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Razvan Cojocaru 

 

ABSTRACT 

 

 Motivated by Robert Mast’s original papers on lifting stability, this research study 

provides a method for predicting beam behavior during lifting, with application in the 

construction of bridges.  A beam lifting cracking limit state is developed based on analytical 

equations for calculating the roll angle of the beam, the internal forces and moments, the weak-

axis and strong-axis deflections, and the cross-sectional angle of twist.  Finite element 

simulations are performed to investigate the behavior of concrete beams during lifting and to 

validate the proposed method.  Additionally, a statistical characterization of beam imperfections 

is presented, based on recently conducted field measurements of beam lateral sweep and 

eccentricity of lift supports.  Finally, numerical examples for two typical precast prestressed 

concrete beam cross-sections are included to demonstrate the proposed method.
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CHAPTER 1.      INTRODUCTION         

 

1.1 Background information 

 Precast prestressed concrete beams are widely used in today’s bridge construction 

industry where speed and ease of erection are of paramount importance.  Over the years, the 

precast prestressed concrete beam spans have increased due to improvements in material 

properties, the introduction of new girder shapes, larger prestressing strands, and advances in 

design methods (Castrodale and White 2004).  Many states are currently utilizing long, globally 

slender girders exceeding 200 ft with optimized section shapes, for example, the California 

Wide-Flange Girder (Pope and Holombo 2009) and the Nebraska University (NU) I-girder 

(Geren and Tadros 1994).  The record length for a precast concrete plant-cast girder is currently 

held by a 213 ft (65 m) long, l9 ft 3 in. (2.8 m) deep spliced girder used for the Bow River 

Bridge near Calgary, Alberta, Canada.  Nonetheless, there is an upper limit on precast 

prestressed concrete beam lengths because of size and weight limitations on beam shipping and 

handling (Castrodale and White 2004). 

 A consequence of the increase in beam spans is an increase in depth as well.  

Additionally, due to transportation and handling limitations, the weight is being kept to a 

minimum by reducing the width of the web and flanges.  As a result, long span beams tend to 

have lower minor-axis and torsional stiffness compared to typical precast beams, making them 

more susceptible to lateral buckling and therefore increasing the likelihood of a stability failure 

(Hurff 2010). 
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 Many times, designers ignore the issue of lateral stability during lifting, only considering 

the stability of the finished structure and leaving any issues related to the construction and 

handling stage to the fabricators and contractors (Mast 1989).  Several jobsites incidents have 

been reported involving excessive deformations and in some cases failure during the handling of 

long precast concrete beams.  For this reason, it is important to understand the behavior of long 

concrete beams during lifting, which can be susceptible to stability failures.  Lateral stability 

considerations must be taken into account during transportation, when beams are supported on 

trucks and trailers, and during the construction stages, when beams are resting on temporary 

supports.  However, in a study performed by Stratford and Burgoyne (1999) using finite element 

techniques, it was found that the case of a prestressed concrete girder during lifting was the most 

critical condition when considering catastrophic failures.  Accordingly, the analysis procedures 

described in the following sections focus on the behavior of precast prestressed concrete beams 

during lifting. 

1.2 Code provisions for stability of beams during lifting 

 The PCI Design Handbook (6
th

 Edition) highlights the issue of lateral stability in Section 

5.4.1 and directs the reader to three articles published by Robert Mast (1989, 1993, and 1994) for 

specific guidance. The PCI Bridge Design Manual (2003) addresses the lateral stability of 

slender members in Chapter 8.10 which outlines a procedure for calculating a factor of safety 

against cracking for a hanging beam.  The described method is based on Robert Mast’s paper 

published in 1989 in the PCI Journal titled Lateral Stability of Long Prestressed Concrete 

Beams, Part 1. 

 The AASHTO LRFD Bridge Design Specifications (2007) and the AASHTO LRFD 

Bridge Construction Specifications (2004) do not provide specific guidelines for investigating 
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lateral stability of beams when hanging.  Section 5.14.1.2.1 of the AASHTO LRFD Bridge 

Design Specifications (2007) assigns the responsibility for safe shipping and erection to the 

contractor.  Additionally, section 5.14.3.3 underscores the need for considering the possibility of 

buckling in tall thin web sections.  Overall, the governing design codes include only very basic 

stability checks and lack sufficient guidance on the subject of stability of precast prestressed 

beams during lifting (Hurff 2010 and Stratford et al. 1999). 
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CHAPTER 2.     LITERATURE REVIEW        

 

2.1 Introduction 

 The importance of performing lateral stability checks on long slender beams was 

recognized many years before the boom of the precast prestressed concrete industry.  It has 

always been customary to perform stability checks for curved steel beams.  However, there are 

significant differences between the behavior of steel beams and concrete beams during lifting.  

For concrete beams self-weight is of greater importance and their minor axis stiffness is much 

lower compared to their torsional stiffness.  For reasons such as these, temporary conditions for 

concrete beams under self-weight loading, such as during lifting, are much more critical than the 

final loading state when the top deck is in place preventing lateral instability (Stratford and 

Burgoyne 1999).  For the purpose of this paper, the following section draws together the relevant 

literature and theory regarding the stability of precast prestressed concrete beams during lifting. 

2.2 Swann and Godden (1966) 

 Swann and Godden (1966) provided a numerical method for calculating the elastic 

buckling load of a slender beam under vertical loading based on Newmark’s procedure for 

determining the buckling load of struts.  They simplified the lateral buckling problem of beams 

with a slight curvature (due to an initial imperfection) by dividing the beam into a small number 

of chords, and reducing a curved beam problem to an equivalent problem analyzing a number of 

straight beams joined end to end.  Using this method, Swann and Godden then studied the self-

weight buckling of long concrete beams during lifting.  Their detailed derivation for calculating 

the buckling load of a beam supported by cables is given in reference 29. 
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2.3 Anderson (1971) 

 Anderson (1971) highlighted the need to pay more attention to temporary stresses and the 

lateral stability of precast prestressed concrete beams during transportation and erection.  

Anderson experienced firsthand the problem of lateral stability during the lifting of a 150 ft long 

beam from the stressing bed.  The beam started to tip and deflect laterally, at which point it was 

immediately lowered back and restored to its initial straight condition (Anderson 1971).  In his 

paper, Anderson defined the factor of safety against lateral buckling for a beam that is lifted at 

the crane hooks as: 

F.S. =
D y

yt
 

where 

yt = distance from the beam top face to the beam centroid  

∆y = mid-span deflection when the beam’s self weight is applied in the weak-axis direction 

In the case of a prismatic beam with a uniform weight and a constant moment of inertia, the 

deflection ∆y can be calculated using the well-known deflection formula: 

D y =
384
5

Ec Iy
wL4

, 

where 

w = self-weight of the beam 

L = length of the beam 

Ec = modulus of elasticity of concrete 

Iy = weak-axis moment of inertia 
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2.4 Swann (1971) 

 Shortly after Anderson’s publication, Swann (1971) proposed a new equation for the 

factor of safety against buckling: 

F.S. =
0.64D y

yt
 

 He identified the term in the denominator to be the shift in the center of gravity of the 

mass of the beam after deflecting laterally, as opposed to the shift of the mid-span section.  This 

agrees with Mast’s findings (Mast 1989), where he calculated the lateral deflection of the center 

of gravity of a beam z0  supported at the ends as:  

z0 =
120Ec Iy
wL4

= 0.64D y  

 Additionally, Swann (1971) clarified that yt should be taken as the vertical distance 

between a line through the two lifting points and the center of gravity of the whole beam, rather 

than the distance between the top face of the beam and the center of gravity of the cross-sectional 

area.  The reason is that when a beam has an initial camber due to the prestress, these two 

quantities are significantly different.  A graphical representation of the above mentioned values 

is depicted in Figure 1.  Furthermore, Swann (1971) also addressed the importance of initial 

imperfections.  To illustrate the importance of considering geometric imperfections in stability 

calculations, he provided an equation for the weak axis bending moment My, which he surmised 

was the cause of failure in beams when hanging.  He expressed My as a function of θ0: 

M y = M xi = M xi 0

1 -
F.S.
1

1e o 

where 

Mx = bending moment about the strong-axis due to self-weight 
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θ = angle of tilt (in radians) of the member about a line through the lifting points (Figure 4) 

θ0 = angle of tilt due to imperfections if the beam were rigid 

 Based on the above equation for weak-axis moment (My), even with a large value for the 

factor of safety, My can become large when θ0 is large.  And since θ0 is directly proportional to 

the magnitude of the initial imperfections (which most of the time are unknown quantities), 

Swann (1971) concluded that a high factor of safety is not necessarily a guarantee against failure.  

The two types of imperfections identified by him are lateral sweep and the transverse distance 

from the minor axis of the cross-section to where the lifting points are fixed. 

w

0.64∆
y

PLAN VIEW

y
t

ISOMETRIC VIEW

∆
y

CENTER OF GRAVITY

OF THE MASS OF THE BEAM

ROLL AXIS

 

Figure 1. Graphical representation of quantities defined in Swann (1971): yt is the distance from the beam 

top face to the beam centroid, and it accounts for the shift in the location of the centroid due to camber. ∆y 

is the midspan deflection when the beam’s self weight is applied in the weak-axis direction.  The shift in 

the center of mass of the deflected shape is 0.64∆y. 
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 Furthermore, Swann (1971) emphasized that if a beam is allowed to crack when lifted, its 

weak-axis stiffness will decrease, magnifying the lateral deflection ∆y and consequently 

decreasing the factor of safety.  And from the above moment equation it can be observed that a 

reduction in the factor of safety increases the weak-axis bending which in turn leads to more 

cracking, etc.  Therefore, according to him, cracking due to bending will most probably cause a 

catastrophic collapse with little or no warning (Swann 1971). 

2.5 Laszlo and Imper (1987) 

 Laszlo and Imper (1987) suggested values for the factor of safety, based on plant and 

field experience:  F.S. > 1.5 for plant handling and F.S. > 1.75 for field handling (erection).  

Furthermore, they proposed a seven step calculation method to carry out a stability check for the 

safe handling of long span bridge beams during lifting.  The goal was to calculate the handling 

stresses of a laterally deflected beam at two critical points of the rotated cross-section: the 

downward top flange under high tension and the upward bottom flange under high compression 

at three critical locations along the length of the beam (midspan, pickup point, and at harping 

point), as depicted in Figure 2.  The proposed seven step process is outlined in reference 11. 
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upward bottom flange

under high compression

downward top flange

under high tension

f
t,max

f
c,max

β

 
Figure 2. Tilted beam showing the location of the maximum tensile and compressive stresses during 

lifting. ft,max = maximum tensile stress acting on the cross-section during lifting; fc,max = maximum 

compressive stress acting on the cross-section during lifting; β = roll angle. 
 

2.6 Stratford and Burgoyne (1999 - 2000) 

 More recently, Stratford and Burgoyne (1999, 2000) derived a set of equations for 

hanging beams, presenting a detailed analysis for beams with inclined or vertical cables, with 

inclined or vertical yokes, with lateral loads (wind or inertia effects), and with initial 

imperfections.  The authors provided solutions to critical quantities that are important when 

investigating the stability of long precast concrete beams: the critical load of a perfect beam 

(wcr), the load-deflection curve of the imperfect beam, the curvature associated with a given 

lateral deflection (k), and the bending stresses which are additional to those due to the primary 

bending moment and the prestress (∆σ).  The authors derived separate equations for vertical 

cables and inclined cables.  The equation for the beam midspan deflection vms is the same for 

both cases: 

vms =
1-w/wcr^ h

d0 1- sinra/L^ h
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where 

δ0 = sweep imperfection (it can be obtained by measuring a beam or by using a limiting value 

specified by existing codes) 

a = distance of yoke attachment point from end of beam 

L = length of beam 

w = self weight of beam per unit length 

wcr = critical self weight of beam to cause buckling per unit length 

Vertical cables: 

 For the case of vertical cables, the roll angle can be calculated by solving the following 

equation: 

vms =
384Ec Iy
w sini

5L2 - 20aL - 4a2^ h 2a- L^ h2 + d0 1 - sin
L
ra` j 

where 

vms = midspan deflection 

θ = roll angle: rigid body rotation about the beam’s axis 

The midspan curvature kms is evaluated using the following equation: 

kms =
8Ec Iy
w sini

L2 - 4aL^ h 

Inclined cables: 

 From the midspan deflection equation, the rigid body roll angle θ for the case of inclined 

cables can be calculated by substituting the appropriate values into the following equation: 

vms = n4Ec Iy
w sini

1 -
2

n2a2c m cosnb+ tannb sinnb- 1^ h-
2

n2b2; E
+

r2 - n2L2

r2d0
1 - sin

L
ra

cosnb+ tannb sinnb^ h8 B
 

where 
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n =
2Ec Iy tana

wLc m  

α = cable inclination angle above the horizontal 

b = distance from the yoke attachment point to the center of the beam (L/2 - a). 

