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Abstract

System-on-Chip (SoC) and other complex distributed hardware/software systems con-

tain heterogeneous components whose behavior are best captured by different models

of computations (MoCs). As a result, any system design framework for such systems

requires the capability to express heterogeneous MoCs. Although a number of system

level design languages (SLDL)s and frameworks have proliferated over the last few

years, most of them are lacking in multiple ways. Some of the SLDLs and system design

frameworks we have worked with are SpecC, Ptolemy II, SystemC-H, etc. From our

analysis of these, we identify their following shortcomings: First, their dependence on

specific programming language artifacts (Java or C/C++) make them less amenable to

formal analysis. Second, the refinement strategies proposed in the design flows based

on these languages lack formal semantics underpinnings making it difficult to prove

that refinements preserve correctness, and third, none of the available SLDLs are easily

customizable by users. In our work, we address these problems as follows: To alleviate

the first problem, we follow Axel Jantsch’s paradigm of function-based semantic defini-

tions of MoCs and formulate a functional programming framework called SML-Sys. We

illustrate through a number of examples how to model heterogenous computing systems

using SML-Sys. Our framework provides for formal reasoning due to its formal seman-

tic underpinning inherited from SML’s precise denotational semantics. To handle the

second problem and apply refinement strategies at a higher-level, we propose a refine-

ment methodology and provide a semantics preserving transformation library within



our framework. To address the third shortcoming, we have developed EWD, which

allows users to customize MoC-specific visual modeling syntax defined as a metamodel.

EWD is developed using a metamodeling framework GME (Generic Modeling Environ-

ment). It allows for automatic design-time syntactic and semantic checks on the models

for conformance to their metamodel. Modeling in EWD facilitates saving the model in

an XML-based interoperability language (IML) we defined for this purpose. The IML

format is in turn automatically translated into Standard ML, or Haskell models. These

may then be executed and analyzed either by our existing model analysis tools SML-

Sys, or the ForSyDe environment. We also generate SMV-based template from the XML

representation to obtain verification models.
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Chapter 1

Introduction

The technological advances experienced in the last few decades has initiated an in-

creasing trend towards System-on-Chip (SoC) design, where such systems integrate

micro-controllers, digital signal processing cores, memories, application specific logics,

and reconfigurable hardware in the form of field programmable gate arrays (FPGAs) to-

gether with a communication structure and analog-to-digital (A/D) and digital-to-analog

(D/A) converters on a single chip. As a result of Moore’s law [18], systems are designed

with more and more components on a single chip to offer enormous potential and in

addition the technological advances exponentially reduce the cost and size of such SoCs.

This provides system designers with the opportunity to design large and complex sys-

tems while also meeting the ever increasing demands of the consumer. However, the

complexity in the design does not only arise from the miniaturization of systems onto a

single chip, but it also emerges from its heterogeneous nature, that is from the fact that

in complex designs that interact with the real world, different parts are appropriately

captured using different models and methodologies. As a result, the gap between the

complexity of the design and the engineering efforts required to realize these designs

1
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are increasing drastically. This problem is commonly known as the productivity gap, as

shown in Figure 1.1. Many factors contribute to the productivity gap such as the lack of

design methodologies, modeling frameworks & tools, hardware & software co-design

environments and so on. Due to the increase in the productivity gap, industries find it

difficult to meet the stringent time-to-market requirement. Efforts towards mitigating

the productivity gap has led to the evolution of several design methodologies of which

the one we address are System Level Design Languages (SLDL)s, that would handle the

design complexity and raise the abstraction level so as to mitigate the productivity gap.

Figure 1.1: Productivity Gap

1.0.1 System Level Design Languages and Frameworks

For a modeling language and framework to be effective and address complex systems,

it should start at high levels of abstraction by separating functionality of the system

from architecture, communication from computation and promoting the use of formal

models and transformations in system design to leverage formal verification. This
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led to the development of a number of SLDLs, which provide users with a collection of

libraries of data types and kernels, and components accessible through either graphical or

programmatic means to model systems and simulate the behaviors. Examples of recently

introduced system level modeling languages are SpecC, SystemC and SystemVerilog [34,

21, 30]. Hardware modeling languages like VHDL [37] and Verilog [36] allow designers

to create models through programmatic means for RTL designs. SystemC [21] is a

library of C++ classes that facilitates objects oriented modeling. This allows modeling

at a higher level of abstraction than RTL models making it appropriate for system

level designs. A Java-based embedded systems modeling language developed by U.C.

Berkeley is Ptolemy II [24] that allows for modeling through a graphical interface.

Most system models for SoCs are heterogeneous in nature, and encompass multiple

models of computation in its different components. As a result, we need a framework

that provides a way to express heterogeneous models of computation for modeling SoCs.

Most SLDLs mentioned above encompass a single model of computation, for instance

the languages VHDL, Verilog and SystemC share the same discrete time, event driven

computational model. However, Ptolemy II [24] is a design framework, which is used

to model heterogeneous embedded systems. Recently several researchers have been

enhancing C++ based libraries such as SystemC for capturing heterogeneity in such

models. The outcome SystemC-H [22, 23] allows designers to put together a heteroge-

neous model without worrying about the target simulation kernel. However, few of

these SLDLs are endowed with rigorous formal semantics to make use of any semantic

formalism during synthesis or verification. Furthermore, none of these are free of the

programming artifacts of the specific language (Java or C++), and hence the computation

inherent in the model is obscured by such side issues. Moreover, often the computation

and communication aspects between these components models get intertwined. As a

result, we need a framework that provides a way to express heterogeneous models of
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computation for modeling SoCs that have well-defined formal semantics. To alleviate

these problems, we follow Axel Jantsch’s paradigm [8] of function-based semantic defi-

nitions of models of computation, and implement a modeling framework with multiple

models of computation in a functional language Standard ML [17]. It is based on formal

semantics and functional paradigms which facilitate the application of formal methods

for transformation, synthesis and verification. Defining models of computation as higher

order functions provide well-defined modeling semantics and facilitate the integration

of models of computation, languages and tools at both the syntactic and semantic level.

In this respect it goes well beyond other frameworks such as SystemC-H and Ptolemy II,

and it will allow for the development of cross-domain analysis, synthesis and validation

tools beyond pure simulation.

Another limitation with the available SLDLs is that they are not easily customizable by

users, as possible in metamodeling frameworks. Providing the user with customizable

modeling syntax helps in reducing the number of errors by catching it earlier in the

design. To facilitate such syntax, models of computation are described as metamodels

that express the syntactic structure and the semantics that the designer is provided with

for modeling.

1.0.2 Model of Computation

A model of computation (MoC) is a description mechanism that defines a set of rules

to mimic a particular behavior [9, 12]. It is a mathematical formalism that describes the

interaction between components in a system. MoCs describe the following:

• How each component performs internal computation.

• How the components transfer information between them.
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• How they relate in terms of concurrency.

The most renowned classification of MoCs in the embedded system design community

has been stated in the context of Ptolemy and Ptolemy II projects [24] at the University

of California at Berkeley. Ptolemy II is built with multiple MoCs, which include various

sequential MoCs such as FSM, Discrete-Time, Continuous Time models as well as models

of interacting entities, such as CSP, KPN, interaction models etc. These MoCs are referred

to as modeling domains in the context of Ptolemy II.

Another distinguishing classification of MoCs was done by abstracting functionality of

complex designs in the context of ForSyDe project [27] in Sweden by Axel Jantsch and

his group. This work can be distinguished from Ptolemy group’s work as a distinction

of the denotational view verses operational view of MoCs. A denotational view of a

MoC consist of a set of process constructors and process composition operators with

denotational semantics. This view classifies MoCs based on the abstraction of the timing

behavior of the model.

The three main MoCs in this view are

1. Untimed Model of Computation: This is the most abstracted model of computa-

tion in terms of the timing behavior. In other words, we do not worry about the

time taken for the computation performed nor the time for the different processes

to interact and synchronize.

2. Synchronous Model of Computation: The timing aspect is abstracted to cycles

of computation in this MoC. It can be further categorized into two sub-categories,

The first sub-category follows the perfect synchrony hypothesis, in which computation

and communication takes zero time and the second category follows the clocked

synchrony hypothesis, in which a global clock enforces the beginning and end of a
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computational cycle. Therefore, every computational cycle takes exactly one clock

cycle and communication takes no time.

3. Timed Model of Computation: This is the least abstracted model of computa-

tion, where the timing aspect of all computation and communication is exactly

preserved.

The operational view of MoC provided by Ptolemy II describe, exactly how the compu-

tation takes place and how the communication proceeds between the different processes

and across MoCs in the true operational sense. Some of the MoCs in this view are:

1. Discrete Event: In this MoC, all events are associated with a time instant and

the time is represented as a discrete set. There is a global event queue and the

events describe the combinational behavior of the system being modeled. The

computation is characterized into cycles, whereas the communication aspect is not

distinctly separated out in this domain.

2. Finite State Machine: This MoC is built on states and state transitions, where states

describe the computation and communication occurs through transitions between

the states.

3. Continuous Time: In this MoC, the computation process involves modeling dif-

ferential equations over the continuous domain of real-numbers.

4. Communicating Sequential Processes: This MoC differs from all the other MoCs in

the way communication proceeds. Processes execute concurrently and the rendez-

vous communication protocol dictates the transfer of data which only occurs when

both communicating processes are ready to communicate.
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Ptolemy II has multiple modeling domains that facilitate designers to model in a truly

heterogeneous manner, therefore Ptolemy II is a multi-MoC framework. Two important

characteristics of a multi-MoC framework are fidelity and expressiveness [22]. Fidelity

is defined as the degree to which a theoretical MoC can be modeled in a framework

and expressiveness is the availability of a programming language to a user to model

systems according to the user’s own modeling style. Therefore, a desired quality in

any multi-MoC framework should be high fidelity with low expressiveness. The low

expressiveness is surmounted with high fidelity that provides the designer with all the

common computational models and restricts them to specific process constructors and

compositional operators. This reduces modeling errors by the designer to achieve the

correct behavior of a model.

MoCs described by functional languages [15, 7, 25, 20] have a clean and simple semantic

model, where in a computation is described as a function application thereby providing a

more abstract notation for expressing computation. Therefore, modeling in a functional

framework has the advantage of being readily susceptible to formal verification.

1.1 Functional Programming in Embedded Systems De-

sign

A functional program is a function that receives the program’s input as argument and

delivers the program’s output as result. A function is free from side-effects, i.e. it has

no internal state. This means that the whole functional program is free from side-effects

and it is totally deterministic. Functional programs contain implicit parallelism, which is

very useful when dealing with embedded system applications, since they typically have

a considerable amount of built-in parallelism. Of course it is also possible to parallelize
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imperative languages like C++, but it is much more difficult to extract parallelism from

programs in such languages, since the flow of control is also expressed by the order

of statements. While functional languages fit naturally for data flow applications, they

also provide a rich variety of control constructs, making it more suitable for control-

dominated applications.

Functional programming is also seen to be highly relevant to the understanding of real-

time systems. A computation expressed as a function and its interaction with the outside

world being modeled as inputs given to the function, and for these interactions to be

infinite in nature, they are modeled using streams [11]. This description is well-suited

for reactive and interactive systems. The types and type systems [31] in functional

languages can be used as a tool for classifying MoCs for real-time applications.

1.2 MoC as a Metamodeling Domain

Configuring MoCs as metamodel requires the designer modeling in that domain to

obey the syntactic and semantic constraints of that MoC-specific metamodel. Thinking

of MoCs as metamodels allows us to take advantage of the syntactic structure and

limited semantics of a metamodel to catch modeling errors at early stages of the design.

Furthermore, it is essential to flag modeling errors that are not caught by the compiler of

the programming language in which these MoCs are defined. The syntactic structure of

an MoC can be expressed using the components (UML classes) provided by the modeling

paradigm in GME [35, 10] and semantics are expressed as OCL constraints. The designer

instantiates a metamodel that makes available a modeling domain with the respective

computational components and composition operators to create a model instance. The

actual behavioral aspect of the model is embedded in the attributes associated with these
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computational components that can be composed respectively to create the model.

1.3 Main Contributions

Our main contributions in this thesis can be summarized as follows:

1. A multi-MoC modeling framework built on Axel Jantsch’s classification of generic

MoCs named SML-Sys and implemented in Standard ML [17].

2. A semantic-preserving refinement strategy that formulates a design flow targeted

towards an optimized synthesis process.

3. A visual modeling environment for multi-MoC modeling of embedded software

and hardware systems, named EWD, which is built on top of a metamodeling

environment GME [10, 35].

(a) Definition of an interoperability language based on XML, named IML that is

an abstract extensible syntax to express framework independent MoCs.

(b) An xmlTree structure to facilitate multi-targeted code generation built in C++.

(c) Translation streams SmlStream and HaskellStream, to automatically transform

models into SML-Sys or ForSyDe [38] executables.

(d) Finally, SmvStream, a partial stream to translate the model to the SMV [16]

model checker for verification purpose.
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1.4 Organization

This thesis is organized as follows:

In Chapter 2, we provide background material on Axel’s theory on the generic MoCs,

functional programming and semantics, functional design frameworks, refinement method-

ologies and finally metamodeling and the generic modeling environment.

In Chapter 3, we explain our implementation of the different MoCs in a functional

language Standard ML followed by the interfacing of these different MoCs, providing

designers with a multi-MoC modeling framework SML-Sys. Furthermore, we illustrate

the modeling of example like FIR, Sobel and Traffic Light Controller in our framework.

In Chapter 4, we describe our refinement methodology and how it fits into our de-

sign flow that start with an abstract functional specification and ends with an efficient

implementation specification, that gears up towards a optimized synthesis process.

In Chapter 5, we present EWD, A Metamodeling Driven Customizable Multi-MoC

System Modeling Environment. We also provide details of the model construction and

the multi-targeted code generation phase of the EWD design flow.

In Chapter 6, we describe the platform-independent modeling langauge (IML), which is

XML-based representation for generic MoC. Furthermore, we explain the parsing phase

of the EWD design flow in detail.

Chapter 7 concludes this thesis.



Chapter 2

Background

2.1 Generic MoCs

An MoC is chosen for describing a sub-behavior of a design based on its suitability:

compactness of description, fidelity to design style, ability to synthesize and optimize

the behavior of an appropriate implementation. We briefly introduce the generic MoCs

defined by Axel Jantsch in [8]. These MoCs are built on processes, events and signals.

Events are the elementary units of information exchanged between processes. Processes

receive or consume events, and they send or emit events. Signals are finite or infinite

sequence of events. The activity of processes is divided into evaluation cycles. In each

evaluation cycle, a process consumes input and emits output. A process partitions its

input and output signals into sub-sequences, such that during each evaluation cycle

it consumes exactly one sub-sequence of each of its input signals. To relate functions

on events to processes, we introduce process constructors, which are parameterizable

templates that instantiate processes. We define a number of process constructors: some

11
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with no internal state and others with internal state, some with one input and one

output and others with several inputs and outputs. Furthermore, we define process

combinators, to construct process networks by composing processes.

An MoC is defined as a set of processes and process networks that are constructed from

the given set of process constructors and combinators. We finally categorize MoC based

on “how the processes communicate and synchronize” with other processes and, in

particular with the “timing information” available to and used by the process.

Definition 2.1.1 In [8], a model of computation (MoC) is defined as a 2-tuple framework

MoC = (C, O), where C is a set of process constructors, each of which, when given

constructor-specific parameters, instantiates a process. O is a set of process composition

operators which, when given processes as arguments instantiates a new process.

MoCs are characterized by the duration of their evaluation cycles. The three generic

MoC’s defined in [8] are: Untimed MoC, Synchronous MoC and Timed MoC.

2.1.1 Preliminary Notations

We introduce the notations used in defining and distinguishing the generic MoCs. A

process communicates with another process by writing to and reading from signals. The

set of values V represents the data communicated over a signal and the set E constitutes

of events that are basic elements of a signal containing values. We distinguish between

three different kinds of events. Firstly, untimed events that are values denoted by Ė = V.

Secondly, synchronous events denoted by Ē, which also includes a pseudovalue t, (the

absence of an event), hence Ē = V ∪ {t} and finally timed events denoted by Ê that are

identical to synchronous events, Ē = Ê. Therefore E = Ė∪ Ē∪ Ê and e ∈ E denotes any
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kind of event. Signals are ordered sequence of events such that ei denotes the ith event in

a signal. We use Ṡ, S̄ and Ŝ to denotes the untimed, synchronous and timed signal sets,

such that S = Ṡ ∪ S̄ ∪ Ŝ, and ṡ, s̄ and ŝ designate individual untimed, synchronous and

timed signals respectively. Processes are defined as functions on signals p: S → S that

is a mapping between signal sets. Furthermore, they are allowed to have internal state

such that for the same given input signal they react differently at different time instances.

The Untimed Model of Computation

The untimed MoC is characterized by the way its processes communicate and synchro-

nize with other processes without the notion of time such that only the order of events

are relevant. Thus, the untimed MoC operates on the causality abstraction.

The Synchronous Model of Computation

The Synchronous MoC divides the time line into intervals. Every computation within

an interval occurs at the same time, but the intervals are totally ordered along the time

line. In synchronous MoCs the evaluation cycle of processes lasts exactly one time

interval. We further categorize synchronous MoCs based on whether the output event

of a process occurs in the same time interval as the corresponding input event or whether

every process incurs a delay from an input event to an output event.

Perfect Synchronous Model of Computation: This MoC is built on the basis of the perfect

synchrony hypothesis, where the output events of a process occur in the same time interval

as the corresponding input events. Moreover they are instantaneously distributed in the

entire system and are available to all other processes in the same time interval. Receiving
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processes consume input events and emit output events in the same time interval.

Definition 2.1.2 Perfect synchrony hypothesis: Neither computation nor communication

takes time.

The Clocked Synchronous Model of Computation: This MoC is based on the clocked

synchronous hypothesis. It differs from the perfectly synchronous MoC in that every

process incurs a delay from an input event to an output event. The delay is equivalent

to the duration of an evaluation cycle. For clocked synchronous processes, we introduce

a delay function 4, which delays each input by one clock cycle.

Definition 2.1.3 Clocked synchronous hypothesis: There is a global clock signal controlling

the start of each computation in the system. Communication takes no time, and computation

takes one clock cycle.

Timed Model of Computation

This MoC is a generalization of the synchronous MoC. Timing information is conveyed

on the signals by transmitting absent events at regular time intervals. In this way,

processes always know when a particular event has occurred and when no event has

occurred. It differs from the synchronous MoC on two accounts, the granularity of the

timing structure is much finer and a process can consume and emit any number of events

during one evaluation cycle.
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2.2 Implementing MoC frameworks in Standard ML

SML provides compound datatypes like lists, tuples, records and allows abstract datatypes.

We implement finite signals as generic lists and infinite signals as delayed function ap-

plications. The notion of delayed function application allows us to implement lazy

evaluated semantics [7], and avoid the overflow exception that occurs due to inherent

eager evaluated SML semantics. The implementation of finite and infinite signals is

shown in Listing 2.1.

Listing 2.1: Definition of signals
1 ( ∗ D e f i n i t i o n o f a F i n i t e s i g n a l ∗ )
2 datatype ’ a s i g n a l = n i l | : : of ’ a ∗ ’ a s i g n a l

We formulate a few signal manipulators shown in Listing 2.2 that can handle sequence

of events from finite signals for the different process constructors.

Listing 2.2: The Signal Manipulating functions
1 exception Empty Seq ( ∗ E x c e p t i o n d e f i n e d f o r empty f i n i t e s i g n a l ∗ )
2

3 fun take ( x : : y , 0 ) = [ ]

4 | take ( [ ] , 0 ) = [ ]

5 | take ( x : : y , n ) = x : : take ( y , n−1)

6

7 fun drop ( [ ] , ) = [ ]

8 | drop ( x : : y , 0 )= x : : y

9 | drop ( x : : y , n ) = drop ( y , n−1)

10

11 fun t a i l [ ] = r a i s e Empty Seq | t a i l ( x : : y ) = y

12 fun head [ ] = r a i s e Empty Seq | head ( x : : y ) = x

13

14 fun length ( s ) = ( case s of [ ] => 0 | s => 1 + length ( s ) )

15

16 fun p a r t i t i o n ( [ ] , ) = [ ]

17 | p a r t i t i o n ( , [ ] ) = [ ]

18 | p a r t i t i o n ( v1 : : v2 , x : : y ) = ( i f length ( x : : y ) < v1
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19 then [ ] else [ take ( x : : y , v1 ) ] @ p a r t i t i o n ( v2 , drop ( x : : y , v1 ) ) )

The function take(n, s) extracts the first n elements of a signal s and function drop(s, n)

deletes the first n elements of a signal s. The function head(s) extracts the first element of

signal s and function tail(s) deletes the first element from a signal s. Moreover, function

length(s) returns the length of the signal s. Finally, the function partition(v, s) divides

the signal into an ordered set of signals, that when concatenated, form the original signal

s. Each ordered set is a sub-sequence. The argument v is the length of each partition.

The function take(n, s) extracts the first n elements of a signal s and function drop(n, s)

deletes the first n elements of a signal s. The function head(s) extracts the first element of

signal s and function tail(s) deletes the first element from a signal s. Moreover, function

length(s) returns the length of the signal s. Finally, we define a partition function Ψ(v, s)

that divides the signal into an ordered set of signals, that when concatenated, form the

original signal s. The argument v: N −→ N is the length of each partition.

Definition 2.2.1 The partition function is defined as:

Ψ(v, s) =


〈take(s, v(i))〉 ⊕Ψ(v, drop(s, v(i))) if length(s) ≥ v(i)

〈〉 otherwise

where s ∈ S, i ∈ N

The datatype for infinite signal is defined differently than for finite signals. An infinite

signal is the delayed evaluation of a function application to a finite stream of the infinite

signal. The recursive definition is shown in Listing 2.3.

