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An Introduction to S(5, 8, 24)

Maria E. Beane

(ABSTRACT)

S(5, 8, 24) is one of the largest known Steiner systems and connects combinatorial designs,

error-correcting codes, finite simple groups, and sphere packings in a truly remarkable way.

This thesis discusses the underlying structure of S(5, 8, 24), its construction via the (24, 12)

Golay code, as well its automorphism group, which is the Mathieu group M24, a member

of the sporadic simple groups. Particular attention is paid to the calculation of the size of

automorphism groups of Steiner systems using the Orbit-Stabilizer Theorem. We conclude

with a section on the sphere packing problem and elaborate on how the 8-sets of S(5, 8, 24)

can be used to form Leech’s Lattice, which Leech used to create the densest known sphere

packing in 24-dimensions. The appendix contains code written for Matlab which has the

ability to construct the octads of S(5, 8, 24), permute the elements to obtain isomorphic

S(5, 8, 24) systems, and search for certain subsets of elements within the octads.
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Chapter 1

Introduction

One of the largest known Steiner systems, S(5, 8, 24) is the set of 8-element subsets of a 24-

element base set such that each 5-element subset is contained in only one of the 8-element

subsets. As fascinating as it is mysterious, S(5, 8, 24) yields an underlying connection be-

tween several seemingly unrelated fields of mathematics, such as combinatorial designs, error-

correcting codes, finite simple groups, and sphere packings. The overall goal of this thesis is

to acquaint the reader with this remarkable object and hopefully to spark an interest in the

mysteries and complexities of discrete mathematics.

Steiner systems are part of an overarching area of mathematics called combinatorial designs,

and so we begin our discussion in Chapter 1 with a few introductory definitions and results

regarding these more general designs. We then make the transition to a quick overview of

Steiner systems in Chapter 2, mainly focusing on issues of existence. From here, we move

into Chapter 3, where we describe and dissect the structure of S(5, 8, 24), including its 759

8-element subsets, each of which is called an octad. Interestingly enough, the results in

this section are proved without even viewing an actual representation of the octads. To do

this, we model the work of Anderson [1] and Todd [9] by combining observations about the

system’s structure with clever counting arguments. However, this is not to say that viewing

the actual system is a waste of time. In fact, constructing the system is perhaps equally as

fascinating as the system itself. Thus, in Chapter 4, we discuss the construction of S(5, 8, 24)

via the (24, 12) Golay error-correcting code, and an implementation of this method in Matlab

1
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is provided in Appendix A. We encourage the reader to utilize this program to generate the

system at least once, in order to make their study more complete.

In Chapter 5, we discuss the automorphism group of S(5, 8, 24), namely the set of per-

mutations of the 24 elements in the base set that simultaneously permute the 8-element

subsets amongst themselves. The automorphism group of S(5, 8, 24) is the Mathieu group

M24, one of the first five sporadic groups to be discovered. To calculate the order of M24,

we enlist the Orbit-Stabilizer Theorem from abstract algebra, a technique that can used to

calculate the order of any automorphism group of a Steiner system. Finally, in Chapter 6

we explore S(5, 8, 24)’s connection to the problem of sphere packing. Specifically, the system

can be used to create the densest known sphere packing (on a lattice) in 24 dimensions.

1.1 Balanced Incomplete Block Designs

In mathematics, a design on a set V of v objects called varieties is a multiset of subsets

of V . We refer to the subsets of V as blocks. Since this is an extremely vague definition,

we may narrow our focus by placing certain restrictions on the blocks. Note that we have

adopted the terminology of Bogart [2, Chapter 6].

Definition 1.1.1. A design is called

i) complete if each block consists of all of V . Otherwise, the design is incomplete.

ii) k-uniform if each block has the same size k.

iii) (pairwise) balanced of index λ if each pair of distinct varieties appears together in

exactly λ of the blocks.

iv) linked if any two blocks have exactly µ elements in common.

v) regular if each variety appears in exactly r blocks (r is called the replication number

of the design).

A design D with v varieties arranged into b blocks is called a block design if it is both k
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uniform and regular with replication number r. If, in addition, D is balanced of index λ,

then we call D a (b, v, r, k, λ) design. Furthermore, if k < v then a (b, v, r, k, λ) design is

called a balanced incomplete block design (often abbreviated as BIBD). Interestingly, these

five parameters are not independent. In fact, b and r can be written in terms of the other

three.

Theorem 1.1.2. In a (b, v, r, k, λ) design,

i) r(k − 1) = λ(v − 1)

ii) bk = vr

Proof. Based on [1, Theorem 6.1]

i) Consider x ∈ V . By definition, x is contained in r blocks, and each of these r blocks

contains k − 1 other varieties. So there are r(k − 1) pairs in the design which contain

x. To obtain the right side of the equation, note that there are v− 1 with which x can

be paired. By definition, each of these pairs appears in exactly λ of the blocks. Since

both sides of the equation count the same number, it follows that r(k− 1) = λ(v− 1).

ii) Since each variety appears in exactly r blocks, there are vr appearances of elements

altogether. But also each of the b blocks contains k varieties. Thus bk counts the

number of appearances of elements altogether as well, and so bk = vr.

1.2 Symmetric, Cyclic, and Isomorphic Designs

At this point, we are well overdue for an example of a block design, and so we begin with

the following (7, 7, 3, 3, 1) design:

123 145 167 246 257 347 356,

where abc denotes the set {a, b, c}.

Since there are only seven blocks and seven varieties, we can form the blocks by basic
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trial and error. That is, we start by assuming that 123 is a block. By our rules, this

means that {1, 2}, {1, 3}, and {2, 3} cannot appear in any of the other blocks. Therefore,

we can pick 145 to be another block. Continuing this process will lead us to the above design.

In a (7, 7, 3, 3, 1) design, the number of varieties is equal to the number of blocks. That

is, v = b rather than v < b, and we call this a symmetric design. Recall that bk = vr by

part (ii) of Theorem 1.1.2, and therefore, in a symmetric design, we have that k = r as well.

Because of the equality in parameters, we refer to these designs as (v, k, λ) designs, dropping

the b and r. Thus, a (7, 7, 3, 3, 1) design will often be referred to as a (7, 3, 1) design. Another

special property about symmetric designs is that they are linked. More specifically, each pair

of blocks of a (v, k, λ) design intersects in exactly λ varieties. A proof of this fact can be

found in Wallis [10, p. 26 (Corollary 2.10.2)].

There are several ways to group seven varieties into blocks of size three such that the resulting

design is a BIBD. For example, another (7, 3, 1) design is as follows:

124 235 346 457 561 672 713

How different are these designs? If we apply the permutation (1)(2)(5)(3 4 6 7) to the vari-

eties of the first (7, 3, 1) design, we obtain the following bijective mapping between designs:

123 7→ 124 167 7→ 173 257 7→ 253 356 7→ 457

145 7→ 165 246 7→ 267 347 7→ 463

It turns out that we can find such an isomorphism between any two (7, 3, 1) designs. That

is, if we have two (7, 3, 1) designs, say D1 and D2, then the varieties of D1 can be permuted

in such a way as to create D2. In this thesis, all of our examples will have this property.

However, just to be thorough, we list an example from Hall [6] in which this is not the case,

namely the (13, 3, 1) designs. There are exactly two nonisomorphic (13, 3, 1) designs, each

of which contains the following 22 triples:

1 2 3 1 12 13 2 11 13 4 10 13 7 8 13

1 4 5 2 4 6 3 4 8 4 11 12 7 10 12

1 6 7 2 5 7 3 5 12 5 8 11

1 8 9 2 8 10 3 7 11 6 8 12

1 10 11 2 9 12 4 7 9 6 9 11
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Then, one design contains the triples

3 6 10 3 9 13 5 6 13 5 9 10,

while the other design contains the triples

3 6 13 3 9 10 5 6 10 5 9 13.

By the placement of varieties 10 and 13, there is no way to transform one into the other.

Now, let’s return our focus to the second of the above (7, 3, 1) designs. Note that adding 1 to

each entry of block 124 gives block 235, adding 1 to each entry of 235 gives 346, and so on.

When we add 1 to each entry of 713, we obtain 124, thus forming a cycle of the blocks. Clev-

erly, we refer to this as a cyclic design mod 7 with base block 124. Note that this is equivalent

to beginning with block 124 and repeatedly applying the permutation T = (1 2 3 4 5 6 7)

on each variety to obtain the subsequent blocks.

More generally, a cyclic design is any design for which a permutation such as T exists.

Since we have shown that all (7, 3, 1) designs are isomorphic, our first (7, 3, 1) design should

be cyclic as well. Indeed this is the case, since applying T1 = (1 2 4 3 6 7 5) to the elements

of the blocks in the first system gives the following mapping of blocks:

123 7→ 246 7→ 437 7→ 365 7→ 671 7→ 752 7→ 514 7→ 123.

Since constructing block designs is not always an easy task, cyclic designs are a welcome

addition to our study. This becomes especially true when we add the fact that, for certain

(b, v, r, k, λ) designs, the problem of constructing the design can be reduced to the problem

of finding a difference set.

Definition 1.2.1. A (v, k, λ) difference set is a k-element subset D of V = {0, 1, . . . , v− 1}
such that every nonzero integer mod v can be written in exactly λ ways as a difference of

distinct elements from D.

Theorem 1.2.2. A (v, k, λ) difference set D is a base set for a (v, k, λ) symmetric design.

That is, if D = {v1, v2, . . . , vk}, then the sets Di = {vi + i, . . . , vk + i} are the blocks of the

design, where addition is mod v and 1 ≤ i < v.
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A proof of Theorem 1.2.2 can be found in Hall [6, p. 148 (Theorem 11.1.1)]. Now, recall that

in our first (7, 3, 1) design, our base set was 124. Suppose we consider each of the differences

of distinct elements from 124:

1− 2 = −1 = 6 mod 7 2− 4 = −2 = 5 mod 7

1− 4 = −3 = 4 mod 7 4− 1 = 3

2− 1 = 1 4− 2 = 2

This gives us the set {1, 2, 3, 4, 5, 6}, where each nonzero integer mod 7 occurs exactly once.

Thus, the above theorem says that our second (7, 3, 1) design is cyclic, which we already

know to be true. Unfortunately, not all designs are cyclic and so this theorem cannot always

be used. For example, we will later investigate the (9, 3, 1) designs which are not cyclic since

there does not exist a (9, 3, 1) difference set D. To see this, note that we can form differences

from the elements of a size 3 difference set in 3 · 2 = 6 ways. However, since there are 8

nonzero varieties modulo 9, we cannot possibly have all 8 of these varieties appear even once

in a set of size 6. Therefore, we cannot have a (9, 3, 1) cyclic design.

1.3 Methods of Representation

Until now, our representations of designs have been purely numerical; that is, the blocks have

been lists of positive integers. However, this is not the only way of representing a design,

and we will discuss two alternative representations, keeping in the context of a (7, 3, 1) design.

The first alternative representation of a (7, 3, 1) design is a geometric one, and is displayed in

Figure 1.1. The elements 1, . . . , 7 are represented by points, and the blocks are represented

by lines (all but one being a straight line). Each line contains 3 of the 7 points, and these

triples of points form a (7, 3, 1) design. In fact, it is the second of the two (7, 3, 1) designs we

listed previously. Therefore, every pair of points lies in a unique line and two lines are either

disjoint or intersect in one point. This geometric representation is known as the seven-point

plane, and is the simplest example of a finite projective plane. More generally, we have the

following definition.
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Definition 1.3.1. [1, p. 84] A finite projective plane of order n is a (v, k, 1) design for which

v = n2 + n + 1, k = n + 1 for some positive integer n ≥ 2. Therefore, there are n2 + n + 1

points, n2 + n+ 1 lines, and the following statements hold:

i) Any line contains (n+ 1) points.

ii) Any point lies on (n+ 1) lines.

iii) Each pair of points lies together in exactly one line.

iv) Each pair of lines intersects in exactly one point.

Figure 1.1: Geometric representation of a (7, 3, 1) design.

Note that for a (v, k, 2) design, every pair of varieties determines exactly two blocks and

every pair of blocks intersects in exactly two varieties. These designs are called biplanes.

As is the case with block designs, one of the major unsolved problems regarding projective

planes is to find all values of n for which a plane of order n exists. Though we will not give a

proof, it has been shown that no finite projective plane of order 6 exists. A thorough proof

involving matrix algebra can be found in Anderson [1, p. 85 (Theorem 6.4)].

The next method of representation is called an incidence matrix. Suppose we have a

(b, v, r, k, λ) design. Then the incidence matrix N has b rows which are indexed by the

blocks and has v columns which are indexed by the varieties. More specifically, each entry

Nij is the number of times variety j appears in block i, which is either a 0 or a 1 since each

block is a set. As an example, the incidence matrix of our second (7, 3, 1) design from the

previous section is as follows.



Maria E. Beane Chapter 1. Introduction 8

Blocks of Design Incidence Matrix

Indices : 1 2 3 4 5 6 7

124

235

346

457

156

267

137

7→



1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1


Incidence matrices can sometimes reveal the underlying structure of a design more quickly

than a numerical representation. For example, in the above matrix, we can see almost in-

stantly that the design is cyclic. Furthermore, from the incidence matrix for a (b, v, r, k, λ)

design, we can obtain a (b, v, b − r, v − k, b − 2r + λ) design. To do so, we first define the

complement of a (b, v, r, k, λ) design D to be the design obtained by changing 0 to 1 and 1

to 0 throughout the incidence matrix of D.

Theorem 1.3.2. The complement of a (b, v, r, k, λ) design D is a (b, v, b−r, v−k, b−2r+λ)

design D′.

Proof. Let N denote the incidence matrix of D and N ′ denote the incidence matrix of D′.

The complement of a design contains the same number of blocks and varieties as the original

design, and thus the first two parameters of D and D′ are identical. Since the rows of N

denote the blocks of D, the number of 1’s in a column i of N is equivalent to the number

of blocks of D containing variety i, namely r. Thus, each column of N ′ contains b − r 1’s,

and so each variety appears in b − r blocks of D′. Furthermore, the number of times two

columns i, j of D intersect in a 1 is equivalent to the number of blocks of D containing the

pair i, j of varieties, namely λ, and the number of times they intersect in a 0 is equivalent to

the number of blocks of D′ containing the pair i, j of varieties, namely b− 2r+λ, since each

of the two columns contains r 1’s and they intersect in λ 1’s. Lastly, each row of D contains

k 1’s, and thus each row of D′ contains v − k 1’s. That is, each block of D′ has size v − k.

Thus, D′ is a (b, v, b− r, v − k, b− 2r + λ) design.
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The complement of the above (7, 3, 1) design is as follows:

Incidence Matrix Blocks of Design

Indices : 1 2 3 4 5 6 7

0 0 1 0 1 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

1 0 1 1 1 0 0

0 1 0 1 1 1 0


7→

3567

1467

1257

1236

2347

1345

2456

Note that this is indeed a (7, 4, 2) design. Theorem 1.3.2 will prove to be extremely useful

in our discussion of Golay codes when we discover that the generator matrix of the code

contains the incidence matrix of an (11, 6, 3) design as a submatrix.



Chapter 2

Steiner Systems

2.1 t-Designs and an Introductory Definition

Until now, we have only considered pairwise balanced designs, that is, designs in which each

pair of distinct varieties appears together a certain number of times. What about designs

where each triple or tetrad or quintuple of distinct varieties appear together a certain number

of times? We will begin with the following definition.

Definition 2.1.1. A t− (v, k, λ) design consists of k-element subsets of a v-element set V

such that each t-element subset of V is contained in exactly λ blocks of the design.

Note that a 2− (v, k, λ) design is the same as the balanced incomplete block designs found

in the previous sections. Now, at long last, we are ready to define the subject of this paper.

Definition 2.1.2. A Steiner system, denoted S(l,m, n), is a collection of m-element subsets

of an n-element set B, called the base set, such that every l-element subset of B lies in

exactly one of the m-element sets. That is, S(l,m, n) is an l − (n,m, 1) design.

The subset of these systems where m = 3 and l = 2 are called the Steiner triple systems,

though they were first studied by a mathematician named Kirkman. As a side note, Kirkman

10
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is quite well known in the field for posing the infamous school girl problem, which led to the

question of which triple systems are resolvable. Note that a design is resolvable if the blocks

may be grouped into s sets each of which is a partition of the set V of varieties. Further

details on this subject can be found in Bogart [2, Chapter 6, Section 3].

So how different are Steiner systems from (b, v, r, k, λ) designs? Well, note that a (7, 3, 1)

design is actually the same as a S(2, 3, 7) system. Therefore, much of what we have talked

about in the previous sections applies to these systems as well.