 The midspan curvature is given by: 

kms = n2vms +
2Ec Iy
w sini

b2 - a2^ h 

 The additional curvature at midspan, kms, is then used to determine the stress distribution 

across the beam. At a distance X from the beam’s major axis the change in the concrete stress ∆σ 

can be found from the following equation: 

Dv = EckmsX  

where 

X = distance from the beam’s major axis 

 The change in stress must then be added to the major-axis stress distribution σy, which 

includes the effects of the self-weight bending moment in the strong-axis, the stress due to the 

prestress, and in the case of inclined cables, the additional force and bending moment resulting 

from the axial force in the cables (Figure 3).  This allows the calculation of the stress at the two 

critical points of the cross-section, i.e., the two corners of the section with the largest tensile and 

compressive stresses, as shown previously in Figure 2.  The full derivation of the equations 

developed by Stratford and Burgoyne (2000) is found in reference 27. 



 12

X

Y

STRESS DISTRIBUTION DUE TO BENDING ABOUT THE MAJOR AXIS

Includes the effects of:

• self-weight bending moment in the major-axis direction

• stress distribution due to the prestress

• additional force and bending moment from axial force due to inclined cables

STRESS DISTRIBUTION DUE TO BENDING ABOUT THE MINOR AXIS

Includes stresses due to:

• initial imperfection

• lateral stability effects, ∆σ = EkX

(sign depends on direction of initial imperfection)

σ
y

 

Figure 3. Stresses to be combined when assessing a beam during lifting. Reprinted from Stratford et al. 

(1999) (adapted with permission). 

 

2.7 Mast (1989) 

 As presented in the PCI Design Handbook (6
th

 Edition) and the PCI Bridge Design 

Manual (2003), the current standard for investigating the lateral stability of precast prestressed 

concrete members during lifting is based on Robert Mast’s paper published in 1989 in the PCI 

Journal titled Lateral Stability of Long Prestressed Concrete Beams, Part 1.  Mast used the 

assumption of torsional rigidity for the beam, transforming a lateral buckling problem into a 

simplified bending and equilibrium problem.  According to him, in order for a beam to be stable, 

the height of the roll center yr must be greater than z0 , and the ratio yr /z0  may be thought of as 

the factor of safety against lateral buckling instability: 
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FS =
z0

yr
 

where 

yr = the height of the roll axis above the center of gravity of the beam (measured along the 

original vertical axis of the beam) 

z0  = the theoretical lateral deflection of the center of gravity of the beam, computed with the full 

dead weight applied laterally (Figure 4) 

y
r

W sinθ

z + e i

W sinθ

z

e i

W

θ

y
r

ROLL AXIS

LIFTING LOOPS

θ

W

DEFLECTION OF BEAM

DUE TO BENDING

ABOUT WEAK AXIS

COMPONENT OF

WEIGHT ABOUT

WEAK AXIS

CENTER OF MASS OF

DEFLECTED SHAPE

OF THE BEAM

CENTER OF GRAVITY

OF CROSS SECTION

AT LIFTING POINT

END VIEW EQUILIBRIUM DIAGRAM

W

 

Figure 4. Equilibrium of beam in tilted position. Reprinted from Mast (1989) (used with permission). 

 

 The above equation is the factor of safety for a perfectly straight beam with no initial 

geometric imperfection (sweep).  However, there is a limit on the maximum tilt angle θmax that 

the lateral bending strength of the beam can tolerate.  For this reason, imperfect beams could fail 
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before total instability is reached.  Using force equilibrium, Mast developed two equations to 

express the factors of safety against lateral instability for a hanging beam.  The actual factor of 

safety is the minimum of the following two values: 

FS =
z0

yr
1 -

imax

iic m     (Eq. 1, Mast 1989) 

FS =
ii

imax
1-

yr
z0c m     (Eq. 2, Mast 1989) 

where 

θi = initial roll angle of the beam due to initial imperfections 

θmax = maximum permissible tilt angle of the beam 

 The initial roll angle is calculated as: 

i i = tan ei/yr^ h (small angle approximation i i = ei/yr ) 

where 

ei = initial eccentricity of the center of gravity of the beam from the roll axis (Figure 4) 

 The first factor of safety equation was derived assuming the important parameter to be 

the lateral elastic properties of the beam represented by z0 .  The effect of θi and θmax was taken to 

be a modifying effect on the basic stability represented by yr /z0 .  The quantity 1-ii/imax^ h can 

be thought of as a reduction factor accounting for the effects of initial imperfections.  The second 

factor of safety equation should be used when the beam is stiff laterally and thus z0  is small.  In 

this case, the effect of initial imperfections would be the dominant effect, and it would be more 

logical to define the factor of safety as the ratio of imax/i i .  In the second factor of safety 

equation, imax/i i  is the main parameter and the quantity 1 - z0/yr^ h is the modifier. 

 Mast provides the following equation for the quantity z0 : 
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z0 =
12Ec IyL

w
10
1

L1
5 - a2L1

3 + 3a4L1 +
5
6
a5` j  

where 

w = self-weight of the beam 

Ec = modulus of elasticity of concrete 

Iy = weak-axis moment of inertia 

L = length of the beam 

L1 = distance between lifting points 

a = overhang (distance between lifting points and end of the beam) 

 In the Part 2 paper published four years later, Mast (1993) proposes a new equation for 

the calculation of the factor of safety against cracking: 

FS =
z0 yr + i i imax

1     (Eq. 22, Mast 1993) 

 The new equation was proposed to replace both Eqs. (1) and (2) given in Part 1.  

Equation (22) gives lower factors of safety when the ratios z0 /yr  and ii/imax  are positive, since 

it considers the combined effect of the two ratios varying simultaneously, while Eqs. (1) and (2) 

consider the ratios varying one at a time (Mast 1993). 

2.8 PCI Bridge Design Manual specifications 

 As mentioned above, the PCI Bridge Design Manual (2003) provisions are based on 

Robert Mast’s paper published in 1989 described above.  Section 8.10 suggests a value of 1.5 for 

the factor of safety against failure for hanging beams.  Due to the possibility of a catastrophic 

failure, it is recommended that the factor of safety against failure to be conservatively taken as 

the factor of safety against cracking.  However, the manual states that the necessary factors of 
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safety cannot be determined scientifically, and that they must be determined from experience by 

employing sound engineering judgment.  For the initial lateral eccentricity of the center of 

gravity with respect to the roll axis, ei, the manual recommends a value of 1/4 in. plus one-half 

the PCI tolerance for sweep, which is 1/8 in. per 10 ft of member length. 

2.9 Limitations of current literature 

 All of the above presented methods are useful tools for investigating beam stability 

during lifting; nonetheless, they all have limitations to their applicability.  For instance, although 

presented in a very easy to follow seven-step process, the method outlined by Laszlo and Imper 

(1987) does not consider the effect of initial imperfections.  The influence of initial lateral 

(sweep) imperfections on beam deformation during lifting is discussed in Mast (1989, 1993), 

Stratford et al. (1999), and Plaut and Moen (2012), and is further investigated in the following 

sections of this paper. 

 Next, in Mast’s proposed method, the computation of a net factor of safety requires actual 

knowledge of ei and θmax.  Most of the time, the initial lateral eccentricity ei is unknown, 

therefore it is usually assumed or taken as the PCI recommended value of 1/4 in. plus L/960.  

Additionally, as stated by Mast, the determination of θmax involves some difficulties, requiring 

the computation of the ultimate strength of the beam subjected to biaxial bending.  An exact 

solution is not provided.  Mast’s recommended method for approximating θmax is a conservative 

one, suggesting that θmax could be expressed as the ratio of the weak axis bending moment that 

causes the tensile stress in the top corner to reach the modulus of rupture to the strong axis self-

weight moment (Mast 1989).  Lastly, Mast’s procedure does not treat the case of inclined cables 

in detail, which is common practice during field handling when using single cranes.  To account 

for the effects of inclined cables, Mast (1989) modified the z0  equation by the factor: 
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1 - H/Pcr^ h 

where 

H = axial compression in the beam due to inclined cables 

Pcr = Euler Buckling load of the beam 

 Finally, Stratford and Burgoyne (2000) provided useful equations for calculating the 

stresses in beams during lifting.  They offered equations for midspan deflections, midspan 

curvature, and roll angle, and provided explicit numeric solutions, but only to specific particular 

cases. 

 Overall, the existing papers on the subject of lifting stability of precast prestressed 

concrete beams do not offer explicit and easy to use formulas for calculating displacements, 

forces, and moments during lifting that could readily be utilized in practice. 
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Lifting Analysis of Precast Prestressed Concrete Beams 
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2
 

3.1 Research objective 

 The goal of this paper is to eliminate the unknowns related to the stability calculations of 

long concrete beams and provide the precast community with an accurate, accessible method for 

predicting behavior during lifting.  There are two tasks supporting the abovementioned objective.  

The first task is to quantify geometric imperfections (sweep and eccentricity of lift supports) in 

long precast prestressed concrete beams and provide a statistical characterization. The second 

task is to present a new method for predicting the behavior of beams during lifting.  To achieve 

this task, the authors incorporate recently derived equations (Plaut and Moen 2012) that calculate 

beam deflections and internal forces and moments in a beam during lifting with a freely available 

Microsoft Excel (Lifting Analysis 2012) calculation sheet.  The internal forces can then be used 

to calculate demand stresses on the beam during lifting, which can then be checked against 

existing stress limits in tension and compression. 

3.2 Study of geometric imperfections in precast prestressed concrete beams 

3.2.1 Introduction 

 In order to ensure safety during lifting, it is important to be aware of the magnitudes of 

beam sweep and support eccentricities and their effects on lateral stability.  Particular attention 
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2
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should be paid to long slender beams, as the effects of initial imperfections on stability during 

lifting are amplified in such members (Hill 2009). 

 There is no current study quantifying typical values of geometric sweep imperfections in 

long precast prestressed concrete beams.  When performing stability checks, these values are 

usually assumed.  The urgency to document such imperfections was emphasized recently by a 

Georgia Department of Transportation funded study on girder rollover (Hurff 2010).  Therefore, 

due to the lack of current information, a study was conducted to quantify the values of sweep and 

eccentricity of lifting supports in long prestressed precast concrete beams.  A graphical 

representation of the two types of imperfections and their maximum allowed values as defined 

by the PCI Tolerance Manual for Precast and Prestressed Concrete Construction are depicted in 

Figure 5. 

PLAN VIEW

SWEEP: 1/8 in. per 10 ft length

LOCATION OF HANDLING DEVICE

TRANSVERSE TO LENGTH OF

MEMBER: ± 1 in.

HANDLING DEVICE

 

Figure 5. PCI tolerances for sweep and eccentricity of lift supports. 

 

  

 The geometric imperfections study was conducted at four different PCI certified plants in 

the United States, and a total of 128 beams between 121 ft and 139 ft were measured to quantify 

sweep. Eccentricities of lifting supports were measured for ten different beams.  A detailed 
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summary of the type and number of beams measured for sweep and lifting support eccentricities 

is reported in Table 1 and Table 2, and individual member measurements are provided in 

Appendix E. 

Table 1. Summary of beams measured for sweep 

Beam Type Length L, ft Count 
Average 

sweep, δ/L 
COV 

77 in. Bulb Tee 139 6 L/2282 0.49 

74 in. Bulb Tee (Modified) 124 10 L/1762 0.67 

72 in. Bulb Tee 

122 6 

L/2063 0.68 

124 1 

127 3 

129 28 

139 56 

72 in. Bulb Tee (Modified) 121 18 L/2939 0.39 

Note: 1 ft = 30.48 cm; COV = Coefficient of Variation. 

 

Table 2. Summary of beams measured for lifting support eccentricity 

Beam 

Type 

Length L, 

ft 

Number of lifting 

loops at each end 

Overhang a, 

in. 
Count 

Average q, 

in. † 
COV 

72 in. 

