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ABSTRACT

In modern software development, maintenance accounts for the majority of the total cost and

effort in a software project. Especially burdensome are those tasks which require applying

a new technology in order to adapt an application to changed requirements or a different

environment.

This research explores methodologies, techniques, and approaches for automating such adap-

tive maintenance tasks. By combining high-level specifications and generative techniques,

a new methodology shapes the design of approaches to automating adaptive maintenance

tasks in the application domains of high performance computing (HPC) and enterprise soft-

ware. Despite the vast differences of these domains and their respective requirements, each

approach is shown to be effective at alleviating their adaptive maintenance burden.

This thesis proves that it is possible to effectively automate tedious and error-prone adaptive

maintenance tasks in a diverse set of domains by exploiting high-level specifications to syn-

thesize specialized low-level code. The specific contributions of this thesis are as follows: (1)

a common methodology for designing automated approaches to adaptive maintenance, (2) a

novel approach to automating the generation of efficient marshaling logic for HPC applica-

tions from a high-level visual model, and (3) a novel approach to automatically upgrading

legacy enterprise applications to use annotation-based frameworks.

The technical contributions of this thesis have been realized in two software tools for au-

tomated adaptive maintenance: MPI Serializer, a marshaling logic generator for MPI ap-

plications, and Rosemari, an inference and transformation engine for upgrading enterprise



applications.

This thesis is based on research papers accepted to IPDPS ’08 [93] and OOPSLA ’08 [92].
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Chapter 1

Introduction

1.1 The Case for Automated Adaptive Maintenance

After a software application is released, the primary focus of developer efforts shifts from

implementing required features to maintaining the existing code base. According to the

ISO/IEC 14764 standard [49], developer actions in this phase, known as software main-

tenance, fall into one of four categories: corrective, preventative, adaptive, or perfective.

Corrective actions correct problems discovered after delivery. Preventative actions correct

latent defects before they result in operational failures. Adaptive actions enable execution in

a different environment from the original target environment. Perfective actions improve the

maintainability or performance of the application. Corrective and preventative maintenance

are grouped more generally as corrections, while adaptive and perfective maintenance are

considered enhancements. Figure 1.1 shows the taxonomy of software maintenance activities.

Software maintenance comprises the largest portion of the total cost and effort of the software

development process [11, 57], with enhancements constituting the majority of maintenance

1
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Correction Enhancement

Maintenance

PreventativeCorrective Adaptive Perfective

Figure 1.1: The taxonomy of types of software maintenance, as specified by the ISO/IEC
14764 standard.

tasks [61, 105]. There are many contributing factors for this: the complexity of software grows

exponentially in relation to the size of a program [9], maintenance programmers are often not

the original developers of the application, and software documentation may be inadequate

or non-existent. Unsurprisingly, addressing changed requirements or fixing program defects

requires an effort that is directly proportional to the size of a program [43].

In addition to the costly complications generally associated with software maintenance, adap-

tive maintenance includes its own specific challenges. By definition, adaptive maintenance

tasks require the developer to possess a set of skills beyond those necessary to produce the

original release. Often, the developer must learn to use different APIs or language features

in order to migrate an application to a new middleware platform or framework vendor. As

such, while the actual migration task may be trivial to perform once the developer is familiar

with the new technology, achieving such familiarity is often time-consuming and expensive.

The cost of this training period contributes to the task’s total overhead and provides strong

motivation for tools and approaches which can automate adaptive maintenance.
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1.2 Applicability of Automated Adaptive Maintenance

The potential benefit of automated adaptive maintenance tools is not limited to a single

domain, but rather spans a broad spectrum of modern software development. This thesis

illustrates the broad necessity of such tools by exploring two vastly different areas: high

performance computing (HPC) and enterprise software. The primary concern of HPC devel-

opers is to produce highly efficient and optimized code, capable of solving intense scientific

and engineering problems in a minimal amount of time. Conversely, enterprise developers are

typically concerned with the software engineering quality of their solution, and place a high

premium on elegant designs. Despite the apparent dichotomy between these two domains,

developer productivity in both can be improved through automated adaptive maintenance.

1.2.1 High Performance Computing

Recent studies [47, 48] have indicated that Shared Memory Multiprocessor (SMMP) pro-

gramming models can lead to higher programmer productivity compared to Distributed

Memory Multiple Processor (DMMP) models (i.e., compute clusters). A key difference be-

tween these two programming models is the need to pass program state between multiple

processors across the network in DMMP. The programming technique for accomplishing this

goal is called marshaling, also known as serialization. The technique entails representing

the internal state of a program in an external format. Data in an external format can then

be passed across the network. The reverse of this technique is called unmarshaling, also

known as deserialization. These techniques are tedious and error-prone to implement by

hand without library or automated tool support and likely contribute to the discrepancies

in programmer productivity between the SMMP and DMMP models.

Nevertheless, the relatively lower cost of DMMP hardware makes it more common and
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accessible to a wider group of parallel programmers [96]. The primary middleware facility

for parallel programming on a compute cluster is the Message Passing Interface (MPI) [68].

MPI is ubiquitous, being available on virtually every parallel cluster-based computing system

and has a standardized application programming interface (API). In addition, MPI aims at

providing a uniform API for multiple programming languages such as Fortran, C, and C++.

Consequently, this API is tailored to the lowest common denominator, providing only low-

level marshaling facilities. As a result, C++ programmers are forced to provide tedious

and error-prone code to interface their C++ application code with the MPI marshaling

facilities. Therefore, automated tools for mapping higher-level features of C++ to lower-

level marshaling facilities of MPI have the potential to significantly improve programmer

productivity.

1.2.2 Enterprise Software

By providing reusable designs and a predefined architecture, frameworks enable developers

to streamline the software construction process and have consequently become a mainstay of

enterprise software development. One design decision that has to be made when creating a

framework is how application and framework objects will interact with each other. Tradition-

ally, frameworks have employed type and naming conventions to which the programmer must

adhere. However, since metadata support has been added to modern object-oriented lan-

guages (e.g., Java Annotations and .NET Attributes), frameworks have increasingly moved

to using language-supported metadata facilities. Being embedded within the source code

next to the program elements they describe, annotations provide a more concise and robust

approach to providing declarative information. Predictably, many existing frameworks have

switched from using type and naming conventions to using annotated Plain Old Java Objects

(POJOs) in their latest releases.



5

The benefits of upgrading to the latest annotation-based version of a framework may not

be worth the programming effort required to apply these refactorings manually, resulting

in an anti-pattern that we call Version Lock-in. Also, as noted in a recent article [78] de-

scribing metadata-based enterprise frameworks, annotations present an additional challenge:

the tight coupling between annotations and source code may render switching between dif-

ferent framework vendors prohibitively expensive for large software projects. Such a high

re-engineering cost results in the phenomenon known as the Vendor Lock-In anti-pattern

[18]. The development of an automated tool for upgrading framework-based applications

suffering from these hindrances would enable enterprise developers to reap the benefits of

upgrading without having to manually change their code base.

1.3 A Common Methodology

At first glance, the two domains discussed above and their specific adaptive maintenance

challenges bear little resemblance to each other. Nevertheless, a common methodology can

be used to design automated approaches for both tasks. This methodology requires that the

developer adheres to three pillars: automation, high-level specifications, and low-level code

synthesis. The pillars are described in detail below:

1. Automation - Modern compilers and integrated development environments (IDEs) pro-

vide third-party tools with many facilities, such as abstract syntax tree (AST) infor-

mation and source manipulation routines. The first pillar integrates these facilities to

initialize and apply the approach automatically.

2. High-Level Specifications - The benefits gained by automation may be outweighed if

the automated approach as too steep of a learning curve. The second pillar aims at
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lowering the barrier to entry by enabling the user to express their intent via intuitive

abstractions.