2.2 Structure and Existence

For simplicity, we will refer to an m-element subset as an m-set. Now, given that a S(l,m, n)

exists, there is an exact formula for calculating the number of m-sets (blocks) in the system.

Theorem 2.2.1. The number of m-sets in an S(l,m, n) is(
n

l

)
(
m

l

) .
Proof. Let b denote the number of m-sets in S(l,m, n). Note that

(
n
l

)
is the number of

distinct l-sets contained in the n-element base set B. Similarly,
(
m
l

)
is the number of distinct

l-sets contained in an m-set. By definition, we know that each l-set is contained in exactly

one m-set of S(l,m, n). Thus, it follows that(
n

l

)
= b ·

(
m

l

)
, and so b =

(
n
l

)(
m
l

) .

As with general block designs, the main open problems dealing with Steiner systems are

those of existence. While there are no general existence theorems, there are several theorems

which can guarantee existence given specific parameters l, m, and n.



Maria E. Beane Chapter 2. Steiner Systems 12

Theorem 2.2.2. If a system S(l,m, n) exists, so does a system S(l − k,m − k, n − k) for

all 0 ≤ k < l.

Proof. Suppose k = 1. Let v be a variety in the base set B, and consider the m-sets of

S(l,m, n) in which it is contained. Now, suppose we remove v from each of these m-sets.

We have thus created a collection C of (m − 1)-sets formed from an (n − 1)-set. In order

to conclude the result for k = 1, we must show that each of the (l − 1)-sets is contained in

exactly one of the (m− 1)-sets. Suppose otherwise. That is, two of the (m− 1)-sets, say P

and Q contain the same (l − 1)-set. But then (P + v) and (Q + v) both contain the same

l-set, which is a contradiction to the definition of S(l,m, n). Thus, an S(l− 1,m− 1, n− 1)

system exists.

For k = 2, let v1 ∈ B, and consider the (m − 1)-sets of C (from the above paragraph

for k = 1) which contain v1. As before, we remove v1 from each of the (m− 1)-sets to obtain

an S(l − 2,m− 2, n− 2) system. We can continue this process up to l − 1 more times, and

so the result follows.

As a direct result of Theorems 2.2.1 and 2.2.2, we have the following corollary.

Corollary 2.2.3. If S(l,m, n) exists, then(
n− k
l − k

)
(
m− k
l − k

) is an integer

for all 0 ≤ k < l.

It is natural to wonder if the converse of the above corollary is true. Unfortunately, it is not.

To see this, consider l = 2, m = 7, and n = 43. Note that(
43
2

)(
7
2

) =
903

21
= 43 and

(
42
1

)(
6
1

) = 7.

However, since n = 43 = 62 + 6 + 1 and m = 6 + 1, then the existence of a S(2, 7, 43) system

would imply the existence of a finite projective plane of order 6, which, as we discussed
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in Section 1.3, does not exist. Thus, we have found a counterexample to the converse of

Corollary 2.2.3.

In the 1970s, only four Steiner systems with l > 3 were known to exist, namely S(5, 6, 12),

S(4, 5, 11), S(5, 8, 24), and S(4, 7, 23). Since then, a few more have been added such as

S(5, 6, 29), S(5, 7, 28), S(5, 6, 48), S(5, 6, 76), S(5, 6, 84), as well as the systems with l = 4

which are derived from these systems by the process described in the proof of Theorem 2.2.2.

For the special cases of l = 1, 2, and 3, we know a bit more about existence of systems.

Theorem 2.2.4.

i) An S(1,m, n) exists if and only if n is a multiple of m.

ii) An S(2, 3, n) exists if and only if n = 6s+ 1 or n = 6s+ 3 for some s ∈ Z+.

iii) An S(3, 4, n) exists if and only if n = 6s+ 2 or n = 6s+ 4 for some s ∈ Z+.

Proof.

i) By Corollary 2.2.3, if an S(1,m, n) system exists, then
(n
1)

(m
1 )

= n
m
∈ Z+. That is, m

divides n. But note that an S(1,m, n) system is simply a partition of an n-set into

m-sets, which we can construct as long as n is a multiple of m.

ii) ( =⇒ ) Suppose an S(2, 3, n) exists. Then by Corollary 2.2.3,(
n
2

)(
3
2

) =
n(n− 1)

6
∈ Z+ and

(
n−1
1

)(
2
1

) ∈ Z+.

By the second equation, 2 divides n − 1 and therefore n is odd. That is, n = 2a + 1

for some a ∈ Z+. By the first equation, n(n−1)
6

= (2a+1)2a
6

= a(2a+1)
3
∈ Z+. Since 3 is a

prime, then either 3 divides a or 3 divides 2a+ 1. So either a = 3b or 2a+ 1 = 3c for

some b, c ∈ Z+. If a = 3b, then n = 6b+ 1. Suppose 2a+ 1 = 3c. Since n = 2a+ 1 and

n is odd, it follows that c must be odd as well. So n = 3(2d+ 1) = 6d+ 3.

( ⇐= ) Kirkman proved in 1847 that this condition on n is sufficient for an S(2, 3, n)

to exist. A complete proof can be found in Hall [6, p. 280 (Theorem 15.4.3)].

iii) The proof of the forward direction of (iii) relies heavily on Corollary 2.2.3 and thus is
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very similar to that of the forward direction of (ii). H. Hanani proved the backward

direction, a proof of which is outlined as part of Theorem 15.5.1 in [6].

Though we have barely scratched the surface of the field of general Steiner systems, the level

of intricacy in these designs is already apparent. A great amount of research has been done

on the subject, and we could easily use this chapter as a starting point for a different thesis.

However, we have built enough machinery to properly begin our discussion of S(5, 8, 24),

and thus we will continue to the main subject of our paper. For the reader who has found

his or her interest sparked by this chapter, the references of this paper serve as a wonderful

place to discover more about the complexities of general Steiner systems. Specifically, Hall

features an entire chapter devoted to the construction (and thus existence) of block designs

for certain parameters [6, Chapter 15].



Chapter 3

Dissecting S(5, 8, 24)

3.1 The Basics of Octads

As stated in the introduction, the 8-sets of S(5, 8, 24) are called octads. By definition, each

quintuple of varieties is contained in exactly one octad. However, as can be seen from the

following theorem, this is not the only restriction on subsets of the base set.

Theorem 3.1.1. In S(5, 8, 24),

i) there are 759 8-sets, called octads,

ii) each variety is contained in 253 octads,

iii) each pair of varieties is contained in 77 octads,

iv) each triple of varieties is contained in 21 octads,

v) each tetrad of varieties is contained in 5 octads,

vi) each quintuple of varieties is contained in 1 octad.

Proof. Based on [1, Theorem 7.3]

i) By Theorem 2.2.1, the number of 8-sets in an S(5, 8, 24) is(
24
5

)(
8
5

) =
42504

56
= 759.

15
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ii) Let v be a variety in the base set. By the idea found in the proof of Theorem 2.2.2,

consider the octads of S(5, 8, 24) which contain v. If we remove v from each of these

octads, we obtain an S(4, 7, 23) system. So, the number of octads which contain v is

the same as the number of 7-sets in S(4, 7, 23). By Theorem 2.2.1, this is equal to(
23
4

)(
7
4

) = 253.

iii) Let v1, v2 be varieties in the base set. By the proof of part (ii) of this theorem, we can

form an S(4, 7, 23) system by collecting the octads of S(5, 8, 24) which contain v1 and

then removing v1 from each of them. Now, consider the 7-sets of this S(4, 7, 23) system

which contain v2. If we remove v2 from each of these 7-sets, we obtain an S(3, 6, 22)

system. Then the number of octads which contain v1 and v2 is the same as the number

of 6-sets in S(3, 6, 22). By Theorem 2.2.1, this is equal to(
22
3

)(
6
3

) = 77.

iv, v) Continuing the process used in parts (ii) and (iii), the number of octads which contain

a given triple and the number of octads which contain a given tetrad is the same as

the number of 5-sets in S(2, 5, 21) and the number of 4-sets in S(1, 4, 20), respectively.

By Theorem 2.2.1, these two values are(
21
2

)(
5
2

) = 21 and

(
20
1

)(
4
1

) = 5.

vi) This is simply part of the definition of S(5, 8, 24).

As is the case with the (7, 3, 1) designs, though there are several ways in which to write

the octads of S(5, 8, 24), all are isomorphic up to a permutation of the varieties. However,

unlike (7, 3, 1), S(5, 8, 24) is not a cyclic design, though we will not prove this. Amazingly,

we may examine the structure of the octads and their relationships to one another at quite

a deep level without even looking at a copy of the actual design. To do so, we rely on clever

observations and accompanying combinatorial arguments, both of which have been heavily

influenced by Anderson [1] and Todd [9], and therefore most of the credit for the results in

this section, as well as Section 3.2, should be given to these two authors.
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Theorem 3.1.2. Let E and F be distinct octads. Then |E ∩ F | < 5 and |E ∩ F | is even.

Proof. Suppose E and F are distinct octads and |E∩F | ≥ 5. By part (vi) of Theorem 3.1.1,

each quintuple of varieties is contained in exactly one octad. Thus, it must be that E = F ,

which is a contradiction to our assumption that E and F are distinct.

Now, suppose |E ∩ F | is odd. Since |E ∩ F | < 5, we must the consider the cases where

|E ∩ F | = 1 or 3. Let E = {a1, a2, a3, a4, a5, a6, a7, a8}, and suppose |E ∩ F | = 3. Consider

a1, a2, a3 ∈ E. Since E contains 5 other varieties, there are exactly 5 tetrads of E which

contain {a1, a2, a3}. By Theorem 3.1.1, each of these tetrads is contained in exactly 4 octads

other than E. Thus, there are 20 octads other than E which contain {a1, a2, a3, ai} for some

ai ∈ E − {a1, a2, a3}.

But note that each of these 20 octads must be distinct. Suppose otherwise. Then there

exists an octad G such that {a1, a2, a3, ai}, {a1, a2, a3, aj} ∈ G, and ai 6= aj. But this implies

that {a1, a2, a3, ai, aj} ∈ G, which is a contradiction to the fact that each 5-set lies in exactly

one octad. Thus, it follows that each of the aforementioned 20 octads are distinct. But then

there are 21 octads (counting A) which contain {a1, a2, a3} and another variety of E. By

Theorem 3.1.1, no other octads can contain the triple {a1, a2, a3}, and thus it cannot be that

|E ∩ F | = 3.

Let E be as before, but now suppose |E ∩ F | = 1. Consider a1 ∈ E. Since E contains

7 other varieties, there are
(
7
3

)
= 35 tetrads of E which contain a1. By Theorem 3.1.1, each

of these tetrads is contained in exactly 4 octads other than E. Thus, there are 35 · 4 = 140

octads other than E which contain {a1, ai, aj, ak} for some a1, aj, ak ∈ E − {a1}. By an

argument similar to that used when considering |E ∩ F | = 3, each of these 140 octads must

be distinct. Now, consider a2 ∈ E. By Theorem 3.1.1, {a1, a2} is contained in 76 octads

other than E. However, note that
(
6
2

)
· 4 = 60 of these octads contain a tetrad of the form

{a1, a2, ai, aj} for some ai, aj ∈ E − {a1, a2}.

Again, these 60 are distinct and so were counted in the 140 octads from the previous para-

graph. We have already shown that two octads cannot intersect in exactly 3 elements.

Therefore, the remaining 76 − 60 = 16 octads which contain {a1, a2} cannot contain any



Maria E. Beane Chapter 3. Dissecting S(5, 8, 24) 18

more varieties of E. That is, there are 16 distinct octads whose intersection with E is

precisely {a1, a2}. Similarly, for each ai ∈ E − {a1, a2}, there are 16 distinct octads whose

intersection with E is precisely {a1, ai}. This yields 7·16 = 112 distinct octads. Thus we have

found 140 + 112 + 1 = 253 octads (counting A) which contain a1 and another variety of E.

By Theorem 3.1.1, no other octads can contain a1, and so it cannot be that |E ∩F | = 1.

We now define an operation called symmetric difference that can be used to “add” multiple

octads together. A useful feature of this operation is that, if S is a set, then the set of subsets

of S form a commutative group under symmetric difference.

Definition 3.1.3. Let S be a set and A,B ⊆ S. The symmetric difference of A and B,

denoted A + B, is the set of all elements of S which are in A or B but not both. That is,

A+B = (A ∪B)− (A ∩B).

Though this notation can also refer to the sum of two sets, we will use “ + ” to denote

symmetric difference unless otherwise stated. Now, as a result of the above theorem, we see

that if E and F are octads, then either |E ∩ F | = 0, |E ∩ F | = 2, or |E ∩ F | = 4. Since

the symmetric difference of E and F is dependent on E ∩ F , it follows that each of these

cases yields a completely different structure of E +F . More specifically, |E ∩F | = 0 implies

|E + F | = 16, |E ∩ F | = 2 implies |E + F | = 12, and |E ∩ F | = 4 implies |E + F | = 8.

Theorem 3.1.4. If E and F are octads and E ∩ F = ∅, then (E + F )′ is an octad.

Proof. Since E ∩ F = ∅, it follows that |E + F | = 16 and |(E + F )′| = 8. For contra-

diction, suppose that (E + F )′ = {a1, a2, a3, a4, a5, a6, a7, a8} is not an octad. By Theorem

3.1.1, {a1, a2, a3, a4, a5} is contained in exactly one octad, call it G. Since E ∩ F = ∅, then

G ∩ (E + F ) = G ∩ (E ∪ F ) = (G ∩ E) ∪ (G ∩ F ). By Theorem 3.1.3, |G ∩ E| and |G ∩ F |
are even, which implies that |G∩ (E +F )| is even. Since (E +F ) and (E +F )′ are disjoint,

it follows that |G ∩ (E + F )′| is even as well. That is, |G ∩ (E + F )′| = 6 or 8. But if

|G ∩ (E + F )′| = 8, then G = (E + F )′, which is a contradiction to our assumption that

(E + F )′ is not an octad. So |G ∩ (E + F )′| = 6 and, without loss of generality, we may

assume a6 ∈ G and a7, a8 /∈ G. Now, by Theorem 3.1.1, {a1, a2, a3, a4, a7} is contained in
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exactly one octad, call it H. Similar to before, |H ∩ (E+F )′| = 6. But if a5 ∈ H or a6 ∈ H,

then G = H by Theorem 3.1.1. Thus, it follows that a8 ∈ H and a5, a6 /∈ H.

So {a1, a2, a3, a4, a5, a6} ⊂ G and {a1, a2, a3, a4, a7, a8} ⊂ H. Again by Theorem 3.1.1,

{a1, a2, a3, a5, a7} is contained in exactly one octad, call it K. As before, we must have

|K ∩ (E + F )′| = 6. However, this is impossible. To see this, first suppose a4 or a6 ∈ K.

Then |G ∩K| = 5, and thus G = K, which is a contradiction since a7 ∈ K but a7 /∈ G. If

a8 ∈ K, then |H ∩ K| = 5, and thus H = K, which is a contradiction since a5 ∈ K but

a5 /∈ H. Therefore, we conclude that (E + F )′ is an octad.

The above theorem is useless unless there actually exist pairs of disjoint octads. It is reason-

able to think, even without proof, that these must exist. However, it may be surprising to

learn that there are 30 octads which are disjoint from any given octad. Furthermore, each

octad belongs to 15 trios, where a trio is defined to be a set of three pairwise disjoint octads.

Theorem 3.1.5. Let E be an octad.

i) E is disjoint from 30 octads.

ii) E belongs to 15 trios.

Proof.

i) By Theorem 3.1.3, if F is an octad, then |E ∩ F | is even and less than 5. Thus, we

will count the number of octads which intersect with E in each of the possible nonzero

orders. First, note that each tetrad of E is contained in exactly 4 other octads. So,

there are
(
8
4

)
·4 = 280 octads that share a tetrad with E, and each of these octads must

be distinct. Otherwise, there exists an octad F which contains two distinct tetrads of

E, say T1 and T2. Since T1 and T2 are distinct, at least one element of T2 must be

different than those of T1. But then F contains a 5-set of E, which is impossible.

Each pair P of E is contained in exactly 76 other octads. Since there are 6 elements

of E not contained in P , we can form a tetrad of E from P in
(
6
2

)
ways. Therefore,(

6
2

)
· 4 = 60 of the 76 octads which contain P also contain a tetrad of E and so have

already been counted among the 280 octads from the previous paragraph. Thus, there
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are 76 − 60 = 16 octads which intersect with E in exactly P and are distinct by the

same reasoning as before. Since we can form pairs from E in
(
8
2

)
ways, there are

16 ·
(
8
2

)
= 448 octads that share exactly two elements with E.

