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An Introduction to Ramsey Theory on Graphs

James O. Dickson

(ABSTRACT)

Ramsey theory deals with finding order amongst apparent chaos. Given a mathematical

structure of interest and a setting where it may appear, Ramsey theory strives to identify

conditions on this setting under which our mathematical structure of interest must appear.

On a clear night one can look into the sky and observe patterns amongst the stars. Suppose

we are interested in finding a constellation of 10 stars forming a cup shape. Are we guaranteed

to find this constellation if we can see 100 stars, 1000 stars, or infinitely many stars? The

mathematical generalization of this question has been named the Happy End problem after

its proposer and solver, Esther Kline and George Szekeres who married shortly after solving

it (the role of the proposer being reversed!). At the time Esther and George’s mathematics

circle included Paul Erdos who became the most prolific mathematical author ever and the

leading exponent of Ramsey theory. When Erdos lectured about Ramsey theory on graphs

he drew in his audience with two problems. The first problem has been named the Party

problem. Given 6 people who have been invited to a party can we always find a subset of

3 people all of whom know each other or all of who do not know each other? The problem

is equivalent to asking if every coloring of the edges of the complete graph on 6 vertices in

the colors maroon and orange contains a subgraph of 3 vertices for which the edges running

between these vertices are either all maroon or all orange. The least number of vertices on

which the complete graph on these vertices guarantees such a set of 3 vertices is denoted

R(3,3). Ramsey type problems typically include some form of partitioning. In the above

example we partitioned the pairs of invitees into 2 sets, those pairs who knew each other and

those pairs that did not. Then we asked if we could find 3 pairs in either of the partitions

with the property that they formed a triangle of 3 people. In a typical Ramsey problem we

not only insist that our object of interest appear as a substructure of some superstructure, we

ask: how large must our superstructure be so that no matter how we partition it into a given



number of parts, one of the partitions contains the desired substructure? Erdos’s second

problem asks us to pretend we have encountered aliens who will destroy us unless we can tell

them R(5,5), what should we do, what if they asked for R(6,6)? For R(5,5) Erdos says that

all mathematicians and computers should work together to find the solution. For R(6,6)

Erdos recommends trying to figure out a way to destroy the aliens before they destroy us!

It has been shown that R(6,6) is at least 102. Before considering symmetries there are 2102

or more than 1030 graphs on 102 vertices. The number of atoms in the observable universe

is estimated as less than 1080. The computational power required to obtain R(6,6) by brute

force may never be available, the upper bound of 165 requires checking nearly 1050 graphs.

It is fascinating that we even have upper bounds given our computational shortcomings.

But even more fascinating is that Ramsey theory gives us upper bounds for R(m,n) for any

natural numbers m and n. It is these techniques that drew me to this topic and which I hope

to relate. All sorts of mathematical weaponry have been brought to bear on Ramsey theory:

constructive methods, computer algorithms, random graphs and the probabilistic method.

Despite the difficulty of classical Ramsey theory the beauty of the philosophy behind it has

led mathematicians to other elegant areas: Euclidean Ramsey theory, the problem of the

chromatic number of the plane, Schur’s theorem, van Der Waerden’s theorem, the Hales-

Jewett theorem, and other results in extremal graph theory are critical parts in the growing

Ramsey theory.
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Chapter 1

Introduction

1.1 Introduction

Ramsey theory deals with finding order amongst apparent chaos. Given a mathematical

structure of interest and a setting where it may appear, Ramsey theory strives to identify

conditions on this setting under which our mathematical structure of interest must appear.

On a clear night one can look into the sky and observe patterns amongst the stars. Suppose

we are interested in finding a constellation of 10 stars forming a cup shape. Are we guaranteed

to find this constellation if we can see 100 stars, 1000 stars, or infinitely many stars? The

mathematical generalization of this question has been named the Happy End problem after

its proposer and solver, Esther Kline and George Szekeres who married shortly after solving

it (the role of the proposer being reversed!). At the time Esther and George’s mathematics

circle included Paul Erdős, who became the most prolific mathematical author ever and the

leading proponent of Ramsey theory.

When Erdős lectured about Ramsey theory on graphs he drew in his audience with two

problems. The first problem has been named the Party problem. Given 6 people who have

been invited to a party, can we always find a subset of 3 people all of whom know each other

1
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or all of whom do not know each other? The problem is equivalent to asking if every coloring

of the edges of the complete graph on 6 vertices in the colors maroon and orange contains

a subgraph of 3 vertices for which the edges running between these vertices are either all

maroon or all orange. The least number of vertices on which the complete graph on these

vertices guarantees such a set of 3 vertices is denoted R(3,3).

Ramsey-type problems typically include some form of partitioning. In the above example

we partitioned the pairs of invitees into 2 sets, those pairs who knew each other and those

pairs that did not. Then we asked if we could find 3 pairs in either of the partitions with

the property that they formed a triangle of 3 people. In a typical Ramsey problem we not

only insist that our object of interest appear as a substructure of some superstructure, we

ask: how large must our superstructure be so that no matter how we partition it into a given

number of parts, one of the partitions contains the desired substructure?

Erdős’s second problem asks us to pretend we have encountered aliens who will destroy us

in six months unless we can tell them the exact value of R(5,5), what should we do, what

if they asked for R(6,6)? For R(5,5) Erdős says that all mathematicians and computers

should work together to find the solution. For R(6,6) Erdős recommends trying to figure

out a way to destroy the aliens before they destroy us! It has been shown that R(6,6) is

at least 102. Before considering symmetries there are 2102 or more than 1030 graphs on 102

vertices. The number of atoms in the observable universe is estimated as less than 1080. The

computational power required to obtain R(6,6) by brute force may never be available, as the

upper bound of 165 requires checking nearly 1050 graphs.

It is fascinating that we even have upper bounds given our computational shortcomings.

But even more fascinating is that Ramsey theory gives us upper bounds for R(m,n) for any

natural numbers m and n. It is these techniques that drew me to this topic and which I hope

to relate. All sorts of mathematical weaponry have been brought to bear on Ramsey theory:

constructive methods, computer algorithms, random graphs and the probabilistic method.

Despite the difficulty of classical Ramsey theory the beauty of the philosophy behind it has
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led mathematicians to other elegant areas: Euclidean Ramsey theory, the problem of the

chromatic number of the plane, Schur’s theorem, van der Waerden’s theorem, the Hales-

Jewett theorem, and other results in extremal graph theory are critical parts in the growing

Ramsey theory.

This thesis is broken into four chapters. The first chapter discusses Ramsey’s theorem, its

proof and its generalizations. The second chapter covers Ramsey numbers, the known exact

values and the known upper and lower bounds. The third chapter is devoted to the chromatic

number of the plane problem. The final chapter summarizes known results for Ramsey-type

theorems dealing with the integers.

1.2 Preliminaries

A graph G = (V (G), E(G)) is a pair of sets, a vertex set and an edge set. A vertex v is

drawn as a point and an edge e = uv is drawn as an arc connecting the vertices u and v. G

will always represent a graph.

Vertices u and v are adjacent in G if uv ∈ E(G). An independent set S is a set of pairwise

nonadjacent vertices in G. If k vertices form an independent set this is called a k-IS. Vertex

v is incident with edge e if one of e’s endpoints is v.

Let [n] = {1, 2, . . . , n} denote the set containing the first n natural numbers. The complete

graph on n vertices Kn = ([n], {ij|i, j ∈ [n] and i < j}) is the graph drawn by placing n

points and connecting each pair of points with an arc.

The cycle graph Cn = ([n], {ij|i+ 1 = j for i ∈ [n− 1]} ∪ {n1}) may be drawn as n distinct

points on a circle.

G is called simple provided G has no loops or multiple edges. A loop is an edge connecting

a vertex to itself. Multiple edges occur when two or more identical edges appear in E(G).

All graphs will be simple unless otherwise stated.
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G is called directed if any of G’s edges are oriented from one vertex to another. In this case

the arc drawn includes an arrow agreeing with the orientation. All graphs will be undirected

in this thesis.

H is a subgraph of G means that V (H) ⊆ V (G) and that E(H) ⊆ E(G).

G is isomorphic to H means there is a bijective function f : V (G)→ V (H) where uv ∈ E(G)

if and only if f(u)f(v) ∈ E(H).

An r-coloring of G is an assignment of one of r colors to each edge in E(G). More generally

an r-coloring of a set S is a map χ : S → [r] where each s ∈ S is given a color χ(s). If T ⊆ S

and for some r ∈ [r] we have χ(t) = rforallt ∈ T then T is monochromatic.

Vertex v has degree k if v is incident with exactly k edges. Likewise v has maroon-degree k

if v is incident with k maroon colored edges. G is k-regular if each vertex in G has degree k.

An r-coloring χ of G is (G1, G2, ..., Gr)-good provided for each i in [r] χ colors no subgraph

isomorphic to Gi monochromatically in color i.

Vertex v′s deleted neighborhood n′(v) = {u ∈ v|uv ∈ E} is the set of vertices adjacent to v.

v′s neighborhood is n(v) = n′(v) ∪ {v}. As above v may have a maroon-n(v) if a coloring is

present.

The complement Ḡ of G has V ¯(G) = V (G) but uv ∈ E ¯(G) if nd only if uv /∈ E(G).

1.3 Frank P. Ramsey

Frank Plumpton Ramsey was born February 22, 1903 in Cambridge. His father Arthur

Ramsey was a mathematician who served as the president of Magdalene College. At a young

age Frank Ramsey was home schooled. Between 13 and 16 Ramsey attended Winchester, the

oldest public school in England, before attending Trinity College of Cambridge University.

At Winchester Ramsey’s brilliance was undeniable. He learned German in a few weeks to
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the point where he could critique German texts. Later he would travel to Austria to consult

with these authors about translating their works to English. He approached these authors

with such clear logic that they felt compelled to revise their works in German. Ramsey’s

shrewd and highly logical mind was anticipated at Cambridge. At 16 when Ramsey arrived

at Cambridge, Keynes and his followers approached Ramsey for approval of their ideas.

Ramsey was interested in many subjects ranging from classics, English literature, and the

German language, to current day politics. However with the encouragement of Keynes,

Frank Ramsey’s scholarly publications came from mathematical economics, mathematics,

and philosophy of logic.

In mathematical economics, Ramsey’s three main published contributions each came as

responses to questions posed to him by Keynes, and the brilliance of each would only be

recognized decades after Ramsey’s death. John Maynard Keynes was perhaps the most

famous economist of the twentieth century. Keynes recognized Ramsey’s brilliance freely; he

relates “from a very early age, about sixteen I think, his (Ramsey’s) precocious mind was

intensely interested in economic problems” (Keynes 1933). Also Keynes’s referred to one of

Ramsey’s papers as

“one of the most remarkable contributions to mathematical economics ever made, both in

respect of the intrinsic importance and difficulty of its subject, the power and elegance of

the technical methods employed, and the clear purity of illumination with which the writer’s

mind is felt by the reader to play about its subject. The article is terribly difficult reading

for an economist, but it is not difficult to appreciate how scientific and aesthetic qualities

are combined in it together” (Keynes 1933).

In economics, savings play a critical role in modeling the economy as a whole. For the current

year, savings represent a drain on how much the economy may produce and hence limits how

much an economy can consume. However, the famous assumption that savings=investment

indicates that savings are the key to future prosperity. One of Ramsey’s influential papers

determined the optimal rate of saving for an economy as measured by the utility received in
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the present and future.

Ramsey also published on the optimal rate of taxation on a regulated monopolist. The idea

is that the monopolist, say the water company, should neither profit nor lose money and at

the same time maximize the consumer surplus (difference in what the consumer is willing to

pay and is charged). Ramsey pricing refers to the solution of this problem where the price is

set so that price less marginal cost is inversely proportional to the price elasticity of demand.

Finally for Keynes, economic actors participated with full information, therefore their actions

reflected the true probabilities of the possible outcomes. Ramsey disagreed with Keynes on

this point, insisting that economic actors formed their beliefs about the probability of an

event based on incomplete or faulty information, and their actions only represented their

personal subjective probabilities. Ramsey further believed that an individual’s subjective

probability of an event could be identified by offering them sequentially worse odds on the

occurrence of that event until they declined to wager that the event would occur.

Ramsey’s theorem arose from Ramsey’s attempt to come to grips with the ideas of David

Hilbert, and specifically the ideas of Bertrand Russell and Alfred Whitehead in Principia

Mathematica. Russell and Whitehead tried to show that any mathematically true statement

could be derived from a set of axioms and a set of logical rules. Hilbert took this a step

further by trying to prove that there could be a procedure that did this. Ramsey found

these goals desirable and yet found logical holes that he set out to fix. Ramsey showed

that a certain class of first-order logic problems were decidable. We now know that some

first-order logic statements are undecidable in that their truth or falsehood does not affect

the truth of any other mathematically true statements. Therefore Ramsey’s aim could not

have been fulfilled in full. The theorem that is given his name was a mere lemma in his 1930

paper “On a Problem of Formal Logic”.

Not only were none of his ideas given their proper recognition at the time of their publication,

Ramsey’s chronic liver problems led to his untimely death at the age of 26 before Ramsey’s

theorem was even published as a lemma.
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1.4 Ramsey’s Theorem

The party problem asks: what is the smallest number of people attending a party for which

we are guaranteed to find 3 people none of whom know the other two or 3 people each of

whom know the other two? Assume that knowing is a symmetric relationship.

Suppose we have 5 people at a math party: Andy, Bud, Camille, Dan, and Emily. If

Andy knows Bud and Emily, Bud knows Andy and Camille, Camille knows Bud and Dan,

Dan knows Camille and Emily, and Emily knows Dan and Andy, then no three of the

partygoers are mutual non-acquaintances or mutual friends. To see this quickly, we encode

this information in a graph by taking K5 and assigning each partygoer a vertex and then

coloring the edge between partygoers maroon if they know each other and orange if they

do not know each other. If three partygoers all know each other, there will be a maroon

K3 subgraph, and if three partygoers all do not know each other there will be a orange

K3 subgraph. The Party problem appeared in this graph-theoretic manner in the March

1953 W. L. Putnam Mathematical Competition. Figure 1.1 shows this graph and it has no

monochromatic K3. Say Frank Ramsey joins the party. Now we have 6 attendees. As above,

Figure 1.1: R(3, 3) > 5

form the graph K6 and consider any 2-coloring of the edges. By the pigeonhole principle,

as Frank is incident with 5 edges and we have used 2 colors, at least 3 of the edges incident
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with Frank are the same color. Without loss of generality assume the three edges are colored

orange and these edges are incident with Andy, Bud, and Camille meaning Frank knows

none of these people. If any of the edges between Andy, Bud, and Camille is also orange,

Frank and the two people incident with this orange edge all do not know each other and

they are part of a monochromatic orange K3. If none of the edges between Andy, Bud, and

Camille are orange, then they are all maroon so Andy, Bud, and Camille are part of a maroon

monochromatic K3 and they all know each other. So 6 people are enough to guarantee a

clique of 3 people all of whom know each other or all of whom are strangers. We have solved

the problem, and in view of the following definition have proved that R(3,3)=6.

Definition The Ramsey number R(m, o) is defined to be the smallest n for which any 2-

coloring of Kn in maroon and orange contains a monochromatic maroon Km or a monochro-

matic orange Ko.

The 2-coloring of K5 above is the only 2-coloring avoiding monochromatic K3s (up to graph

isomorphisms). Indeed in the proof above if there is a vertex with three incident edges of the

same color, then a monochromatic K3 is formed amongst this vertex and these neighbors.

So in any coloring of K5 avoiding monochromatic K3s, each vertex is incident to two edges

of each color. For finite graphs, if each vertex is degree two or more then there is a cycle, as

any maximal path not repeating vertices must enter a vertex of degree one of which there

are none. If in one color the smallest cycle is a K3, then this coloring fails. If in one color the

smallest cycle is a 4-cycle then the other two edges between these 4 vertices are the second

color, and to avoid a triangle in the first color the fifth vertex sends two edges of each color

to non-consecutive vertices on the 4-cycle, but then there is a triangle in the second color

involving the fifth vertex and the. The 2-coloring in the proofs of R(3, 5) and R(4, 4), as

well as the critical graph for R(3, 9) are also unique. However, generally the 2-colorings used

to prove Ramsey numbers are not unique. For instance, there are 430,215 non isomorphic

critical 2-colorings to choose from when proving R(3, 8)!

Proposition 1.4.1 For all m ∈ mathbbN ,R(m, 2) = m
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Proof K2 is a graph consisting of a single edge. If χ is a 2-coloring of Km in maroon

and orange and χ assigns an edge the color orange then we have a monochromatic orange

K2. But if χ assigns no edge the color orange, then all edges are colored maroon and

we have a monochromatic maroon Km. So R(m, 2) ≤ m. On the other hand consider a

monochromatic maroon Km−1. It has neither a maroon Km subgraph nor an orange K2

subgraph. So R(m, 2) ≥ m. This implies R(m, 2) = m.

Proposition 1.4.2 The Ramsey function is symmetric i.e R(a, b) = R(b, a) for all a, b ∈ N .