3. Low-Level Code Synthesis - The tedious and error-prone nature of many adaptive

maintenance tasks makes them costly. The third pillar streamlines and simplifies the

task by generating code which would otherwise have to be written by hand.

This methodology shaped the design of the MPI Serializer and Rosemari approaches, de-

scribed next.

1.3.1 MPI Serializer

Our novel approach, MPI Serializer, overcomes the challenges of mapping higher-level fea-

tures of C++ to the lower-level marshaling facilities of MPI. The design of MPI Serializer

adheres to the three pillars of our methodology as follows:

1. Automation - A compiler tool enables our approach to automatically parse a C++

application and create a model of the class hierarchy.

2. High-Level Specifications - Marshaling logic is specified via a visual model that provides

graphical abstractions for a wide variety of C++ language features.

3. Low-Level Code Synthesis - Specialized object graph traversals and standard MPI

marshaling calls are generated based on the visual specification.

1.3.2 Rosemari

Our novel approach, reified in the Rosemari tool, solves both the Version and Vendor Lock-In

problems associated with annotation-based frameworks. The design of Rosemari adheres to
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the three pillars of our methodology as follows:

1. Automation - AST and source manipulation libraries provided by the IDE automate

the parsing and transformation of legacy application classes.

2. High-Level Specifications - Upgrade rules are inferred from “before-and-after” examples

that developers have likely already created for tutorials. These rules are then expressed

using our domain-specific language (DSL).

3. Low-Level Code Synthesis - Conditional and transformation DSL statements are gen-

erated by our inference algorithm.

1.4 Thesis Statement

This thesis asserts the following statement:

It is possible to effectively automate tedious and error-prone adaptive maintenance

tasks in a diverse set of domains by exploiting high-level specifications to synthesize

specialized low-level code.

This research proves this thesis by illustrating adaptive maintenance challenges in two vastly

different areas, HPC and enterprise development, and following a common methodology to

develop software tools to automate these tasks.

1.5 Contributions

This thesis makes the following contributions:
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1. A common methodology for designing automated approaches to adaptive maintenance.

2. A novel approach to automating the generation of efficient marshaling logic for HPC

applications from a high-level visual model.

3. A novel approach to automatically upgrading legacy enterprise applications to use

annotation-based frameworks.

1.6 Overview of Thesis

This thesis is based on two previous publications [93, 92] and the remainder is organized as

follows. Chapters 2 and 3 detail the motivation, design, and implementation of MPI Serializer

and Rosemari, respectively. Chapter 4 discusses related work. Chapter 5 enumerates the

contributions of this thesis and presents concluding remarks.



Chapter 2

MPI Serializer

2.1 Introduction

Parallel programming for High Performance Computing (HPC) remains one of the most

challenging application domains in modern software engineering. At the same time, the

programmers who create applications in this complex domain are often non-experts in com-

puting. The primary users of parallel processing tend to be lab scientists and engineers,

many of whom have limited experience with parallel programming. The dichotomy between

the intrinsic difficulty of this application domain and the non-expert status of its many ap-

plication developers is a major bottleneck in the scientific discovery process. This provides

a strong motivation for research efforts aimed at making parallel processing more intuitive

and less error-prone.

C++ is one of the foremost higher-level programming languages that provides support for

object oriented, procedural, and generic programming models. While large portions of engi-

neering and scientific code have been written in Fortran, C++ is often a preferred language

9
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for programming complex, performance-conscious models due to its availability, portability,

efficiency, and generality [6, 67, 99]. As C++ is being used more and more in scientific and

engineering computing, the importance of alleviating the burden of implementing marshal-

ing logic in C++ for MPI grows due to the number of non-expert users in these domains.

However, marshaling C++ data structures is non-trivial due to the inherent complexity of

the language.

This chapter presents a novel approach to overcoming the challenges of mapping higher-level

features of C++ to the lower-level marshaling facilities of MPI. Our approach eliminates

the need for the programmer to write any marshaling code by hand. Instead, our tool uses

compiler technology to parse C++ code and to obtain an accurate description of a program’s

data structures. It then displays the resulting description in a graphical editor that enables

the programmer to simply “check-off” the subset of a class’s state to be marshaled and

unmarshaled. Our tool then automatically generates efficient MPI marshaling code, whose

performance is comparable to that of hand written code.

Our approach provides a more comprehensive level of support for C++ language features

than the existing state of the art [77, 50, 42, 46]. Specifically, we can marshal effectively

and efficiently non-trivial language constructs such as polymorphic pointers, dynamically

allocated arrays, non-public member fields, inherited members, and STL container classes.

A distinguishing characteristic of our approach is that it provides support for a significant

subset of the C++ language without requiring any modifications to the existing C++ source

code. This makes our approach equally applicable to third party libraries as well as to

programmer-written code. Our tool generates code that uses standard MPI calls and requires

no additional libraries, thereby simplifying deployment.
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2.2 Motivation

Automated marshaling of C++ objects for the HPC domain presents a unique set of chal-

lenges which have not been fully addressed by prior approaches. We first explain the unique

challenges of automatically generating C++ marshaling functionality. Then we present a

concrete example of a C++ class and briefly discuss why existing approaches are insufficient

to enhance this class with efficient marshaling functionality. In the process, we also pinpoint

the additional capabilities required to accomplish this goal.

2.2.1 Design Objectives

In creating an automated tool for generating marshaling functionality for C++ data struc-

tures, we set the following objectives:

1. The tool should provide abstractions to automate the handling of low-level marshaling

details, to make our approach appealing to experts and non-experts alike.

2. The generated marshaling code should be highly efficient, as performance is a crucial

requirement for HPC applications.

3. The tool should be able to marshal any subset of an object’s state to minimize the

amount of network traffic and enable multiple marshaling strategies per object rather

than providing only one strategy per type (i.e., C++ class) to allow maximum flexi-

bility.

4. The generated marshaling functionality should not require any modification to the

existing code, to make our approach work with third-party libraries.
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5. The generated code should use only standard MPI calls and not require any additional

runtime library to ease deployment and to ensure cross-platform compatibility.

6. The marshaling technique should be able to support a subset of the C++ language

that contains commonly used features including:

(a) Non-primitive fields

(b) Pointers

(c) Non-public fields (i.e., private and protected)

(d) Static and dynamic arrays

(e) Inheritance

(f) Standard Template Library (STL) containers

In the following discussion of previous approaches, we will refer to the above six objectives

to motivate our approach and to explain why existing approaches are insufficient.

2.2.2 Prior Approaches

Several prior approaches have attempted to provide automatic serialization of C/C++ data

structures for MPI applications. These approaches include both automatic tools and special

purpose libraries. The automatic tools that we consider closely related work include Au-

toMap/AutoLink [42], C++2MPI [46], and MPI Pre-Processor [77]. In addition, Boost.MPI

and Boost.Serialization [50] provide library support for seamless marshaling and unmarshal-

ing. Next we describe and compare the features of each of these approaches to motivate our

approach and demonstrate how it improves on existing state-of-the-art.

AutoMap/AutoLink [42] provides automatic marshaling of C structures by enabling the user

to annotate fields to be marshaled. While the annotations provide a level of abstraction,
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its granularity might be too low-level particularly for non-expert users, possibly violating

objective one. Obviously, this approach will fail if the fields are a part of a structure in a third-

party un-modifiable library, which violates objective five. In addition, AutoMap/AutoLink

does not support C++, which violates objective six.

C++2MPI [46] and MPI Pre-Processor [77] provide automatic creation of MPI Datatype’s

for C/C++ data structures. An MPI Datatype is a list of memory offsets describing the

data to be marshaled given the base offset of a structure. However, the approach makes

an implicit assumption that all memory in a structure has been allocated statically, which

violates objective six. In addition, the tools do not support marshaling subsets of an object

state, which violates objective three.