Since there are 758 octads other than E in S(5, 8, 24), it follows that 758−280−448 = 30

of them are disjoint from E.

ii) By part (i), E is disjoint from 30 octads, and let F be one of them. Then by Theorem

3.1.4, G = (E + F )′ is an octad. Since G is disjoint from E, G is a member of the

30 octads. But G is disjoint from F as well, so we can form a pair of disjoint octads

within the 30. Continuing this process, we can create 14 more pairs of disjoint octads,

and so E belongs to 15 trios.

Continuing our discussion of the relationships between octads, we now focus on the case

where |E ∩ F | = 4.

Theorem 3.1.6. If E and F are octads and |E + F | = 8, then (E + F ) is an octad.

Proof. For contradiction, suppose E+F = {a1, . . . , a8} is not an octad. We begin by taking

the unique octad G which contains {a1, a2, a3, a4, a5}, and then mimic the proof of Theorem

3.1.4.

Since an octad contains 8 varieties, we can think of an octad as being the union of two

tetrads, which we call complementary tetrads. By construction, complementary tetrads are

disjoint. Now, using this concept, we provide the following restatement of Theorem 3.1.6.

Corollary 3.1.7. Let T1, T2, and T3 be tetrads. If T1 and T2 are both complementary to T3,

then T1 and T2 are themselves complementary.

Proof. By definition, since T1 and T2 are both complementary to T3, then E = T1 + T3 and

F = T2 + T3 are octads. Since |E ∩ F | = 4, it follows that |E + F | = 8, and therefore, by

Theorem 3.1.6, E + F = T1 + T2 is an octad. That is, T1 and T2 are complementary.
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Since each tetrad T is contained in exactly 5 octads, each tetrad determines 5 complementary

tetrads, T1, . . . , T5. By the above corollary, these 5 complementary tetrads are themselves

complementary in pairs. Therefore, T , T1, . . . , T5 is a set of 6 mutually complementary

tetrads. Since there are
(
24
4

)
= 10626 possible tetrads, then there are 10626

6
= 1771 such sets.

3.2 Dodecads

In the previous section, we discussed the cases where the intersection of two octads E and F

was either size 0 or 4. We now wish to discuss what happens when the intersection contains

two elements, as shown in the picture below. Again, much of our work models that of

Anderson and Todd.

In this case, the symmetric difference of E and F forms a special 12-element set called a

dodecad. This does not imply that every 12-set of the base set is a dodecad. In fact, a 12-set

D is a dodecad if and only if we can write it as the symmetric difference of two octads.

Therefore, a dodecad can also be thought of as the union of two hexads, where each hexad

is contained in an octad of S(5, 8, 24). We refer to these as special hexads. Each dodecad

only contains one such pair of special hexads since each quintuple of the base set (and thus

hexad) is contained in exactly one octad. Now, since a dodecad contains twelve varieties, it

seems possible that an 8-set of a dodecad could be an octad of S(5, 8, 24). However, this is

not the case.

Theorem 3.2.1. Let D be a dodecad. Then D contains no octads.

Proof. Since D is a dodecad, then D = E + F for some octads E and F with |E ∩ F | = 2.

For contradiction, suppose G is an octad and G ⊂ D. Note that E and F both intersect

with D in exactly 6 varieties. Thus, E 6⊂ D and F 6⊂ D, and so E 6= G and F 6= G. Since

|E ∩ G| and |F ∩ G| are even and less than 5 and |(E ∩ G) + (F ∩ G)| = |(E + F ) ∩ G| =
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|D ∩ G| = 8, it follows that |E ∩ G| = |F ∩ G| = 4 and (E ∩ G) ∩ (F ∩ G) = ∅. Let

T1 = E ∩ G and T2 = F ∩ G. Then T1 and T2 are complementary (since T1 + T2 = G).

But recall that |E ∩ F | = 2, so let E ∩ F = {a1, a2}. Then E = {T1, e1, e2, a1, a2} and F =

{T2, f1, f2, a1, a2} for some e1, e2, f1, f2. Therefore, T1 and {e1, e2, a1, a2} are complementary

and T2 and {f1, f2, a1, a2} are complementary. By Corollary 3.1.7, T2 and {e1, e2, a1, a2}
are complementary, and {e1, e2, a1, a2} and {f1, f2, a1, a2} are complementary. But this is a

contradiction to our claim that complementary tetrads must be disjoint. Thus, we conclude

that D does not contain an octad.

Thus, since a dodecad contains no octads, the intersection of a dodecad and an octad must

contain fewer than 8 elements. Recall from Theorem 3.1.3, that the size of the intersection

between two octads must be even and less than 5. It turns out that the intersection of a

dodecad and an octad also has 3 possible sizes, namely 2, 4, and 6. Before we prove this, we

will prove a seemingly unrelated lemma about the special hexads of a dodecad.

Lemma 3.2.2. Let D be a dodecad. Any quintuple of D uniquely determines a special hexad.

Furthermore, D contains 132 special hexads.

Proof. Let D = E + F be a dodecad, where E and F are octads with |E ∩ F | = 2, and let

A = {a1, a2, a3, a4, a5} be a 5 element subset of D. By definition, A is contained in exactly

one octad, call it G. By Theorem 3.2.1, G cannot be contained in D, so |G ∩ D| < 8.

However, since |G ∩ E| and |G ∩ F | are both even, it follows that G must contain another

element of D, call it ai. Then A∪ {ai} ⊆ G is a special hexad. But note that the 6 5-sets of

{a1, . . . , a2, ai} all determine the same special hexad. Therefore, since A was an arbitrarily

chosen 5-set of D, it follows that D contains 1
6

(
12
5

)
= 132 special hexads.

Interestingly enough, we can use D to construct a Steiner system S(5, 6, 12). To do this,

we let D be the 12 element base set, and let the 6-sets of the system be the special hexads

contained in D. By the proof of the above lemma, each 5-element subset of D uniquely

determines a sixth element, where the 5-set together with this sixth element forms a special

hexad. Thus, each 5-set of D is contained in exactly one of the 6-sets of the system. That

is, we have a S(5, 6, 12). Furthermore, by Theorem 2.2.1, the number of 6-sets of S(5, 6, 12)
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is (
12
5

)(
6
5

) =
792

6
= 132,

which matches the number of special hexads contained in D. As a further application of this

lemma, we can also now determine exactly how many dodecads can be created.

Theorem 3.2.3. The number of dodecads is 2576.

Proof. Each special hexad is contained in exactly 16 dodecads. To see this, consider the

special hexad H = {a1, . . . , a6}. Recall that H can be contained in exactly one octad, call

it G. Let g1, g2 be the two elements of G−H. Then the number of dodecads which contain

H is the same as the number of octads whose intersection with G is {g1, g2}. By the proof

of part (ii) of Theorem 3.1.3, this number is 16.

Then

(# dodecads) · (# special hexads in a dodecad)

= (# special hexads) · (# dodecads that contain each special hexad),

which implies that

number of dodecads =
759 ·

(
8
6

)
· 16

132
= 2576.

We are now ready to prove the aforementioned result about the intersect of octads and do-

decads.

Theorem 3.2.4. Let D be a dodecad and G be an octad. Then |D ∩G| = 2, 4, or 6.

Proof. Let T = {a1, a2, a3, a4} be a tetrad of D. Since |D−T | = 8, we can form a quintuple

of D by adding an element to T in 8 ways. By Lemma 3.2.2, a quintuple of D uniquely deter-

mines a special hexad. So each of these 8 quintuples determines a special hexad. However,

suppose T ∪{ai, aj} is a special hexad, call it H. Then H is determined by both T ∪{ai} and

T ∪ {aj}. Thus, each tetrad of D is contained in 8/2 = 4 special hexads in D. Now, recall

that each tetrad is contained in 5 octads. So, for each tetrad, 4 of the 5 octads will intersect
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D in a special hexad (containing the tetrad) and 1 will intersect D in just the tetrad. There

are
(
12
4

)
= 495 tetrads in D, and, by Lemma 3.2.2, D contains 132 special hexads. That is,

|D ∩G| = 4 for 495 octads G, and |D ∩G| = 6 for 132 octads G.

Now, consider two elements a1, a2 ∈ D. Since |D − {a1, a2}| = 10, we can form a quin-

tuple of D by adding an element to T in
(
10
3

)
= 120 ways. Again, by Lemma 3.2.2, each of

these 120 quintuples determines a special hexad. However, suppose {a1, a2, ai, aj, ak, am} is

a special hexad, call it H1. Then H1 is determined by {a1, a2} ∪A, where A is any triple of

{ai, aj, ak, am}. There are
(
4
3

)
= 4 such triples, and thus {a1, a2} is contained in 1

4
· 120 = 30

special hexads in D. Recall that each pair is contained in 77 octads. There are
(
10
2

)
= 45

tetrads in D which contain {a1, a2}, and so, for each pair, 30 of the 77 octads will intersect

D in a special hexad (containing that pair) and 45 will intersect D in just a tetrad (contain-

ing the pair). Thus, there are 77−45−30 = 2 octads which must intersect D in only {a1, a2}.

Since there are
(
12
2

)
= 66 pairs of elements in D, it follows that |D ∩G| = 2 for 2 · 66 = 132

octads G. Thus we have found 132 + 495 + 132 = 759 octads. Since these are all the octads,

it follows that |D ∩G| = 2, 4, or 6 for all octads G.

Note that the complement of a dodecad also has 12 elements. However, since a dodecad

must be the symmetric difference of two octads, it is a nontrivial statement to claim that

the complement of a dodecad is a dodecad.

Theorem 3.2.5. Let D be a dodecad. Then B −D (the complement of D) is a dodecad.

Proof. Since D is a dodecad, then D = E + F for some octads E and F with |E ∩ F | = 2.

Let G be one of the 30 octads which are disjoint from E and let H = (E+G)′. By Theorem

3.1.4, H is an octad. Note that we cannot have G ∩ F = ∅. Suppose otherwise. Then

H ∩F = (E +G)′ ∩F = 6, and thus H = F . But this is impossible since H is disjoint from

E but F is not. So G ∩ F ⊆ F − E, which means |G ∩ F | = 2 or 4. Suppose |G ∩ F | = 2.

Then |H ∩ F | = 4, and H + F is an octad by Theorem 3.1.6. But then D′ = G+ (H + F ).

Note that if |G ∩ F | = 4, then |H ∩ F | = 2, G ∩ F is an octad, and D′ = (G+ F ) +H.
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3.3 Constructing the Group K

Let G be the group of subsets of the base set B = {1, . . . , 24} with the operation of sym-

metric difference, and let K be the smallest subgroup of G to contain all the octads.

Let M = { ∅, B, 759 octads, 759 complements of octads, 2576 dodecads }.
Note that |M | = 4096 = 212. In this section, we will prove that K = M . To do so, we must

first show that M ⊆ K. Then, to show that M is exactly K, we must show that M is closed

under symmetric difference. The idea for this proof can be found in Anderson [1, p. 109].

However, the author’s explanation is brief and many of the details regarding the dodecads

are omitted. We supply those details here.

Theorem 3.3.1. K = M .

Proof. We first show that M ⊆ K. By definition, K contains the 759 octads of S(5, 8, 24).

Furthermore, since K is a group, it contains all sets of the form E + F , where E and F are

octads. Thus, K contains all 2576 dodecads. Also E + E = ∅ ∈ K. Lastly, recall that each

octad G belongs to 15 trios. Thus, there exists octads E1 and F1 such that G′ = E1+F1 ∈ K.

Therefore, K contains the complement of each of the 759 octads. We conclude that M ⊆ K.

We must now show that M is closed under symmetric difference.

Case 1: Symmetric difference with ∅: Note that ∅+ A = A for all A ∈M .

Case 2: Symmetric difference with B:

2a) B +B = ∅ ∈M .

2b) Let E be an octad. Then B + E = E ′ ∈M and B + E ′ = E ∈M .

2c) Let D be a dodecad. Then B+D = D′ ∈M , since D′ is a dodecad by Theorem 3.2.5.
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Case 3: Symmetric difference with an octad E:

3a) Let F be another octad. Then E+F is either the complement of an octad (by Theorem

3.1.4), a dodecad, or an octad (by Theorem 3.1.6). In each case E + F ∈M .

3b) Let C be the complement of an octad F . Then

E + C = E + F ′ = E + ∅+ F ′ = E + (F + F ) + F ′ = E + F + (F + F ′)

= E + F +B = (E + F )′

By 3a), (E + F )′ is either an octad, a dodecad, or the complement of an octad. Thus,

E + C ∈M .

3c) Let D be a dodecad. By Theorem 3.2.3, |D ∩ E| = 2, 4, or 6.

If |D∩E| = 2, then |D+E| = 16, and so D+E must be the complement of an octad.

That is (D + E)′ is an octad. To prove this, we mimic the proof of Theorem 3.1.4.

That is, suppose for contradiction that (D+E)′ = {a1, . . . , a8} is not an octad. Then,

we find the unique octad G which contains {a1, a2, a3, a4, a5} and continue similar to

before. The only difference is that to derive contradictions, we must use the fact that

D cannot contain an octad.

If |D ∩ E| = 4, then |D + E| = 12, and so D + E must be a dodecad. Recall

that D = H1 ∪ H2, where H1 and H2 are special hexads. That is, H1 = D ∩ F and

H2 = D∩G for some octads F and G. Without loss of generality, suppose D∩E ⊆ H1,

as shown in Figure 3.1. Then |H1 ∩ E| = 4. But H1 ⊆ F , and so |E ∩ F | = 4. Thus,

Figure 3.1: Size-4 intersection of a dodecad and octad.

|E +F | = 8, and so, by Theorem 3.1.6, E +F is an octad. But note that D = F +G.

Then D + E = (F +G) + E = (E + F ) +G. Therefore, D + E is a dodecad.
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If |D ∩ E| = 6, then |D + E| = 8, and so D + E must be an octad. As in 3c),

this can be proved by mimicking the proof of Theorem 3.1.4.

Case 4: Symmetric difference with the complement of an octad E, denoted E ′:

4a) Let F ′ be the complement of an octad F . Then

E ′ + F ′ = E ′ + ∅+ F ′ = E ′ + (E + E) + F ′ = B + (E + F ′) = (E + F ′)′

By 3b), E + F ′ is either an octad, a dodecad, or the complement of an octad. Thus,

E ′ + F ′ = (E + F ′)′ ∈M .

4b) Let D be a dodecad. So D = F + G for some octads F and G with |F ∩ G| = 2.

Similar to 4a, E ′ + D = (E + D)′. But by 3c), E + D is either the complement of an

octad, a dodecad, or an octad. Thus, E ′ +D = (E +D)′ ∈M .

Case 5: Symmetric difference with a dodecad D1:

Let D2 be a dodecad. Then D2 = E + F for some octads E and F with |E ∩ F | = 2.

Then D1 +D2 = D1 + (E + F ) = E +D1 + F . Note that E +D1 ∈M by Case 3c). Then,

whether E+D1 is the complement of an octad, a dodecad, or an octad, since F is an octad,

it follows by Case 3 that (E +D1) + F ∈M .

Therefore, M is closed under symmetric difference and thus is precisely equal to K.

We postpone further talk of this important group until our section on sphere packings,

where we describe how it can be used to create the densest known sphere packing in 24

dimensions. In the meantime, it serves as another fascinating example of information we can

glean without ever viewing a copy of S(5, 8, 24).



Chapter 4

Coding Theory

4.1 Introduction to (Binary) Error-Correcting Codes

In the previous section, we effectively studied S(5, 8, 24) in a purely theoretical manner.

However, to ensure that our study is complete, we would like to actually view the octads.

As stated in the introduction, S(5, 8, 24) can be constructed via the (24, 12) Golay error-

correcting code. Thus, to accomplish our next task, we must digress for a moment in order

to discuss error-correcting codes. Much of this chapter was influenced by Thompson [8,

Chapter 1], Bogart [2, Chapter 6 (Section 5)], and MacWilliams and Sloane [7, Chapter 1,

Chapter 2 (Section 6)].

In this day and age, we have come to rely on the electronic transfer of data to make the

sending and receiving of information a more efficient and instant process. For example, many

people handle all of their financial affairs online, whether it be paying bills or filing taxes.

But since this exchange is made from computer to computer (sometimes across noisy or

busy networks), we cannot always guarantee our transmission will be error free. Thus, the

field of error-correcting codes was born. The goal is to develop efficient methods of encoding

messages so that if an error occurs during transmission, the receiver will not only know, but

will perhaps even be able to correct the error.