Proof Let a, b ∈ N . Suppose R(a, b) = n then there is a 2-coloring χ of Kn−1 avoiding

maroon Ka and avoiding orange Kb. Define a coloring δ on G by δ(e) = 1 if χ(e) = 2 and

δ(e) = 2 if χ(e) = 1. Then δ and χ always swap colors. So δ is a coloring of Kn−1 that avoids

maroon Kb and orange Ka. Therefore R(b, a) ≥ R(a, b). Nothing we did above depends on

the order of the inputs. So swapping a and b in the above argument gives R(a, b) ≥ R(b, a),

hence we must conclude R(a, b) = R(b, a).

Lemma 1.4.3 The Ramsey numbers satisfy R(a, b) ≤ R(a, b− 1) +R(a− 1, b).

Proof Let n = R(a, b−1)+R(a−1, b). Consider a vertex v of Kn which has been 2-colored

maroon and orange. Since v is degree n − 1, maroon-degree(v)+orange-degree(v) = n − 1.

Then one of the following two statements must be true: i)maroon-degree(v) ≥ R(a − 1, b)

or ii) orange-degree(v) ≥ R(a, b − 1). For if neither of these is true then n − 1 = maroon-

degree(v)+orange-degree(v) ≤ R(a, b−1)+R(a−1, b)−2 = n−2, a contradiction. In case i),

maroon-n′(v) contains an orange Kb or a maroon Ka−1 which when combined with v forms

a maroon Ka. In case ii), orange-n′(v) contains a maroon Ka or an orange Kb−1 which when

combined with v forms an orange Kb. Since in both case i), and case ii), we must always

have either a maroon Ka or an orange Kb, this shows that R(a, b) ≤ R(a, b−1)+R(a−1, b).

Proposition 1.4.4 The Ramsey numbers are monotone.
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Proof Let u1 ≥ u2 and v1 ≥ v2 then if n is large enough to guarantee the existence of

either a maroon Ku1 or an orange Kv1 then n also guarantees the existence of a maroon

Ku2 or an orange Kv2 , as Ku2 is a subgraph of Ku1 and Kv2 is a subgraph of Kv1 . Hence

R(u1, v1) ≥ R(u2, v2)

Theorem 1.4.5 (Ramsey’s Theorem for 2 colors) For any m, o ≥ 2 ∈ N R(m, o) exists, i.e

is finite.

Proof Combining propositions 1.4.1 and 1.4.2 we have R(2, 2) = 2 and R(3, 2) = R(2, 3) =

3. Proceed by induction on o + m = n. We have done the base cases n = 4 and n = 5

above. Suppose that for n ∈ N we know R(m, o) exists whenever m + o = n and m, o ≥ 2.

Let m + o = n + 1 and m, o ≥ 2. If either m or o are 2, proposition 1.4.1 shows R(m, o)

exists. Otherwise m, o ≥ 3 and by Lemma 1.4.3, R(m, o) ≤ R(m, o − 1) + R(m − 1, o)

where m, o,m − 1, o − 1 ≥ 2 and the inductive hypothesis gives that both R(m, o − 1) and

R(m− 1, o) exist. So R(m, o) is bounded above and therefore exists.

The recursion in Lemma 1.4.3 as used in this proof provides a way to bound the Ramsey

numbers above in a closed form.

Theorem 1.4.6 For all a, b ≥ 2, R(a, b) ≤
(
a+b−2
a−1

)
.

Proof For r = s = 2, Proposition 1.4.1 gives R(2, 2) = 2 ≤
(
2+2−2
2−1

)
=
(
2
1

)
= 2. Again,

induct on the sum of the inputs a + b. If the theorem holds whenever this sum is n − 1

and a + b = n then R(a, b) ≤ R(a − 1, b) + R(a, b − 1) ≤
(
(a−1)+b−2
(a−1)−1

)
+
(
a+(b−1)−2

a−1

)
=(

a+b−3
a−2

)
+
(
a+b−3
a−1

)
=
(
a+b−2
a−1

)
, where the last equality is Pascal’s identity.

This is by no means the only way to prove the existence of the Ramsey numbers. We will

later establish upper bounds on R(m,m). Proposition 1.4.4 then bounds R(s, t) above by

R(max(s, t),max(s, t)) when R(s, t) exists for s, t ∈ N .
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1.5 Generalized and Infinite versions of Ramsey’s The-

orem

1.5.1 More Colors

First consider allowing colorings with more than 2 colors. Define for natural numbers I1, ..., Ir

the Ramsey number R(I1, I2, ..., Ir) to be the least number n for which any r-coloring of Kn

contains a monochromatic KIt in color t for at least one index t.

One might worry that R(I1, I2, ..., Ir) could be undefined because the extra colors provide

too much flexibility to the coloring. However, Ramsey’s theorem for 2 colors generalizes

quite readily to an arbitrary number of colors.

Lemma 1.5.1 The r-color Ramsey numbers satisfy R(I1, I2, ..., Ir) ≤ 2+(
∑r
i=1R(I1, I2, ..., Ii−

1, ..., Ir)− 1)

Proof As in Lemma 1.4.3, if n ≥ 2 + (
∑r
i=1R(I1, I2, ..., Ii − 1, ..., Ir) − 1) then any v ∈ Kn

has degree ≥ 1 + (
∑r
i=1R(I1, I2, ..., Ii − 1, ..., Ir)− 1) so that in some color j v has j-degree

≥ R(I1, I2, ..., Ij − 1, ..., Ir) when either for i 6= j n′(v) contains a monochromatic KIi in

color i or n′(v) contains a monochromatic j-colored KIj−1 which when v is added becomes

a monochromatic j-colored KIj .

Proposition 1.5.2 For all I1, I2, ..., Ir ∈ N R(I1, I2, ..., Ir)=R(I1, I2, ..., Ir, 2).

Proof As in Proposition 1.4.1; any (I1, I2, ..., Ir, 2)-good r+1 coloring does not use color

r+1, so this coloring is a (I1, I2, ..., Ir)-good r-coloring. Also (I1, I2, ..., Ir)-good r-colorings

are (I1, I2, ..., Ir, 2)-good r+1-colorings. This establishes both ≥ and ≤ giving equality.

Definition When all r inputs to the Ramsey function are the same number n, we may write

R(n; r) to indicate R(n, n, ..., n) when in the latter expression we have r n’s.
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Theorem 1.5.3 (Ramsey’s theorem for r colors) For any I1, I2, ..., Ir ≥ 2 ∈ N R(I1, I2, ..., Ir)

exists.

Proof Let r and n ∈ N . As in Theorem 1.4.5 induct on n =
∑r
i=1 Ii. We know R(2, 2) =

2. Repeated application of Proposition 1.5.2 gives R(2; r) = 2, settling our base case of

n = 2r. Assume for n ≥ 2r that whenever I1, I2, ..., Ir ≥ 2 ∈ N and
∑r
i=1 Ii = n that

R(I1, I2, ..., Ir) exists. Consider I1, I2, ..., Ir ≥ 2 ∈ N and
∑r
i=1 Ii = n+ 1, Lemma 1.5.1 gives

R(I1, I2, ..., Ir) ≤ 2+(
∑r
i=1R(I1, I2, ..., Ii−1, ..., Ir)−1) where the inductive hypothesis gives

that R(I1, I2, ..., Ii−1, ..., Ir) exists for each i in the sum, as the inputs sum to n+ 1−1 = n.

So R(I1, I2, ..., Ir) is bounded above and finite.

The above results give a quick upper bound on R(3; r), the multicolor Ramsey numbers for

triangles with r colors.

Theorem 1.5.4 R(3; r) ≤ 3r!

Proof Combining Proposition 1.5.2 and Lemma 1.5.1, R(3; r) ≤ rR(3; r−1) since the sum in

the lemma has r terms each of which appear with r−1 3s as R(3, ..., 3, 2, 3, ..., 3) = R(3; r−1).

As R(3; 2) = 6 = 3 ∗ 2 repeatedly applying the above relation gives the result.

1.5.2 Arbitrary Graphs

In addition to increasing the number of colors allowed by the colorings, the Ramsey function

need not be restricted to complete graphs.

Definition For graphs G1, G2, ..., Gr, the Ramsey number R(G1, G2, ..., Gr) is the least n for

which there are no (G1, G2, ..., Gr)-good r-colorings of Kn. Erdős and company have studied

the special cases when the Gi are cycles or bipartite.
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1.5.3 Hypergraphs

Definition A hypergraph H = (V (H), E(H)) has a vertex set V (H) just as for normal

graphs. However, edges e in E(H) can be any subset of V (H), not just subsets of order 2.

If each e in E(H) joins k vertices, then H is called k-regular.

Theorem 1.5.5 (Ramsey’s theorem for Hypergraphs) For any integers I1, I2, ..., Ir, k there

exists n ∈ N such that if the edges of the complete k-regular hypergraph on n vertices is

r-colored then for some i ∈ [r] there is a subhypergraph on Ii vertices that is monochromatic

in color i.

This theorem could be proved by inducting on k; for instance, k = 2 is the base case and

the normal r-color Ramsey theorem. However, to demonstrate a different proof technique

and introduce another area of Ramsey theory, first consider an infinite version of Ramsey’s

theorem that will imply both the r-color Ramsey theorem and more generally Ramsey’s

theorem for hypergraphs. This is the approach Ramsey took in his seminal paper.

1.5.4 Infinite version of Ramsey’s theorem

Ramsey viewed his result as a set-theoretic result. This theorem will be presented from the

set-theoretic perspective. Experience dictates that for finite cases, speaking about graphs

aids intuition as one can “see” what is going on. On the other hand when dealing with

infinite cases, mathematicians develop intuition from working with common infinite sets.

Theorem 1.5.6 (Infinite version of Ramsey’s theorem)

If X is a countably infinite set and for any n ∈ N the subsets of size n, Xn, are colored in

finitely many colors, then there is an infinite set M ⊆ X where all subsets of M of size n are

colored in the same color.
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Proof Let r be the finite number of colors. Let X be countably infinite and proceed by

induction on n. For n = 1 we are coloring the members of a countably infinite set in finitely

many colors, so by the infinite pigeonhole principle, one color, say red, is used on infinitely

many elements. The set of red elements certainly has the property that all 1-element subsets

are red. Now assume that for n ∈ N we may always find a countably infinite set M ⊆ X

where the n-element subsets of M are all colored the same color. Let χ be a coloring of the

n+1-element subsets of X. Take any element x0 of X and form X0 = X−{x0}. χ induces an

r-coloring χ0 on the n element subsets of X0 by χ0(a1, a2, ..., an) = χ(x0, a1, a2, ..., an). Now

the inductive hypothesis provides a countably infinite set M0 ⊆ X0], where all n-element

subsets of M0 are colored the same color by χ0. This mean that for any n+1 set in X

including x0 and n elements from M0 is colored the same color. Now repeat this process

by taking any element x1 ∈ M0, forming X1 = M0 − {x1} and finding a countably infinite

M1 ⊆ M0 where all n + 1 sets in X including x1 and n elements from M1 are colored the

same color. Repeating this process gives a sequence (x0, x1, ...) where if (xi1 , xi2 , ..., xin+1) is

an ordered n+1-tuple from elements in the above sequence (so i1 is the smallest index), then

χ(xi1 , xi2 , ..., xin+1) depends only on xi1 since (xi1 , xi2 , ..., xin+1) includes xi1 and n elements

from Mi1 . Color the sequence (x0, x1, ...) where xi gets colored the color χ gives to any n+ 1

tuple from this sequence with smallest index i. Since we have used finitely many colors and

the sequence is countably infinite in length, some color, say blue, is used infinitely many

times when coloring the sequence. Then the blue elements form a countably infinite set B

with the property that any n + 1 tuple from B is given the color blue by χ as no matter

what the smallest index of this n + 1 tuple is, it indicates the color blue. This shows the

theorem holds for n+ 1 and by induction the theorem holds for each n ∈ N .

The above technique will be used later in the finite setting to achieve a bound on R(m,m).
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1.5.5 Compactness

Here the goal is to prove that the infinite version of Ramsey’s theorem implies the finite

version. The chromatic number χ(H) is defined to be the least number of colors needed

to color the vertices of H so that the endpoints of each edge are not all the same color.

This definition is particularly tailored to hypergraphs where edges may have more than 2

endpoints, where it is fine for the edge uvw to have χ(u) = blue, χ(v) = blue, and χ(w) =

red.

There is a particularly useful connection between chromatic numbers and the Ramsey prop-

erty. Say we are wondering if we can color the edges of Kn in two colors so that we form no

monochromatic Kms, e.g. , if R(m,m) > n. We can reformulate this problem into one of

finding the chromatic number of a hypergraph as follows. For each edge in Kn associate a

vertex v in a new hypergraph H, for each Km subgraph of Kn place an edge in H connecting

the vertices in H corresponding to the edges of the Km. If χ(H) > 2 then for every 2-coloring

χ1 of the vertices in H, some edge in E(H) has all
(
m
2

)
endpoints the same color. But χ1

induces a coloring of Kn where each edge of Kn is colored the color its corresponding vertex

in H was colored by χ1. Alternatively we could have started with a 2-coloring of the edges

of Kn and similarly induced a 2-coloring of the vertices of H. The bijection assures us that

if χ(H) > 2 then every 2-coloring of Kn contains a monochromatic Km. So if χ(H) > 2 then

R(m,m) > n. Compactness discussion will continue after doing some brief preparation.

1.5.6 Density

Paul Turán, a member of Erdős’ Hungarian circle, asked what is the maximum number of

edges a graph on n vertices may have and yet have no complete subgraphs on more than r

vertices?

Turán showed in 1941 that the graph on n vertices with the most edges lacking a Kr+1

subgraph could be constructed by partitioning the n vertices into r sets of almost equal size
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and connecting pairs of vertices in different parts of the partition with an edge. These graphs

are now called Turán graphs. Turán graphs have at most ((r−1)/r)(n2/2) edges as, at best,

of the set of n2 ordered pairs the portion ((r − 1)/r) may be edges (a vertex does not form

an edge in its own part of the partition), and each edge counts an ordered pair twice. Parts

of a partition are said to be of almost equal size if the size of the parts differs by at most 1.

Theorem 1.5.7 (Turán’s Theorem) The simple graphs on n vertices containing no Kr+1

subgraphs have at most ((r − 1)/r)(n2/2) edges.

Proof Let G be a graph on n vertices with no Kr+1 subgraphs and the maximum number of

edges amongst all such graphs. The first thing to show is that G’s vertices may be partitioned

into sets where pairs of vertices within sets are nonadjacent but pairs of vertices in different

sets are adjacent. This is exactly what the following claim asserts.

Claim 1: Amongst any set of three vertices u, v, w of G it is not the case that uv ∈ E(G)

but uw, vw /∈ E(G).

Suppose we do have the situation in claim 1.

Case 1: d(w) < d(u) or d(w) < d(v). Without loss of generality assume d(w) < d(u).

Remove the vertex w and replace it with a copy u′ of u (so u′ is adjacent to every vertex u

is adjacent to) and call the new graph G′. Since u and u′ are not adjacent and the original

graph had no Kr+1 subgraphs, neither does G′. However, G′ has more edges than G since

the number of edges in G′ is the number of edges in G plus d(u)−d(w) > 0. This contradicts

that G had the maximum number of edges amongst Kr+1-avoiding graphs on n vertices.

Case 2: d(w) ≥ d(u) and d(w) ≥ d(v). Remove the vertices u and v and replace each with a

copy of w; call the new graph G′. G′ has no Kr+1 subgraphs, since w and its two copies are

pairwise nonadjacent and the original graph had no Kr+1 subgraphs. G′ has more edges than

G, as the number of edges in G′ is the number of edges in G plus 2d(w)−(d(u)+d(v)−1) ≥ 1

since we have added w′s edges to both copies of w and removed the edges incident with u

and v, but as uv ∈ E(G) d(u) + d(v), overcounts the quantity of edges removed by 1. This
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contradicts that G had the maximum number of edges amongst Kr+1-avoiding graphs on n

vertices.

So in fact claim 1 holds and G is a complete r-partite graph.

Claim 2: The number of edges in a complete r-partite graph is maximized when the parts

differ by at most 1. Suppose P1 and P2 are parts of the partition and |P1| − 1 > |P2|. Then

move a vertex from P1 to P2, then at least |P1| − 1 edges are added and |P2| edges are

removed, so the graph gains at least 1 edge and the graph is still r-partite and thus contains

no Kr+1.

Indeed we have shown that the Turán graph is the only graph (up to a permutation of the

vertices) on n vertices that achieves the maximum number of edges a graph can have and

still avoid Kr+1s.

Definition For a hypergraph H = (V (H), E(H)), define T (H) as the Turán number of

H. T (H) is the minimum number such that no matter how this number of vertices are

chosen from V (H) at least one edge in E(H) may be formed from these vertices. Define

τ(H) = T (H)/|V (H)|.

At this point as a warm-up consider as in p.12 [GRS2] the statements for hypergraphs and

sequences of hypergraphs Hn = (V (Hn), E(Hn)):

A:χ(H) > r

B:τ(H) ≤ r−1

A∗:limn→∞ χ(Hn) =∞

B∗:limn→∞ τ(Hn) = 0

[GRS2] comments: “B says that any sufficiently large set of vertices contains a hyperedge...A

says that if the vertex set is partitioned into r classes one class contains a hyperedge”.