Finally, the Boost.MPI and the Boost.Serialization libraries [50] aim at modernizing the C++

interface to MPI by utilizing advanced generic programming techniques [28]. These libraries

provide support for automatic marshaling of primitive data types, user-defined classes, and

STL container classes. In order for a user-defined class to use the services of the Boost

libraries, it has to supply a serialize method either as a class member or as an external

method. To use a member method requires changes to the original source code of the class,

which violates objective four. This violation can be avoided by supplying serialize as an

external method. However, in this case serialize would not be able to access non-public

fields of a class, without the class declaring the method as friend, which violates objective

six. A friend declaration, of course, would once again violate objective four. Moreover, the

Boost libraries follow the per-type marshaling strategy. That is, all objects of a given C++

class are marshaled based on the functionality of the corresponding serialize method,

violating objective three. While the logic inside such a serialize method might marshal

objects differently depending on some of their properties (e.g., field values), this offers only

limited flexibility and might incur significant performance overheads, violating objective two.
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Objectives AM/AL C++2MPI MPIPP Boost MPI S.
1. High-level abstractions +/- + + + +
2. Efficient Code + + + +/- +
3. Multiple partial object marshaling - - - - +
4. No source modification required - - + - +
5. No run-time library required + + + - +
6. Support C++ - + - + +

a. Non-primitive fields - - - + +
b. Pointers - - - + +
c. Non-public fields - + - + +
d. Static and dynamic arrays - +/- - + +
e. Inheritance - - - + +
f. STL containers - - - + +

Table 2.1: Comparison of MPI Serializer (MPI S.) to directly related state-of-the-art ap-
proaches

Table 2.1 illustrates how well each directly related approach satisfies our stated objectives,

thereby motivating our approach.

2.2.3 Motivating Example

Our example comes from a well-known computational problem in astrophysics, the N-Body

problem [58]. This example belongs to an important class of parallel algorithms utilizing long

range data interactions. The algorithm computes the gravitational force exerted on a single

mass based upon its surrounding masses. To express this problem in C++, a programmer

might create a class Mass as follows:

class Mass {

private :

vector<Mass> surrounding; //nearby masses

protected:

float force x , force y ; // resulting force
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public :

float mass; //mass value

float x, y; //position

...

};

As part of the algorithm, we need to send an object of this class from one process to another.

Furthermore, only a subset of the object’s state is needed at any given time. Specifically,

when sending the Mass object from the Master process to the Worker process, only fields

mass, x, y, and surrounding are required. Conversely, when sending the object in the

opposite direction, only fields force x and force y are needed, as the rest of the object is

still in memory on the master.

Let us consider how these simple marshaling tasks can be successfully accomplished using the

existing state-of-the-art approaches to C++ marshaling for MPI. In particular, we evaluate

the four most directly related approaches: AutoMap/AutoLink, C++2MPI, MPIPP, and

Boost.

The marshaling functionality required for sending the object from the Master to the Worker

process cannot be accomplished by using any of the first three approaches, as they provide

no support for marshaling fields of dynamically-determined size such as STL containers.

Additionally, because these three approaches do not support partial object marshaling, they

could only provide marshaling functionality for sending the object in the opposite direction

by defining an intermediate structure and copying the force x and force y fields to a

temporary instance of this structure.

The Boost libraries do provide support for the required marshaling functionality, but this

support is not adequate to address all of the requirements. The programmer could add a
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serialize member method to the Mass class to marshal the required fields for the Master

to Worker communication. Notice that this approach would fail if class Mass could not be

modified (e.g., being a part of a third-party library). However, the marshaling functionality

implemented by such a serialize method would be per-type. As a result, it would be non-

trivial to use different marshaling logic when sending the object back from the Worker to the

Master. Recall that in this case we only want to send back the fields force x and force y.

One way to enable such custom marshaling would be to add an extra boolean direction field

to the class and to set it to an appropriate value before marshaling the object. Nevertheless,

even if code modifications were possible, this solution might not be acceptable, as it incurs

performance overheads by preventing Boost from optimizing the marshaling functionality

through MPI Datatype’s.

To summarize, the primary reasons why the existing state-of-the-art approaches fell short of

meeting the demands of this marshaling task are that they either failed to provide adequate

support for common C++ language features (i.e., non-public fields, STL container) or re-

quired extensive code modification and restructuring. Thus, we feel that this simple example

sufficiently motivates the need for a better approach to automatic C++ MPI marshaling.

While this was only a simple example, the case studies that we present in Section 6 further

justify the need for our new approach and automatic tool.

2.3 A Generalized Automatic C++ MPI Marshaling

Approach

The domain of HPC applications is computationally intensive. Despite utilizing parallel

hardware resources, HPC applications often run for prolonged periods of time before arriv-
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ing at a solution. Lab scientists and engineers, who are the primary developers of HPC

applications, care first and foremost about decreasing this “time-to-answer.”

This presents a unique set of challenges to software engineering researchers who aim at

providing novel programming tools in support of HPC application developers. These tools

must provide a high degree of usability while still producing highly efficient code. These two

goals are often irreconcilable. Ensuring good usability entails providing abstractions, which

are commonly detrimental to performance. In order to create a user-friendly automated tool

for high performance applications, we make the following design assumptions:

• Any changes to the marshaling functionality will be made via the GUI of our tool,

which will re-generate the marshaling code.

• The generated marshaling code will not be modified by hand.

• The generated marshaling code places a higher priority on performance than readabil-

ity.

We believe that these assumptions are reasonable, as the primary focus for HPC developers

is on performance, usability, and time-to-answer.
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Figure 2.1: An overview of the control flow for MPI Serializer.

Next we describe the main steps of our approach in turn. Figure 2.1 shows an overview of

the control flow of our approach and automated tool. The programmer interacts with the
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tool through a GUI. As the first step, the tool parses the C++ data structures (e.g., classes

and structs) for which marshaling code can be generated. Then the programmer uses the

GUI to select the subset of an object state to be marshaled. Figure 2.2 displays class Mass

from Section 3, with fields mass, x, y, and surrounding selected for marshaling. This visual

input is the only action required from the programmer to parameterize the backend code

generator of our tool, which then generates marshaling functionality. The programmer can

then simply include the automatically generated marshaling code with the rest of their HPC

application.

2.3.1 User Interface

The programmer starts by selecting a C++ source file using a standard file browse dialog. In

response, the tool invokes a C++ parsing utility called GCCXML [40]. This utility taps into

the platform’s C++ compiler (e.g., GCC on UNIX or Visual C++ on Windows) to create

a structured XML description of a given C++ compilation unit; this XML description can

be used by other language processing tools. Our tool then parses the XML file and displays

the extracted information to the user through a GUI.

The GUI employs a tree-view visualization [44] to display C++ object graphs. The tree-view

provides an intuitive interface for the programmer to explore the structure of an object graph

and to select the fields to be included into the subset of the marshaled object’s state. The

root node of the tree-view represents the main class selected for marshaling. All other nodes

represent fields transitively reachable from the main class. To prevent circular references

from causing infinite node expansion, the tree-view implements a lazy node visualization

strategy, expanding a node only when it is selected for marshaling.
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Figure 2.2: Selecting a subset of an object graph in MPI Serializer.

2.3.2 Handling C++ Language Features

Automatic marshaling of C++ data structures presents many challenges arising as a result

of the sheer complexity of this mainstream programming language. In designing our tool, we

had to address a number of these challenges to support a reasonable subset of the language.

In the following discussion, we highlight the novel insights we have gained from designing

our approach and automated tool.