Bulb Tee 

139 2 119 5 0.40 0.52 

129 1 90 5 0.25 0.89 

Note: a = distance from the edge of the beam to the centroid of the lifting support group;  

q = eccentricity of the centroid of the handling device relative to the centerline of the top flange at each end; 1 ft = 

30.48 cm; 1in. = 25.4 mm; COV = Coefficient of Variation; † denotes the average of the absolute values of lift 

support eccentricity. 

 

3.2.2 Sweep measurements 

 A special jig consisting of a tensioned line with anchors that clamp to the ends of a beam 

was used to measure sweep imperfections, as shown in Figure 6.  Measurements of sweep were 

made with a digital caliper while the beams were sitting on rigid supports.  Measurements were 

taken at 10 ft increments along the length of the beam at the top flange, bottom flange, and the 

mid-height of the web. 
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Figure 6. Instrumentation of sweep measurements 

 

 

 For the majority of the beams, the value of the sweep at the top and bottom flanges 

coincided with the value of the sweep at the mid-height of the web.  Additionally, for the 

majority of the beams, the value of the sweep at midspan coincides with the maximum lateral 

deflection of the beam (Figure 7).  As a result, the initial midspan lateral deflection measured at 

the mid-height of the web was reported as the beam’s initial sweep imperfection. 
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Figure 7. Shape of measured sweep for six random beams. The sweep at midspan coincides with the 

maximum lateral deflection of the beam 

 
 

 The influence of temperature gradient played a small role in the variability of the 

measured sweep.  This is because in the plants visited, the beams sitting in storage were placed 

very close to each other.  For that reason, as illustrated in Figure 8, only the interior beams were 

investigated because their sides were screened from direct sunlight exposure. 

 

Figure 8. Measured beams screened from direct sunlight exposure 
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 Hence, by taking the effect of the temperature gradient out of the equation, it is believed 

that the measured sweep was caused primarily by the combination of three factors: eccentricity 

of the prestressing strands, differences in the forces in the prestressing strands, and by the 

variations of the elastic modulus within the concrete (Stratford and Burgoyne 1999).  However, 

thermal gradient has been proven to have a significant impact on the magnitude of sweep in long 

bridge girders.  In a recent experimental study performed by Hurff (2008) on a 101 ft PCI BT-54, 

it was shown that initial sweep increased up to 40% due to the effect of solar radiation. 

 For statistical purposes, the sweep imperfection magnitude at midspan δ0 for each beam 

is normalized to the beam length L, and reported as δ/L.  Similarly, the PCI tolerance for sweep 

(1/8 in. per 10 ft of beam length) is expressed as L/960. Numerically estimated cumulative 

distribution function (CDF) values and the summary statistics of the aggregated data is provided 

in Table 3.  The mean of the reported sweep values is L/1500 and the Coefficient of Variance 

(COV) is 0.61. 

Table 3. Summary statistics of sweep measurements 

P(δ < δo) Normalized sweep, δ/L 

0.25 L/3125 

0.50 L/1508 

0.75 L/1111 

0.95 L/575 

0.99 L/472 

Number of measurements 128 

Minimum L/6667 

Maximum L/470 

Mean L/1500 

Standard deviation L/2500 

COV 0.61 

Note: CDF = Cumulative Distribution Function; P(δ < δo) indicates the probability that a randomly selected 

imperfection value, δ, is less than a discrete deterministic imperfection, δo; COV = Coefficient of Variation. 
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 The CDF values reported in Table 3 can be used to define a probability of occurrence for 

a particular sweep imperfection magnitude.  A CDF value is written as P(δ < δo) and indicates 

the probability that a beam’s measured sweep imperfection, δ, is less than δo (Schafer and Pekoz 

1998).  For example, the probability P(δ < δo = L/1111) = 0.75 which means that a precast beam 

is expected to have a maximum sweep imperfection less than L/1111 75% of the time. 

 Further, to provide a better sense of the full range of measurements recorded, a histogram 

is shown in Figure 9.  Only 18 percent of the beams measured exceed the PCI tolerance for 

sweep, as represented by the values to the right of the red vertical line on the histogram.  No 

sweep measurements exceed L/470. 
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Figure 9. Histogram and CDF of sweep measurements 
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 Based on the sweep measurement results presented above it can be concluded that the 

PCI limit is reasonable for the beams considered in this study.  Nonetheless, although not typical, 

it is also shown that sweep magnitudes exceeding the PCI tolerance can be encountered.  In cases 

such as these, the likelihood that a stability failure would occur increases greatly.  For this 

reason, it is important that accurate sweep imperfection magnitudes be considered in stability 

checks whenever possible, and especially for very long beams.  Additionally, for more realistic 

magnitudes of sweep imperfections, the sweep values presented in this study could be increased 

by 40% to account for temperature effects (Hurff 2008). 

3.2.3 Eccentricity of lifting supports 

 The lifting support eccentricity of 10 - 72 in. PCI Bulb Tee beams was studied.  The 

investigated lifting loops were composed of five prestressing strands bundled together.  Half of 

the beams had two lifting loops at each end, and half just one, as shown in Figure 10. 

 
Figure 10. Lifting loops measured for eccentricity 
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 In both cases, the reported value for the individual lifting support eccentricity q, is the 

distance from the vertical midplane of the web to the centroid of the prestressing strand bundles.  

The lift support eccentricity results are presented in Table 4, and an explanation of the 

measurements is provided in Figure 11. 

Table 4. Eccentricity of lifting supports 

Beam 
Individual lifting support eccentricity q, in. 

Left end Right end 

1 0.06 −0.19 

2 0.06 0.13 

3 −0.13 −0.13 

4 −0.19 −0.38 

5 −0.50 −0.75 

6 0.38 0.25 

7 0.25 0.63 

8 0.38 0.56 

9 −0.25 −0.81 

10 0.25 0.19 

Average = 0.32 in.† 

COV = 0.69 

Note: q = eccentricity of the centroid of the handling device relative to the centerline of the top flange at each end; 

1in. = 25.4 mm; COV = Coefficient of Variation; † denotes the average of the absolute values of lift support 

eccentricity. 
 

+q

−q

+q

LEFT END RIGHT END

PLAN VIEW

ISOMETRIC VIEW

CENTROID OF

LIFTING LOOPS

+q

−q

−q

MIDPLANE

OF WEB

CENTROID OF LIFTING LOOPS

 
Figure 11. Sign convention used for the lift support eccentricity measurements 
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 The tolerance for the location of the handling device transverse to the length of the 

member is ± 1 in., as reported by the PCI Tolerance Manual for Precast and Prestressed 

Concrete Construction.  None of the measured eccentricities exceed this limit.  The average of 

the lift support eccentricities is 0.32 in., and the COV is 0.69. 

 Lifting loop eccentricities can influence the stability of beams during lifting.  If the lifting 

devices are slightly eccentric relative to the vertical centerline of the beam, an otherwise straight 

girder will twist or roll and deform laterally (Hill 2009).  The effect is greatest when both 

individual lifting support eccentricities q are on the same side of the midplane of the web, i.e., 

both q values have the same sign, and are closer to the center of curvature of the beam than the 

midplane of the web (Figure 12). 
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e
s
 < 0 IF FURTHER FROM CENTER
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+e
s

−e
s

 

Figure 12. Effect of eccentricity of lift supports is greatest when both lift loops are closer to center of 

curvature than midplane of web. 

 

 It is important that both types of imperfections are considered when predicting the 

behavior of precast concrete girders during lifting.  The sweep and lifting eccentricity 
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measurements results discussed above provide valuable information that will be used with the 

(Plaut and Moen 2012) lifting analysis method outlined in the following section. 

3.3 Limit state analysis of concrete beams during lifting 

3.3.1 Lifting analysis calculation sheet 

 A new method for investigating the behavior of beams during lifting was recently 

developed to calculate roll angle, twist, displacements, internal forces, internal moments, and 

stresses in a doubly symmetric curved beam during lifting by two cables.  The formulas derived 

by Plaut and Moen for a circularly curved beam can readily be used in practice, offering 

engineers a means of determining the resulting stresses that will occur in beams during lifting, 

and allowing them to prevent damage and failure.  The equations are valid for both steel (Plaut et 

al. 2011) and concrete beams.  However, for the purpose of this paper, the applicability to 

concrete beams where the initial curvature corresponds to a small imperfection is considered.  

The complete derivation of the equations can be found in reference 20. 

 For convenience, the equations derived in Plaut and Moen (2012) are organized in a user 

friendly calculation sheet (Lifting Analysis 2012), which is available to the precast community in 

both U.S. and metric units.  The calculation sheet can accommodate beams with vertical and 

inclined cables, with an initial curvature due to sweep, and with eccentric lifting supports. 

 The calculation sheet requires the following inputs: 

• Material properties: modulus of elasticity Ec, specific gravity SG, and modulus of rigidity 

G. 

• Beam properties and dimensions: beam length L, cross-sectional-area A, strong-axis and 

weak-axis moments of inertia Iz and Iy, torsion constant J, and self-weight w. (A method 
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for computing J for typical prestressed concrete girders is presented in reference 30, or it 

can be calculated using cross-section analysis computer programs). 

• Lifting device information: location of lifting device a from the ends of the beam, height 

of yoke to cable attachment points above the centroid of the beam H, global eccentricity 

of lift supports es, and the inclination angle of the cables ψ. 

• Initial normalized sweep imperfection δ0/L. 

 Based on the received input, the calculation sheets compute the following values at any 

location along the length of the beam: 

• Roll angle 

• Twist angle 

• Internal forces (weak-axis shear, strong-axis shear, and longitudinal axial force) 

• Internal moments (twisting moment, weak-axis bending, and strong-axis bending) 

• Deflections (weak-axis and strong-axis) 

 A detailed explanation of the use of the spreadsheet is given in Appendix B of this paper. 

3.3.2 Calculation sheet limitations 

 The analytical solutions derived by Plaut and Moen (2012) used in the calculation sheet 

are for the case of doubly-symmetric cross sections.  However, the case of beams with a doubly-

symmetric cross section is not common in bridge construction, since typical precast prestressed 

concrete beam shapes are singly-symmetric.  The main difference in behavior of a singly-

symmetric concrete cross-section during lifting is due to the offset of the center of twist (shear 

center) relative to the cross-section centroid.  For a singly-symmetric beam for which the center 

of twist is very close to the centroid of the beam, the results should be close to those presented in 

this paper. 
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 Schuh (2008) also investigated the effect of cross-section symmetry of steel I-girders on 

lifting stability and stated that a singly-symmetric girder with a larger bottom flange than top 

flange exhibits slightly less rotation than a doubly-symmetric girder.  The reason is that as the 

center of twist moves farther down the section, the rotation required to align the center of twist of 

the girder with the roll axis decreases.  Therefore, girders which have a center of twist below the 

centroid will rotate less, thus providing conservative estimates for the internal forces, moments, 

weak-axis deformation, and cross-sectional twist (Plaut and Moen 2012).  Vice versa, a singly-

symmetric girder with the center of twist above the centroid will rotate more, and yielding 

slightly non-conservative results for the weak-axis moment and displacement. 

 To address this issue, a study investigating the location of the center of twist of most 

common precast prestressed concrete beam shapes was performed in Section 3 of Chapter 4.  

Finite element simulations were performed to investigate the behavior of singly-symmetric 

concrete beams during lifting.  Internal forces, internal moments, and deflections were 

calculated, and the finite element simulation results were compared to the prediction method 

developed by Plaut and Moen (2012).  The results presented in Section 1 of Chapter 4 show 

small differences, no more than ±5 percent, between the Plaut and Moen (2012) method and the 

finite element simulation. 

 Additionally, the equations derived by Plaut and Moen (2012) do not include the 

influence of camber.  The influence of camber was considered in Peart et al. (2002), and it was 

concluded that it reduces the buckling load for a straight beam, but may not have a large 

influence on the roll angle and deformations of a curved beam during lifting (Plaut and Moen 

2012).  According to Mast (1989), it is sufficiently accurate to assume that the centroid of the 

mass is shifted upward by 2/3 of the midspan camber.  Additionally, Section 8.10.7.1 of the PCI 
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Bridge Design Manual (2003) offers an equation for calculating the height of the center of 

gravity of the cambered arc.  However, it also states that camber has only a small effect on the 

shift of the height of the roll axis, H, and that one may simply subtract an estimate of one or two 

inches from the value of H. 

3.3.3 Cracking limit state 

 In 1991, Mast conducted a lateral bending test on a 149 ft long prestressed concrete I-

beam to investigate the cracked section behavior of beams subjected to lateral loads (Mast 1994).  