Listing 2.3: Definition of an infinite signal
1 ( ∗ D e f i n i t i o n o f an event −b a s e d I n f i n i t e S i g n a l ∗ )
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2 datatype ’ a s i g n a l = n i l | const of ’ a ∗ ( uni t −> ’ a s i g n a l )

3 fun next ( k ) = const ( k , fn ( ) => next ( k+1) )

The const defines a delayed function application of next function using the unit operator

of SML. The next function defines the sequence of events for the signal, it takes an initial

event to compute the next event of the infinite sequence. In our case, the next function

maps events to the set of natural numbers.

The functions head, tail, drop, take, partition are extended to handle infinite signals as

shown in Listing 2.4.

Listing 2.4: Infinite Signal Manipulating functions
1 ( ∗ E x c e p t i o n d e f i n e d f o r empty i n f i n i t e s i g n a l ∗ )
2 exception Empty Inf Seq

3

4 fun take ( n i l , n ) = r a i s e Empty Inf Seq

5 | take ( s , 0 ) = [ ]

6 | take ( e c o n s t ( x , y ) , n ) = x : : take ( y ( ) , n−1)

7

8 fun drop ( n i l , ) = r a i s e Empty Inf Seq

9 | drop ( s , 0 ) = s

10 | drop ( e c o n s t ( x , y ) , n ) = drop ( y ( ) , n−1)

11

12 fun head n i l = r a i s e Empty Inf Seq | head ( e c o n s t ( x , y ) ) = x

13 fun t a i l n i l = r a i s e Empty Inf Seq | t a i l ( e c o n s t ( x , y ) ) = y ( )

14

15 fun p a r t i t i o n ( [ ] , ) = [ ]

16 | p a r t i t i o n ( , n i l ) = r a i s e Empty Inf Seq

17 | p a r t i t i o n ( v1 : : v2 , e c o n s t ( x , y ) ) =

18 [ take ( e c o n s t ( x , y ) , v1 ) ] @ p a r t i t i o n ( v2 , drop ( e c o n s t ( x , y ) , v1 ) )
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2.3 Functional Programming and Semantics

Functional programmers restrict themselves facilities which other programmers regard

as standard. When using functional languages [7, 25, 20], we do away with notions such

as variables and reassignments. This allows us to define programs which can be subjected

to analysis much more easily. There is no state corresponding to the global variables of

a traditional language or the instances of objects in an object oriented language. Each

definition is treated as binding that is active throughout the execution of the program.

Reassignment are not permitted which makes functional languages declarative rather

than imperative. A declarative language is one which the programmer declares what

the problem is and the execution is a low level concern. Functional programs are

conducive to formal development methods. In particular, the ability to reason about

functional programs improves the effectiveness of formal inspections. We compare

functional languages with some of the traditional imperative languages which is used

to implement MoC in Table 2.1.

2.3.1 Why Standard ML?

Standard ML (SML) [17] was one amongst the new programming languages developed

in the 1980s and was seen as a suitable vehicle for serious systems and applications

programming. It offers an excellent ratio of expressiveness to language complexity,

and provides competitive efficiency. SML manages to combine safety, security, and

robustness with a great deal of flexibility because of its type and module system. We

employ SML to implement the generic models of computation for the following reasons:

• SML provides a great deal of expressiveness by its ability to treat functions as
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Table 2.1: Comparison between Functioning and Traditional programming

Imperative Programming Functional Programming

Uses informal specification - may be

open to interpretation.

Uses logic to state the specification exactly.

Uses appropriate testing strategies to im-

prove reliability

Uses the underlining mathematical model

to prove correctness.

Errors are common and difficult to spot

and correct.

Errors are uncommon.

Uses structured programming or object

oriented techniques for code reuse. Prob-

lems can be partitioned into more man-

ageable chunks.

Uses functional programming for reuse

code and partitioning problems into easy

to use chunks. Furthermore, uses ”higher-

level” abstractions that are impossible in

traditional languages.

first-class values, and its usage of higherorder functions and the availability of

imperative constructs which provide great expressive power within a simple and

uniform conceptual framework.

• SML provides a highlevel model which makes programming more efficient and

more reliable by automating memory management and garbage collection.

• SML does static type checking which detects many errors at evaluation time. Er-

ror detection is enhanced by the use of pattern matching and by the exception

mechanism.

• SML module system is an organic extension of the underlying polymorphic type

system thereby providing separation of interface specification and implementa-

tion. These facilities are very effective in structuring large programs and defining

generic, reusable software components.
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2.3.2 Functional Language-based System Design

Functional languages have been used in other system design research projects. We

briefly introduce some of them and show that SML-Sys supersedes them in different

aspects.

HML [13] is a hardware description language based on SML, which combines strong

typing with polymorphism and automatic type inference to express the functionality of

the hardware being specified. It is mainly an improvement over VHDL [37] that does a

HML-to-VHDL translation targeting a synthesizable subset of VHDL.

A hardware/software co-design description language based on SAFL (Statically Allo-

cated Functional Language) has been presented in [28]. SAFL is a functional language

with ML syntax. Furthermore, design descriptions in SAFL are translated to hardware,

targeting hierarchical Verilog [36] RTL.

Bluespec [3] is a language for hardware design that borrows its notation, type and

package system from an existing general-purpose functional programming language

Haskell. It is meant for hardware design and attempts to raise the level of abstraction

without compromising the quality of hardware generated. The Bluespec tool-set is based

on the SystemVerilog [30] language.

Ruby is a declarative language of relations and functions based on Haskell. [14] describes

a hardware/software codesign based on Ruby that expresses hardware functionality as

relational descriptions and via a compiler translates this description into VHDL.

The Lava system [2] is an extensible tool to assist hardware designers in designing,

verifying and implementing hardware. It is a collection of Haskell modules that exploit

functional programming features to provide circuit descriptions. It focuses on structural
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representation of hardware as in Ruby and provides a variety of compositional patterns.

ForSyDe [27] is a library-based implementation that provides a computational model

for only the synchronous domain with interfaces implemented in Haskell [6, 33]. The

ForSyDe design process starts at a higher abstraction level with a synchronous formal

specification model. The synthesis process is divided into two phases. In the first phase,

the specification model is refined into a more detailed implementation model by the

stepwise application of design transformations shown in [38]. The second phase is the

mapping of the implementation model onto a given architecture. This phase comprises

activities like partitioning, allocation of resources and code generation. Synthesizable

VHDL and C is generated for HW and SW implementation, respectively.

2.3.3 Refinement Frameworks

ForSyDe’s refinement methodology based on their transformation library defines differ-

ent refinements that are either semantic preserving or based on design-decisions. The

design-decisions introduce low-level implementation details at the different refinement

stages that restricts the methodology from automating these refinements.

The SpecC [34, 29] framework describes refinement strategies from behavioral specifi-

cations to architectural model through mapping of behaviors onto processing elements

and synthesizing communication primitives necessary for the mapping. However, the

behavioral models in such an approach have computational threads and channel based

communication between hierarchy of threads. The architectural model amounts to the

mapping of such threads and communication mechanisms onto processors and buses.

There are two fundamental problems with these approaches (i) the lack of mathemati-

cally sound operational semantics which preserve the congruence relations on mapping
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across architectural elements, rendering the theoretical proof of correctness weak at its

best, (ii) the refinement steps preserve partially ordered trace equivalence showing that

the behavioral and architectural models are both at much lower abstraction level than

required for system design.

A formal refinement-checking methodology for system-level design based on a poly-

chronous MoC of the multi-clocked synchronous formalism is called SIGNAL [32], im-

plemented in the POLYCHRONY workbench. They also demonstrate the effectiveness

of this approach by an experimental case study of a Even-Parity Checker example. How-

ever their methodology has a distinct design language (SpecC) and a distinct refinement

language (SIGNAL) which gives rise to a disconnect.

2.4 Why SML-Sys Framework?

SystemC-H and Ptolemy are built on imperative languages like C++ and Java that

obscure the computation inherent in the model due to the side-effects of language-specific

artifacts. We alleviate these problems in SML-Sys, which is based on formal semantics

and functional paradigms that have an underlining mathematical model. Furthermore,

Ptolemy presents an operational view of MoCs, which include various sequential MoCs

such as FSM, Discrete-Time, Continuous Time models as well as models of interacting

entities, such as CSP, etc. However, SML-Sys framework based on [8], describes MoCs

denotationally, which consist of a set of process constructors and process composition

operators with denotational semantics. It abstracts out information regarding (i) how the

computation is performed, (ii) how the communication between the different processes

in a model proceeds, and (iii) timing behavior of the model to various levels.

SML-Sys has a high modeling fidelity, since it is a multi-MoC modeling framework
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based on the generic definition in [8], which is an extension of the ForSyDe methodol-

ogy. ForSyDe has a low modeling fidelity, since it is based on a single computational

model. ForSyDe illustrates the formulation of function-based semantics of MoCs by

defining the synchronous MoC. We take this a few steps further and formulate the un-

timed, clocked synchronous and timed MoCs. ForSyDe’s computational model is based

on the synchrony assumption and is best suited for applications amenable to synchrony,

which limits it. In our SML-Sys framework, we have formulated an untimed MoC that

does express dataflow models and state machines with ease, a clocked synchronous MoC

to model digital hardware and finally a timed MoC to model real-time requirements like

timing analysis to compute clock cycle width. Furthermore, we integrate these MoCs,

making SML-Sys a multi-MoC modeling framework. The integration is formulated

by defining the interfaces between similar and different MoCs. These interfaces facil-

itate inter-domain modeling by handling the timing aspects of the different integrated

domains.

The hardware/software co-design based on SAFL and Bluespec are similar to SML-

Sys and ForSyDe with their intent in raising the level of abstraction by starting with a

functional specification than a behavioral one. However, it is limited to a single modeling

domain. Bluespec, HML, Lava and Ruby differ from SML-Sys in that they perform

hardware modeling and design at lower levels of abstraction. Furthermore, SML-Sys

executable models, can be translated to VHDL/Verilog based RTL descriptions, which

has been demonstrated by ForSyDe.

SML-Sys’s design-flow starts at a functional specification and is refined into a com-

munication specification using semantic preserving refinements, and furthermore into

an efficient implementation specification. ForSyDe differs from SML-Sys in that their

communication refinements are based on design choices, which does provide them

more flexibility but imposes the restriction that the design-flow cannot be automated.
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SML-Sys performs semantic preserving-based refinement, which is also the case for

the SAFL-based framework. is similar to the SML-Sys framework since they perform

semantic preserving-based refinements.

The problems encountered in SpecC are eliminated in SML-Sys, since our approach

targets a higher level of abstraction, where the initial specification is purely functional

(separating computation from communication) and does not include behavioral aspects

such as computational threads and channel based communication between hierarchy of

threads.

SML-Sys is a library-based functional framework for multi-MoC modeling for hetero-

geneous system design. The design-flow in SML-Sys starts with writing a functional

specification that is transformed into an optimized implementation specification through

well-defined semantics preserving refinements.

2.5 MetaModeling & MetaModeling Environment

Metamodeling [19] is defining a metamodel to describe a modeling system. Metamodels

are formalized descriptions of the objects, relationships, and characteristics required in

a particular domain-specific MIPS environment (DSME). In MIPS (model-integration

program synthesis), models are created to capture various aspects of a domain-specific

system’s desired characteristics. Model interpreters are used to translate these models

for use in the system’s execution environment, either as stand-alone applications or

in conjunction with code libraries and some form of middleware (e.g. CORBA, the

MultiGraph kernel (MGK), POSIX, etc.) When changes in the overall system require

new application programs, the models are updated to reflect these changes, and the

applications are regenerated automatically from the models. Metamodeling can be used
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to define a metamodel that is a DSME itself, providing a modeling environment, which in

a manner is similar to defining a metamodel that is a domain-specific application. Such a

DSME is called a meta-metamodel and an environment that facilitates such metamodeling

is called a metamodeling environment.

We provide a few definitions below to avoid confusion:

1. A model is an abstract representation of any system.

2. A modeling environment is a modeling paradigm for creating, analyzing, and

translating domain-specific models.

3. A metamodel formally defines the syntax and semantics of a particular domain-

specific modeling environment.

4. A metamodeling environment is a framework for creating, validating, and trans-

lating metamodels.

5. A meta-metamodel formally defines the syntax and semantics of a given meta-

modeling environment.

2.5.1 Generic Modeling Environment

Generic Modeling Environment (GME) developed at the Institute for Software Integrated

Systems at Vanderbilt University is a Windows-based, generic, configurable toolkit for

creating domain-specific modeling and program synthesis environments.

1. It is used primarily for model-building. The models take the form of graphical,

multi-aspect, attributed entity-relationship diagrams. The dynamic semantics of
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a model is not the concern of GME that is determined later during the model

interpretation process.

2. It supports various techniques for building large-scale, complex models. The

techniques include: hierarchy, multiple aspects, sets, references, and explicit con-

straints.

3. It contains one or more integrated model interpreters that perform translation and

analysis of models currently under development.

The configuration is accomplished through metamodels specifying the modeling paradigm

of the application domain as shown in Figure 2.1. The modeling paradigm contains

all the syntactic, semantic, and presentation information regarding the domain. It also

provides an interface to describe which concepts will be used to construct models, what

relationships may exist amongst these concepts, how the concepts may be organized

and viewed by the modeler and rules governing the construction of the model. The

modeling paradigm (MP) defines the family of models that can be created using the re-

sultant modeling environment created by configuring a metamodel using the GME meta-

metamodel. The metamodels specifying the modeling paradigm are used to automatically

generate the target domain-specific environment. The generated domain-specific envi-

ronment(MP) is then used to build domain models that are stored in a model database.

These models are used to automatically generate the applications or to synthesize in-

put to different Commercial Off-The Shelf (COTS) analysis tools. This process is called

model interpretation. The metamodeling paradigm is based on the Unified Modeling Lan-

guage (UML). The syntactic definitions are modeled using pure UML class diagrams and

the static semantics are specified with constraints using the Object Constraint Language

(OCL). GME also provides bidirectional XML access for both model and metamodel

information.
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Figure 2.1: GME Architecture

The vocabulary of the domain-specific languages implemented by different GME con-

figurations is based on a set of generic concepts built into GME itself. These include:

hierarchy, multiple aspects, and explicit constraints. Folders, Models, Atoms, Connections,

Roles, Constraints and Aspects are the main elements in defining a modeling domain. The

metamodel is saved as a Project which contains a set of Folders. Folders are containers

that help organize models. Models, Atoms, and Connections, are first class objects (FCO)s.

Atoms are the elementary objects that cannot contain parts and have a predefined set

of attributes. Models are compound objects with an inner structure. GME’s modeling

concept Aspects provides visibility control. Every Model has a predefined set of Aspects.

Each part can be visible or hidden in an Aspect. The simplest way to express a relation-

ship between two objects in GME is with a Connection. Connections can be directed or

undirected. Connections can have Attributes themselves. In order to make a Connection

between two objects they must have the same parent in the containment hierarchy (and

they also must be visible in the same Aspect) Connections can further be restricted by

explicit constraints specifying their multiplicity. The kinds of Attributes available are

text, integer, double, boolean and enumerated. The modeling language is made up of

instances of these concepts.
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When a particular metamodel is created, it becomes a type (class). It can be subtyped and

instantiated as many times as the user wishes. This makes it possible to create libraries

of type models that can be used in multiple applications in the given domain. Only

attribute values of model instances can be modified. The model instances have to be in

syntactic conformance with the metamodel and should also abide to all the constraints

imposed on the metamodel.



Chapter 3

Implementing MoCs with SML

In this chapter, we describe the SML-based implementation of the generic MoCs in the

SML-Sys framework. Notations used to formalize the components of a generic MoC is

discussed in Chapter 2. We discuss the implementation of the untimed, synchronous

and timed MoC and illustrate through a number of examples how to model interesting

systems using a framework with underlining denotational semantics, bereft of any lin-

guistic artifacts. Finally, we conclude this chapter by formulating the interfaces between

MoCs to facilitate inter-domain modeling.

3.1 Untimed Model of Computation (UMoC)

UMoC adopts the simplest timing model that follows the causality abstraction. Pro-

cesses, modeled as state machines, are connected to each other via signals. Signals

transport data values from a sending process to a receiving process. The data values do

not carry time information, but the signals preserve the order of emission.

29
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3.1.1 Process Constructors

In the UMoC, process constructors are templates on processes, which are implemented

as higher-order functions that take functions on events as argument and instantiate pro-

cesses. We implement a set of process constructors that are used to define computational

blocks that are either complex processes or process networks. We suffix it with U to

designate it to the UMoC.

map-based process constructor: It is a stateless constructor that creates a process, which

takes an input signal and generates an output signal. It takes a constant ‘c’ and a

function f and it returns the process p. ‘c’ should be a positive integer that determines

the partitioning of the finite input signal s. The output of the partition determines how

many events are consumed by the process during each evaluation cycle. The function

f defines the functionality of the process. It takes a partition of the input signal as

argument and produces the output events. p is a process that takes one input signal s

and generates one output signal ś.

Definition 3.1.1 mapU (c, f) = p, where p(s) = ś with,

Ψ(v, s) = 〈ai〉 where v(i) = c,

f (ai) = ái,

s, ś, ai, ái ∈ S, i ∈ N

Listing 3.1: Implementation of a map-based process constructor
1 ( ∗ map−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e UMoC ∗ )
2 fun mapU ( c , f ) = fn ( s i g n a l ) => c o n s t r u c t o r ( c , f , s i g n a l )

3

4 fun c o n s t r u c t o r ( , f , [ ] ) = [ ]

5 | c o n s t r u c t o r ( c , f , s ) = f ( take ( s , c ) ) @ c o n s t r u c t o r ( c , f , drop ( s , c ) )
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scan-based process constructor: scan-based process constructor: It instantiates a pro-

cess with an internal state, which is directly visible at the output as a single event. It

takes an initial state, a function that determines the size of each partition based on the

current state and a second function that takes a partition and the current state for each

activation and generates an output that is the next initial state. Thus, the current state

determines how many events are consumed for the next evaluation cycle.

Definition 3.1.2 scanU (γ, g, ω0) = p, where p(s) = ś with,

Ψ(v, s) = 〈ai〉 where v(i) = γ(ωi),

g(ai,ωi) = ωi+1,

〈ωi+1〉 = ái

s, ś, ai, ái ∈ S, ωi ∈ E, i ∈ N

Listing 3.2: Implementation of a scan-based process constructor
1 ( ∗ scan−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e UMoC ∗ )
2 fun scanU ( h , g ,w)= fn ( s ) => c o n s t r u c t o r ( h , g ,w, s )

3

4 fun c o n s t r u c t o r ( , , , [ ] ) = [ ]

5 | c o n s t r u c t o r ( h , g ,w, s ) = [ g (w, p a r t i t i o n ( [ h w] , s ) ) ]

6 @ c o n s t r u c t o r ( h , g , g (w, p a r t i t i o n ( [ h w] , s ) ) , drop ( s , ( h w) ) )

mealy-based process constructor: It resembles a mealy-based state machine with the

addition of a next-state function, an output encoding f that depends on both the input

partition and the current state.

Definition 3.1.3 mealyU (γ, g, f, ω0) = p, where p(s) = ś with,

Ψ(v, s) = 〈ai〉 where v(i) = γ(ωi),
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g(ai,ωi) = ωi+1,

f (ωi, ai) = ái,

s, ś, ai, ái ∈ S, ωi ∈ E, i ∈ N

Listing 3.3: Implementation of a mealy- based process constructor
1 ( ∗ mealy−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e UMoC ∗ )
2 fun mealyU ( h , g , f ,w) = fn ( s ) => c o n s t r u c t o r ( h , g , f ,w, s )

3

4 fun c o n s t r u c t o r ( , , , , [ ] ) = [ ]

5 | c o n s t r u c t o r ( h , g , f ,w, s ) = f (w, head ( p a r t i t i o n ( [ h w] , s ) ) )

6 @ c o n s t r u c t o r ( h , g , f , g (w, p a r t i t i o n ( [ h w] , s ) ) , drop ( s , ( h w) ) )

moore-based process constructor: It resembles a moore-based state machine with the

addition of a next-state function, an output encoding f that depends only on the current

state.

Definition 3.1.4 mooreU (γ, g, f, ω0) = p, where p(s) = ś with,

Ψ(v, s) = 〈ai〉 where v(i) = γ(ωi),

g(ai,ωi) = ωi+1,

f (ωi) = ái

s, ś, ai, ái ∈ S, ωi ∈ E, i ∈ N

Listing 3.4: Implementation of a moore-based process constructor
1 ( ∗ moore−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e UMoC ∗ )
2 fun mooreU ( h , g , f ,w) = fn ( s ) => c o n s t r u c t o r ( h , g , f ,w, s )

3

4 fun c o n s t r u c t o r ( , , , , [ ] ) = [ ]

5 | c o n s t r u c t o r ( h , g , f ,w, s ) = f (w)

6 @ c o n s t r u c t o r ( h , g , f , g (w, p a r t i t i o n ( [ h w] , s ) ) , drop ( s , ( h w) ) )
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zip-based process constructor: It takes two input signals and generates a signal of 2-

tuple events. The first tuple contains the event sequence from the input signal sa and the

second tuple contains the event sequence from the input signal sb. We can categorize the

zip-based constructor on how they perform the zipping into three type of constructors

namely zipU, zipUs and zipWithU.

zipU defines a constructor that joins the inputs together based on two functions γa and

γb which take their arguments from a third signal (a control signal). zipUs is a simplified

version which has no control input but two constants as parameters that define the

partitioning of the input signals. zipWithU is a constructor that allows the joining

of the input signals with an arbitrary function. The implementation of the zip-based

constructors are shown in Listing 3.5.