Dynamic arrays

In C++, the meaning of a pointer variable is ambiguous. A pointer may be pointing to

the memory location of a single element, or it may be pointing to the first element in a

dynamic array. In the latter case, the language provides no standard way to determine

the array’s size. By convention, when designing a class, many C++ programmers define

an additional member variable to keep track of the size of its corresponding dynamic array

member variable. Our strategy for marshaling dynamic arrays assumes that the programmer

is following this convention. To this end, the tool’s GUI enables the programmer to visually
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disambiguate the meaning of a pointer variable to be marshaled. If the variable is indeed a

dynamic array, the programmer can select the numeric field representing the array’s size.

Polymorphic fields

Another complication that pointer fields present for marshaling is polymorphism. A pointer

to a base class may actually be assigned to an instance of any of its subclasses. Our tool

automatically determines whether the possibility for polymorphism exists by examining the

inheritance graph of each field. In lieu of a precise static analysis, the programmer is expected

to specify object graph subsets for all possible derived instances to which a pointer field

could be pointing at runtime. Thus, the programmer implicitly disambiguates the range of

polymorphic possibilities for a pointer field. In the case of multiple possibilities, runtime

type information (RTTI) is employed in the generated code to determine the appropriate

marshaling functionality for the polymorphic field.

Non-public and Inherited fields

C++ supports the encapsulation principle of object-oriented programming by disallowing

outside entities (i.e., other classes and methods) from accessing non-public fields of a class.

However, non-public fields may be part of the subset of an object’s state selected for mar-

shaling. Previous directly related approaches employed two different strategies for accessing

non-public fields for marshaling.

The Boost libraries require declaring their library Archive class as a friend to all marshaled

classes. In C++, a friend entity is granted access to the non-public fields of a befriended

class. This strategy is not acceptable for our approach, as it requires modification to the

existing source, thereby violating our design objectives. C++2MPI uses a different strategy
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by creating an isomorphic copy of all marshaled classes, replacing all non-public declarations

with public ones in the replicated classes. The non-public fields’ offsets in the original classes

can subsequently be obtained by consulting the corresponding offsets in the replica classes at

runtime. While this strategy does not require changes to the existing source code, the C++

standard [56] only requires that non-bit-fields of a class or structure without an intervening

access-specifier (i.e., private, protected, or public) be laid out in non-decreasing address

order. In other words, a C++ compiler is free to allocate blocks of fields with different

access specifiers in an arbitrary order. As such, the C++2MPI strategy is not guaranteed

to work for all C++ standard-compliant compilers. This strategy also results in code bloat:

every marshaled class has to be deployed with its isomorphic copy. Such code bloat could

be detrimental for the locality of reference in the processor’s cache, resulting in performance

overhead, which is unacceptable for our approach. Thus, solving the challenge of accessing

non-public fields requires a new strategy capable of maintaining the existing source code

without sacrificing performance.

Our approach to calculating the offsets of all fields of a C++ class ensures cross-platform

and compiler independence while still strictly adhering to the C++ standard. This design is

enabled by adding an additional code generation layer on top of the existing infrastructure

of our tool. This layer generates metadata about the marshaled C++ data structures using

a technique that combines the strategies of C++2MPI and the Boost libraries.

For each class, our approach generates an isomorphic copy that preserves the order of fields

and access specifiers but also includes a friend declaration for a generated “field accessor”

class. The field accessor class creates a list of all fields’ offsets in a class using the standard

offsetof macro. In C++, friend declarations are strictly compile-time concepts and have

no affect on the memory layout of a class or its instances. Therefore, the field offsets obtained

from a generated isomorphic class are guaranteed to be the same as the corresponding field
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Offsets List
Mass.force_x, 16
...

Original Class

class Mass {

private:
vector<Mass> surrounding ;

protected:
float force_x, force_y ;

public:
float mass; //mass value
float x, y ; //position
. . .
} ;

class Mass {
friend class OffsetGenerator;
private:
vector<Mass> surrounding ;

protected:
float force_x, force_y ;

public:
float mass; //mass value
float x, y ; //position
. . .
} ;

Generated Isomorphic Class

class OffsetGenerator {
. . .
 void createOffsetsList ( ) {

int offset = offsetof(Mass, force_x);
    writeOffset(”Mass.force_x”, offset) ;
    . . .
  }
}

Field Accessor Class

MPI_Datatype workerToMaster;

void createDatatypes (Mass* mass, . . .) {
    MPI_Aint addresses[2] = {. . .};
    . . .

//add force_x to this datatype
char* force_x = ((char*)mass) + 16;
MPI_Address((float*)force_x, addresses[0]);

    . . .
//register the datatype

    MPI_Type_struct(. . ., &workerToMaster);
    MPI_Type_commit(&workerToMaster);
}

Generated Marshaling Code

Figure 2.3: Accessing non-public fields using our C++ standard-compliant strategy.

offsets in the original class.1

The obtained offsets are then inserted into the generated marshaling code to access an

object’s non-public fields. A slightly simplified example of accessing the protected field

force x in class Mass is shown in Figure 2.3. This approach minimizes runtime overhead by

using generated constant offset values to access non-public fields, maintains a cache-friendly

memory footprint by using isomorphic classes only at generation-time, and is guaranteed

to be cross-platform and compiler independent by following a C++ standard-compliant

strategy.

One could argue that our solution for accessing non-public and inherited fields violates the

encapsulation principle by allowing an outside entity (i.e., the marshaling method) to access

the non-public state of an object. However, the current solution is acceptable for the HPC

domain, which has the requirements of preserving the existing source code and not incurring

performance overheads take priority over strict adherence to object-oriented principles.

1Our approach relies on two assumptions. First, either the source or a corresponding GCCXML descriptor
file must be provided for all third-party libraries. Note that the latter option is reasonable for closed-source
libraries since the GCCXML file describes only the structure of the library and not any proprietary logic.
Second, the C++ compiler must be deterministic. That is, the memory layout of two identically-named
isomorphic classes will be the same. Although this property is not strictly guaranteed, it would likely be
infeasible for a non-deterministic C++ compiler to be standards-compliant.



23

2.3.3 Generating Efficient Marshaling Code

In addition to the ability to support a large subset of the C++ language, our approach also

implements a fast and memory-efficient buffer packing strategy. This strategy minimizes the

required size of the buffer, reducing the bandwidth needed to transmit marshaled data. The

key to the efficiency of our approach is generating code that leverages the mature marshaling

facilities of MPI. Therefore, we first give a quick overview of these facilities before describing

the novel insights of our strategy. For a detailed listing of the marshaling code generated to

send a Mass object from Master to Worker and Worker to Master, see appendix A.

MPI provides a variety of API facilities to support marshaling. However, for this discussion,

we focus on MPI Datatype and MPI Pack. The MPI Datatype construct provides a reusable

cached collection of static memory offsets for efficient marshaling of arbitrary data struc-

tures. The programmer first initializes an instance of a data structure and calculates the

memory offsets and sizes of the fields to be marshaled. These offsets are then stored in an

MPI Datatype for later use.

To pack data into a buffer, MPI provides an API function MPI Pack. The user passes the data

structure to be marshaled and the buffer to store the marshaled data. However, MPI Pack

supports only primitive C++ types and user-defined MPI Datatype’s. For objects containing

dynamically allocated fields, using MPI Pack is not trivial, as it requires static offsets for all

the marshaled data.

To guide the generation of efficient marshaling code, our approach first performs a bounds-

checking operation on the marshaled object graph. Bounds-checking traverses the object

graph in order to determine if the user-specified subset of the object’s state is “bounded.”

A bounded object state is a transitive property, signifying whether memory offsets and sizes

of all marshaled fields can be determined statically. An object graph containing dynamic
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array, pointer, or STL container fields violates this property.

Since using MPI Datatype is known to be more efficient for packing bounded objects than

packing fields individually [68], our approach utilizes this construct for marshaling all bounded

subsets of an object graph. Figure 2.4 illustrates how our approach utilizes MPI Datatype.

