other forms such as urea, fish and crustaceans excrete ammonia in an unaltered state. This is possible due to the fact that in natural conditions ammonia is instantly diluted to safe levels by the

surrounding water. Fish and crustaceans also lack the ability to convert ammonia to the less toxic, carbamoyl phosphate compound. Due to this, aquatic species are especially prone to toxic effects of ammonia at highly concentrated levels. The unionized form of ammonia is the more toxic species to aquatic organisms due to its ability to gain entry through the gills. The uncharged, lipid soluble molecule can readily pass through cell membranes (Boardman et al. 2004), whereas the ionized form does not readily cross hydrophobic microphores in the gill membrane (Svobodova 1993).

The documented physiological changes in aquatic organisms due to ammonia exposure vary. One initial effect of ammonia relates to site specific irritation. The gills of tilapia that had been exposed to chronic ammonia tests were analyzed by Caglan, et al (2005). The authors concluded that ammonia was responsible for gill hyperplasia as well as lamella fusion.

The result of hyperplasia and lamella fusion is restricted water flow over the gills, leading to respiratory stress on the organism. Similar results were found, as well as epithelial pitting of the gills, when rainbow trout were tested and examined using scanning electron microscopy (Kirk and Lewis 1993). Authors have not investigated the histological effects of ammonia on the gills of shrimp.

2.2.2 Effects of Ammonia on Survival and Growth

The lethal effects of ammonia in aquacultural systems are well documented. Several species of shrimp have been used to conduct toxicity experiments in order to determine the lethal concentrations to 50% of a sample population (LC50). Lethal

toxicity tests can be acute or chronic depending on the time of exposure. In most cases, acute tests are performed over a period of 2-7 days, while chronic tests are longer than 7 days. Concentrations leading to 50% mortality vary depending on the organism being tested.

The comparison of previous research and data is problematic due to the parameters that can be varied within toxicity tests. Examples of these parameters are age/size of the shrimp, salinity of the water, length of exposure to toxins, temperature and pH. The temperature and pH parameters are especially important because they are the two most influential factors in the proportioning of TAN. Another obstacle is that toxicity data for ammonia is not standardized; some literature presents data in TAN while others provide data in ammonia-N without necessary conversion factors based on the parameters used.

Previous studies have shown that 48 h median lethal concentrations (LC50) for ammonia-N to varying species of shrimp, to range from 30 and 110 mg/L TAN at full strength seawater depending on size and age (Chen *et al.* 1990a, Chen *et al.* 1990b, Ostrensky and Wasielesky 1995, Frias-Espericueta et al. 1999, Kir and Kumlu 2006). For Penaeus monodon and Metapenaeus macleayi juveniles, LC50's were determined using 96 hr acute tests. The results showed the respective LC50's to be 1.69 and 1.39 mg/l NH₃-N (Allan et al. 1990). Other authors, through studies with various genera and species, have concluded that the toxicity of ammonia to specific species is dependent on time and concentration.

A study using <u>Penaeus semisulcatus</u> post larvae (PLs) found that the tolerance to ammonia-N decreased with decreasing salinity. Specifically, the shrimp tested at 40 ppt

salinity were tolerant to ammonia-N levels 2.9 times higher than those at 15 ppt over 48 h (LC50s of 32.5 and 11.2 mg/L TAN, respectively) (Kir and Kumlu 2006).

Elevated ammonia levels can also lead to reduced growth of species raised in intensive aquaculture systems. Wickens (1976) showed that a concentration of 0.45 mg/l NH₃-N led to a 50% decrease in growth of five species of penaid shrimp. The author also concluded that a concentration of above 0.10 mg/L NH₃-N breached maximum acceptable levels for reduced growth over a three week chronic test (Wickins 1976).

2.2.3 Toxic properties of nitrite

Nitrite toxicity is not related to site specific irritation. Instead, the toxicity of nitrite is a function of the effects on the circulatory and immune systems of aquatic organism.

Nitrite enters the blood stream and inhibits the binding of oxygen to the iron molecule of hemoglobin (Hargreaves 1998). The oxidation of the iron by nitrite leads to increased levels of methemoglobin and substantially decreased levels of hemoglobin (Tilak et al. 2007). This can lead to 'brown blood syndrome' where the blood loses its reddish color and becomes brown due to a lack of oxygen. Tilak et al. (2007) also saw decreased levels of oxygen consumption in relation to the conversion of hemoglobin to methemoglobin.

The blood of shrimp, as well as other invertebrates, does not contain hemoglobin.

Instead, oxygen binds to a copper based molecule at the gills and is then delivered throughout the body. The physiological and histological effects of nitrite on invertebrates

is not well study, but it is possible that nitrite effects the copper of invertebrate's circulatory systems as it does the iron of vertebrate's circulatory systems.

2.2.4 Effects of Nitrite on Survival and Growth

Tseng and Chen (2004) examined the effects of nitrite stress on immune responses to Vibrio alginolyticus, a common bacterial disease in marine aquaculture systems. They found that shrimp exposed to nitrite between 5 and 22 mg/l showed significantly reduced resistance to bacterial infection. This study was conducted through analysis of haemocyte (invertebrate red blood cells) counts (Tseng and Chen 2004). In another study Macrobrachium malcolmsonii juveniles were subjected to nitrite stresses in the presence of the bacteria A. hydrophila. The authors concluded that increased nitrite stress led to a reduction in immune response to A. hydrophila (Chand and Sahoo 2006).

In aquacultural systems, an increase in ammonia concentration is followed by a decrease in ammonia that is indirectly proportional to a rise in nitrite, as NH₃ is oxidized to NO2. The acute lethal affects of nitrite on aquatic organisms is not as pronounced as ammonia at low concentrations, yet its toxicity is still of concern. A study that explored the acute effects of nitrite on <u>L. vannamei</u> shrimp over 48 h revealed LC50s of 142.2, 244.0, and 423.9 mg/L nitrite-N for 15, 25, and 35 ppt salinity respectively (Lin and Chen 2003). Gross et al. (2004) also explored the acute effects of nitrite to <u>L. vannamei</u> in low salinity waters. When reared in water with 2 ppt salinity, the 48 h LC value was determined to be approximately 15 mg/L NO₂-N (Gross *et al.* 2004), significantly lower than seen in the Lin and Chen (2003) experiments.

2.2.5 Ammonia and Nitrite Combined

Few studies have been conducted with shrimp PLs that investigate the combined effects of ammonia and nitrite on shrimp, especially at lowered salinities. Alcaraz et al. (1997, 1999a, 1999b) studied the combined acute effects of ammonia and nitrite on Penaeus setiferus PLs including factors such as temperature tolerance, survival, and varying dissolved oxygen (DO) all at 30 ppt salinity. It has been suggested that the ratio of ammonia to nitrite is inversely proportional to the critical thermal maximum shrimp can tolerate (Alcaraz et al. 1997). Acute survival studies have suggested synergistic effects at 48 h exposure and antagonistic effects beyond 72 h (Alcaraz et al. 1999a). Decreased respiration rates have also been seen in P. setiferus exposed to ammonia and nitrite (Alcaraz et al. 1999b). Other studies conducted using Penaeus monodon PLs have suggested antagonistic effects at 48 and 72 h with synergistic effects after 96 h (Chen and Chin 1988).

2.3 Factors affecting toxicity of Ammonia and Nitrite

2.3.1 pH

The prevalent form of ammonia found in aquatic environments is heavily dependent on the pH. The pKa of the ammonium ion is around 9.25. As the pH increases, NH₄⁺ releases a hydrogen ion resulting in ammonia, NH₃ (Allan et al. 1990). The toxicity of

ammonia in relationship to pH is something that has been widely tested in shrimp. Many experiments have shown that an increase in pH up to 9 leads to reduced LC50's for multiple species of shrimp (Magallon Barajas et al. 2006). According to Magallon et al. (2006), most marine aquacultured organisms should be raised in water with a pH between 7 and 8 to avoid ammonia toxicity.

2.3.2 Salinity

For most marine organisms, increased salinity levels leads to greater resilience to elevated ammonia and nitrite concentrations. Test shrimp <u>P. semisulcatus</u>, showed an increased tolerance to ammonia when reared in 40 ppt salt, as compared to 15 ppt. LC50 levels were 2.5 times higher in 40 ppt salt water versus 15 ppt (Kir and Kumlu 2006). The same study revealed that there is a correlation between better growth and ammonia tolerance in higher salinity waters.

The effects of nitrite in relation to salinity are similar to those of ammonia.

Litopenaeus vannamei were used to determine LC50's of nitrite at varying salinity levels (15, 25, 35 ppt). Despite L. vannamei's apparent high tolerance to nitrite, those reared at 15 ppt salt showed LC50's that were 200-300 mg/l nitrite-N lower than those reared in 35 ppt salt (Lin and Chen 2003). These results are similar to other studies with different aquatic species. Another study showed decreases in the tolerance of juvenile black sea bass to nitrite in reduced salinity tanks (Weirich and Riche 2006).

As marine aquaculture facilities continue to move inland, away from natural seawaters, the cost for maintaining salt levels upwards of 40 ppt rises. The cost benefit

ratio of rearing marine species in lower salt concentrations and the effects of ammonia is something that requires more interdisciplinary research.

2.3.3 Dissolved Oxygen (DO)

Dissolved oxygen levels are one of the most important factors for the conversion of ammonia to nitrate. Nitrifying bacteria require adequate levels of oxygen to oxidize waste products. Low oxygen levels can also result in a shift to aerobic heterotrophic bacteria that are better competitors for oxygen than nitrifying bacteria (Hargreaves 1998). Hargreaves (1998) also mentions that the conversion of nitrite to nitrate requires higher levels of oxygen than the conversion of ammonia to nitrite. Therefore, in poorly oxygenated waters, a build-up of nitrite and ammonia can occur, leading to toxic effects on organisms.

Another indirect effect of low dissolved oxygen is an increased respiration rate in aquatic organisms that can lead to increased uptake of dissolved nitrogenous compounds (Thurston et al. 1981). Reduced DO levels have been shown to significantly increase the acute toxicity of ammonia in <u>P. monodon</u> due to increased respiration rates (Allan et al. 1990).

2.3.4 Temperature

Temperature, as well as pH, plays a role in the partitioning of unionized and ionized ammonia in aqueous environments. As temperature increases, the fraction of unionized

ammonia in TAN increases (Bower and Bidwell 1978). It has also been shown that an increase in temperature is coupled with increased respiration rates in the freshwater shrimp, M. rosenbergii (Niu et al. 2003). Increased oxygen consumption could be linked to an increase in ammonia/nitrite uptake. An increase in temperature has also been found to increase nitrogenous excretion in crustaceans (Regnault 1986), possibly due to increased metabolic rates.

2.3.5 Age

Generally, as the age of an organisms increases, the tolerance of the organism to toxins increases. Juvenile or larvae-aged species are used in most bioassays to determine the lowest observed effect concentration (LOEC) of a toxic substance. Experiments wth L.vannamei revealed that post larvae 15-20 days old showed a higher LC50 than those which were younger (Magallon Barajas et al. 2006). The stabilization of ammonia and nitrite levels for younger organisms is especially important for transport and breeding situations.

2.4 Conclusions

The toxicity of ammonia and nitrite is heavily dependent on environmental factors, including pH, dissolved oxygen, salinity, and temperature. For aquacultural purposes, these factors play an important role in the development, growth, and survival of species exposed to ammonia and nitrite. Intensive culture in RAS allows for significant control

over these factors and therefore the susceptibility of organisms to nitrogenous based toxins.

The manipulation of environmental factors affecting toxicity becomes the most important facet of culturing aquatic species based on location and available resources. If one factor cannot be controlled as well as others, extra measures can be taken to reduce toxicity through other means. For inland systems, the cost of salinating systems must be weighed against the growth responses and toxicity of ammonia and nitrite in low salinity water.

At the most basic level, a system should be designed with the knowledge that:

- 1. An increase in pH leads to increased ammonia toxicity,
- 2. A decrease in salinity leads to increased ammonia and nitrite toxicity for most shrimp species,
- 3. A decrease in DO leads to increased ammonia and nitrite toxicity,
- 4. An increase in temperature leads to increased ammonia and nitrite toxicity,
- 5. Younger individuals are more susceptible to toxic effects.

2.5 Research Needs

In order to maximize growth and survival of aquatic species through the minimization of ammonia and nitrite toxic effects, more research is needed to evaluate the combined effects of factors that affect their toxicity. By testing combinations of factors more

information can be derived, leading to a complete understanding of how the systems function. This should be coupled with the testing of other water quality factors that might have an affect on nitrogenous toxicity, such as metals and other water contaminants.

Research has been completed to develop a general idea as to how certain groups of aquacultured organisms will react to varying levels of ammonia and nitrite, but it would be beneficial for cultured species to be tested individually to determine specific parameters. Variations between shrimp species and age groups have been documented (Allan et al. 1990), showing the need for data on specific species.