Definition 3.1.5 zip-based processes are defined as:

zipU (γa, γb) = p, where p(sa, sb, sc) = ś,

Ψ(v1, sa) = 〈ai〉 where v1(i) = γa(ci),

Ψ(v2, sb) = 〈bi〉 where v2(i) = γb(ci),

Ψ(v3, sc) = 〈ci〉 where v3(i) = 1,

〈ai, bi〉 = éi

zipUs (c1, c2) = p, where p(sa, sb) = ś,

Ψ(v1, sa) = 〈ai〉 where v1(i) = γa(c1),

Ψ(v2, sb) = 〈bi〉 where v2(i) = γb(c2),

〈ai, bi〉 = éi

zipWithU (c1, c2, f ) = p, where p(sa, sb) = ś,

f((ai, bi)) = éi,

Ψ(v1, sa) = 〈ai〉 where v1(i) = γa(c1),

Ψ(v2, sb) = 〈bi〉 where v2(i) = γb(c2),
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sa, sb, sc, ś, ai, bi,∈ S, éi ∈ E, i ∈ N

Listing 3.5: Implementation of zip-based process constructors
1 ( ∗ z ip−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e UMoC ∗ )
2 fun zipU ( f1 , f2 ) = fn ( s1 , s2 , s3 ) =>

3 c o n s t r u c t o r 1 ( f1 , f2 , s1 , s2 , s3 )

4

5 fun c o n s t r u c t o r 1 ( , , [ ] , , ) = [ ]

6 | c o n s t r u c t o r 1 ( , , , [ ] , ) = [ ]

7 | c o n s t r u c t o r 1 ( , , , , [ ] ) = [ ]

8 | c o n s t r u c t o r 1 ( f1 , f2 , h1 : : t1 , h2 : : t2 , h3 : : t 3 ) = [ [ f1 ( h3 , h1 : : t 1 ) ]

9 @ [ f2 ( h3 , h2 : : t 2 ) ] ]

10 @ c o n s t r u c t o r 1 ( f1 , f2 , drop ( h1 : : t1 , h3 ) , drop ( h2 : : t2 , h3 ) , t3 )

11

12 fun zipUs ( a , b ) = fn ( s1 , s2 ) => c o n s t r u c t o r 2 ( a , b , s1 , s2 )

13

14 fun c o n s t r u c t o r 2 ( , , [ ] , ) = [ ]

15 | c o n s t r u c t o r 2 ( , , , [ ] ) = [ ]

16 | c o n s t r u c t o r 2 ( a , b , h1 : : t1 , h2 : : t 2 ) = [ [ p a r t i t i o n ( [ a ] , h1 : : t 1 ) ]

17 @ [ p a r t i t i o n ( [ b ] , h2 : : t 2 ) ] ]

18 @ c o n s t r u c t o r 2 ( a , b , drop ( h1 : : t1 , a ) , drop ( h2 : : t2 , b ) )

19

20 fun zipWithU ( a , b , f ) = fn ( s1 , s2 ) => c o n s t r u c t o r 3 ( a , b , f , s1 , s2 )

21

22 fun c o n s t r u c t o r 3 ( , , , [ ] , ) = [ ]

23 | c o n s t r u c t o r 3 ( , , , , [ ] ) = [ ]

24 | c o n s t r u c t o r 3 ( a , b , f , h1 : : t1 , h2 : : t 2 ) = [ [ f ( a , h1 : : t 1 ) ]

25 @ [ f ( b , h2 : : t 2 ) ] ]

26 @ c o n s t r u c t o r 3 ( a , b , f , drop ( h1 : : t1 , a ) , drop ( h2 : : t2 , b ) )

unzip-based process constructor: It performs the reverse operation of a zip-based pro-

cess, i.e., it extracts two output signals from a zipped signal based on how it was joined.

Definition 3.1.6 unzipU ( ) = p, where p(s) = 〈ś, s̋〉 with,

ei = 〈ái, a̋i〉,
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Ψ(v1, ś) = 〈ái〉 where v1(i) = length(ái),

Ψ(v2, s̋) = 〈a̋i〉 where v2(i) = length(a̋i),

s, ś, s̋ a, á, a̋ ∈ S, ei ∈ E, i ∈ N

Listing 3.6: Implementation of unzip process constructors
1 ( ∗ unzip−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e UMoC ∗ )
2 fun unzipU ( ) = fn ( s ) => c o n s t r u c t o r ( s )

3

4 fun c o n s t r u c t o r [ ] = [ ]

5 | c o n s t r u c t o r ( s ) = [ f i r s t ( s ) , second ( s ) ]

6

7 fun f i r s t [ ] = [ ] | f i r s t s = head ( head s ) @ f i r s t ( t a i l s )

8

9 fun second [ ] = [ ]

10 | second s = head ( t a i l ( head s ) ) @ second ( t a i l s )

scand-based process constructor: It behaves identically to a scan-based process with the

addition that it also emits its initial state.

Definition 3.1.7 scandU (γ, g, ω0) = p, where

p(s) = 〈ω0〉 ⊕ scanU (γ, g, ω0) (s),

s ∈ S,

⊕ is the concatenation operator

Listing 3.7: Implementation of scand-based process constructors
1 ( ∗ scand−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e UMoC ∗ )
2 fun ScandU ( f1 , f2 ,w) = fn ( s i g n a l ) => [w] @ ( ScanU ( f1 , f2 ,w) s i g n a l )

source-based process constructor: It initializes a signal with events. It takes an initial

state and a function encoding which depends on the current state to determine the output

event to initialize a signal.
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Definition 3.1.8 sourceU (g, ω0) = p, where p ( ) = ś with,

ωi = éi,

Ψ(v, ś) = 〈éi〉 where v(i) = length(g(ωi−1)),

g(ωi) = wi+1,

ś ∈ S, éi,ωi ∈ E, i ∈ N

sink-based process constructor: It initializes a signal to an empty signal. It takes an

initial state, a function that based on the current state determines how many events need

to be consumed for each evaluation cycle and a function encoding that determines the

next state.

Definition 3.1.9 sinkU (γ, g, ω0) = p, where p(s) = 〈〉 with,

Ψ(v, s) = 〈ai〉 where v(i) = γ(ωi),

g(ωi) = ωi+1 for s ∈ S, ωi ∈ E, i ∈ N

init-based process constructor: It initializes a signal with another signal. It takes an

event sequence as its argument and appends it to the input signal to create a new signal.

Definition 3.1.10 initU (r) = p, where p(s) = r⊕ s for r, s ∈ S

Listing 3.8: Implementation of process constructors to initialize
1 ( ∗ P r o c e s s I n i t i a t o r s ∗ )
2 fun sourceU ( g ,w) = w: : SourceU ( g , ( g w) )

3

4 fun sinkU ( h , g ,w) = fn ( s ) => c o n s t r u c t o r 1 ( h , g ,w, s )

5
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6 fun c o n s t r u c t o r 1 ( h , g ,w, [ ] ) = [ ]

7 | c o n s t r u c t o r 1 ( h , g ,w, s ) = c o n s t r u c t o r 1 ( h , g , ( g w) , drop ( s , ( h w) ) )

8

9 fun in i tU ( r ) = fn ( s ) => c o n s t r u c t o r 2 ( r , s )

10

11 fun c o n s t r u c t o r 2 ( [ ] , [ ] ) = [ ]

12 | c o n s t r u c t o r 2 ( [ ] , x : : y ) = x : : c o n s t r u c t o r 2 ( [ ] , y )

13 | c o n s t r u c t o r 2 ( h : : t , x : : y ) = h : : c o n s t r u c t o r 2 ( t , x : : y )

3.1.2 Process Combinators

We define compositional operators to combine different processes to form complex pro-

cesses and process networks. These are also implemented as higher-order functions.

The sequential, parallel and feedback operators are shown in Figure 3.1. We discuss the

implementation details with respect to finite signals.

P

s1

s2

      s3

FBP (p)

P2

P1

s

P2P1

s1 s2

(P1 o P2)

(P1 || P2)

Figure 3.1: Parallel, Sequential and Feedback Operators

parallel composition operator: Let p1 and p2 be two processes with one input and one

output each, and let s1,s2 ∈ S be two signals. Their parallel composition denoted by p1 ‖
p2, is defined as follows:

Definition 3.1.11 (p1 ‖ p2)(〈s1, s2〉) = 〈p1(s1), p2(s2)〉
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sequential composition operator: Let p1 and p2 be two processes with one input and

one output each, and let s ∈ S be a signal. Their sequential composition denoted by

p1 ◦ p2, is defined as follows:

Definition 3.1.12 (p1 ◦ p2)( s ) = p2(p1(s))

Listing 3.9: Parallel and Sequential process combinators
1 ( ∗ p a r a l l e l c o m p o s i t i o n o p e r a t o r ∗ )
2 fun parcomp ( p1 , p2 ) = fn ( s1 , s2 ) => [ [ p1 ( s1 ) ] , [ p2 ( s2 ) ] ]

3

4 ( ∗ s e q u e n t i a l c o m p o s i t i o n o p e r a t o r ∗ )
5 fun seqcomp ( p1 , p2 ) = fn ( s ) => p2 ( p1 ( s ) )

feedback composition operator: Given a process p: (S×S) → (S×S) with two input

signals and two output signals, we define the process FBp(p) : S → S. The behavior of

the process FBp(p) is defined by the least fixed-point semantics.

Definition 3.1.13 FBp(p)(s1) = s2, where p(s1, s2) = (s2, s3)

Listing 3.10: Feedback process combinator
1 ( ∗ F e e d b a c k O p e r a t o r ∗ )
2 fun fb ( p ) ( s ) = f i x p t ( p , s , [ ] , length ( s ) + 1)

3

4 fun f i x p t ( q , s , sout , 0 ) = sout

5 | f i x p t ( q , s , sout , n ) = f i x p t ( q , s , ( q s sout ) , n − 1)

All the above process constructors and process combinators for the UMoC is also imple-

mented for infinite signals.
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3.1.3 Formalized Definition of UMoC

Definition 3.1.14 UMoC is defined as MoC = (C,O), where

C = {mapU, scanU, scandU, mealyU, mooreU, zipU, zipUs, zipWithU, unzipU, sourceU,

sinkU, initU}
O = {‖, ◦, FBp}

Listing 3.11: UMoC in the SML-Sys Framework
1 ( ∗ F o r m u l a t i o n o f t h e untimed MoC ∗ )
2

3 s t r u c t u r e UMoC = s t r u c t

4 exception Empty

5 exception NotWellDefined

6 .

7 .

8 ( ∗ D e f i n i t i o n s o f t h e p r o c e s s c o n s t r u c t o r s ∗ )
9 .

10 .

11 ( ∗ D e f i n i t i o n s o f t h e p r o c e s s c o m b i n a t o r s ∗ )
12 .

13 .

14 end

We discuss the implementation of an untimed FIR model in Listing A.1 of Appendix A.

3.2 Synchronous Model of Computation (SMoC)

SMoC has two variants that partition the time line into intervals or clock cycles. The

clocked synchronous MoC assumes that every evaluation of a process takes one cycle.
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Whereas, the perfectly synchronous MoC assumes that no time advances during the

evaluation of a process.

3.2.1 Perfectly Synchronous Model of Computation (PSMoC)

We develop perfectly synchronous processes as a special case of untimed processes. Syn-

chronous processes have two specific characteristics. First, they consume and produce

exactly one event on each input or output signal during each evaluation cycle. Secondly,

E carries the special value t, which denotes the absence of an event. All synchronous

process constructors and processes operate exclusively on synchronous signals.

Definition 3.2.1 Perfectly synchronous process constructors (suffixed with S) are defined as

mapS (f) = mapU (1, f) = p

scanS (g, ω0) = scanU (1, g, ω0) = p

scandS (g, ω0) = scandU (1, g, ω0)= p

mealyS (g, f, ω0) = mealyU (1,g,f, ω0) = p

mooreS (g, f, ω0)= mooreU (1, g, f, ω0) = p

zipS() = zipU(1,1) = p

zipWithS (f) = zipWithU (1, 1, f) = p

unzipS () = unzipU () = p

sourceS (g, ω0) = sourceU(g, ω0)

sinkS(g, ω0) = sinkU (1, g, ω0) = p

initS (r̄) = initU(r̄) = p

We illustrate the map-based synchronous process constructor.
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Definition 3.2.2 mapS (f) = mapU (1,f) = p, where p(s̄) = s̄́ with, ∃ē ε Ē then f (t) = t and ∀ē

ε Ē then length( f (ē) ) = 1

Listing 3.12: Implementation of map-based synchronous process constructor
1 ( ∗ map−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e SMoC ∗ )
2 fun mapS ( f ) = fn ( s ) => c o n s t r u c t o r ( f , s )

3

4 fun c o n s t r u c t o r ( f , [ ] ) = [ ]

5 | c o n s t r u c t o r ( h : : t , f ) = [ f h ] @ c o n s t r u c t o r ( t , f )

The parallel and sequential combinators are similar to the operators defined for the

UMoC. However, for the feedback in SMoC, we need to find the fix-point solution for

each evaluation cycle separately. So we extend the domain of absent events with another

special element, ⊥ to capture the situation when we do not know if the event occurred

or which value it has: Ē⊥ = Ē∪⊥.

Definition 3.2.3 The order relation � on Ē⊥ which means “less defined than or equal to” is

defined as ⊥ � ē and ē � ē for all ē ε Ē⊥

feedback composition operator: Let S̄⊥ be the set of signals consisting of elements from

Ē⊥, and let S̄∞⊥ ⊆ S̄⊥ be the set of infinite signals. For signals of length n, we define 〈 ē1,

· · ·, ēn 〉 � 〈 ē1́, · · ·, ēń 〉 iff ēi � ēí for all i, 1 ≤ i ≤ n

Given a process p: ( S̄∞⊥ × S̄∞⊥ ) → ( S̄∞⊥ × S̄∞⊥ ) with two input signals and two output

signals, we define the process FBs (p): S̄∞⊥ → S̄∞⊥ as follows:

Definition 3.2.4 FBs (p)(s̄1) = s̄2, where p (s̄1,s̄3) = (s̄2, s̄3)

The events in s̄3 in each evaluation cycle are determined by the least fix-point, that

satisfies the constraint of the feedback loop.
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Definition 3.2.5 PSMoC is defined as MoC = (C,O), where

C = {mapS, scanS, scandS, mealyS, mooreS, zipS, zipWithS, unzipS, sourceS, sinkS, initS }
O = { ‖, ◦, FBs }

We discuss the implementation of a synchronous SOBEL model in Listing A.2 of Ap-

pendix A.

3.2.2 Clocked Synchronous Model of Computation (CSMoC)

For clocked synchronous processes we introduce a delay function 4, which delays each

input by one cycle.

Definition 3.2.6 4 = scandS (g, t), where g (ω, ē) = ē

Listing 3.13: Implementation of the delay function
1 ( ∗ d e l a y p r o c e s s c o n s t r u c t o r f o r CSMoC ∗ )
2 fun d e l t a ( ) = fn ( s ) => scandS ( f , 0 ) ( s )

Using the delay process, we formally define the process constructors (suffixed by CS)

for CSMoC. The process combinators of CSMoC are similar to the process combinators

of PSMoC. We model the SOBEL in this domain that is similar to the implementation of

the SOBEL operator in PSMoC as shown in Listing A.2 of Appendix A.

Definition 3.2.7 Clocked synchronous process constructors (suffixed with CS) are defined as

mapCS (f) = mapS (f) o 4
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scanCS (g, ω0) = scanS (g, ω0) o 4
mealyCS (g, f, ω0) = mealyS (g, f, ω0) o 4
mooreCS (g, f, ω0) = mooreS (g, f, ω0) o 4
zipCS ( ) ( s̄1, s̄2 ) = zipS () ( 4(s̄1), 4(s̄2) )

zipWithCS (f) (s̄1, s̄2) = zipWithS (f) ( 4(s̄1), 4(s̄2) )

unzipCS () = unzipS () o 4
sourceCS = sourceS

sinkCS = sinkS

initCS = initS

Definition 3.2.8 CSMoC is defined as MoC = (C,O), where

C = {mapCS, scanCS, scandCS, mealyCS, mooreCS, zipCS, zipWithCS, unzipCS, sourceCS,

sinkCS, initCS }
O = { ‖, ◦, FBs }

3.3 Timed Model of Computation (TMoC)

Previously defined UMoC and SMoC does not follow the notion of physical time. The

UMoC is based on data dependencies whereas SMoC has cycle time, in which the

computation of the outputs and the next state is “fast enough” and the communication

of events do not take any observable time. This is convenient when we are only concerned

with the sequence of states and transitions. Nevertheless, there are many cases where

we want to take into account the precise timing behavior. The TMoC is used to model

the exact timing of all computation and communication. This is the least abstract MoC,

and hence allows us to model a process to its minute details in terms of computational
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time making it better reflect physical reality. The process constructors for the TMoC, are

suffixed with T. The timed processes are a blend of untimed and synchronous processes

in that they consume and produce more than one event per cycle with the possibility

of an event being absent. In addition, they have to comply with the constraint that

output events cannot occur before input events for each evaluation cycle. We achieve

this in our implementation by enforcing equal number of input and output events for

each evaluation cycle. Definition and implementation for some process constructors are

shown below.

Definition 3.3.1 From [8], mealyT is a process constructor that, given γ, f, g, and ω0 as

arguments, instantiates a process p: Ŝ→ Ŝ that is defined as

mealyT (γ, g, f, ω0) = p, where p(ŝ) = ŝ́ with,

Ψ(v, ŝ) = 〈âi〉 where v(i) = γ(ωi),

g(âi−1,ωi−1) = ωi,

f (ωi, âi−1) = ĉi,

b̂i = 〈t〉Ki ⊕ ĉi

ŝ, ŝ́, â, b̂ ∈ S,ωi ∈ E, i ∈ N

The output event for the ith evaluation cycle is given bi, where 〈t〉n denotes the sequence

of n t events. The output sequence bi consist of the result of function f and a number of

absent events constituting the delays whenever necessary.

The number of delay events to be inserted for an evaluation cycle is determined by the

sequence Ki, defined as

Ki =


Ti(i) − To(i− 1) − 1 if i ≥ 0

Ti(i) − 1 if i = 0
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Ti(i) =
∑i

j=0 length(â j)

To(i) =
∑i

j=0 length(b̂ j)

Listing 3.14: Implementation of the mealy based process constructor for the Timed MoC
1 ( ∗ mealy−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e TMoC ∗ )
2 fun mealyT ( h , g , f ,w) = fn ( s ) => cons2 ( h , g , f ,w, s , 0 , 0 )

3

4 fun cons2 ( h , g , f ,w, s , len1 , len2 ) = cons1 ( h , g , f ,w, s , len1 +(h w) , len2 , 0 )

5

6 fun cons1 ( , , , , [ ] , , , ) = [ ]

7 | cons1 ( h , g , f ,w, s , len1 , len2 , i t e r ) =

8 make ( g e t s i z e ( len1 , len2 , i t e r ) ) @ f (w, head ( p a r t i t i o n ( [ h w] , s ) ) )

9 @ cons1 ( h , g , f , g (w, head ( p a r t i t i o n ( [ h w] , s ) ) ) , drop ( s , ( h w) ) ,

10 len1 + h ( g (w, head ( p a r t i t i o n ( [ h w] , s ) ) ) ) ,

11 len2 + length ( f (w, head ( p a r t i t i o n ( [ h w] , s ) ) ) ) +

12 length ( make ( g e t s i z e ( len1 , len2 , i t e r ) ) ) , i t e r +1)

13

14 fun g e t s i z e ( len1 , len2 , 0 ) = len1 − 1

15 | g e t s i z e ( len1 , len2 , ) = len1 − len2 − 1

16

17 fun make 0 = [ ] | make n = 0 : : make ( n−1)

Definition 3.3.2 From [8], zipT is a constructor that, given γ as argument, instantiates a

process p: Ŝ× Ŝ× Ŝ→ Ŝ, defined as

zipT (γ) = p, such that p(ŝa, ŝb, ŝc) = ŝ́ where,

Ψ(v1, ŝa) = 〈âi〉 where v1(i) = γ(Ki),

Ψ(v2, ŝb) = 〈b̂i〉 where v2(i) = γ(Ki),

Ψ(v3, ŝc) = 〈ĉi〉 where v3(i) = γ(Ki),

ė́0 = t,

ė́i+1 = 〈âi, b̂i〉,
b̂i = 〈t〉Ki−1 ⊕ ė́i,
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where Ki+1 = ĉi[1] and K0 = 0,

ŝa, ŝb, ŝc, ŝ́, âi, b̂iĉi ∈ S,ωi ∈ E, i ∈ N

Listing 3.15: Implementation of the zip based process constructor for the Timed MoC
1 ( ∗ z ip−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e TMoC ∗ )
2 fun zipT ( f ) = fn ( s1 , s2 , s3 ) => ” absent event ”

3 @ c o n s t r u c t o r ( f , s1 , s2 , s3 )

4

5 fun c o n s t r u c t o r ( f , [ ] , , ) = [ ]

6 | c o n s t r u c t o r ( f , , [ ] , ) = [ ]

7 | c o n s t r u c t o r ( f , , , [ ] ) = [ ]

8 | c o n s t r u c t o r ( f , h1 : : t1 , h2 : : t2 , h3 : : t 3 ) =

9 ( i f make ( f ( h3 )−1) = [ ]

10 then

11 [ [ p a r t i t i o n ( [ f ( h3 ) ] , h1 : : t 1 ) ] @ [ p a r t i t i o n ( [ f ( h3 ) ] , h2 : : t 2 ) ] ]

12 e lse

13 [ [ make ( f ( h3 ) −1) ] @ [ p a r t i t i o n ( [ f ( h3 ) ] , h1 : : t 1 ) ]

14 @ [ p a r t i t i o n ( [ f ( h3 ) ] , h2 : : t 2 ) ] ]

15 )

16 @ c o n s t r u c t o r ( f , drop ( h1 : : t1 , h3 ) , drop ( h2 : : t2 , h3 ) , t3 )

Definition 3.3.3 unzipT is a process constructor that instantiates a process p: ŝ→ (ŝa,ŝb).