If the programmer selected an unbounded subset of an object graph, our approach then

employs static polymorphism to provide a global method MPI Pack with a similar sig-

nature to that of the standard MPI Pack method. While the standard method takes an

MPI Datatype as a parameter, the generated polymorphic method takes an automatically-

generated MPI Descriptor enum type specifying the marshaling strategy to use.

This approach is particularly useful for non-experts, who can follow a uniform convention by

calling both the standard MPI Pack on a bounded object with an MPI Datatype and by calling

the generated MPI Pack on an unbounded object using an MPI Descriptor. The distinction

between the standard and the generated version of MPI Pack is resolved at compilation time,

resulting in zero runtime performance overhead.

2.3.4 Using Generated Code

To further illustrate how the programmer uses generated marshaling code, consider the

Master-Worker communication that needs to pass instances of class Mass. In the case of

passing an instance of Mass from Worker to Master, the subset of the object graph consists

of force x and force y, and as such is entirely bounded. To maximize efficiency, the

tool generates an MPI Datatype (workerToMaster) for this subset. However, passing an

instance of Mass from Master to Worker, the marshaled subset is unbounded, as it contains

an STL container field, surrounding. This subset, therefore, requires custom marshaling

code, capable of traversing the unbounded subset efficiently. The generated code consists of
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Figure 2.4: An example of mapping bounded subsets of an object graph to MPI Datatype’s.
The offsets and sizes are for a 32-bit architecture using GCC.
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a custom MPI Pack function and an enum type, masterToWorker. However, the marshaling

interface exposed to the programmer is almost identical in bounded and unbounded cases,

as shown below:

void foo() {

Mass mass; char∗ buf;

...

//pack for Master to Worker

MPI Pack(&mass,1,masterToWorker,buf,...);

...

//pack for Worker to Master

MPI Pack(&mass,1,workerToMaster,buf,...);

}

The two separate packing calls are exposed to the programmer as if they were the same

MPI Pack call, even though the call for masterToWorker actually invokes a specialized gen-

erated packing method. The advantage of this approach is that it enables the programmer

to use the generated code almost identically to how they use the standard MPI interface.

2.4 Case Studies and Performance Results

The purpose of the presented case studies and the associated performance comparisons is to

validate our approach against the requirements stated in Section 2.1 as well as against the

existing state of the art. To recap, our goal is to support a sufficiently large subset of the

C++ language, while ensuring high performance in the generated marshaling code.

The evaluation of MPI Serializer that we have conducted consists of micro-benchmarks and

case studies. The micro-benchmarks enable us to pinpoint the fine-grained performance
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advantages and limitations of our approach. The two case studies involve the automatic

generation of the marshaling functionality for real HPC applications. The first case study

showcases the use of our tool as a refactoring aid in the often difficult task of parallelizing a

sequential program. The second case study demonstrates the fitness of our tool to provide

efficient marshaling functionality for an existing high-performance application.

In making the performance related arguments, we compare our work against the Boost

libraries and hand-written code on a 3.0GHz dual-core Pentium 4 with 2GB of RAM running

Debian GNU/Linux, GCC version 4.1.2. However, a comparison of our work with other

directly related approaches, such as MPI Pre-Processor [77], AutoMap/AutoLink [42], or

C++2MPI [46], is impossible due to their lack of support for C++ language features or even

C++ itself.

One additional advantage of our approach that is easy to overlook by focusing on per-

formance numbers is that it reduces the amount of maintained hand-written source code.

Since the complexity of software grows exponentially in relation to the size of a program

[9], every line of source code that the programmer has to write by hand contributes to the

software maintenance burden. Addressing changed requirements or fixing program defects

requires a program maintenance effort that is directly proportional to the size of a program

[43]. By reducing the amount of maintained source code, our approach has the potential to

ease the software maintenance burden. Therefore, while the following case studies highlight

performance gains, our approach also provides software engineering benefits to the target

applications.
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Marshalling and Unmarshalling Micro-Benchmark
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Figure 2.5: Benchmark results comparing the total marshaling and unmarshaling time re-
quired for the Mass class example.

2.4.1 Micro-benchmarks

For the micro benchmark, we used the Mass class described in Section 3. Figure 2.5 shows the

total combined marshaling, sending, and unmarshaling time taken for the Master to Worker

communication as described earlier. The x-axis represents the number of surrounding Mass

objects (i.e., being marshaled and unmarshaled). The figure demonstrates the differences in

performance between hand-written code utilizing the Boost libraries and code automatically

generated by our tool. The results show a speed-up between 2x and 4x for our approach

compared to Boost, with the rate of speedup increasing as the size of the transmitted data

structure grows.

While the generated code is highly efficient, the programmer can still write fine-tuned mar-
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shaling code by hand, which would yield better performance. This benchmark explores an

optimization technique for marshaling collections called striding. It refers to using a heuristic

to reduce the number of collection elements to be marshaled. The results show that using a

basic striding increment of 3 (i.e., selecting only 1/3 of the elements in the vector of Mass

objects) can still beat our approach.

2.4.2 Parallelizing NEAT

NeuroEvolution through Augmenting Topologies [85] (NEAT) is an artificial intelligence

algorithm for training a collection of artificial neural networks. NEAT is a genetic algorithm

[5] that mimics Darwinian evolution by repeatedly competing potential solutions against

each other and then selecting and breeding the fittest individual solutions. We used MPI

Serializer to automatically generate marshaling code for an on-going research project that

parallelizes NEAT to run on a supercomputer [101].

Figure 2.6 shows the time required to marshal and umarshal a NEAT population set using

the Boost libraries compared to using our approach. The x-axis in Figure 2.6 represents the

number of potential solutions (i.e., population elements) to be marshaled. The performance

numbers indicate similar scalability for both approaches. However, the abstractions provided

by the Boost libraries result in a performance overhead causing our approach to be as much as

an order of magnitude faster in some cases. Additionally, this particular application requires

the marshaling and unmarshaling of several nested fields (i.e., object fields with other object

fields). Providing Boost serialize methods by hand is much more difficult for this case,

as several classes must be modified. By contrast, our approach requires the programmer to

manipulate only a single visual hierarchy.
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Marshalling and Unmarshalling Comparison for NEAT
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Figure 2.6: Benchmark results comparing the marshaling time required for a population of
organisms in NEAT.
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2.4.3 mpiBLAST 2.0

mpiBLAST [29] is a widely-used, open-source, parallel application for aligning genome se-

quences. It solves the problem of finding the closest known matching sequence for a given

genome. mpiBLAST has been known to assist in the process of scientific discovery in do-

mains as diverse as new drug development and classifying new virus species. mpiBLAST

2.0 is written in C++ [3], with MPI as the communication middleware. In this case study,

we re-implemented the hand-written marshaling functionality of mpiBLAST by using both

the Boost libraries and our automated tool. For benchmarking, we chose the phase of the

mpiBLAST algorithm when the Worker processes report back their search results to the

Master.

Figure 2.7 compares the performance between the original hand-written code, the code using

the Boost libraries, and the code automatically generated by our tool. The x-axis represents

the number of sequence result collections marshaled. The results show that the automatically

generated code is slightly more efficient than hand-written code and nearly an order of

magnitude faster than the Boost implementation in some cases.

Similar to the NEAT case study, Boost’s abstractions once again account for the overhead

incurred while marshaling and unmarshaling. More surprisingly, the generated code yielded

better performance than the original hand-written implementation. The cause of this is that

the original implementation currently uses a less-efficient stream-based strategy to mar-

shaling and umarshaling, to aide in the debugging process. However, the code generated

automatically by our tool should require no debugging (provided that the tool’s implemen-

tation is mature enough), as long as the visual input specified by the programmer correctly

reflects the subset of the object graph to be marshaled.
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Marshaling Comparison for mpiBLAST

0.01

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512
Result Collections

Lo
ga

rit
hm

ic
 T

im
e 

(m
s)

Boost
Hand Written
MPI Serializer

Figure 2.7: Benchmark results comparing the marshaling time required for a collection of
genome alignment results in mpiBLAST.
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2.5 Future Work

The target audience of our approach and automated tool is non-expert HPC programmers.