Though error-correcting codes can be discussed over any alphabet, we will narrow our focus

28
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to the case where a message consists of a sequence of binary strings of length n, called bi-

nary n-blocks. Recall that binary strings are composed solely of 0’s and 1’s, each of which

is called a bit. For this fixed n, there are 2n possible n-blocks. Now, to create a binary

code, we choose a subset of the 2n possible n-blocks to be called the codewords of the binary

code. Ideally, we want to select our codewords in such a way that if an error occurs, the re-

ceived message is not a codeword, thereby alerting the receiver of the error. Thus, we cannot

let the codewords consist of every possible n-block. So, let’s consider the following examples:

Definition 4.1.1. Elementary Examples of Codes:

• A repetition code consists of two codewords of a fixed length n, one with all 0’s and one

with all 1’s. In this code, we are able to detect up to n− 1 errors in transmission. For

example, if n = 2, then our codewords are {00, 11}. If 00 is sent and 01 received, the

receiver will know that an error has occurred since 01 is not a codeword. However, the

error is not correctable as the original codeword could have been either 00 or 11.

• The codewords of a block repetition code consist of s copies of all possible r-blocks for

some fixed s and r. There are 2r possible codewords (since there are 2r possible r-blocks)

and each has length n = r ·s. As before, a single error is detectable, but not correctable.

Furthermore, multiple errors are not always detectable. For example, suppose r = s = 2

and 0101 is sent but 1111 received. Errors occurred in the 1st and 3rd bits, but since

1111 is a codeword (it is 11 repeated twice), the errors are undetectable.

In the above examples, we have added more bits to each codeword than necessary in order

to guard against errors. These extraneous bits are referred to as check bits, while the others

are referred to as message bits. More generally, an (n, r) binary block code, also called an

(n, r) code, consists of codewords of length n with r message bits and n− r check bits. The

repetition code is an (n, 1) code and the block repetition code is an (rs, r) code. As can be

seen in the examples, while error detection is somewhat feasible, error correction seems to

be a daunting task. However, let’s investigate an idea that can be used to aid in the process.

Definition 4.1.2. The Hamming distance, D, between two binary n-blocks is the number of

coordinates in which the corresponding values differ. Equivalently, it is the number of ones

in the bitwise addition modulo 2 of the two n-blocks. For example, D(0010, 0110) = 1.
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By construction, D is a metric. That is,

i) D(x, y) ≥ 0 for all x, y and D(x, y) = 0 if and only if x = y.

ii) D(x, y) = D(y, x) for all x, y.

iii) D(x, z) ≤ D(x, y) +D(y, z) for all x, y, z.

How does this help with error correction? Suppose we have a repetition code with codewords

of length 4 and suppose 0000 is sent but 0010 is received. This is not a codeword and so we

know that an error has occurred. But recall that our two codewords are 0000 and 1111 and

D(0000, 0010) = 1 while D(1111, 0010) = 3. Since one error is more likely than three, we

will conclude that 0000 was the original message. This method is referred to as minimum

distance decoding. More generally, using this strategy in an n length repetition code, we will

be able to correct up to bn−1
2
c errors (where b c denotes the floor function) by selecting the

codeword “closest” to the received word.

Let the minimum distance of a code be the minimum of all the distances between two

nonidentical codewords. Thus we see that a decent strategy for error correction is to choose

a set of codewords where the minimum distance between codewords is as large as possible.

Using minimum distance decoding, a code with minimum distance d has the ability to detect

up to d− 1 errors and correct up to bd−1
2
c errors.

Codes can also be viewed geometrically; that is, the possible n-blocks are n-tuples in En.

More specifically, the words can be viewed as the vertices of the unit cube in En. For exam-

ple, Figure 4.1 shows the case when n = 3.

Thus, if ε > 0, we can define a sphere of radius ε, centered on a vertex of the unit cube in

En, as the set of all vertices of the cube with Hamming distance at most ε from the given

vertex. Now, suppose for a code of length n and for some fixed ε, we center an ε-sphere on

each n-tuple corresponding to a codeword. In order for the minimum distance decoding to

be effective, we want to choose our codewords such that for each pair of distinct codewords

x and y, an ε-sphere around x and an ε-sphere around y have no words in common. Note

that each ε-sphere contains
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
ε

)
n-tuples. A code is called perfect if it makes
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Figure 4.1: Possible 3-blocks.

“perfect” use of the spheres around codewords; that is, an ε-error correcting code which can

correct precisely up to ε errors. More specifically, we have the following.

Definition 4.1.3. A perfect code (of length n) is one for which there exists an integer

ε ≥ 0 such that the ε-spheres centered on the codeword n-tuples are pairwise disjoint and

each vertex of the unit cube in En is contained in some ε-sphere.

As an example of this, consider the (3, 1) repetition code. If we take ε = n−1
2

, then we see

that this code is perfect. On the other hand, the (2, 1) repetition code is not perfect. To

see this, note that 0-spheres centered at codewords miss two vertices, but k-spheres (with

k ≥ 1) centered at codewords overlap.

4.2 A First Look at Linear Codes: (7, 4) Hamming Code

As per the name, the codewords of the (7, 4) Hamming Code have length 7 with 4 message

bits and 3 check bits, and thus there are 24 = 16 codewords. Each of the check bits is a parity

check (summation modulo 2) over a different subset of bits. Recall that a set of bits has

even parity if the sum of the bits modulo 2 is 0, and has odd parity otherwise. Specifically, if

Ci denotes a check bit and Mi denotes a message bit, each codeword will have the following

format:

C1 C2 M1 C3 M2 M3 M4

C1 is a parity check over the 1st, 3rd, 5th, and 7th positions of the codeword,
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C2 is a parity check over the 2nd, 3rd, 6th, and 7th positions of the codeword, and

C3 is a parity check over the 4th, 5th, 6th, and 7th positions of the codeword.

Why were these specific positions chosen? The answer relies on the binary representation of

decimal numbers. Specifically, note the following:

Decimal 1 2 3 4 5 6 7

Binary 001 010 011 100 101 110 111

Thus the first parity check, C1, is taken over the positions corresponding to decimal numbers

whose binary representations have a 1 in the “ones digit,” the second parity check, C2, is

taken over the positions corresponding to decimal numbers whose binary representations

have a 1 in the “twos place”, etc. Furthermore, since 1, 2, and 4 have a single 1 in their

binary representations, C1 is placed in position 1, C2 is placed in position 2, and C3 is placed

in position 4. Therefore, each set of check bits is independent of the others.

Now, when a message is received, the receiver will perform these same parity checks in

order, the result of which will be a binary string of length 3 called the checking number or

syndrome. If the checking number is 000, then the received message is error-free. Otherwise,

the checking number will tell the position of the error. For example, suppose we want to

send 1010. Our codeword will be C1 C2 1 C3 0 1 0 with C1 = 1 + 0 + 0 ≡ 1 mod 2,

C2 = 1 + 1 + 0 ≡ 0 mod 2, and C3 = 0 + 1 + 0 ≡ 1 mod 2. Note that we only have 3 bits

in each sum since the 1st, 2nd, and 4th positions of the codeword are initially empty. Thus,

we send 1011010, and suppose 1010010 is received. The receiver performs the parity checks

as follows:

• Positions 1, 3, 5, 7: 1 + 1 + 0 + 0 ≡ 0 mod 2.

• Positions 2, 3, 6, 7: 0 + 1 + 1 + 0 ≡ 0 mod 2.

• Positions 4, 5, 6, 7: 0 + 0 + 1 + 0 ≡ 1 mod 2.

Thus, the checking number is 100, which corresponds to 4 in decimal and correctly corre-

sponds to the position of the codeword in which the error occurred. Thus we are able to

obtain the original message. Though we will omit a proof, the (7, 4) Hamming code is known

to be a perfect single-error correcting code.
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Now, note that each possible binary 7-block is “mapped” to a checking number of length

three. Furthermore, the codewords are mapped to 000. Thus, we can think of the codewords

as being the kernel of a linear transformation from [GF (2)]7 to [GF (2)]3, where [GF (2)]n

denotes the set of (n×1) column vectors with entries in F2. Specifically, consider the matrix

H =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 .
It turns out that H determines the proper linear transformation. For example, recall the

7-block 1010010 from before which was incorrectly received, and consider it as a 7 × 1 row

vector ~x. Then

H~xT =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1





1

0

1

0

0

1

0


=


1

0

0



gives the correct checking number. Note that T denotes the transpose of a vector.

Thus, we refer to the (7, 4) Hamming Code as a linear code and the matrix H as the

parity-check matrix. In general, a linear code is a code which can be viewed as a subspace

of some vector space. That is, for some (n− r)×n parity-check matrix H, the codewords of

the linear code (n, r) are all row vectors ~x such that H~xT = ~0T . In H, a leading one occurs

in each of the columns corresponding to a check bit. Therefore, H has rank n− r.

Two codes are called equivalent if they differ only in the order of the bits of each code-

word. Therefore, interchanging the columns of a parity-check matrix for a given (n, r) linear

code will give a parity-check matrix for an equivalent (n, r) code. For example, the matrix

H ′ =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1


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is the parity-check matrix for a linear code equivalent for the (7, 4) Hamming Code described

above. In this new code, the parity checks will be the last three bits of each codeword.

Now, suppose we have a parity-check matrix in the same form as H ′ above. That is, [A | In−r]
where A is some fixed (n−r)×r matrix of 0’s and 1’s and In−r is the (n−r)×(n−r) identity

matrix. By definition, the codewords will be the vectors ~x such that [A | In−r]~xT = ~0T . But

then

[A | In−r]


x1
...

xn

 =


0
...

0

 =⇒


xr+1

...

xn

 = −A


x1
...

xr

 = −A


m1

...

mr

 ,

where m1, . . . ,mr are the r message bits. This makes sense since we do not change the

message bits during encoding; we simply add check bits. That is, if ~x is a codeword, then

x1 = m1, . . . , xr = mr. Now, since we are working with binary entries, A = −A. Thus, we

have the following: 
x1
...

xn

 =

[
Ir

A

]
m1

...

mr

 .
Taking the transpose, we have ~x = ~mG, where G = [Ir | AT ]. G is called the generator matrix

of the linear code. Since ~x is a codeword, we see that the codewords are all possible linear

combinations of the rows of G, and so usually a linear code will be defined by its generator

matrix as opposed to its parity check matrix. In an upcoming section, we will explore a

(12× 24) generator matrix associated with the (24, 12) Golay Code. However, before doing

so, we will explore one more interesting feature of the (7, 4) Hamming Code.

4.3 Obtaining (7, 3, 1) from the (7, 4) Hamming Code

Recall the previous parity check matrix H of the (7, 4) Hamming Code:

H =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


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Furthermore, the set of codewords is the kernel of matrix H, that is, all vectors ~x for which

H~xT = ~0T . Let ~v = [a1 a2 . . . a7]
T be a 7× 1 column vector. Then


0

0

0

 =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1





a1

a2

a3

a4

a5

a6

a7


=


a4 + a5 + a6 + a7

a2 + a3 + a6 + a7

a1 + a3 + a5 + a7

 .

So, a1 = a3 + a5 + a7, a2 = a3 + a6 + a7, and a4 = a5 + a6 + a7. Therefore,

a1

a2

a3

a4

a5

a6

a7


=



a3 + a5 + a7

a3 + a6 + a7

a3

a5 + a6 + a7

a5

a6

a7


= a3



1

1

1

0

0

0

0


+ a5



1

0

0

1

1

0

0


+ a6



0

1

0

1

0

1

0


+ a7



1

1

0

1

0

0

1


,

and we see that the kernel of H has rank 4. Specifically, this means that there are 24 = 16

codewords of the (7, 4) Hamming Code. We compute these codewords as follows:

One of {a3, a5, a6, a7} = 1 Two of {a3, a5, a6, a7} = 1 Three of {a3, a5, a6, a7} = 1

1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0

1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1

1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1

0 1 0 0 1 0 1

a3 = a5 = a6 = a7 = 0 1 0 0 0 0 1 1 a3 = a5 = a6 = a7 = 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1

The weight of a codeword is defined as the number of 1’s it contains. Now, consider the

codewords of weight three in the above lists. Note that three is the minimum weight of any

codeword in the (7, 4) Hamming Code.
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Codewords of Weight 3 Blocks of System

Indices : 1 2 3 4 5 6 7

1 1 1 0 0 0 0 → 123

1 0 0 1 1 0 0 → 145

1 0 0 0 0 1 1 → 167

0 1 0 1 0 1 0 → 246

0 1 0 0 1 0 1 → 257

0 0 1 1 0 0 1 → 347

0 0 1 0 1 1 0 → 356

Interestingly enough, this is an S(2, 3, 7) system. Somewhat frequently, the codewords of

minimum weight can form an interesting design. In the next section, we will see another

example of deriving a Steiner system from the codewords of a code with minimum weight.

Specifically, we will examine the (24, 12) Golay code in which the codewords of weight eight

form an S(5, 8, 24) system.
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4.4 The (24, 12) Golay Code

In 1949, a man named Marcel J. E. Golay presented a generating matrix for what he claimed

was a perfect 3-error correcting (23, 12) linear code. While this code is fascinating in its own

right, we are more interested in the (24, 12) Golay code, denoted G24, which can be obtained

from the (23, 12) Golay code. Specifically, we add either a 0 or a 1 to the end of each row of

the generating matrix for the (23, 12) Golay code to make the parity of each row even. The

generating matrix for G24, which we will call H, is pictured below. Note that each blank

entry of the matrix actually contains a 0, and recall that the codewords of G24 are the set of

linear combinations of the rows ofH. Since there are 12 rows, there are 212 = 4096 codewords.

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 row

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 1 4

1 1 1 1 1 1 1 1 5

1 1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 1 7

1 1 1 1 1 1 1 1 8

1 1 1 1 1 1 1 1 9

1 1 1 1 1 1 1 1 10

1 1 1 1 1 1 1 1 11

1 1 1 1 1 1 1 1 1 1 1 1 12

Figure 4.2: Generator matrix for the extended Golay code G24.

Since each codeword C is in the row space of H, we can think of C as containing two halves,

namely the first twelve bits of C, which are generated by the left half of H, and the last

twelve bits of C, which are generated by the right half of H. This is the reason for the some-

what strange column headings in the above figure. We denote these halves of a codeword

C as L and R and write C = |L | R|. Note that adding Row 12 to C forms the codeword

C = |L | R′| where R′ is the complement of R (obtained by interchanging the 0’s and 1’s).
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Furthermore, since each column of H contains an odd number of 1’s, the summation of all

rows of H gives (1, . . . , 1), which is therefore a codeword of G24. Since we may add the code-

word (1, . . . , 1) to each codeword C, the complement of C, denoted C ′, is also a codeword.

Let A denote the 11 × 11 sub-matrix of H formed by the intersecting entries of the top

11 rows and the right most 11 rows. Then A, which is pictured below, is the incidence

matrix for an (11, 6, 3) design.

A =



1 1 0 1 1 1 0 0 0 1 0

0 1 1 0 1 1 1 0 0 0 1

1 0 1 1 0 1 1 1 0 0 0

0 1 0 1 1 0 1 1 1 0 0

0 0 1 0 1 1 0 1 1 1 0

0 0 0 1 0 1 1 0 1 1 1

1 0 0 0 1 0 1 1 0 1 1

1 1 0 0 0 1 0 1 1 0 1

1 1 1 0 0 0 1 0 1 1 0

0 1 1 1 0 0 0 1 0 1 1

1 0 1 1 1 0 0 0 1 0 1


To see this, consider the first row of the matrix which corresponds to the block B1 =

{2, 3, 5, 6, 7, 11}. Note that this is an (11, 6, 3) difference set and the subsequent blocks are

formed by adding i mod 11 to each entry of the block for 1 ≤ i < 11 (as in Theorem 1.2.3).

So any two distinct rows of A intersect in exactly three 1’s. Furthermore, by our discussion

in Chapter 1, A describes the complement of an (11, 5, 2) design. Therefore, any two distinct

rows of A intersect in exactly two 0’s.

Lemma 4.4.1. Any three distinct rows of A intersect in either one or two 1’s.

Proof. Without loss of generality, we may consider Row 1, Row 2, and an arbitrary Row i.