Proposition 1.5.8 B ⇒ A, B∗ ⇒ A∗.
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Proof Largely from [GSR2]: Let H = (V (H), E(H)) be a hypergraph. Assume B holds for

H and consider an r-coloring χ of V(H). Since rr−1 = 1, at least one color is used on at

least r−1|V (H)| ≥ τ(H)|V (H)| = T (H) vertices. By definition the color with at least T (H)

vertices contains a hyperedge. Let Hn = (V (Hn), E(Hn)) be a sequence of hypergraphs

and assume B* holds for Hn. Now for any given r there is n ∈ N such that for m ≥ n

τ(Hn) ≤ r−1, but since we just showed B ⇒ A then for each m ≥ n χ(Hn) ≥ r which is

exactly what it means for A* to hold.

Now A* does not imply B*. To see this use the connection between Ramsey numbers

and chromatic numbers above. Say we care about R(m; r). The connection above can be

described by the following notation from [GRS2]: takeHn = (V (Hn), E(Hn)) where Vn = [n]2

and En = {[S]2|S ∈ [n]m}. Remember from above that χ(Hn) > r ⇐⇒ R(m; r) > n. On

the right as n approaches infinity r goes to infinity, but this means limn→∞ χ(Hn) = ∞ so

A* holds. But a calculation on τ(Hn) shows that limn→∞ τ(Hn) = (m− 2)/(m− 1) 6= 0. So

B* does not hold.

1.5.7 Compactness Continued

Here the point is to give conditions for when the infinite version of a Ramsey-type problem

implies the finite version. Often it is easier to prove the infinite version as it does not require

producing explicitly a sufficiently large n, but rather proving the statement only for colorings

of N or Nk which give the largest margin for simplification. This follows [GSR2] P.14-17

closely.

For a hypergraph H = (V (H), E(H) and a set W ⊆ V (H) the restriction HW has W as its

vertex set and an edge set consisting of those edges in H all of whose endpoints are in W .

So HW = (W,EW ) where EW = {e ∈ E(H)|e ∈ W}.

Theorem 1.5.9 (Compactness Principle [GSR2]) Let H = (V (H), E(H)) be a hypergraph
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where all edges have finitely many endpoints (possibly infinitely many vertices in V(H)). If

for any finite set W ⊆ V , χ(HW ) ≤ r then χ(H) ≤ r.

Proof For V (H) uncountable see [GSR2] proof 2, p.15. For V (H) uncountable a proof

of Theorem 6 requires the Axiom of Choice and [GSR2] gives a topological argument. The

uncountable case is important for the chromatic number of the plane, but in typical Ramsey-

type problems V (H) is N or Nk, so V (H) is countably infinite. Here only the countably

infinite case is presented.

Let H = (V (H), E(H)). Assume V (H) is countable, it suffices to consider V (H) = N .

This proof is direct. Let r ∈ N be given and assume for each n ∈ N there is a coloring

χn : [n]→ [r] where no edge is monochromatic. Since any finite set W ⊂ N has a maximum

element m, considering χm restricted to W shows χ(HW ) ≤ r. This assumption considers

only some of the finite sets W ⊂ N and the theorem allows making the assumption for all

finite sets, so this assumption is safe to make.

Now define a coloring χ∗ : N → [r] using an inductive approach. The goal is to show χ∗

never colors the vertices of an edge of H monochromaticaly. Since we only use r colors,

infinitely many of the χn color 1 with the same color. Define χ∗(1) to be this color. Take

S1 to be the set of n ∈ N where χn(1) = χ∗(1), and note that S1 is countably infinite.

Likewise infinitely many of the n ∈ S1 color 2 in the same color. Define χ∗(2) to be this

color and define S2 to be the set of n ∈ S1 where χn(2) = χ∗(2). So S2 is a countably infinite

collection of colorings from the χn that agree on the color of the first 2 vertices. Build χ∗

in this manner for each n ∈ N . Take e = (x1, x2, ..., xm) ∈ E(H) with largest entry xm.

Now Sxm is countably infinite, so nonempty, and there is a coloring χt ∈ Sxm , t ≥ xm where

χt(i) = χ∗(i) for i ≤ xm. Now χt is an r-coloring of at least [xm], so e is not monochromatic

under χt. As χt matches χ∗ on at least [xm], e is not monochromatic under χ∗ and this is

true for all edges.

Now consider the contrapositive of the Compactness Principle, if χ(H) > r then there is a
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finite W for which χ(HW ) > r. Since the infinite version of Ramsey’s theorem has already

been proven, which was a statement about the hypergraph with vertex set Xn and edge

set {e ∈ 2X : |e| = ∞} having no r-coloring for any r where X was countably infinite, the

following spacial cases are evident.

Corollary 1.5.10 (Compactness Principle (version B) [GSR2]) “Let k be a fixed positive

integer. Let A be a family of finite subsets of N . Suppose that for any r-coloring of [N ]k,

there is an A ∈ A so that [A]k is monochromatic. Then there exists n0 so that, for n ≥ n0

if [n]k is r-colored there is an A ∈ A, A ⊆ [n] so that [A]k is monochromatic”.

Version B is for one arbitrary r, but if it is true for an arbitrary r then it is true for all r

which gives version C.

Corollary 1.5.11 (Compactness Principle (version C) [GSR2]) “Let k be a fixed positive

integer. Let A be a family of finite subsets of N . Suppose that for any finite-coloring of

[N ]k, there is an A ∈ A so that [A]k is monochromatic. Then for all r there exists n0(r)

so that, for n ≥ n0(r) if [n]k is r-colored there is an A ∈ A, A ⊆ [n] so that [A]k is

monochromatic”.

Corollary 1.5.12 The infinite version of Ramsey’s theorem implies the finite version.

Proof Compactness Principle (version C) gives that for any r and m there is n so that

R(m; r) = n. The monotonicity of the Ramsey numbers implies the existence of each Ramsey

number.

1.6 Paul Erdős

Paul Erdős was born on March 26, 1913 in Budapest, Hungary. Erdős died in 1996 in Warsaw.

Paul is the Westernized version of Pal. I never met Erdős and refer here to comments made in
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My Brain is Open by Bruce Schecter and Erdős on Graphs by Fan Chung and Ron Graham.

Schecter never met Erdős but relies on stories told by Ron Graham, Andrew Vazsonyi, Esther

Kline, and George Szekeres. I will try to give a glimpse of this unparalleled man.

Erdős parents were both Jewish mathematicians who taught high school math courses in

Budapest. Erdős never met his two sisters who died of scarlet fever shortly before he was

born. Paul’s loving parents focused all of their energy on him and at 4 years old Paul was

quite the prodigy. At 4, Paul could calculate the number of seconds someone had lived and

was comfortable with the concept of a number being negative.

Early 20th century Budapest was an ideal place to raise a young mathematician. The

Hungarian educational system was excellent, and intellectual endeavors were highly valued

in the Jewish community to which Erdős belonged. Though Erdős claimed to never have

noticed, when pressed on the subject by Vazsonyi, Erdős could not recall a single non-Jewish

friend from his childhood. In 1920 the Hungarian Commune was dissolved leading to a wave

of anti-Semitism. By the age of 12 Erdős did notice that “eventually I’d have to leave

Hungary because I am a Jew.” Erdős was initially home schooled and then joined the public

school system where he spent his free time solving problems published in KoMal, a journal

of math problems for advanced high school students.

Erdős joined the Science University of Budapest and became friends with a group of fellow

young Jewish mathematicians whose solutions had likewise been published in KoMal. This

group included Esther Kline, George Szekeres, Andrew Vazsonyi, Paul Turán, Tibor Gallai,

Marta Sved, and half a dozen others. They met at the Statue of Anonymous in the City Park

of Budapest to explore their mutual passion for mathematics. Erdős’ first major publication

was an elegant re-proof of Bertrand’s Theorem that between n and 2n there always lies a

prime. When his advisor Leopold Fejer noticed that Ramanujan had similarly proved the

same result, Erdős showed that for n > 7 one could find two primes in the n to 2n window,

one being 1 mod 4 and the other being 3 mod 4. At the age of 21 Erdős earned his doctorate.

He only spent 2 years as a university student for both undergraduate and dissertation!
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The year was 1934 and anti-Semitism had engulfed Hungary. Erdős left Hungary for the

West. First Erdős was a lecturer at Manchester University but soon took a scholarship at

Princeton. Shortly thereafter he spent time at Purdue and Notre Dame but never more than a

year and a half. By this time Erdős had gained a reputation of being incredibly sharp. When

encountering other mathematician he would solve their problems or give them promising

directions to work in. Moreover Erdős was a master at seeing the natural progression of a

topic and quickly posed a new sequence of interesting questions building on what he had just

solved. Erdős quickly made friends in the West and carved out a unique lifestyle for himself.

For the rest of his life he became a nomad. Erdős moved from university to university visiting

friends and forging new friendships. His typical method of deciding where to visit next was

to ask the advice of the department he was at. His brilliance guaranteed that wherever he

chose to go, and however little advance warning he gave, that accommodations were made

for him until he decided to leave. Erdős spent much time at US institutions except between

1952 and 1963 due to McCarthy era mistrust of immigrants from Communist countries.

Erdős’ list of collaborators grew rapidly. When Erdős helped someone with a problem

it almost always resulted in a paper with Erdős’ name on it written by his collaborator.

In this way Erdős amassed over 1500 publications, more than any other mathematician.

Mathematicians created a convention to determine how close a mathematician was to being

a collaborator of Erdős called an Erdős number. One’s Erdős number is 1 if they published

a paper with Erdős, 2 if they published a paper with someone having Erdős number 1, and

so on. However, the 1s were too plentiful, so Erdős’ coauthors took to defining their Erdős

number as 1/(number of publications authored with Erdős). Nowadays almost all faculty

members have Erdős numbers.

Erdős was extraordinarily quirky. First, he referred to things in his own unique way known

as Erdőses. He referred to children as “epsilons” (because they were small), “The Book” was

a collection of the most important theorems and their most elegant proofs accessible only to

a supreme being, to “torture” was to give an oral exam, to be “dead” was to have stopped

publishing. Erdős never drove. He also was nearly incapable of doing anything domestically
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and did not like to be left alone. This often placed a burden on his hosts who had to arrange

everything. Erdős was never comfortable with physical contact and could barely manage to

brush someone’s hand when expected to shake hands. Certainly Paul never showed interest

in physical intimacy. He was briefly accompanied by a Dutch physicist named Jo Brining

but otherwise did not have relationships with women outside of math. His mother was very

protective of him and discouraged such relationships in his childhood.

Erdős lived life simply. All of his possessions fit into two suitcases. Erdős pursued mathemat-

ics nearly single-mindedly. Despite his nomadic lifestyle Erdős never faced serious financial

problems. The fees he collected when lecturing and the generosity of his friends supported

him sufficiently. Erdős often offered prizes for solutions to problems he had not solved but

wished to know more about. These prizes ranged from $1 to $10,000. Many of these problems

remain unsolved and his friends, principally Ron Graham, are willing to pay out these prizes

for good solutions. Had all of Erdős’ problems been solved he would have been incapable of

paying out the prizes, but no one ever managed to solve any worth more than $1000. Many

of these problems dealt with Ramsey theory and have served to draw mathematicians to the

topic, not for the financial gain, but to solve one of his problems. No one ever got rich from

solving Erdős’ problems. When Erdős won prizes that carried substantial financial benefits

he often donated these to friends in need.

Erdős was charismatic and treated his friends and collaborators well. He was also excep-

tionally good with children. Despite his quirks he was almost universally loved by the

mathematics community. Mathematicians all have their favorite Erdős story. Through his

extensive travels he touched and inspired many.



Chapter 2

Ramsey Numbers

2.1 Exact Values

Proposition 1.4.1 gave R(m, 2) = m for m ∈ N and the party problem showed that R(3, 3) =

6. The next smallest case to consider is that of R(4, 3). This requires strengthening Lemma

1.4.3 with Corollary 2.1.1.

Corollary 2.1.1 For a, b ∈ N if R(a, b − 1) and R(a − 1, b) are both even, then R(a, b) ≤

R(a− 1, b) +R(a, b− 1)− 1.

Proof Let n = R(a− 1, b) +R(a, b− 1)− 1 and suppose there is a (Ka, Kb)-good 2-coloring

of Kn in maroon and orange. Then as in Lemma 1.4.3 each vertex v has maroon-degree

at most R(a − 1, b) − 1 and orange-degree at most R(a, b − 1) − 1 since v’s maroon-n′[v]

must be (Ka−1, Kb)-good and v’s orange-n′[v] must be (Ka, Kb−1)-good. But v has degree

R(a− 1, b) +R(a, b− 1)− 2 allowing the conclusion that maroon-degree(v)=R(a− 1, b)− 1

and orange-degree(v)=R(a, b−1)−1 both of which are odd. Since n is odd, there are an odd

number of vertices. So in each color the sum of the color degrees is odd (odd × odd=odd).

However, each colored edge is incident with 2 vertices so the sum of the color degrees must

24
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be even. This contradiction implies the claim.

R(3, 4) = 9, R(3, 5) = 14, and R(4, 4) = 18 were known to Greenwood and Gleason in 1955.

These can all be proved quickly from the above results.

Proposition 2.1.2 R(3, 4) = 9.

Proof Corollary 2 gives R(3, 4) ≤ R(2, 4) + R(3, 3) − 1 = 4 + 6 − 1 = 9. Figure 2.1 shows

R(3, 4) > 8.

Figure 2.1: R(3, 4) > 8.

Proposition 2.1.3 R(3, 5) = 14.

Proof Lemma 1.4.3 gives R(3, 5) ≤ R(2, 5) + R(3, 4) = 5 + 9 = 14. Figure 2.2 shows

R(3, 5) > 13.

Proposition 2.1.4 R(4, 4) = 18
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Figure 2.2: R(3, 5) > 13.

Proof Lemma 1.4.3 gives R(4, 4) ≤ R(3, 4) + R(4, 3) = 9 + 9 = 18. Figure 2.3 shows

R(4, 4) > 17 by showing one of the colors.

Proposition 2.1.5 R(3, 3, 3) = 17.

Proof Combining Lemma 1.5.1, Propositions 1.4.2, and 1.5.2, and R(3, 3) = 6, R(3, 3, 3) ≤

2+((R(2, 3, 3)−1)+(R(3, 2, 3)−1)+(R(3, 3, 2)−1)) = 2+3(R(3, 3, 2)−1) = 2+3(R(3, 3)−

1) = 2 + 3(6 − 1) = 17. Figure 2.4 shows R(3, 3, 3) > 16; note that some vertices appear

twice to improve the layout. Also Figure 2.4 shows two graphs, these are the only two

non-isomorphic critical colorings.

For a graph G on n vertices, there is an associated 2-coloring of Kn where every edge in G

is colored maroon and every edge in G’s complement is colored orange. Thus, R(a, b) ≥ n if
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Figure 2.3: R(4, 4) > 17.

there is a graph G with no Ka subgraph and no b-IS. This is why Figure 2.3 is a good way

of demonstrating R(4, 4) > 17.

Corollary 2.1.1 gives that R(3, 6) ≤ R(3, 5) + R(2, 6) − 1 = 14 + 6 − 1 = 19, and for the

first time in the R(3, k) sequence this bound is not best possible. The proof is lengthy and

shows the effort and ingenuity required to improve the easy bounds above by only 1. The

value of R(3, 6) was first known and proved by Kalbfleisch in his PhD thesis at University of

Waterloo, which according to tradition was not immediately published. Indeed Kalbfleisch

continued to improve these results before publishing them. At approximately the same time

(1964-1965), Kery published a proof of this result. Others have proven the result since and
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there seems to be some competition regarding finding a clear and quick proof. Cariolaro’s

is the most recent in this vein; and I reproduce it here while reminding the reader of the

relevant previously proved statements when they are applied.

Theorem 2.1.6 R(3,6)=18.

Proof Let G be a triangle-free (no K3 subgraphs) graph on 18 vertices. Suppose that G has

no 6-IS. Some counting will show that G is 5-regular. Since G is triangle-free, the deleted

neighborhood of each vertex forms an independent set, so for each v ∈ V (G), |n′(v)| ≤ 5 as

there is no 6-IS. If deg(v) = |n′(v)| < 4 then removing n(v) from G yields a graph on at least

18−4 = 14 = R(3, 5) vertices, so as G is triangle-free, this graph on R(3, 5) or more vertices

has a 5-IS none of whose vertices are adjacent to v, so adding v to the 5-IS gives a 6-IS. If

deg(v) = |n′(v)| = 4 then again consider H, the graph formed by removing n(v) from G,

H = G−n(v), |H| = 18−4−1 = 13. Each vertex h ∈ H has deg(h) ≥ 4 in H as otherwise K,

the graph formed by removing n(h) from H has |K| = |H−n(h)| ≥ 13−4 = 9 = R(3, 4) and

so has a 4-IS which forms a 6-IS when v and h are added as nothing in H is adjacent to v and

nothing in K is adjacent to h. Let t ∈ n′(v). we showed above that for all v ∈ G deg(v) ≥ 4,

since the only vertex in n(v) adjacent to t is v, t is adjacent to three vertices h1, h2, h3 ∈ H.

h1, h2, h3 are independent as any adjacent pair with t forms a triangle. n′(v) − t is also a

3-IS. Finally h1, h2, h3 ∈ H and n′(v)− t are independent as the degree in G of each hi is at

most 5, but each hi is adjacent to at least 4 vertices in H and to t, so (n′(v)− t), h1, h2, h3
is a 6-IS. Since this is ruled out by assumption, each v ∈ G has degree 5.