Chapter 3: Acute toxicity of ammonia and nitrite to Pacific White Shrimp (L. vannamei) at low salinities

(To be submitted to The Journal of the World Aquaculture Society)

3.1 Abstract

The Pacific white leg shrimp, Litopenaeus vannamei, is a potential species for low salinity inland aquaculture. Due to several independent variables, such as species, age, size, salinity and pH, that must be taken into account, there are gaps in the literature pertaining to the toxicity of ammonia and nitrite to shrimp. This study was conducted to investigate the individual and combined effects of ammonia and nitrite on L. vannamei postlarvae (25-45 days old) at 10 ppt salinity, 28 C and a pH of 7.8. The independent variables were salinity, total ammonia as nitrogen (TAN) and nitrite-N (NO₂-N), separately and combined. The TAN experiments were conducted at 18 and 10 ppt salinity while the NO₂-N test was conducted at 10 ppt salinity. Combined TAN and NO₂ tests were also conducted at 10 ppt salinity. The LC50 values for TAN at 18 ppt salinity, TAN at 10 ppt salinity, and NO₂-N at 10 ppt were observed to be 42.92, 39.72 mg/L (2.26 and 2.09 mg/L unionized ammonia-N), and 153.75 mg/L, respectively. When NO₂-N was adjusted to the LOEC level and TAN concentrations were varied, synergistic effects were observed, with an LC50 calculated to be 28.2 mg/L TAN (1.49 mg/L unionized ammonia-N). However, when the ammonia level was adjusted to the LOEC and nitrite was varied, antagonistic effects were observed with an LC50 calculated to be 163.3 mg/L NO₂-N. The results suggest that further investigations into the combined

effects of ammonia and nitrite at varying concentrations and lower salinities will be important in developing "standard operating procedures" for the shrimp industry.

3.2 Introduction

Pacific white shrimp (<u>Litopenaeus vannamei</u>) are one of the most intensively cultivated shrimp in the world (Pe´rez Farfante 1997). Their ability to thrive in low salinity seawater makes them an especially good species for inland aquaculture (Pan et al. 2007). The reduction of the salinity in water used within recirculating aquaculture systems (RAS) can lead to production of shrimp at lower costs due to less salt being purchased and easier management of wastewater. The reduction of salt within this process can lead to problems for intensely grown shrimp, such as a decrease in the resiliency of shrimp to agents such as ammonia and nitrite (Chen and Lin 1992, Lin and Chen 2003).

Nitrogenous wastes products can become concentrated in aquaculture systems (Frias-Espericueta et al. 1999). Ammonia is excreted by shrimp, and it can also accumulate in the water due to the decomposition of organic solids, such as excess feed and feces (Lin and Chen 2003). For intensive RAS, the most common removal technique involves utilizing nitrifying bacteria to convert ammonia-nitrogen to nitrate-nitrogen (Ebeling et al. 2006). Of the resulting chemical species, ammonia is more toxic than nitrite, which in turn is more toxic than nitrate. The total ammonia concentration as nitrogen (TAN) is comprised of two species, unionized ammonia (NH₃-N) and ionized ammonium (NH₄⁺-N) (Armstrong et al. 1978). The speciation of the TAN is dependent

on the pH, salinity, and temperature (Bower and Bidwell 1978). Of the two, unionized ammonia is more toxic (Smart 1978). The small uncharged particle can easily cross the lipid membrane of aquatic organism's gill cells.

Authors of previous studies have shown 48 h median lethal concentrations (LC50) for TAN to varying species of penaid shrimp to range from 30 and 110 mg/L TAN at full strength seawater depending on size and age as summarized in Table 1 (Chen *et al.* 1990a, Chen *et al.* 1990b, Ostrensky and Wasielesky 1995, Frias-Espericueta et al. 1999, Kir and Kumlu 2006). Kir and Kumlu (2006) found that the tolerance to TAN decreased with decreasing salinity using Penaeus semisulcatus post larvae (PL). Specifically, the shrimp tested at 40 ppt salinity were tolerant to TAN levels 2.9 times higher than those at 15 ppt over 48 h (LC50s of 32.5 and 11.2 mg/L TAN, respectively) (Kir and Kumlu 2006). Chen and Lin (1992) observed that a decrease in salinity from 30 to 10 ppt led to a shift in 48 h LC50 values from 53.94 to 2.39 mg/L TAN for juvenile Penaeus chinesis.

Authors who have conducted nitrite studies at low salinities (15 ppt) have shown the 48 h LC50 of nitrite to L. vannamei juveniles to be around 143 mg/L NO₂-N (Lin and Chen 2003). Few researchers have conducted studies to investigate the combined effects of ammonia and nitrite on shrimp, especially at decreased salinities. Alcaraz et al (1997, 1999a, 1999b) studied the combined acute effects of ammonia and nitrite on Penaeus setiferus PL, including factors such as temperature tolerance, varying dissolved oxygen (DO), and survival at 30 ppt salinity. After investigating the effects of exposure to ammonia and nitrite on the critical thermal maximum (CTM) shrimp can tolerate, the authors suggested that the ratio of ammonia to nitrite is inversely proportional to the CTM. Specifically, a mixture of 0.4 mg/L NH₃-N and 120 mg/L NO₂-N was seen to

decrease the CTM by 7.6% when compared to a control (Alcaraz et al. 1997). Decreased respiration rates have also been seen in <u>P. setiferus</u> exposed to ammonia and nitrite (Alcaraz et al. 1999b). In relation to this study, the acute survival studies were undertaken to determine any combined effects of the two agents. The authors have suggested synergistic effects at 48 h exposure and antagonistic effects beyond 72 h due to an increase in mortality rates of 40% after 48 h (with a NO₂-N concentration of 180 mg/L) and a decrease in mortality rates from 30 to 10% after 72 h (with a NO₂-N concentration of 120 mg/L) (Alcaraz et al. 1999a).

Other investigators experimenting with <u>Penaeus monodon</u> PL have reported antagonistic effects at 48 and 72 h, with synergistic effects after 96 h (Chen and Chin 1988). The fact is that not enough research has been conducted to fully understand the relationship of the two agents. In order to fully understand the relationship, toxicity tests need to be undertaken that examine a broad range of toxin concentrations, the effects of varying environmental parameters, and responses of specific species.

The purpose of this study was threefold. The toxicity of ammonia was first studied at 18 and 10 ppt salinity. Secondly, nitrite was studied individually at 10 ppt. The background tests helped to provide reference data when developing and analyzing combined TAN and NO₂ tests. These studies were directed to validate data of previous studies as well as to generate new data at specific environmental parameters and ages. The third objective was to conduct two experiments at differing combinations of ammonia and nitrite in order to better understand any combined effects resulting from exposure to elevated levels of both agents.

3.3 Materials and Methods

3.3.1 Animals

<u>Litopenaeus vannamei</u> PL were obtained from Shrimp Improvement Systems (Plantation Key, Fl, USA). Shrimp were fed a grow-out diet provided by Shrimp Improvement Systems to satiation. Post larvae (13 days old) (PL13) were shipped overnight to Virginia Tech Laboratories in Blacksburg Virginia and were received at 18 C and 30 ppt salinity. The shrimp were acclimated to water in Aquatic Habitat Systems (AHABs) (Aquatic Ecosystems Apopka, FL, USA) over a period of 24 h. The temperature was increased to 28 C over the next 48 h. The parameters that were monitored in the AHAB systems are summarized in Table 2. During the second week (PL20), salinity was adjusted to the desired level for specific tests at a rate less than halving the salinity over 24 h.

3.3.2 Seawater

Municipal water was filtered using a reverse osmosis (RO) filter (Seachem Pinnacle Series, Madison, Ga, USA). Water was stored in a 115 L receptacle where it was heated to 28 C, aerated, and mixed constantly. Instant Ocean® (Aquarium Systems Inc., Mentor, OH, USA) was used to salinate the water in the initial experiment. Crystal Sea Marine Mix® (Marine Enterprises, Baltimore, MD, USA) was used in subsequent experiments at the request of a private shrimp company that uses the Crystal Sea Marine Mix. No difference in shrimp response to the two salt mixes was apparent.

3.3.3 Test Protocol

Toxicity trials were conducted in accordance with recommended EPA Methods (US EPA, 1991). Shrimp were selected arbitrarily and transferred via hand net into 1 L polyethylene beakers to a density of 8 shrimp per beaker. The beakers contained a 50:50 mix of the water from the AHAB unit and salinated RO water. The shrimp were acclimated for 24 h, and then salinated RO water was added to lower ambient levels of ammonia and nitrite. Air was delivered to each beaker via a Pasteur pipette at a rate of one bubble/sec. Test agents (NH₄Cl or NaNO₂) were added from 10,000 mg/L stock solutions using a micropipette. Test solutions were then mixed well. Shrimp were not fed during experiments, and no water changes were administered.

Each experimental condition was tested in triplicate and each had triplicate controls. The shrimp were monitored every 0.5 h for 2 h and then at 4 h intervals until the 48 h endpoint. Death was determined by a lack of response to a glass rod stimulus. Dead shrimp were removed immediately.

Test solutions were maintained at a temperature of 28 C by using a waterbath. The pH of the test water averaged of 7.8. The alkalinity and hardness of tests conducted at 18 ppt salinity were 10.1 mg/L CaCO₃ (0.2 meq/L CaCO₃) and 310 mg/L CaCO₃ (3.1 mmol/L CaCO₃) respectively. The alkalinity and hardness of tests conducted at 10 ppt salinity was 33.4 mg/L CaCO₃ (0.7 meq/L CaCO₃) and 179 mg/L CaCO₃ (1.79 mmol/L CaCO₃), respectively. The DO was maintained above 5.75 mg/L. Testing methods for all water quality parameters measured are shown in Table 3.

3.3.4 Ammonia Toxicity Trials

Shrimp (PL 42) were first tested at 18 ppt salinity. Test solutions were dosed with target concentrations of TAN at 0, 20, 40, 60, 80, 100 mg/L (actual measured TAN values were 0.3, 19.5, 38.2, 57.8, 75.6, 95.4 mg/L).

Shrimp (PL28) were then tested at 10 ppt salinity. Test solutions were dosed with target concentrations TAN at 0, 10, 20, 30, 40, 50, 60, 70, 80 mg/L (actual measured TAN values were 0.3, 10.3, 20.5, 30.0, 38.7, 50.2, 58.3, 69.4, 78.9 mg/L).

3.3.5 Nitrite Toxicity Trials

Shrimp (PL39) were tested at 10 ppt salinity. Test solutions were dosed with concentrations of nitrite at 0, 90, 110, 130, 150, 170, 190 mg/L NO₂-N (actual data point averages were 0, 90, 115, 133, 149, 170, 187 mg/L NO₂-N).

3.3.6 Ammonia and Nitrite Toxicity Trials

Shrimp (PL45) were tested at 10 ppt salinity with a constant dosage of NO₂-N. The dosage chosen, 133 mg/L NO₂-N, was the lowest observed effect concentration (LOEC) determined from the previous NO₂-N test (Table 4). The TAN concentrations selected were the values determined in the previous TAN study at 10 ppt salinity (LC20, LC40, LC50, LC60, and LC80).

Shrimp (PL47) were then tested at 10 ppt salinity with a constant dosage of TAN. The dosage chosen, 30.0 mg/L TAN, was the LOEC determined from the previous TAN

test (Table 5). The NO₂-N concentrations selected were the values determined in the previous NO₂-N study (LC20, LC40, LC50, LC60, and LC80).

3.3.7 Statistical Analysis

Toxicity data were analyzed in accordance with EPA recommended guidelines for analysis of toxicity data (ToxcalcTM statistical analysis software, Tidepool Scientific®, McKinleyville, CA, USA). Among the tests used were the Shapiro-Wilk's Test to determine normality of data, the Dunnett's Hypothesis Test (1 tail, 0.05 level of significance), and the Maximum Likelihood-Probit Test to develop dose-response curves for each experiment.

3.4 Results

The 48 h LC values were calculated from the TAN and NO₂-N at 10 ppt and then used to determine dosages for combined ammonia-nitrite tests are provided in Tables 4 and 5. The LC50 values of all tests are reported in Tables 6 and 7.

3.4.1 Ammonia Toxicity Trials

In tests at 18 ppt salinity, no deaths were recorded in the control over 48 h. At 20 and 40 mg/L TAN, mortalities of 4.2 and 12.5% were observed, respectively, over 48 h. Mortality levels of 46 and 96% were recorded for shrimp exposed to 60 mg/L TAN over 24 and 48 h, respectively, while shrimp exposed to 80 mg/L exhibited 67 and 100% mortality over the same time intervals. All shrimp tested at 100 mg/L were dead after 12 h.

When the salinity was lowered from 18 ppt to 10 ppt, no significant reduction (p>0.05) in LC50 values was observed after 48 h. No shrimp mortalities were recorded for the control and 10 mg/L TAN over 48 h. At 20, 30 and 40 mg/L TAN mortality rates were observed to be 4.2, 25, and 46%, respectively, after 48 h. After 24 h, the mortality rates for 50, 60, 70, and 80 mg/L were observed to be 13, 25, 46, and 71% respectively. Mortality rates for the same experimental conditions after 48 h were observed to be 67, 88, 92 and 100%, respectively, (See Fig. 1).