Position 1 2 3 4 5 6 7 8 9 10 11

1 1 0 1 1 1 0 0 0 1 0 Row 1

0 1 1 0 1 1 1 0 0 0 1 Row 2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Row i
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In order for the intersection of these three rows to be empty, each of the six 1’s of Row i

must appear in one of the starred entries. However, since A describes the complement of

an (11, 5, 2) design, the three rows cannot intersect in a pair of zeros. Therefore, either the

8th or 9th position of Row i must contain a 1. Furthermore, since Row 1 and Row i must

intersect in exactly 3 places, Row i must contain a 1 in positions 1, 4, and 10. In Row i,

we now have positions 3, 7, 11 and either 8 or 9 available and two more 1’s to place. But,

however we place the remaining 1’s, it is impossible for Row 2 to intersect with Row i in

exactly three ones. Thus, we have a contradiction, and so it follows that any three distinct

rows of A intersect in at least one 1.

Now, any three distinct rows cannot interest in more than three 1’s since any two dis-

tinct rows only intersect in three 1’s. Thus, it suffices to show that any three distinct rows

of A do not intersect in three 1’s. Again, without loss of generality, we consider Row 1, Row

2, and an arbitrary Row i.

Position 1 2 3 4 5 6 7 8 9 10 11

1 1 0 1 1 1 0 0 0 1 0 Row 1

0 1 1 0 1 1 1 0 0 0 1 Row 2

1 1 1 Row i

In order for the intersection to contain three 1’s, we must have a 1 in positions 2, 5, and 6

of Row i. Now, we must place three more 1’s in the remaining spaces of Row i. However we

do this, Row i will intersect with either Row 1 or Row 2 in more than 3 places, which is a

contradiction.

By a similar technique, it can be shown that if three distinct rows intersect in exactly one 1,

then they intersect in exactly one 0, and if three distinct rows intersect in exactly two 1’s,

then they do not intersect in any zeros. Recall that the weight of a codeword C, denoted

wt(C), is the number of 1’s it contains. We now introduce a series of results about the

codewords. The first two are featured in Appendix A of Thompson [8], and the next three

are featured in MacWilliams and Sloane [7].

Theorem 4.4.2. Any two codewords of G24 have an even number of 1’s in common.

Proof. Based on [8, p. 188 (Lemma A2.1)]. We first show that any two rows of H have an
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even number of 1’s in common. Let Row i and Row j be two distinct rows chosen from the

top 11 rows of H. Since A is the incidence matrix of an (11, 6, 3) design, Row i and Row

j have exactly four 1’s in common (one on the left half and three on the right half). Note

that Row i and Row 12 have no 1’s in common of the left half and six 1’s in common on the

right.

Now, let A and B be distinct codewords, and let ~Ri be the ith row of H. By definition,

A = α1
~R1 + α2

~R2 + · · · + α12
~R12 and B = β1 ~R1 + β2 ~R2 + · · · + β12 ~R12, where each αi and

βj is either a 0 or a 1. Let AB be the Boolean product of A with B. By definition, this is

the vector with 1’s where both A and B have a 1 and 0’s elsewhere. Then

AB = (α1
~R1 + α2

~R2 + · · ·+ α12
~R12)(β1 ~R1 + β2 ~R2 + · · ·+ β12 ~R12)

= α1β1 ~R1
~R1 + α1β2 ~R1

~R2 + · · ·+ α1β12 ~R1
~R12

+ . . . + α12β1 ~R12
~R1 + · · ·+ α12β12 ~R12

~R12.

The vector addition is modulo 2 componentwise. Now, each term αiβjRiRj is equal to either

the zero vector or the boolean product of ~Ri with ~Rj. In either case, we obtain an even

number of 1’s. But note that the sum of any two vectors with an even number of 1’s has an

even number of 1’s. Thus, it follows that AB has an even number of 1’s. That is, A and B

have an even number of 1’s in common.

Theorem 4.4.3. The weight of each codeword is divisible by 4.

Proof. Based on [8, p. 188 (Corollary A2.2)]. Note that any row of H has weight divisible by

4. Now, consider the sum of any two rows of H. The number of 1’s in the resulting codeword

is the number of 1’s in each row minus twice the number of 1’s they have in common. If one

of the rows is Row 12, then the resulting codeword has weight 8 + 12− 2 · 6 = 8. Otherwise,

if both of the rows come from the 11 rows of H, then the resulting codeword has weight

8+8−2 ·4 = 8 (we have already shown that two such rows have exactly four 1’s in common).

In either case, the weight is divisible by 4.

Now, consider the sum of any three distinct rows of H. If we first add any two of them, by

the above paragraph we will obtain a codeword with weight divisible by 4, say 4i for some
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i. The remaining row (which is also a codeword) also has weight divisible by 4, say 4j for

some j. By Theorem 4.4.2, these two codewords have an even number of 1’s in common, say

2k for some k. If we add these two codewords together, the resulting codeword has weight

4i+ 4j − 2(2k) = 4(i+ j − k),

which is divisible by 4. Since every codeword of G24 is the linear combination of rows of H,

we simply continue this process and the result follows.

Theorem 4.4.4. If G24 contains the codeword

C = | l1l2l3l4 . . . l12 | r1r2r3r4 . . . r12 |,

then it also contains the codeword

D = | r1r2r12r11 . . . r3 | l1l2l12l11 . . . l3 .|

Equivalently, G24 is invariant under the permutation of coordinates

T = (l1 r1)(l2 r2)(l3 r12)(l4 r11) . . . (l12 r3).

Proof. Based on [7, p. 65 (Lemma 20)]. Since each codeword of G24 is a linear combination

of the rows of H, it suffices to show that each row of H is invariant under T . For example,

in the table below we have shown that Row 1 and Row 2 are invariant under T .

Original Row Mapping under T

1, 1, 0000000000, 0, 1, 1011100010 0, 1, 0100011101, 1, 1, 0000000000

Sum of rows 1, 3, 7, 8, 9, 11, and 12

1, 0, 1000000000, 0, 0, 1101110001 0, 0, 1000111011, 1, 0, 0000000001

Sum of rows 2, 6, 7, 8, 10, 11, and 12

The case for the other rows are similar.

Corollary 4.4.5. If G24 contains a codeword |L | R| with wt(L) = i and wt(R) = j, then it

also contains a codeword |L′ | R′| with wt(L′) = j and wt(R′) = i.



Maria E. Beane Chapter 4. Coding Theory 42

Theorem 4.4.6. G24 contains no codewords of weight 4 or 20.

Proof. Based on [7, p. 66 (Lemma 21)]. Note that each codeword has even weight. Fur-

thermore, because of the first column in H, the left side of each codeword always has even

weight, and thus the right side must have even weight as well.

Suppose C = |L | R| is a codeword with weight 4. Then either

(1) wt(L) = 0,wt(R) = 4, (2) wt(L) = 4,wt(R) = 0, or (3) wt(L) = wt(R) = 2.

Because of Theorem 4.4.4, (1) and (2) are the same case. But case (1) (and thus case (2)) is

impossible, since if wt(L) = 0, then either C is the zero vector or C is Row 12 of H. Either

way, wt(R) 6= 4. Now, suppose wt(L) = 2 as in case (3). Then either

(a) C = Rowi + Rowj for some distinct i, j 6= 12 or (b) C = Rowi + Rowj + Row12.

In case (a), since any two rows of A intersect in exactly three 1’s, wt(R) = 6. In case

(b), adding Row12 gives the complement of the current right hand side, and so wt(R) = 6 as

well. Therefore, case (3) is impossible as well, and thus G24 contains no codeword of weight 4.

Now, suppose G24 contains a codeword C1 of weight 20. Since I = (1, . . . , 1) is a code-

word, then C1 + I is a codeword as well. But C1 + I has weight 4, which is a contradiction

to the argument of the above paragraph. So G24 contains no codeword of weight 20.

By Theorem 4.4.3, the weight of each codeword in G24 is divisible by 4. But, from the above

theorem, there are no codewords of weight 4 or 20. Thus, the possible weights of codewords

in G24 are 0, 8, 12, 16, 24. We now calculate the number of codewords of each weight, begin-

ning with weight 8.

Theorem 4.4.7. There are 759 codewords of weight 8.

Proof. Recall that if C = |L | R| is a codeword, then both wt(L) and wt(R) are even.

Therefore, if wt(C) = 8, we have the following possibilities:

Case 1 : wt(L) = 2,wt(R) = 6 Case 4 : wt(L) = 8,wt(R) = 0

Case 2 : wt(L) = 4,wt(R) = 4 Case 5 : wt(L) = 0,wt(R) = 8

Case 3 : wt(L) = 6,wt(R) = 2
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However, Cases 4 and 5 are impossible. The only codeword to have weight 0 on the right

half is the zero vector (0, . . . , 0). Furthermore, Row 12 is a codeword with weight 0 on the

left half, but it has weight 12 on the right half. Thus, we need only count the other cases.

Number of codewords with wt(L) = 2, wt(R) = 6: 2(11 +
(
11
2

)
)

Let C = |L | R| be one of the top 11 rows of H. Then C is a codeword with wt(L) = 2 and

wt(R) = 6. Adding Row 12 to C forms the codeword |L | R′| where R′ is the complement

of R. In this case, wt(R) = wt(R′), and so we have another codeword with the specified

weights. Since we can do this for each of the top 11 rows of H, we have counted 2 · 11

codewords so far in this case.

Let C2 = |L2 | R2| be the sum of two of the (distinct) top 11 rows of H. Since R2 is

equivalent to the sum of any two distinct rows of A, it follows that wt(R2) = 6. As before,

wt(R2) = wt(R′2), and so we may add Row 12 to C2 to obtain another codeword with the

specified weights. Since we can sum together two of the top 11 rows of H in
(
11
2

)
ways, we

have found an additional 2 ·
(
11
2

)
codewords for this case.

Number of codewords with wt(L) = 4, wt(R) = 4:
(
11
3

)
+
(
11
4

)
Let C3 = |L3 | R3| be the sum of three of the (distinct) top 11 rows of H. By observation,

we see that wt(L3) = 4, and R3 is equivalent to the sum of any three distinct rows of A,

say Row i, Row j, and Row k, which, by Lemma 4.4.1, intersect in either one or two 1’s.

Suppose these three rows of A intersect in exactly one 1. Without loss of generality, say

Row i ∩ Row j = {2, 5, 6}, Row i ∩ Row k = {1, 4, 6}, Row j ∩ Row k = {3, 6, 7},

which occurs when i = 1, j = 2, and k = 3. R3 contains 11 positions total. By a previous

note, these rows intersect in exactly one 0 as well, which contributes to a 0 in R3. Fur-

thermore, there are six intersections between pairs of rows which do not contribute to the

overall intersection among the three rows, and each of these gives another 0 to R3. Therefore,

wt(R3) = 11− 1− 6 = 4.

Now, suppose Row i, Row j, and Row k intersect in exactly two 1’s. Without loss of

generality, say

Row i ∩ Row j = {3, 6, 7}, Row i ∩ Row k = {3, 5, 6}, Row j ∩ Row k = {3, 6, 8},
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which occurs when i = 2, j = 3, and k = 5. There are three intersections between pairs of

rows which do not contribute to the overall intersection among the three rows, and each of

these gives a 0 to R3. By a previous note, these three rows do not intersect in any 0’s, and

therefore, wt(R3) = 11− 3 = 8. However, we may add Row 12 to C3 to obtain a codeword

|L3 | R′3| with wt(L3) = 4 and wt(R′3) = 4. Since we can sum three of the top 11 rows of H

in
(
11
3

)
ways, we have found

(
11
3

)
codewords in this case so far.

Let C4 = |L4 | R4| be the sum of four of the (distinct) top 11 rows of H. By observa-

tion, wt(L4) = 4, and R4 is equivalent to the sum of any four distinct rows of A. Suppose

we first add three of these rows together to create the intermediate codeword C = |L | R|,
and then (if necessary) add Row 12 to C to ensure that wt(L) = 4 and wt(R) = 4. Let

Row i be the remaining row of the original four to be added. By Theorem 4.4.2, Row i

and C have an even number of 1’s in common. Since the left half of Row i and L intersect

in exactly one 1, namely the 1 in the far left position, the right side of Row i and R must

intersect in either one or three 1’s (recall that wt(R) = 4). If the right side of Row i and

R intersect in exactly one 1, then wt(R4) = (4− 1) + (6− 1) = 8, and so we may add Row

12 to C4 to obtain the codeword |L4 | R′4| with wt(L4) = 4 and wt(R′4) = 4. Otherwise,

wt(R4) = (4 − 3) + (6 − 3) = 4, and thus C4 has the specified weights. Since we can sum

four of the top 11 rows ofH in
(
11
4

)
ways, we have found

(
11
4

)
additional codewords in this case.

Number of codewords with wt(L) = 6, wt(R) = 2: 2(11 +
(
11
2

)
)

By Theorem 6.4.4, this is the same as the number of codewords with wt(L) = 2,wt(R) = 6.

Then, the number of codewords of weight 8 in G24 is

2

(
11 +

(
11

2

))
+

(
11

3

)
+

(
11

4

)
+ 2

(
11 +

(
11

2

))
= 2 · 132 + 165 + 330 = 759.

Now, there is exactly one codeword of weight 0, namely (0, . . . , 0), and one codeword of

weight 24, namely (1, . . . , 1). Since the complement of each codeword is a codeword, it

follows that the number of codewords of weight 8 is precisely the same as the number of

codewords of weight 16 (since 24− 8 = 16). Thus, using Theorem 4.4.7, there are 759 code-

words of weight 16. Since the possible weights of codewords in G24 are 0, 8, 12, 16, and 24,
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there are 4096 − 2 − 2 · 759 = 2576 codewords of weight 12. Note that this is precisely the

number of octads, complements of octads, and dodecads associated with S(5, 8, 24), and it

is not a coincidence.

Theorem 4.4.8. The codewords of weight 8 in G24 form a Steiner system S(5, 8, 24).

Proof. It suffices to show that any binary vector of weight 5 and length 24 is contained in

exactly one codeword of weight 8. Let S be such a vector, and suppose by contradiction

that S is contained in two distinct codewords of weight 8, say C1 and C2. That is, C1 and

C2 intersect in at least five 1’s. Therefore, 0 < wt(C1 + C2) ≤ 8 + 8 − 2 · 5 = 6, which is a

contradiction all nonzero codewords have weight greater than 8. Thus, each binary vector

of weight 5 is contained in exactly one codeword of weight 8.

Therefore, as said before, the octads of S(5, 8, 24) can indeed be constructed via the (24, 12)

Golay code. Perhaps the easiest way to do this is to first generate the entire row space of the

generator matrix H, which will contains all 4096 codewords. Then, we simply loop through

this space and find the codewords of length 8. However, this is probably not the most efficient

option. For example, by the proof of Theorem 4.4.7, none of the codewords of weight 8 are a

linear combination of more than six rows (since the left side of any such codeword has weight

at most 6). Therefore, in generating the entire row space we are unnecessarily considering(
12
7

)
+
(
12
8

)
+
(
12
9

)
+
(
12
10

)
+
(
12
11

)
+
(
12
12

)
= 792 + 495 + 220 + 66 + 12 + 1 = 1586 codewords.

An interesting problem lies in trying to develop the most efficient method of finding the

codewords of weight 8. However, we did not have sufficient time to consider this topic. The

Matlab code found in Appendex A uses the naive row space approach discussed above.



Chapter 5

Automorphism Groups of Steiner

Systems

In abstract algebra, we define an automorphism of a group G to be an isomorphism (a map-

ping that is both one-to-one and onto) from G onto itself. That is, an automorphism of G is

a permutation on the set G that preserves the group operation. The set of all automorphism

of G is denoted as Aut(G). Defined in a similar way, each Steiner system S(l,m, n) has an

automorphism group, but with an added restriction: each permutation of the blocks must

be obtained by a permuting the n elements. We define this precisely as follows:

Definition 5.0.9. An automorphism of a Steiner system S(l,m, n) is a permutation α of

the n varieties in the base set that is simultaneously a permutation of the m-sets amongst

themselves. The automorphism group, denoted Aut(S(l,m, n)) is the group of all such per-

mutations. If α ∈ Aut(S(l,m, n)), we say that α induces a permutation on the blocks.

A particularly interesting problem involves how best to calculate the order of an automor-

phism group. Because the structure of one system varies greatly from another, there is no set

formula and no way of even providing an estimate or plausible upper bound. However, if we

had unlimited time (as well as unlimited patience), all of these orders, no matter how large

the system, could be calculated using the Orbit-Stabilizer Theorem from abstract algebra.

Even for smaller systems such as S(2, 3, 9), which we will explore in the next section, this

46
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technique can prove tedious. When handed a system as large as S(5, 8, 24), the task seems

impossible. In this case, we are saved by a property of S(5, 8, 24) known as 5-transitivity,

the significance of which we will explain in Section 5.2.