It is tempting to end the proof by noting that we have the computational power to check all

5-regular graphs on 18 vertices. However, Cariolaro’s proof is elegant, not difficult (which

is quite an accomplishment), and readers starting out in Ramsey theory may benefit from

additional explanation. The labellings and ideas presented here are largely his. Above is

Cariolaro’s proof of his first claim that G would need to be 5-regular. Cariolaro’s second

claim is as follows:
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For any vertex v ∈ G there are exactly 4 non-neighbors p1, p2, p3, p4 of v with |n(pi)∩n(v)| = 1

and exactly 8 non-neighbors q1, ..., q8 of v with |n(qi) ∩ n(v)| = 2. Moreover the pis share 4

distinct neighbors with v and the qis share 8 distinct pairs of neighbors with v.

First note that 5-regularity implies each vertex has 18 − 5 − 1 = 12 non-neighbors. For u

and v nonadjacent vertices in G 1 ≤ |n(u) ∩ n(v)| ≤ 2. If this intersection were empty, then

u would be independent of n′(v) and u ∩ n′(v) is a 6-IS since 5-regularity and triangle-free

gives n′(v) as a 5-IS. If there were 3 or more vertices in this intersection then |n(u)∪n(v)| =

|n(u)| + |n(v)| − |n(u) ∩ n(v)| ≤ 6 + 6 − 3 = 9. Then H = G − (n(u) ∪ n(v)), the graph

with the neighborhoods of u and v removed, has at least 18 − 9 = 9 = R(3, 4) vertices,

and thus H has a 4-IS since G is triangle-free. Combining u and v with the 4-IS gives a

6-IS since u and v are non-adjacent and their neighborhoods are not in H. Each vertex in

n′(v) has 4 edges to vertices outside of n(v). As |n′(v)| = 5 there are 4 · 5 = 20 edges, from

non-neighbors of v into n(v). Since v has 12 non-neighbors and each sends either 1 or 2

edges to n(v) we must have 8 qis sending 2 and 4 pis sending 1. If pi and pj are adjacent

to the same vertex u ∈ n(v) then {pi, Pj} ∪ {n′(v)u} is a 6-IS which is not allowed, so the

pis are adjacent to distinct neighbors of v. If qi and qj are both adjacent to the same x and

y in n(v) then |n(x) ∩ n(y)| = |{qi, qj, v}| = 3 contradicting that for non-adjacent u and v

1 ≤ |n(u) ∩ n(v)| ≤ 2 since x and y are non-adjacent members of the independent set n′(v).

So the qis are adjacent to distinct pairs of v’s neighbors.

The final claim is that p1.p2, p3, p4 induce a 4-cycle. This means that the subgraph of G on

these 4 vertices is the 4-cycle. The strategy is to show that there are exactly 4 edges in this

subgraph, the fact that G has no triangles will imply this subgraph is 4-cycle.

Throughout this part, remember that G is 5-regular. Let n′(v) = {t, s1, s2, s3, s4} and by

the above let s1p1,s2p2,s3p3,s4p4 be the edges from the pis to n(v). Note that the pis are

not adjacent to t, as each pi is only adjacent to one vertex in n(v) which is denoted si. The

neighbors of t other than v are outside n(v) and these four neighbors are not pis, so they

are qis. Label these qis, specifically vertices in n(t)− v, as t1, t2, t3, t4. Label the other four
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qis w1, w2, w3, w4. For record-keeping, in V (G) we have v,t,and four each of sis, pis, tis, and

wis.

By definition each si sends one edge to v, one edge to the corresponding pi, one edge to the

tis (the ti send edges to t and one other neighbor of v and if there were 2 edges from an si to

the tis then the neighborhoods of the non-adjacent vertices si and t have these 2 tis and v in

common, but the neighborhoods of two non-adjacent vertices may have at most 2 vertices in

common), and thus as each si has degree 5, each si sends 2 edges to the wis. Likewise since

the si are adjacent to v no pair of sis may be adjacent to the same pair of wis since the si

are in n′(v) and are non-adjacent their neighborhoods cannot have v and 2 wis in common.

Likewise no wi is adjacent to three or more of the si since the non-adjacent v and this wi

would have 3 common neighbors. So each wi is adjacent to a unique pair of sis and there

are 4 such triples, one for each wi.

Say s1 and s2 are adjacent to w1, and note that the vertices in the 3-IS t, s3, s4 are not

connected to s1,s2,p1,p2, or w1. So if G has no 6-IS the subgraph induced by s1,s2,p1,p2,w1

has no 3-IS, and must be triangle-free, so this induced subgraph is the unique R(3, 3) avoiding

graph on 5 vertices, a 5-cycle. p1 is adjacent to s1, and thus not adjacent to s2 as the pis are

only adjacent to one si nor is p1 adjacent to w1 as then s1,w1,p1 would form a triangle, so

p1 is also adjacent to p2! As this reasoning holds for each of the four triples with a wi and

two adjacent sis, the subgraph induced by the pis has 4 edges. The only triangle-free graph

on four vertices with four edges is a 4-cycle. Thus the pi induce a 4-cycle. Without loss of

generality, this 4-cycle is p1p2p3p4p1.

Since pi and t are non-adjacent, as above their neighborhoods contain one or two common

vertices. Each pair of pis has no common neighbors except amongst the pis, for if two pi

are adjacent, a common neighbor forms a triangle, and if two pi are not adjacent, since the

pi lie on a 4-cycle, both of the other pis are common neighbors, and any common neighbor

outside the pis would be a third common neighbor which is a case dismissed above. Since

n(t) has v and the ti and the pi are not adjacent to v, each pi is adjacent to a unique ti, and
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by relabeling assume for each i that pisi is an edge. Each pi is not adjacent to v, sends one

edge to si, two edges to other pis, an edge to ti and thus by 5-regularity, sends exactly one

edge to the wis. By relabeling the wis and recalling that the pi have no common neighbors

outside of pis, assume piwi is an edge for each i. Now since pi is adjacent to si,ti,and wi to

avoid triangles with pi, siwi siti and tiwi must not be edges for each i.

Consider the tis, they are not adjacent to v, each sends one edge to the sis, one edge to t,

one edge to the pis (ti, pi) and thus sends two edges to the wis. No wi is adjacent to three

tis as then wi and t have 3 common neighbors, so each wi sends two edges to the tis. This

means that t and w1 share exactly two neighbors amongst t2, t3, t4 and by definition of w1 it

shares two neighbors with v from amongst s2, s3, s4. Then there is an i 6= 1 with w1 adjacent

to both si and ti. If i = 2 or i = 4 then pi and w1 have the three common neighbors p1,si and

ti so i = 3. w1 sends a second edge to the sis, but above we noted not to s1, by symmetry

we may assume it goes to s2. Then w1 is adjacent to t4 as w1 sends two edges to the tis, one

of which is to t3 but the second may not be to t1 as then w1, p1, t1 forms a triangle and the

second may not be to t2 as then t2, t3, s2 are common neighbors of w1 and p2.

Finally, consider s2. It is adjacent to some ti, but if s2 is adjacent to t2 then there is a

triangle s2, t2, p2, and if s2 is adjacent to t3 then there is the triangle s2, w1, t3 and if s2 is

adjacent to t4 then there is the triangle s2, w1, t4, so s2 is adjacent to t1. However, then s2

and p1 have common neighbors p2, w1, t1. Again, the case of 3 or more common neighbors

was dismissed above. So G can not be both triangle-free and avoid 6-IS. So R(3, 6) ≤ 18.

Cariolaro shows R(3, 6) > 17 with a specific graph completing the proof.

We have that R(4, 5) ≤ R(3, 5) +R(4, 4) = 14 + 18 = 32.

Theorem 2.1.7 R(4,5)=25.

Proof Two computer programs written independently by Brendan D. McKay and Stanislaw

P. Radziszowski both came to this conclusion in March 1993 though published in 1995.
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Suppose there were a (K4,K5)-good 2-coloring of K25. Removing any vertex gives a (K4,K5)-

good 2-coloring of K24. They make an observation about always being able to find a vertex

having certain properties in any (K4,K5)-good 2-coloring of K25, and decided to always

remove this vertex. This imposes constraints on the (K4,K5)-good 2-colorings of K24 that

might appear when this vertex is removed. They then build a catalog of all 350,866 (K4,K5)-

good 2-colorings of K24 meeting this constraint and show that adding a vertex with these

properties does not extend any of them to a (K4,K5)-good 2-coloring of K25.

Brendan D. McKay and Stanislaw P. Radziszowski comment that the catalog built “likely

contains most but not all (K4,K5)-good 2-coloring of K24” which gives the impression that

the real benefit gained from their observations was in restricting the number of extensions

they needed to examine.

There is another ingredient to their code of great mathematical interest, particularly their

use of optimization techniques. The constraints imposed by removing their vertex deal

intricately with sums of other relevant vertex degrees, and are linear in nature. Essentially

the graphs in the catalog are approximate solutions to a very large linear programming

problem. What this means is they have an objective function that rewards being a (K4,K5)-

good 2-coloring, decision variables which encode a 2-coloring, and the linear constraints

on the decision variables imposed by the observations referenced above. For instance, a

standard approach might have decision variables looking like xi,j = 1 if the edge between

i and j is maroon and xi,j = 0 if the edge between i and j is orange. However, finding

and enumerating all solutions to this type of discrete optimization problem is NP-hard. The

standard approach is to relax the decision variables by allowing them to take any value

between 0 and 1. The problem becomes a continuous optimization problem on a polytope

(imposed by the constraints) which can be solved very quickly (polynomial time). Then as

McKay and Radziszowski did, since now an edge may be .6 maroon and .4 orange, typically

to give these solutions meaning, the decision variables are rounded to 0 or 1. The question

becomes: are all solutions to the original optimization problem solutions to the relaxed
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version? Designing the objective function so that this is the case is a task often requiring

insight and skill.

It is hard to do justice to what Brendan D. McKay and Stanislaw P. Radziszowski have

done for Ramsey theory, particularly in calculating bounds for Ramsey numbers. Their

efforts go far beyond R(4, 5), and they have improved too many bounds to list here, the

most important of which may be R(5, 5) ≤ 49, though they suspect the true value to be

43. Fortunately Radziszowski maintains the excellent dynamic survey on Small Ramsey

Numbers in the Electronic Journal of Combinatorics. Radziszowski and McKay are both

housed in computer science departments and while they use ingenious mathematics to cut

down on computation, the computations they perform are truly enormous. In the case of

R(4, 5), 3.2 years of CPU time were required by the faster of their two codes.

How do the proofs of R(4, 5) and R(3, 6) compare? At first glance the technique of looking

at the size of intersections of neighborhoods in the proof of R(3, 6) seems powerful. This

technique is appealing as counting something local and having ramifications for the larger

graph is a common theme in determining other small Ramsey numbers.

There is no longer a large mistrust or confusion regarding computer-aided proofs [see ch.22

of Soifer’s Mathematical Coloring Book ], but still a feeling that non-computer proofs equip

the reader with more insight. As such a non-computer proof of R(4, 5) = 25 is desirable and

I have tried to use techniques from the proof of R(3, 6) on this problem with no success. The

main difficulty seems to be that K4 has twice the number of edges of K3, and building up

enough edges to contradict the absence of a K4, when starting from a single vertex, without

breaking down the problem into tons of cases does not appear to be feasible. This difficulty

does seem to be relevant as Cariolaro notes that a non-computer proof of R(3, 7) = 23 exists

and was known to Kalbfleisch in 1966. There is a fascinating connection between R(3, 8) and

R(3, 9) in that R(3, 9) = 36 was known to Grinstead and Roberts in 1982 while R(3, 8) = 28

was first proved by McKay and Min in 1992.
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2.2 Erdős’ lower bound

The first real progress on lower bounds came from Paul Erdős’ probabilistic techniques. To

introduce the counting aspect I will initially disguise the role of probability.

Theorem 2.2.1 e−12−1/2n2n/2 ≤ R(n, n).

Proof The number of ways to 2-color a Km is 2(m
2 ) since there are

(
m
2

)
edges each of which

can be colored in 2 ways. Say we want to insist on having a monochromatic Kn subgraph.

We may pick the n vertices where the monochromatic Kn is to occur in any of
(
m
n

)
ways.

We then have 2 choices for the color of the Kn and this determines the color of the
(
n
2

)
edges in this subgraph. Having guaranteed a monochromatic Kn we can then color each

of the other edges either color. Every 2-coloring of Km with a monochromatic Kn can be

formed in this manner. Therefore the number of 2-coloring of Km with a monochromatic

Kn subgraph is at most 2
(
m
n

)
2(m

2 )−(n
2). This over-counts the true number since a coloring

with k monochromatic Kns is counted k times. However, if the number of colorings of

Km exceeds the over-estimate on the number of such colorings containing a monochromatic

Kn, then there must be some coloring without a monochromatic Kn. This means that if

2(m
2 ) >

(
m
n

)
2(m

2 )−(n
2)+1 then R(n, n) > m. Dividing through by 2(m

2 ) on both sides gives if

1 >
(
m
n

)
21−(n

2) then R(n, n) > m.

Now imagine a Km is to be 2-colored where the color of each edge is determined by a coin

flip, so each edge has probability 0.5 of being colored in each color. What is the probability

of finding a monochromatic Kn in the resulting coloring? Given two events A and B in a

probability space, the probability of either occurring is P (A∪B) = P (A)+P (B)−P (A∩B),

the sum of their individual probabilities minus the probability they both occur. The events

we care about are potential monochromatic Kns, there are
(
m
n

)
of these events, and each

occurs with probability 21−(n
2) since each of these has

(
n
2

)
edges and once one of them is

colored the only way to get a monochromatic Kn is for all remaining edges to be given this

color. From above we have P (A ∪B) ≥ P (A) + P (B) and therefore the probability of such
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a 2-coloring having a monochromatic Kn is at most
(
m
n

)
21−(n

2) which sums the probabilities

of the individual events. If this is less than 1 by the definition of a probability there must

be some 2-coloring of Km not having a monochromatic Kn and again if 1 >
(
m
n

)
21−(n

2) then

R(n, n) > m. If the events were mutually exclusive, then the probability estimate would

be exact, but for m > n coloring all edges orange shows that the events are not mutually

exclusive. This method of overestimating a probability is called Boole’s inequality.

Take n to be fixed (we are trying to get a bound on R(n, n)). Define N to be the least

m for which 1 ≤
(
m
n

)
21−(n

2). R(n, n) ≥ N because by the definition of N and the argu-

ment above we have shown that there is a 2-coloring of Km on N − 1 vertices with no

monochromatic Kn. Therefore R(n, n) ≥ N = (Nn)1/n > (
(
N
n

)
n!)1/n ≥ (2(n

2)−1n!)1/n =

2(n/2)−(1/2)−(1/n)(n!)1/n ≈ n2n/2e−12−1/2(23/(2n)(π)1/(2n)n1/(2n) > n2n/2e−12−1/2, where Stir-

ling’s approximation has been used to replace the n!. This result is just a factor of 2 short

of the best known lower bound for which we will need the Lovasz Local Lemma.

2.3 Lovasz Local Lemma

If some collection of events A1, A2, ...An are independent of each other and have probabilities

p1, p2, ..., pn all of which are < 1, then the probability that none of them occur is given by∏n
i=1(1− pi) and this product is greater than 0 so there is some scenario where none of the

events occur. However, all too often the assumption of independence does not hold. Roughly

speaking, the Lovasz Local Lemma says that if the probabilities are small enough and the

events are for the most part independent, then there is some scenario where none of them

occur. A dependency graph is a graph whose vertices represent events and there is an edge

between two vertices if the events they represent are not independent.

Lemma 2.3.1 (Lovasz Local Lemma [GSR2])

Let A1, A2, ..., An be events with dependency graph G. Suppose that there exist x1, x2, ..., xn
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with 0 < xi < 1 so that, for all i, P (Ai) < xi
∏
j|(i,j)∈E(G)(1− xj). Then P (∩iĀi) > 0.

Proof The idea is to prove, for any given set S of events not containing event i, that

the probability of Ai given none of the events in S occur is less than xi. This means the

probability of none of the events in S occurring and Ai not occurring is larger than 1−xi > 0

as by assumption xi < 1. Then taking S to be all but one of the Ais shows that the probability

of none of the Ais occurring is greater than 0. [GSR2] accomplishes this by induction on the

size of the set S.

Corollary 2.3.2 (Lovasz Local Lemma (Symmetric case))

Let A1, A2, ..., An be events with dependency graph G of maximal degree d. Suppose that for

all i, P (Ai) < p and ep(d+ 1) < 1 then P (∩iĀi) > 0.