3.4.2 Nitrite Toxicity Trials

In tests with NO₂-N at 10 ppt salinity, no deaths were observed in the control and at 90 mg/L NO₂-N at 48 h. For 110, 130, and 150 mg/L NO₂-N mortality rates after 48 h were observed to be 8, 25, and 50%, respectively. After 24 h, the mortality rates for 170 and 190 mg/L were observed to be 33 and 29%, respectively. Mortality rates for the same experimental conditions after 48 h were observed to be 67 and 79%, respectively, (See Fig. 2).

3.4.3 Ammonia and Nitrite Toxicity Trials

The LOEC calculated for NO₂-N at 10 ppt salinity was 133 mg/L NO₂-N. This concentration was administered in all trials, except for the control, along with varying TAN concentrations equal to the LC20, LC40, LC50, LC60, and LC80 of the TAN test at 10 ppt salinity. A mortality rate of 4.2% occurred in the control tests after 48 h. This was identified to be the result of cannibalism, as only part of the mort was found. The mortality rates at 29.1 (LC20), 36.2 (LC40), 39.7 (LC50), and 43.73 (LC60) mg/L TAN

were observed to be 33, 42, 79, and 93%, respectively, after 24 h. After 48 h, the same experimental conditions showed mortality rates of 63, 88, 96 and 100%, respectively. All shrimp tested at 54.2 mg/L TAN (LC80) were dead after 12 h, (See Fig. 3).

The LOEC calculated for TAN at 10 ppt salinity was 30.0 mg/L. This concentration was administered in all tests, except for the control, along with varying NO₂-N concentrations equal to the LC20, LC40, LC50, LC60, and LC80 values of the TAN test at 10 ppt salinity. No deaths were observed in the control and 128 mg/L NO₂-N (LC20) experiments after 48 h. The mortality rates at 146 (LC40), 154 (LC50), 162 (LC60), and 185 mg/L NO₂-N (LC80) were observed to be 8, 17, 25, and 42%, respectively, after 48 h, (See Fig. 4).

3.5 Discussion

3.5.1 Ammonia Toxicity Trials

The investigators of prior research on the toxicity of ammonia to shrimp have conducted experiments that vary the salinity levels of test solutions, but the information available is not complete. Conditions, such as the species and age of shrimp, as well as the temperature and pH levels of test solutions are important in understanding the toxicity of ammonia to cultured shrimp and the effects such knowledge can have on "Standard Operating Procedures." The 48 h NOEC, LOEC, and LC50 (20.5, 30.0, and 35.9 mg/L TAN, respectively) observed during this experiment are products of certain specified conditions (PL42, 28 C, and 7.8 pH). Compared to Chen and Lin (1992), who found a 48 h LC50 of 2.39 mg/L TAN for juvenile P. chinensis at 10 ppt salinity, L. vannamei exhibit a higher tolerance to ammonia levels. This is also true when compared to P.

semisulcatus as studied by Kir and Kumlu (2006), who reported a 48 h LC50 of 11.2 mg/L TAN at 15 ppt salinity.

3.5.2 Nitrite Toxicity Trials

Authors who have conducted nitrite studies at low salinities (15 ppt) have shown the 48 h LC50 of nitrite to <u>L. vannamei</u> juveniles to be around 143 mg/L NO₂-N with a 95% confidence interval of 137.6 to 148.4 (Lin and Chen 2003). This is similar to the data collected in this study due to overlapping confidence intervals. The calculated LC50 with 95% Fiducial Limits was for this study were 154 mg/L NO₂-N and 146 to 163, respectively. This difference could be accounted for due to the stock of shrimp purchased or another unnoted variance in water parameter.

3.5.3 Ammonia and Nitrite Toxicity Trials

Understanding the combined effects of TAN and NO₂-N on <u>L. vannamei</u> at a pH of 7.8 and temperature of 28 C allows for better control during the production of shrimp in RAS. Prior research has shown conflicting results as to the synergistic or antagonistic effects of elevated TAN and NO₂-N levels; one suggested that synergistic effects take place up to 48 h and antagonistic beyond, while the other suggested antagonistic effects being followed by synergistic effects after 96 h (Alcaraz et al. 1999a; Chen and Chin 1988). Both studies related the exposure time to varying synergistic or antagonistic effects. A variance of synergistic and antagonistic effects related to the dominant toxin present was observed during this study.

The data collected from this study suggested a synergistic effect (p<0.05) when NO₂-N levels were adjusted to the 48 h LOEC concentrations (138 mg/L NO₂-N determined from previous test) and TAN concentrations were varied, as seen when Figs. 1 and 3 are compared. The LC50 at 48 h calculated from the TAN test at 10 ppt salinity was 11.5 mg/L TAN higher than when TAN was tested with adjusted NO₂-N (39.72 vs. 28.24 mg/L TAN respectively). These results suggested that the elevated NO₂-N levels might weaken the shrimp, resulting in a lower tolerance to elevated TAN levels.

When TAN levels were held constant at the determined 48 h LOEC level and NO₂-N levels were varied between determined LC20 and LC80 values, antagonistic characteristics (p<0.05) were observed, as seen when Figs. 2 and 4 are compared. The LC50 value during this test was calculated to be 33 mg/L NO₂-N higher when compared to the single toxin NO₂-N experiment at 10 ppt salinity, a shift from 154 to 187 mg/L NO₂-N. When compared to other studies involving combined ammonia and nitrite, this study differed due to the species tested as well as the salinity of test solutions. These variables inhibited a direct comparison, because both variables have been shown to effect tolerance to ammonia and nitrite (Chen and Lin 1992, Lin and Chen 2003). Alcaraz et al. (1999a) and Chen and Chin's (1988) experiments with P. setiferus and P. monodon were conducted at 25 ppt salinity and natural seawater, respectively. The approach to the studies also varied due to exposure concentrations.

3.5.4 Salinity

The reduced salinity concentration used in these tests was chosen to begin the analysis of the effects of low salinity on the tolerance of <u>L. vannamei</u> to combined

elevated TAN and NO_2 -N levels. It was assumed that the concentrations of essential nutrients incorporated into the salts used would be directly proportional to the amount of salt used. When the salinity was lowered from 18 to 10 ppt for individual TAN experiments, no significant difference (p>0.05) was observed. This was possibly due to a variance in the age of the shrimp.

3.5.5 Application to Wild Populations

Although this research was conducted in a controlled laboratory, the results can be applied to wild populations of <u>L. vannamei</u>. The life cycle of <u>L. vannamei</u> includes an oceanic planktonic stage, an estuarine post larval stage and finally, and adult oceanic stage that involves maturation and reproduction (Valles-Jimenez *et al.* 2004). The effects of low salinities on PL explored during this study can be related to estuarine environments, where the salinity of the water varies according to tides and precipitation. Elevated nitrogenous waste product levels are possible in such regions due to industrial processes and wastes, as well as natural decomposition of organic matter. Stagnant water, due to slack tides, or natural pools are examples of areas where concentrated ammonia and nitrite could be observed.

Journal References

- Alcaraz, G., Chiappa-Carrara, X., Espinoza, V. & Vanegas, C. 1999a. Acute Toxicity of Ammonia and Nitrite to White Shrimp Penaeus setiferus Postlarvae. Journal of the World Aquaculture Society, 30, 90-97.
- Alcaraz, G., ChiappaCarrara, X. & Vanegas, C. 1997. Temperature tolerance of Penaeus setiferus postlarvae exposed to ammonia and nitrite. Aquatic Toxicology, 39, 345-353.
- Alcaraz, G., Espinoza, V., Vanegas, C. & Carrara, X. C. 1999b. Acute effect of ammonia and nitrite on respiration of Penaeus setiferus postlarvae under different oxygen levels. Journal of the World Aquaculture Society, 30, 98-106.
- Armstrong, D. A., Chippendale, D., Knight, A. W. & Colt, J. E. 1978. Interaction of Ionized and Un-Ionized Ammonia on Short-Term Survival and Growth of Prawn Larvae, Macrobrachium rosenbergii Biological Bulletin, 154, 15-31.
- Bower, C. E. & Bidwell, J. P. 1978. Ionization of Ammonia in Seawater Effects of Temperature, Ph, and Salinity. Journal of the Fisheries Research Board of Canada, 35, 1012-1016.
- Chen, J.-C. & Chin, T.-S. 1988. Joint Action of Ammonia and Nitrite on Tiger Prawn

 Penaeus monodon Postlarvae. Journal of the World Aquaculture Society, 19, 143
 148.
- Chen, J.-C. & Lin, C.-Y. 1992. Lethal effects of ammonia on Penaeus chinensis Osbeck juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 156, 139-148.

- Chen, J.-C., Liu, P.-C. & Lei, S.-C. 1990a. Toxicities of ammonia and nitrite to Penaeus monodon adolescents. Aquaculture, 89, 127-137.
- Chen, J. C., Ting, Y. Y., Lin, J. N. & Lin, M. N. 1990b. Lethal Effects of Ammonia and Nitrite on Penaeus-Chinensis Juveniles. Marine Biology, 107, 427-431.
- Ebeling, J. M., Timmons, M. B. & Bisogni, J. J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257, 346-358.
- Frias-Espericueta, M. G., Harfush-Melendez, M., Osuna-Lopez, J. I. & Paez-Osuna, F. 1999. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone.

 Bulletin of Environmental Contamination and Toxicology, 62, 646-652.
- Kir, M. & Kumlu, M. 2006. Acute toxicity of ammonia to Penaeus semisulcatus postlarvae in relation to salinity. Journal of the World Aquaculture Society, 37, 231-235.
- Lin, Y.-C. & Chen, J.-C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, 193-201.
- Ostrensky, A. & Wasielesky, W. 1995. Acute Toxicity of Ammonia to Various Life Stages of the Sao-Paulo Shrimp, Penaeus-Paulensis Perez-Farfante, 1967.

 Aquaculture, 132, 339-347.
- Pan, L.-Q., Zhang, L.-J. & Liu, H.-Y. 2007. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae.

 Aquaculture, 273, 711-720.

- Pe'rez Farfante, I., Kensley, B. 1997. Penaeid and sergestoid shrimps and prawns of the world: keys and diagnoses. Me'moires du Muse'um National D'Histoire Naturelle, Paris, 233 pp.
- Smart, G. R. 1978. Investigations of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. Pages 93-104.
- Tilak, K. S., Veeraiah, K. & Raju, J. M. P. 2007. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). Journal of Environmental Biology, 28, 45-47.
- Tseng, I. T. & Chen, J. C. 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology, 17, 325-333.
- Valles-Jimenez, R., Cruz, P. & Perez-Enriquez, R. 2004. Population Genetic Structure of Pacific White Shrimp (Litopenaeus vannamei) from Mexico to Panama:Microsatellite DNA Variation. Marine Biotechnology, 6, 475-484.

Species	Age	Size	48 h LC50 (mg/L TAN)	Author
P. monodon	Juvenile	4.87 g	88	Chen <i>et al</i> . 1990a
P. chinensis	PL	0.36 g	51.1	Chen <i>et al.</i> 1990b Ostrensky and Wasielesky
P. paulensis P.	Juvenile	5.45 g	43.1	1995
semisulcatus	PL	.028 g	32.5	Kir and Kumlu 2006
L. vannamei	Juvenile	0.99 g	92.5	Frias-Espericueta et al. 1999
L. vannamei	Juvenile	3.8 g	110.6	Frias-Espericueta et al. 1999

Table 1: 48 h LC50 values for varying species and ages of shrimp

AHA	AB Water Quality Parameters
рН	7.9 ± 0.2
Temp	29 ± 1.1 C
DO	> 5.5 mg/L
Salinity	28 ppt
NH ₃	< 0.8 mg/L NH ₃ -N
NO ₂	< 1.0 mg/L NO ₂ -N

Table 2: Water quality maintained in AHAB systems

Parameter	Equipment	Method
	Hach Spectrophotometer	Hach – Nessler
Ammonia	DR2800	8038
	Hach Spectrophotometer	
Nitrite	DR2800	Hach - 8507/8153
Alkalinity	Hach Digital Titrator 16900	Hach - 8203
Hardness	Hach Digital Titrator 16900	Hach – 8213
DO	YSI 85	
Salinity	YSI 85	
Temperature	YSI 85	
рН	YSI PH10	

Table 3: Methods for monitoring water quality.