According to his findings, the test beam tolerated lateral loads in excess of the theoretical 

cracking load, without any visible sign of damage once the lateral load was removed (Mast 

1994).  However, as emphasized by Swann and Godden (1966), if a cracked section is allowed 

during lifting there will be a reduction in the beam’s stiffness, resulting in increased deflections 

and consequently increasing the possibility of a self-propagating catastrophic stability failure 

which would occur with little or no warning (Swann and Godden 1966).  Therefore, as 

recommended by Stratford et al. (1999), for safety considerations it is advised that a cracked 

section is not allowed during lifting. 

 With this in mind, a tensile concrete stress limit is proposed, meaning the goal is to limit 

tensile stresses in the corner of the top flange (as seen in Figure 2) to the modulus of rupture of 

the concrete.  In order to control cracking in a beam during lifting, the following limit state is 

recommended: 

ft,max # ft  

where 

ft  = allowable tension stress at the time of lifting 

ft,max  = maximum tensile stress acting on the cross-section during lifting 
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 It is also recommended to check the bottom flange of the rotated section for high 

compression as well: 

fc,max # fc  

where 

fc  = allowable compression stress at the time of lifting 

fc,max  = maximum compressive stress acting on the cross-section during lifting 

Capacity: 

 The values ft  and fc  should be taken as the appropriate allowable concrete stresses at the 

time of lifting as per code specifications.  For example, AASHTO Standard Specifications for 

Highway Bridges (17th Edition), specifies 7.5 fcl  for the allowable tensile stresses (“Cracking 

Stresses” [STD Art. 9.15.2.3]), and 0.60 lf ci  for allowable compressive stresses (“Temporary 

Stresses before Losses due to Creep and Shrinkage” [STD Art. 9.15.2.1]). 

where 

lf c  = specified compressive strength of concrete, psi 

lf c i  = specified compressive strength of concrete at time of initial prestress, psi 

 Additionally, as referenced in Appendix D of the PCI Bridge Design Manual (2003), the 

Washington Department of Transportation outlines specific “criteria for checking girder stresses 

at the time of lifting or transporting and erecting,” as follows: 

Allowable compression stress: 

fc = 0.60 lf cm  

Allowable tension stress: 

ft = 3 lf cm , with no bonded reinforcement 
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ft = 7.5 lf cm , with bonded reinforcement to resist total tension force in the concrete computed 

on the basis of an uncracked section 

where 

lf cm  = compressive strength at time of lifting or transporting verified by test but shall not exceed 

design compressive strength ( fcl) at 28 days in psi + 1,000 psi 

 Overall, beams are usually lifted at a very young age.  It is common practice to strip the 

forms and lift the beams from the casting bed within one day.  For this reason, it is recommended 

that engineers rely on cylinder test results to determine the concrete strength at the time of 

lifting. 

Demand: 

 The values ft,max  and fc,max  include the combined effect of the stresses induced on the 

cross-section due to the self-weight weak-axis and strong-axis bending during lifting, the stresses 

due to the prestress, and in the case of inclined cables, the additional normal stresses resulting 

from the axial force in the cables.  For a beam that is being lifted, the maximum tensile stress 

typically occurs at the harp points in the corner of the downward top flange of the rotated cross-

section, and the maximum compressive stress occurs in the corner of the bottom flange, as 

shown in Figure 2. 

3.4 Procedure 

 During lifting, the beam is under combined biaxial bending and axial force, and therefore 

the proposed procedure requires the use of a structural cross-section analysis program capable of 

performing biaxial moment - axial load interaction analysis.  This paper incorporates the use of 

the biaxial nonlinear fiber element sectional analysis software XTRACT by TRC software, 
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which is the commercial version of the University of Berkeley program UCFyber (Chadwell and 

TRC software 2002). 

 Detailed below is the proposed procedure for performing a stability check for precast 

prestressed concrete beams during lifting: 

 Step 1: Input material properties (modulus of elasticity Ec, specific gravity SG, and 

modulus of rigidity G), beam properties (beam length L, cross-sectional-area A, strong-axis and 

weak-axis moments of inertia Iz and Iy, torsion constant J, and self-weight w), lifting device 

information (location of lifting device a from the ends of the beam, height of yoke to cable 

attachment points above the centroid of the beam H, global eccentricity of lift supports es, and 

the inclination angle of the cables ψ), and initial sweep imperfection (δ0/L) in the Lifting Analysis 

calculation sheet.  Collect axial force and weak-axis and strong-axis bending moments acting on 

the cross-section at critical locations along the length of the beam (midspan, harp points, and lift 

points). 

 Step 2: Using a cross-sections analysis program (e.g., XTRACT), apply the resulting 

axial force and weak-axis and strong-axis bending moments on the beam’s cross-section.  Add 

the effect of the prestress.  Record the resulting maximum tensile and compressive stresses 

acting on the cross-section. 

 Step 3: Check the resulting lifting stresses at the two critical locations of the rotated 

cross-section: the corner of the downward top flange in tension and the corner of the upward 

bottom flange in compression.  Compare these values with the maximum allowable stresses as 

per code specifications to ensure cracking does not occur.  Perform this check at critical locations 

along the length of the beam: midspan, at the harp points, and at the lifting points. 
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 The above outlined procedure for investigating the stability of precast prestressed 

concrete beams during lifting is applied in the following section of this paper to obtain numerical 

results for two examples. 

3.5 Example problems 

3.5.1 Example 1: 77 in. PCI Bulb Tee 

 The first example is a PCI-BT-77 beam that was cast in 2011 for the North Carolina 

Department of Transportation.  The beam has L = 139 ft, A = 970.7 in
2
, strong-axis moment of 

inertia Iz = 789,500 in
4
, weak-axis moment of inertia Iy = 63,600 in

4
, torsion constant J = 34,560 

in
4
, and self-weight w = 0.084 kip/in.  The lift point location is a = 90 in. at each end.  The beam 

is assumed to be lifted by inclined cables (ψ = 45°), and the roll axis height is H = 39 in. above 

the shear center.  The lifting loops are located on the vertical centerline of the beam, i.e., the 

lifting supports have zero eccentricity with respect to the midplane of the web; es = 0.  The 

specified 28-day strength of the concrete is f’c = 8,000 psi, and the release strength is f’ci = 6,500 

psi.  The unit weight of the concrete is 150 pcf.  The beam is prestressed using 56 Grade 270 

low-relaxation prestressing strands with a 0.60 in. diameter.  The strands are harped at 5 ft from 

midspan.  The initial jacking force is 43.90 kip per strand.  Strands are released one day after 

casting.  Assume 7 percent losses at the time of strand release (equivalent stress in the strands 

after release is 0.7fpu).  The beam has six draped strands, and the harp points are located 5 ft from 

midspan in both directions.  Figure 13 presents detailed drawings for the beam dimensions and 

the location of the prestressing strands at the three critical locations: midspan, harp points, and 

lift points. 
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Figure 13. 77 in. PCI Bulb Tee drawings. 

 

Procedure: 

 Step 1: Using the Lifting Analysis calculation sheet and the beam information given 

above, the axial force and the weak-axis and strong-axis moments acting on the cross-section due 

to lifting are determined.  Three different sweep magnitudes are investigated: the PCI limit of 

L/960, the 99
th

 percentile sweep imperfection according to the histogram in Figure 9 (L/472), and 

the sweep magnitude at which cracking first occurs for this particular beam (L/320). 

 The compressive axial force in the beam due to the prestress is 2,205 kip at midspan and 

harp points, and 2,123 kip at the lift points.  The moment due to the prestress is 66,027 kip-in. at 

midspan and harp points, and 44,168 kip-in. at the lift points.  The resultant compressive axial 

force due to the inclined cables is 70 kip, which is the same at midspan, harp points, and lift 

points.  The calculated weak-axis and strong-axis moments due to lifting for all three sweep 
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magnitudes are recorded in Table 5.  Results are presented at midspan, harp points, and lift 

points.  Additionally, the roll angle of the beam for the three imperfection magnitudes is 

presented. 
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Figure 14. Stress state for 77 in. PCI Bulb Tee. The figure on the left depicts the stress state of the beam 

at harp points when resting on the ground.  The figure on the right depicts the state of stress of the beam 

at harp points during lifting. 

 

 Step 2: Apply the resulting axial force and weak-axis and strong-axis bending moments 

on the beam’s cross-section.  Add the effect of the prestress. 

 Using the cross-sections analysis program XTRACT, the moments due to lifting and the 

axial compressive force due to the inclined cables calculated in step 1 are applied to the beam.  

Additionally, the effect of the prestress is applied automatically in XTRACT.  The resulting 
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maximum tensile and compressive stresses acting on the cross-section are recorded in Table 5.  

To illustrate the change in the stress state of the beam when lifted, Figure 14 above depicts the 

stress distribution on the cross-section at the harp points for the beam when resting on the ground 

(supported at its ends) and when hanging.  The lifting stresses illustrated in Figure 14 (right side) 

are for the case when the beam reaches its cracking limit, which occurs at a sweep magnitude of 

L/320. 

 Step 3: Compare the resulting lifting stresses with the maximum allowable stresses as per 

code specifications to ensure cracking does not occur.  For the purpose of this example problem, 

the allowable stresses are computed in accordance to the Washington Department of 

Transportation specifications as outlined in Appendix D of the PCI Bridge Design Manual 

(2003). 

 It is assumed that the beam is lifted from the casting bed within one day of casting.  

Therefore, the compressive strength at the time of lifting f’cm is taken as the release strength f’ci = 

6,500 psi. 

Allowable tension stress: 

ft = 7.5 lf cm = 7.5 6500 = 605 psi  

Allowable compression stress: 

fc = 0.60 lf cm = 0.60 $ 6500 = 3900 psi  
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Table 5. PCI BT77 results 

Normalized 

sweep δ/L 

(Actual 

sweep δ, in.) 

Location 

Lifting moments Maximum stresses 

Roll angle 

β, deg 
Strong-axis 

Mz, kip-in. 

Weak-axis 

My, kip-in. 

Tension: 

ft,max, ksi 

Compression: 

fc,max, ksi 

L/960 

(1.7) 

Midspan -24,897 754 0.048 4.67‡ 

1.6 Harp point -24,746 749 0.054 4.67‡ 

Lift point 340 -9.7 n.a. 4.38‡ 

L/472 

(3.6) 

Midspan -24,866 1533 0.330 4.82‡ 

3.3 Harp point -24,715 1523 0.334 4.82‡ 

Lift point 340 -19.8 n.a. 4.39‡ 

L/320 

(5.2) 

Midspan -24,817 2,260 0.595 4.95‡ 

4.9 Harp point -24,660 2,250 0.605† 4.96‡ 

Lift point 339 -30 n.a. 4.39‡ 

Note: † denotes a tensile stress value greater than7.5 √ f’cm; ‡ denotes a compressive stress value greater than 0.60 

f’cm; f’cm = compressive strength at time of lifting or transporting verified by test but shall not exceed design 

compressive strength (f’c) at 28 days in psi + 1,000 psi; positive strong-axis bending moment produces tension in the 

top fibers and compression in the bottom fibers of the beam; positive weak-axis bending moment produces tension 

in the face farther to the center of curvature and compression in the face closer to the center of curvature; 1in. = 25.4 

mm; 1 kip-in = 0.113 kN-m; 1 ksi = 6.895 MPa. 

 

 As seen in Table 5, for a sweep imperfection magnitude of L/320, the maximum tensile 

stress in the beam at the harp points reaches the modulus of rupture.  Additionally, for all three 

sweep magnitudes, the maximum allowable compression stress is exceeded at midspan, harp 

points, and lift points.  However, practitioners suggest that the 0.6f’ci limit for compressive stress 

is artificial and that a beam’s performance is not reduced by exceeding the compressive stress 

limit at release (Hale and Russell 2006).  Moreover, the PCI Standard Design practice reports 

that “no problems have been reported by allowing compression as high as 0.75f’ci” (PCI Standard 

Design Practice).  Therefore, the maximum allowable compression stress for the PCI BT77 beam 

can be permitted to reach: 

fc = 0.75 lf cm = 0.75 $ 6500 = 4875 psi  

 Accounting for the increase in allowable compression stress and the based on the results 

presented above, it is concluded that the beam does not exceed the tensile and compressive stress 

limits within the PCI tolerance for sweep (L/960).  Nonetheless, cracking in tension or crushing 
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in compression can occur at sweep imperfection values greater than L/320 (5.2 in.).  However, 

based on the geometric imperfections study presented in Section 3.2, such sweep magnitudes are 

unlikely.  