Proof Take each xi = 1/(d+ 1) in the Lovasz Local Lemma, which then demands that each

P (Ai) be less than dd/(d + 1)d+1. By definition of p, this is true if ep(d + 1) < 1. The only

purpose of introducing e is to make computations easier.

Lovasz who was working with Paul Erdős published this lemma in 1975. Yet during the same

year it was Joel Spencer who used the lemma to improve the probabilistic work above by a

factor of 2 and obtained the best known lower bound on R(n, n). Only after the year 2000

was a constructive proof of the Lovasz Local Lemma discovered by Robin Moser and Gabor

Tardos. As a warm-up first consider the following example using the symmetric version.

11n points are to be placed on a circle and each of n colors will be used 11 times to color all

of the points. No matter how the coloring is done some set of n points containing one point

of each color has no consecutive pair on the circle.

Imagine that each point of each color has the same chance (1/11) of being chosen as the

representative of this color. Choosing consecutive points is to be avoided. The probability

of choosing a consecutive pair is 1/121 if the colors of the points are different and 0 if they
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are the same. So p = 1/121 for the purposes of the lemma. Consider any pair of consecutive

points (a, b). There are 10 other points colored in the same color as a and 10 other points

colored in the same color as b, each of which are in 2 consecutive pairs of points, a and b are

each in one other pair other than (a, b). Some of these pairs may be counted twice, but this

shows that choosing (a, b) depends on at most 2 · 10 + 2 · 10 + 1 + 1 = 42 other pairs allowing

d = 42 to be used in the lemma. Since e · (1/121) · (42 + 1) < .97, there must be a way to

select n points with one of each color and no two consecutive.

Theorem 2.3.3 R(n, n) > e−121/2n2n/2.

Proof The events to avoid are monochromatic Kns. As in the previous theorem, the prob-

ability of a monochromatic Kn is 21−(n
2). The coloring of two Kns is independent if they

share no edges in common. Therefore in an m vertex graph the number of events a single

event may depend on is at most
(
n
2

)(
m
n−2

)
which counts, for each edge in the Kn, the number

of other Kns this edge belongs to. By the symmetric version of the Lovasz Local Lemma, if

e21−(n
2)(
(
n
2

)(
m
n−2

)
+ 1) < 1 then R(n, n) > m. Simplifying using Stirling’s formula as in the

previous theorem yields the result.

2.4 Diagonal Ramsey numbers

Definition The n-th diagonal Ramsey number is R(n, n) and sometimes is denoted simply

R(n).

Since the Ramsey numbers are monotone in each input, to prove Ramsey’s theorem for

graphs, one only needs to show R(n) is finite. The next theorem uses a direct proof to prove

this theorem as opposed to the inductive argument given in the introduction. The method

of proof is fairly typical and one can adapt it to other settings where induction (on n or for

R(m,n) on m+ n) does not work as smoothly.
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This bound and the previous one both give that limn→∞R(n, n)1/n ≥ 21/2.

Theorem 2.4.1 R(n, n) ≤ 22(n−1)+1 − 1 [GSR2]

Proof Consider any 2-coloring of K22(n−1)+1−1. Call the set of vertices S1 and pick any vertex

from S1 and label it x1. x1 is incident to some number of maroon edges and some number

of orange edges and one of these colors is used more frequently (if they are each used the

same number of times choose either). Take S2 to be the set of vertices adjacent to x1 by an

edge of the more frequently used color and color the vertex x1 this color. Then select any

vertex from S2 and label it x2. Amongst the edges from x2 to its neighbors in S2 some color

is used most frequently. Define S3 to be the set of vertices in S2 adjacent to x2 by an edge of

this (possibly new) color and color x2 this color. Continue in this manner picking xi from Si

arbitrarily and looking at the color of the edges between xi and the other vertices in Si and

then coloring xi accordingly. Since originally there are 22(n−1)+1 − 1 vertices, 2(n− 1) times

the vertices in S1 may be cut in half as above and still have at least 1 vertex to select, so at

least 2(n− 1) + 1 vertices are selected. By the pigeonhole principle n of these 2(n− 1) + 1

vertices have the same color. Moreover, for each of pair xi,xj with i < j of these n vertices

the edge between them is the color of xi since xj ∈ Si, and since each of these n vertices are

given the same color, these vertices and the edges between them form a monochromatic Kn

subgraph.

Note the only role of the −1 that is not in the exponent is to allow, on each splitting, the

cardinality of Si to possibly be one less than a power of 2. This is why, after 2(n− 1) splits

there is still at least 22(n−1)+1−2(n−1) − 1 = 1 vertex remaining. Generally for larger n one

can subtract more and still eventually get within one of a power of 2.

This bound gives that limn→∞R(n, n)1/n ≤ 4.

Using a = b = n in the upper bound derived from the proof of Ramsey’s theorem in the

introduction gives R(n, n) ≤
(
2n−2
n−1

)
which is a better bound than the one just proved. In
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fact this bound gives R(n, n) ≤ c4nn−1/2 for some constant c. To get a feel for how much

these bounds differ consider the following identity from the proof of Bertrand’s postulate. It

uses the binomial theorem.

4m = 0.5(1+1)2m+1 = 0.5
∑2m+1
k=0

(
2m+1
k

)
> 0.5(

(
2m+1
m

)
+
(
2m+1
m+1

)
) =

(
2m+1
m

)
Taking m = n−1

gives R(n, n)1/n ≤ (4n−1)1/n so that limn→∞R(n, n)1/n ≤ 4.

Of course, the n−1/2 factor was lost when sacrificing terms from the summation. In these

types of problems Stirling’s formula can often be used to move from exponential functions

to binomial coefficient with more efficiency.

Corollary 2.4.2 R(n; r) ≤ r(n−1)r+1 − 1 .

Proof Use r colors and replace 2 with r in the proof of Theorem 2.4.1.

Corollary 2.4.3 21/2 ≤ limn→∞R(n, n)1/n ≤ 4.

In 1947 Erdős offered 100 dollars for a proof that limn→∞R(n, n)1/n existed and another 250

for its exact value. A dollar in 1947 had about 10 times the purchasing power of a dollar

today.

2.5 A recursive upper bound for diagonal Ramsey num-

bers

In 1968 K. Walker published the bound R(k, k) ≤ 4R(k, k − 2) + 2 by generalizing methods

Kalbfleisch used to determine specific small Ramsey numbers. They examine extremal col-

orings, which use the maximum possible number of edges of a certain color and still have

the typical properties of a Ramsey-type problem. With a small change in notation Walker’s

proof is followed and expanded upon below.
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Lemma 2.5.1 The number of monochromatic triangles, 4 in a maroon-orange coloring of

kn where the maroon-degree of vertex i is mi is 4 =
(
n
3

)
− (1/2)

∑n
i=1mi(n−mi − 1)

Proof (1/2)
∑n
i=1mi(n−mi−1) counts the number of non-monochromatic triangles. To see

this, note that a non-monochromatic triangle has two vertices at which edges of different col-

ors meet. Since mi(n−mi−1) counts the number of pairs of opposite colored edges meeting

at vertex i,
∑n
i=1mi(n−mi − 1) double-counts the number of non-monochromatic triangles

which multiplying by (1/2) resolves. Finally
(
n
3

)
is the total number of potential monochro-

matic triangles from which the number of non-monochromatic triangles is subtracted to

obtain the number of monochromatic triangles.

Theorem 2.5.2 R(k, k) ≤ 4R(k, k − 2) + 2.

Proof Let n < R(k, l) and define M(n, k, l) to be the maximum number of maroon edges

in a (Kk, Kl)-good coloring of Kn. Likewise, define O(n, k, l) to be the maximum number of

orange edges in such a coloring. For n < R(k − 1, l) + R(l, k − 1) suppose that a (Kk, Kl)-

good coloring exists and define pj to be the number of vertices in this color incident with j

maroon edges. pj = 0 unless n− R(k, l − 1) ≤ j < R(k − 1, l) since n− j − 1, which is the

number of orange edges, must be less than R(k, l − 1) to avoid monochromatic orange Kl

and j must be smaller than R(k−1, l) to avoid monochromatic maroon Kk. A vertex v with

j maroon edges forces these neighbors to form a subgraph with a (Kk− 1, Kl)-good coloring

and each maroon edge in this subgraph forms a monochromatic maroon triangle with v, so

v is in at most M(j, k − 1, l) monochromatic maroon triangles. The same reasoning shows

that v is in at most O(n − j − 1, k, l − 1) orange triangles. Of course, triangles have three

vertices so that 4 ≤ (1/3)
∑R(k−1,l)−1
j=n−R(k,l−1)[M(j, k− 1, l) +O(n− j − 1, k, l− 1)]pj. Combining

this result with the lemma and multiplying both sides by 6 gives that n(n − 1)(n − 2) ≤∑R(k−1,l)−1
j=n−R(k,l−1)[2M(j, k − 1, l) + 2O(n− j − 1, k, l − 1) + 3j(n− j − 1)]pj.

In a (Kk, Kl)-good 2-coloring each vertex has at most R(k − 1, l) − 1 maroon edges, so

M(n, k, l) ≤ (n/2)(R(k − 1, l)− 1). In particular, M(j, k − 1, k) ≤ (1/2)j(R(k − 2, k)− 1).
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Likewise O(n, k, l) ≤ (n/2)(R(k, l− 1)− 1). In particular O(n− j − 1, k, k− 1) ≤ (1/2)(n−

j − 1)(R(k, k − 2) − 1). Now if n ≥ 4R(k, k − 2) + 2 had a (Kk, Kk)-good 2-coloring then

for each j [2M(j, k − 1, k) + 2O(n − j − 1, k, k − 1) + 3j(n − j − 1)] ≤ [2(1/2)j(R(k −

2, k)− 1) + 2(1/2)(n− j − 1)(R(k, k − 2)− 1) + 3j(n− j − 1)] = (n− 1)(R(k, k − 2)− 1) +

3j(n − j − 1) ≤ (n − 1)(R(k, k − 2) − 1) + 3((n − 1)/2)2, where clearly j = (1/2)(n − 1)

maximizes 3j(n−j−1). By assumption R(k, k−2)−1 ≤ (1/4)(n−2)−1 = (1/4)(n−6) gives

[2M(j, k−1, k)+2O(n−j−1, k, k−1)+3j(n−j−1)] ≤ (n−1)(R(k, k−2)−1)+3((n−1)/2)2 ≤

(n − 1)((1/4)(n − 6) + (1/4)3(n − 1)) = (n − 1)(n − 9/4) < (n − 1)(n − 2). This was true

for each j, and
∑R(k−1,k)−1
j=n−R(k,k−1) pj = n since the pjs count the vertices by their red degree. So∑R(k−1,k)−1

j=n−R(k,k−1)[2M(j, k − 1, l) + 2O(n− j − 1, k, l − 1) + 3j(n− j − 1)]pj < n(n− 1)(n− 2).

But above it was shown that if n ≤ R(k, k − 1) + R(k − 1, k) then the last inequality is ≥

and since R(k, k) ≤ R(k, k − 1) +R(k − 1, k), so n = 4R(k, k − 2) + 2 ≥ R(k, k).

In this paper Walker also proves that R(5, 5) ≤ 57, a small improvement on R(5, 5) ≤

4R(5, 3) + 2 = 4 ∗ 14 + 2 = 58. He then goes on to show that R(4, 5) ≤ 29. Each of these

results comes from using linear programming to maximize quantities in the inequalities given

above.

2.6 Comparing near diagonal Ramsey numbers

R(k, k) ≤ 4R(k, k − 2) + 2 and R(k, k) ≤ R(k, k − 1) + R(k − 1, k) = 2R(k, k − 1) ≤

2R(k, k− 2) + 2R(k− 1, k− 1) have now both been proven. The question remains, which is

a better upper bound? This reduces to which is smaller, R(k, k − 2) + 1 or R(k − 1, k − 1)?

Despite feeling dangerously close to proving that R(k, k − 2) + 1 was smaller, I never quite

managed it. I can prove that for p = 0.5 the expected number of monochromatic Kk−2

red subgraphs exceeds the number of expected red or blue monochromatic Kk−1 subgraphs

for 2 ≤ n < R(k, k), but because there are plenty of graphs on n < R(k, k) vertices with

multiple monochromatic subgraphs, these expectations exceed 1 and are useful only as a
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heuristic and not for showing the existence of graphs with specific properties. Of course, I

expect that whenever the sums of the inputs are the same, the more central Ramsey number

is larger. I have a proof that shows if this is eventually true then it is always true using

backwards induction.

In a 1980 problem paper Erdős remarks that “Faudree, Schelp, Rousseau needed recently

a lemma stating limn→∞(R(n + 1, n)− R(n, n))/n = ∞; we could prove this without much

difficulty.” Only much later, in 1989, does anything resembling this result get used in a paper

of Erdős but that paper only shows (R(n + 1, n) − R(n, n)) > 2n − 3. So at this point it

is a mystery — Ron Graham did not know — whether the result Erdős quoted but never

published is in fact true. I found this most intriguing. One possible strategy is to consider as

n goes to infinity, 2-colorings of KR(n,n)−1 avoiding monochromatic Kn and try to extend it

by (cn)n vertices, where cn is a sequence going to infinity, to a 2-coloring avoiding blue Kn+1

and red Kn. Perhaps with high probability the edges amongst these cn vertices are colored

red and with high probability the edges between the original vertices and the cn vertices are

colored blue. Then essentially the only way to form a blue Kn+1 is to find a blue Kn−1 in

the original graph and a vertex amongst the added vertices that are totally connected by

blue edges. The first two of those things seem to be a bit rare. However, the concept of

Ramsey multiplicity, which tries to count the least number of monochromatic Kn−1s in a

2-coloring of KR(n,n)−1 does not have very well-developed bounds. Essentially the only way

to find a red Kn is to look amongst the added vertices. A word of caution though, even if

Erdős’ 1980 claim is correct, to prove it the sequence cn ought not to be taken as cn = n

since Soifer points out it is not known whether (R(n+ 1, n)−R(n, n))/n2 is bounded below

by any c > 0. In the 1980 paper Erdős wanted to prove that this difference increased faster

than any polynomial but admitted he was unable to. Also of interest would be to show that

R(n+ 1, n) ≥ (1 + c)R(n, n) for some c > 0.
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2.7 R(3, k)

In Soifer’s very recent book Ramsey Theory: Yesterday, Today, and Tomorrow he presents a

collection of writings on the topic by modern day experts. Joel Spencer wrote the excellent

chapter on R(3, k). R(3, k) can be described efficiently in graph-theoretic terms, rather than

by coloring terminology, and this section will take advantage of that. Recall that R(3, k) is

the least n so that any triangle-free graph on n vertices has an independent set of size k.

Spencer likes to give a computer science flavor to his proofs.

Theorem 2.7.1 R(3, k) ≤ k2.

Proof Let G be triangle-free and have k2 vertices. If G has a vertex v of degree k or higher,

n′(v) forms an independent set of size at least k. Assume all vertices of G have degree less

than k. Select any vertex v and remove n(v) from G. Since at most k−1+1 = k vertices are

removed, G has at least K2 − k vertices remaining. Continue removing the neighborhoods

of vertices. After k − 1 removals at least k2 − (k − 1)k = k vertices remain, so at least k

removals can occur. In the original graph the k vertices whose neighborhoods were removed

were independent since if two such vertices were adjacent they would be removed on the

same removal and only one of their neighborhoods would get removed.

Theorem 2.7.2 There is a triangle-free graph on n vertices with no independent set of size

cn2/3ln(n).

Proof Unfortunately Spencer’s proof needs a small tweak, he drops a 23 but it is important

to his argument. In the probability space of random graphs G(2n, p) with 2n vertices and

edge probability p consider p = n−2/3. By the linearity of expectation the expected number

of triangles is
(
2n
3

)
n−2/3

3
< 4n/3. At this point Spencer has < n/6 as if the graph had only

n vertices, however, in Spencer’s proof, this expectation needs to be < n. But if we use

p = n−2−ε/3 the expectation is 4n1−3ε/3 and the theorem eventually holds for independent
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sets of size cn(2+3ε)/3ln(n). The proof philosophy is more important than the details and in

any case Spencer’s next theorem improves the result. So assume the expected number of

triangles is less than n. By the choice of p the expected number of independent sets of size

2.01n(2+3ε)/3ln(n) is less than one. Therefore eventually the expected number of triangles or

independent sets of the above size is less than n, and thus eventually there are always such

graphs. Then on a graph with less than n triangles or independent sets, a vertex from each

triangle or independent set may be removed when the resulting graph has at least 2n−n = n

vertices and no triangles or independent sets!

Theorem 2.7.3 There are graphs on n vertices with no triangles or independent sets of size

cn1/2ln(n).

Proof The result is Erdős’ from 1961. Firstly note that this is an improvement over the

previous result because the permissible size of the independent sets has shrunk, so the graph

is more strongly connected, and yet triangles are still avoided.