5.1 Aut(S(2, 3, 9))

To familiarize ourselves with the concept of an automorphism group, we will begin with an

illustrative example: calculating |Aut(S(2, 3, 9)|. The following is a clever way to construct

the blocks of S(2, 3, 9). We first take the 3× 3 grid with the numbers 1− 9 placed as in the

dial pad of a telephone. This grid is shown below.

1 2 3

4 5 6

7 8 9

The three rows and columns, namely 123, 456, 789, 147, 258, and 369, make up six of the

twelve blocks of S(2, 3, 9). Now, suppose we position an identical grid next to the original

one like so:
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

Notice that we have created the following diagonals in the left and right directions:

1 2 3

5 6 4

9 7 8

3 1 2

5 6 4

7 8 9

These diagonals constitute the remaining six blocks of S(2, 3, 9). Thus, in lexicographic

order, the blocks of S(2, 3, 9) are as follows:

B1 = 123 B5 = 249 B9 = 357

B2 = 147 B6 = 258 B10 = 369

B3 = 159 B7 = 267 B11 = 456

B4 = 168 B8 = 348 B12 = 789
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Now, as mentioned before, to find |Aut(2, 3, 9)|, we will use the Orbit-Stabilizer Theorem.

Before stating the theorem, we begin with a few necessary definitions.

Definition 5.1.1. Suppose that G is a group of permutations on the set S. Let g ∈ G and

let T ⊆ S.

i) g(T ) = {g(t) : t ∈ T}.

ii) An element g ∈ G leaves T setwise fixed if g(T ) = T .

iii) The stabilizer of T in G, denoted StabG(T ), is the set of all permutations g ∈ G that

leave T setwise fixed. Note that if T = {t} then StabG(t) is the set of all permutations

g ∈ G that fixed t.

iv) The orbit of T , denoted OrbG(T ), is the set of all Y ⊆ S for which Y = g(T ) for some

permutation g ∈ G.

Theorem 5.1.2. (The Orbit-Stabilizer Theorem) Let G be a finite group of permutations of

a set S and let T ⊆ S. Then

i) StabG(T ) is a subgroup of G.

ii) |G| = | StabG(T )| · |OrbG(T )|.

A proof can be found Dummit and Foote [5, p. 51, p. 114 (Proposition 2)]. Now, to use the

theorem, we begin by defining the groups G, H, and K as follows:

G = Aut(S(2, 3, 9))

H = StabG(B1) = {automorphisms in G that leave B1 setwise fixed}
K = StabH(1) = {automorphisms in H that leave 1 fixed}

Then, by repeated use of the Orbit-Stabilizer Theorem,

|G| = |H| · |OrbG(B1)|

= |K| · |OrbH(1)| · |OrbG(B1)|

= | StabK(2)| · |OrbK(2)| · |OrbH(1)| · |OrbG(B1)|
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Even though we seem to be making the problem more complicated, we are in fact doing the

opposite. The size of orbits, in general, are much easier to determine than the size of stabi-

lizers. Thus, it is beneficial to simplify as much as possible the one stabilizer whose order

we must compute, in this case StabK(2). Leaving the stabilizer for last, we now calculate

the size of the orbits.

|OrbG(B1)|:

Recall that Bi ∈ OrbG(B1) if there exists an automorphism f such that f(B1) = Bi. Thus,

to calculate |OrbG(B1)|, we must determine to which blocks B1 can be mapped.

Let idS be given by idS(v) = v for all v ∈ {1, 2, . . . , 9}. Then idS induces the identity

mapping on the blocks. Particularly, B1 is sent to itself, and thus B1 ∈ OrbG(B1).

Let β1 = (1 4 7)(2 5 8)(3 6 9).

Then β1 induces the permutation (B2)(B6)(B10)(B1 B11 B12)(B3 B8 B7)(B4 B5 B9) on the

blocks, which can be seen below:

B1 123 → 456 B11 B7 267 → 591 B3

B2 147 → 471 B2 B8 348 → 672 B7

B3 159 → 483 B8 B9 357 → 681 B4

B4 168 → 492 B5 B10 369 → 693 B10

B5 249 → 573 B9 B11 456 → 789 B12

B6 258 → 582 B6 B12 789 → 123 B1

So B11 = 456 ∈ OrbG(B1).

Now, suppose we were to “reverse” β. That is, instead of sending 1 → 4, 4 → 7, 7 → 1,

and so on, we send 4 → 1, 7 → 4, 1 → 7, etc. In doing so, we will still have an permu-

tation of the varieties that simultaneously permutes the blocks amongst themselves. Thus

(β)−1 = (1 7 4)(2 8 5)(3 9 6) is an automorphism of S(2, 3, 9). More generally, the inverse of

any automorphism is itself an automorphism. Similarly, the composition of two automor-

phisms is an automorphism.

We now both summarize and continue our discussion in the following table, though we
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will not take the time or space to verify the mappings.

Element Permutation Block Permutation Image of B1

idS (B1)(B2) . . . (B12) B1

β1 = (1 4 7)(2 5 8)(3 6 9) (B2)(B6)(B10)(B1 B11 B12)(B3 B8 B7)(B4 B5 B9) B11

(β1)
−1 = (1 7 4)(2 8 5)(3 9 6) (B2)(B6)(B10)(B1 B12 B11)(B3 B7 B8)(B4 B9 B5) B12

β2 = (1)(2 4 5 8 3 7 9 6) (B1 B2 B3 B4)(B5 B11 B6 B8 B9 B12 B10 B7) B2

(β2)
−1 = (1)(2 6 9 7 3 8 5 4) (B1 B4 B3 B2)(B5 B7 B10 B12 B9 B8 B6 B11) B4

(β2)
2 = (1)(2 5 3 9)(4 8 7 6) (B1 B3)(B2 B4)(B5 B6 B9 B10)(B7 B11 B8 B12) B3

β3 = (2)(1 5 7 9 3 8 6 4) (B1 B6 B7 B5)(B2 B3 B9 B12 B10 B8 B4 B11) B6

(β3)
−1 = (2)(1 4 6 8 3 9 7 5) (B1 B5 B7 B6)(B2 B11 B4 B8 B10 B12 B9 B3) B5

(β3)
2 = (2)(1 7 3 6)(4 5 9 8) (B1 B7)(B5 B6)(B2 B9 B10 B4)(B3 B12 B8 B11) B7

β4 = (3)(1 8 5 6 2 4 7 9) (B1 B8 B9 B10)(B2 B12 B3 B4 B6 B11 B7 B5) B8

(β4)
−1 = (3)(1 9 7 4 2 6 5 8) (B1 B10 B9 B8)(B2 B5 B7 B11 B6 B4 B3 B12) B5

(β4)
2 = (3)(1 5 2 7)(4 9 8 6) (B1 B9)(B8 B10)(B2 B3 B6 B7)(B4 B11 B5 B12) B9

Thus, it follows that |OrbG(B1)| = 12.

|OrbH(1)|:
Recall that H consists of the automorphisms that leave B1 setwise fixed. So v ∈ OrbH(1)

if there exists an automorphism f such that f(B1) = B1 and f(1) = v. This means that v

must be an element of {1, 2, 3}. Our findings are displayed in the table below.

Element Permutation Block Permutation Image of 1

idS (B1)(B2) . . . (B12) 1

α1 = (3)(1 2)(4 8)(5 7)(6 9) (B1)(B8)(B9)(B10)(B2 B6)(B3 B7)(B4 B5)(B11 B12) 2

α2 = (2)(1 3)(4 9)(5 8)(6 7) (B1)(B5)(B6)(B7)(B2 B10)(B3 B8)(B4 B9)(B11 B12) 3

Thus, it follows that |OrbH(1)| = 3.

|OrbK(2)|:
Recall that K consists of the automorphism that fix 1 while leaving B1\{1} setwise fixed.

So v ∈ OrbK(2) if there exists an automorphism f such that f(1) = 1, f(B1\{1}) = B1\{1},
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and f(2) = v. This means that v must be an element of {2, 3}. Our findings are displayed

in the table below.

Element Permutation Block Permutation Image of 2

idS (B1)(B2) . . . (B12) 2

β4
2 = (1)(2 3)(4 7)(5 9)(6 8) (B1)(B8)(B9)(B10)(B2 B6)(B3 B7)(B4 B5)(B11 B12) 3

Thus, it follows that |OrbK(2)| = 2.

We now turn our attention to the stabilizer StabK(2), which consists of the automorphisms

in K that leave 2 fixed. Recall that automorphisms in K must fix 1 pointwise and B1\{1}
setwise. Thus, an automorphism f is an element of StabK(2) if f(1) = 1, f(2) = 2, and

f(B1\{1, 2}) = B1\{1, 2}. However, note that B1\{1, 2} = {3}, and so the automorphism f

must fix 3 as well.

Now, if we fix one more variety (for example, we send 4 → 4), the automorphism must

be the identity mapping. To see this, suppose f is an automorphism such that f(1) = 1,

f(2) = 2, f(3) = 3, and f(4) = 4. Then the result of f so far is as follows:

B1 1 2 3 → 1 2 3 B7 2 6 7 → 2

B2 1 4 7 → 1 4 B8 3 4 8 → 3 4

B3 1 5 9 → 1 B9 3 5 7 → 3

B4 1 6 7 → 1 B10 3 6 9 → 3

B5 2 4 9 → 2 4 B11 4 5 6 → 4

B6 2 5 8 → 2 B12 7 8 9 →

Recall that each 2-set of {1, 2, . . . , 9} is contained in only one 3-set of S(2, 3, 9). Because f

must be a permutation of the blocks and {1, 4} appears in only B2, it must be that B2 7→ B2,

which means that 7 7→ 7. Similarly, 8 must map to 8 to ensure that B8 maps to B8. This

chain continues, eventually showing that f = idS.

Therefore, once we choose the variety to which 4 maps, the rest of our permutation will

be decided automatically. Thus, the problem of calculating | StabK(2)| reduces to finding

the number of varieties to which 4 can be mapped, while still keeping 1, 2, and 3 fixed. It

turns out that there are 6 such automorphisms, each of which is given in the table below.
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Element Permutation Image of 4

idS 4

(1)(2)(3)(4 5 6)(7 9 8) 5

(1)(2)(3)(4 6 5)(7 8 9) 6

(1)(2)(3)(4 7)(5 8)(6 9) 7

(1)(2)(3)(4 8)(5 9)(6 7) 8

(1)(2)(3)(4 9)(5 7)(6 8) 9

Thus, it follows that | StabK(2)| = 6.

Using the above results, we conclude that

|G| = | StabK(2)| · |OrbK(2)| · |OrbH(1)| · |OrbG(B1)| = 6 · 2 · 3 · 12 = 432

However, note that while we have computed the size of Aut(S(2, 3, 9)), we have not deter-

mined the actual automorphisms. Fortunately, our knowledge of the automorphism group

for S(5, 8, 24) is more extensive. Not only can we determine the size of the group using

the Orbit-Stabilizer Theorem, but we can also define the group in terms of a set of three

generators. Thus, we have a way of describing the actual automorphisms.

5.2 Aut(S(5, 8, 24)): The Mathieu Group M24

We begin with a discussion of the classification of finite simple groups. Recall that a group

G is called simple if |G| > 1 and the only normal subgroups of G are 1 and G. The classifi-

cation was completed in 1980, and the following theorem from Dummit and Foote [5, p. 104]

summarizes the results.

Theorem 5.2.1. There is a list consisting of 18 infinite families of simple groups and 26

simple groups (called the sporadic groups) not belonging to these families such that every

finite simple group is isomorphic to one of the groups in this list.
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Several of the infinite families are introduced in a standard abstract algebra class. For exam-

ple, one such family consists of the groups of prime order, and another family consists of the

alternating groups, An, for n 6= 4. On the other hand, up until 1965, only five of the sporadic

groups had been discovered. These five groups, denoted M11, M12, M22, M23, and M24, were

discovered by Emile Mathieu in 1861 and 1873, and thus named the Mathieu groups. Aside

from being sporadic groups, each of the Mathieu groups has another interesting and rare

property: a high degree of transitivity.

Definition 5.2.2. A permutation group on a k-set is n-ply transitive if, for any two sequences

of n distinct elements of the k-set, say {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, there exists an

element φ of the group such that φ(xi) = yi for i = 1, 2, . . . , n.

The symmetric group on k letters, denoted Sk, is n-ply transitive for all 1 ≤ n ≤ k. However,

other than the symmetric groups and the alternating groups, M11, M12, M23, and M24 are

the only known quadruply transitive groups, and M12 and M24 are the only known quintuply

transitive groups. As a note, other than Sn, where n ≥ 6, and An, where n ≥ 7, no other

permutation groups are known to be sextuply transitive.

Of particular interest to this paper is M24. It is the largest of the above five Mathieu groups,

and in fact contains each of the others. There are two seemingly inequivalent definitions

for M24, one of which makes the reason for its inclusion in this thesis immediately appar-

ent. A proof of their equivalence can be found in Thompson [8, Appendix 4 (Theorem A4.1)].

Definition 5.2.3.

i) M24 is the automorphism group of S(5, 8, 24).

ii) M24 is the subgroup of S24 generated by the following three permutations:

α = (24)(1 2 3 . . . 23)

γ = (1 24)(2 23)(3 12)(4 16)(5 18)(6 10)(7 20)(8 14)(9 21)(11 17)(13 22)(15 19)

δ = (24)(1)(4)(16)(2 19 5 3 7)(6 22 21 11 8)(9 17 14 10 13)(12 20 23 15 18)

Recall that S(5, 8, 24) is unique up to a permutation of the elements of the 24-set, and thus,
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by the above definition, M24 is unique. So, exactly how large is Aut(S(5, 8, 24))? In the pre-

vious section, we used the Orbit-Stabilizer Theorem to calculate the order of Aut(S(2, 3, 9)).

However, since S(5, 8, 24) has a 24-element base set and 759 octads, this approach might

seem cumbersome. Luckily, since M24 is 5-transitive, this is not the case.

Consider the S(5, 8, 24) system, call it S, generated by the Matlab code in Appendix A

>> S = S5824();

and modified by the call

>> S = S.iso([6,14,7,18,8,23,14,6,18,7,23,8]);

The system S now contains the block B1 = {1, 2, 3, 4, 5, 6, 7, 8}. Note that our method of

calculating the order of Aut(S(5, 8, 24)) does not require this to be a block; we simply make

it so to avoid unnecessary complication. We now define the following groups:

G = Aut(S(5, 8, 24))

H = StabG(B1) H3 = StabH2(3)

H1 = StabH(1) H4 = StabH3(4)

H2 = StabH1(2)

By repeated use of the Orbit-Stabilizer Theorem, we have the following:

|G| = |H| · |OrbG(B1)|

= |H1| · |OrbH(1)| · |OrbG(B1)|
...

= | StabH4(5)| · |OrbH4(5)| · |OrbH3(4)|

· |OrbH2(3)| · |OrbH1(2)| · |OrbH(1)| · |OrbG(B1)|

We first consider |OrbG(B1)|. Let Bi 6= B1 be one of the octads, and let {x1, . . . , x5} and

{y1, . . . , y5} be 5-sets of B1 and Bi, respectively. Since M24 is 5-transitive, there exists

φi ∈ M24 such that φi(xj) = yj for j = 1, 2, . . . , 5. But since each 5-set appears in exactly

one of the octads, it must be that the elements of B1\{x1, . . . , x5} map to the elements of

Bi\{y1, . . . , y5}. That is, φi maps B1 to Bi. Since Bi was arbitrarily chosen, it follows that

|OrbG(B1)| = 759.
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We now consider |OrbH(1)|. Note that v ∈ OrbH(1) if there exists an automorphism f such

that f(B1) = B1 and f(1) = v. Again, since M24 is 5-transitive, for each x ∈ B1, there

exists φx such that φx(1) = x and φx maps four of the other elements of B1 to distinct

elements of B1\{x}. Since each quintuple is contained in exactly one octad, this implies that

φx fixes B1 setwise, and so x ∈ OrbH(1). Therefore, |OrbH(1)| = 8. By a similar reasoning,

|OrbH1(2)| = 7, |OrbH2(3)| = 6, |OrbH3(4)| = 5, and |OrbH4(5)| = 4.

It remains to calculate | StabH4(5)|, which is the number of automorphisms in H4 that leave

5 fixed. However, recall that the automorphisms in H4 must fix 1, 2, 3, and 4 as well. So

each automorphism in StabH4(5) must fix B1 setwise, and therefore if f ∈ StabH4(5), then

f({6, 7, 8}) = {6, 7, 8}. Thus, there are 3 elements to which 6 can be mapped.