	48 h LC va	alues for TAN	
	mg/L TAN	95% Fiducial	Limits
LOEC	30.0	-	-
LC20	29.1	24.5	32.7
LC40	36.2	32.1	39.7
LC50	39.7	35.9	43.4
LC60	43.6	39.8	47.8
LC80	54.2	49.4	61.3

Table 4: LC results for Ammonia-N at 10 ppt salinity

	48 h LC value	es for NO ₂ -N	
	mg/L NO2-N	95% Fiducia	al Limits
LOEC	132.8	-	-
LC20	128.0	116.4	136.1
LC40	145.5	137.0	153.7
LC50	153.7	145.6	163.3
LC60	162.5	153.8	174.6
LC80	184.6	172.2	207.1

Table 5: LC results for NO₂-N at 10 ppt salinity

	LC50's (with 95% Fiduci	al Limits) mg/L TAN	
		Endpoints	
Experiment	12 h	24 h	48 h
Ammonia 18ppt	67.9 (62.1 - 73.7)	63.0 (57.4-68.1)	42.9
Ammonia 10ppt	N/A	69.9 (63.7-80.4)	39.7 (35.9-43.4)
Ammonia/Nitrite 10ppt ^a	52.0 (47.7-61.3)	34.2 (31.5-36.2)	28.2 (22.9-30.8)

^a Nitrite stable at 133 mg/L NO₂-N with ammonia-N concentration varying

Table 6: LC50 results for TAN at varying salinities

LC50's (wi	th 95% Fiducial Limits) mg	/L NO ₂ -N
	Endpoints	
Experiment	24 h	48 h
Nitrite 10ppt	199 (183-248)	154 (146-163)
Nitrite/Ammonia 10ppt	-	187 (175-219)

Table 7: LC50 results for NO_2 -N tests with and without TAN at 30.0 mg/l

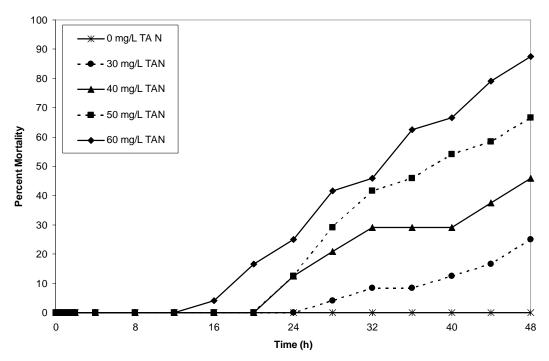


Figure 1: Percent mortality over time due to varying TAN-N concentrations at 10 ppt salinity.

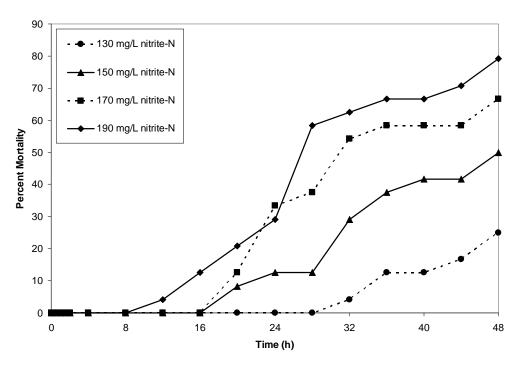


Figure 2: Percent mortality over time due to varying NO_2 -N concentrations at 10 ppt salinity.

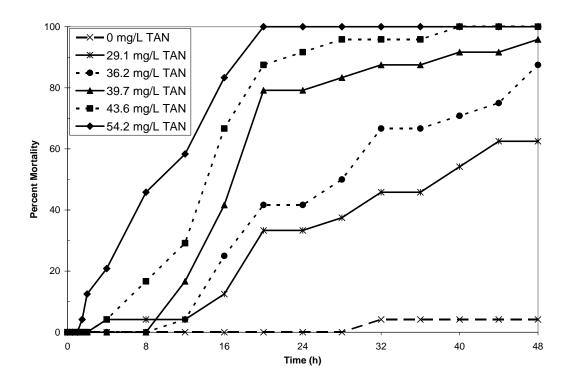


Figure 3: Percent mortality over time due to varying TAN-N concentrations with an adjusted concentration of NO₂-N at 133 mg/L and 10 ppt salinity.

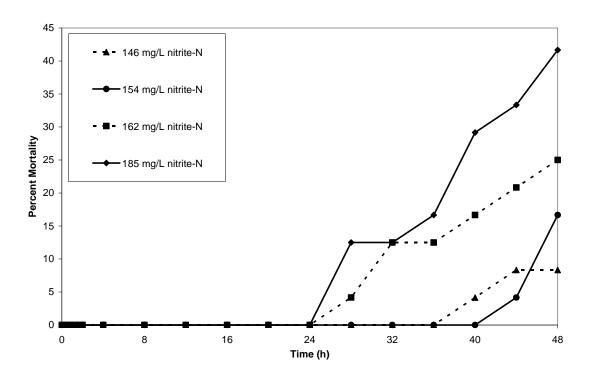


Figure 4: Percent mortality over time due to varying NO₂-N concentrations with an adjusted concentration of TAN-N at 30.0 mg/L and 10 ppt salinity.

Chapter 4: Conclusions and Research Needs

The objectives of this study were fulfilled. The background study conducted at 18 ppt salinity provided data that verified the protocol and system design. Experiments that addressed the individual toxicity of ammonia and nitrite at low salinities resulted in data, which not only verified previous data within the literature but also addressed new issues. The experiments involving combined adjusted levels of ammonia and nitrite led to valuable insight as to the mutualistic effects of the two agents. All of the knowledge gained can be directly applied to the "standard operating procedures" of Virginia Shrimp Farms (VSF) in Martinsville, Va in an effort to evaluate production losses due to elevated ammonia and nitrite.

Future research should focus on gathering data for younger shrimp. Since shrimp had to be shipped from Florida and then acclimated, there was a limit as to how young shrimp could be for experiments. With VSF now on-line, younger shrimp can be obtained and tested to provide VSF with valuable knowledge that encompasses not only the acute effects of ammonia and nitrite, but also any chronic effects such as reduced growth. The breeding program at VSF could also benefit from experiments that focused on larval shrimp and any problems with development due to elevated ammonia and nitrite levels.

References

- Alcaraz, G., Chiappa-Carrara, X., Espinoza, V. & Vanegas, C. 1999a. Acute Toxicity of Ammonia and Nitrite to White Shrimp Penaeus setiferus Postlarvae. Journal of the World Aquaculture Society, 30, 90-97.
- Alcaraz, G., ChiappaCarrara, X. & Vanegas, C. 1997. Temperature tolerance of Penaeus setiferus postlarvae exposed to ammonia and nitrite. Aquatic Toxicology, 39, 345-353.
- Alcaraz, G., Espinoza, V., Vanegas, C. & Carrara, X. C. 1999b. Acute effect of ammonia and nitrite on respiration of Penaeus setiferus postlarvae under different oxygen levels. Journal of the World Aquaculture Society, 30, 98-106.
- Allan, G. L., Maguire, G. B. & Hopkins, S. J. 1990. Acute and Chronic Toxicity of Ammonia to Juvenile Metapenaeus-Macleayi and Penaeus-Monodon and the Influence of Low Dissolved-Oxygen Levels. Aquaculture, 91, 265-280.
- Armstrong, D. A., Chippendale, D., Knight, A. W. & Colt, J. E. 1978. Interaction of Ionized and Un-Ionized Ammonia on Short-Term Survival and Growth of Prawn Larvae, Macrobrachium rosenbergii Biological Bulletin, 154, 15-31.
- Boardman, G. D., Starbuck, S. M., Hudgins, D. B., Li, X. Y. & Kuhn, D. D. 2004.

 Toxicity of ammonia to three marine fish and three marine invertebrates.

 Environmental Toxicology, 19, 134-142.
- Bower, C. E. & Bidwell, J. P. 1978. Ionization of Ammonia in Seawater Effects of Temperature, Ph, and Salinity. Journal of the Fisheries Research Board of Canada, 35, 1012-1016.

- Caglan, A., Benli, K. & Koksal, G. 2005. The acute toxicity of ammonia on tilapia (Oreochromis niloticus L.) larvae and fingerlings. Turkish Journal of Veterinary & Animal Sciences, 29, 339-344.
- CDC 2004. Agency for Toxic Sustances and Disease Registry Public Health Statement Ammonia CAS#: 7664-41-7. Pages 7. Department of Health and Human Services.
- Chand, R. K. & Sahoo, R. K. 2006. Effect of nitrite on the immune response of freshwater prawn Macrobrachium malcolmsonii and its susceptibility to Aeromonas hydrophila. Aquaculture, 258, 150-156.
- Chen, J.-C. & Chin, T.-S. 1988. Joint Action of Ammonia and Nitrite on Tiger Prawn

 Penaeus monodon Postlarvae. Journal of the World Aquaculture Society, 19, 143
 148.
- Chen, J.-C., Liu, P.-C. & Lei, S.-C. 1990a. Toxicities of ammonia and nitrite to Penaeus monodon adolescents. Aquaculture, 89, 127-137.
- Chen, J. C., Ting, Y. Y., Lin, J. N. & Lin, M. N. 1990b. Lethal Effects of Ammonia and Nitrite on Penaeus-Chinensis Juveniles. Marine Biology, 107, 427-431.
- Ebeling, J. M., Timmons, M. B. & Bisogni, J. J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257, 346-358.
- Frias-Espericueta, M. G., Harfush-Melendez, M., Osuna-Lopez, J. I. & Paez-Osuna, F. 1999. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone. Bulletin of Environmental Contamination and Toxicology, 62, 646-652.

- Gross, A., Abutbul, S. & Zilberg, D. 2004. Acute and chronic effects of nitrite on white shrimp, Litopenaeus vannamei, cultured in low-salinity brackish water. Journal of the World Aquaculture Society, 35, 315-321.
- Hargreaves, J. A. 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166, 181-212.
- Kir, M. & Kumlu, M. 2006. Acute toxicity of ammonia to Penaeus semisulcatus postlarvae in relation to salinity. Journal of the World Aquaculture Society, 37, 231-235.
- Kirk, R. S. & Lewis, J. W. 1993. An Evaluation of Pollutant Induced Changes in the Gills of Rainbow-Trout Using Scanning Electron-Microscopy. Environmental Technology, 14, 577-585.
- Lin, Y.-C. & Chen, J.-C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, 193-201.
- Magallon Barajas, F. J., Servin Villegas, R., Portillo Clark, G. & Lopez Moreno, B. 2006.

 Litopenaeus vannamei (Boone) post-larval survival related to age, temperature,
 pH and ammonium concentration. Pages 492-499. The Authors Journal

 Compilation. Blackwell Publishing Ltd.
- Niu, C. J., Lee, D., Goshima, S. & Nakao, S. 2003. Effects of temperature on food consumption, growth and oxygen consumption of freshwater prawn Macrobrachium rosenbergii (de Man 1879) postlarvae. Aquaculture Research, 34, 501-506.

- Ostrensky, A. & Wasielesky, W. 1995. Acute Toxicity of Ammonia to Various Life Stages of the Sao-Paulo Shrimp, Penaeus-Paulensis Perez-Farfante, 1967.

 Aquaculture, 132, 339-347.
- Pan, L.-Q., Zhang, L.-J. & Liu, H.-Y. 2007. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae.

 Aquaculture, 273, 711-720.
- Pe'rez Farfante, I., Kensley, B. 1997. Penaeid and sergestoid shrimps and prawns of the world: keys and diagnoses. Me'moires du Muse'um National D'Histoire Naturelle, Paris, 233 pp.
- Regnault, M. 1986. Nitrogen-Excretion in Crustaceans Influence of Physiological-State.

 Cahiers De Biologie Marine, 27, 361-373.
- Smart, G. R. 1978. Investigations of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. Journal of Fish Biology, 93-104.
- Svobodova, Z., Lloyd, R., Machova, J. 1993. Ammonia. Water Quality and Fish Health. EIFAC Tech. Paper, 54, 11-16.
- Thurston, R. V., Phillips, G. R., Russo, R. C. & Hinkins, S. M. 1981. Increased Toxicity of Ammonia to Rainbow-Trout (Salmo-Gairdneri) Resulting from Reduced Concentrations of Dissolved-Oxygen. Canadian Journal of Fisheries and Aquatic Sciences, 38, 983-988.
- Tilak, K. S., Veeraiah, K. & Raju, J. M. P. 2007. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). Journal of Environmental Biology, 28, 45-47.

- Tseng, I. T. & Chen, J. C. 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology, 17, 325-333.
- Vadivelu, V. M., Keller, J. & Yuan, Z. G. 2007. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Research, 41, 826-834.
- Weirich, C. R. & Riche, M. A. 2006. Tolerance of juvenile black sea bass Centropristis striata to acute ammonia and nitrite exposure at various salinities. Fisheries Science, 72, 915-921.
- Wickins, J. F. 1976. Tolerance of Warm-Water Prawns to Recirculated Water.

 Aquaculture, 9, 19-37.