Consider G(n, p) with p = εn−1/2 for a small constant ε and take x = cn−1/2ln(n) where c is

a large constant. Define a set I of x vertices as a failure if whenever u, v ∈ I are adjacent in

G, then there is a triangle u, v, z in G where z is not in I. Erdős shows that in G(n, p) there

is positive probability of having no failures. As a heuristic Spencer gives a concise argument

for why this would be true if for vertices u, v, w in I the probability of extending the edge

uv to a triangle with third vertex outside I were independent of the probability of extending

uw to a similar triangle. But these events clearly depend on each other for if z is not in I

the knowledge that u, v, z is not a triangle in G increases the probability that u,w, z is not

a triangle in G. For a graph in G(n, p) having no failures, find a triangle-free subgraph H

in a greedy manner. To do this order the edges of G arbitrarily and include an edge in the

subgraph if it does not form a triangle with the edges already added to the subgraph. H is

triangle-free by design. If I is a set of x vertices then I is not a failure and I has an edge

uv that is a member of at most triangles in I. If uv ∈ H then I is not independent in the

subgraph H. If uv is not in H there must be w in I forming a triangle u, v, w in G with
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uw and wv in H, but the mere presence of uw in H then shows I is not independent in H.

Therefor H has no independent sets of x = cn−1/2ln(n) vertices.

Theorem 2.7.4 Let G be triangle-free on n vertices and the average degree in G be at most

k. Then there is an independent set I of size |I| ≥ c(n/k)ln(k)

Proof The proof requires Szemerdi’s regularity lemma which roughly speaking says that for

n large enough, every graph can be partitioned in such a way that the edges between the

partitions behave randomly.

The Lovasz Local Lemma can be applied to the case ofR(3, k) as it was forR(k, k). The result

given by Spencer is that if there are constants p, y, z ∈ [0, 1) with p3 ≤ y(1− y)3n(1− z)(
n
k)

and (1 − p)(
k
2) ≤ z(1 − y)nk

2/2(1 − z)(
n
k) then R(3, k) > n. Spencer himself used this setup

to prove Erdős’ 1961 result in a different manner.

Finally in 1995 Heong-Jan Kim was able to mostly resolve the asymptotics of R(3, k). His

solution was an analysis of an algorithm. Recall, above forming H as a subgraph of G in

a greedy triangle-free manner. Erdős, Winkler, and Suen looked at this algorithm where

Kn plays the role of G and looked at the independent sets as the number of edges added

increased. Kim modified their approach by using a nibble algorithm where at each step

rather than choosing one edge randomly, a carefully selected collection of edges is chosen.

Through analyzing this algorithm with martingales Kim was able to show the following:

Theorem 2.7.5 c1k
2/ln2k < R(3, k) < c2k

2/ln2k.

Finding a c so that these expression match as k gets large is still an open problem. Moreover,

in the spirit of the previous section Erdős wanted a proof or disproof that R(3, n + 1) −

R(3, n) > o(n), even the boundedness of R(n+ 1, 3)−R(n, 3) is an open question.
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2.8 Combinatorial Games and Ramsey Numbers

This is an attempt at bringing Ramsey numbers closer to real life. As noted by Slany,

combinatorial games “serve as models that simplify the analysis of competitive situations

with opposing parties that pursue different interests” and “finding a winning strategy to a

combinatorial game can be translated into finding a strategy to cope with many kinds of

real world problems such as found in telecommunications, circuit design, scheduling, as well

as a large number of other problems of industrial relevance.”

Ramsey graph games start with a complete graph Kn and the players color an edge on their

turn, each player uses a unique color. In an avoidance game each player is given a graph which

if she colors a subgraph isomorphic to this graph monochromatically in her color, she losses.

In an achievement game she would win by coloring such a subgraph monochromatically.

The avoidance version is called Sim after Simmons who introduced it in 1969. Sim has been

studied extensively, notably by Frank Harary who is known for his work in graph theory.

Starting with the achievement game, which resembles the popular Tic-Tac-Toe, suppose as in

the case of R(3, 3) = 6 that there are 2 players and they are trying to form monochromatic

K3s. If the graph they are coloring is K6, then there will be a winner because we have

proven R(3, 3) = 6 which means that any way the two players color their graph, someone

will eventually color a K3. However, if they are playing on a K5 then the unique R(3, 3)

critical graph shows that they may tie, meaning neither achieves their goal. If they play on

K3 they must tie as there is only a single k3 to color and each will color at least one of the

edges.

Theorem 2.8.1 In the achievement Ramsey games, if all players are trying to achieve the

same graph, and there is a winning strategy, then it belongs to the first player.

Proof This is a standard strategy stealing argument. If someone other than the first player,

say the kth-player, had a winning strategy then the first player imagines she is this player.
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On each turn she imagines k−1 additional edges have been colored one each in the colors of

the k−1 players preceding her, and then selects an edge to color dictated by the kth-player’s

wining strategy. But in following this strategy, the first player does not lose because each

of her moves were part of a winning strategy which means that she could not have lost

before her next turn. If there are not k edges left on player one’s turn, this means player

one did not follow player K’s strategy as player K wins at latest on the turn before. If the

first player does not lose, then the kth-player does not win. So only player one may have a

wining strategy.

Continuing the example above. If the players are attempting to form monochromatic K3s

on K4, then as K4 has only 6 edges, if the first player wins, she must do so on her third

turn. However, after two turns she threatens to complete at most one K3 on her next turn,

and if player 2 after seeing player one’s second move, is sure to color the missing edge in the

K3 that player one threatens to complete, player 2 achieves at least a draw. So again, with

best play on a K4 the result is a tie because the above theorem indicates player one should

not lose. If they play on a K5 player one wins. Player one need only stop player 2 and

avoid forming a 5-cycle as this is the unique R(3, 3) critical graph. It turns out that this is

always possible, the observation that achieving 3 edges of the same color incident to a vertex

disallows 5-cycles will help in executing this strategy. Finally, for n ≥ 6 if they play on Kn,

Ramsey theory promises that one of the player wins, when the theorem indicates that the

first player has a winning strategy. So Ramsey theory is intimately linked to the outcome of

this combinatorial game.

Corollary 2.8.2 In the achievement Ramsey games there is an n for which if m ≥ n and

two players play on Km and strive to achieve the same graph, then the first player wins with

best play.

Proof If both players are attempting to achieve graph G, take n = R(G,G) then if m ≥ n

any 2-coloring of Km yields a monochromatic G subgraph, so some player wins. If player two
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had a winning strategy, then player one would steal it. So player two does not have a winning

strategy, but player one is the only other player, so there is some strategy for player one in

which player two can not force victory. As somebody must win on this largely chosen graph,

using this strategy player one must win, and therefore player one has a winning strategy.

Note that the corollary does not hold for more than 2 players since I have removed the

assumption that there is a winning strategy. With three or more players, a group may team

up against the first player when no player has a winning strategy. Many business and social

dynamics mirror this situation where each player is aiming at a common goal, but if one

player gets too close to achieving it the others will set aside their own ambitions to block

this player.

Sim, the avoiding Ramsey game, is less intuitive. Aside from avoiding coloring edges that

would complete a triangle for the opponent, which can be colored at any time, at first glance

it is hard to see much strategy.

Here the strategy stealing argument used above does not work because unlike in achievement

the absence of k − 1 edges to arbitrarily color does not indicate that player k could have

won on the previous turn (and thus that player one could have won on the previous turn).

The difference is that in this game being the player to move can be a disadvantage or an

advantage, whereas in the achievement game it could never hurt to be the player to move.

Even in the 2-player avoidance setting neither player will have a strategy stealing argument.

For standard Sim played on K6 with two players trying to avoid K3, an exhaustive computer

search determines a win for the second player. Of course even in the most general avoidance

setting with multiple players trying to avoid different graphs, the Ramsey number of these

graphs provides an upper bound on n for which if they play on Kn at least one player losses.

The natural next game to examine is where one player tries to achieve some monochromatic

subgraph in their color and the opponent tries to prevent this (without needing to achieve a
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specific monochromatic subgraph). This is a modification of the first game where there are

no ties and is called Pekec’s game.

Lemma 2.8.3 If Pekec’s game is played on Km and the achiever is trying to create a

monochromatic H where m ≥ 2R(H,H) then the achiever wins with best play.

Proof Divide the edges into three sets, two which form the complete subgraph on R(H,H)

vertices and the other having the remaining edges. The achiever’s strategy is to assign an

isomorphism between the two KR(H,H) subgraphs and whenever the opponent colors an edge

in one of these subgraphs the achiever makes sure to have the corresponding edge colored

her color in the corresponding subgraph. Notice that coloring of edges in the third set

only serves to determine which player colors first in the two KR(H,H) graphs, whenever the

opponent colors in the third set, so does the achiever until there are no more edges in the

third set. Regardless of which player colors first in the KR(H,H) graphs the achiever is able to

ensure that these graphs swap colors on each edge. By definition of R(H,H) if in the first of

these graphs the achiever’s monochromatic H does not appear then in her color, it appears

in her opponents. But this means that in the second of these graphs the monochromatic H

appears in the achiever’s color.

Pekec has other strategies to help the achiever win on smaller graphs, but this is another

nice application of graph Ramsey theory.

Definition The size Ramsey numbers, R̄(G,G) is the minimum number of edges a graph

H must have so that when 2-colored a monochromatic G subgraph must appear. For clarity

this means we find the graph H with the least number of edges with the property that any

2-coloring has a monochromatic G and then we count the edges in H. is These have been

studied quite a bit, originally motivated as a tool to help compute Ramsey numbers.

In this final combinatorial game, called an Online-Ramsey game, the size Ramsey numbers

play a role. In this two player game the Builder places edges on a graph one at a time and
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the Painter must choose one of two colors for this edge. The Painter is given a graph to

avoid painting any monochromatic copies of. The Builder may be constrained in the sense

that at each step the added edge must create a graph in a family of graphs known to both

players. The connection to size Ramsey numbers is that if the family is all graphs, then the

size Ramsey number of G with itself R̄(G,G) is an upper bound on the number of turns

required for Builder to win since Builder builds the corresponding H. However, Builder can

often win in far fewer turns because Painter must commit to colors on edges without knowing

which edges come next.
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Figure 2.4: R(3, 3, 3) > 16



Chapter 3

Chromatic number of the plane

3.1 Vertex Coloring

Here consider only simple graphs and no hypergraphs. Recall from the compactness section

that a legal vertex coloring χ : V (G)→ [r] is an assignment of one of r colors to each vertex

of G in such a way that no adjacent vertices are assigned the same color. The least number

of colors permitting a legal coloring is the chromatic number χ(G).

n colors are required to legally color Kn since each vertex is adjacent to all other vertices

and no adjacent vertices may be assigned the same color. However, coloring is much more

tricky. The assertion that χ(G) ≥ r tells very little about the graph G. Consider C5 the

cycle on 5 vertices. χ(C5) = 3 for if there was a red-blue 2-coloring and vertex 1 were red,

then vertices 2 and 5 are blue, but 2 being blue means 3 is red and 5 being blue means 4 is

red when the adjacent vertices 3 and 4 share the same color. If we had 3 colors, we could

color 4 green and produce a legal 3-coloring. This shows that χ(G) = 3 does not imply G

has a K3 or C3 subgraph. Triangles are components of every Kn for n ≥ 3. However, it

was known to Blanche Descartes in the 1940s that triangle-free graphs could have arbitrarily

high chromatic number. These two theorems are given in Proofs from the Book by Martin

52
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Aigner, Günter M. Ziegler.

Theorem 3.1.1 There is a sequence of triangle-free graphs G3, G4, ... with χ(Gn) = n.

Proof As above take G3 = C5 which has χ(G3) = 3 and has no triangles. To use induction

on n, assume that there is a graph Gn with χ(Gn) = n with vertex set V. Define Gn+1 as

having V (Gn+1) = V ∪ V ′ ∪ x. Construct Gn+1 from Gn as follows. For each v ∈ V add a

copy v′ ∈ V ′ with the same neighbors as v and neighboring x which is an additional vertex.

By construction the v′ are not members of triangles since they are not adjacent to each other

and if v′ formed a triangle with vertices a, b ∈ Gn then v, a, b is a triangle in Gn. Since x is

only adjacent to v′s and these are not adjacent, x is not in any triangles. The vertices of Gn

by assumption do not form triangles amongst themselves. So Gn+1 is triangle-free. Finally,

χ(Gn+1) = n + 1. To see this first note that because χ(Gn) = n if Gn is legally n-colored,

for each color i ≤ n there is some vi ∈ V with χ(vi) = i and each other color appears in

n(vi). If no such vertex existed, by changing the color of all vertices vi of color i to a color

not used in n(vi) a (n − 1)-coloring is formed which is ruled out by assumption. Since the

neighborhood of v′ matches the neighborhood of v, if we try to maintain a legal n-coloring

χ(v′) = χ(v)v ∈ V . Thus x, which is adjacent to each vertex of V ′ can not take on any of

the n colors, but an assignment of color n+ 1 to x gives a legal (n+ 1)-coloring.

This proof appears to be fairly simple because it applies to all legal n-colorings the strategy

one would naturally use if trying to accomplish the task for a specific n-coloring of Gn.

However, some authors prove this theorem in substantially different ways.

One observation is that the graph formed in the above proof contains many 4-cycles. Specif-

ically if y, z ∈ n(v) then y, v, z, v′ forms a 4-cycle. So, while avoiding 3-cycles, 4-cycles are

seemingly everywhere. Define the girth γ(G) to be the smallest cycle in G. The following

theorem is attributed to Erdős.

Theorem 3.1.2 There exists a graph G with χ(G) > k and γ(G) > k for k ≥ 2.
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Proof The complete proof can be found in the Proofs from the Book referenced above. The

strategy is to look at the probability space G(n, p) of random graphs on n vertices with

edge probability p and compute the probability of γ(G) ≤ k and separately compute the

probability of χ(G) ≤ k. Then for fixed k the idea is to find pairs (n, p) where both of these

probabilities are smaller than .5. This then means that the probability of γ(G) > k and

χ(G) > k both occurring simultaneously is greater than 1− .5− .5 = 0 showing the existence

of the desired type of graph.

There are explicit constructions that prove the same result. However, the n given by the

probabilistic argument is far smaller than the number of vertices used by these constructions.

This is to be expected since if the probabilistic analysis is performed without estimating the

smallest possible n will be obtained and this problem is easy enough to allow good estimates.

Since it is easy to define small graphs of large girth, where these constructions fall short is

forcing a high chromatic number on only a few vertices. These themes are at play in the

fascinating problem of the chromatic number of the plane.

3.2 Coloring the plane

The remaining material in this chapter summarizes results from Alexander Soifer’s excellent

Mathematical Coloring Book. The pretty diagrams are also from this book. The plane refers

to its normal interpretation, R2. The chromatic number of the plane problem can be stated

as:

What is the least number of colors required to color the plane in such a way that a color is

never assigned to points that are distance one apart?

Definition Define the unit distance graph by letting each point in the plane be a vertex

and place an edge between every pair of points that are distance one apart.
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An equivalent formation of the chromatic number of the plane problem is to ask for the

chromatic number of the unit distance graph. Soifer describes in detail how Edward Nelson,

as an 18-year-old at the University of Chicago, invented this problem in 1950 and presents an

unfortunate history of other authors attributing the problem’s creation to other individuals.

Let χ be the answer to the chromatic number of the plane problem.

Proposition 3.2.1 χ ≥ 3

Proof Consider any equilateral triangle in the plane with side length one. The vertices of

this triangle must be colored uniquely, so at least three colors are required to color the unit

distance graph legally.

Theorem 3.2.2 χ ≥ 4

Proof Consider Moser’s Spindle all of whose edges are length one. Suppose there were a

three coloring of Moser’s Spindle. The equilateral triangles ABC and BCD show that A and

D are the same color while the equilateral triangles AEF and EFG show that A and G are

the same color. However, this means that the adjacent vertices D and G are the same color,

a contradiction. Therefore at least four colors are required to color the unit distance graph

legally. The Moser brothers showed that their spindle has the smallest number of vertices,

seven, that any 4-chromatic unit distance graph can have.

.

Another view of this proof is to just look at ABCD and swing it in a circle with center A.

Then on the circle traced by D there is a point D′ a distance one from D. But three-colorings

have every point on this circle the same color as A, so D and D′ are the same color, and

four colors are required.

A second proof is available that may give a more general understanding. Any three points

of Moser’s spindle contains two that are distance one apart. Suppose not. Amongst the



James O. Dickson Chapter 3. Chromatic number of the plane 56

Figure 3.1: Moser’s Spindle

two pairs of equilateral triangles in the first proof, two of any three vertices are in one pair

of equilateral triangles, allowing, without loss of generality, the assumption that two of the

three points are A and D. But A and D dominate the graph. This implies that each color

is used at most twice. Since Moser’s spindle is on seven vertices at least four colors are

required. Generally if any k points contain two that are distance one apart and there are

more than r(k−1) points where r is the number of colors, then there is not a legal r-coloring.

The Golomb graph supplies a third proof with a sufficiently important and different theme.

Divide a hexagon of unit side into 6 equilateral triangles. If this is to be three-colored the

center color is not on the hexagon. So along the hexagon the two non center colors alternate

and each color class has three vertices. It is possible to draw an equilateral triangle of side

one where each vertex is distance one from a vertex of the same same color class. Since the
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Figure 3.2: Golomb graph

equilateral triangle uses three colors outside of this color class, four colors are required to

color the Golomb graph.