Listing 3.16: Implementation of the unzip based process constructor for the Timed MoC
1 ( ∗ unzip−b a s e d p r o c e s s c o n s t r u c t o r f o r t h e TMoC ∗ )
2 fun unzipT ( ) = fn ( s ) => c o n s t r u c t o r ( s )

3

4 fun c o n s t r u c t o r ( s ) = [ ” absent event ” , ” absent event ]

5 @ [ helper1 ( s ) , helper2 ( s ) ]

6

7 fun helper1 [ ] = [ ]

8 | helper1 l = head ( i f length ( head l ) = 2

9 then head s e l s e drop ( head s , 1 ) ) @ helper1 ( t a i l s )

10

11 fun helper2 [ ] = [ ]

12 | helper2 ( s ) = head ( t a i l ( i f length ( head s ) = 2 then head s

13 e l s e drop ( head s , 1 ) ) ) @ helper2 ( t a i l s )
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Definition 3.3.4 The sourceT, sinkT and initT process constructors are defined as:

sourceT (g, ω0) = p

sinkT (g, ω0) = p

initT (r̂) = p

Definition 3.3.5 TMoC is defined as MoC = (C,O), where

C = {mealyT, zipT, unzipT, sourceT, sinkT, initT }
O = { ‖, ◦, FBs }

We discuss the implementation of a Traffic Light Controller modeled in TMoC in List-

ing A.3 of Appendix A.

3.4 Interfacing MoCs

It is evident that separate process networks, of the same MoC type may have a different

time structure. So when connecting them, the relation between their respective time

structure has to be defined. This relation can be constant and simple or it can vary

dynamically. We define the interface processes between the MoC domains when the

relation between their time structure is a constant and simple. Based on these interface

processes we introduce an integrated MoC, consisting of different MoC domains and

interface processes. We do not handle the scenario where the time structure relation is

dynamic.
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3.4.1 Interfacing similar Computational Models

Consider two process networks in two MoC domains, if both are UMoCs then it is not

problematic since both the domains have no timing information. Therefore, the two

process networks can be directly connected without an interface. However if both are

SMoCs, the elementary timing unit may be different. Since there is no reference to an

absolute time in the SMoC, the evaluation cycle may be quite different in both the MoCs.

If we assume that the evaluation cycle of one MoC could have a duration constant times

the other MoC, say r, then we can define the following interface constructors.

Let r be a constant positive integer, r ε N.

Definition 3.4.1 intSup emits r events for each input event, and the function f defines the values

of the emitted events. intSup (r, f) = mapU (1, f) with, length( f ( ē )) = r

Definition 3.4.2 intSdown emits one event for r input events. intSdown (r, f) = mapU (r, f)

with, length( f(ā) ) = 1

Now, if both are TMoCs, it is similar to the SMoC case. We relate the time base in the

different domains to each other by the following interface constructors.

Definition 3.4.3 intTup (r, f) = intSup (1, f) and intTdown (r, f) = intSdown (r, f)

Listing 3.17: Implementation of the interface constructor for similar MoC
1 ( ∗ Up−Rat ing p r o c e s s t o i n t e r f a c e SMoC t o SMoC ∗ )
2 fun intSdown ( r , f ) = fn ( s i g n a l ) => UMoC.mapU( r , f ) ( s i g n a l )

3

4 ( ∗ Down−Rat ing p r o c e s s t o i n t e r f a c e SMoC t o SMoC ∗ )
5 fun intSup ( r , f ) = fn ( s i g n a l ) => untimed constructor ( s ignal , 1 , f , r )

6
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7 ( ∗ Up−Rat ing p r o c e s s t o i n t e r f a c e TMoC t o TMoC ∗ )
8 fun intTup ( r , f ) = fn ( s i g n a l ) => intSup ( r , f ) ( s i g n a l )

9

10 ( ∗ Down−Rat ing p r o c e s s t o i n t e r f a c e SMoC t o SMoC ∗ )
11 fun intTdown ( r , f ) = fn ( s i g n a l ) => intSdown ( r , f ) ( s i g n a l )

12

13 fun untimed constructor ( [ ] , , , ) = [ ]

14 | untimed constructor ( l t , c , f , r ) = f ( take ( l t , c ) ) r

15 @ untimed constructor ( drop ( l t , c ) , c , f , r )

3.4.2 Interfacing different Computational Models

To connect two networks of different MoCs, the interfaces have to bridge domains

with different information content concerning time. Therefore, interfaces have to filter

out or insert timing information. We define the interface constructors that add timing

information with the prefix insert and those that remove timing information with the

prefix strip.

strip-based Interface Constructor: In the strip-based processes, we remove the timing

information that they receive on their input signals. For an untimed signal, the t events

should be removed and the other events are passed to the output in the same order they

appear at the input.

Definition 3.4.4 The constructor stripT2U is a process constructor that instantiates a process

p: Ŝ→ Ṡ which is defined as stripT2U () = p , where p (ŝ) = ṡ

ȧi =


〈〉 if ėi = t
〈ėi〉 otherwise
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Definition 3.4.5 The constructor stripS2U is a process constructor that instantiates a process

p: S̄→ Ṡ which is defined as stripS2U = stripT2U

Definition 3.4.6 The constructor stripT2S is a process constructor that instantiates a process

p: Ŝ→ S̄ which is defined as stripT2S (λ) = p , where p (ŝ) = ṡ

ēi =


t if strip(âi) = 〈 〉
lastt(âi) otherwise

where lastt (ŝ) denotes the last non absent event in signal ŝ.

Listing 3.18: Implementation of the Strip interface constructor
1 ( ∗ s t r i p −b a s e d p r o c e s s t o i n t e r f a c e TMoC t o UMoC ∗ )
2 fun stripT2U ( ) = fn ( s ) => u c o n s t r u c t o r ( s )

3

4 fun u c o n s t r u c t o r [ ] = [ ]

5 | u c o n s t r u c t o r ( x : : y ) =

6 ( i f x = 0 then u c o n s t r u c t o r ( y ) else x : : u c o n s t r u c t o r ( y ) )

7

8 ( ∗ s t r i p −b a s e d p r o c e s s t o i n t e r f a c e SMoC t o UMoC ∗ )
9 fun str ipS2U ( ) = fn ( s ) => stripT2U ( ) ( s )

10

11 ( ∗ s t r i p −b a s e d p r o c e s s t o i n t e r f a c e TMoC t o SMoC ∗ )
12 fun s t r ipT2S ( p ) = fn ( s ) => s c o n s t r u c t o r ( p , s )

13

14 fun s c o n s t r u c t o r ( , [ ] ) = [ ]

15 | s c o n s t r u c t o r ( p , s ) = l a s t t ( take ( s , p ) )

16 @ s c o n s t r u c t o r ( p , drop ( s , p ) )

17

18 fun l a s t t [ ] = [ ]

19 | l a s t t ( l t ) = i f remove ( l t ) = [ ] then [ 0 ] else [ l a s t ( remove ( l t ) ) ]

insert-based Interface Constructor: In the insert-based processes, we inject λ number

of events into the output for a given event in the input.
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Definition 3.4.7 insertU2S is a process constructor that instantiate a process p: Ṡ→ S̄ which

is defined as insertU2S (λ) = p , where p (ṡ) = s̄ and āi = 〈 ėi 〉 ⊕ 〈 t 〉 λ−1

Definition 3.4.8 insertU2T is a process constructor that instantiate a process p: Ṡ→ Ŝ which

is defined as insertU2T = insertU2S

Definition 3.4.9 insertS2T is a process constructor that instantiate a process p: S̄→ Ŝ which

is defined as insertS2T (λ) = p , where p (s̄) = ṡ, âi = 〈 ēi 〉 ⊕ 〈 t 〉 λ−1

Listing 3.19: Implementation of the Insert interface constructor
1 ( ∗ i n s e r t −b a s e d p r o c e s s t o i n t e r f a c e UMoC t o SMoC ∗ )
2 fun insertU2S ( p ) = fn ( s ) => s c o n s t r u c t o r ( p , s )

3

4 fun s c o n s t r u c t o r ( p , [ ] ) = [ ]

5 | s c o n s t r u c t o r ( p , h : : t ) = h : : makeup ( p−1) @ s c o n s t r u c t o r ( p , t )

6

7 ( ∗ i n s e r t −b a s e d p r o c e s s t o i n t e r f a c e UMoC t o TMoC ∗ )
8 fun insertU2T ( p ) = fn ( s ) => insertU2S ( p ) ( s )

9

10 ( ∗ i n s e r t −b a s e d p r o c e s s t o i n t e r f a c e SMoC t o TMoC ∗ )
11 fun i n s e r t S 2 T ( p ) = fn ( s ) => t c o n s t r u c t o r ( p , s )

12

13 fun t c o n s t r u c t o r ( p , [ ] ) = [ ]

14 | t c o n s t r u c t o r ( p , h : : t ) = h : : makeup ( p−1) @ t c o n s t r u c t o r ( p , t )
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The multiple domains with their interfaces are shown in Figure 3.2.

UMoC

SMoC TMoC

UMoC

insertU2S

stripS2U insertU2T

stripT2U

insertS2T

stripT2S

intTdown / intTupintSdown / intSup

Figure 3.2: Domains with the respective interfaces

We discuss the implementation of a Digital Equalizer System and a Validation Frame-

work in Listing A.4 and A.5 of Appendix A. These systems are built of components

modeled in multiple MoCs.



Chapter 4

Refinements in SMoC

For an effective modeling framework to address designs of complex systems, it should

start at high levels of abstraction by separating functionality of the system from archi-

tecture, communication from computation and promoting the use of formal models and

transformations in system design to apply formal verification. This chapter presents

design refinement, which is one of the key concepts in our multi-MoC framework. The

task of the refinement process is to optimize the abstract specification and to add the

necessary implementation details in order to allow for an efficient mapping of the im-

plementation specification onto the target architecture. We achieve the refinements by

the application of formally defined transformation rules to the abstract specification that

results in a detailed implementation specification. The transformation rules defined are

semantic preserving. Each rule has a predefined format and is accompanied with an

implication that indicates the change in the semantics caused by a transformation.

53
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4.1 Design Flow

In the SML-Sys framework, system modeling starts by first capturing the system behav-

ior into a Functional Specification that can be executed using SML. The functional specifica-

tion is then refined into a Communication Specification to handle the interface intricacies.

Furthermore, it is refined inside the functional domain by stepwise application of well-

defined transformation rules into an Implementation Specification as shown in Figure 4.1.

As the implementation specification is a fine-tuned version of the functional specification, the

same validation and verification methods can be applied to the intermediate versions.

Modeling in the SML-Sys framework, requires moving large parts of the synthesis,

which traditionally are part of the implementation domain, into the functional domain.

The task of the refinement process is to optimize the functional specification and to add

the necessary implementation details in order to allow for an efficient mapping of the

implementation specification onto the chosen architecture. The implementation specification

is used to obtain an optimized synthesis of an RTL model [26].

4.1.1 Functional Specification

The specification model is based on the synchronous computational model described in

Section 3.2 of Chapter 3. SMoC is built of signals and processes where processes execute

concurrently and synchronous communication between them is modeled by signals. A

signal is defined as a set of events where each event has a value and a tag i.e., e ∈ VxT. T is

a countable set of time stamps and assumed to be the set of natural numbers. Moreover,

this MoC is based on the perfect synchrony hypothesis, where all signals have the same set

of tags. In order to model the absence of a value at a certain tag, we have extended the set

of values to hold absent values t. We implement this MoC using process constructors
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Figure 4.1: Design Flow

and process combinators. In our framework, the modeler must use process constructors

for the modeling of processes and process combinators for modeling process networks

by composing the different processes. This leads to a well-defined functional specification.

Furthermore, we define a set of domain interface constructors that create local syn-

chronous process network with a different signal rate used to establish synchronous

sub-domains. The domain interface constructors downDI and upDI generate processes

for down- and up-sampling. downDI(k) down-samples the input signal with an event

rate that is ‘k’ times slower than the event rate of the input signal ‘r’ and outputs only

each kth input value. upDI(k) introduces an output signal with an event rate that is ‘k’

times higher than the event rate of the input signal ‘r’ by insertion of ‘k - 1’ absent events

as shown in the Figure 4.2.
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The domain interface (DI) constructor p2sDI(m) generates a process that transforms

parallel input signals into a serial signal with a signal rate that is ‘m’ times higher than

the signal rate of the inputs. The domain interface constructor s2pDI(n) generates a

process that performs the opposite operation, i.e. the transformation of a serial signal

into ‘n’ parallel signals. The SML code for these DI are shown in Listing B.1 of Appendix

B.

p2sDI(2)

<1,2,3,..>

<5,6,7,..>

<1,5,2,6,3,7,..>

downDI(2) <1,2,3,..>upDI(2)
<1,2,3,...>

s2pDI(2)
<1,5,2,6,3,7,..>

<1,   ,2,   ,3,...> <1,   ,2,   ,3,...>

<1,2,3,..>

<5,6,7,..>

Figure 4.2: Examples of the interface constructors

We define a process groupSn(k), which reads each input and stores it in an internal

state until the state has k values. At that point the state is written to the output and

afterwards reset to empty. Since groupSn is a synchronous process, absent values have

to be produced for each input value as long as the grouping is not completed.

Definition 4.1.1 The process groupSn (k) is defined as groupSn(k) = p, where

p(s1, s2, . . ., sm) = ś and p = mooreSn (f, g, ω0) s.t.

f ((x, y, . . . , z),ω0) =


(x, y,. . . , z) if |ω0| = k ∨ |ω0| = 0

ω0 ⊕ (x, y,. . . , z) otherwise

g(ω0) =


[ω0] if |ω0| = k

t otherwise
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ω0 = 〈 〉

⊕ is the concatenation operator.

groupS2(4)

[1,2,3,4,...]

[11,12,13,14,...]

< [1,11,2,12] , [3,13,4,14],…>

Figure 4.3: Example of the groupSn constructor

4.1.2 Communication Specification

The functional specification uses the same synchronous communication mechanism be-

tween all its subsystems. Nevertheless, large systems are usually not implemented as

one single unit, but are partitioned into hardware and software blocks communicating

with each other via a dedicated communication protocol. Communication refinement

is used to partition the system into different hardware/software parts by inserting the

appropriate communication interfaces between them. For an architecture geared to-

wards globally asynchronous and locally synchronous (GALS) design, the functional

specification with synchronous communication channels between the sub-modules is

transformed into an asynchronous protocol which can be modeled as a buffered mode

of communication with a handshake. If the rates of the processes communicating are

known, then the interface can be refined as a buffered mode of communication without

a handshake protocol. We define the HandshakeWithFIFO transformation, which does

a refinement by introducing a FIFO and a handshake between the two communicating

processes. This transformation does a step-wise fine-tuning of a functional specification

to a communication specification which preserves semantics. The communication spec-

ification differs from the functional specification in terms of the additional delay that the

events incur due to the communication protocol.
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HandshakeWithFIFO Transformation

The HandshakeWithFIFO transformation procedure is shown in Figure 4.4. This transfor-

Sender Receiver

DataReady

Ready

data

Ack

P2P1

P1 P2

data

data data

P2P1

data
id

data

Finite
FIFO

data

ReadFIFO

Interface

Step 2 : Communication Protocol  -  Double Handshake

Step 1 : Introduction of an identity process

Figure 4.4: HandshakeWithFIFO Rule

mation is done in two steps. In the first step an identity process is introduced between

the given two processes P1 and P2. We introduce an identity process so that while re-

fining the communication the computational processes P1 and P2 are not altered. In the

second step, the identity process is refined into a handshake protocol, implemented by

three processes: FIFO buffer, Sender and Receiver. The process Sender is a Moore state

machine and the Receiver is a Mealy state machine. The double handshake protocol

works as follows. The Sender initiates a ReadFIFO event and tries to read data from the

FIFO. If data arrives, then Sender starts a data transmission over the interface, and emits

DataReady to Receiver. After that, it waits for the reply message Ready from Receiver,
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which means that Receiver is ready to take the data. When Ready appears, Sender trans-

mits the data and waits for an acknowledgment Ack from the Receiver signalling that

the data was transferred. The handshake protocol implies a delay of one or more cycles

for each event, as Sender and Receiver are synchronous processes. This means, that P2

will handle a delayed sequence of events when compared to the functional specification.

The implementation of this transformation is shown in Listing B.2 of Appendix B.

4.1.3 Implementation Specification

The communication specification now further undergoes a computational refinement where

it is transformed into an implementation specification. The computational refinement is

also done by the application of transformation rules from the library which transform

the abstract model into an efficient implementation. These rules are semantic preserving

and we finally obtain an optimized implementation specification.

4.2 Transformations Library

Definition 4.2.1 (Transformation Rule) [27]

A transformation rule R : P → P is a mapping of a process network PN onto another process

network PN′ with the same number of input and output signals. A transformation rule is denoted

by R(PN) = PN′.

Definition 4.2.2 (Transformation) [27]

A transformation T: (S0, R)→ S1 is a mapping of a system specification S0 onto another system

specification S1 with the same number of input and output signals. Using the transformation

rule R, the internal process network PN in S0 is replaced by R(PN) to yield S1.
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A transformation is the application of a transformation rule to a process network that is

a part of a system specification as illustrated in Figure 4.5. S0 is stepwise fine-tuned by

well-defined design transformations Ti into a final specification Sn. In Figure 4.5, the

P1

P2 P3

P4 P1

P5

P4

PN PN’
T(PN, Rule)

S0 S1

Figure 4.5: Design Transformation

transformation rule is applied to the process network inside the system specification S0.

The result of the transformation is the system model S1. The only difference between S0

and S1 is the replacement of PN by PN′. To compare the transformed specification to

the original specification, we introduce a characteristic function which characterizes the

functional behavior of a process network.

4.2.1 Design Transformations

The designer applies transformations to a functional specification by choosing transfor-

mation rules from the transformation library. The transformation rules are characterized

by a name, the required format and constraints of the original process network, the

format of the transformed process network and the implication for the design, i.e. the

relation between the original and transformed process network.

Definition 4.2.3 (Characteristic Function) [27]

In the synchronous domain, the characteristic function ΓPN ((s1)r, . . . , (sm)r, i) of a process
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network PN with the input signals (s1)r, . . . , (sm)r and the output signals (s′1)
u, . . . , (s′n)u

expresses the dependence of the output events at tagu
i on the input signals.

ΓPN(sr
1, . . . , sr

m, i) = ((e′1)
u
i , . . . , (e′n)u

i )

The characteristic function can be derived for any process network including domain

interfaces and for each process constructed by a synchronous process constructor or

domain interface constructor and for each combinator process. We illustrate the for-

mulation of the characteristic function for a map-based process in Listing 4.1. We have

formulated the characteristic functions for all the process constructors and process com-

position operators except the feedback operator.

Listing 4.1: Characteristic function of a map-based process constructor
1 ( ∗ C h a r a c t e r i s t i c Func t i on ∗ )
2 fun chfn mapS ( f , j ) = fn ( s ) => fn map ( f , j , s )

3

4 fun fn map ( , , [ ] ) = r a i s e N o C h a r a c t e r i s t i c f u n c t i o n e x i s t

5 | fn map ( f , 1 , h : : t ) = f h

6 | fn map ( f , j , h : : t ) = fn map ( f , j −1 , t )

Transformation Rule 1 - ConstructorMerge

This rule illustrates the merging of the map-based constructor as shown in Listing B.3 of

Appendix B. Most of the other constructors can be merged in a similar fashion.

mapS (g ◦ f) = mapS (g) ◦mapS (f)

The transformation rule MapMerge [27] takes a process network of the form
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PN(s̄) = (mapS (g) ◦mapS (f))(s̄)

and transforms it into the form

PN′(s̄) = (mapS (g ◦ f))(s̄)

MapSY(f) MapSY(g)

MapSY(gof)

i os

i o

MapMerge

Figure 4.6: Illustration of the transformation rule MapMerge

Transformation Rule 2 - BalancedTree

The transformation BalancedTree [27] transforms a combinational m-input process into

a balanced network of m - 1 processes with two inputs. If the process has a regular

structure such as an N-bit adder or multiplier, where N=4,8,16, · · · the process can be

transformed into a balanced network of N-1 2-input processes. This transformation

takes an original network of the form

s̄´= PN(s̄1, · · · , s̄m)

PN(s̄1, · · · , s̄m) = Φm(f)(s̄1, · · · , s̄m)

m = 2k, k ε N

f(x1, . . . , xm) = x1 ⊗ · · · ⊗ xm is associative

Φm is the zipWithSm process constructor
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into the form

s̄´= PN′(s̄1, · · · , s̄m)

PN′(s̄1, · · · , s̄m) = Φ2(g)(Φ2(g) . . . (Φ2(g)( Φ2(g)(s̄1, s̄2) Φ2(g)(s̄3, s̄4))), Φ2(g) . . . (

Φ2(g)(Φ2(g)(s̄m−3, . . . ,s̄m−2), Φ2(g)(s̄m−1, s̄m))))

g(x,y) = x ⊕ y

This transformation takes a structured PN and transforms it to a balanced structure

with the reduction in the number of process by 1 from the original PN. It can only be

applied for all processes that comply to the format and constraints given in original

process network, where the operator ⊗ is associative. The implementation is shown in

Listing B.4 of Appendix B.