Suppose 6 7→ k where k ∈ {6, 7, 8}. Since we have only chosen images for 1, 2, 3, 4, 5,

and 6, we have not decided the image of any quintuples not found in B1 (Recall that each

quintuple of {1, 2, 3, 4, 5, 6} can be contained only in B1). Therefore, the only octad which

is fixed setwise is B1, and so it must be that the elements of {9, 10, . . . , 24} are fixed setwise.

Specifically, note that each tetrad of {1, 2, 3, 4, 5, 6} is contained in four octads other than

B1, and these four octads partition the elements of the 24-set which are not contained in

B1. So, consider one of these 24 − 8 = 16 elements not found in B1, say 9. As said before,

9 cannot be mapped to 6, 7, 8, but it can be mapped to any of the other elements not found

in B1. Suppose 9 7→ m where m ∈ {9, 10, . . . , 24}.

At this point, we want to determine whether we have fixed anymore quintuples, and thus

octads. Well, it turns out that we have. To see this, note that there are
(
6
4

)
= 15 tetrads

of {1, 2, 3, 4, 5, 6}. Since each quintuple is contained in exactly one octad, it follows that 9

appears with each of the 15 tetrads in exactly one octad. We have listed the corresponding

octads below (again obtained from the Matlab output):

1 2 3 4 9 14 18 20 1 2 5 6 9 14 16 22 2 3 4 5 9 15 22 23

1 2 3 5 9 10 11 24 1 3 4 5 9 12 13 16 2 3 4 6 9 16 17 24

1 2 3 6 9 13 15 21 1 3 4 6 9 11 19 22 2 3 5 6 9 12 18 19

1 2 4 5 9 17 19 21 1 3 5 6 9 17 20 23 2 4 5 6 9 11 13 20

1 2 4 6 9 10 12 23 1 4 5 6 9 15 18 24 3 4 5 6 9 10 14 21
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Therefore, each of these 15 octads has another octad to which it is setwise fixed. Furthermore,

note that each of the remaining 15 elements {10, 11, . . . , 24} appears in exactly three of the

above octads. For example, consider the three octads in the above set which contain the

element 10. Using our current mapping of elements, we obtain the following mapping of

octads, where a1, . . . , a9 ∈ {10, . . . , 24}:

1 2 3 5 9 10 11 24 7→ B2 = 1 2 3 5 m a1 a2 a3

1 2 4 6 9 10 12 23 7→ B3 = 1 2 4 k m a4 a5 a6

3 4 5 6 9 10 14 21 7→ B4 = 3 4 5 k m a7 a8 a9,

Since the three octads on the left intersect in exactly one element, and B2, B3, and B4 are

the images of these distinct octads, it follows that {a1, a2, a3}, {a4, a5, a6} and {a7, a8, a9}
must have exactly one element in common, call it ai. To continue building an automorphism,

we must map 10 to ai. But note that each of the elements 11, 12, . . . , 24 are fixed in a similar

manner. Thus there is exactly one way to map the elements {10, . . . , 24}, and hence there is

exactly one way to map both 7 and 8. That is, by choosing an image for both of the elements 6

and 9, each of the remaining 15 elements has exactly one element to which it can be mapped.

For example, suppose we map 6 to 7 and 9 to 10. We must then have the following mappings:

1 2 3 4 9 14 18 20 7→ 1 2 3 4 10 16 21 22

1 2 3 5 9 10 11 24 7→ 1 2 3 5 10 9 11 24

1 2 3 6 9 13 15 21 7→ 1 2 3 7 10 12 13 18

1 2 4 5 9 17 19 21 7→ 1 2 4 5 10 13 14 15

1 2 4 6 9 10 12 23 7→ 1 2 4 7 10 11 19 20

1 2 5 6 9 14 16 22 7→ 1 2 5 7 10 17 22 23

1 3 4 5 9 12 13 16 7→ 1 3 4 5 10 18 19 23

1 3 4 6 9 11 19 22 7→ 1 3 4 7 10 9 15 17

1 3 5 6 9 17 20 23 7→ 1 3 5 7 10 14 16 20

1 4 5 6 9 15 18 24 7→ 1 4 5 7 10 12 21 24

2 3 4 5 9 15 22 23 7→ 2 3 4 5 10 12 17 20

2 3 4 6 9 16 17 24 7→ 2 3 4 7 10 14 23 24

2 3 5 6 9 12 18 19 7→ 2 3 5 7 10 15 19 21

2 4 5 6 9 11 13 20 7→ 2 4 5 7 10 9 16 18

3 4 5 6 9 10 14 21 7→ 3 4 5 7 10 11 13 22



Maria E. Beane Chapter 5. Automorphism Groups of Steiner Systems 57

Using the aforementioned process, we obtain the following:

10 7→ 11 14 7→ 22 18 7→ 21 22 7→ 17

11 7→ 9 15 7→ 12 19 7→ 15 23 7→ 20

12 7→ 19 16 7→ 23 20 7→ 16 24 7→ 24

13 7→ 18 17 7→ 14 21 7→ 13

It now remains to find the image of 7 and 8. To do so, we consider any non-B1 octad

containing 7 and its mapping. For example:

1 2 3 7 9 16 19 23 7→ 1 2 3 ? 10 23 15 20.

The only octad which contains the 5-set {1, 2, 3, 10, 23} is {1, 2, 3, 8, 10, 15, 20, 23}. Thus, it

must be that 7 7→ 8, which forces 8 7→ 6, and so we have found the following automorphism:

(1)(2)(3)(4)(5)(24)(6 7 8)(9 10 11)(12 19 15)(13 18 21)(14 22 17)(16 23 20).

Since there are three choices for 6 and 16 choices for 9, then there are 3 · 16 = 48 auto-

morphisms which fix {1, 2, 3, 4, 5} pointwise and B1 setwise. That is, | StabH4(5)| = 48.

Therefore

|Aut(S(5, 8, 24))| = 48 · 4 · 5 · 6 · 7 · 8 · 759 = 244, 823, 040,

which can be verified using an alternative proof in [8, Appendix 4 (Theorem A4.2)].



Chapter 6

Sphere Packings

The following is a problem which has intrigued mathematicians for years:

Let En be the Euclidean n-space. How should open and congruent n-spheres be po-

sitioned in En such that none are overlapping and the volume of En covered by the

spheres is maximal?

This problem is referred to as the sphere packing problem. Different packings of spheres are

judged by how much of the given space they leave uncovered by spheres; the less space left

uncovered, the better the packing. Essentially, this reduces to finding an appropriate set of

points in En on which to center congruent n-spheres. For simplicity, most people choose to

study packings that occur on a lattice, which is an array of points that continues in a regular

pattern in all directions. The precise definition is listed below.

Definition 6.0.4. Let Λ be a set of points. Λ is a lattice if the following conditions are

satisfied:

i) ~0 ∈ Λ.

ii) If ~x ∈ Λ, then −~x ∈ Λ.

iii) If ~x ∈ Λ and ~y ∈ Λ, then ~x+ ~y ∈ Λ.

58
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Ideally, we would like to have some kind of numerical figure that gives us a sense of how

good a packing is. There are two main ways to estimate this mathematically, and we define

them as follows.

Definition 6.0.5.

i) The density of a sphere packing is the fraction of En covered by the spheres. In other

words, let s be an n-sphere. Then the density is the volume of s divided by the amount

of space of En which lies closer to the center of s than that of any other sphere.

ii) Suppose that each open sphere is replaced by its closure. Then the contact number of a

sphere packing is the number of spheres each sphere touches. In a lattice packing, this

will be the same for any sphere.

These two mathematical entities are actually closely related. A packing where each sphere

touches a large amount of spheres will yield a higher density than a packing where each

sphere touches only a few spheres. Thus, to find a good packing, it suffices to look for a

configuration in which each sphere touches as many others as possible. We will use this

approach in E24 to avoid complications about n-dimensional volume.

6.1 Packings in E2

To further aid our discussion of the topic, we examine two sphere (or in this case, circle)

packings on a lattice in E2, one of which is the densest known in that dimension. Recall that

E2 is simply the xy-plane. Consider the lattice packings pictured in Figure 6.1. To simplify

matters, we have used the same size spheres in each packing. Specifically, each sphere has

radius 1 and area π. By observation, we see that the contact number of the packing on Λ0 is

4, while the contact number of the packing on Λ1 is 6. Now, we want to calculate the density

of each packing. In the packing on Λ0, note that each 2×2 square contains one circle. Thus,

the fraction of each 2 × 2 square covered by a sphere is π
4
≈ 0.7853, which is then also the

density of the entire packing because of its regularity.
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(a) Λ0 = {m(2, 0) + n(0, 2) : m,n ∈ Z} (b) Λ1 = {m(2, 0) + n(1,
√

3) : m,n ∈ Z}

Figure 6.1: Two lattice packings in E2.

Calculating the density of the packing on Λ1 is slightly trickier. First note that we can create

a parallelogram P with vertices {(2, 0), (4, 0), (3,
√

3), (1,
√

3)}. Since P has height
√

3 and

width 2, then area(P) = 2
√

3. Furthermore, note that P contains the equivalent of one disk,

although it is divided into four pieces. Thus, the fraction of each P covered by a sphere is
π

2
√
3
∼= 0.9068, which is then also the density of the entire packing.

The packing on Λ1 is denser than the packing on Λ0, and, in fact, the packing on Λ1 is

the densest possible packing in E2. But the question remains, how do we know that it is the

absolute densest packing in E2? To answer this, we need to discuss the theoretical upper

bounds associated with the density sphere packings, and we do so in the next section.

6.2 Rogers’ and Coxeter’s Upper Bounds for Sphere

Packings

Since we can view E2, perhaps one could claim that Λ1 “obviously” produces the densest

sphere packing in two dimensions. However, what happens when the dimension is greater

than three and we can no longer even visualize our sphere packings? At this point, we want



Maria E. Beane Chapter 6. Sphere Packings 61

some way of deciding how good a sphere packing is compared with what sphere packings

are possible to construct. That is, for each dimension, we would like an upper bound for

density and/or contact number. Fortunately, we have both. Though the derivations of each

are beyond the scope of this paper, a mention of them is necessary.

The upper bound for the density of a sphere packing in En is credited to C. A. Rogers.

Before we state the bound, we first define the following:

Definition 6.2.1.

i) The convex hull of n+ 1 points is the minimal convex set containing them.

ii) An n-simplex is a an n-dimensional polytope (geometric object with flat sides) which

is the convex hull of its n+ 1 vertices.

Note that a 1-simplex is a line segment, a 2-simplex is an equilateral triangle, and a 3-simplex

is a regular tetrahedron.

Now, Rogers’ claim is this (which he proved in 1958):

The density of a packing in En cannot exceed the fraction of a regular n-simplex of a

side length two which is interior to the n+1 unit spheres whose centers are the vertices

of the simplex [8, p. 67].

Let’s look at what this means in E2. That is, the case where n = 2. Consider three points

in the plane x, y, z where d(x, y) = d(y, z) = d(x, z) = 2. A 2-simplex of side length 2 is the

equilateral triangle formed by these three points. Now, suppose we center a circle of radius

1 (a unit circle) on each of the points. Let A be the fraction of the 2-simplex contained in

one of these three circles. By Rogers’ claim, the density of a packing in E2 cannot be larger

than A, which is displayed in Figure 6.2. Note that the portion shaded in black constitutes

one half of a unit circle. Thus, A =
1
2
π(1)2

1
2
(2)
√
3

= π
2
√
3
. But note that this is precisely the density

of the packing on Λ1, which proves that it is indeed the densest possible packing.
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Figure 6.2: Rogers’ upper bound in E2.

Now, for dimension n, the precise formula for this upper bound is given as follows. First, we

define Fn(α) recursively by

Fn+1(α) =
2

π

∫ α

arcsec(n)
2

Fn−1(β) dθ,

where sec(2β) = sec(2θ) − 2 and F1(α) = F0(α) = 1. As a side note, this function was

originally defined by Schläfli. Then the upper bound for density is given by

(n+ 1)
1
2 (n!)2 π

n
2

2
3n
2 Γ

(
n
2

+ 1
) Fn

(
1

2
arcsecn

)
,

where Γ(x) is the Gamma function
∫∞
0
tx−1e−tdt. [8, p. 68]

Recall our earlier statement that an upper bound exists for both density and contact number.

We now address the latter one to which H. S. M. Coxeter is given credit. Again, the details

are omitted, but readers who wish to delve deeper into the subject can find their curiosities

satisfied by Coxeter’s article [4]. The initial form of the upper bound for contact number is

given by the following formula:
2Fn−1

(
1
2

arcsecn
)

Fn
(
1
2

arcsecn
) ,

where Fn is defined as before. While Coxeter is given credit for derivation, John Leech

is given credit for computation of n ≤ 8, where he chose to simplify matters by writing

fn(sec 2α) for Fn(α). Then fn(x) = Fn
(
1
2

arcsecx
)
, and thus the upper bound becomes:

2fn−1(n)

fn(n)
.
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In the table below, we list the upper bounds for density and contact number for certain

dimensions n. The values related to density use Rogers’ upper bound and can be found in

Thompson [8, Appendix 1], which contains results for dimensions 1 through 24 and a few

even greater than 24. The values related to contact number use Coxeter’s upper bound and

can be found in both Anderson [1, p. 114] and Coxeter [4, p. 68].

Maximum Density Maximum Contact Contact Number

n Density Attained Upper Bound Number Attained Upper Bound

1 1.0 1.0 2 2

2 0.9068 0.9068 6 6

3 0.7404 0.7796 12 12

4 0.6168 0.6477 24 26

5 0.4652 0.5256 40 48

8 0.2536 0.2567 240 244

24 0.002455 0.001929 196560 263285

6.3 Leech’s Lattice

Though we cannot visualize dimensions above three, sphere packing problems exist in all

dimensions. Thus, in one great leap, we now enter the realm of E24 in which John Leech

discovered a surprisingly dense lattice packing. The underlying lattice has appropriately

been given the name Leech’s lattice, and though no one has been able to verify whether or

not a denser packing exists, many people are confident that one does not.

One of the most interesting facts about Leech’s lattice, and the reason for its inclusion

in this thesis, is that it can be derived from the Steiner system S(5, 8, 24). To do this, we

use the group K, which we described earlier in Section 3.3. Recall that if G is the group of

subsets of the base set B with the operation of symmetric difference, then K is the smallest

subgroup of G to contain all the octads of S(5, 8, 24). In the aforementioned section, we

showed that K has size 212 and consists of the octads, their complements, the dodecads, the

empty set, and the base set B. We are now ready to define Leech’s lattice.
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Definition 6.3.1. Let C ∈ K and m ∈ Z. Let C(m) denote the set of all twenty-four-

dimensional vectors x = (x1, x2, . . . , x24) such that

(a) each xi is an integer, and
∑24

i=1 xi = 4m,

(b) xi ≡ m(mod 4) if i /∈ C,

(c) xi ≡ m+ 2(mod 4) if i ∈ C.

Let Λ be the union of all the sets C(m). Then Λ is called Leech’s lattice.

Before we continue, we first verify that Leech’s lattice is indeed a lattice.

Theorem 6.3.2. Λ is a lattice.

Proof. Based on [1, p. 112]. We must verify the three necessary conditions.

(i) 0 ∈ Λ: Let m = 0 and note that ∅ ∈ K. Then 0 = (0, 0, . . . , 0) ∈ ∅(0).

(ii) If x ∈ Λ, then −x ∈ Λ: Suppose x ∈ Λ. Then x ∈ C(m) for some C ∈ K and m ∈ Z.

So −x ∈ C(−m), and thus −x ∈ Λ.

(iii) If x ∈ Λ and y ∈ Λ, then x + y ∈ Λ: Suppose x,y ∈ Λ. Then x ∈ C(m) and y ∈ D(n)

for some C,D ∈ K and m,n ∈ Z. We will show that x + y ∈ (C + D)(m + n) by

considering the ith component. Note that this is possible since C +D ∈ K.

Case 1 : i ∈ C and i ∈ D. Then i /∈ C + D. Furthermore, xi ≡ m + 2(mod 4) and

yi ≡ n+ 2(mod 4). Thus xi + yi ≡ m+ n(mod 4), so condition (b) holds for i.

Case 2 : i ∈ C and i /∈ D. Then i ∈ C + D. Furthermore, xi ≡ m + 2(mod 4) and

yi ≡ n(mod 4). Thus xi + yi ≡ m+ n+ 2(mod 4), so condition (c) holds for i

Case 3 : Similar to Case 2.