Appendix A:

Raw Data

Ammonia 18 ppt – Mortalities

						Dose	e (mg/L	Ammor	nia-N) w	ith Rep	licates							
		0.274			19.46		<u> </u>	38.42	•		57.8			75.55			95.37	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	8
4	8	8	8	8	8	8	8	8	8	8	7	8	8	6	7	5	5	6
8	8	8	8	8	8	8	8	8	8	7	2	6	5	4	4	1	0	0
12	8	8	8	8	8	8	8	8	8	7	2	6	5	4	4	0	0	0
16	8	8	8	8	8	8	8	8	8	5	2	6	3	4	3	0	0	0
20	8	8	8	8	8	8	8	8	8	5	2	6	2	3	3	0	0	0
24	8	8	8	8	8	8	8	8	8	5	2	6	2	3	3	0	0	0
28	8	8	8	8	8	8	8	8	8	5	2	6	1	3	2	0	0	0
32	8	8	8	8	8	8	8	7	8	5	2	5	1	2	0	0	0	0
36	8	8	8	8	8	7	7	7	8	3	2	4	0	0	0	0	0	0
40	8	8	8	8	8	7	7	7	8	1	2	2	0	0	0	0	0	0
44	8	8	8	8	8	7	7	7	8	0	1	0	0	0	0	0	0	0
48	8	8	8	8	8	7	7	6	8	0	1	0	0	0	0	0	0	0

Ammonia 10 ppt - Mortalities

									ose	(mg	g/L A	mmc	nia-N	I) with	Repl	licates	3										
		0			10			20			30			40			50			60			70			80	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
4	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
12	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	7	8	8	8
16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	7	5	6	6	5
20	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	7	6	6	5	2	3	4	4
24	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8	7	7	7	6	7	5	6	5	2	2	3	2
28	8	8	8	8	8	8	8	8	8	7	8	8	6	6	7	6	6	5	4	5	5	5	4	2	2	1	0
32	8	8	8	8	8	8	8	8	8	7	7	8	6	4	7	4	5	5	4	4	5	4	4	1	2	0	0
36	8	8	8	8	8	8	8	8	8	7	7	8	6	4	7	4	4	5	3	3	3	2	3	1	2	0	0
40	8	8	8	8	8	8	8	8	8	7	6	8	6	4	7	3	4	4	2	3	3	2	2	1	1	0	0
44	8	8	8	8	8	8	8	7	8	7	6	7	5	4	6	3	4	3	1	3	1	1	2	1	1	0	0
48	8	8	8	8	8	8	8	7	8	5	6	7	4	3	6	3	3	2	1	2	0	1	1	0	0	0	0

Nitrite 10ppt – Mortalities

						D	ose (i	ng/L ∧	litrite-l	V) with	Repli	cates									
		0			90			110			130			150			170			190	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
4	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
12	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8
16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	6
20	8	8	8	8	8	8	8	8	8	8	8	8	6	8	8	8	6	7	7	7	5
24	8	8	8	8	8	8	8	8	8	8	8	8	6	8	7	5	6	5	6	6	5
28	8	8	8	8	8	8	8	8	8	8	8	8	6	8	7	4	6	5	3	4	3
32	8	8	8	8	8	8	8	8	8	7	8	8	5	6	6	3	4	4	3	4	2
36	8	8	8	8	8	8	8	7	8	6	8	7	4	6	5	3	3	4	3	3	2
40	8	8	8	8	8	8	8	7	7	6	8	7	4	5	5	3	3	4	3	3	2
44	8	8	8	8	8	8	8	7	7	6	7	7	4	5	5	3	3	4	3	2	2
48	8	8	8	8	8	8	8	7	7	6	7	5	4	5	3	2	3	3	2	2	1

AvNs 10 ppt – Mortalities

						Dos	se (mg/	L Ammo	onia-N)	with Re	eplicates	S						
Time (h)		0			29.1			36.2			39.7			43.6			54.2	
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8
4	8	8	8	7	8	8	8	8	8	8	8	8	7	8	8	7	6	6
8	8	8	8	7	8	8	8	8	8	8	8	8	7	7	6	5	4	4
12	8	8	8	7	8	8	8	8	7	7	6	7	6	6	5	4	3	3
16	8	8	8	7	6	8	6	7	5	4	5	5	3	2	3	2	1	1
20	8	8	8	5	5	6	4	5	5	0	3	2	1	2	0	0	0	0
24	8	8	8	5	5	6	4	5	5	0	3	2	0	2	0	0	0	0
28	8	8	8	5	4	6	4	3	5	0	2	2	0	1	0	0	0	0
32	8	7	8	5	4	4	2	2	4	0	2	1	0	1	0	0	0	0
36	8	7	8	5	4	4	2	2	4	0	2	1	0	1	0	0	0	0
40	8	7	8	5	3	3	2	1	4	0	1	1	0	0	0	0	0	0
44	8	7	8	4	3	2	2	1	3	0	1	1	0	0	0	0	0	0
48	8	7	8	4	3	2	1	0	2	0	0	1	0	0	0	0	0	0

AsNv 10 ppt – Mortalities

ASINV 10 pp	ı — ivic	ланис	73															
						D	ose (m	g/L Nitri	ite-N) w	ith Rep	licates							
		0			128			146			154			162			185	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
4	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
12	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
20	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
24	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
28	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	7
32	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8	6	8	7
36	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8	6	7	7
40	8	8	8	8	8	8	8	8	7	8	8	8	7	6	7	5	6	6
44	8	8	8	8	8	8	7	8	7	8	7	8	6	6	7	4	6	6
48	8	8	8	8	8	8	7	8	7	7	7	6	6	5	7	4	5	5

Appendix B:

Toxcalc Summary Reports

				Acute Shrimp Tes		
Start Date: 13	2/18/2007 18:	00	Test ID:	1A	Sample ID:	ASTOCK-Ammonium Chloride Stock
End Date: 1:	2/20/2007 18:	00	Lab ID:	CATML-Telonicher Marine	Sample Type:	AMCL-Ammonium Chloride
Sample Dat 1:	2/18/2007		Protocol:	ASTM94-ASTM (1994)	Test Species:	LV-Litopenaeus vannamei
Comments:						
Conc-mg/L	1	2	3			
4 D-Control	1.0000	1.0000	1.0000			
19.46	1.0000	1.0000	1.0000			
38.24	1.0000	1.0000	1.0000			
57.8	0.8750	0.2500	0.7500			
75.55	0.6250	0.5000	0.5000			
95.37	0.0000	0.0000	0.0000			

				Transform:	Arcsin Squ	are Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
'4 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
19.46	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.3299	0	24
38.24	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.3299	0	24
*57.8	0.6250	0.6250	0.9267	0.5236	1.2094	38.677	3	3.492	2.470	0.3299	9	24
*75.55	0.5417	0.5417	0.8275	0.7854	0.9117	8.815	3	4.235	2.470	0.3299	11	24
95.37	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24

Auxiliary Te	sts						Statistic		Critical		Skew	Kurt
Shapiro-Wilk	d's Test indica	ates non-nor	mal distributi	on (p <= 0.0	1)		0.718479		0.835		-1.270504	6.1775356
Equality of v	ariance cann	ot be confirn	ned					***************************************			*****************************	
Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te	est		38.24	57.8	47.01353		0.2050351	0.2116492	0.2432848	0.0267587	0.0022965	4, 10
Treatments	vs 0.274 D-C	ontrol										
					Maximui	n Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiducia	d Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	9.4665168	1.6962854	6.1417972	12.791236		0	9.0345291	9.4877291	0.06	1.8320405	0.1056355	7
Intercept	-12.34304	3.131866	-18.4815	-6.204585								
TSCR												*
Point	Probits	mg/L	95% Fiducia	ıl Limits								
EC01	2.674	38.574086	27.579747	45.663111								
EC05	3.355	45.528738	35.42465	51.890576								
EC10	3.718	49.735123	40.413378	55.64469								
EC15	3.964	52.790573	44.117614	58.399576								
EC20	4.158	55.352271	47.252999	60.749337								
EC25	4.326	57.648825	50.068192	62.9053								
EC40	4.747	63.867227	57.543433	69.142906								
EC50	5.000	67.926698	62.13257	73.702132								

EC60

EC75

EC80 EC85 EC90

EC95

EC99

5.253 72.244194 66.626753 79.105505 5.674 80.036953 73.760266 90.266606

 5.842
 83.35767
 76.514472
 95.473808

 6.036
 87.402659
 79.714847
 102.10284

6.282 92.772188 83.77268 111.31339

6.645 101.34338 89.943337 126.83399

7.326 119.61493 102.32593 162.72616

				Acute Shrimp Ter	st-24 hr Survival	
Start Date: 1:	2/18/2007 18	:00	Test ID:	1A	Sample ID:	ASTOCK-Ammonium Chloride Stock
End Date: 1:			Lab ID:	CATML-Telonicher Marine	Sample Type:	AMCL-Ammonium Chloride
Sample Dat 1:	2/18/2007		Protocol:	ASTM94-ASTM (1994)	Test Species:	LV-Litopenaeus vannamei
Comments:						
Conc-mg/L	1	2	3			
4 D-Control	1.0000	1.0000	1.0000			
19.46	1.0000	1.0000	1.0000			
38.24	1.0000	1.0000	1.0000			
57.8	0.6250	0.2500	0.7500			
75.55	0.2500	0.3750	0.3750			
95.37	0.0000	0.0000	0.0000			

				Transform:	Arcsin Squ	are Root		_	1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
'4 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
19.46	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.2551	. 0	24
38.24	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.2551	0	24
*57.8	0.5417	0.5417	0.8275	0.5236	1.0472	32.842	3	5.477	2.470	0.2551	11	24
*75.55	0.3333	0.3333	0.6139	0.5236	0.6591	12.739	3	7.546	2.470	0.2551	16	24
95.37	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3 '				24	24

Auxiliary Te	sts						Statistic		Critical		Skew	Kurt
Shapiro-Wilk	s's Test indic	ates non-nor	mal distribut	ion (p <= 0.0	1)		0.7532141		0.835	**************************************	-1.175823	5.4787565
Equality of va	ariance canr	ot be confirm	ned									
Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te	st		38.24	57.8	47.01353		0.1446376	0.1493033	0.4239927	0.0159952	2.6E-05	4, 10
Treatments v	/s 0.274 D-C	Control								-		
					Maximur	n Likelihoo	od-Probit					
Parameter	Value	SE	95% Fiducia	al Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	10.035093	1.742805	6.6191949	13.450991		0	4.4211213	9.4877291	0.35	1.7988541	0.0996503	6
Intercept	-13.05167	3.1757941	-19.27622	-6.827111								
TSCR												
Point	Probits	mg/L	95% Fiducia	ıl Limits								
EC01	2.674	36.90055	26.932091	43.413002								
EC05	3.355	43.146338	33.968398	49.0272								
EC10	3.718	46.897221	38.384667	52.390174								
EC15	3.964	49.610455	41.641519	54.844809								
EC20	4.158	51.878367	44.387321	56.926917								
EC25	4.326	53.906483	46.847521	58.825377								
EC40	4.747	59.375597	53.387766	64.230817								•
EC50	5.000	62.929474	57.441803	68.087372								
EC60	5.253	66.696067	61.461902	72.576847								

EC75

EC80

EC85

EC90

EC95 EC99 5.674 73.462754 67.905632 81.739532

5.842 76.334684 70.38949 86.00127

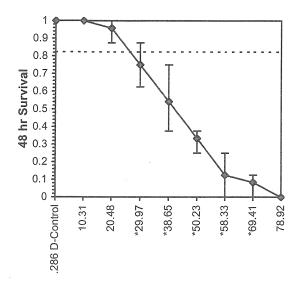
6.036 79.82428 73.262631 91.420731 6.282 84.4425 76.883249 98.934987

 6.645
 91.783422
 82.346691
 111.54008

 7.326
 107.3187
 93.199568
 140.37364

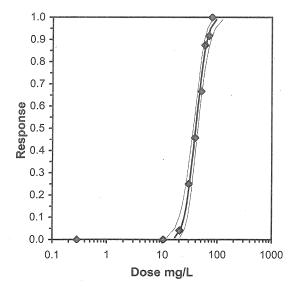
				Acute Shrimp Te			
Start Date: 12	2/18/2007 18:	:00	Test ID:	1A	Sample ID:	ASTOCK-Ammoniur	n Chloride Stock
End Date: 12	2/20/2007 18:	:00	Lab ID:	CATML-Telonicher Marine	Sample Type:	AMCL-Ammonium C	Chloride
Sample Dat 12	2/18/2007		Protocol:	ASTM94-ASTM (1994)	Test Species:	LV-Litopenaeus van	namei
Comments:							
Conc-mg/L	1	2	3				
4 D-Control	1.0000	1.0000	1.0000				
19.46	1.0000	1.0000	0.8750				
38.24	0.8750	0.7500	1.0000				
57.8	0.0000	0.1250	0.0000				
75.55	0.0000	0.0000	0.0000				
95.37	0.0000	0.0000	0.0000				

				Transform:	Arcsin Squ	are Root		_	1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
'4 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
19.46	0.9583	0.9583	1.3319	1.2094	1.3931	7.961	3	0.655	2.420	0.2262	1	24
38.24	0.8750	0.8750	1.2166	1.0472	1.3931	14.225	3	1.888	2.420	0.2262	3	24
*57.8	0.0417	0.0417	0.2389	0.1777	0.3614	44.379	3	12.346	2.420	0.2262	23	24
75.55	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
95.37	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24