Therefore, to further increase the usability of our tool, we would like to focus on improving

the software engineering quality of the generated code. First, by replacing MPI Pack calls

with size calculations, the same approach can be used to automatically determine the exact

size of a destination buffer. Integrating this technique will make it possible for the generated

code to provide a more programmer-friendly external interface, similar to that of Boost.

Our approach is not necessarily divergent from Boost and other marshaling libraries. The

clean, object-oriented interface that the Boost libraries provide to MPI programmers may

in some cases be worth the accompanying overhead. Consequently, as a future extension,

we plan to provide the capability to generate Boost serialize methods for data structures.

This demonstrates that our approach’s intuitive visual interface does not need to generate

marshaling code which is difficult to read or modify by hand if necessary.

Finally, although our tool generates code specifically for HPC applications using MPI, our

generalized approach extends beyond this specialized domain. Examples of other applica-

ble software development scenarios that could benefit from having automatically generated

marshaling code packed to a generic buffer include transmission, permanent storage, and

check-pointing.

2.6 Conclusions

Our approach provides automatic synthesis of efficient marshaling functionality for HPC

applications based on visual input supplied by the programmer. This aspect of our approach

is particularly appealing to the many lab scientists and engineers who have limited parallel
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programming experience. By automatically generating low-level, high-performance marshal-

ing code, our approach eliminates the need to write tedious and error-prone code by hand,

thereby facilitating the process of scientific discovery.



Chapter 3

Rosemari

3.1 Introduction

Despite the benefits of annotation-based frameworks, several major drawbacks hinder their

adoption and use. Legacy applications that were developed using older framework versions

based on type and naming requirements must be upgraded to the annotation-based versions.

This upgrade often requires hundreds or even thousands of tedious changes to source files

scattered throughout the code base. While these changes are intuitively obvious to the

programmer, automating them is not trivial. A text-based find-and-replace approach is not

sufficient, as the required changes cannot be correctly detected with a regular expression

search. Furthermore, existing inference algorithms cannot detect them automatically, and

writing an automated refactoring tool by hand can be time-consuming and error-prone.

These complications often force a manual refactoring in order to upgrade an application.

This chapter presents a novel refactoring approach that solves both the Version and Vendor

Lock-In problems commonly associated with annotation-based frameworks. Our approach

35
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has three phases: first, the framework developer creates representative examples of a class

before and after transitioning; second, our algorithm infers generalized transformation rules

from the given examples; finally, application developers can use the inferred rules to param-

eterize our program transformation engine and automatically refactor their legacy applica-

tions.

We validate our approach by inferring refactorings for transitioning between three different

unit testing frameworks (JUnit 3 [8], JUnit 4, and TestNG [10]), as well as three different per-

sistence frameworks (Java Serialization, Java Data Objects (JDO) [82], and Java Persistence

API (JPA) [30]). With only five minor refinements to the inferred unit testing transforma-

tion rules, we automatically upgraded more than 80K lines of testing code in JHotDraw,

JFreeChart, JBoss Drools, and Apache Ant from JUnit 3 to JUnit 4.

This chapter makes the following novel contributions:

• Annotation Refactoring– a new class of refactorings that replaces the type and naming

requirements of an old framework version or annotation requirements of a different

framework with the annotation requirements of a target framework.

• An approach to removing the Version and Vendor Lock-in anti-patterns for annotation-

based frameworks.

• A differencing algorithm that accurately infers general transformation rules from two

versions of a single example.

3.2 Motivating Example

Whenever a widely-used framework undergoes a major version upgrade (i.e., changing the

structural requirements for application classes), framework developers or other domain ex-
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perts commonly release an upgrade guide. A typical presentation strategy followed by such

guides is to show an example legacy class and its corresponding upgraded version. With

respect to annotation refactorings, recent framework upgrades that have led to the creation

of such guides include Enterprise JavaBeans (EJB) version 2 to 3 [72], Hibernate annotations

to the Java Persistence API (JPA) [100], and JUnit version 3 to 4 [86].

import junit.framework.*;

public class ATest extends TestCase
{

  //called before every test
  protected void setUp() {}

  //called after every test
  protected void tearDown() {}

  //tests Foo
  public void testFoo() {}

  //tests Bar
  public void testBar() {}
}

import org.junit.*;

public class Atest
{
  //called before every test
  @Before
  public void setUp() {}

  //called after every test
  @After
  public void tearDown() {}

  //tests Foo
  @Test
  public void testFoo() {}

  //tests Bar
  @Test
  public void testBar() {}
}

//gets a collection of two
//test cases to run
public class AllTests
{
public static Test suite() {

    TestSuite suite = 
      new TestSuite(ATest.class);
    suite.addTestSuite(BTest.class);
    return suite;
  }
}

@RunWith(Suite.class)
@SuiteClasses({ATest.class,

   BTest.class})
public class AllTests
{
  //no suite method required
}

JUnit 3 JUnit 4

JUnit 3 JUnit 4
Figure 3.1: Comparisons of a JUnit test case in version 3 and 4.

To illustrate the challenges associated with annotation refactorings, consider upgrading a

JUnit application from version 3 to 4. Figures 3.1 and 3.2 show two example legacy classes

and their corresponding upgraded versions, derived from the upgrade guide [86]. Applica-

tion classes that use JUnit fall into two categories: test cases and test suites. A test case

class contains a set of methods for testing a piece of application functionality. A test suite
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import junit.framework.*;

public class ATest extends TestCase
{

  //called before every test
  protected void setUp() {}

  //called after every test
  protected void tearDown() {}

  //tests Foo
  public void testFoo() {}

  //tests Bar
  public void testBar() {}
}

import org.junit.*;

public class Atest
{
  //called before every test
  @Before
  public void setUp() {}

  //called after every test
  @After
  public void tearDown() {}

  //tests Foo
  @Test
  public void testFoo() {}

  //tests Bar
  @Test
  public void testBar() {}
}

//gets a collection of two
//test cases to run
public class AllTests
{
public static Test suite() {

    TestSuite suite = 
      new TestSuite(ATest.class);
    suite.addTestSuite(BTest.class);
    return suite;
  }
}

@RunWith(Suite.class)
@SuiteClasses({ATest.class,

   BTest.class})
public class AllTests
{
  //no suite method required
}

JUnit 3 JUnit 4

JUnit 3 JUnit 4

Figure 3.2: Comparison of a JUnit test suite in version 3 and 4.

class groups related test cases, so that the framework can invoke them as a single unit.

Applications using JUnit 3 must adhere to type and naming requirements to designate test

cases and suites. However, JUnit 4 switched to using an annotated POJO paradigm to ex-

press the same functionality. Table 3.1 summarizes the differences between the application

requirements of the two versions.

Application Element JUnit 3 JUnit 4
Test case class Extend TestCase None (POJO)
Initialization method Override setUp @Before

Destruction method Override tearDown @After

Test method Name starts with “test” @Test

Test suite class Provides suite method @RunWith, @SuiteClasses

Table 3.1: A summary of the requirements for application elements using JUnit versions 3
and 4.

While the refactorings required to upgrade a JUnit application may be straightforward to the

programmer, no existing refactoring tool can make these changes automatically. Therefore,

if the framework developer wishes to provide automated upgrade support, she often has

no choice but to create a refactoring tool by hand. Such a task may require a significant
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investment by the framework developer, as she must first gain proficiency in a refactoring

library API (e.g., the Java Development Toolkit (JDT) [36]) or a domain-specific language

(e.g., Spoon [73]). After becoming familiar with a library or a DSL, she must then use it to

write the refactoring tool from scratch. As a result, framework developers typically opt to

provide backwards compatibility support rather than automated upgrade tools. Although

providing backwards compatibility allows legacy applications to use a newer version of a

framework, it does not allow them to take advantage of newly-introduced framework features.