Theorem 3.2.3 χ ≤ 7

Figure 3.3: Square tiling

Proof As in the figure the plane can be tiled in 7 colors with squares of diagonal length one

and the next row is shifted two and a half squares right. This proof is due to Lazlo Szekely.
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Since the bottom right hand corner of a square is distance one from the upper left hand

corner of a square of the same color two rows below, it is necessary to color the borders so

that these points are different. Soifer does this by coloring the upper and right edges the

color of the square except for the upper left and lower right corners which inherit their color

from the squares left and below the square in question.

Figure 3.4: Hexagon tiling

An alternate construction uses hexagons in a flower pattern, see figure 3.4. The flowers have

18 sides and each is oriented the same way. Since the flowers fit together, they tile the plane.

If the pattern used side length one, there would be no points of the same color a distance d

from each other where 2 < d < 7.5, so using side length 1/2.1 gives a suitable 7-coloring of

the plane.

One of Soifer’s students, Edward Pegg, has worked on using the seventh color as infrequently

as possible. Soifer presents a construction where six of the colors use the same house like

shape and the seventh color is a square. Despite such structure the squares tile less than

one third of one percent of the plane. Therefore 4 ≤ χ ≤ 7. Paul Erdős was of the opinion

that χ ≥ 5 using such strong language as “sure” and “almost surely”. Erdős interrupted a

talk of Soifer’s in 1994 to explain his position:
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“Excuse me for interrupting, I am almost sure that the chromatic number of the plane is

greater than four. It is not a proof, but any measurable set without distance one in a very

large circle has measure less than one quarter. I also do not think it is seven”.

Ron Graham shares Erdős’ opinion that χ is either five or six. Soifer predicts 7. I am willing

to believe Erdős’ heuristic, however, having tried to create unit distance graphs of chromatic

number 5, creating a unit distance graph of chromatic number 6 seems extraordinary so I will

predict χ = 5. As proven earlier, every graph of chromatic number k has a finite subgraph of

chromatic number k, note because the plane is uncountable, when applied to the chromatic

number of the plane this result requires the axiom of choice. Producing finite subgraphs

seems easier than producing a coloring of an uncountable space. I believe that if progress is

to be made on this problem it will be in the form of raising the lower bound. Erdős believed

that equilateral triangles where essential to the chromatic color of the plane problem despite

his result on the existence of graphs of arbitrary chromatic number and arbitrary girth. As

it turns out Wormald in 1979 was able to show the existence of a triangle-free unit distance

graph on 6,448 vertices aided by a computer. This number appears much too large and

finding the smallest number of vertices for a triangle-free unit distance graph is an open

problem. Paul O’Donnell studied the problem of the chromatic number of the plane for his

PhD thesis from Rutgers in 1999. He showed the existence of a 23 vertex 4-chromatic unit

distance graph and this is the current record, but did not include this in his dissertation.

One of many interesting results from that thesis is as follows:

Theorem 3.2.4 There are 4-chromatic unit distance graphs of arbitrary girth.

The following list of results on the chromatic number of the plane can all be found in Soifer’s

Mathematical Coloring Book.

If there is a 7-chromatic unit distance graph it has at least 6198 vertices. This result is Dan

Pritikin’s from 1998. In 1979 Stephen Phillip Townsend showed that the chromatic number

of the plane under map type coloring is six or seven. From this result it follows by standard
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topological arguments given by Douglas Wodall for closed sets and Nathaniel Brown, Nathan

Dunfield, and Greg Perry as undergraduates for open sets, that the chromatic number of

the plane under colorings entirely of open sets or entirely of closed sets is also six or seven.

In 1981 Kenneth Falconer showed that for colorings of measurable sets that the chromatic

number of the plane was at least five.

3.3 Generalizations of the chromatic number of the

plane

In a coloring of the plane a color is said to realize a distance d if there are two points distance

d apart of this color. In this terminology the chromatic number of the plane problem asks

for the fewest colors required to color the plane none of which realize distance one. Erdős

then asked what if instead of each color avoiding distance one, each color was only required

to avoid at least one distance. In the above terminology Erdős is asking for the smallest

number of colors that can be used to color the plane and no color realizes all distances. Soifer

named this number the polychromatic number of the plane and denoted it χp.

Proposition 3.3.1 χp ≤ 7

Proof The chromatic number of the plane is at most seven which is to say that there is a

seven-coloring of the plane where each color does not realize distance one, so none of the

seven colors realizes all distances.

Theorem 3.3.2 χp ≤ 6

In Stechkin’s example the border of every hexagon of side one-half is colored the color of

the hexagon except the two lower and the rightmost vertices which inherit their color from

the surrounding hexagons. Stechkin’s example has the triangles avoiding distance one-half
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Figure 3.5: Stechkin’s example

and the hexagons avoiding distance one. Soifer introduced the term coloring type to capture

the distances avoided. Stechkin’s example is coloring type (1, 1, 1, 1, 1/2, 1/2). To improve

the upper bound on χ it is required to find a coloring of type (1, 1, 1, 1, 1, 1) and it is thus

desirable to have the least number of non-one entries in the coloring type. Soifer created an

example of coloring type (1, 1, 1, 1, 1, 1/5.5) inspired by a commonly used design in Russian

toilettes. Soifer also found a (1, 1, 1, 1, 1, 1− 2.5) 6-coloring with the help of then 15 year old

Ilya Hoffman, a son of Soifer’s cousin Leonid Hoffman. By rotating the small squares down

one moves from the (1, 1, 1, 1, 1, 1−2.5) to the (1, 1, 1, 1, 1, 1/5.5) colorings which shows, after

much analysis, the existence of (1, 1, 1, 1, 1, a) colorings for a ∈ [2.5, 1/5.5].

This further inspired the notation χa for the almost chromatic number of the plane which is

defined to be the least number of colors required to color the plane where all but one color

avoids distance one and the last color avoids at least one distance. Determining χa is also an

open problem. In the case of six colors it is interesting to try to get the sixth color to avoid a

distance close to one. Of course, the same logic as the above proposition shows χp ≤ χa ≤ χ.

So a lower bound on χp is desirable.

Theorem 3.3.3 χp ≥ 4.
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This theorem was first discovered by Dima Raiskii in 1970 as a tenth-grade student in a

Russian high school known for its mathematical prowess. Stechkin’s example above is part

of Raiskii’s paper. Soifer knows Raiskii’s history better than almost anyone. Despite his

talent Raiskii chose not to pursue mathematics. Raiskii lived a troubling adolescence that

severely affected his high school record. Had it not been for the international recognition

afforded him by this result, particularly letters sent to his school addressed to professor

Raiskii, he would not have been allowed to graduate high school! Soifer presents a newer

proof of this result that makes extensive use of Moser’s spindle and generalizes the counting

argument given in the second proof of χ ≥ 4 above. Remarkably this new proof is also due

to a Russian high school student!

Erdős then introduced an interesting problem. For a set S of r distances, what is the

chromatic number of the plane where adjacency is defined by being a distance in S apart.

Furthermore, define χr as the maximum chromatic number across all sets of r distances.

Erdős says that it is easy to see that limr→∞ χr/r = ∞. It could be that Sr = [r] gives a

sequence of sets that shows this. In the case of Sr each horizontal line has chromatic number

r + 1 as an interval of r + 1 integers forms a Kr+1 while on the integer lattice the coloring

of a horizontal line not only depends on the line itself but every other horizontal line and

we may hope that eventually each horizontal line requires r + 1 colors distinct from the

colors of other horizontal lines. For Erdős the question became whether χr was bounded by

a polynomial in r or not.

For higher dimensional Euclidean spaces the question of the chromatic number of the distance

one graph is also interesting. Erdős promoted the problem both in terms of exact values

and asymptotics. Oren Nechushtan showed in 2000 that χ(E3) ≥ 6 and David Coulson

submitted in 1998 a paper showing χ(E3) ≤ 15 which was published in 2002. Kent Cantwell

in 1996 showed χ(E4) ≥ 7 and χ(E5) ≥ 9 and Josef Cibulka showed χ(E6) ≥ 11 all of

which are still the best known lower bounds. Erdős conjectured that limn→∞χ(En)=∞ with an

exponential growth rate. Frankl and Wilson gave an exponential lower bound in 1981 which

when combined with Larman and Rogers’ exponential upper bound of 1972 proved Erdős
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correct. Moreover, both exponential bounds hold for the polychromatic number of the plane

which thus has a similar growth rate.

Theorem 3.3.4 The chromatic number of the rationals in the plane, χ(Q2) = 2

Proof Douglas Woodall proved this in 1973. Soifer sketches an outline and asks the reader

for many details as an exercise which I supply. Firstly consider partitioning Q2 into classes

where (a, b) and (c, d) have the same class iff a − c and b − d have odd denominator when

written in lowest terms. If these differences in lowest terms are m/n and u/v with the points

distance one apart, then (m/n)2 + (u/v)2 = 12 = 1 so m2v2 + u2n2 = n2v2 and since n

does not divide m while v does not divide u, dividing by n shows n divides v while dividing

by v shows v divides n and thus v=n as we may assume denominators are positive. So

m2 +u2 = n2 when if n where even, both m and u are odd and the right hand side is 0 mod 4

but the left hand side is 2 mod 4. So n and v are both odd and this implies m and u differ in

parity. Therefore these classes are disconnected components of the distance one graph that

are clearly translates of one another. To show a 2-coloring it suffices to show the 2-coloring

of the class of (0/1, 0/1) integers are considered to have denominator 1. This class has points

(s1/r1, s2/r2) where both r1 and r2 are odd since 1 in 0/1 is odd and the above argument says

the denominator of each coordinate of the difference between adjacent points is odd. Taken

together this means the denominator of any coordinate in this class, which must divides the

common denominator of a component of a difference vector of length one plus a component

of a point previously shown to be in the class, is a product of odd integers and thus odd.

Finally in the class of (0, 0) color (odd/odd, odd/odd) and (even/odd, even/odd) red and other

points blue. Recall from above if two points are distance one apart the numerators of the

difference vector differ in parity, which each color class avoids.

Miro Benda and Micha Perles are responsible for showing χ(Q3) = 2 and χ(Q4) = 4. Josef

Cibulka has shown χ(Q5) ≥ 8 and χ(Q7) ≥ 15 while Matthias Mann has shown χ(Q6) ≥ 10

and χ(Q8) ≥ 16.



Chapter 4

Ramsey-type theorems for the

Integers

Bruce Landman and Aaron Robertson recently wrote a fantastic book titled Ramsey Theory

on the Integers which is both thorough and accessible at the advanced undergraduate level

and beyond. Here is a small preview of the area. While Erdős lived much of the excitement

in Ramsey theory dealt with graph theory. While the following results are all older results,

only relatively recently has proving Ramsey-type theorems in other settings surpassed the

graph theoretic questions in popularity. Credit for this change of focus may be given to

the brilliant work of Ron Graham most of whose work is beyond the scope of this thesis.

The following theorems are Ramsey-type results in that they demonstrate some property is

invariant under all colorings of the integers or some subset of the integers.

4.1 Schur’s theorem

Isaai Schur was born in Russia in 1875 to a Jewish family and spent much of his life in

Germany including his university education and lecturing at the University of Berlin. Isaai

64
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Schur has many important theorems to his name. He was also an extraordinary lecturer

attracting over 500 students to his number theory course in 1930 at the University of Berlin.

He advised many PhD students who would generalize his theorems, specifically Brauer and

Rado. Schur remained in Germany as long as he could. He was very attached to the Germany

of Gauss and Beethoven and considered himself a German. As Schur was a lecturer at Berlin,

a civil servant position, during the first world war he was able to continue lecturing until 1935

and advise students from his home until 1939 when he was forced to flee Germany. Schur

had been devastated by the turn of events in Germany for a while, but when invitations from

western universities offered him safety he declined feeling that he was in less danger than

younger Jewish professors. Schur died in 1941 from failing health but not before suffering a

heart attack mid lecture and continuing to lecture in his clear and insightful manner.

Schur proved the following theorem in 1916. It was only a lemma that he was using to prove

a theorem of Leonard Dickson who was trying to prove Fermat’s Last Theorem. Theorems

of this type had not been seen before and it was nearly entirely ignored by the mathematics

community. For a theorem discovered before Ramsey’s theorem the number of connections

to Ramsey numbers is surprisingly large. Schur met with Erdős in 1936 and in many ways

the baton of Ramsey theory was Schur’s to pass to Erdős.

Theorem 4.1.1 (Schur’s theorem) For any r ≥ 1 there exists a smallest number s(r) such

that if the natural numbers between 1 and s(r) are r-colored there is a monochromatic solution

to x+ y = z where x, y need not be distinct.

Note that Schur proved this differently. For a given r this will show that s(r) ≤ R(3; r)− 1.

Consider any coloring χ of the integers between 1 and R(3; r)− 1 and for the graph KR(3;r)

label the vertices with these integers and color the edge between vertices i and j the color of

vertex |i− j|. By definition of R(3; r) this graph has a monochromatic triangle with vertices

say a, b, c with a < b < c. Then by the method of coloring of the edges vertices b− a,c− a,

and c− b are the same color. Take x = b− a,y = c− b, and z = c− a when indeed x+ y = z
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and x, y, z are all the same color. Note since x, y, z are formed by a subtraction of at least

1 from at most R(3; r) the largest of x, y, z is at most R(3; r)− 1.

Corollary 4.1.2 s(r) ≤ R(3; r)− 1 ≤ 3r!− 1

Proof See the proof of Schur’s theorem above and the result on the multicolor Ramsey

number for triangles from the introduction.

It is also possible to prove that the x, y, z can be taken to be distinct in Schur’s theorem.

When this is insisted upon the least integer forcing a monochromatic triple is denoted s′(r)

and note that s(r) ≤ s′(r)s(2r) [see theorem 32.2 in A. Soifer: Mathematical Coloring Book ].

First s(1) = 2, since if 1 and 2 are given the same color then 1 + 1 = 2 in a monochromatic

manner. Next s(2) = 5, since if 1 is maroon then the above suggests 2 is orange when

2 + 2 = 4 implies 4 is maroon, then 1 + 3 = 4 implies 3 is orange. By this coloring all

compositions with two parts 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, 2 + 2 = 4 and sums at most

4 are not monochromatic since 1, 4 are maroon and 2, 3 are orange, so s(2) > 4. Yet since

1 + 4 = 2 + 3 = 5 whichever color 5 is assigned has a monochromatic solution to x+ y = 5,

so s(2) = 5. From experience, one can prove s(3) = 14 with a pencil and a couple sheets of

paper in less than an hour. To do this employ the methods above. It will be necessary to

break the problem into cases but the number of cases is remarkably small if you are sharp

about realizing when an assignment of color is forced. When breaking into more cases, try

to do so in such a way that all but one of your cases is easily resolved, a little foresight goes

a long way. To see s(3) > 13, color 1, 4, 10, 13 in color 1, 2, 3, 11, 12 in color 2, and 5, 6, 7, 8, 9

in color 3. The last known Schur number is s(4) = 45. For s(4) the amount of forcing is

significantly less. However, try starting with a random legal 4-coloring of the first 10 natural

numbers. It should not take more than a few hours to show that this can’t be extended to a

legal 4-coloring of the first 45 natural numbers. Since there are only
(
10
4

)
= 210 such starting

positions not all of which are legal, one may be able to do this by hand in less than a month.

Fortunately it was proven in 1961 by computer by Baumert. Why haven’t computers found
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s(5)? The jump in difficulty between s(4) and s(5) is probably about that of between R(4, 4)

and R(5, 5). The lack of forcing and the frequent inability to restrict the number of cases

means that even with a clever depth first search the best one can hope for is 2s(5) cases. The

best current lower bound of s(5) ≤ 161 shows brute force will never prove s(5).

Fredricksen and Sweet searched symmetric partitions in 2000. that is, if they are trying to

find a legal 5-coloring of the natural numbers up to 160, they assign the same color to 1 as

they do 160 and the same color to 2 as they do 159 etc. In using this process things get

forced much quicker. They were able to obtain s(6) ≥ 537 and s(7) ≥ 1681. While they were

not responsible for the bound s(5) ≥ 161 they were able to find a legal symmetric partition

of 161. Their algorithm works as suggested above, they use a depth first search next coloring

the integer with fewest choices of color remaining. They remark that the color classes are

all roughly the same size in the colorings that color the most numbers legally, for s(5) ≥ 161

they found partitions as small as 24 and as large as 44. They also make the observation

that once about 20 percent of numbers are colored, with high probability the color of the

remaining numbers is forced. Their work also determined new lower bounds for R(3; 6) and

R(3; 7) which follow from the proof of Schur’s theorem above. While symmetric colorings

make up only a tiny sliver of the colorings allowed by Schur’s theorem, I am quite pleased

with their approach. The discussion above shows that their algorithm could not have run

exhaustively and they mention they would continue to work on the problem. I want to see

the results a similar approach could obtain with 10 years newer technology.

Geoffrey Exoo is one of the champions of producing lower bounds for Ramsey numbers.