3.5.2 Example 2: Type IV AASHTO beam 

 The second example is a Type IV AASHTO beam that was cast in 2010 for the North 

Carolina Department of Transportation.  The beam has L = 104 ft, A = 789 in
2
, strong-axis 

moment of inertia Iz = 260,741 in
4
, weak-axis moment of inertia Iy = 24,374 in

4
, torsion constant 

J = 32,924 in
4
, and self-weight w = 0.07 kip/in.  The lift point location is a = 48 in. at each end.  

The beam is assumed to be lifted by vertical cables (ψ = 0°), and the roll axis height is H = 29.3 

in. above the shear center.  The lifting supports have an eccentricity es = +0.5 in.  The 

eccentricity is assumed to be positive, meaning that the lifting loops are closer to the center of 

curvature than the midplane of the web.  The specified 28-day strength of the concrete is f’c = 

10,000 psi, and the release strength is f’ci = 8,000 psi.  The unit weight of the concrete is 150 pcf.  

The beam is prestressed using 46 Grade 270 low-relaxation prestressing strands with a 0.60 in. 

diameter.  The strands are harped at 5 ft from midspan.  The applied prestress is 43.95 kip per 

strand.  Similarly to the first example, the strands are released one day after casting.  Assume 7 

percent losses at the time of strand release (equivalent stress in the strands after release is 0.7fpu).  

The beam has eight draped strands, and the harp points are located 5 ft from midspan in both 

directions.  Figure 15 presents detailed drawings for the beam dimensions and the location of the 

prestressing strands at the three critical locations: midspan, harp points, and lift points. 
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Figure 15. AASHTO Type IV beam drawings 

 

Procedure: 

 Step 1: Using the Lifting Analysis calculation sheet and the beam information given 

above, the weak-axis and strong-axis moments acting on the cross-section due to lifting are 

determined.  Since the cables are vertical, there is no additional axial force in the beam.  Three 

different sweep magnitudes are investigated: the PCI limit of L/960, the 99
th

 percentile 

imperfection according to the histogram in Figure 9 (L/472), and the sweep magnitude at which 

cracking first occurs (L/300). 

 The compressive axial force in the beam due to the prestress is 1880 kip at midspan, harp 

points, and lift points.  The moment due to the prestress is 33,787 kip-in. at midspan and harp 

points, and 24,826 kip-in. at the lift points.  The calculated weak-axis and strong-axis moments 

due to lifting for all three sweep magnitudes are recorded in Table 6.  Results are presented at 
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midspan, harp points, and lift points.  Additionally, the roll angle of the beam for the three 

imperfection magnitudes is presented. 

 Step 2: Apply the resulting axial force and weak-axis and strong-axis bending moments 

on the beam’s cross-section.  Add the effect of the prestress. 

 Using the cross-sections analysis program XTRACT, the moments due to lifting 

calculated in step 1 are applied to the beam.  Additionally, the effect of the prestress is applied 

automatically in XTRACT.  The resulting maximum tensile and compressive stresses acting on 

the cross-section are recorded in Table 6.  To illustrate the change in the stress state of the beam 

when lifted, Figure 16 depicts the stress distribution on the cross-section at the harp points for the 

beam when resting on the ground (supported at the ends) and when hanging.  The lifting stresses 

illustrated in Figure 16 (right side) are for the case when the beam reaches its cracking limit, 

which occurs at a sweep magnitude of L/300. 
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Figure 16. Stress state for AASHTO Type IV beam. The figure on the left depicts the stress state of the 

beam at harp points when resting on the ground.  The figure on the right depicts the state of stress of the 

beam at harp points during lifting. 

 

 

 Step 3: Compare the resulting lifting stresses with the maximum allowable stresses as per 

code specifications to ensure cracking does not occur.  Similar to the previous example, the 

allowable stresses are computed in accordance with the Washington Department of 

Transportation specifications.  It is assumed that the beam is lifted from the casting bed within 

one day of casting.  Therefore, the compressive strength at the time of lifting f’cm is taken as the 

release strength f’ci = 8,000 psi. 
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Allowable tension stress: 

ft = 7.5 lf cm = 7.5 8000 = 670 psi  

Allowable compression stress: 

fc = 0.60 lf cm = 0.60 $ 8000 = 4800 psi  

Table 6. AASHTO Type IV results 

Normalized 

sweep δ/L 

(Actual 

sweep δ, in.) 

Location 

Lifting moments Maximum stresses 
Roll angle 

β, deg 
Strong-axis 

Mz, kip-in. 

Weak-axis 

My, kip-in. 

Tension: 

ft,max, ksi 

Compression: 

fc,max, ksi 

L/960 

(1.3) 

Midspan -11,515 610 0.368 4.95‡ 

3.0 Harp point -11,389 603 0.380 4.96‡ 

Lift point 81 -4 0.384 4.78 

L/472 

(2.7) 

Midspan -11,490 971 0.498 5.11‡ 

4.8 Harp point -11,365 960 0.507 5.12‡ 

Lift point 80 -7 0.385 4.78 

L/300 

(4.2) 

Midspan -11,448 1,377 0.660 5.43‡ 

6.9 Harp point -11,323 1,362 0.670† 5.45‡ 

Lift point 80 -10 0.386 4.78 

Note: † denotes a tensile stress value greater than7.5 √ f’cm; ‡ denotes a compressive stress value greater than 0.60 

f’cm; f’cm = compressive strength at time of lifting or transporting verified by test but shall not exceed design 

compressive strength (f’c) at 28 days in psi + 1,000 psi; positive strong-axis bending moment produces tension in the 

top fibers and compression in the bottom fibers of the beam; positive weak-axis bending moment produces tension 

in the face farther to the center of curvature and compression in the face closer to the center of curvature; 1in. = 25.4 

mm; 1 kip-in = 0.113 kN-m; 1 ksi = 6.895 MPa. 

 

 As seen in Table 6, for a sweep imperfection magnitude of L/300, the maximum tensile 

stress in the beam at the harp points reaches the modulus of rupture.  Additionally, for all three 

sweep magnitudes, the maximum allowable compression stress is exceeded at midspan and the 

harp points.  Similar to the previous example, if the maximum allowable compression stress is 

increased to 0.75f’ci (6,000 psi), the Type IV AASHTO beam does not exceed the stress limits 

within the PCI tolerance for sweep (L/960).  However, it is shown that cracking can occur for 

sweep imperfection values greater than L/300 (4.2 in.), though, such sweep magnitudes are 

unlikely. 
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3.5.3 Comparison to Mast (1989) factor of safety approach 

 The factors of safety against cracking were calculated for the PCI BT77 beam and 

AASHTO Type IV beam using Mast’s approach to investigating lateral stability during lifting.  

The factors of safety obtained using Mast’s procedure were then compared to the ratio of the 

allowable tension stress to the actual tension stress calculated using the Plaut and Moen (2012) 

method.  For comparison purposes, since Mast’s procedure does not account for inclination of 

cables or the eccentricity of the lift supports, both beams were assumed to be lifted by vertical 

cables and the eccentricity of the lift supports was assumed to be 0 in.  All other properties were 

identical to the beams presented in Examples 1 and 2.  Three sweep magnitudes were 

investigated for each beam: the PCI sweep limit of L/960, the sweep at which cracking first 

occurs according to the Plaut and Moen (2012) method, and the sweep magnitude at which the 

Mast (1993) factor of safety against cracking is 1.0.  The results are presented in Table 7 and 

Table 8. 

Table 7. FS against cracking approach for PCI BT77 

Normalized 

sweep δ/L 

FSc 

(Mast 1993) 

Plaut and Moen (2012) 

Allowable tension 

stress ft, ksi 

Actual tension 

stress ft,max, ksi 

Allowable stress/ 

Actual stress 

L/960 2.2 0.605 0.171 3.5 

L/330 1.2 0.605 0.605 1.0 

L/270 1.0 0.605 0.745 0.8 

 

Table 8. FS against cracking approach for AASHTO Type IV 

Normalized 

sweep δ/L 

FSc 

(Mast 1993) 

Plaut and Moen (2012) 

Allowable tension 

stress ft, ksi 

Actual tension 

stress ft,max, ksi 

Allowable stress/ 

Actual stress 

L/960 2.5 0.670 0.289 2.3 

L/240 1.1 0.670 0.670 1.0 

L/210 1.0 0.670 0.731 0.9 
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 According to Mast (1993), the necessary factor of safety cannot be determined from 

scientific laws, however, it must be determined from experience.  Tentatively, Mast (1993) 

recommends using a factor of safety of 1.0 against cracking and 1.5 against failure.  For the two 

example beams, the equations developed by Plaut and Moen (2012) yield more conservative 

results compared to the factor of safety approach recommended by Mast (1993).  As seen in 

Table 7 and Table 8, using the Plaut and Moen (2012) method, both beams are predicted to reach 

their tensile capacities at sweep magnitudes lower than the sweep magnitudes at which Mast’s 

factor of safety against cracking is 1.0.    The detailed calculation steps used for the computation 

of the Mast (1993) factors of safety are presented in Appendix D. 

3.6 Conclusions 

 A new method for the analysis of precast prestressed concrete beams during lifting has 

been presented.  Using the procedure outlined in this paper, one has the ability to determine roll 

angle, twist, moments, forces, deflections, and most importantly the maximum stresses acting on 

a beam during lifting. 

 Accounting for sweep and eccentricity of lift supports is important for predicting the 

behavior of beams during lifting.  Quantifying these geometric imperfections in precast 

prestressed concrete beams is possible, and the presented data on imperfections provides useful 

characterization of typical magnitudes that could be expanded to more cross-section types and 

precast plants in the future. The PCI limits of L/960 for sweep and ±1 in. for lifting support 

eccentricity are consistent with measurement statistics presented in this study. 

 The proposed method for checking stresses during lifting involves the use of the freely 

available Lifting Analysis calculation sheet and an additional cross-section analysis program 

which can perform biaxial moment - axial load interaction analysis.  Performing this type of 
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study can involve difficulties, since not all engineers have access to such software, or the tools to 

perform cross-sectional analysis.  For this reason, an open source tool for performing biaxial 

moment - axial load interaction analysis is needed.  Alternatively, the development of combined 

biaxial bending and axial force interaction curves and tables for commonly used precast 

prestressed concrete beam sections would be very beneficial. 
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CHAPTER 4.     VALIDATION OF PROPOSED MODEL      

 

4.1 Introduction 

 The equations proposed by Plaut and Moen (2012), on which the Lifting Analysis 

calculation sheet is based, are for doubly-symmetric beams.  However, most precast prestressed 

concrete beams have singly-symmetric cross-sections.  For this reason, in order to validate the 

proposed model, this chapter investigates the applicability of the Lifting Analysis sheet to singly-

symmetric concrete beam cross-sections.  Since the difference in behavior of a singly-symmetric 

concrete beam during lifting is due to the offset of the center of twist relative to the centroid, a 

study investigating the location of the center of twist of common precast prestressed concrete 

beams is presented in Section 4.2.  Additionally, finite element models are developed in Section 

4.2 to investigate the behavior of singly-symmetric concrete beams sections during lifting.  

Internal forces, internal moments, and deflections are calculated, and the results of the finite 

element models are compared to the prediction method developed by Plaut and Moen (2012). 

4.2 Center of twist study 

 The main difference in behavior of a singly-symmetric concrete cross-section during 

lifting is due to the offset of the center of twist relative to the centroid.  For a beam with the 

center of twist below the centroid, the equations developed by Plaut and Moen (2012) offer 

conservative estimates for weak-axis shear force, moment, and deformation.  On the other hand, 

the case of a beam with the center of twist above the centroid is of concern, since the equations 

developed by Plaut and Moen (2012) would offer non-conservative results.  For this reason, a 

study is conducted to investigate the location of the center of twist of typical precast prestressed 



 49

concrete beams.  The advanced general beam section calculator, ShapeDesigner SaaS by 

MechaTools Technologies (Shape Designer SaaS 2012), was used to find the centroid and center 

of twist (shear center) location of 13 precast beam shapes.  The results are presented in Table 9 

below. 

Table 9. Center of twist location for common precast concrete beams 

Beam type Depth, in. yc, in. ys, in. ect, in. 