Transformation Rule 3 - PipelinedTree

The PipelinedTree [27] transformation pipelines a balanced tree structure of possibly

different 2-input processes into a pipelined tree structure as shown in Listing B.5 of

Appendix B. It converts a network of the form

s̄´= PN(s̄1, . . . ,s̄m)

PN(s̄1, . . . ,s̄m) = Φ2( fm−1)( . . . (Φ2( f1)(s̄1, s̄2), . . . ), . . . (Φ2( . . . Φ2( fm/2)(s̄m−1, s̄m)))

m = 2k, k > 1

Φm is the zipWithSm process constructor

into the form

PN′(s̄1, . . . ,s̄m) = ∆1(ω0) ◦ Φ2( fm−1)( . . . (∆1(ω0) ◦ Φ2( f1)(s̄1,s̄2 ), . . .), . . . ( . . . , ∆1(ω0) ◦
Φ2( fm/2)(s̄m−1, s̄m)))
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The PipelinedTree transformation introduces a delay of k cycles.

Transformation Rule 4 - TwoClockDomain

The TwoClockDomain transforms a combinational process with a regular structure into a

structure with two separate clock domains. The transformed process network uses an

FSM process to schedule the operations into several clock cycles. This transformation is

illustrated in Figure 4.7

zipWithSYm(f) p2sDI(m) PFSM downDI(m)
o

1i1
im

i1

im

o
2

Figure 4.7: Illustration of the transformation rule TwoClockDomain

The transformation rule TwoClockDomain takes a process network of the form

s̄´= P(s̄1, s̄2, . . . , s̄m)

P(s̄1, s̄2, . . . , s̄m) = zipWithSm(f)(s̄1, s̄2, . . . , s̄m)

f(x1, x2, x3, . . . , xm) = gm−1(hm−1(xm),(. . . ,(g0(h1(x2), h0(x1))), . . . , ))

and transforms it into the form

s̄´= P′(s̄1, s̄2, . . . , s̄m)

P′(s̄1, s̄2, . . . , s̄m) = (downDI(m) ◦ PFSM ◦ p2sDI(m)) (s̄1, s̄2, . . . , s̄m)

PFSM = mooreS (u, w, ω0)

u(x, (k, s)) =



(1, hk(x)) if k = 0

(k + 1, gk(hk(x), s)) if 0 < k < m - 1

(0, gk(hk(x), s)) if k = m - 1
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w(k, s) =


s k = 0

t 0 < k < m

ω0 = (0, initValue)

The transformation rule requires the combinational function f to have the format

f(x1, x2, x3, . . . , xm) = gm−1(hm−1(xm),(. . . ,(g0(h1(x2), h0(x1))), . . . , ))

in order to be able to schedule the computation of f into m steps. In the first step

y0 = h0(x1)

is calculated and in the following m - 1 steps the intermediate value yi - 1 is used to

calculate the final result ym-1 according to

yi = gi(hi(x(i+1)), yi−1)

The transformed process network works as follows. During an input event cycle the

domain interface p2sDI (m) reads all input values at signal rate ‘r’ and outputs them as

a sequence 〈x1, . . . xm〉with the signal rate ‘mr’ one by one in the corresponding m event

cycles. The process PFSM is based on the process constructor mooreS and executes the

combinational function f of the original process within m cycles. In state 0 the function

h0 is applied to the first input value x1 and the result is stored as intermediate value s.

In the n - 1 following states the function gi is applied to hi(xi+1) and the intermediate

value. At tag 0, m, 2m, . . . the process outputs the intermediate value, otherwise the
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output is absent t. The domain interface downDI(m) down-samples the input signal to

signal rate r and outputs only each mth input value starting with tag 0, thus suppressing

the absent values from the output of PFSM. The TwoClockDomain transformation delays

the output of the transformed process network one event cycle compared to the original

process network. The first event of the output signal has the second component of the

initial state, the value initValue.

4.3 Case Study: SOBEL Operator

The Sobel operator performs a 2-D spatial gradient measurement on an image that is

a simple edge detection algorithm. Given a pair of 3 x 3 convolution masks (Gx, Gy)

designed to respond maximally to edges (running vertically and horizontally relative to

the pixel grid), the operator finds the absolute gradient magnitude at each point in the

input gray-scale of an image.

Functional Specification of the SOBEL Operator

The functional specification, shown in Figure 4.8 has three main modules the SOURCE,

COMPUTATION and the SINK.

SOURCE
MODULE

SINK
MODULE

COMPUTATION
MODULE

SOBEL MODULE

m-input

Figure 4.8: Functional Specification of the SOBEL Module

SOURCE Module: The SOURCE outputs the m-row, n-column input as ‘l’ number of 3
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x 3 image matrix to the COMPUTATION module, where m, n >= 3 and l = (m - 2) * (n -

2).

groupSY
3
(k)

Convolutex

Convolutey

zipWithSY
2
(f)

SEGMENT1

groupSY
3
(k)

Convolutex

Convolutey

zipWithSY2(f)

SEGMENT m-2

m-inputs

Figure 4.9: The COMPUTATION Module

COMPUTATION Module: This module computes the corresponding intensities of an

m x n image. The m-rows are partitioned into groups of three, such that adjacent groups

have two common rows and these partitions are given as input to ‘m - 2’ groupS3(k)

process constructors. The three inputs are read and stored in the internal state of a

groupS3(k) process constructor until the state has ‘k’ values. At that point the state is

written to the output and afterwards reset to an empty. Since groupSn is a synchronous

process, absent values are produced for each input value as long as the grouping is

not complete. The output, a vector of size ‘k’ is given to a process which convolutes it

with the horizontal and vertical mask to generate the corresponding gradients Gx and

Gy. These are then zipped using a zipWithS2(f) process constructor with a function f

that sums the squared intensities. This complete flow is called a segment as shown in

Figure 4.9.

SINK Module: This module is modeled as a sinkS process constructor which is applied

to the output of the COMPUTATION module.
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Communication Specification of the Sobel Operator

One possible implementation of this system may have a configuration, where system

blocks are partitioned into software and hardware. We assume the case where the

COMPUTATION unit is implemented in hardware and SINK in software such as a image

visualization software. This partit ioning demands an asynchronous protocol between

these system blocks instead of the synchronous channel in the functional specification.

We replace the synchronous channel with a double handshake protocol by refining the

interface as shown in Figure 4.10. A prerequisite for this refinement is that the data

type of the channel must be equipped to handle absent events (t). We apply the rule

SOURCE
MODULE

SINK
MODULE

COMPUTATION
MODULE

SOBEL MODULE

m-input

DataReady

Ready

data

Ack
Finite
FIFO

data

ReadFIFO

Interface

Sender Receiver

Figure 4.10: Communication Refinement of the Sobel Module

HandshakeWithFIFO which is a transformation done in two steps, in the first step an

identity process is introduced between COMPUTATION and SINK, and in the second

step, this process is refined into a handshake protocol, implemented by three processes:

FIFO buffer, Sender and Receiver. The SINK unit will process a delayed sequence of

events when compared to the functional specification.
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Implementation Specification of the SOBEL Operator

Figure 4.11, shows a segment of the COMPUTATION unit which includes a convolution

algorithm. The ConvoluteWith processes take a vector of 9 samples each and produce

the corresponding result in the form of collection of size 9. The process GroupSamples

reads 3 samples from each of the inputs and groups them into a collection of size 9.

The computation of this vector takes 3 cycles and serves as inputs for the ConvoluteWith

processes. Since a synchronous computational model is used in the specification model,

the grouping process has to produce an output event for each input event. This results

in the output of 2 absent events for each computed k-sized vector. The processes Con-

GroupSamples

ConvoluteWithX

ConvoluteWithY

ZipGradients

Figure 4.11: A segment of the COMPUTATION

voluteWithX and ConvoluteWithY are equipped to handle absent events. This is not a

drawback for the specification phase, but a direct feature of the implementation that the

convolution can only be done at the 3-rd clock cycle. Instead, the processes have to pro-

duce the result during a single cycle and will be idle during 2 clock cycles. This scenario

prevails for all the segments of the module. This implementation of the COMPUTA-

TION unit is very inefficient, since the convolution is clearly the most time consuming

and will determine the clock period for the whole system and thus the overall system

performance.

For a more efficient specification, we refine the communication specification into an imple-

mentation specification by introducing synchronous sub-domains into the system model.

The refinement introduces a new clock domain with the help of the domain interface
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constructors after the process G(k), in order to filter the absent events and allow for a

more efficient use of the Cx and Cy processes. The downDI(3) process after the G(k) as

G(k)

Cx

Cy

Z(f)downDI(m) upDI(m)

Figure 4.12: Transformation of a segment

shown in Figure 4.12 propagates only every 3-rd event to the output. All absent events

are consumed. In order to avoid signal inconsistency which may occur due to this re-

finement, we introduce another domain constructor upDI(3) to insert the absent events

at the end of the computation. The implementation of the refined Sobel module is shown

in Listing B.7 of Appendix B.



Chapter 5

EWD

To model complex embedded systems, one needs a modeling framework that is easily

customizable by users, as metamodeling frameworks and is multi-targeted in the sense

that several special purpose models for synthesis, analysis or verification, can automat-

ically be generated. We therefore, present EWD1, a metamodeling driven customizable

multi-MoC system modeling environment, built using GME. It facilitates in customizing

MoC-specific visual modeling syntax by providing design-time automatic syntactic and

semantic checks on the models for conformance to their metamodels. It provides pars-

ing and translation tools to save such models in an XML-based platform independent

language that we call Interoperable Modeling Language (IML). These tools convert the IML

into SML or Haskell models that are executed and analyzed either by our existing model

analysis tools SML-Sys, or the ForSyDe [27] environment. Furthermore, it also consists

of a tool that generates SMV-based verification models. In this chapter, we illustrate our

visual modeling environment and the advantages of having such a multi-MoC model-

1Software systems developed by us are codenamed after famous computer scientists. EWD (e-wood)

stands for E. W. Dijkstra.

71
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ing environment. Moreover, we provide details of the model construction and the code

generation phase of the design flow. Finally, we illustrate the usage of EWD by modeling

an adaptive amplifier using the UMoC metamodel.

EWD provides a user with the following features:

1. A visual modeling environment that supports multi-MoC modeling for embedded

software and hardware systems.

2. Enforces constraints during models construction by restricting the user to the un-

derlining MoC. Violation of these constraints are checked dynamically.

3. Automated generation of executables for the SML-Sys and ForSyDe [38] frame-

works.

4. Automated translation of the model to SMV-based partial verification templates.

5. Multi-targeting through an XML-based interoperability that defines a platform

independent language and its binding to various target languages.

5.1 The EWD Design Flow

The first step in the EWD design flow is the model construction phase (MC) followed by the

parsing phase which populates our xmlTree data structure that is a platform-independent

representation. Finally, in the code generation phase print streams are written that translate

the xmlTree to provide multi-targeted simulation and verification capabilities.

MC phase: With the given metamodels, the user instantiates a modeling domain which

creates the environment for the modeling activity. The user constructs models that are
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Figure 5.1: The Design Flow

constrained by the semantics of the underlining MoC-specific metamodel. Modeling

errors flagged during the syntactic check must be corrected before proceeding to the

next phase. Upon completion of the model construction, it is converted to an XML

representation and saved in a .xme extension file. Failure to correct flagged violations

results in an incomplete model that cannot be saved to the XML representation.

Parsing Phase: We extract from the .xme file the model and metamodel relevant in-

formation and represent these using a platform-independent language called IML. This

extensible modeling syntax provides implementation independence. It is given as input

to the second stage where we first perform a check for functional errors in terms of type

mismatch and compositional errors. For instance, if two untimed MoC processes with

constant but different communication data rates are connected, it can be identified at
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this stage, provided the data rates are part of the process types. Upon detecting an error,

we retrace back to the model construction phase. Successful completion of the semantic

check would result in parsing the IML syntax to populate the xmlTree data structure.

Code Generation: The populated xmlTree structure is used to generate SML or Haskell-

based executable models depending on the target framework. Furthermore, for verifica-

tion purposes the model can be partially translated to SMV. Thereby, providing the mod-

eler with a multi-targeted modeling environment where one starts with a framework-

independent design, which can be simulated and further processed in different design

flows. We envision that new design flows can be added with ease in EWD. Furthermore,

EWD can facilitate a reverse design-flow, where models created in SML-Sys or ForSyDe

are converted to platform independent IML-based representations.

5.2 Model Construction Phase

Our metamodels describing the generic MoCs are based on the semantic framework

in [8]. We have built the metamodel for the Untimed, Synchronous, and Timed MoCs

and integrated them into a multi-MoC paradigm as shown in Figure 5.2. Addition of a

new metamodel is relatively easy for the following reasons:

1. IML and their corresponding tools do not change.

2. Underlining framework does not change and our metamodel skeleton can be

reused.

The design of the metamodel for UMoC shown in Figure 5.3 is made of the following

components: processes, process networks (PNs) of type model and their functional com-
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UntimedMoC SynchronousMoC TimedMoC

Modeling Domain

Figure 5.2: The toplevel of the Metamodels in GME

positions defined by a set of process combinators defined within the process network.

The design also contains signals of type atom which are used to define the inputs and

outputs for the instantiated model.

The functionality of different process models is shown in Chapter 3. The metamodel

for the SMoC and TMoC is built in a similar manner. Once a metamodel is created, it

is registered for conformance to the meta-metamodel of GME as shown in Figure 2.1.

The user instantiates a metamodel that sets-up a modeling environment for the user to

proceed with the model construction followed by multi-targeted simulation and ver-

ification. Composition of metamodels within another metamodel allows us to build

meta-theory for hierarchies of MoCs. SLDLs based on informal semantics such as Sys-

temC, do not have a clean semantic theory for multi-MoC hierarchy and compositions.

EWD alleviates this problem for any language that is formalized with meta-theory in

EWD/GME.

5.2.1 Process Network Structure

A MoC-specific metamodel can be described as a set of process constructors and combi-

nators that are used to create PNs.
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Figure 5.3: An Abstract View of UMoC metamodel

A PN as shown in Figure 5.4 acts as a container for process constructors that interface

through a set of process combinators. It also has self containership relation. Designing

the PN in this fashion enables it to act as a collection of processes and PNs where an

elementary PN is built from two processes and a combinator. PNs also contain ports

of type atom. These ports formulate 3 types of interfaces defined through connection

streams namely Port2Port, Port2Signal and Port2Connector. The Port2Port stream is used

to bridge two PNs whereas the Port2Connector stream is used to connect a PN to other

processes through a process combination operator to build a bigger PN. The Port2Signal

stream defines the inputs and outputs to the PN. Defining the following connection
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Figure 5.4: PN structure in GME

streams in a PN restricts the modeler from connecting objects which do not conform

with these streams. For example, if the modeler wants to compose two processes in

a PN without a combinator, the design violates the rules of the metamodel flagging a

design-time error.

Table 5.1: Process Constructors
Type Constructor Name Functionality of the Constructor

Single Input Processes

(SIP)

map, scan, mealy,

moore, scand

Takes one input signal and gener-

ates one output signal

Multiple Input Processes

(MIP)

zip, unZip, zipWith Takes ‘m’ input signals and gener-

ates ‘n’ output signal

Process Initiators (PI) source, sink, init Initialize a signal

Type Combinator Name Functionality of the Combinator

Process Combinator (PC) seqcomp, parcomp,

fb

Composes processes/PNs sequen-

tially, parallelly or with feedback
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5.2.2 Process Constructor Structure

We define a process constructor of type model to be abstract and is derived as either

a Single Input Process (SIP), Multiple Input Process (MIP) or a Process Initiator (PI)

constructor as shown in Figure 5.5. An SIP is defined as type model and inherited by

Figure 5.5: Process constructors in GME

the following process constructor - map, scan, scand, mealy and moore implying that a SIP

can only be instantiated as one of these constructors. It has two attributes namely cname

and eventsperCycle. The attribute cname names the constructor that is extracted during

the parsing phase and used in translation to map it to the correct target process in the

respective framework. The attribute eventsperCycle defines the size of the evaluation

cycle for the respective process being derived. Similarly an MIP is inherited by the zip,

zipWith and the unzip processes. It also has two attributes namely cname and size. cname

serves the same purpose whereas Size indicates the number of inputs for these processes,

since the processes can have multiple inputs. Finally, PI is inherited by the respective

process initiators source, sink and init and has only the Cname attribute. The functionalities

of these constructors as shown in Table 5.1 are defined in Chapter 3. In Figure 5.6, It can

be seen that a process constructor acts as a container for links. Links define the inputs
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Figure 5.6: Process structure in GME

and outputs of a process with its attributes specifying the name, type, and structure of

these links. The process constructor also has a set of interfaces defined to describe the

interaction with other elements in the metamodel. These interfaces restrict the user from

composing incompatible elements by flagging a violation. The interfaces are modeled

as connection streams with a single source/destination and the multiplicity defining the

parity of the interaction. The interface streams defined for process constructors are as

follows:

1. Link2Signal connection

2. Link2Port connection

3. Link2Connector connection
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The Link2Signal stream defines the interface between input/output signals and the pro-

cess. This interface includes the additional constraint on type consistency. Each signal

has a type signature and the link of a process has a specific signature of its own. If these

signatures do not match, then the composition is not valid and a type inconsistency vio-

lation is flagged. The Link2Port stream interface is used to construct complex processes

or process networks, wherein a process is composed to a PN. It is just another name for

the Port2Link stream in Figure 5.4. The Link2Connector connection defines the interface

for composing two processes through a process combinator.

5.2.3 Process Combinator Structure

Figure 5.7: Process combinators in GME

The Process Combinator is also an abstract model inherited by the combinators defined
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in the generic MoCs, which are the sequential, parallel and feedback operators listed

in Table 5.1. These enable the modeler to combine processes or PNs in a meaningful

manner. We also have an additional operator called UserDefined, which can be used

to define a new composition operator that the user needs if the basic operators are not

sufficient. The functionality of a combinator is to define compositions, therefore they

have two streams namely the Port2Connector and Link2Connector. The Port2Connector

stream also shown in Figure 5.4 defines the interface of a PN with a combinator, whereas

the Link2Connector stream also shown in Figure 5.6 defines the interface of a process with

a combinator.

5.3 Code Generation Phase

For multi-targeted simulation and verification, we embed the behavioral aspect of the

model within the attributes of the model elements during model construction. Consider

the example of the adaptive amplifier described in Section 5.4, the output for the current

cycle determines the amplifying factor for the next cycle. This behavior is embedded

in the attributes of the scan process element P3. These are extracted and tagged in our

IML syntax, and furthermore used to populate our xmlTree, such that our different print

streams can use these embedded behaviors and do a complete translation into executable

code for the targeted framework. Furthermore, we perform a partial translation of the

structural aspects of the model into a verification template for the SMV model checker.

This is a partial template since the translation to a verification environment requires being

able to interpret the embedded behaviors, such that the corresponding state machine

can be built.

We wrote print streams listed below, which traverse the xmlTree extracting info and
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translating it to the target framework language allowing the modeler to simulate the

model in a multi-targeted environment.

SmlStream: Translates the model into SML that can simulate in the SML-Sys framework.

The SmlStream uses the toplevel model structure from the xmlTree to define the structure

of the model and simulate it in its respective domain (UMoC/SMoC/TMoC). It also

extracts the input and the output signals to the system/model from the toplevel.

Once the target framework and the modeling domain is identified, the SmlStream en-

counters a list of PNs in the xmlTree. Translation of a PN structure of the xmlTree results in

the appropriate definitions of processes, process combinators, PNs and inputs/outputs

in the SML-Sys framework. Each PN defines a local environment for its components

using the SML ‘let’ construct. The stream translates each PN in the list one after the other

until it reaches the end of the list. The end of the list will complete the translation phase.

From the list of PNs, it extracts the first PN and traverses it looking for at most 2 pro-

cesses or PNs, a combinational operator and its input/output signals. Upon encountering

a process structure, it does the following, it extracts the inputs for the process and then

extracts the constructor type of this process. During input extraction of a process, the

stream extracts the name of the inputs and based on the number of inputs, it creates SML

equivalents for these inputs with the extracted names. For the constructor translation,

the stream extracts the domain name that indicates the modeling domain of functions to

which this constructor should be mapped. Furthermore, it extracts the constructor name,

since each constructor is unique, given this name the stream translates it to the respec-

tive functions of the corresponding domain in the target framework. Upon identifying

the function, the SmlStream extracts the arguments for this function. If the argument

are empty, meaning that the functionality of this constructor was not embedded during

model construction phase, then the SmlStream inserts comment-lines indicating that the
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functionality needs to be added by the user. Upon extracting the attributes, these are

translated to arguments for the respective function. Every process has a unique func-

tionality, therefore it is built of a single constructor and these constructors have unique

skeletons, therefore translating them to functions in the target platform is performed

with relative ease. Upon reaching a composition operator during traversal, it tries to

identify whether it is a single-input or double-input operator. A single-input operator

corresponds to a feedback composition. If it is a double-input operator, it extracts the

name of the operator and its operands, which are processes and PNs that it composes.

Once the stream has all the required information regarding the composition operator,

it maps the operator to the compositional function in the target framework. Upon en-

countering another PN, it repeats its traversal step looking for its processes, other PN

and the composition operator. If at any point of the translation, the SmlStream acquires

information that it cannot translate, it will flag an error and the translation will halt.

HaskellStream: Translates the model into Haskell executables that is targeted for the

ForSyDe methodology. The HaskellStream uses the toplevel model structure of the xmlTree

to extract the structure of the model and simulate it in the synchronous computational

model of ForSyDe. This stream is implemented in a similar fashion as the SmlStream.

The main distinction between HaskellStream and SmlStream is that, SmlStream translates

using eager evaluated semantics, whereas HaskellStream follows lazy semantics. In the

HaskellStream, each PN defines a local environment for the components using the Haskell

‘where’ clauses.

SmvStream: SMV [16] is a model checker used for verification of hardware systems. It

automatically verifies a design for all possible input sequences for properties of com-

binational logic and interacting finite state machines. We have defined a stream that

automatically dumps SMV code for a model. This is a partial translation since the com-

plete translation requires building an engine that deciphers the attributes of the various
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components of the model to build the corresponding state machine in SMV. The partial

translation that we perform focuses on the structural and communication aspects of the

model.