Thus, an approach to automatically generating refactoring tools capable of upgrading legacy

applications has great potential benefit. Next we provide an overview of our approach and

show how it can be used to automatically generate a refactoring tool for upgrading JUnit

applications.

3.3 Approach Overview

Our approach is based on the wide availability of upgrade guides containing examples of

legacy classes and their upgraded versions. If the human developer is expected to infer

general rules for upgrading their legacy applications using these guides, then the exam-

ples are likely to contain a level of detail that one could leverage to automate the process.

Our approach automatically extracts this knowledge, creating specialized refactoring tools

that can upgrade legacy applications. Our Eclipse Plug-in called Rosemari (Rule-Oriented

Software Enhancement and Maintenance through Automated Refactoring and Inferencing)

implements our approach.

Creating an annotation refactoring tool involves three steps. First, the framework developer

selects two versions of a class, one before and one after upgrading, that we call representative

examples. The developer then picks a predefined specialization of our inference algorithm,
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called an upgrade pattern. Finally, the generated rules can be downloaded by application

developers and subsequently used to parameterize our transformation engine, which will

then automatically refactor their legacy applications. Next we detail the main steps of our

approach, using the previously mentioned JUnit example for demonstration.

Figure 3.3: The Rosemari context menu. The top set of menu items are available refactorings;
the bottom set of menu items are available inference patterns.

3.3.1 Representative Examples

A representative example is a class or interface, such as those commonly included in frame-

work tutorials, that uses framework features that differ between versions or vendors (e.g.,

Figures 3.1 and 3.2 can serve as representative examples for upgrading JUnit). A represen-

tative example using an older framework is called a prior example. A representative example

using a newer framework is called a posterior example. The framework developer provides

a prior example and its corresponding posterior example, which may differ in the following

ways:
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1. Super type changes

2. Method signature changes

3. Field type changes

4. Annotations added or removed

5. Annotation argument added or removed

6. Imports added or removed

7. Statement added or removed

The prior and posterior examples are compared at different levels of granularity in the

encapsulation hierarchy, which we call levels for short. Specifically, examples are compared

at the class, method, and statement levels. Differences between levels are used to detect the

restructurings required to upgrade the prior example into the posterior example. However,

detecting restructurings is only one facet of creating a refactoring. The decision of when to

apply a restructuring to a level requires additional knowledge about how the application is

being upgraded.

public class D extends C
{

public void foo() {
System.out.println();

}
}

public class D extends C
{

@Ann
public void foo() {

System.out.println();
}

}

Figure 3.4: An example showing the ambiguity inherent in inferring refactorings between
two arbitrary representative examples.

For instance, consider the simple pair of prior and posterior examples in Figure 3.4. While

it is obvious that there is a method-level difference that requires adding the @Ann annotation
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to foo, the refactoring rule to be inferred is unclear. One possible rule may be that a

method named “foo” in any subclass of C should be annotated with @Ann. However, another

rule could be that any method which calls System.out.println should be annotated with

@Ann. To disambiguate when a restructuring should be applied in a refactoring, we follow a

pattern-based approach described next.

3.3.2 Upgrade Patterns

When upgrading from a type and naming convention-based framework version to a newer

annotation-based version, or when switching between different annotation-based frameworks,

refactoring rules typically follow common patterns, which we call upgrade patterns. One

reason why these patterns occur is that evolving a framework to use annotations is normally

driven by the desire to improve the software engineering quality of the framework (e.g., looser

coupling between application and framework classes). Another reason is that switching

between different annotation-based frameworks often requires using a different vocabulary

to describe essentially the same functionality.

Therefore, inferring the refactorings between two representative examples depends on the

upgrade pattern followed. Next we describe three such common patterns we have identified

from our experiences. While we have found that these patterns successfully capture the

refactorings for many upgrade scenarios, other patterns can be plugged into our system as

needed.

Bottom-Up

This upgrade pattern applies restructurings on the basis of the level itself and its enclosing

levels. For example, refactoring the methods in a JUnit 3 test case follows a bottom-up
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pattern. Specifically, the test, setUp and tearDown method restructurings are only relevant

if their enclosing class is a TestCase.

Top-Down

In contrast to the bottom-up pattern, a top-down pattern applies restructurings on the basis

of the level itself and its contained levels. For example, refactoring test suite classes in JUnit 3

follows a top-down pattern. Specifically, the class is annotated with the @RunWith(Suite.class)

annotation on the basis of containing a suite method.

Identity

This upgrade pattern applies restructurings only on the basis of the level itself, assuming

that all annotations in the first representative example have a one-to-one mapping in the

second representative example. For instance, the TestNG framework uses @BeforeMethod,

which is identical in its functionality to the @Before annotation in JUnit 4.

The developer can choose an appropriate upgrade pattern by observing the purpose of a

given annotation. If adding an annotation removes tight coupling between the enclosing

elements of a level (e.g., a class enclosing a method) and the framework, then it is likely a

bottom-up pattern. If, however, the annotation describes the contained elements of a level

(e.g., a method contained in a class), then it is likely a top-down pattern. If the annotation

simply changes how the level is expressed, then it is likely an identity pattern.
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3.3.3 Transformation Rules

Inferred refactorings are represented as a collection of first-order when-then transformation

rules,1 expressed using a Domain Specific Language (DSL) we developed. A transformation

rule is composed of restructurings and constraints on their application. The when portion

of a rule defines the constraints under which to apply the restructurings defined in the then

portion of the rule.

While the generated rules possess a high degree of precision, some rules may require manual

refinement. Since the developer is not expected to write the transformation rules from scratch

but rather fine-tune the generated rules, we chose to trade conciseness for readability and

ease of understanding in designing our DSL. Having a collection of generic natural-language

statements that can be parameterized with concrete values, the developer can easily refine

complex rules to better express the desired refactorings.

Given the JUnit test case representative examples in Figure 3.1 and the Bottom-Up up-

grade pattern, Rosemari generates five transformation rules, shown in Figure 3.5. Rules 2-4

originally require that the target class directly extends TestCase. However, these trans-

formations are valid for any class that extends TestCase, directly or indirectly. Therefore,

the developer can change this constraint in each of the three rules by refining it to its more

general version: Superclass is a “junit.framework.TestCase”. Additionally, the Visibility is

protected constraint in rules 2 and 3 can easily be generalized by changing the constraint to

Visibility is at least protected.

The Rosemari plug-in provides a searchable collection of supported natural language state-

ments that the developer can reference when refining transformation rules. Once refined and

named appropriately (e.g., JUnit v3 to v4 ), the refactoring can be applied by selecting a

1We use the JBoss Drools engine[76].
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JUnit 3 test case source file and choosing the refactoring from the context menu, as shown

in Figure 3.3. The source file will then be automatically upgraded to JUnit 4.

Next we present our algorithm for inferring annotation refactoring rules.

3.4 Inference Algorithm

Our algorithm accepts two representative examples and infers a generalized set of transfor-

mation rules that compose a refactoring. We present our algorithm as a collection of seven

smaller set manipulation algorithms configurable through a user-defined partial order on the

levels of a representative example. To further illustrate how our algorithm works, we show

how each component algorithm contributes to learning the transformation rules for a simple

Enterprise JavaBeans (EJB) upgrade scenario. Figure 3.6 shows the two EJB representative

examples, derived from the Oracle guide [72] on migrating applications from EJB 2 to 3.2

3.4.1 Decomposing Representative Examples

In order for our algorithm to calculate transformation rules, each representative example

must first be decomposed into a set of levels, P = {L1, L2, . . . , Ln}. A level is a set, L =

{e1, e2, . . . , em}, of signature elements (i.e., tokens in a program element’s signature) at a

particular point in the encapsulation hierarchy. For example, the method level contains a set

of annotations, a visibility identifier, a scope identifier, a return type, a set of parameters, and

a set of exceptions. Figure 3.7 shows a full list of the supported levels and their definitions.