Auxiliary To	ests						Statistic		Critical		Skew	Kurt
Shapiro-Wil	k's Test indic	ates normal	distribution (o > 0.01)			0.9740677		0.805		0.0750676	-0.046793
Equality of v	ariance canr	ot be confire	med									
Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's To	est		38.24	57.8	47.01353		0.1232334	0.1272086	0.8826425	0.0131086	5.1E-06	3, 8
Treatments	vs 0.274 D-C	Control										
					Maximur	n Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiducia	al Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	8.9370387	5.567157	-6.519867	24.393945		0	43.442045	9.4877291	8.4E-09	1.6326952	0.1118939	7
Intercept	-9.59146	9.329007	-35.49294	16.310016								
TSCR												
Point	Probits	mg/L	95% Fiducia	ıl Limits								
EC01	2.674	23.571708										
EC05	3.355	28.096103										
EC10	3.718	30.852998										
EC15	3.964	32.864317				,						
EC20	4.158	34.555954										
EC25	4.326	36.076457										
EC40	4.747	40.211213										
EC50	5.000											
EC60	5.253	45.818742										
EC75		51.070069										
EC80		53.317213										
EC85	6.036	56.061631										
EC90	6.282	59.716306			•							
EC95	6.645	65.575893										
EC99	7.326	78.162656										

Significant heterogeneity detected (p = 8.38E-09)

						77 / 64						
Charl Date:	0/40/0000 40	1.00	T11D-	4.440	Acute Shrim	0 1051-24	CONTROL OF THE PROPERTY OF THE		AOTOOK A	. 01	In data Otract	
	2/18/2006 13		Test ID:	1A10			Sample ID:			nmonium Ch		
	2/20/2008 13	3:00	Lab ID:		onicher Marine		Sample Typ			onium Chlori		
Sample Dat			Protocol:	ASTM94-AS	IM (1994)		Test Specie	s:	LV-Litopena	eus vannam	ei	
Comments:												
Conc-mg/L		2										
36 D-Control		1.0000	1.0000									
10.31		1.0000	1.0000									
20.48		1.0000	1.0000									
29.97		1.0000	1.0000									
38.65		0.7500	1.0000									
50.23		0.8750	0.8750							•		
58.33		0.8750	0.6250									
69.41		0.6250	0.2500									
78.92	0.2500	0.3750	0.2500									
a		44.94	8.4		n: Arcsin Squa				1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
36 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3		0 =00		0	24
10.31	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.580	0.2553	0	24
20.48		1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.580	0.2553	0	24
29.97	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.580	0.2553	0	24
38.65		0.8750	1.2166	1.0472	1.3931	14.225	3	1.784	2.580	0.2553	3	24
50.23		0.8750	1.2094	1.2094	1.2094	0.000	3	1.856	2.580	0.2553	3	24
*58.33	0.7500	0.7500	1.0561	0.9117	1.2094	14.113	3	3.406	2.580	0.2553	6	24
*69.41	0.5417	0.5417	0.8275	0.5236	1.0472	32.842	3	5.717	2.580	0.2553	11	24
*78.92	0.2917	0.2917	0.5688	0.5236				0 333		0.2553	17	24
			0,000	0.0200	0.6591	13.751	3	8.332	2.580	0.2000		
Auxiliary Te						13.731	Statistic	0.332	Critical	0.2000	Skew	Kurt
Shapiro-Will	k's Test indica	ites non-nor	mal distribut			13.731		0.332		0.2333	Skew	
Shapiro-Will Equality of v	k's Test indica ariance canno	ites non-nor	rmal distributi ned	ion (p <= 0.0	1)		Statistic 0.8129228		Gritical 0.894		Skew -0.61145	Kurt 3.0770376
Shapiro-Will Equality of v	k's Test indica ariance canno Test (1-tail, (ites non-nor	rmal distributi ned NOEC	ion (p <= 0.0°	1) ChV	TU	Statistic 0.8129228 MSDu	MSDp	Critical 0.894 MSB	MSE	Skew -0.61145 F-Prob	Kurt 3,0770376 df
Shapiro-Will Equality of value Hypothesis Dunnett's Te	k's Test indica variance canno Test (1-tail, (est	ites non-nor ot be confirm).05)	rmal distributi ned	ion (p <= 0.0	1)		Statistic 0.8129228	MSDp	Gritical 0.894	MSE	Skew -0.61145	Kurt 3.0770376
Shapiro-Will Equality of value Hypothesis Dunnett's Te	k's Test indica ariance canno Test (1-tail, (ites non-nor ot be confirm).05)	rmal distributi ned NOEC	ion (p <= 0.0°	1) ChV 54.128698	TU	Statistic 0.8129228 MSDu 0.1447815	MSDp	Critical 0.894 MSB	MSE	Skew -0.61145 F-Prob	Kurt 3,0770376 df
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments	k's Test indica variance canno Test (1-tail, (est vs .286 D-Cor	otes non-nor to be confirm 0.05)	mal distributined NOEC 50.23	ion (p <= 0.0° LOEC 58.33	1) ChV 54.128698 Maximum	TU Likelihoo	Statistic 0.8129228 MSDu 0.1447815 d-Probit	MSDp 0.1494518	Critical 0.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter	k's Test indica variance canno Test (1-tail, (est vs. 286 D-Cor Value	otes non-nor to be confirm 0.05) htrol	mal distributioned NOEC 50.23	ton (p <= 0.0° LOEC 58.33 Al Limits	1) ChV 54.128698 Maximum	TU	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3,0770376 df
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments	k's Test indica variance canno Test (1-tail, (est vs .286 D-Cor	ntes non-nor to be confirm 0.05) htrol SE 1.1729739	mal distributined NOEC 50.23	ion (p <= 0.0° LOEC 58.33	1) ChV 54.128698 Maximum	TU Likelihoo Control	Statistic 0.8129228 MSDu 0.1447815 d-Probit	MSDp 0.1494518	Critical 0.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope	k's Test indica variance canno Test (1-tail, (est vs. 286 D-Cor Value 6.2970073	ntes non-nor to be confirm 0.05) htrol SE 1.1729739	mal distributioned NOEC 50.23 95% Fiducia 3.9979784	LOEC 58.33 al Limits 8.5960361	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept	k's Test indica variance canno Test (1-tail, (est vs. 286 D-Cor Value 6.2970073	se non-nor bt be confirm 0.05) htrol SE 1.1729739 2.0900758	mal distributioned NOEC 50.23 95% Fiducia 3.9979784	LOEC 58.33 al Limits 8.5960361 -2.519229	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR	k's Test indica variance canno Test (1-tail, 0 est vs .286 D-Cor Value 6.2970073 -6.615778	se non-nor bt be confirm 0.05) htrol SE 1.1729739 2.0900758	mal distributioned NOEC 50.23 95% Fiducia 3.9979784 -10.71233	LOEC 58.33 al Limits 8.5960361 -2.519229	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point	k's Test indica variance canno Test (1-tail, 0 est vs .286 D-Cor Value 6.2970073 -6.615778 Probits 2.674	tes non-nor ot be confirm 0.05) htrol SE 1.1729739 2.0900758 mg/L 29.868503	mal distributioned NOEC 50.23 95% Fiducia 3.9979784 -10.71233	LOEC 58.33 al Limits 8.5960361 -2.519229	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01	k's Test indica variance canno Test (1-tail, 0 est vs .286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355	ttes non-nor to be confirm 0.05) htrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089	LOEC 58.33 81 Limits 8.5960361 -2.519229 81 Limits 36.572794	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05	k's Test indica variance canno Test (1-tail, (est vs. 286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718	ttes non-nor to be confirm 0.05) htrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298	LOEC 58.33 al Limits 8.5960361 -2.519229 al Limits 36.572794 44.244252	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10	k's Test indica variance canno Test (1-tail, 0 est vs. 286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964	se 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298	LOEC 58.33 al Limits 8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	k's Test indica variance canno Test (1-tail, 0 est vs. 286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935	95% Fiducia 19.676519 28.906089 3.3343298 40.33412	LOEC 58.33 al Limits 8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20	k's Test indica variance canno Test (1-tail, 0 est vs. 286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968	LOEC 58.33 al Limits 8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	k's Test indica variance canno Test (1-tail, 0 est vs. 286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506	LOEC 58.33 al Limits 8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40	k's Test indical rariance cannot rest (1-tail, 0 est vs. 286 D-Corvers	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082	LOEC 58.33 al Limits 8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50	k's Test indica variance canno Test (1-tail, 0 est vs .286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 63.711652 69.130388	LOEC 58.33 al Limits 8.5960361 -2.519229 al Limits 36.572794 44.24252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60	k's Test indica variance canno Test (1-tail, 0 est vs .286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907 76.715563 89.487686	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 63.711652 69.130388	LOEC 58.33 Limits 8.5960361 -2.519229 LLimits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889 115.52961	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75	k's Test indica variance canno Test (1-tail, 0 est vs .286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	tes non-nor be confirm (1.05) SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 69.927907 76.715563 89.487686 95.127196	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 63.711652 69.130388 78.36053	LOEC 58.33 Limits 8.5960361 -2.519229 LLimits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889 115.52961	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60 EC75 EC80	k's Test indica variance canno Test (1-tail, 0 est vs .286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 63.740812 69.927907 76.715563 89.487686 95.127196 102.15085	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178062 69.130388 78.36053 82.201372	LOEC 58.33 Limits 8.5960361 -2.519229 LLimits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889 115.52961 126.81146	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18
Shapiro-Will Equality of v Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC50 EC60 EC75 EC80 EC85	R's Test indica variance canno Test (1-tail, 0 est vs. 286 D-Cor Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	ntrol SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 69.927907 76.715563 89.487686 95.127196 102.15085 111.72955	95% Fiducia 3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.478082 63.711652 69.130388 78.36053 82.201372 86.849405	LOEC 58.33 Limits 8.5960361 -2.519229 LLimits 36.572794 44.244252 49.167087 52.982782 56.43545 59.8124314 71.124141 80.426454 91.7889 115.52961 126.81146 141.46904 162.47559	1) ChV 54.128698 Maximum	TU Likelihoo Control	MSDu 0.1447815 d-Probit Chi-Sq	MSDp 0.1494518 Critical	O.894 MSB 0.2601976	MSE 0.0146821	Skew -0.61145 F-Prob 4.7E-07 Sigma	Kurt 3.0770376 df 8, 18