The SmvStream uses the toplevel model structure of the xmlTree for datatype declaration,

which includes the different signals and their domain. These signals are defined using

the array construct of SMV. Upon completion of the signal declaration, the SmvStream

stream encounters a set of PNs. For each of these PNs, the stream creates a module

and extracts the inputs, outputs and translates them into SMV code. For all processes

within a PN, the stream creates empty module declarations with its inputs and outputs

defined from the extraction. A complete translation of a process requires mapping its

functionality (specified in SML for the SML-Sys framework and in Haskell for ForSyDe)

into state machines that has not been implemented. For all other PNs within this PN, the

stream repeats the above steps. Finally, the stream extracts the composition operator to

map the composition of the different PNs, processes within a PN. It connects the outputs

of processes/PNs to the inputs of other processes/PNs based on the composition operator

through a sequence of module calls.

Consider a PN example shown in Figure 5.8 with three processes P1, P2, P3 and two PNs

PN1, PN2. PN1 is a parallel composition of processes P1 and P2 with 2 input signals s1, s2

and two outputs s3, s4. PN2 is a sequential composition of PN PN1 and process p3 with

two input signals s1, s2 and an output s5.

The SMV code illustrating the translation of the PN2 is shown below:

s3 : P1(s1)

s4 : P2(s2)

s5 : P3(s3.out, s4.out)
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P2

P1

s1

s2

P3

s3

s4

s5
PN1

PN2

Figure 5.8: A Process Network

where s3.out and s4.out are the outputs of process P1 and P2.

5.4 Modeling an Adaptive Amplifier

Consider the example of an adaptive amplifier with four processes P1, P2, P3, P4, two

inputs and one output as shown in Figure 5.9. We model this example in the untimed

P1 P2 P3 P4
C1

PN1

C2 C3

PN2
PN3

C4

PN4Hfactor

Sin

Sout
I1

I2

I3 I4
I5O1 O2 O3 O4

Figure 5.9: Model of an Adaptive Amplifier

domain using our multi-MoC metamodel. We start off by instantiating the UMoC specific

metamodel to create an environment for our modeling activity in the untimed domain.

We model this as follows - Processes P1 is a MIP instantiated as a zip process, which
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takes two inputs Sin and H f actor. Process P2 and P3 are SIPs instantiated as map and scan

processes. Finally, P4 is an init process. The black dots represent the ports on the PN and

the diamonds are the links associated with the processes. The line between a port and

a link represents a Port2Link connection, whereas the line between two ports represents

a Port2Port connection. The rectangle between the input/output signal and the port is

used to define the Port2Signal connection.

P1 and P2 are composed using the sequential operator C1 to form a process network PN1

as shown in Figure 5.10.

Figure 5.10: PN1 View

PN1 is composed using the sequential operator C2 with P3 to form PN2 as shown in

Figure 5.11.

Figure 5.11: PN2 View

PN2 is composed using the sequential operator C3 with P4 to form PN3 as shown in

Figure 5.12.
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Figure 5.12: PN3 View

PN3 is composed with itself in the feedback mode using C4 as shown in Figure 5.13.

Figure 5.13: PN4 View

Figure 5.14 shows snapshots of the toplevel of the adaptive amplifier model.

The IML representation for the adaptive amplifier with the outputs of the SmlStream,

HaskellStream and SmvStream are shown in Appendix C.
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Figure 5.14: Toplevel View



Chapter 6

Intermediate Representation with IML

We discuss the parsing phase of EWD in this chapter. The multi-targeting achieved in

EWD is possible through the XML-based interoperability that led to the definition of a

platform-independent language called IML. It is a well-defined XML-based modeling

syntax for design representation, which has the following advantages:

• Provides interoperability and platform independence.

• Provides extensible modeling syntax.

• Easy to parse, since plenty of XML parsers are freely available.

• Easy to integrate into an alternate design flow.

89
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6.1 Interoperable Modeling Langauge (IML)

IML is an abstract XML-based representation for generic MoCs, which provides a

framework-independent language. IML syntax shown in Listing 6.1 is based on the

formal semantics of generic MoCs in [8].

Listing 6.1: Snippet of XML syntax
1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>

2

3 < ! ENTITY % ty cons ”Map | Scan | Mealy | Moore | Zip | UnZip

4 | ZipWith | Scand | I n i t | Source | Sink ”>

5

6 < !−− SYNTACTIC CONSTRUCTS FOR THE GENERIC MOC’ s −−>
7 <!ELEMENT MODEL (PROCESS | PN | INPUT | OUTPUT) ∗ >
8 <!ATTLIST MODEL name CDATA #REQUIRED

9 domain CDATA #REQUIRED

10 framework CDATA #IMPLIED >

11

12 <!ELEMENT PN (PN | COMBINATOR | PROCESS | INPUT∗ | OUTPUT∗ )+ >

13 <!ATTLIST PN name CDATA #REQUIRED

14 domain CDATA #IMPLIED >

15

16 <!ELEMENT PROCESS (INPUT∗ | OUTPUT∗ | CONSTRUCTOR)+ >

17 <!ATTLIST PROCESS name CDATA #REQUIRED

18 domain CDATA #IMPLIED >

19

20 <!ELEMENT CONSTRUCTOR (% ty cons ; ) + >

21 <!ATTLIST CONSTRUCTOR name CDATA #REQUIRED

22 process CDATA #IMPLIED

23 domain CDATA #IMPLIED >

24

25 <!ELEMENT Map EMPTY >

26 <!ATTLIST Map FnUnit CDATA #REQUIRED

27 EventsperCycle CDATA #IMPLIED >

28

29 <!ELEMENT Scan EMPTY >

30 <!ATTLIST Scan EventsperCycle CDATA #IMPLIED

31 NextState CDATA #REQUIRED
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32 I n i t i a l S t a t e CDATA #REQUIRED >

33

34 <!ELEMENT Mealy EMPTY >

35

36 <!ATTLIST Mealy EventsperCycle CDATA #IMPLIED

37 NextState CDATA #REQUIRED

38 OutputFn CDATA #REQUIRED

39 I n i t i a l S t a t e CDATA #REQUIRED >

40

41 <!ELEMENT Moore EMPTY >

42 <!ATTLIST Moore EventsperCycle CDATA #IMPLIED

43 NextState CDATA #REQUIRED

44 OutputFn CDATA #REQUIRED

45 I n i t i a l S t a t e CDATA #REQUIRED >

46

47 <!ELEMENT Zip EMPTY >

48 <!ATTLIST Zip EventsperCycle 1 CDATA #IMPLIED

49 EventsperCycle 2 CDATA #IMPLIED

50 Size CDATA #IMPLIED >

51

52 <!ELEMENT ZipWith EMPTY >

53 <!ATTLIST ZipWith EventsperCycle 1 CDATA #IMPLIED

54 EventsperCycle 2 CDATA #IMPLIED

55 FnUnit CDATA #REQUIRED

56 Size CDATA #IMPLIED >

57

58 <!ELEMENT UnZip EMPTY >

59 <!ATTLIST UnZip Size CDATA #IMPLIED>

60

61 <!ELEMENT Scand EMPTY >

62 <!ATTLIST Scand EventsperCycle CDATA #IMPLIED

63 NextState CDATA #REQUIRED

64 I n i t i a l S t a t e CDATA #REQUIRED >

65

66 <!ELEMENT Source EMPTY >

67 <!ATTLIST Source I n i t i a l V a l u e CDATA #REQUIRED

68 NextValue CDATA #REQUIRED >

69

70 <!ELEMENT Sink EMPTY >

71 <!ATTLIST Sink EventsperCycle CDATA #IMPLIED

72 OutputFn CDATA #REQUIRED
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73 I n i t i a l S t a t e CDATA #REQUIRED >

74

75 <!ELEMENT I n i t EMPTY >

76 <!ATTLIST I n i t I n i t i a l S i g n a l CDATA #REQUIRED >

77

78 <!ELEMENT COMBINATOR EMPTY>

79 <!ATTLIST COMBINATOR name CDATA #REQUIRED

80 element1 CDATA #REQUIRED

81 element2 CDATA #REQUIRED

82 domain CDATA #IMPLIED

83

84 <!ELEMENT INPUT EMPTY>

85 <!ATTLIST INPUT name CDATA #REQUIRED

86 c o n s t r u c t o r CDATA #IMPLIED

87 value CDATA #IMPLIED

88 type CDATA #REQUIRED

89 s t r u c t CDATA #REQUIRED >

90

91 <!ELEMENT OUTPUT EMPTY >

92 <!ATTLIST OUTPUT name CDATA #REQUIRED

93 c o n s t r u c t o r CDATA #IMPLIED

94 value CDATA #IMPLIED

95 type CDATA #REQUIRED

96 s t r u c t CDATA #REQUIRED >

The syntax is built from a set of modeling constructs. It has a toplevel element called

MODEL that instantiates a model within an MoC based on the values specified for

the domain and framework attributes shown in line 7. A MODEL element constitutes of

PROCESSes, PNs, INPUTs and OUTPUTs, therefore it can be represented as a 4-tuple

grammar G, where G = {PN, P, I, O}. A PN element is built up of a set of processes

which compose their inputs and outputs with a set of combinators expressed as PN =

{PN, P, COMB, I, O} shown in line 12. A PN can contain one or more instances of itself,

thereby allowing hierarchical PNs. A PROCESS element shown in line 16 is defined as

P = {CONS, I, O} where CONS denotes a process constructor, I denotes a set of input

signals and O denotes a set of output signals. A constructor is instantiated by one of
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the following: map, scan, mealy, moore, scand, zip, zipWith, unzip, source, sink or init. In

our SML-Sys framework, process templates are higher-order functions that support

parametric polymorphism. These templates take a set of functions as argument that

are mapped to attributes of elements in the IML. These attributes are defined as type

CDATA such that they facilitate interoperability by capturing the behaviorial aspect of

a model independent of the modeling framework. In line 25 of Listing 6.1, we define

the map-based constructor as an entity Map with two attributes namely FnUnit and

EventsperCycle. The FnUnit attribute contains the functionality of the constructor and

the EventsperCycle attribute defines the duration in terms of the size of the evaluation

cycle.

A COMBINATOR element shown in Line 78 defines the compositional operators for our

framework. It has a name and domain attribute that identifies the type of the combinator

and its domain. It also takes two other attributes that specifies the two processes or PNs

that it composes. Finally, IML defines INPUT and OUTPUT elements shown in Lines 84

and 91. An INPUT element defines an input signal as set of attributes which describe

the name, domain, type and structure of the signal. Similar is the case with an OUTPUT

element.

For the adaptive amplifier example shown in Figure 5.9 of Chapter 5, the toplevel element

for its IML representation would hold the following information:

M = {PN, P, I, O}
PN = {PN1, PN2, PN3, PN4}

P = {P1, P2, P3, P4}
PN1 = {{P1, P2}, C1, {S3, S4}, {P2.out}}

PN2 = {{PN1}, {P3}, C2, {S1, S2}, {P3.out}}
PN3 = {{PN2}, {P4}, C3, {S5, S6}, {P4.out}}
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PN4 = {{PN3}, C4, {S7, S8}, {S9}}
P1 = {zipU, {I1, I2}, {O1}}
P2 = {mapU, {I3}, {O2}}
P3 = {scanU, {I4}, {O3}}
P4 = {initU, {I5}, {O4}}

COMB = {C1, C2, C3, C4}
I = {H f actor, Sin}

O = {Sout}

Instantiating an IML construct requires giving it a unique occurrence. Since, IML con-

structors supports hierarchy, elements at different levels can have same names. The

instantiation of an IML construct is global and its internals are available to the lower

levels using the dot operator, taking advantage of the uniqueness feature of IML. The

IML hierarchy is shown in Figure 6.1.

MODEL

OUTPUT

PROCESS

INPUTCONSTRUCTOR

COMBINATOR

PN

Levels

0

1

2

3

Model elements

PN elements

Process elements

Figure 6.1: The IML Hierarchy

6.2 Parsing Phase

The model and metamodel are stored using XML, which embeds the syntactic constructs

of GME in a .xme file that needs to be parsed to extract the information specific to our

design. We parse the .xme file using the Xerces-C++ parser [1], which is a validating
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XML parser and generator written in a portable subset of C++. The parsing is done in

two stages, where in the first stage called Xme2IML, we parse the .xme file to extract

information of the design that is represented in our IML syntax stripping out the model-

ing constructs of GME. This stage is implemented using the SAX (API for XML), where

we build an application interface on top of the parser to extract information that can be

used to represent the model in our IML syntax. Furthermore, the output of first stage is

further parsed in the second stage called IML2xmlTree in two phases. In the first phase, a

check for functional errors like inconsistency and compositional errors is imposed and on

verifying the formal correctness of the model it is parsed to populate our xmlTree data

structure. The second stage of parsing is done by another SAX interface built over the

parser to which the output of the first stage is given as input. In the semantic checking

part of this stage, the model is first checked for correctness in terms of the processes

composed for structural equivalence or the output of a process fed as input to another

process having a type mismatch. For example an output of a process P1 which is a signal

of integer-valued events sequentially composed to another process P2 which takes as

input a signal of real-valued events. This would flag an exception called compositional

errors stating the part of the model that is incorrectly modeled. In the IML2xmlTree part

of this stage we extract the information pertaining to the modeling hierarchy to populate

the xmlTree.

6.2.1 Xme2IML

The first stage of the parsing phase analyzes the output of the MC phase to generate the

IML representation. The design in GME is exported to an XML-based representation

that embeds the model and metamodel-specific information. The user-designed model is

wrapped within Model tags that have attributes specifying the target framework and the
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modeling domain. We extract this information and initialize the MODEL construct of the

IML. We initialize the PN construct by extracting information from the ProcessNetwork

type tags. The inputs to PNs are extracted from the InputPort type tags and similarly the

outputs are extracted from the OutputPort type tags and used to initialize the INPUT

and OUTPUT constructs for the PN. We can extract the constructor-specify information

such as name, domain and its arguments from the SIP, MIP or PI type tags and initialize

the PROCESS construct. The inputs, outputs to processes are extracted from InputLink

and OutputLink tags. The combinator related information can be extracted from the

ProcessCombinator type tags and used to initialize the COMBINATOR construct. The

elements that these combinators compose are embedded in the InputCombinator and

OutputCombinator tags.

6.2.2 IML2xmlTree

The second stage of the parsing phase analyzes the IML representation to populate the

xmlTree structure. The IML has a one to one correspondence with the xmlTree structure,

therefore the mapping of the IML representation to the xmlTree is done with relative ease.

The MODEL construct is parsed to populate the toplevel of the xmlTree structure. The

PNs are parsed to populate the process network structures. Similarly the PROCESSes,

COMBINATORs are parsed to populate the corresponding structures in the xmlTree

structure. Finally, the INPUTs, OUTPUTs are parsed to populate the input, output

structures of the different processes, PNs and of the model respectively.
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6.2.3 xmlTree Data Structure

The xmlTree consist of a set of classes, where in the toplevel object called Model sets the

domain, framework and instance name of the model. It is further populated with the

set of PNs, processes, inputs and outputs of the model. A PN object is composed of a

set of processes, PNs, a combinator, inputs and outputs. Within a PN for each process,

we have a process object which inherits a constructor whose functionality is derived

from the attributes of the PROCESS element of the IML syntax. This feature enables

interoperable syntax, since we can have the constructor defined based on the SML-Sys

Framework or the ForSyDe methodology in [38], allowing the modeler to work with

the framework he desires. The combinator object has references to the process or PN

elements it composes.

MODEL

PROCESSINPUT OUTPUT

CONSTRUCTOR

COMBINATOR

PN

SIGNATURE

22

* *

*** *

*

1

2

*
2

Figure 6.2: The Class Diagram of the xmlTree structure

The class diagram for the xmlTree data structure is shown in Figure 6.2. Using our xmlTree

structure instead of the Document Object Manager (DOM) built in by the XML parser

provides the tool with semantic error checking capabilities. It also offers the tool the
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flexibility to simulate the streams for the model in a multi-targeted environment. It can

further facilitates a reverse design flow, where in our structure would be used to generate

IML syntax of the model from the target framework.



Chapter 7

Conclusion

Formal verification of a complex model with multiple interacting models of computa-

tion is important since interaction between distinct models with different expressibility

and features could lead to subtle errors. Therefore, MoCs need to be defined as higher

order functions, which provide well-defined formal semantics and facilitate the integra-

tion of models of computation, languages and tools on both the syntactic and semantic

level. The integration of the UMoC, PSMoC, CSMoC and the TMoC in our SML-Sys

framework enables the designer to model in a timed, synchronous or untimed fashion,

depending on the domain of the problem. Furthermore, they can be used in unison to

build heterogeneous models. We also provide a refinement methodology that facilitates

the refinement of an abstract specification into an efficient implementation specification

by formal design transformations targeting an optimized RTL synthesis. The long term

effort is in providing the design automation community with a multi-domain modeling

framework based on functional paradigms. The transformation library implemented

further facilitates the refinement of the functional specification into an optimized imple-

mentation specification which can be used to synthesize an RTL model, thereby reducing

99
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the abstraction gap.

Our work on creating the EWD environment and methodology has been motivated by

two reasons: (i) the existing multi-MoC modeling frameworks, including Ptolemy, and

SystemC extensions, have underlying semantics which do not facilitate formal cross do-

main analysis, thereby causing some researchers to look into functional programming

based multi-MoC frameworks, such as ForSyDe (Haskell based), and SML-Sys. (ii)

Concise denotational semantic of these frameworks allow functional design and subse-

quent formal analysis and transformations towards implementation, but require textual

programming for system design, leaving designers with the need for a visual environ-

ment on top of such a framework. The metamodeling based GME freely available from

Vanderbilt not only motivated us to fulfill this need for visual environment on top of

functional modeling framework, but also allowed us to rigorously enforce the meta-

model of untimed, synchronous, clocked synchronous and timed MoCs, together with

various semantic constraints through attributes of these models. GME also helps design-

ers to store executable behaviors in the attributes in the form of code fragments, which

can later be used in the body of the generated executable models in SML or Haskell.

Finally, the EWD tool requires installation of GME and either the SML multi-MoC

libraries or the ForSyDe environment. Also, if SMV models are to be generated, SMV

formal verification environment needs to be installed for model checking.



Appendix A

Appendix A

Modeling an Untimed FIR-Filter

A Finite Impulse Response filter is a digital filter in discrete time, that is normally imple-

mented through digital electronic computation. The algorithm is given by a sequence (

h0, h1, h2, ....., hN ) (the impulse response which, defines the filter’s properties ), an input

xn and an output yn shown in Figure A.1.

yn = h0xn + h1xn−1 · · · · · · hNxn−N

yn =
∑N

k=0 hk xn−k

Our Implementation of the FIR shown in Figure A.2 consists of a SOURCE module, a

COMPUTATION module and a SINK module which are interfaced with I1 and I2.

SOURCE Module: This module extracts a signal of ‘c’ events from an infinite signal

sequence.

101
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Z-1 Z-1 Z-1 Z-1

X X X X

+ + + y(n)

x(n)

h0 h1 h2 hN

Figure A.1: FIR Block Diagram

SOURCE MODULE
COMPUTATION

MODULE
SINK MODULEI

1
I
2

Interface_SOURCE_COMPUTATION Interface_COMPUTATION_SINK

FIR MODULE

Figure A.2: Implementation of the FIR Block Diagram

COMPUTATION Module: This module constitutes of a convolution function that com-

putes y(k) from the input signal x(k) and the filter’s impulse response signal. For each

input event, we zip all the previous input events with the respective impulse response

coefficients using the zip-based process and then apply a map-based process to compute

the convoluted signal.

SINK Module: In this module, we apply the sink-based process constructor to the

output of the COMPUTATION module.

Main Module: We define interface functions Interface SOURCE COMPUTATION be-

tween SOURCE and COMPUTATION blocks and (Interface COMPUTATION SINK)

between COMPUTATION and SINK blocks. These interfaces are process compositions.
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We also implement an FIR module, which determines the specifications for the interfaces

such as input size, input rate, output rate and the computational rate for the integration

of the model. This implementation of the FIR filter is shown in Listing A.1.

Listing A.1: Model of an FIR Filter
1 ( ∗ I n t e g r a t e d Module ∗ )
2

3 fun FIR ( i n p ra t e , comp rate , o u t ra t e , i n p s i z e ) =

4 fn ( s ) => I COMP SNK ( o u t r a t e )

5 ( I SRC COMP ( i n p r a t e , comp rate , i n p s i z e , s , [ ] , 0 ) )

6

7 ( ∗ I n t e r f a c e be tween t h e SOURCE and t h e COMPUTATION module ∗ )
8 fun I SRC COMP ( i r a t e , c r a t e , i s i z e , i r e s p , s t a r t , out ) =

9 (

10 i f i s i z e = 0 then [ ]

11 els e

12 (

13 i f s t a r t = [ ] then

14 (COMPUTATION ( take (SOURCE( i s i z e ) , i r a t e ) , c r a t e )

15 imp resp ) @ Interface SRC COMP ( c r a t e , c r a t e , ( i s i z e − i r a t e ) ,

16 drop ( i r e s p , i r a t e ) , drop (SOURCE ( i s i z e ) , i r a t e ) ,

17 COMPUTATION( take (SOURCE ( i s i z e ) , i r a t e ) , c r a t e ) ( i r e s p ) )

18 els e

19 c o n s t r u c t o r ( ( zipUs ( 1 , 1 ) ( take ( s t a r t , i r a t e ) , i r e s p ) ) ,

20 i r a t e , Convolute , output ) @ Interface SRC COMP

21 ( c r a t e , c r a t e , ( i s i z e − i r a t e ) ,

22 drop ( i r e s p , i r a t e ) , drop ( s t a r t , i r a t e ) ,

23 l a s t ( c o n s t r u c t o r ( ( zipUs ( 1 , 1 ) ( take ( s t a r t , i r a t e ) ,

24 i r e s p ) ) , i r a t e , Convolute , out ) ) ) ) )

25

26 ( ∗ I n t e r f a c e be tween t h e COMPUTATION and t h e SINK module ∗ )
27 fun I COMP SNK ( out , o r a t e ) = SINK ( o r a t e ) ( out )

28

29 ( ∗ I m p l e m e n t a t i o n o f t h e SOURCE ∗ )
30 fun SOURCE( c ) = take ( sourceU ( f1 , c1 ) , c2 )

31

32 ( ∗ I m p l e m e n t a t i o n o f t h e COMPUTATION ∗ )
33 fun COMPUTATION( s , c ) = fn ( imp resp ) => mapU( c , Convolute )

34 ( zipUs ( 1 , 1 ) ( s , imp resp ) )

35
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36 ( ∗ I m p l e m e n t a t i o n o f t h e SINK ∗ )
37 fun SINK ( o u t r a t e ) = sinkU ( f2 , f3 , o u t r a t e ) output

Modeling a Synchronous SOBEL Operator

The Sobel operator performs a 2-D spatial gradient measurement on an image and

emphasizes regions of high spatial gradient that correspond to edges. Typically it is

used to find the approximate absolute gradient magnitude at each point in an input

grayscale image. The operator consists of a pair of 3 x 3 convolution masks (Gx, Gy) as

shown below.