Radziszowski and McKay do this as well but also focus on using technology to get the upper

bounds to match. The lower bound s(5) ≤ 161 is due to Exoo in 1994. Exoo viewed the

problem as a combinatorial optimization problem. His objective function essentially asks to

maximize the size of the largest legal restriction in the coloring. He uses simulated annealing

and genetic algorithms, at all times he has a coloring of a large number of natural numbers

and these algorithms slowly make the first n sum-free. Again, I wish to see how 15 years of

newer technology might improve his results. Exoo’s work shows R(3; 5) ≥ 162.
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Note that both of these papers define the Schur number to be the largest n avoiding

monochromatic sums, so their Schur numbers are one short of the numbers I use. The num-

bers above are consistent with the definition I use which is consistent with Landman’s. Both

papers determine new lower bounds on multicolor Ramsey numbers for triangles. Amazingly

these bounds have not been improved in the 10+ years since.

Lemma 4.1.3 s(r + 1) ≥ 3s(r)− 1

Proof Let χ be a r-coloring of [n] with no monochromatic solutions to x+ y = z. χ may be

extended to a (r + 1)-coloring of [3n − 1] having no monochromatic solutions to x + y = z

as follows. Color [n + 1, 2n + 1] color r + 1 and color m ∈ [2n + 2, 3n + 1] the color of

m− (2n+ 1). Since any the sum of two numbers in color r + 1 is at least 2(n+ 1) = 2n+ 2

is not colored in r + 1 there are no r + 1 colored solutions. But there are no solutions of

the other colors as well. n + n = 2n < 2n + 2 and the fact that χ was a legal r-coloring

of [n] shows no pair of the first [n] numbers are in a monochromatic solution. All numbers

of a monochromatic solution do not come from the last n since any such sum is at least

2(2n+ 2) = 4n+ 4 > 3n+ 1. Finally, if x ∈ [1, n] and y, z ∈ [2n+ 2, 3n+ 1] with x+ y = z

then y′ = y − (2n + 1),z′ = z − (2n + 1) gives x + y′ = z′ with all three numbers from [n]

which is ruled out by assumption. This has shown s(r) ≥ n+ 1s(r+ 1) ≥ 3n+ 2, solving for

n and substituting gives the claim. The bound is tight for s(1), s(2), s(3) and close for s(4).

Theorem 4.1.4 s(r) ≥ .5(3r + 1)

Proof s(1)=2 is a satisfactory base case. Assume the theorem holds for r ≥ 1 then using

the lemma s(r + 1) ≥ 3s(r)− 1 ≥ .5(3r+1 + 3)− 1 = .5(3r+1 + 1) as desired.

One way to generalize Schur’s theorem is to associate with each color some number of

variables used in the equation. For instance S(3,4) is the least integer forcing x + y = z in
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red or a+ b+ c = d in blue. Again S(I1, I2, ..., Ir) ≤ R(I1, I2, ..., Ir) is not hard to prove and

is similar to the proof of Schur’s theorem.

4.2 Van der Waerden’s theorem

This theorem resembles Schur’s theorem and was proven in 1927 by Bartel L. van der Waer-

den. Van der Waerden was born in 1903 in the Netherlands. While demonstrating his

prodigious understanding from an early age, van der Waerden became famous for his two

volume treatise on algebra for Springer’s yellow book series and a series of algebraic geometry

articles. He was fortunate to study under Emil Artin, Emily Noether, Richard Dedekind,

and David Hilbert.

Van der Waerden was criticized by the mathematics community for remaining in Germany

during the Second World War and thus lending his prestige to the Nazi regime. He did

speak out against the Nazis and never did join their party. As a result after the war van

der Waerden found it difficult to find a teaching appointment in his native Netherlands

and instead spent many years at Zurich. Also his achievements were downplayed or not

recognized by some western algebraists.

Van der Waerden believed himself to be proving a conjecture of Baudet’s another brilliant

mathematician from Groningen University who died prematurely at 30. Note that van der

Waerden attended Groningen before doing PhD work at Gottingen. The facts are that Schur

had conjectured this result when proving the previous theorem but that van der Waerden

heard that the conjecture was Baudet’s and published the result as a solution to Baudet’s

conjecture. Van der Waerden had never heard of Schur and Baudet was certainly very

interested in this problem. The question that can not be answered definitively is whether

Baudet independently conjectured the result or if Baudet heard the conjecture from Frederick

Schuh, a colleague of Schur’s and an instructor at Groningen who gave problem sessions

attended by Baudet. There is also evidence suggesting that Schuh accepted the conjecture
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as Baudet’s. Schur, ever the professional, never asked for credit for the conjecture but the

testimony of his students shows that he was the first to conjecture this result.

Definition An arithmetic progression is a sequence of numbers a, a+ d, a+ 2d, ... whose

terms have a common distance d between them. When only the first k terms are being

referred to it is said that the progression has length k.

The conjecture was: if the natural numbers are 2-colored then there exists monochromatic

arithmetic progressions of arbitrarily large length. The proof of van der Waerden establishes

compactness and generalizes the result to an arbitrary amount of colors. The story goes that

van der Waerden had only began to think on the conjecture the previous day and introduced

it to Emil Artin and Otto Schreier over lunch. They returned to Artin’s office and as van der

Waerden relates Artin and Schreier were having flashes of insight (compactness, multiple

colors, strong induction etc) until van der Waerden gave a procedure for two colors and

arithmetic progressions of length three. Van der Waerden was then instantly convinced that

his procedure could be generalized to progressions of any length while Artin and Schreier

were only convinced after insisting that van der Waerden show them the procedure could

work for 3 colors and progressions of length 3, and then for 3 colors and length 4. The

story is strong evidence that mathematics ought to be done as a team effort, what readily

appeared to Artin and Schreier had not quite occurred to van der Waerden and van der

Waerden’s procedure for building on their insight seemed suspicious to Schreier and Artin.

Yet in only a single afternoon they established the result.

Theorem 4.2.1 (van der Waerden’s theorem) For all positive integers k and r there exists

W (k, r) such that if [W (k, r)] is r-colored then there is a monochromatic arithmetic progres-

sion of length k.

Proof While W (3, 2) = 9 by enumeration, here is a demonstration from [GSR2] that

W (3, 2) ≤ 325. This will demonstrate van der Waerden’s procedure although he allowed
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the blocks to overlap and got W (3, 2) ≤ 69 (see Soifer’s Mathematical Coloring Book ch.33).

After this demonstration [GSR2] comments that “the general proof is now just a double

induction on k and r.” However, [GSR2] chooses to strengthen the hypotheses and prove a

stronger result. Landman and Robertson also give a proof of the general theorem using a

lot of elementary machinery.

The strategy is to get arithmetic progressions of length 2 in each color having their third term

be the same integer. Break [325] into 65 blocks where blockB1 = 1, 2, 3, 4, 5, B2 = 6, 7, 8, 9, 10

etc. The blocks have 5 elements and so 25 = 32 choices of color pattern, thus amongst the

first 33 blocks, two blocks share the same color pattern. In the first of these two blocks,

amongst the first three elements are two of the same color, say j and j + d are red, and

j + 2d is also in this block (since d = 1 or d = 2 and the block has 5 element) but to

avoid a monochromatic red arithmetic progression, j + 2d must be blue. Then the other

block with this color pattern has i and i + d red and i + 2d blue as well. Now consider

the arithmetic progressions j, j + (i + d − j), j + 2(i + d − j) = j, i + d, 2i + 2d − j and

j + 2d, j + 2d + (i− j), j + 2d + 2(i− j) = j + 2d, i + 2d, 2i + 2d− j the first two terms of

the first progression are red and the first two terms of second progression are blue and the

third term of both progressions is the the same, so whichever color is assigned to 2i+ 2d− j

results in a length three arithmetic progression in that color.

Also note that if van der Waerden’s theorem holds for two colors then it holds for arbitrarily

many, on that afternoon this was an observation of Artin’s. To see this consider the case of

four colors red, yellow, green, and blue and arithmetic progressions of length k. Then imagine

those colored red and yellow are colored orange, and those colored green and blue are colored

maroon. Then since the theorem holds for two colors in either maroon or orange there is a

progression of the length W (k, 2) of the form a, a + d, a + 2d, ..., a + (W (k, 2) − 1)d and in

the original setting these are colored in two colors. If these terms are labeled 1, 2, 3,W (k, 2)

there is a monochromatic k term arithmetic progression, for example 5, 8, 11, and this has

the corresponding a + 4d, a + 7d, a + 10d which is monochromatic. It is clear that empty
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color classes are allowed in this argument and that the method of reduction from 2k to 2k−1

colors can be repeated. So for fixed k, the 2-color case implies the r-color case.

The best known lower bound for w(k, 2) occurs when k = p a prime. This bound is w(p +

1, 2) ≥ p2p and the proof requires field extensions but can be found in [GSR2 sec 4.3]. For

general k Erdős conjectured that limn→∞w(k, 2)/2k = ∞. For upper bounds, the upper

bound given by van der Waerden’s proof is w(k, 2) ≤ ack(k) which uses the Ackermann

function which is one of the fastest growing functions ever used in a serious proof. Timothy

Gowers earned a Fields Medal in 1998 in large part due to his proof that w(k, 2) ≤ 222
22

k+9

.

Of course w(2, r) = r + 1 since once a color is used twice it forms an arithmetic progression

of length 2. The only known exact values are w(3, 2) = 9, w(3, 3) = 27, w(3, 4) = 76 and

w(4, 2) = 35. The computational difficulties of van der Waerden numbers are similar to

those of Schur numbers. This just scratches the surface, Landman and Robertson’s book is

an excellent source on the topic.

4.3 Rado’s theorem

Rado was born in 1906 in Germany and studied under Schur at Berlin. In his PhD thesis

Rado proved this theorem which is firstly a generalization of Schur’s theorem, but also

generalizes van der Waerden’s theorem. Rado viewed the equation x + y = z that Schur

studied not as a statement about sum free sets, but rather as a statement about the linear

homogeneous equation x+y−z = 0. All that is meant by homogeneous is that the coefficients

are integer valued and non-zero while the right hand side is 0.

Definition For a system of equations S = S(x1, x2, ..., xn) on a set A, S is said to be r-

regular if any r-coloring of A yields a monochromatic solution to S. S is called regular if for

every r S is r-regular.
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By Schur’s theorem the equation x+ y − z is regular on N and van der Waerden’s theorem

indicates that the system x1 = x0 + d, x2 = x1 + d, ..., xk−1 = xk−2 + d which represents

finding a k term arithmetic progression is regular on N . In the following the set A will be

Z+, so all results refer to regular on Z+.

Theorem 4.3.1 (Rado’s single equation theorem) Let S be the homogeneous linear equation∑k
i=1 cixi = 0 with non-zero integer coefficients then S is regular iff some nonempty subset

of the cis sum to 0.

Note if S is replaced by a non homogeneous equation
∑k
i=1 cixi = b then the above theorem

is generally not true. However under certain conditions it does hold, see Theorem 9.10 in

Landman and Robertson which gives:

Theorem 4.3.2 Let S be the non-homogeneous linear equation
∑k
i=1 cixi = b with non-zero

integer coefficients. Then S is regular iff for s =
∑k
i=1 ci, either b/s ∈ Z+ or

∑k
i=1 cixi = 0

is regular and b/s ∈ Z−

The column condition for a k × n matrix with columns c1, c2, ..., cn asks for a reordering of

the columns and a sequence of indices 1 = i0 < i1 < ... < it = n such that sj =
∑ij
i=ij−1+1 ci

has s1 = 0 and for 2 ≤ j ≤ t, sj may be written as a linear combination of c1, c2, ..., cij−1
. If

this is possible, then the matrix satisfies the column condition.

Theorem 4.3.3 (Rado’s theorem for systems of equations) Let S be a system of linear

homogeneous equations represented in matrix form by Ax = 0, then S is regular if and only

if A satisfies the column condition. Moreover there is a monochromatic solution to Ax = 0

formed from distinct integers if A satisfies the column condition and there is a not necessarily

monochromatic solution of distinct integers to Ax = 0.

When calculating Rado numbers, Landman and Robertson come across a useful fact about 2-

colorings on the integer lattice. They study for relatively prime a and b the integers 1+as+tb
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and by looking at the pairs (s, t) find the need to prove that for 0 ≤ y ≤ x ≤ 4, any 2-coloring

of these points admits a monochromatic isosceles right triangle with the same orientation as

the space. They suggest that this presents a new Tic-Tac-Toe game where on this board the

winner is the player to first complete such an isosceles right triangle in their symbol (X or O)

and note that the game can not end in a draw. However, a strategy stealing argument shows

that the first player will always win. The connection between Rado’s theorem, colorings of

the plane, and combinatorial games shows how interwoven these topics are.

4.4 Hilbert’s Cube Lemma

David Hilbert was born in 1862 near Koenigsberg which in Hilbert’s time was part of the Ger-

man empire but today is Russian territory. Hilbert’s influence on modern day mathematics

is enormous. By 1900 Hilbert was recognized as one of the world’s top mathematicians. At

the 1900 International Congress of Mathematics Hilbert presented 23 problems that would

guide the course of mathematics through the next century. Hilbert proved this cube lemma

in 1892 while studying rational functions with integer coefficients. The importance of this

lemma is mostly historical as it is the first known instance of a Ramsey-type result.

Given a set of not necessarily distinct positive integers x0, x1, ..., xn the affine n-cube gener-

ated by this set is the set of possible values of x0 +
∑
i∈I xi|I ⊆ [n], so the set of sums where

x0 is included with any subset of x1, ..., xn. For example, the affine cube generated by 1, 3, 9

is 1, 4, 10, 13.

Theorem 4.4.1 (Hilbert’s cube lemma) For each pair of positive integers r, n there exists a

least integer m = H(r, n) such that for any r-coloring of [m] there is a monochromatic affine

n-cube in some color.

Hilbert did not prove it this way but consider the arithmetic progression a, a+d, a+2d, ..., a+

nd this corresponds to the affine cube generated by x0 = a and xi = d for 1 ≤ i ≤ n.
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Since van der Waerden’s theorem states that in any r-coloring of [W (n + 1, r)] there is a

monochromatic n+ 1 term arithmetic progression which may be viewed as a monochromatic

affine cube by the above method, such an m must exist.

Hilbert did not touch Ramsey-type problems again. In fact no one seems to have used this

lemma in a Ramsey-type way until Erdős, Sarkosy, and Sos published the following density

theorem in 1989.

Theorem 4.4.2 (Hilbert Cube Lemma Density Version) For every positive integer n there

is a natural number m0 = H(n) such that for any m0 > m, B ⊆ [m] with |B| > 3m1−2−n

there exists positive integers x0, x1, . . . , xn that generate an affine cube contained in B.

4.5 The happy end problem

Returning to Erdős and his mathematical circle, this problem was what allowed the redis-

covery of Ramsey theory after Ramsey’s untimely death. Esther Kline had been scribbling

points in the plane in her notebooks and suddenly a problem occurred to her that seemed of

a new and novel nature. She asked: is it true that for all n there is a least number g(n) such

that any collection of g(n) points in the plane in general position (i.e, no three points on a

line) contain a convex n-gon? Esther was able to prove g(4)=5. To see this draw a triangle,

the fourth and fifth points are interior to the triangle, otherwise a convex quadrilateral is

formed or some other collection of three points traps the fourth and fifth in a triangle. Wher-

ever these fourth and fifth points are placed in the triangle they form a convex four-gon with

one two of the vertices of the triangle. Esther presented the problem to the circle of young

mathematicians who shared Esther’s intuition that they were working on something new

and important. Both Erdős and George Szekeres noted that the desire amongst the heavily

male-dominated group to be the first to solve this problem also stemmed from the fact that

Esther had proposed the problem. George won the race and within a year married Esther.

Paul and George wrote the paper “On a Combinatorial Problem in Geometry together”.
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Call an n-cup a sequence of n points with increasing consecutive slopes and an n-cap a

sequence of n points with decreasing consecutive slopes. Let f(n,m) be the maximum

number of points without a n-cup or m-cap. Let S be a set of points without n-cups and

m-caps, and T be the set of right endpoints of (n−1)-cups. Points in T are not left endpoints

of (m− 1)-caps because the point to the left of t ∈ T is more left than t. Since there are no

n-cups, and T does not contain a left hand endpoint of a (m − 1)-cap, T contains neither

an n cup nor an m − 1 cap, so f(n,m − 1) ≥ |T |. Likewise S − T has no right endpoints

for (n− 1)-cups, so as there are no m-caps, |S − T | ≥ f(n− 1,m), combining with the first

inequality gives f(n,m) ≥ |S| = |T |+ |S− T | ≥ f(n,m− 1) + f(n− 1,m). Now an n-cup is

an example of a convex n-set, likewise an m-cap is an example of a convex m-set. From this

it follows that g(n) ≤
(
2n−4
n−2

)
+ 1.

Esther Kline and George Szekeres escaped Budapest for Hong Kong before World War II

and settled in Australia where they remained active in mathematics until their deaths which

occurred hours apart in 2005.

4.6 Conclusion

Ramsey theory is a wide and varied field of combinatorics and graph theory. There is much

more that has and will be written on this subject than I could possibly cover here. Some

things to explore include Ramsey number for cycles, paths, stars etc as well as problems of

colored polygons in the plane. I hope that this has given the reader a thorough introduction

to the problems studied, important players, and proof strategies employed in Ramsey theory.
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