ε φ

					Acute Shrimi	o Test-48	hr Survival					
Start Date:	2/18/2006 1	3:00	Test ID:	1A10			Sample ID:		ASTOCK-Ar	nmonium Ch	loride Stock	-
	2/20/2008 1		Lab ID:		nicher Marine		Sample Type	e.	AMCL-Amm			
Sample Da		0.00	Protocol:	ASTM94-AS			Test Species			eus vannam		
Comments:					(,							
Conc-mg/L		2	3									
36 D-Control		1.0000	1.0000									
10.31		1.0000	1.0000									
20.48	1.0000	0.8750	1.0000									
29.97	0.6250	0.7500	0.8750									
38.65	0.5000	0.3750	0.7500									
50.23	0.3750	0.3750	0.2500									
58.33	0.1250	0.2500	0.0000									
69.41	0.1250	0.1250	0.0000									
78.92	0.0000	0.0000	0.0000									
				Transform	: Arcsin Squa	re Root			1-Tailed		Number	Total
Conc-mg/L	. Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
36 D-Control		1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
10.31	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.560	0.2560	0	24
20.48	0.9583	0.9583	1.3319	1.2094	1.3931	7.961	3	0.612	2.560	0.2560	1	24
*29.97		0.7500	1.0561	0.9117	1.2094	14.113	3	3.370	2.560	0.2560	6	24
*38.65		0.5417	0.8306	0.6591	1.0472	23.836	3	5.626	2.560	0.2560	11	24
*50.23		0.3333	0.6139	0.5236	0.6591	12.739	3	7.793	2.560	0.2560	16	24
*58.33		0.1250	0.3542	0.1777	0.5236	48.854	3	10.390	2.560	0.2560	21	24
*69.41	0.0833	0.0833	0.3001	0.1777	0.3614	35.327	3	10.931	2.560	0.2560	22	24
78.92	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
Auxiliary T							Statistic		Critical		Skew	Kurt
Shapiro-Wil	k's Test indic		**	p > 0.01)			Statistic 0.9453489		Critical 0.884		Skew 0.0747641	
Shapiro-Will Equality of v	k's Test indic /ariance cann	ot be confirr	med				0.9453489	MCD	0.884	MCC	0.0747641	Kurt -0.096561
Shapiro-Wil Equality of v Hypothesis	k's Test indic variance cann Test (1-tail,	ot be confirr	ned NOEC	LOEC	ChV	TU	0.9453489 MSDu	MSDp	0.884 MSB	MSE 0.0140047	0.0747641 F-Prob	Kurt -0.096561 df
Shapiro-Wil Equality of v Hypothesis Dunnett's To	k's Test indic /ariance cann Test (1-tail, est	ot be confirm 0.05)	med				0.9453489		0.884		0.0747641	Kurt -0.096561
Shapiro-Wil Equality of v Hypothesis Dunnett's To	k's Test indic variance cann Test (1-tail,	ot be confirm 0.05)	ned NOEC	LOEC	ChV 24.774697	TU	0.9453489 MSDu 0.1453178		0.884 MSB		0.0747641 F-Prob	Kurt -0.096561 df
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments	k's Test indic variance cann Test (1-tail, est vs .286 D-Co	ot be confirm 0.05) Introl	NOEC 20.48	LOEC 29.97	ChV 24.774697 Maximum	TU Likelihoo	0.9453489 MSDu 0.1453178 d-Probit	0.1500055	0.884 MSB 0.6175069	0.0149947	0.0747641 F-Prob 4.6E-09	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments Parameter	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value	ot be confirr 0.05) ntrol SE	ned NOEC 20.48 95% Fiducia	LOEC 29.97	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments Parameter Slope	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443	ot be confirm 0.05) ntrol SE 0.7915181	ned NOEC 20.48 95% Fiducia 4.6732688	LOEC 29.97 al Limits 7.7760197	ChV 24.774697 Maximum	TU Likelihoo	0.9453489 MSDu 0.1453178 d-Probit	0.1500055	0.884 MSB 0.6175069	0.0149947	0.0747641 F-Prob 4.6E-09	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments Parameter Slope Intercept	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443	ot be confirr 0.05) ntrol SE	ned NOEC 20.48 95% Fiducia 4.6732688	LOEC 29.97	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T- Treatments Parameter Slope Intercept TSCR	k's Test indic variance cann E Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169	ot be confirm 0.05) Introl SE 0.7915181 1.3052026	95% Fiducia 4.6732688 -7.511366	LOEC 29.97 al Limits 7.7760197 -2.394972	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of Mypothesis Dunnett's T Treatments Parameter Slope Intercept TSCR	k's Test indic. variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits	ot be confirm 0.05) Introl SE 0.7915181 1.3052026 mg/L	95% Fiducia 4.6732688 -7.511366	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T Treatments Parameter Slope Intercept TSCR Point EC01	k's Test indic variance canno t Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674	ot be confirm 0.05) Introl SE 0.7915181 1.3052026 mg/L 16.798178	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T- Treatments Parameter Slope Intercept TSCR Point EC01 EC05	k's Test indic variance canno Fest (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355	ot be confirm 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512	95% Fiducia 4.6732688 -7.511366	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T- Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10	k's Test indic variance canno Fest (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355	ot be confirm 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512 24.723534	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T- Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964	ot be confirmation of the	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T- Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158	ot be confirm 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512 24.723534 27.07006 29.09284	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T- Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158	ot be confirm 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512 24.723534 27.07006 29.09284	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's Totreatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326	ot be confirmation of the	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	ot be confirmation of the	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50	k's Test indic variance cann Test (1-tail, est vs. 286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	ot be confirmation of the	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698	LOEC 29.97 29.97 29.97 20.671275 20.671275 20.671275 20.671275 31.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's T Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60	k's Test indic. variance cannot Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	ot be confire 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.620909 50.974386	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of Mypothesis Dunnett's Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75	k's Test indic. variance cannot Test (1-tail, est vs. 286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	ot be confire 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.620909 50.974386	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302 46.555626 49.350694	LOEC 29.97 29.97 29.97 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948 61.287987	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of Mypothesis Dunnett's Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80	k's Test indic variance canno Fest (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	ot be confire 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.62090 50.974386 54.225301 58.277229	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302 46.555626 49.350694	LOEC 29.97 29.97 29.97 7.7760197 -2.394972 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948 61.287987 66.923978	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16
Shapiro-Wil Equality of National Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80 EC75 EC80 EC85	k's Test indic variance cann Test (1-tail, est vs .286 D-Co Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	ot be confire 0.05) Introl SE 0.7915181 1.3052026 Introl 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.62090 50.974386 54.225301 58.277229 63.808352	95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302 46.555626 49.350694 52.701905	LOEC 29.97 29.97 29.97 7.7760197 -2.394972 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948 61.287987 66.923978	ChV 24.774697 Maximum	TU Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947 M u	0.0747641 F-Prob 4.6E-09 Sigma	Kurt -0.096561 df 7, 16

Test ID: 1A10
Sample ID: Ammonium Chloride Stock
Sample Type: Ammonium Chloride

Method: Dunnett's Test

Test ID: 1A10

Sample ID: Ammonium Chloride Stock Sample Type:Ammonium Chloride Method: Maximum Likelihood-Probit

					Acute Shrin	np Test-24	hr Surviva	ıl				
Start Date:	2/25/2006 13:	:00	Test ID:	1N10			Sample ID):	NO2STOCK			
End Date:	2/27/2008 13:	00	Lab ID:	CATML-Telor	nicher Marine	9	Sample T	ype:	NANO2			
Sample Dat	2/25/2008		Protocol:	ASTM94-AST	M (1994)		Test Spec	ies:	LV-Litopenae	us vanname	ei	
Comments:										***************************************		
Conc-mg/L	. 1	2	3									
.0 D-Control	1.0000	1.0000	1.0000									
90.4	1.0000	1.0000	1.0000									
114.6	1.0000	1.0000	1.0000									
132.8	1.0000	1.0000	1.0000									
148.8	0.7500	1.0000	0.8750									
170.2	0.6250	0.7500	0.6250									
187	0.7500	0.7500	0.6250									
				Transform:	Arcsin Squ	are Root			1-Tailed		Number	Total
Conc-mg/L	Wean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
.0 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
90.4	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1604	0	24
114.6	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1604	0	24
132.8	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1604	0	24

0.7083 Auxiliary Tests Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)

0.8750

0.6667

1.2166

0.9569

1.0020

1.0472

0.9117

0.9117

1.3931

1.0472

1.0472

Equality of variance cannot be confirmed Hypothesis Test (1-tail, 0.05) LOEC ChV MSDu MSDp MSB MSE F-Prob df NOEC 132.8 148.8 140.57254 0.0787503 0.0812906 0.1152028 0.0060258 5.3E-06 6, 14 Dunnett's Test

14.225

8.173

7.805

3

3

3

Statistic

0.812308

2.785

6.882

6.170

2.530

2.530

2.530

Critical

0.873

0.1604

0.1604

0.1604

3

0.1292139 3.8688993

Skew

24

24

24

Kurt

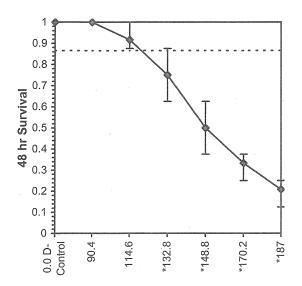
Treatments vs 0.0 D-Control

0.8750

0.6667

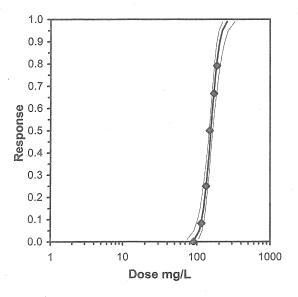
0.7083

*148.8


*170.2

*187

Maximum Likelihood-Probit Parameter Value SE 95% Fiducial Limits Control Chi-Sq Critical P-value Mu Sìgma Iter 2.82458 5.1298719 16.202226 3.4863561 9.4877291 0.48 2.2988409 0.0937554 Slope 10.666049 -19.51955 6.2716133 -31.81191 -7.227187 Intercept


TSCR				
Point	Probits	mg/L	95% Fiducia	ıl Limits
EC01	2.674	120.42958	84.162104	136.1086
EC05	3.355	139.51695	113.17352	151.41443
EC10	3.718	150.89975	131.47534	161.55176
EC15	3.964	159.09982	144.12602	170.34319
EC20	4.158	165.93361	153.48587	179.47277
EC25	4.326	172.02987	160.57534	189.35794
EC40	4.747	188.4032	175.19671	222.60015
EC50	5.000	198.99444	182.94834	247.59741
EC60	5.253	210.18107	190.51142	276.17018
EC75	5.674	230.18553	203.17396	332.13813
EC80	5.842	238.64234	208.30931	357.58024
EC85	6.036	248.89272	214.40439	389.80585
EC90	6.282	262.41783	222.26366	434.635
EC95	6.645	283.82777	234.34984	510.94288
EC99	7.326	328.8128	258.61624	692.61406

-												
					Acute Shrim	o Test-48						
	2/25/2006 13		Test ID:	1N10			Sample ID:		NO2STOCK			
	2/27/2008 13	3:00	Lab ID:		nicher Marine		Sample Typ		NANO2			
Sample Dat	2/25/2008		Protocol:	ASTM94-AS	TM (1994)		Test Specie	s:	LV-Litopena	eus vannam	ei	
Comments:		_	_									
Conc-mg/L		2	3									
.0 D-Control		1.0000	1.0000									
90.4	1.0000	1.0000	1.0000									
114.6	1.0000	0.8750	0.8750									
132.8	0.7500	0.8750	0.6250									
148.8	0.5000	0.6250	0.3750									
170.2		0.3750	0.3750									
187	0.2500	0.2500	0.1250									
					: Arcsin Squa				1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
.0 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
90.4	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1980	. 0	24
114.6	0.9167	0.9167	1.2706	1.2094	1.3931	8.345	3	1.564	2.530	0.1980	2	24
*132.8	0.7500	0.7500	1.0561	0.9117	1.2094	14.113	3	4.306	2.530	0.1980	6	24
*148.8	0.5000	0.5000	0.7854	0.6591	0.9117	16.086	. 3	7.765	2.530	0.1980	12	24
*170.2	0.3333	0.3333	0.6139	0.5236	0.6591	12.739	3	9.956	2.530	0.1980	16	24
*187	0.2083	0.2083	0.4695	0.3614	0.5236	19.949	3	11.801	2.530	0.1980	19	24
Auxiliary Te							Statistic		Critical		Skew	Kurt
•	k's Test indica		٠.	p > 0.01)			0.9499284		0.873		0.0501515	-0.278105
	ariance cann								****	****		
	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df C 44
Dunnett's Te			114.6	132.8	123.36482		0.1033895	0.1067246	0.430958	0.009187	1.8E-08	6, 14
Treatments	vs 0.0 D-Con	trol				1 11 - 111	J. Ph L. 14					
	17-3	0.5	arms First of	-1111	Maximum			Cultimat	District	5.6	Chama	lan
Parameter	Value	SE 4 0044000	95% Fiducia			Control 0	Chi-Sq	9.4877291	P-value 0.96	Mu 2.1868099	Sigma 0.0944447	lter 3
Slope		1.6844889	7.286604	13.889801		U	0.6462051	9.46//291	0.96	2.1000099	0.0944447	3
Intercept	-18.15439	3.6658691	-25.33949	-10.96928			-					
TSCR Point	Probits	mg/L	95% Fiducia	al I imaide								
EC01			73.927552	CONTRACTOR								
EC05			91.339047									
EC05 EC10			102.08593									
EC15	3.964		102.06593	131.2994								
				136.14286								
EC20 EC25			116.43496 122.19708									
EC25 EC40				153.66547								
EC40 EC50			145.58119						*			
EC60	5.253	162.45654		174.64671								
EC75			167.01495									
EC75			172.22677									
EC85			178.36244	219.6477								
EC90		203.16349		236.73178								
EC90 EC95			198.32405									
			222.72424									
EC99	1.320	204.90008	222.12424	521.40019								

Test ID: 1N10

Sample ID: NO2STOCK Sample Type: NANO2 Method: Dunnett's Test

Test ID: 1N10

Sample ID: NO2STOCK Sample Type: NANO2

Method: Maximum Likelihood-Probit

Ct. (D.)	0/4/0000 40.0	\ <u>\</u>	F	44.11	Acute Shrim	p Test-12			MUMOO			
	3/1/2008 13:0		Test ID:	1AvNs	and the south document		Sample ID:		NH3NO2			
End Date:	3/3/2008 13:0)()	Lab ID:		onicher Marine		Sample Typ		NH3NO2		-:	
Sample Dat			Protocol:	ASTM94-AS	51M (1994)		Test Specie	S:	Lv-Litopena	eus vannam	eı	
Comments:		2	3									
18 D-Control		1.0000	1.0000									
29.56		1.0000	1.0000									
35.87		1.0000	0.8750									
40.1		0.7500	0.8750									
43.73		0.7500	0.6250									
54.98		0.3750	0.3750									
	0.0000	0.0700	0.0.00									
				Transforn	n: Arcsin Squa	re Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
18 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
29.56	0.9583	0.9583	1.3319	1.2094	1.3931	7.961	3	0.889	2.500	0.1722	1	24
35.87	0.9583	0.9583	1.3319	1.2094	1.3931	7.961	3	0.889	2.500	0.1722	1	24
*40.1	0.8333	0.8333	1.1554	1.0472	1.2094	8.107	3	3.452	2.500	0.1722		24
*43.73	0.7083	0.7083	1.0020	0.9117	1.0472	7.805	3	5.677	2.500	0.1722	7	24
*54.98	0.4167	0.4167	0.7012	0.6591	0.7854	10.403	3	10.046	2.500	0.1722	14	24
Auxiliary To							Statistic		Critical		Skew	Kurt
•	k's Test indica			ion (p <= 0.0	11)		0.8542656		0.858		-0.707522	-0.984641
CONTRACTOR OF THE PARTY OF THE	variance canno											
-	Test (1-tail, 0	1.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te			35.87	40.1	37.926073		0.0862667	0.0890495	0.2091414	0.0071161	2.5E-06	5, 12
Treatments	vs .248 D-Cor	itrol			Maximum	1 thalthan	d Duckis					
Daramatar	Value	SE	95% Fiducia	al Limite		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Parameter Slope	8.3550615		4.8035696			0	1.3179099		0.86	CONTRACTOR OF THE PROPERTY OF	0.1196879	3
•	-9.338148			-3.509087		U	1.5179099	9.4011291	0.00	1.7 10 1032	0.1130073	3
Intercept TSCR	-9.336146	2.8740108	-10.10721	-3.303007								
Point	Probits	mg/L	95% Fiducia	al l'imite								
EC01	TARREST AND A PROPERTY OF THE PARTY OF THE P	27.394759		31.923232								
EC05			26.324053	36.736621								
EC10				39.806732								
EC15			34.467622	42.24743							*	
EC20			37.262606	44.550835								
EC25	4.326		39.599694									
EC40		48.504346		54.941377								
EC50			47.738822									
EC60			50.519848	68.640343								
EC75			55.208253	83.383663								
EC80			57.129801	90.16799								
EC85				98.818358								
EC90			62.423154	110.94353								
EC95			67.097449									
E000	= 000			400 00740								