AASHTO modified type I beam 28 12.83 10.94 -1.89 

AASHTO type I beam 28 12.59 10.22 -2.37 

AASHTO type II beam 36 15.83 11.76 -4.07 

AASHTO type III beam 45 20.27 15.91 -4.36 

AASHTO type IV beam 54 24.73 20.20 -4.53 

AASHTO type V beam 63 31.96 40.49 8.53 

AASHTO type VI beam 72 36.39 46.30 9.91 

PCI-BT-54 54 27.63 37.16 9.53 

PCI-BT-56 56 27.54 34.52 6.98 

PCI-BT-63 63 32.12 43.44 11.32 

PCI-BT-65 65 31.87 42.35 10.48 

PCI-BT-72 72 36.60 49.69 13.09 

PCI-BT-74 74 36.22 48.17 11.95 

Note: yc = distance from centroid to the extreme bottom fiber; ys = distance from center of twist to the extreme 

bottom fiber; ect = distance from centroid to center of twist (a positive value denotes a center of twist above the 

centroid) 

  

 From Table 9 above, it can be observed that the location of the center of twist for typical 

precast concrete beams varies, based on the shape of the beam.  For beams with narrow top 

flanges, such as the smaller AASHTO beams, the center of twist is located below the centroid.  

On the other hand, for beams with wider top flanges, such as type V and VI, and the PCI bulb tee 

beams, the center of twist is above the centroid. 

 In a recent study by Schuh (2008), it was shown that a singly-symmetric beam with a 

larger bottom flange than top flange exhibits slightly less rotation than a doubly symmetric 
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beam.  Hence, if a singly-symmetric beam with a center of twist below the centroid rotates less 

than a doubly-symmetric beam, it will have less weight applied in the weak-axis direction, thus 

yielding a smaller weak-axis moment and displacement.  Vice versa, a singly-symmetric beam 

with the center of twist above the centroid will rotate more, therefore yielding a greater weak-

axis moment and displacement. 

 In order to investigate the behavior during lifting of beams with singly-symmetric cross 

sections, two finite element models were created for the beams with the greatest eccentricities of 

the center of twist relative to the centroid.  The first model was created for the AASHTO type IV 

beam, for which the center of twist is 4.53 in. below the centroid.  The second finite element 

model is for the PCI-BT-72 beam, which has a center of twist 13.09 in. above the centroid.  The 

results of the finite element models are then compared to the prediction method developed by 

Plaut and Moen (2012), which is based on the assumption of a doubly-symmetric cross section. 

4.3 Finite element analysis of hanging beams 

 The two finite element models (Type IV AASHTO and PCI-BT-72) were developed in 

ABAQUS v6.10 based on a previous study of Stratford and Burgoyne (1999), where finite 

element eigenvalue analyses and non-linear analyses were performed for hanging beams.  Using 

B31OS beam elements in ABAQUS, the beams were divided into 50 elements, aligned with their 

centroid.  The B31OS element in ABAQUS is a three-dimensional 2-node linear beam element 

that uses interpolation to determine the stress results for the entire cross section (ABAQUS 6.10).  

The B31OS element is able to account for the position of the center of twist relative to the 

centroid, which is necessary when modeling singly-symmetric cross sections.  The beams are 

assumed to be lifted by vertical cables, which were modeled using T3D2 truss elements.  The 

cables were connected to the beam using rigid elements attached to the centroid.  A distributed 
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load equal to the beam’s self weight was applied in the negative z-direction along the beam’s 

length.  For the purpose of the analysis, prestressing was not considered.  Figure 17 below shows 

a graphical representation of the ABAQUS beam model.  The AASHTO type IV and PCI-BT-72 

beam properties are shown in Table 10. 

 In order for the solution to converge in Abaqus, it was required to restrain the beam in the 

y-direction at the cable attachment points. This condition does not accurately reflect the actual 

behavior of a hanging beam.  However, the influence of this imposed boundary condition had a 

small impact on the results, as the reaction forces developed at the cable attachment points in the 

y-direction were small. 
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Figure 17. ABAQUS model of a hanging beam 
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 To investigate the applicability of the new method proposed in this paper (Plaut and 

Moen 2012) to singly-symmetric beams, internal forces, moments, and displacements were first 

calculated using the Lifting Analysis calculation sheet for both beams.  The results were then 

compared to the values obtained from the ABAQUS finite element models.  A comparison of the 

maximum resulting forces, moments and displacements is provided in Table 11 and Table 12.  

Additionally, a graphical representation of the results for both beams is offered in Figures 18-29.  

The results are plotted on the right half of the beam.  The moments and displacements are 

symmetric with respect to the midspan, whereas the internal shear forces are anti-symmetric 

about midspan. 

Table 10. Properties of Type IV AASHTO and PCI-BT-72 beams used for the FE model 

 
AASHTO 

Type IV 
PCI-BT-72 

Beam length, in. 1248 1248 

Inclination of lifting cables from vertical, deg. 0 0 

Location of lift points from ends, in. 31.2 31.2 

Sweep at midspan L/960 L/960 

Overall beam height, in. 54 72 

Height of centroid from bottom fiber, in. 24.7 36.6 

Height of center of twist from bottom fiber, in. 20.2 49.7 

Cross-sectional area, in.
2
 789 766 

Strong-axis moment of inertia, in.
4
 260,741 545,857 

Weak-axis moment of inertia, in.
4
 24,374 37,634 

St. Venant’s torsion constant, in.
4
 32,924 12,258 

Warping constant, in.
6
 7,225,000 30,850,000 

Self-weight, kip/in. 0.08 0.06 

Young’s modulus, ksi 5422 5422 

Torsional shear modulus, ksi 2259 2259 
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 The equations developed by Plaut and Moen (2012) yield similar results to the ABAQUS 

finite element model.  As shown in Table 11 and Table 12, the results obtained using the Plaut 

and Moen (2012) equations are within ±5 percent of the finite element analysis results.  Slightly 

conservative results are obtained for weak-axis moment and weak-axis displacement using the 

Plaut and Moen (2012) equations for the AASHTO type IV beam.  The reason for this is because 

singly-symmetric beams with the center of twist below the centroid exhibit a slightly smaller 

rotation than doubly-symmetric beams (Schuh 2008), which also means that less weight is 

applied in the weak-axis direction, thus yielding a smaller weak-axis moment and displacement.  

Conversely, for the PCI-BT-72 beam which has a center of twist above the centroid, the Plaut 

and Moen (2012) equations yield non-conservative results for the weak-axis moment and 

displacement. 

Table 11. AASHTO Type IV beam: Plaut & Moen/ABAQUS results 

 Location 
Plaut & Moen 

model 

ABAQUS 

model 

Plaut & 

Moen/ 

ABAQUS 

Strong-axis moment Mz, kip-in. Midspan 14,270 14,263 1.00 

Weak-axis moment My, kip-in. Midspan 537 523 1.03 

Strong-axis shear Ny, kip Lift points 48.3 48.3 1.00 

Weak-axis shear Nz, kip Lift points 1.8 1.8 1.00 

Strong-axis displacement V, in. Midspan 1.48 1.51 0.98 

Weak-axis displacement W, in. Midspan 0.59 0.56 1.05 
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Table 12. PCI-BT-72 beam: Plaut & Moen/ABAQUS results 

 Location 
Plaut & Moen 

model 

ABAQUS 

model 

Plaut & 

Moen/ 

ABAQUS 

Strong-axis moment Mz, kip-in. Midspan 10,913 10,907 1.00 

Weak-axis moment My, kip-in. Midspan 263 269 0.98 

Strong-axis shear Ny, kip Lift points 36.9 36.9 1.00 

Weak-axis shear Nz, kip Lift points 0.89 0.89 1.00 

Strong-axis displacement V, in. Midspan 0.54 0.55 0.98 

Weak-axis displacement W, in. Midspan 0.19 0.20 0.95 

 

 Overall, the finite element analysis results are consistent with the previous study 

performed by Schuh (2008) investigating the effects of cross section symmetry during lifting.  

The prediction method (Plaut and Moen 2012) offers conservative results for weak-axis moment 

and displacement for beams with the center of twist below the centroid, and non-conservative 

results for beams with the center of twist above the centroid.  However, the difference in results 

between the FE model and the Plaut and Moen (2012) method is small, not exceeding ± 5 

percent. 
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Figure 18. Strong-axis bending moment comparison for AASHTO type IV beam 
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Figure 19. Strong-axis bending moment comparison for PCI-BT-72 beam 
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Figure 20. Weak-axis bending moment comparison for AASHTO type IV beam 
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Figure 21. Weak-axis bending moment comparison for PCI-BT-72 beam 
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Figure 22. Strong-axis shear comparison for AASHTO type IV beam 
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Figure 23. Strong-axis shear comparison for PCI-BT-72 beam 
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Figure 24. Weak-axis shear comparison for AASHTO type IV beam 



 58

 

 
N

z
, 
k
ip

x, in.

ABAQUS

Plaut & Moen

z

y

N
z

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0 100 200 300 400 500 600

 
Figure 25. Weak-axis shear comparison for PCI-BT-72 beam 
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Figure 26. Strong-axis displacement comparison for AASHTO type IV beam 
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Figure 27. Strong-axis displacement comparison for PCI-BT-72 beam 
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Figure 28. Weak-axis displacement comparison for AASHTO type IV beam 
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Figure 29. Weak-axis displacement comparison for PCI-BT-72 beam 
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CHAPTER 5.     CONCLUSIONS          

 

 A new method for predicting the behavior of precast prestressed concrete beams during 

lifting was presented.  Based on the equations developed by Plaut and Moen (2012), an easy to 

use free calculation sheet was created in Excel which allows the determination of the roll angle, 

twist, moments, forces, and deflections for a beam during lifting.  Although derived for doubly-

symmetric beams, using finite element simulations it was shown that the equations can be 

applied to typical precast concrete beams with singly-symmetric cross-sections.  The difference 

in results between the FE model and the Plaut and Moen (2012) method is small, not exceeding ± 

5 percent.  

 Additionally, a tensile concrete stress limit was proposed, in which the goal was to limit 

tensile stresses in the corner of the top flange to the modulus of rupture of the concrete.  The 

proposed method for checking stresses during lifting involves the use of the Lifting Analysis 

calculation sheet and an additional cross-sections analysis program which can perform biaxial 

moment - axial load interaction analysis.  Performing this type of study can involve difficulties, 

since not all engineers have access to such software, or the tools to perform cross-sectional 

analysis.  For this reason, an open source tool for performing biaxial moment - axial load 

interaction analysis is needed.  Alternatively, the development of combined biaxial bending and 

axial force interaction curves and tables for commonly used precast prestressed concrete beam 

sections would be very beneficial. 

 Finally, this study outlined that accounting for sweep and eccentricity of lift supports is 

important for predicting the behavior of beams during lifting.  Quantifying these geometric 

imperfections in precast prestressed concrete beams is possible, and the presented data on 
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imperfections provided useful characterization of typical magnitudes that could be expanded to 

more cross-section types and precast plants in the future. The PCI limits of L/960 for sweep and 

±1 in. for lifting support eccentricity are consistent with measurement statistics presented in this 

study. 
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APPENDIX A – ROLL ANGLE STUDY         

 An experimental study was conducted to investigate the rotation of six 77 in. PCI Bulb 

Tee bridge girders during lifting.  The motivation of this study was to confirm the accuracy of 

the roll angle prediction using three theoretical methods: Mast (1989), Plaut and Moen (2012), 

and Stratford et al. (1999).  The six girders were lifted by vertical cables, and “in the air” 

measurements were taken using SBS1U inclinometers attached at the ends and the midspan of 

the girders.  Additionally, the sweep of each girder was measured, based on which the theoretical 

values of the roll angle were computed.  The properties of the girders can be found in Section 

3.5.1, as they are the same girders used in example problem 1.  The results of the study are 

presented in Table A1. 

Table A1. Roll angle study results 

Beam δ, in. 
β measured, 

deg. 

Mast (1989) Stratford et al. (1999) Plaut and Moen (2012) 

β predicted, 

deg. 

β measured/ 

β predicted 

β predicted, 

deg. 

β measured/ 

β predicted 

β predicted, 

deg. 