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1

These masks are designed to respond maximally to edges running vertically and horizon-

tally relative to the pixel grid, one mask for each of the two perpendicular orientations.

The masks can be applied separately to the input image, to produce separate measure-

ments of the gradient component in each orientation. These are then combined together

to find the magnitude of the gradient. The gradient magnitude is given by:

G 2 = Gx
2 + Gy

2,

Our implementation model shown in Figure A.3 has three main modules which are the

SOURCE, the SINK and the COMPUTATION.

SOURCE Module: The SOURCE module extracts a signal of ‘c’ events from an infinite

signal sequence.



Deepak A. Mathaikutty Chapter A. Appendix A 105

SOURCE MODULE

CONVOLUTE_VER

CONVOLUTE_HOR

GRADIENT SINK MODULE

COMPUTATION MODULE

SOBEL MODULE

Figure A.3: Implementation of the SOBEL Module

COMPUTATION Module: In the COMPUTATION module, we have a function GRA-

DIENT that computes the magnitude of the gradient with the horizontal orientation

component given by the function CONVOLUTE HOR and the vertical orientation com-

ponent given by the function CONVOLUTE VER. The CONVOLUTE VER and CONVO-

LUTE HOR functions apply the masks to the input image edges. Computation proceeds

by zipping the input edges of image with the respective masks and applying the map-

based process to generate the gradient. We have the helper function getedge that extracts

a part of the image based on the size of the evaluation cycle of the Map based process

SINK Module: In the SINK module, we apply the sink process constructor to the output

of the COMPUTATION module.

Main Module: This module determines the specifications for the interfaces such as

input size, output rate for the integration of the model. The implementation of the Sobel

operator is shown in Listing A.2.

Listing A.2: Model of a Sobel Operator
1 ( ∗ Main Module ∗ )
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2 fun SOBEL( i n p r a t e , o u t r a t e ) =

3 (

4 l e t ( ∗ D e f i n i t i o n o f b i n d i n g s ∗ )
5 val inp edges = SOURCE ( i n p r a t e ) ( ∗ Input Edges ∗ )
6 val r s i z e = length ( inputedges )

7 val c s i z e = length ( head ( inp edges ) )

8

9 ( ∗ D e f i n i t i o n o f t h e H o r i z o n t a l Mask ∗ )
10 val hsobel = [ [ ˜ 1 , 0 , 1 ] , [ ˜ 2 , 0 , 2 ] , [ ˜ 1 , 0 , 1 ] ]

11

12 ( ∗ D e f i n i t i o n o f t h e V e r t i c a l Mask ∗ )
13 val vsobel = [ [ 1 , 2 , 1 ] , [ 0 , 0 , 0 ] , [ ˜ 1 , ˜ 2 , ˜ 1 ] ]

14

15 val hrow = length ( sobel hopr )

16 val vrow = length ( sobel vopr )

17 val hcol = length ( head ( sobel hopr ) )

18 val vcol = length ( head ( sobel vopr ) )

19 in

20 SINK ( o u t r a t e )

21 (GRADIENT

22 (

23 CONVOLUTE HOR( 1 , hrow , hcol , r s i z e , c s ize , inp edges , hsobel ) ,

24 CONVOLUTE HOR( 1 , hrow , hcol , r s i z e , c s ize , inp edges , vsobel ) )

25 )

26 end

27 )

28

29 ( ∗ I m p l e m e n t a t i o n o f t h e SOURCE ∗ )
30 fun SOURCE( c ) = take ( sourceS ( f , c1 ) , c2 )

31

32 ( ∗ I m p l e m e n t a t i o n o f t h e COMPUTATION ∗ )
33

34 ( ∗ I m p l e m e n t a t i o n o f t h e H o r i z o n t a l component c o m p u t a t i o n ∗ )
35 fun CONVOLUTE HOR( , , , , , [ ] , ) = [ ]

36 | CONVOLUTE HOR( inc , hrow , hcol , r s i z e , cs ize , inp edges , hsobel ) =

37 (

38 i f c s i z e = inc then

39 mapS( Convolute ) ( Ziping ( getedge ( inp edges , inc , hcol , hrow ) , hsobel ) ) : :

40 CONVOLUTE HOR( 1 , hrow , hcol , r s i z e −1 , cs ize , drop ( inp edges , 1 ) , hsobel )

41 els e

42 mapS( Convolute ) ( Ziping ( getedge ( inp edges , inc , hcol , hrow ) , hsobel ) ) : :
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43 CONVOLUTE HOR( inc +1 ,hrow , hcol , r s i z e , cs ize , inp edges , hsobel )

44 )

45

46 ( ∗ I m p l e m e n t a t i o n o f t h e V e r t i c a l component c o m p u t a t i o n ∗ )
47 fun CONVOLUTE VER( inc , hrow , hcol , r s i z e , cs ize , [ ] , vsobel ) = [ ]

48 | CONVOLUTE VER( inc , hrow , hcol , r s i z e , cs ize , inp edges , vsobel ) =

49 (

50 i f c o l s i z e = inc then

51 mapS( Convolute ) ( Ziping ( getedge ( inp edges , inc , hcol , hrow ) , vsobel ) ) : :

52 CONVOLUTE VER( 1 , hrow , hcol , r s i z e −1 , cs ize , drop ( inp edges , 1 ) , vsobel )

53 els e

54 mapS( Convolute ) ( Ziping ( getedge ( inp edges , inc , hcol , hrow ) , vsobel ) ) : :

55 CONVOLUTE VER( inc +1 ,hrow , hcol , r s i z e , cs ize , inp edges , vsobel )

56 )

57

58 ( ∗ I m p l e m e n t a t i o n o f t h e G r a d i e n t c o m p u t a t i o n ∗ )
59 fun GRADIENT ( [ ] , [ ] ) = [ ]

60 | GRADIENT( h : : t , x : : y ) = [ h∗h + x ∗x ] @ GRADIENT( t , y )

61

62 ( ∗ I m p l e m e n t a t i o n o f t h e SINK ∗ )
63 fun SINK ( o u t r a t e ) = fn ( s ) => sinkS ( f , o u t r a t e ) ( s )

Modeling a Traffic Light Controller (TLC)

Our model of the TLC assumes that there are two traffic lights: one governing the traffic

from the North to the South and the other governing the traffic from the East and the

West shown in Figure A.4. The controller has a clock signal as its only input, which

transmits one event per second. The output controls the colors of the two traffic lights.

The duration of the lights are shown in Table A and 1 second for both the lights being

red simultaneously. The controller state has two components, one to count the seconds

and the other to store the current control signals to the two lights. We denote the first

component as cstate and the second as count. The possible values of cstate with two
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Figure A.4: Modeling the Traffic Light Controller Example

Table A.1: Duration of the signals

Color Duration

Red 68 seconds

Green 60 seconds

Yellow 3 seconds

letters, the first denoting the color to the North-South light and East-West light with the

second. The controller is modeled as a mealy state machine and we use the mealyT to

instantiate it. The implementation is shown in Listing A.3.

Listing A.3: Model of a Traffic Light Controller
1 ( ∗ F o r m u l a t i o n o f a c l o c k as an i n f i n i t e s i g n a l ∗ )
2 val c l o c k s i g n a l = next 1

3

4 datatype ’ a seq = n i l | cons of ’ a ∗ ( uni t −> ’ a seq )

5 fun next ( k ) = cons ( k , fn ( ) => next ( k+1) )

6

7 ( ∗ TLC f o r m u l a t i o n ∗ )
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8 fun TLC ( c lock ) = mealyT ( 1 , n e x t s t a t e , output , ( ” r r 1 ” , 0 ) ) ( c lock )

9

10 fun n e x t s t a t e ( clock , ( ” r r 1 ” , cnt ) )

11= ( i f cnt < 1 then ( ” r r 1 ” , cnt +1) else ( ” ry1 ” , 0 ) )

12 | n e x t s t a t e ( clock , ( ” ry1 ” , cnt ) )

13= ( i f cnt < 3 then ( ” ry1 ” , cnt +1) else ( ” rg ” , 0 ) )

14 | n e x t s t a t e ( clock , ( ” rg ” , cnt ) )

15= ( i f cnt < 60 then ( ” rg ” , cnt +1) else ( ” ry2 ” , 0 ) )

16 | n e x t s t a t e ( clock , ( ” ry2 ” , cnt ) )

17= ( i f cnt < 3 then ( ” ry2 ” , cnt +1) else ( ” r r 2 ” , 0 ) )

18 | n e x t s t a t e ( clock , ( ” r r 2 ” , cnt ) )

19= ( i f cnt < 1 then ( ” r r 2 ” , cnt +1) else ( ” yr1 ” , 0 ) )

20 | n e x t s t a t e ( clock , ( ” yr1 ” , cnt ) )

21= ( i f cnt < 3 then ( ” yr1 ” , cnt +1) else ( ” gr ” , 0 ) )

22 | n e x t s t a t e ( clock , ( ” gr ” , cnt ) )

23= ( i f cnt < 60 then ( ” gr ” , cnt +1) else ( ” yr2 ” , 0 ) )

24 | n e x t s t a t e ( clock , ( ” yr2 ” , cnt ) )

25= ( i f cnt < 3 then ( ” yr2 ” , cnt +1) else ( ” r r 1 ” , 0 ) )

26

27 fun output ( clock , ( ” r r 1 ” , cnt ) ) = [ ” red ” , ” red ” ]

28 | output ( clock , ( ” r r 2 ” , cnt ) ) = [ ” red ” , ” red ” ]

29 | output ( clock , ( ” ry1 ” , cnt ) ) = [ ” red ” , ” yellow ” ]

30 | output ( clock , ( ” ry2 ” , cnt ) ) = [ ” red ” , ” yellow ” ]

31 | output ( clock , ( ” rg ” , cnt ) ) = [ ” red ” , ” green ” ]

32 | output ( clock , ( ” yr1 ” , cnt ) ) = [ ” yellow ” , ” red ” ]

33 | output ( clock , ( ” yr2 ” , cnt ) ) = [ ” yellow ” , ” red ” ]

34 | output ( clock , ( ” gr ” , cnt ) ) = [ ” green ” , ” red ” ]

Multi-MoC Example

We discuss the implementation of a Multi-MoC digital equalizer and a verification

framework.
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Modeling A Digital Equalizer System

We model the digital equalizer system shown in Figure A.5 consisting of a control part,

modeled in the Synchronous domain and a dataflow part, modeled in Untimed domain,

thereby explaining the interfacing of processes between the UMoC and SMoC domain.

Filter Analyzer

Distortion ControlButton Control

StripS2U InsertU2S

4096 4096 4096

Untimed MoC

Synchronous MoC

Figure A.5: The Digital Equalizer System

It consist of four processes. The Filter process reads the primary input, an audio signal,

in chunks of 4096 data points. The filter consists of an amplifier which is controlled by

the Button control process. Button control receives control input from a user interface,

which sets the amplification for volume, bass and the treble of the output audio signal.

The output of the filter is analyzed by the Analyzer process with the goal of detecting

harmful output signals. The Distortion control process uses the result of the Analyzer and

provides input to the Button control, which in turn sets the parameters for the filter.

The digital equalizer has a dataflow and a control part with relatively few control events

occurring at irregular points in time. The interface between the Analyzer process and the
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Distortion control is implemented as an insertU2S (interface rate) process, which converts

the untimed signal to synchronous signal and the interface between the Button control

process and the Filter process is implemented as a stripS2U process, which converts the

synchronous signal to an untimed control signal. We have a digital equalizer module

shown in Listing A.4, which determines the specifications for the integration such as

primary input, control input and the rate of the interface. The functions f0, f1, f2, f3,

f4 and the constants c1, c2, c3, c4 are defined with specific functionality for the different

processes of the digital equalizer system.

Listing A.4: Implementation of a Digital Equalizer System
1 ( ∗ The F i l t e r p r o c e s s ∗ )
2 fun F i l t e r ( Primary Input , Control Input ) =

3 UMoC.mapU( c1 , f0 ) (UMoC. zipUs ( c1 , c2 ) ( Primary Input , Control Input ) )

4

5 ( ∗ The Ana lyzer p r o c e s s ∗ )
6 fun Analyzer ( Output ) = UMoC. scanU ( f1 , f2 , c3 ) ( Output )

7

8 ( ∗ The D i s t o r t i o n C o n t r o l p r o c e s s ∗ )
9 fun D i s t o r t i o n c o n t r o l ( Analyzed Output ) = SMoC. scanS ( f3 , c4 ) ( Analyzed Output )

10

11 ( ∗ The Button C o n t r o l p r o c e s s ∗ )
12 fun B u t t o n c o n t r o l ( User Input , Dis tor t ion Output ) =

13 SMoC. mapS( f4 ) (SMoC. zipS ( ) ( User Input , Dis tor t ion Output ) )

14

15 ( ∗ The I n t e g r a t e d Module ∗ )
16 fun d i g i t a l e q u a l i z e r ( Primary input , Control input , I n t e r f a c e r a t e )

17 = F i l t e r ( Primary input , make con ( length ( Primary input ) ) )

18 @ f i l t e r ( Primary input , s tr ipS2U ( )

19 ( B u t t o n c o n t r o l ( D i s t o r t i o n c o n t r o l ( insertU2S ( I n t e r f a c e r a t e )

20 ( Analyzer ( F i l t e r ( Primary input ,

21 make con ( length ( Primary input ) ) ) ) ) ) , Contro l input ) ) )
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Modeling a Validation framework

A clocked synchronous process is a perfectly synchronous process that incurred a delay

from an input to an output event. Therefore, when we compose a perfectly synchronous

process constructor sequentially with a delay process, we get a clocked synchronous

process constructor. We formally verify this with a validation model shown in Figure A.6

for a map-based process constructor. The implementation of the validation model is

shown in Listing A.5.

Input Signal

Synchronous
MoC

Clocked
Synchronous

MoC

V
E
R
I
F
I
C
A
T
I
O
N

TRUE

DELAY

Output2

Output1

Figure A.6: The Validation Model

Listing A.5: Implementation of a Validation Framework
1 ( ∗ Synchronous map−b a s e d p r o c e s s c o n s t r u c t o r d e l a y e d ∗ )
2 val output1 = CSMoC. d e l t a ( ) (SMoC. mapS( f ) ( s ) )

3

4 ( ∗ C l o c k e d Synchronous map−b a s e d p r o c e s s c o n s t r u c t o r ∗ )
5 val output2 = CSMoC. mapCS ( f ) ( s )

6

7 ( ∗ Comparator ∗ )
8 fun v e r i f y ( [ ] , [ ] ) = t rue

9 | v e r i f y ( [ ] . ) = f a l s e

10 | v e r i f y ( , [ ] ) = f a l s e

11 | v e r i f y ( h : : t , x : : y ) = ( i f h = x then v e r i f y ( t , y ) e lse f a l s e )
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Domain Interface Constructors

Listing B.1: Domain Interface Constructors
1 ( ∗ Down rat ing Domain I n t e r f a c e c o n s t r u c t o r ∗ )
2 fun downDI( k ) = fn ( s ) => c o n s t r u c t 1 ( k , s , k )

3

4 fun c o n s t r u c t 1 ( k , [ ] , cnt ) = [ ]

5 | c o n s t r u c t 1 ( k , h : : t , cnt ) =

6 ( i f cnt >= k then [ h ] @ c o n s t r u c t 1 ( k , t , cnt −1)

7 e lse

8 ( i f cnt = 0 then [ h ] @ c o n s t r u c t 1 ( k , t , k−1)

9 els e

10 c o n s t r u c t 1 ( k , t , cnt −1)

11 )

12 )

13

14 ( ∗ U p ra t i n g Domain I n t e r f a c e c o n s t r u c t o r ∗ )
15 fun upDI ( k ) = fn ( s ) => c o n s t r u c t 2 ( k , s , k )

16

17 fun c o n s t r u c t 2 ( k , [ ] , cnt ) = [ ]

18 | c o n s t r u c t 2 ( k , h : : t , cnt ) =

113
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19 ( i f cnt = k then [ h ] @ c o n s t r u c t 2 ( k , t , cnt −1)

20 e lse

21 ( i f cnt = 0 then [ h ] @ c o n s t r u c t 2 ( k , t , k−1)

22 els e c o n s t r u c t 2 ( k , h : : t , cnt −1)

23 )

24 )

25

26 ( ∗ P a r a l l e l t o S e r i a l Domain I n t e r f a c e c o n s t r u c t o r ∗ )
27 fun p2sDI ( r a t e ) = fn ( s ) => comp( take ( s , r a t e ) , f1 ( s , 0 ) , 0 )

28

29 fun comp ( s , cnt , i t e r ) =

30 ( i f i t e r = cnt then [ ] else show ( s ) @ comp ( d e l e t e ( s ) , cnt , i t e r +1) )

31

32 fun f1 ( [ ] , value ) = value

33 | f1 ( h : : t , value ) =

34 ( i f value > length ( h ) then f1 ( t , value )

35 e lse f1 ( t , length ( h ) )

36 )

37

38 fun d e l e t e [ ] = [ ]

39 | d e l e t e ( [ ] : : t ) = [ ] @ d e l e t e ( t )

40 | d e l e t e ( h : : t ) = [ drop ( h , 1 ) ] @ d e l e t e ( t )

41

42 fun show [ ] = [ ]

43 | show ( [ ] : : t ) = [ ] @ show ( t )

44 | show ( h : : t ) = take ( h , 1 ) @ show ( t )

HandshakeWithFIFO Transformation

Listing B.2: The HandshakeWithFIFO Rule
1 ( ∗ The Channel ∗ )
2 fun CIWB( Input , B u f f e r S i z e ) =

3 l e t

4 fun Channelfn ( ) = fn ( sin , sout ) =>

5 l e t

6 datatype SenderState = SendDataReady | SendData

7 datatype R e c e i v e r S t a t e = WaitReady |WaitData
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8 datatype SenderOutput = DataReady | Data

9 datatype ReceiverOutput = P r o c e s s I n i t i a t o r | Ready |Ack

10

11 ( ∗ SENDER ∗ )
12 fun Sender ( ) = fn commrec => l e t

13 val f i n i t e q u e u e : i n t Queue . queue = Queue . empty

14

15 fun next u ( ( SendDataReady , q ) , P r o c e s s I n i t i a t o r , h ) =

16 ( SendData , F i f o . enqueue ( q , h , B u f f e r S i z e ) )

17 | next u ( ( SendDataReady , q ) , , ) =

18 ( SendDataReady , q )

19 | next u ( ( SendData , q ) , Ready , h ) =

20 ( SendData , F i f o . enqueue ( F i f o . dequeue ( q ) , h , B u f f e r S i z e ) )

21 | next u ( ( SendData , q ) , Ack , h ) =

22 ( SendData , F i f o . enqueue ( F i f o . dequeue ( q ) , h , B u f f e r S i z e ) )

23

24 fun out u ( ( SendDataReady , ) ) = [ ( DataReady , 0 ) ]

25 | out u ( ( SendData , q ) ) = [ ( Data , F i f o . head ( q ) ) ]

26 in

27 moore2S ( next u , out u , ( SendDataReady , f i n i t e q u e u e ) ) commrec Input

28 end

29

30 ( ∗ RECEIVER ∗ )
31 fun Receiver ( ) = fn comm => l e t

32

33 fun next v ( WaitReady , ( DataReady , ) ) = WaitData

34 | next v ( WaitData , ( Data , data ) ) = WaitData

35

36 fun out v ( WaitReady , ( DataReady , ) ) = [ ( Ready , 0 ) ]

37 | out v ( WaitData , ( Data , data ) ) = [ ( Ack , data ) ]

38 in

39 mealyS ( next v , out v , WaitReady ) comm

40 end

41

42 val s1 = delayS1 ( P r o c e s s I n i t i a t o r ) s i n

43 val s2 = Sender ( ) s1

44 val s3 = Receiver ( ) s2

45 val ( s in , sout ) = unzipS2 ( ) s3

46 in ( s in , sout ) end

47

48 fun f i x p o i n t ( f , ( v1 , v2 ) ) =
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49 l e t val ( v3 , v4 ) = f ( v1 , v2 ) in

50 ( case e q u a l l i s t ( v3 , v1 ) of t rue => ( v3 , v4 )

51 | f a l s e => f i x p o i n t ( f , ( v3 , [ ] ) ) ) end

52

53 fun FBp ( f ) = fn s => l e t val ( l3 , l 4 ) = f i x p o i n t ( f , s )

54 in

55 l 4

56 end

57

58 in

59 FBp ( Channelfn ( ) ) ( [ ] , [ ] )

60 end

Transformation Rule 1 - MapMerge

Listing B.3: The MergeMap Rule

1 ( ∗ T r a n s f o r m a t i o n MapMerge ∗ )
2 fun MapMerge ( f , g , s i g n a l ) = pn ref ( f , g , s i g n a l )