7.326 98.75044 76.734955 182.26716

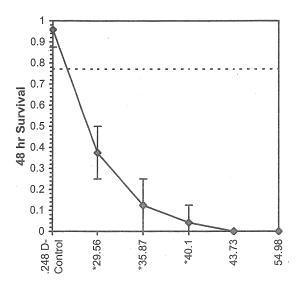
EC99

					Acute Shrimp	Test-24	br Survival					
Start Date:	3/1/2008 13:	:00	Test ID:	1AvNs	•		Sample ID:		NH3NO2			-
End Date:	3/3/2008 13:	:00	Lab ID:	CATML-Telor	nicher Marine		Sample Typ	e:	NH3NO2			
Sample Dat	t.		Protocol:	ASTM94-AST	M (1994)		Test Specie	s:	LV-Litopena	eus vannam	ei	
Comments:					, ,				•			*
Conc-mg/L	. 1	2	3									
18 D-Control	1.0000	1.0000	1.0000								***************************************	
29.56	0.6250	0.6250	0.7500									
35.87	0.5000	0.6250	0.6250									
40.1	0.0000	0.3750	0.2500									
43.73		0.2500	0.0000									
54.98	0.0000	0.0000	0.0000									
				Transform:	Arcsin Squa	re Root			1-Tailed		Number	Total
Conc-mg/L		N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
I8 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	
*29.56	0.6667	0.6667	0.9569	0.9117	1.0472	8.173	3	3.555	2.470	0.3031	8	24
*35.87	0.5833	0.5833	0.8696	0.7854	0.9117	8.388	3	4.266	2.470	0.3031	10	24
*40.1	0.2083	0.2083	0.4535	0.1777	0.6591	54.740	′3	7.657	2.470	0.3031	19	
*43.73	0.0833	0.0833	0.2930	0.1777	0.5236	68.155	3	8.965	2.470	0.3031	22	
54.98	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	
Auxiliary Te	*****************************			. 0.04)			Statistic		Critical		Skew	Kurt
	k's Test indica rariance cann			5 > 0.01)			0.9640511		0.835		-0.105777	0.8349011
Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te	est		<29.56	29.56			0.1826463	0.1885381	0.5685885	0.0225861	3.3E-05	4, 10
Treatments	vs .248 D-Co	ntrol										
Parameter	Value	SE	95% Fiducia	I I Institu	Maximum I			O-M-1	ъ.	2.0	ο.	14
Slope				14.972626		Control 0	Chi-Sq 4.6723968	9.4877291	P-value 0.32	Mu 4 5220720	Sigma	Iter
Intercept			-18.10741			U	4.0723900	9.40//291	0.32	1.5339736	0.0908589	3
TSCR	-11.00000	0.1707002	-10.10741	-0.000040						*		
Point	Probits	mg/L	95% Fiducia	d Limits								
EC01		Secretary Name of Street, Stre	15.172278									
EC05		24.239516		27.39116								
EC10			21.253641									
EC15	3.964	27.529882	22.982322	30.201834								
EC20	4.158	28.675089	24.444452	31.184026								
EC25	4.326	29.695467	25 76056	32.067238								
LO20	4.520	20.000 101		02.007200								
EC25 EC40		32.430581	29.303248									
	4.747	32.430581		34.518672								
EC40	4.747 5.000	32.430581 34.195864	29.303248	34.518672 36.230288	·							
EC40 EC50 EC60 EC75	4.747 5.000 5.253	32.430581 34.195864 36.057236	29.303248 31.536102	34.518672 36.230288 38.234871	·							
EC40 EC50 EC60	4.747 5.000 5.253 5.674	32.430581 34.195864 36.057236 39.378302	29.303248 31.536102 33.754378	34.518672 36.230288 38.234871 42.501959								
EC40 EC50 EC60 EC75 EC80 EC85	4.747 5.000 5.253 5.674 5.842 6.036	32.430581 34.195864 36.057236 39.378302 40.779545 42.475922	29.303248 31.536102 33.754378 37.182087 38.440304 39.862451	34.518672 36.230288 38.234871 42.501959 44.551288 47.181136								
EC40 EC50 EC60 EC75 EC80 EC85 EC90	4.747 5.000 5.253 5.674 5.842 6.036 6.282	32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957	29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228	34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164								
EC40 EC50 EC60 EC75 EC80 EC85	4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	29.303248 31.536102 33.754378 37.182087 38.440304 39.862451	34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599								

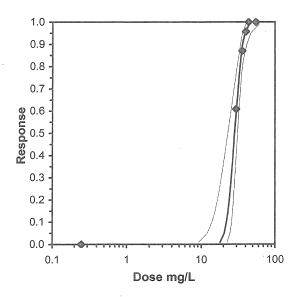
					Acute Shrin	np Test-48	hr Survival					
Start Date:	3/1/2008 13:0	00	Test ID:	1AvNs			Sample ID:		NH3NO2			
End Date:	3/3/2008 13:0	0	Lab ID:	CATML-Telor	nicher Marine	9	Sample Typ	e:	NH3NO2			
Sample Da	t		Protocol:	ASTM94-AST			Test Specie	s:	LV-Litopena	eus vannam	ei	
Comments:	:											
Conc-mg/L		2	3									
18 D-Control		0.8750	1.0000									
29.56	0.5000	0.3750	0.2500									
35.87		0.0000	0.2500									
40.1		0.0000	0.1250									
43.73		0.0000	0.0000									
54.98	0.0000	0.0000	0.0000									
				Transform:	Arcsin Squ	are Root			1-Tailed		Number	Total
Conc-mg/L	. Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
18 D-Control	0.9583	1.0000	1.3319	1.2094	1.3931	7.961	3				1	24
*29.56	0.3750	0.3913	0.6560	0.5236	0.7854	19.958	3	6.276	2.420	0.2606	15	. 24
*35.87	0.1250	0.1304	0.3542	0.1777	0.5236	48.854	3	9.079	2.420	0.2606	21	24
*40.1	0.0417	0.0435	0.2389	0.1777	0.3614	44.379	3	10.149	2.420	0.2606	23	24
43.73	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
54.98		0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
Auxiliary T							Statistic		Critical		Skew	Kurt
	lk's Test indica						0.9559686		0.805		-0.061091	-1.190493
	est indicates eq						0.5693772		11.344867			
	Test (1-tail, 0	1.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's T			<29.56	29.56			0.1734414	0.1837321	0.7213504	0.017394	3.2E-05	3, 8
Treatments	vs .248 D-Con	itroi				n Likelihoo	J Duckis					
	***	65	nent end.	. 1.1.1	waximur			Critical	P-value	Mu	Sigma	lter
Parameter	Value 11.851343	SE 2 4444000	95% Fiducia			Control 0.0416667	0.461398	9.4877291	0.98	1.4509388	0.0843786	4
Slope	-12.19557			-2.878036		0.0410007	0.401396	9.4011291	0.90	1.4309366	0.0043700	7
Intercept TSCR	0.0418119			0.0984347								
Point	Probits	mg/L	95% Fiducia									
EC01			9.1705304									
EC05			12.020933									
EC10			13.879723									
EC15			15.288726									
EC20	4.158		16.505575							-		
EC25	4.326		17.622077									
EC40	4.747		20.749266									
EC50	5.000		22.849658									
EC60.			25.096558									
EC75			28.971386									
EC00			20.07.1000									

 5.842
 33.262405
 30.435474
 36.041694

 6.036
 34.545512
 31.994388
 38.003587

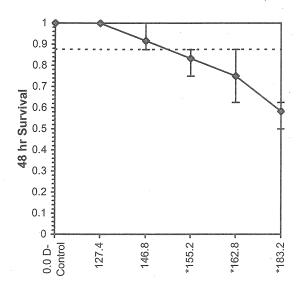

 $6.282\ \ \, 36.230502\ \ \, 33.708989\ \ \, 41.059337$

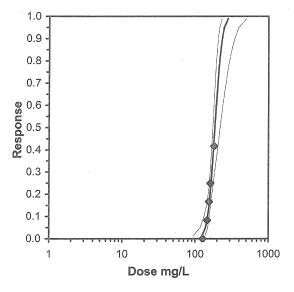
6.645 38.880271 35.910881 46.699948 7.326 44.384657 39.70374 60.55181


EC80 EC85 EC90

EC95

EC99


Test ID: 1AvNs Sample ID: NH3NO2 Sample Type: NH3NO2 Method: Dunnett's Test


Test ID: 1AvNs Sample ID: NH3NO2 Sample Type: NH3NO2

Method: Maximum Likelihood-Probit

01 1 0 1	0/0/0000 47.0		F . 15	4.4 - 1.1	Acute Shrim				NUIDNICO			
	3/3/2008 17:0		Test ID:	1AsNv			Sample ID:		NH3NO2			
	3/5/2008 17:0	00	Lab ID:		nicher Marine		Sample Typ		NH3NO2		_:	
Sample Dat			Protocol:	ASTM94-AS	TM (1994)		Test Specie	S:	LV-Litopena	eus vannam	91	
Comments:	1	2	3									
.0 D-Control	1.0000	1.0000	1.0000									
127.4	1.0000	1.0000	1.0000									
146.8	0.8750	1.0000	0.8750									
155.2	0.8750	0.8750	0.7500									
162.8	0.7500	0.6250	0.8750									
183.2	0.5000	0.6250	0.6250									
100.2	0.0000	0.0200	0.0200									
				Transform	: Arcsin Squa	are Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
.0 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
127.4	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.500	0.1817	0	24
146.8	0.9167	0.9167	1.2706	1.2094	1.3931	8.345	3	1.684	2.500	0.1817	2	24
*155.2	0.8333	0.8333	1.1554	1.0472	1.2094	8.107	3	3.271	2.500	0.1817	4	24
*162.8	0.7500	0.7500	1.0561	0.9117	1.2094	14.113	3	4.636	2.500	0.1817	6	24
*183.2	0.5833	0.5833	0.8696	0.7854	0.9117	8.388	3	7.201	2.500	0.1817	10	24
Auxiliary Te				0.043			Statistic		Critical		Skew	Kurt
	k's Test indica			o > 0.01)			0.9567849		0.858		0.0905005	0.2721209
· · · · · · · · · · · · · · · · · · ·	ariance canno Test (1-tail, 0		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te		1,00)	146.8	155.2	150.94158	10	0.0924715	0.0954545		0.0079253	6.1E-05	5, 12
	vs 0.0 D-Conti	rol	140.0	155.2	100.54100		0.0024710	0.0004040	0.120-001	0.0010200	0.12 00	0, 12
Treatmente	·	101			Maximum	Likelihoo	i-Probit					
Parameter	Value	SE	95% Fiducia	d Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope		3.4329235	6.4269978	19.884058		0	0.7556097	7.8147278	0.86	2.2714749	0.0760137	4
Intercept	-24.88245	7.5936706	-39.76605	-9.998858								
TSCR												
Point	Probits	mg/L	95% Fiducia	ıl Limits								
EC01	2.674	124.34854	92.969318	137.42601								
EC05	3.355	140.10176	117.93244	149.65282								
EC10		149.29989		157.40482								
EC15			143.72418									
EC20			151.57203									
EC25			157.50378									
EC40			169.35291									
EC50		186.84219	175.43826									
EC60			181.30637									
EC75		210.25454										
EC80		216.49589		294.27153								
			144 554(17)	315.27107								
EC85		224.00518										
EC90	6.282	233.82469	205.48269	343.91126								
	6.282 6.645	233.82469 249.17605		343.91126 391.33694								

Test ID: 1AsNv Sample ID: NH3NO2 Sample Type: NH3NO2 Method: Dunnett's Test

Test ID: 1AsNv Sample ID: NH3NO2 Sample Type: NH3NO2

Method: Maximum Likelihood-Probit