Case 4 : i /∈ C and i /∈ D. Then i /∈ C + D. Furthermore, xi ≡ m(mod 4) and

yi ≡ n(mod 4). Thus xi + yi ≡ m+ n(mod 4), so condition (b) holds for i.

Since i denoted an arbitrary component, we conclude that x + y ∈ (C +D)(m+ n).

Since the three necessary conditions holds, it follows that Λ is a lattice.
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To obtain a sphere packing, we will center a sphere of radius 1
2
b(Λ) on each of the points

in Λ, where b(Λ) is the shortest distance of a point of Λ from the origin. That is, b(Λ)

is the minimum value of
√

(x21 + · · ·+ x224) such that (x1, . . . , x24) 6= (0, . . . , 0) and condi-

tions (a), (b), and (c) of Definition 6.3.1 hold for some C ∈ K and m ∈ Z. Note that

we have borrowed the notation “b(Λ)” from Anderson [1, p. 113]. Furthermore, the proofs

which follow are heavily influenced by his work in [1], though they have been expanded upon.

Before we begin, suppose C ∈ K is an octad. Then sixteen elements of the base set B

are not in C and eight elements of B are in C. Thus, by the definition of Λ, there are sixteen

xi’s which are congruent to mmod 4 and eight xi’s which are congruent to m+2 mod 4. This

idea is extended to the other elements of K in the table below.

# of xi’s ≡ m(mod 4) # of xi’s ≡ m+ 2(mod 4)

Base set 0 24

Empty set 24 0

Octad 16 8

Complement of an octad 8 16

Dodecad 12 12

We now compute b(Λ) in the following theorem.

Theorem 6.3.3. b(Λ) =
√

32.

Proof. Based on [1, p. 113-114]. Let ~x = (x1, . . . , x24) ∈ Λ\(0, . . . , 0). By conditions (b) and

(c) of Definition 6.3.1, either all of the xi are even or all of the xi are odd, depending on

whether m is even or odd. Thus, in computing the minimum distance of ~x from the origin,

we must consider both the case where ~x contains all even coordinates as well as when ~x

contains all odd coordinates.

Case 1 : m is even, and thus all of the xi are even.

Case 1a : All xi are multiples of 4.

Then ~x = (4k1, . . . , 4k24) for some k1, . . . , k24, and
∑24

i=1 xi = 4m. If m = 0,

then
∑24

i=1 xi = 0. But ~x is not the origin, and so at least one xi is nonzero,

say x1. Since the above summation is 0, there exists xj such that xj = −x1.
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Note that ±4 are the multiples of 4 with smallest nonzero magnitude. Therefore,∑24
i=1 x

2
i ≥ 42 + 42 = 32, and so b(Λ) ≥

√
32.

If m ≥ 2, then
∑24

i=1 xi ≥ 4 · 2 = 8, and so either one xi is at least 8, or there are

two xi’s which have magnitude at least 4. In either case,
∑24

i=1 x
2
i ≥ 32, which

again gives b(Λ) ≥
√

32. If m ≤ −2, then
∑24

i=1 xi ≤ 4 · (−2) = −8, and by a

similar argument, b(Λ) ≥
√

32.

Case 1b : There exists at least one xi 6≡ 0 mod 4.

Without loss of generality, suppose x1 6≡ 0 mod 4, which implies that x1 ≡ 2 mod 4

since x1 is even. If m ≡ 0 mod 4, then x1 ≡ m + 2 mod 4. By the above table,

there exists at least seven other xi’s which are congruent to m + 2 modulo 4,

which implies that |xi| ≥ 2 for at least eight of the xi’s. On the other hand, if

m ≡ 2 mod 4, then x1 ≡ mmod 4, which again implies that eight of the xi’s satisfy

|xi| ≥ 2. Therefore,
∑24

i=1 x
2
i ≥ 8 · 22 = 32, and thus b(Λ) ≥

√
32.

Case 2 : m is odd, and thus all of the xi are odd.

Then each |xi| ≥ 1. If one coordinate, say x1 has magnitude strictly larger than 1,

then |x1| ≥ 3 and thus
∑24

i=1 x
2
i ≥ 32 + 23 · 1 = 32. So suppose all xi = ±1. Since

1 6≡ −1 mod 4, if 1 ≡ m(mod 4), then −1 ≡ m + 2(mod 4). Thus, by the chart, we

can have the following possible breakdowns of +1’s and −1’s within an 24-tuple, along

with the corresponding sums of their coordinates:

+1’s −1’s
∑24

i=1 xi

0 24 -24

8 16 -8

12 12 0

16 8 8

24 0 24

In each case, 4n =
∑24

i=1 xi = 4m for some n ∈ Z, which is a contradiction to our

assumption that m is odd. Thus we cannot have all xi = ±1, and so b(Λ) is still

greater than or equal to
√

32, as from Case 1.
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In every possible case, we have shown that b(Λ) ≥ 32, and we have also shown that this

lower bound can be attained. Therefore, we conclude that b(Λ) =
√

32.

By the above theorem, in order to create a sphere packing on Leech’s lattice, we center a

sphere of radius 1
2

√
32 = 2

√
2 on each point of the lattice. Recall that the upper bound for

the contact number of a sphere packing in E24 is 263, 285. To show how this sphere packing

compares to the theoretical upper bound, we will compute the contact number.

Theorem 6.3.4. The contact number of Λ is 196,560.

Proof. Based on [1, p. 115-116]. First note that since Λ is a lattice, the contact number of

each sphere in the packing will be the same. Thus, it suffices to calculate the number of

spheres that touch the sphere centered at the origin. To do this, we will count the number

of points that are distance
√

32 from the origin. Again, since each 24-tuple in the lattice

consists of either all even or all odd entries, we must consider these cases separately.

Case 1 : Let ~x = (x1, . . . , x24), where each xi is even, |~x| =
√

32, and
∑24

i=1 x
2
i = 32.

Case 1a : Eight of the xi = ±2 and all other xi = 0.

That is, eight of the xi ≡ 2 mod 4 and sixteen of the xi ≡ 0 mod 4. So either

m ≡ 0 mod 4 and ~x ∈ E(m) where E is an octad, or m ≡ 2 mod 4 and ~x ∈ F (m)

where F is the complement of an octad. Either way, the eight ±2’s will appear

in coordinates which correspond to an octad. Recall that S(5, 8, 24) contains 759

octads, and so momentarily ignoring the plus and minus signs, there are 759 ways

of placing exactly eight 2’s in ~x. We must now distribute the plus and minus

signs. Recall that
∑24

i=1 xi = 4m, where m is even, which implies there must

be an even number of +2’s, as well as an even number of −2’s. To see this, let

k and j denote the number +2’s and −2’s, respectively. Then k + j = 8 and

2k − 2j = 4m. So k − j = 2m, and adding this to k + j = 8 gives 2k = 2m + 8.

Thus, k = m+ 4, which is even since m is even. But then j must be even as well.

So the first seven 2’s can be given either sign, and this can be done in 27 ways.

The restriction that we have an even number of each sign fixes the 8th sign. Thus,

we get 759 · 27 = 97152 points from this case.
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Case 1b : Two of the xi = ±4 and all other xi = 0.

Therefore, all of the xi are divisible by 4. So either m ≡ 0 mod 4 and C = ∅, or

m ≡ 2 mod 4 and C = B, the base set. The possible sums
∑24

i=1 are 0, 8, and

−8. Therefore, if C = ∅ and m ≡ 0 mod 4, then m = 0 and
∑24

i=1 = 0. That is, ~x

contains one 4 and one −4, which we can position in 24 · 23 = 552 ways. Now, if

C = B and m ≡ 2 mod 4, then m = ±2 and
∑24

i=1 = 8 or −8. That is, ~x contains

either two 4’s or two −4’s, which accounts for 2 ·
(
24
2

)
= 552 points. Therefore, we

obtain an addition 2 · 552 = 1104 points from this case.

Note that this case excludes the possibility that ~x contains a mixture of 2’s and 4’s,

for if ~x contains one ±2, then ~x contains at least eight ±2’s. Then, if ~x also contains

even one ±4,
∑24

i=1 xi ≤ 8 · 22 + 42 = 32 + 16, which further than b(Λ) from the origin.

Therefore, Case 1 has contributed 97152 + 1104 = 98256 points with distance
√

32

from the origin.

Case 2 : Let ~x = (x1, . . . , x24), where each xi is odd, |~x| =
√

32, and
∑24

i=1 x
2
i = 32. Note

that each xi > 1. In the proof of Theorem 6.3.3, we saw that the only way to achieve∑
i = 124x2i = 32 is if one of the coordinates of ~x is ±3 and the other 23 coordinates

are ±1’s. Suppose one of the coordinates is +3, and let n denote the number of −1’s.

Then there are 23− n +1’s. Since m is odd, either m ≡ 1 mod 4 or m ≡ 3 mod 4. Let

k denote the number of coordinates of ~x which are congruent to 1 modulo 4. Then,

k = 0, 8, 12, 16, or 24.

k = 0 : Since 3 ≡ −1 mod 4, there exists one +3 and 23 −1’s. Then
∑24

i=1 = 3− 23 =

−20 = 4m, which implies that m = −5. In this case, the corresponding set C is

∅, and there are 24 positions in which to place the +3. Note that the remaining

positions are each filled with a −1, and so we obtain 24 points from this case.

k = 8 : Then 23− n = 8, which implies that n = 15, and therefore
∑24

i=1 xi = 3 + 8−
15 = −4 = 4m, which implies that m = −1. So eight of the xi’s are ≡ m+2 mod 4

and the corresponding set C is an octad. Since 3 6≡ m + 2 mod 4, there are 16

positions in which to place the +3. We do not have a choice of where the +1’s and

−1’s appear. Since there are 759 octads, this gives us an additional 759·16 = 12144
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points.

k = 12 : Then 23−n = 12, which implies that n = 11 and m = 1. So 12 of the xi’s are

≡ m+ 2 mod 4 and the corresponding set C is a dodecad. Since 3 6≡ m+ 2 mod 4,

there are 12 positions in which to place the +3. Since there are 2576 dodecads,

this gives us an addition 2576 · 12 = 30912 points.

k = 16 : Then 23−n = 16, which implies that n = 7 and m = 3. So 16 of the xi’s are

≡ m+ 2 mod 4 and the corresponding set C is the complement of an octad. Since

3 6≡ m + 2 mod 4, there are 8 positions in which to place the +3. Since there are

759 complements of octads, this gives us an additional 759 · 8 = 6072 points.

k = 24 : Since 3 6≡ 1 mod 4, this case is impossible.

Through these cases, we have found 24+12144+30912+6072 = 49152 points with one

+3 as a coordinate and distance
√

32 from the origin. However, note that the argument

is almost identical if we suppose that one of the coordinates is −3. Specifically, each of

the above cases will yield the same number of points, and thus we have actually found

2 · 49152 = 98304 points of distance
√

32 from the origin.

Combining the results of the two cases, we see that the contact number of the sphere packing

on Λ is 98256 + 98304 = 196560.

To quote a few more statistics, we again adopt the notation of Anderson [1, p. 114] and

denote a(n) to be the largest known contact number of a packing in n dimensions and d(n)

to be the theoretical upper bound proposed by Coxeter. Consider the ratio a(n)
d(n)

. For n ≤ 8,

the ratio is at least 0.82. However, for n > 9, the greatest ratio is obtained by the sphere

packing on Leech’s Lattice. This fact is absolutely astonishing and only helps to identify

Steiner systems as extremely relevant and useful objects both in and beyond the field of

discrete mathematics.
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Matlab Code to Generate S(5, 8, 24)

The following code is written for Matlab and can be used to generate S(5, 8, 24). As men-

tioned in Chapter 4, this code can be improved upon, but we will leave that to the curious

and motivated reader.

The functionality is structured as a class in Matlab called “S5824.” To create a new in-

stance of the class, we type the following command into the command window:

>> s = S5824()

With this instance, we may view the octads as either 24-bit binary strings or as 24-tuples

with entries in {1, . . . , 24} using the following commands:

>> s.octadsBin

>> s.octadsNum

Within the class, there is are two functions: “iso” and “octContains.” A thorough description

of each can be found in the comments of the code. Sample calls are provided below:

>> s = s.iso([1,7,7,1]);

>> s.octContains([1,2,3,4,5])

70
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ans =

1 2 3 4 5 8 10 19

Code begins here:

classdef S5824 %S(5,8,24) Generator

properties

octadsBin = []; % 2D matrix, stores the octads as 24-bit binary strings

octadsNum = []; % 2D matrix, stores the octads as 8-tuples in {1,...,24}

% generator matrix for G_{24}, the (24,12) Golay code

% interchanging the rows and columns will give an equivalent system

g24mat = [ 1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1;

0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,1,1,0,1;

0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1;

0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,0;

0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1;

0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,1,0,1,1,0,1,0;

0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0;

0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0;

0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0,1;

0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,0,0,1,1;

0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,1,1,1;

0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,1,1,1,0];

rowSpace = []; % 2D matrix which stores the row space of g24mat

end %properties

methods

function obj = S5824() %constructor

% initializes the 2D matrices to contain all zeros

obj.octadsBin = zeros(759,24);

obj.octadsNum = zeros(759,8);

obj.rowSpace = zeros(4096,24);

linCombs = zeros(4096,12);
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% fills the matrix linCombs with all possible binary strings of length 12

for i = 1:1:12

index = (2^12) / (2^i);

currIndex = 0;

for k = 1:1:2^(i-1)

for j = 1:1:index

linCombs(currIndex + j, i) = 0;

linCombs(currIndex + j + index, i) = 1;

end

currIndex = currIndex + 2*index;

end

end

octadCount = 1;

% uses the binary strings in linCombs to calculate the

% row space of g24mat

for i = 1:1:4096

tempRow = 0;

for j = 1:1:12

tempRow = mod(tempRow + linCombs(i, j)*obj.g24mat(j,:), 2);

end

obj.rowSpace(i,:) = tempRow;

% if we find a element of the row space with weight 8,

% then we have found an octad

if (sum(tempRow) == 8)

obj.octadsBin(octadCount, :) = tempRow;

octadCount = octadCount + 1;

end

end

% converts the octads from 24-bit binary strings to 24-tuples

% in {1,...,24}, stored in octadsNum

for i = 1:1:759

temp = zeros(1,8);

octInd = 1;

for j = 1:1:24

if obj.octadsBin(i,j) == 1

temp(1,octInd) = obj.octadsBin(i,j)*j;

octInd = octInd + 1;

end

end

obj.octadsNum(i,:) = temp;

end

% sorts the octads in lexicographical order

obj.octadsNum = sortrows(obj.octadsNum, [1 2 3 4 5 6 7 8]);

end %constructor
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% creates an isomorphic S(5,8,24) system by permuting certain elements

% input: obj = instance of class

% elems = array of elements (a_1, a_2, a_3, a_4, ..., a_{n-1}, a_n)

% with n even and a_1 < a_3 < dots < a_{n-1}.

% denotes the changes:

% a_1 --> a_2, a_3 --> a_4, ..., a_{n-1} --> a_n.

% output: updated instance

% note: in command window, MUST use assignment statement to update instance.

function obj = iso(obj, elems)

for i = 1:1:759

% finds the indices of the elements to be changed, stored in array c

index = zeros(length(elems),1);

for k = 1:2:length(elems)

c = find(obj.octadsNum(i,:) == elems(k));

if (isempty(c) ~= 1)

index(k) = c;

end

end

% makes changes to octadsNum

for k = 1:2:length(elems)

if (index(k) ~= 0)

obj.octadsNum(i,index(k)) = elems(k+1);

end

end

% sorts each row after changes are made

obj.octadsNum(i,:) = sort(obj.octadsNum(i,:));

end

% sorts the octads to appear in lexicographical order

obj.octadsNum = sortrows(obj.octadsNum, [1 2 3 4 5 6 7 8]);

end %iso

% finds and returns the octads which contain certain elements

% input: obj = instance of class

% elems = array of elements for which to search

% output: foundOcts = array of octads which contain the

% elements of elems

function [foundOcts] = octContains(obj, elems)

foundOcts = [];

for i = 1:1:759

contains = 0;

for j = 1:1:length(elems)

% computes the sum of the find calls, if even one entry

% is not found, then contains is an empty array
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contains = contains + find(obj.octadsNum(i,:) == elems(j));

if (isempty(contains) == 1)

break;

end

if (j == length(elems))

foundOcts = [foundOcts; obj.octadsNum(i,:)];

end

end

end

end %octContains

end %methods

end %classdef
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