3

4 ( ∗ O r i g i n a l P r o c e s s ∗ )
5 fun pn org ( f , g , s ) = mapS( f ) (mapS( g ) ( s i g n a l ) )

6

7 ( ∗ Trans formed P r o c e s s ∗ )
8 fun pn ref ( f , g , s i g n a l ) = mapS ( combine ( f , g ) ) s i g n a l

9 fun combine ( f , g ) = fn s i g n a l => f ( g ( s i g n a l ) )

Transformation Rule 2 - BalancedTree

Listing B.4: The Balanced Rule

1 ( ∗ T r a n s f o r m a t i o n B a l a n c e d Tre e ∗ )
2 fun BalancedTree ( f ) = fn s i g n a l => pn ref ( f ) s i g n a l

3
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4 ( ∗ O r i g i n a l P r o c e s s ∗ )
5 fun pn org ( g ) = fn s =>

6 l e t

7 val f a c t o r = length ( s ) mod 2

8 val f = func5 ( g )

9

10 fun func5 ( g ) = fn s => func6 ( g , s )

11 fun func6 ( g , s ) =

12 ( i f length ( s ) > 1 then func6 ( g , [ zipWithS ( g ) ( f i r s t ( s ) , second ( s ) ) ] @ drop ( s , 2 ) )

13 els e f i r s t ( s ) )

14 in

15 ( i f f a c t o r = 0 then zipWithS ( f ) s else r a i s e Inputs Not Powers of Two )

16 end

17

18 ( ∗ O r i g i n a l P r o c e s s ∗ )
19 fun pn ref ( f ) = fn s =>

20 l e t

21 val s tage = c log ( length ( s ) , 2 )

22 val f a c t o r = length ( s ) mod 2

23

24 fun Merge ( [ ] , f ) = [ ] | Merge ( l i s t , f ) =

25 [ f ( f i r s t ( l i s t ) , second ( l i s t ) ) ] @ Merge ( drop ( l i s t , 2 ) , f )

26

27 fun BalanceTree ( f , s , 1 ) = f ( f i r s t ( s ) , second ( s ) )

28 | BalanceTree ( f , s , s tage ) = BalanceTree ( f , Merge ( s , f ) , stage −1)

29 in

30 ( i f f a c t o r = 0 then BalanceTree ( f , s , s tage ) else r a i s e Inputs Not Powers of Two )

31 end

Transformation Rule 3 - PipelinedTree

Listing B.5: The PipelinedTree Rule
1 ( ∗ T r a n s f o r m a t i o n P i p e l i n e Tre e ∗ )
2 fun Pipe l ineTree ( f ) = fn s i g n a l => pn ref ( f ) s i g n a l

3

4 ( ∗ O r i g i n a l P r o c e s s ∗ )
5 fun pn org ( f ) = fn s =>
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6 l e t

7 val f a c t o r = length ( s ) mod 2

8 val f = func3 ( f )

9

10 fun Mg ( [ ] , [ ] ) = [ ]

11 | Mg ( l i s t , f1 : : f 2 ) = [ f1 ( f i r s t ( l i s t ) , second ( l i s t ) ) ] @ Mg( drop ( l i s t , 2 ) , f2 )

12

13 fun Tree ( f : : [ ] , s , 1 ) = f ( f i r s t ( s ) , second ( s ) )

14 | Tree ( f , s , s tage ) = Tree ( drop ( f , length ( s ) div 2 ) ,

15 Mg( s , take ( f , length ( s ) div 2 ) ) , stage −1)

16

17 fun func3 ( f ) = fn s => ( i f length ( s ) mod 2 = 0 then Tree ( f , s , c log ( length ( s ) , 2 ) )

18 els e r a i s e Inputs Not Powers of Two )

19 in

20 ( i f f a c t o r = 0 then zipWithS ( f ) ( s ) e lse r a i s e Inputs Not Powers of Two )

21 end

22

23 ( ∗ O r i g i n a l P r o c e s s ∗ )
24 fun pn ref ( f ) = fn s =>

25 l e t val f a c t o r = length ( s ) mod 2

26 val s tage = c log ( length ( s ) , 2 )

27

28 fun P i p e l i n e ( f : : [ ] , s , 1 ) = t ransformat ion3 ( 1 , absent event ) ( f ( f i r s t ( s ) , second ( s ) ) )

29 | P i p e l i n e ( f , s , s tage ) = P i p e l i n e ( drop ( f , length ( s ) div 2 ) ,

30 Merge With Delay ( s , take ( f , length ( s ) div 2 ) ) , stage −1)

31

32 fun t ransformat ion3 ( k , i n i t ) = fn s => Add delay ( k , i n i t , s )

33 fun Add delay ( k , i n i t , [ ] ) = [ ]

34 | Add delay ( k , i n i t , h : : t ) = [ tag ( h)+k : : [ value ( h ) ] ] @ Add delay ( k , i n i t , t )

35

36 fun Merge With Delay ( [ ] , [ ] ) = [ ]

37 | Merge With Delay ( l i s t , f : : g ) = [ t ransformat ion3 ( 1 , absent event ) ( f ( f i r s t ( l i s t ) ,

38 second ( l i s t ) ) ) ] @ Merge With Delay ( drop ( l i s t , 2 ) , g )

39 in

40 ( i f f a c t o r = 0 then P i p e l i n e ( f , s , s tage ) els e r a i s e Inputs Not Powers of Two )

41 end
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Transformation Rule 4 - TwoClockDomain

Listing B.6: Implementation of the TwoClockDomain transformation
1 ( ∗ T r a n s f o r m a t i o n TwoClockDomain ∗ )
2 fun TwoClockDomain ( f , g , s ) = fn ( s1 ) => pn ref ( f , g , s ) s1

3

4 ( ∗ O r i g i n a l P r o c e s s ∗ )
5 fun pn org ( h , g ) = fn ( s ) =>

6 l e t val f = func1 ( h , g ) in zipWithS ( f ) s end

7

8 ( ∗ Trans formed P r o c e s s ∗ )
9 fun pn ref ( h , g , ( k , value ) ) = fn ( s ) =>

10 l e t

11 val m = length ( inputs )

12

13 fun posh ( 1 , x , h : : t ) = h x

14 | posh ( k , x , h : : t ) = posh ( k−1 ,x , t )

15

16 fun h kth ( k , x ) = posh ( k , x , h )

17

18 fun posg ( k , x , y , g : : t , cnt ) =

19 (

20 i f cnt = k−1

21 then g ( x , y )

22 else posg ( k , x , y , t , cnt + 1)

23 )

24

25 fun g kth ( k , x , y ) = posg ( k , x , y , g , 0 )

26

27 fun u ( ( 0 , ) , x ) = ( 1 , h kth ( 1 , x ) )

28 | u ( ( k , value ) , x ) = i f k > 0 andalso k < m−1

29 then ( k+1 , g kth ( k , h kth ( k , x ) , value ) )

30 else ( 0 , g kth ( k , h kth ( k , x ) , value ) )

31

32 fun v ( ( k , value ) ) = ( i f k = 0 then value else absent event )

33 fun pfsm ( h , g , ( k , value ) ) = fn s => mooreS ( u , v , ( k , value ) ) s

34 in

35 downDI(m) ( pfsm ( h , g , ( k , value ) ) ( p2sDI (m) ( s ) ) )

36 end
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Refined Sobel Operator

Listing B.7: Implementation of the Sobel Module
1 ( ∗ SOBEL OPERATOR ∗ )
2 fun SOBEL MODULE( ) = fn inputedges =>

3 l e t

4

5 ( ∗ SOURCE MODULE ∗ )
6 fun SOURCE( ) = fn inputedges => inputedges

7

8 ( ∗ SOBEL CONVOLUTION ∗ )
9 fun SOBEL OPERATOR ( ) = fn inputedges =>

10 l e t

11 val sobel hopr = [ ˜ 1 , ˜ 2 , ˜ 1 , 0 , 0 , 0 , 1 , 2 , 1 ]

12 val sobel vopr = [ 1 , 0 , ˜ 1 , 2 , 0 , ˜ 2 , 1 , 0 , ˜ 1 ]

13

14 fun GRADIENT ( [ ] , ) = [ ] | GRADIENT ( edges , mask ) =

15 l e t

16 val rows = length ( inputedges )

17

18 fun groupS3 ( k ) = fn inp1 => fn inp2 => fn inp3 =>

19 l e t

20 fun n t s t a t e ( s , x , y , z ) = ( i f length ( s ) = k or e l se length ( s ) = 0

21 then [ x , y , z ] e lse s @ [ x , y , z ] )

22 fun o t f n ( s ) = ( i f length ( s ) = k then [ s ] else [ [ absent event ] ] )

23 val f = n t s t a t e

24 val g = o t f n

25 in

26 mooreS3 ( f , g , [ ] ) inp1 inp2 inp3

27 end

28

29 fun SumProd ( [ ] , [ ] ) = 0 | SumProd ( x : : xs , y : : ys ) = x ∗y + SumProd ( xs , ys )

30 fun CONVOLUTE ( mask ) = fn pts => SumProd ( mask , pts )

31 in

32 (

33 i f length ( edges ) >= 3 then

34 l e t

35 val inp1 = f i r s t ( edges )

36 val inp2 = second ( edges )

37 val inp3 = t h i r d ( edges )
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38 in

39 ( upDI ( 3 , absent event )

40 (mapS( ps i (CONVOLUTE( sobel hopr ) ) )

41 (downDI ( 3 )

42 ( groupS3 ( 9 ) inp1 inp2 inp3 ) ) )

43 )

44 end @ GRADIENT( drop ( edges , 1 ) , mask )

45 e lse [ ] )

46 end

47

48 fun double ( ) = fn h => h ∗ h

49 fun comb ( x , y ) = [ aps i ( double ( ) ) x + aps i ( double ( ) ) y ]

50 in

51 (mapS( ppsi ( Real . round ) )

52 (mapS( s p s i ( Math . s q r t ) )

53 (mapS( r p s i ( Real . fromInt ) )

54 ( zipWithS2 ( comb )

55 (GRADIENT( inputedges , sobel hopr ) )

56 (GRADIENT( inputedges , sobel vopr ) ) ) ) ) )

57 end

58

59 ( ∗ SINK MODULE ∗ )
60 fun SINK ( ) = fn i n t e n s i t i e s =>

61 l e t

62 fun f (w) = w

63 in

64 sinkS ( f , 0 ) i n t e n s i t i e s

65 end

66

67 in

68 SINK ( ) (CIWB (SOBEL OPERATOR ( ) (SOURCE( ) inputedges ) , 1 ) )

69 end
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The IML for the Adaptive Amplifier

Listing C.1: The IML for the Adaptive Amplifier
1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>

2 < !DOCTYPE model SYSTEM ”modeling . dtd”>

3 <model name = ” Adaptive Amplif ier ” domain = ”UntimedMoC” framework = ”SMLFramework” >

4

5 <processnetwork name = ” Block3 ” domain = ”UntimedMoC” >

6 <processnetwork name = ” Block2 ” domain = ”UntimedMoC” >

7 <processnetwork name = ” Block1 ” domain = ”UntimedMoC” >

8

9 <process name = ”P2” >

10 <c o n s t r u c t o r name = ”MapS” >

11 <Map EventsperCycle = ”1” FnUnit = ”Undefined” />

12 < / c o n s t r u c t o r>

13 <input name = ” in2 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” P1 out1 ” />

14 <output name = ” out2 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”” />

15 < / process>

16

17 <process name = ”P1” >

18 <c o n s t r u c t o r name = ”ZipS” >
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19 <Zip EventsperCycle 1 = ”5” EventsperCycle 2 = ”1” S ize = ”2” />

20 < / c o n s t r u c t o r>

21 <input name = ” i n 1 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”S3” />

22 <output name = ” out1 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”” />

23 <input name = ” i n 2 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”S4” />

24 < / process>

25

26 <combinator name = ”seqcomp” Element1 = ”P1” Element2 = ”P2” />

27

28 <input name = ”S3” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”S1” />

29 <input name = ”S4” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”S2” />

30 <output name = ” Block1 out ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” P2 out ” />

31

32 < / processnetwork>

33

34 <process name = ”P3” >

35 <c o n s t r u c t o r name = ”ScanS” >

36 <Scan EventsperCycle = ”1” I n i t i a l S t a t e = ”Undefined” NextState = ”Undefined” />

37 < / c o n s t r u c t o r>

38 <input name = ” in3 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” Block1 . Block1 out ” />

39 <output name = ”Out3” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”” />

40 < / process>

41

42 <combinator name = ”seqcomp” Element1 = ” Block1 ” Element2 = ”P3” />

43 <input name = ”S1” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”S5” />

44 <input name = ”S2” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”S6” />

45 <output name = ” Block2 out ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” P3 out3 ” />

46

47 < / processnetwork>

48

49 <process name = ”P4” >

50 <c o n s t r u c t o r name = ” I n i t S ” >

51 < I n i t I n i t i a l S i g n a l = ” [ 1 0 ] ” />

52 < / c o n s t r u c t o r>

53

54 <input name = ” in4 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” Block2 . Block2 out ” />

55 <output name = ” out4 ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ”” />

56 < / process>

57

58 <combinator name = ”seqcomp” Element1 = ” Block2 ” Element2 = ”P4” />

59 <input name = ”S5” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” Hfactor ” />
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60 <input name = ”S6” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” Sin ” />

61 <output name = ” Block3 out ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” P4 out4 ” />

62 < / processnetwork>

63

64 <output name = ” Sout ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” Block3 . Block3 out ” />

65 <input name = ” Hfactor ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” [ ] ” />

66 <input name = ” Sin ” s t r u c t = ” l i s t ” type = ” I n t e g e r ( i n t ) ” value = ” [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 ] ” />

67 < / model>

The SmlStream for the Adaptive Amplifier

Listing C.2: The SmlStream for the Adaptive Amplifier
1 ( ∗ Ad a p t i v e A m p l i f i e r Model ∗ )
2 s t r u c t u r e Adaptive Amplif ier = s t r u c t

3

4 ( ∗ PN1 ∗ )
5 fun Block1 ( ) = fn S3 => fn S4 =>

6 l e t

7

8 ( ∗ A1 ∗ )
9 fun A1 ( ) = fn A1 in1 => fn A1 in2 =>

10 l e t

11 ( The f u n c t i o n a l i t y of a , b are defined in the a t t r i b u t e s of the o b j e c t )

12 in Zip ( a , b ) ( A1 in1 , A1 in2 ) end

13

14 ( ∗ A2 ∗ )
15 fun A2 ( ) = fn A2 in =>

16 l e t

17 ( The f u n c t i o n a l i t y of c , f are defined in the a t t r i b u t e s of the o b j e c t )

18 in Map( c , f ) A2 in end

19

20 in seqcomp (A2 ( ) , A1 ( ) S3 ) S4 end

21

22 ( ∗ PN2 ∗ )
23 fun Block2 ( ) = fn S1 => fn S2 =>

24 l e t

25
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26 ( ∗ A3 ∗ )
27 fun A3 ( ) = fn A3 in =>

28 l e t

29 ( ∗ The f u n c t i o n a l i t y o f g , f ,w a r e d e f i n e d in t h e a t t r i b u t e s o f t h e o b j e c t ∗ )
30 in Scan ( g , f ,w) A3 in end

31

32 in seqcomp (A3 ( ) , Block1 ( ) S1 ) S2 end

33

34 ( ∗ PN3 ∗ )
35 fun Block3 ( ) = fn S5 => fn S6 =>

36 l e t

37

38 ( ∗ A4 ∗ )
39 fun A4 ( ) = fn A4 in =>

40 l e t

41 ( ∗ The f u n c t i o n a l i t y o f r i s d e f i n e d in t h e a t t r i b u t e s o f t h e o b j e c t ∗ )
42 in I n i t ( r ) A4 in end

43

44 in seqcomp (A4 ( ) , Block2 ( ) S5 ) S6 end

45

46 ( ∗ PN4 ∗ )
47 fun Block4 ( ) = fn S7 => fn S8 => FBp ( Block3 ( ) ) S7

48

49 end

The HaskellStream for the Adaptive Amplifier

Listing C.3: The HaskellStream for the Adaptive Amplifier
1 ( ∗ Adaptive Amplif ier Model ∗ )
2 module Adaptive Amplif ier where

3

4 ( ∗ <process> ∗ )
5 fun P2 in2 = Map in2

6 where

7 ( ∗ Define intermediate lambda f u n c t i o n s i f required ∗ )
8

9 ( ∗ <process> ∗ )
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10 fun P1 i n 1 i n 2 = Zip i n 1 i n 2

11 where

12 ( ∗ Define intermediate lambda f u n c t i o n s i f required ∗ )
13

14 ( ∗ <process> ∗ )
15 fun P3 in3 = Scan in3

16 where

17 ( ∗ Define intermediate lambda f u n c t i o n s i f required ∗ )
18

19 ( ∗ <process> ∗ )
20 fun P4 in4 = I n i t in4

21 where

22 ( ∗ Define intermediate lambda f u n c t i o n s i f required ∗ )
23

24 ( ∗ Process Network ∗ )
25 fun Block1 S3 S4 = seqcomp P1 i n 1 i n 2 P2 in2

26 where

27

28 ( ∗ <process> ∗ )
29 fun P2 in2 = Map in2

30 where

31 ( ∗ Define intermedia te lambda f u n c t i o n s i f required ∗ )
32

33 ( ∗ <process> ∗ )
34 fun P1 i n 1 i n 2 = Zip i n 1 i n 2

35 where

36 ( ∗ Define intermedia te lambda f u n c t i o n s i f required ∗ )
37

38 ( ∗ Process Network ∗ )
39 fun Block2 S1 S2 = seqcomp Block1 S3 S4 P3 in3

40 where

41

42 ( ∗ <process> ∗ )
43 fun P3 in3 = Scan in3

44 where

45 ( ∗ Define intermedia te lambda f u n c t i o n s i f required ∗ )
46

47 ( ∗ Process Network ∗ )
48 fun Block3 S5 S6 = seqcomp Block2 S1 S2 P4 in4

49 where

50



Deepak A. Mathaikutty Chapter C. Appendix C 127

51 ( ∗ <process> ∗ )
52 fun P4 in4 = I n i t in4

53 where

54 ( ∗ Define intermedia te lambda f u n c t i o n s i f required ∗ )

The SmvStream for the Adaptive Amplifier

Listing C.4: The SmvStream for the Adaptive Amplifier
1 / ∗ Ad a p t i v e A m p l i f i e r Model ∗ /
2

3 typedef I n t e g e r 0 . . 2 0 0 ;

4 typedef Bool 0 . . 1 ;

5 typedef s t a t e { s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 , s10 } ;
6 typedef I n t L i s t s t r u c t { l i s t : array 0 . . 4 of I n t e g e r ; count : I n t e g e r ; }
7 typedef I n t L i s t L i s t s t r u c t { l i s t : array 0 . . 2 of I n t L i s t ; count : I n t e g e r ; }
8

9 module P2 ( in2 )

10 {
11 out2 : / ∗ DataType Not D e f i n e d ∗ /
12 out2 := func . out ;

13 }
14

15 module P1 ( in 1 , i n 2 )

16 {
17 out1 : / ∗ DataType Not D e f i n e d ∗ /
18 }
19

20 module P3 ( in3 )

21 {
22 Out3 : / ∗ DataType Not D e f i n e d ∗ /
23 Out3 := s ta teFunc . out ;

24 }
25

26 module P4 ( in4 )

27 {
28 out4 : / ∗ DataType Not D e f i n e d ∗ /
29 }
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30

31 module Block1 ( S3 , S4 )

32 {
33 Block1 out : / ∗ DataType Not D e f i n e d ∗ /
34 Tout1 : P1 ( S3 , S4 ) ;

35 Tout2 : P2 ( Tout1 . out1 ) ;

36 Block1 out := Tout2 . out2 ;

37 }
38

39 module Block2 ( S1 , S2 )

40 {
41 Block2 out : / ∗ DataType Not D e f i n e d ∗ /
42 }
43

44 module Block3 ( S5 , S6 )

45 {
46 Block3 out : / ∗ DataType Not D e f i n e d ∗ /
47 Tout1 : Block2 ( S5 , S6 ) ;

48 Tout2 : P4 ( Tout1 . Block2 out ) ;

49 Block3 out := Tout2 . out4 ;

50 }
51

52 / ∗ <Main Model> ∗ /
53

54 module main ( )

55 {
56 Hfactor : / ∗ DataType Not D e f i n e d ∗ /
57 Sin : / ∗ DataType Not D e f i n e d ∗ /
58 Sout : / ∗ DataType Not D e f i n e d ∗ /
59

60

61 Fout0 : Block3 ( Hfactor , Sin ) ;

62 Sout := Fout0 . Block3 out ;

63 }
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Selected Projects

(a) CycleComputer: A hardware prototype of a complete bicycle computer simulated and synthesized

135



Deepak A. Mathaikutty Vita 136

in verilog.

(b) Developed an Integrated Firewall Toolkit which filters packets, performs authentication and verifi-

cation services.

(c) Design and Implementation of the a Generalized Protocol Tunneling, which facilitates different

networks to communicate and transfer data without worrying about the underlying mismatch in

protocols.

(d) Developed a Simulation Model in C for the Admission Control Policy for new and handoff calls in

mobile networks and providing a threshold bandwidth management mechanism.

(e) Developed a Protocol combining the principles of RSVP and Active Networks to provide support

of QoS for multimedia application over mobile networks.

(f) Developed a Workbench to assist Transliteration and Font deciphering for Indian languages (NLP)

by defining predicates to do a character mapping.

(g) Implemented a File Transfer Protocol Client Using UNIX C providing a GUI to the FTP client so

that it is more user friendly.
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