β measured/ 

β predicted 

1 0.73 0.50 0.64 0.8 0.64 0.8 0.64 0.8 

2 0.38 0.37 0.33 1.1 0.33 1.1 0.33 1.1 

3 1.25 1.03 1.09 0.9 1.10 0.9 1.09 0.9 

4 1.12 1.29 0.98 1.3 0.98 1.3 0.97 1.3 

5 0.83 0.49 0.72 0.7 0.73 0.7 0.72 0.7 

6 0.77 0.62 0.67 0.9 0.68 0.9 0.67 0.9 

 

 The results show that the three theoretical methods used to predict the value of the roll 

angle of the beam during lifting yield identical results.  Additionally, the theoretical prediction 

methods offer good estimates of the actual measured roll angle.  The differences in results 

between the measured and predicted values are within 70 percent.  A linear relation is observed 

between the magnitude of the sweep imperfection and the magnitude of the measured roll angle, 

as depicted in Figure A1. 
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Figure A1. Roll angle as a function of sweep 
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Figure A2. Roll angle measured-to-predicted ratio v. sweep 
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APPENDIX B – LIFTING ANALYSIS CALCULATION SHEET     

 The Lifting Analysis calculation sheet has been created at Virginia Tech by Razvan 

Cojocaru and Dr. Cristopher Moen (cojocaru@vt.edu, cmoen@vt.edu).  The equations used in 

this spreadsheet are based on the prediction method in Plaut, R. H., and Moen, C. D. (2012). 

"Analysis of elastic, doubly symmetric, horizontally curved beams during lifting." J. Struct. Eng. 

 

 An explanation of the quantities used in the calculation sheet is provided below: 

 

 

 

0.00 in.

5422 ksi

0.2 N/A

2.4 N/A

2259 ksi

5.575 degrees

0 kip

1248 in. 0 kip

789 in.2 0 kip

260741 in.4

24374 in.4

0 in.6 0.00 kip-ft

32924 in.4 93.351 kip-ft

0.0700 kip/in. -956.4 kip-ft

29.3 in.

0 radians

48 in. 1.121 in.

0.00256 N/A 1.110 in.

0.5 in.

3.0387 degrees

Point of interest*:

M x  (twisting moment)

M y  (weak-axis bending)

Internal Forces:

Roll Angle, β :

Specific Gravity, SG

Length, L

Moment of Inertia (strong axis), I z

Material Properties:

Modulus of Elasticity, E

Poisson's Ratio, ν

RESULTS:

Beam Properties:

Modulus of Rigidity, G

Internal Moments:

Deflections:

Area, A

Inclination Angle of Cables, ψ

Moment of Inertia (weak axis), I y

Warping Constant, C w

Torsion Constant, J

Self Weight, w

Roll Axis Height, H

M z  (strong-axis bending)

N x  (longitudinal)

N y  (strong-axis shear)

N z  (weak-axis shear)

Lift supports eccentricity, e s

Overhang Length, a

Sweep Imperfection, δ /L :

Twist Angle, φ:

V  (Strong-Axis)

W  (Weak-Axis)

Choose a location along the 

right half of the beam. Values

must be between 0 (mid-span)

and L/2 (end of beam).

Figure B2

Figure B3

Figure B4

Figure B5

Figure B6

 

Figure B1. Lifting Analysis calculation sheet 
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Figure B2. Graphical representation of quantities describing properties of lifting devices 
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Figure B4. Lift supports eccentricity 
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Figure B6. Deflections, shear, and moments 
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APPENDIX C – ABAQUS INPUT FILE - FE MODEL OF A HANGING BEAM   

 

Adapted from the original ABAQUS input file of Stratford and Burgoyne (1999) (with 

permission). 

 
*HEADING
Abaqus analysis of a hanging beam with initial sweep
*NODE
1, 0, 0, 0
2, 31.2, 0.12, 0
3, 62.4, 0.24, 0
4, 93.6, 0.36, 0
5, 124.8, 0.46, 0
6, 156, 0.56, 0
7, 187.2, 0.66, 0
8, 218.4, 0.75, 0
9, 249.6, 0.83, 0
10, 280.8, 0.90, 0
11, 312, 0.97, 0
12, 343.2, 1.03, 0
13, 374.4, 1.09, 0
14, 405.6, 1.14, 0
15, 436.8, 1.18, 0
16, 468, 1.21, 0
17, 499.2, 1.24, 0
18, 530.4, 1.27, 0
19, 561.6, 1.28, 0
20, 592.8, 1.29, 0
21, 624, 1.3, 0
22, 655.2, 1.29, 0
23, 686.4, 1.28, 0
24, 717.6, 1.27, 0
25, 748.8, 1.24, 0
26, 780, 1.21, 0
27, 811.2, 1.18, 0
28, 842.4, 1.14, 0
29, 873.6, 1.09, 0
30, 904.8, 1.03, 0
31, 936, 0.97, 0
32, 967.2, 0.90, 0
33, 998.4, 0.83, 0
34, 1029.6, 0.75, 0
35, 1060.8, 0.66, 0
36, 1092, 0.56, 0
37, 1123.2, 0.46, 0
38, 1154.4, 0.36, 0
39, 1185.6, 0.24, 0
40, 1216.8, 0.12, 0
41, 1223, 0.10, 0
42, 1228, 0.08, 0
43, 1233, 0.06, 0
44, 1238, 0.04, 0
45, 1243, 0.02, 0
46, 1248, 0, 0
100, 31.2, 0.12, 29.3
101, 1216.8, 0.12, 29.3
110, 31.2, 0.12, 600
111, 1216.8, 0.12, 600

NODE DEFINITION
INCLUDES INITIAL SWEEP IMPERFECTION
OF L/960 AT MIDSPAN

CABLE ATTACHMENTS TO BEAM

TOP OF CABLES
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*ELEMENT, TYPE=B31OS
1, 1, 2
100, 100, 2
101, 101, 40
*ELEMENT, TYPE=T3D2, ELSET=CABLES
110, 100, 110
111, 101, 111
*ELSET, ELSET=SUPL
100
*ELSET, ELSET=SUPR
101
*ELGEN, ELSET=BEAM
1, 45, 1, 1
*NSET, NSET=SUPPORTS
100, 101
*NSET, NSET=RIGHT
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46
*BEAM GENERAL SECTION,
SECTION=GENERAL, ELSET=BEAM
789, 260741, 0.0, 24374, 32924, 0.0, 7225000
0.0, -1.0, 0.0
5422, 2259
*SHEAR CENTER
0.0, -4.5
*BEAM GENERAL SECTION,
SECTION=GENERAL, ELSET=SUPL
100, 100, 0.0, 100, 100, 0.0, 0.0
0.0, -1.0, 0.0
5422, 2259
*BEAM GENERAL SECTION,
SECTION=GENERAL, ELSET=SUPR
100, 100, 0.0, 100, 100, 0.0, 0.0
0.0, -1.0, 0.0
5422, 2259
*SOLID SECTION, ELSET=CABLES,
MATERIAL=CABLE
0.8
*MATERIAL, NAME=CABLE
*ELASTIC
29000, 0.3125
*BOUNDARY
110, 1, 3
111, 1, 3
100, 2, 3
101, 2, 3
21, 1,,0

ELEMENT DEFINITION

BEAM

CABLES
(ONLY CARY AXIAL LOAD)

BEAM SECTION DEFINITION

SHEAR CENTER DEFINITION

RIGID SUPPORT ELEMENTS

PROPERTIES OF
CABLES

TOP OF CABLES
RESTRAINED IN 1, 2, 3

CABLES ATTACHMENT POINTS
RESTRAINED IN 2 AND 3

BEAM RESTRAINED IN 1 AT MIDSPAN  



 75

*EQUATION
41
1,2,1, 2,2,1, 3,2,1, 4,2,1,
5,2,1, 6,2,1, 7,2,1, 8,2,1,
9,2,1, 10,2,1, 11,2,1, 12,2,1,
13,2,1, 14,2,1, 15,2,1, 16,2,1,
17,2,1, 18,2,1, 19,2,1, 20,2,1,
21,2,1, 22,2,1, 23,2,1, 24,2,1,
25,2,1, 26,2,1, 27,2,1, 28,2,1,
29,2,1, 30,2,1, 31,2,1, 32,2,1,
33,2,1, 34,2,1, 35,2,1, 36,2,1,
37,2,1, 38,2,1, 39,2,1, 40,2,1,
41,2,1
*STEP, NLGEOM, INC=10
*STATIC, RIKS
0.25,1,1E-4,,,21,2,20
*DLOAD
BEAM, PZ, -0.01
*MONITOR, NODE=21, DOF=2
*NODE PRINT, NSET=SUPPORTS, SUMMARY=NO
RF
*NODE PRINT, NSET=RIGHT, SUMMARY=NO
U2, U3, UR1, UR2, UR3
*NODE FILE, FREQUENCY=1, LAST MODE=3
U
*EL PRINT, POSITION=CENTROIDAL
SF
*MODAL FILE
*RESTART, WRITE
*END STEP

IMPLEMENTS ∫y dx = 0 BY SUMMING
y AT EACH NODE AND SETTING = 0

REFERENCE LOAD -0.01 kip

OUTPUT REQUIREMENTS
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APPENDIX D –MAST (1993) FS SAMPLE CALCULATIONS      

The calculation steps presented below are based on the procedure outlined in Appendix B of 

Mast (1993). 

 

Example 1: PCI BT77 beam 

 

GIVEN 

Top flange width: b 47 in⋅:=  

Weight of beam: w 0.084
kip

in
⋅:=  

Area: A 970.7in
2

⋅:=  

Length: L 139 ft⋅:=  

Pickup points at distance: a 90 in⋅:=  from each end 

Distance between pickup points: L1 L 2 a⋅− 124 ft⋅=:=  

Strong axis: Ix 789500in
4

⋅:=  

ytop 3 ft⋅ 3
5

16
+









in⋅+ 39.31 in⋅=:=  

ybot 3 ft⋅ 1
11

16
+









in⋅+ 37.69 in⋅=:=  

Stop

Ix

ytop

20083in
3

⋅=:=  

Sbot

Ix

ybot

20949in
3

⋅=:=  

Weak axis: Iy 63600in
4

⋅:=  

Height of roll axis: yr 39 in⋅:=  

Distance from center of gravity of bottom strands to the bottom fiber of the beam: 

ybs
14 2⋅ 14 4⋅+ 12 6⋅+ 6 8⋅+ 4 10⋅+ 2 12⋅+

14 14+ 12+ 6+ 4+ 2+
in⋅ 5.15 in⋅=:=  

Bottom strand eccentricity: ebot ybot ybs− 32.53 in⋅=:=  

Distance from center of gravity of top strands to the top fiber of the beam: 
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yts 2 in⋅:=  

Top strand eccentricity: etop ytop yts− 37.31 in⋅=:=  

Total force due to prestress: P 54 40.83⋅ kip⋅ 2204.82kip⋅=:=  

Force in top strands: Ptop 2 40.83⋅ kip⋅ 81.66kip⋅=:=  

Force in bottom strands: Pbot 52 40.83⋅ kip⋅ 2123.16kip⋅=:=  

Harp point location: x 0.5 L⋅ 5 ft⋅− 774 in⋅=:=  

Self-weight moment at harp point: Msw
w x⋅

2
L x−( )⋅ 29062kip in⋅⋅=:=  

Stresses at harp points: 

Stresses due to prestress and self weight: 

Top: ft
P

A

Pbot ebot⋅

Stop

−

Ptop etop⋅

Stop

+

Msw

Stop

+ 0.431 ksi⋅=:=  COMPRESSION 

Bottom: fb
P

A

Pbot ebot⋅

Sbot

+

Ptop etop⋅

Sbot

−

Msw

Sbot

− 4.036 ksi⋅=:=  COMPRESSION 

Find modulus of elasticity: 

Strength of concrete at release: f'ci 6.5 ksi⋅:=  

Ec 33 150
1.5

⋅ f'ci psi⋅⋅ 4888 ksi⋅=:=  

Compute initial eccentricity, e
i
: 

sweep
L

960
1.74 in⋅=:=  

offset factor: offset
L1

L









2
1

3
− 0.462=:=  

ei sweep offset⋅ 0.8 in⋅=:=  

Compute z
0
: 

z0
w

12 Ec⋅ Iy⋅ L⋅
0.1 L1

5
⋅ a

2
L1

3
⋅− 3 a

4
⋅ L1⋅+ 1.2 a

5
⋅+



⋅ 9.49 in⋅=:=  
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Compute θ
i
: 

θi

ei

yr

1.18 deg⋅=:=  

Compute the tilt angle θ
max

 at cracking: 

fr 7.5 f'ci psi⋅⋅ 0.605 ksi⋅=:=  

Mlat

fr ft+( ) Iy⋅

b

2

2802 kip in⋅⋅=:=  

θmax

Mlat

Msw

5.524deg⋅=:=  

Factor of safety against cracking: 

FS
1

z0

yr

θi

θmax

+

2.2=:=  
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Example 2: AASHTO Type IV beam 

 

GIVEN 

Top flange width: b 20 in⋅:=  

Weight of beam: w 822 plf⋅ 0.07
kip

in
⋅=:=  

Area: A 789 in
2

⋅:=  

Length: L 104 ft⋅:=  

Pickup points at distance: a 48 in⋅:=  from each end 

Distance between pickup points: L1 L 2 a⋅− 96ft=:=  

Strong axis: Ix 260741in
4

⋅:=  

ytop 29.25 in⋅:=  

ybot 24.75 in⋅:=  

Stop 8902.67in
3

⋅:=  

Sbot 10521.33in
3

⋅:=  

Weak axis: Iy 24374in
4

⋅:=  

Height of roll axis: yr 29.3 in⋅:=  

Distance from center of gravity of bottom strands to the bottom fiber of the beam: 

ybs
36 4⋅ 8 8⋅+

44
in⋅ 4.73 in⋅=:=  

Bottom strand eccentricity: ebot ybot ybs− 20.02 in⋅=:=  

Distance from center of gravity of top strands to the top fiber of the beam: 

yts 2 in⋅:=  

Top strand eccentricity: etop ytop yts− 27.25 in⋅=:=  
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 Total force due to prestress: P 46 40.88⋅ kip⋅ 1880 kip⋅=:=  

Force in top strands: Ptop 2 40.88⋅ kip⋅ 81.76kip⋅=:=  

Force in bottom strands: Pbot 44 40.88⋅ kip⋅ 1799 kip⋅=:=  

Harp point location: x .5 L⋅ 5 ft⋅− 564in=:=  

Self-weight moment at harp point: Msw
w x⋅ L x−( )⋅

2
13213kip in⋅⋅=:=  

Stresses at harp points: 

Stresses due to prestress and self weight: 

Top: ft
P

A

Pbot ebot⋅

Stop

−

Ptop etop⋅

Stop

+

Msw

Stop

+ 0.072 ksi⋅=:=  COMPRESSION 

Bottom: fb
P

A

Pbot ebot⋅

Sbot

+

Ptop etop⋅

Sbot

−

Msw

Sbot

− 4.339 ksi⋅=:=  COMPRESSION 

Find modulus of elasticity: 

Strength of concrete at release: f'ci 8 ksi⋅:=  

Ec 33 150
1.5

⋅ f'ci psi⋅⋅ 5422 ksi⋅=:=  

Compute initial eccentricity, e
i
: 

sweep
L

960
1.3 in⋅=:=  

offset factor: offset
L1

L









2
1

3
− 0.519=:=  

ei sweep offset⋅ 0.67 in⋅=:=  

Compute z
0
: 

z0
w

12 Ec⋅ Iy⋅ L⋅
0.1 L1

5
⋅ a

2
L1

3
⋅− 3 a

4
⋅ L1⋅+ 1.2 a

5
⋅+



⋅ 6.9 in⋅=:=  

Compute θ
i
: 

θi

ei

yr

1.32 deg⋅=:=  
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 Compute the tilt angle θ
max

 at cracking: 

fr 7.5 f'ci psi⋅⋅ 0.671 ksi⋅=:=  

Mlat

fr ft+( ) Iy⋅

b

2

1811 kip in⋅⋅=:=  

θmax

Mlat

Msw

7.85 deg⋅=:=  

Factor of safety against cracking: 

FS
1

z0

yr

θi

θmax

+

2.5=:=  



 82

APPENDIX E – SWEEP MEASUREMENTS        

Table E1. Summary of sweep measurement results 

No. Beam Type 
Length, 

ft 

Sweep δ, 

in. 

Sweep 

(normalized) 

1 77 in. Bulb Tee 139 0.73 L/2285 

2 77 in. Bulb Tee 139 0.38 L/4389 

3 77 in. Bulb Tee 139 1.25 L/1334 

4 77 in. Bulb Tee 139 0.77 L/2166 

5 77 in. Bulb Tee 139 1.12 L/1489 

6 77 in. Bulb Tee 139 0.83 L/2010 

7 74 in. Bulb Tee (Modified) 124 0.44 L/3369 

8 74 in. Bulb Tee (Modified) 124 1.05 L/1415 

9 74 in. Bulb Tee (Modified) 124 1.71 L/872 

10 74 in. Bulb Tee (Modified) 124 0.92 L/1611 

11 74 in. Bulb Tee (Modified) 124 2.21 L/675 

12 74 in. Bulb Tee (Modified) 124 1.34 L/1107 

13 74 in. Bulb Tee (Modified) 124 0.38 L/3877 

14 74 in. Bulb Tee (Modified) 124 1.39 L/1067 

15 74 in. Bulb Tee (Modified) 124 2.05 L/725 

16 74 in. Bulb Tee (Modified) 124 0.51 L/2905 

17 72 in. Bulb Tee 122 1.18 L/1242 

18 72 in. Bulb Tee 122 1.44 L/1020 

19 72 in. Bulb Tee 122 1.57 L/935 

20 72 in. Bulb Tee 122 0.52 L/2813 

21 72 in. Bulb Tee 122 1.34 L/1089 

22 72 in. Bulb Tee 122 0.24 L/6113 

23 72 in. Bulb Tee 124 0.98 L/1520 

24 72 in. Bulb Tee 127 0.84 L/1805 

25 72 in. Bulb Tee 127 1.47 L/1038 

26 72 in. Bulb Tee 127 1.73 L/881 

27 72 in. Bulb Tee 129 1.84 L/841 
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Table E1. Summary of sweep measurement results, continued 

No. Beam Type 
Length, 

ft 

Sweep δ, 

in. 

Sweep 

(normalized) 

28 72 in. Bulb Tee 129 0.50 L/3079 

29 72 in. Bulb Tee 129 0.55 L/2804 

30 72 in. Bulb Tee 129 0.97 L/1599 

31 72 in. Bulb Tee 129 2.00 L/774 

32 72 in. Bulb Tee 129 2.80 L/552 

33 72 in. Bulb Tee 129 1.89 L/821 

34 72 in. Bulb Tee 129 0.82 L/1892 

35 72 in. Bulb Tee 129 1.82 L/851 

36 72 in. Bulb Tee 129 1.37 L/1131 

37 72 in. Bulb Tee 129 3.28 L/472 

38 72 in. Bulb Tee 129 0.57 L/2714 

39 72 in. Bulb Tee 129 0.43 L/3635 

40 72 in. Bulb Tee 129 2.92 L/531 

41 72 in. Bulb Tee 129 0.84 L/1832 

42 72 in. Bulb Tee 129 0.70 L/2200 

43 72 in. Bulb Tee 129 1.75 L/884 

44 72 in. Bulb Tee 129 1.38 L/1122 

45 72 in. Bulb Tee 129 0.22 L/7111 

46 72 in. Bulb Tee 129 1.18 L/1312 

47 72 in. Bulb Tee 129 0.24 L/6519 

48 72 in. Bulb Tee 129 0.48 L/3246 

49 72 in. Bulb Tee 129 0.43 L/3574 

50 72 in. Bulb Tee 129 0.99 L/1558 

51 72 in. Bulb Tee 129 1.19 L/1304 

52 72 in. Bulb Tee 129 0.74 L/2094 

53 72 in. Bulb Tee 129 2.06 L/753 

54 72 in. Bulb Tee 129 1.17 L/1320 
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Table E1. Summary of sweep measurement results, continued 

No. Beam Type 
Length, 

ft 

Sweep δ, 

in. 

Sweep 

(normalized) 

55 72 in. Bulb Tee 139 1.24 L/1341 

56 72 in. Bulb Tee 139 2.08 L/803 

57 72 in. Bulb Tee 139 1.07 L/1557 

58 72 in. Bulb Tee 139 0.36 L/4668 

59 72 in. Bulb Tee 139 1.55 L/1076 

60 72 in. Bulb Tee 139 1.71 L/977 

61 72 in. Bulb Tee 139 0.51 L/3255 

62 72 in. Bulb Tee 139 1.81 L/923 

63 72 in. Bulb Tee 139 1.92 L/868 

64 72 in. Bulb Tee 139 0.45 L/3707 

65 72 in. Bulb Tee 139 2.48 L/674 

66 72 in. Bulb Tee 139 1.28 L/1304 

67 72 in. Bulb Tee 139 0.38 L/4443 

68 72 in. Bulb Tee 139 0.53 L/3128 

69 72 in. Bulb Tee 139 0.88 L/1902 

70 72 in. Bulb Tee 139 1.14 L/1459 

71 72 in. Bulb Tee 139 1.80 L/926 

72 72 in. Bulb Tee 139 1.03 L/1626 

73 72 in. Bulb Tee 139 1.22 L/1369 

74 72 in. Bulb Tee 139 0.49 L/3411 

75 72 in. Bulb Tee 139 0.95 L/1757 

76 72 in. Bulb Tee 139 0.46 L/3645 

77 72 in. Bulb Tee 139 0.74 L/2253 

78 72 in. Bulb Tee 139 2.31 L/722 

79 72 in. Bulb Tee 139 0.43 L/3836 

80 72 in. Bulb Tee 139 1.00 L/1673 

81 72 in. Bulb Tee 139 0.47 L/3564 
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Table E1. Summary of sweep measurement results, continued 

No. Beam Type 
Length, 

ft 

Sweep δ, 

in. 

Sweep 

(normalized) 

82 72 in. Bulb Tee 139 1.13 L/1470 

83 72 in. Bulb Tee 139 1.00 L/1664 

84 72 in. Bulb Tee 139 0.48 L/3464 

85 72 in. Bulb Tee 139 0.97 L/1719 

86 72 in. Bulb Tee 139 0.92 L/1813 

87 72 in. Bulb Tee 139 2.27 L/735 

88 72 in. Bulb Tee 139 1.30 L/1282 

89 72 in. Bulb Tee 139 2.30 L/724 

90 72 in. Bulb Tee 139 1.40 L/1188 

91 72 in. Bulb Tee 139 0.82 L/2039 

92 72 in. Bulb Tee 139 0.40 L/4216 

93 72 in. Bulb Tee 139 0.77 L/2179 

94 72 in. Bulb Tee 139 1.00 L/1662 

95 72 in. Bulb Tee 139 0.53 L/3157 

96 72 in. Bulb Tee 139 1.10 L/1512 

97 72 in. Bulb Tee 139 1.60 L/1039 

98 72 in. Bulb Tee 139 1.25 L/1336 

99 72 in. Bulb Tee 139 0.94 L/1778 

100 72 in. Bulb Tee 139 0.30 L/5551 

101 72 in. Bulb Tee 139 0.33 L/5120 

102 72 in. Bulb Tee 139 0.64 L/2624 

103 72 in. Bulb Tee 139 0.56 L/2993 

104 72 in. Bulb Tee 139 1.82 L/919 

105 72 in. Bulb Tee 139 0.53 L/3155 

106 72 in. Bulb Tee 139 2.23 L/749 

107 72 in. Bulb Tee 139 0.87 L/1916 

108 72 in. Bulb Tee 139 1.33 L/1253 
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Table E1. Summary of sweep measurement results, continued 

No. Beam Type 
Length, 

ft 

Sweep δ, 

in. 

Sweep 

(normalized) 

109 72 in. Bulb Tee 139 1.14 L/1458 

110 72 in. Bulb Tee 139 0.50 L/3316 

111 72 in. Bulb Tee (Modified) 121 0.34 L/4249 

112 72 in. Bulb Tee (Modified) 121 0.55 L/2628 

113 72 in. Bulb Tee (Modified) 121 0.61 L/2364 

114 72 in. Bulb Tee (Modified) 121 0.98 L/1483 

115 72 in. Bulb Tee (Modified) 121 0.91 L/1601 

116 72 in. Bulb Tee (Modified) 121 0.87 L/1669 

117 72 in. Bulb Tee (Modified) 121 0.46 L/3162 

118 72 in. Bulb Tee (Modified) 121 0.44 L/3293 

119 72 in. Bulb Tee (Modified) 121 0.36 L/4050 

120 72 in. Bulb Tee (Modified) 121 0.65 L/2235 

121 72 in. Bulb Tee (Modified) 121 0.42 L/3464 

122 72 in. Bulb Tee (Modified) 121 0.73 L/1992 

123 72 in. Bulb Tee (Modified) 121 0.95 L/1524 

124 72 in. Bulb Tee (Modified) 121 0.30 L/4815 

125 72 in. Bulb Tee (Modified) 121 0.36 L/4078 

126 72 in. Bulb Tee (Modified) 121 0.33 L/4335 

127 72 in. Bulb Tee (Modified) 121 0.36 L/4078 

128 72 in. Bulb Tee (Modified) 121 0.77 L/1890 

 