As discussed in Section 3.3.2, inferring the correct transformation rules given a pair of rep-

2Fully upgrading EJB applications requires static analysis of both Java source code and XML metadata
files and is thus outside the scope of this work. The rules learned in this example are therefore only a subset
of the total required to refactor an entire EJB application.
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resentative examples is not possible without additional information about the refactoring.

The Rosemari plug-in implementing our algorithm uses the concept of upgrade patterns to

simplify this process. However, upgrade patterns are merely wrappers for specifying a partial

order over the set of levels in a representative example. Figure 3.8 shows the partial orders

corresponding to each of the three previously discussed upgrade patterns. Figure 3.9 shows

the level sets for the EJB example, which matches to a Bottom-Up pattern.

3.4.2 Component Inference Algorithms

Our algorithm is to constructs sets of independent components and merges them hierarchi-

cally. This section presents the five sub-algorithms that compose these independent compo-

nents.

LevelRestructurings

Our algorithm starts by first calculating the restructurings for each level. A restructuring is a

simple program transformation function that adds, replaces, or removes a signature element

in a level. We call a restructuring a positive restructuring if it adds or replaces an element.

A restructuring is a negative restructuring if it removes an element. Figure 3.10 presents the

LevelRestructurings algorithm for discovering a level’s restructurings.

The Prune method (line 6) removes unnecessary elements from NEGELS. This is an imple-

mentation addition to reduce the number of negative restructurings generated, making the

final transformation rules more concise and readable. For instance, changing the visibility of

a level is done by replacing the current visibility with the new visibility (a positive restruc-

turing) rather than first removing the current visibility (a negative restructuring) and then

adding the new visibility (a positive restructuring).
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For the EJB example, LevelRestructurings is called three times (i.e., once for each level).

For the HelloWorldBean level, POSELSHelloWorldBean = {AStateful}, and thus a positive

restructuring of Add annotation “Stateful” is generated. Similar positive restructurings are

generated for the ejbActivate and ejbRemove levels. However, only the HelloWorldBean level

produces a non-null value for removed elements, as NEGELSHelloWorldBean = {ISessionBean},

resulting in a negative restructuring of Remove interface “SessionBean.”

Lemma 1. Let L = {e1, e2, ..., em} be a prior level, and let L′ = {e1, e2, ..., en} be a

posterior level, such that L′ is the restructured version of L. LevelRestructurings(L, L′)

returns a set of restructurings, R = {r1, r2, ..., rk} representing exactly every required positive

and negative restructuring to transform L to L′.

Proof. If there is an element, eu ∈ L′ such that eu /∈ L, then a positive restructuring

r+
i = PositiveRestructuring (eu) is required to transform L to L′. Thus, POSELS =

L′ − L (line 2) will contain eu, and adding a positive restructuring to R for every element

in POSELS (lines 3-4) guarantees that r+
i will be in R. If a positive restructuring, r+

j =

PositiveRestructuring(ev) is not required to transform L to L′, then either ev ∈ L or

ev /∈ L′. If ev ∈ L, then L′−L will remove ev and it will not be added to POSELS; likewise,

if ev /∈ L′ then L′ − L and consequently POSELS will not contain it. If POSELS does

not contain ev, then r+
j will not be created in line 4 and r+

j /∈ R. Therefore, R contains

every positive restructuring and no more. An analogous and opposite argument applies to

negative restructurings.
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LevelConstraints

Our algorithm next computes a set of constraints defining when the discovered restructurings

should be applied to a level. We call a constraint a positive constraint if it requires that an

element be present. A constraint is a negative constraint if it requires that an element not

be present. Negative constraints are necessary to ensure the generated transformation rules

are not applied unnecessarily (e.g., to levels that have already been transformed by hand

or a previous upgrading session). Figure 3.11 presents the LevelConstraints algorithm for

discovering a level’s constraints.

For the HelloWorldBean level, lines 2-3 create two positive constraints, Visibility is public

and Directly implements SessionBean; lines 5-6 then add one negative constraint, Not anno-

tated with “Stateful”. For both method levels, positive constraints requiring public visibility,

member scope (i.e., non-static scope), and a return type of void are added along with negative

constraints requiring ejbActivate and ejbRemove to not be annotated with “PostActivate”

and “Remove”, respectively. Our implementation also handles special cases such as when a

method does not contain any parameters, as with both EJB method levels which receive a

negative constraint requiring that there are no parameters in the method signature.

Lemma 2. Let L = {e1, e2, ..., em} be a prior level, and let L′ = {e1, e2, ..., en} be a

posterior level, such that L′ is the restructured version of L. LevelConstraints(L, L′) returns

a set of constraints, S = {s1, s2, ..., sk} representing exactly every required positive and

negative constraint to match L.

Proof. If there is an element, eu ∈ L, it must have an associated positive constraint,

s+
i = PositiveConstraint(eu) ∈ S. All elements in L are iterated over and their corre-

sponding positive constraints are added to S in lines 2-3. If a positive constraint s+
j =
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PositiveConstraint(ev) is not required to match L, then ev /∈ L and s+
j is never added

to S. Thus, S contains exactly every positive constraint. If and only if there is an el-

ement ew ∈ L′ such that ew /∈ L, it must have an associated negative constraint, s+
k =

PositiveConstraint(ew) ∈ S, since according to lemma 1 it will generate a positive re-

structuring in LevelRestructurings. NEGELS will therefore contain ew (line 4) and add

a negative constraint, s+
k , for exactly all elements satisfying the aforementioned constraint

(lines 5-6).

NamingConvention

For method and field levels, our algorithm adds a name matching constraint intended to

capture naming conventions. Figure 3.12 shows the NamingConvention algorithm which

takes a set, N = {n1, n2, . . . , nm}, of fields or methods with identical signatures in both the

prior and posterior examples and returns a generalized regular expression matching all the

names in N . The algorithm first tokenizes a name based on the Java naming convention

of uppercase delimiters, then calculates the tokens which match identically. If no naming

convention is found, a literal expression matching only N is returned. As this is the case for

both EJB method levels, each has an exact naming constraint added.

ContextConstraints

Although a level is context-free, program transformations are often not context-free opera-

tions but are rather based on some framework-dependent notion of context. To accommodate

these scenarios, we introduce the notion of context constraints. A context constraint, q for

level L1 is a level constraint, s ∈ L2, such that L1 <L L2 where <L is a user-defined partial

order on the set of levels, P . Figure 3.13 shows the ContextConstraints algorithm for discov-
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ering all context constraints for a set of prior levels. It should be noted that the algorithm

presented is only a semantically-equivalent version of the implementation, as in practice

caching data structures can be used to eliminate the internal loop (lines 4-6).

Since our EJB example follows a Bottom-Up pattern, all method levels are defined as depen-

dent on their enclosing class level. Thus, ContextConstraints adds the additional require-

ments that annotating a method named ejbActivate or ejbRemove with @PostActivate or

@Remove, respectively, is only correct if the enclosing class has public visibility and imple-

ments SessionBean.

Lemma 3. Let P = {L1, L2, ..., Ln} be a set of prior levels, let <L be a partial order on P ,

and let Sall = {S1, S2, ..., Sn} be a set of sets of constraints, such that ∀Si ∈ Sall,∀Li ∈ P ,

Si is the set of context-free constraints for Li. ContextConstraints(P, Sall, <L) returns an

ordered set of sets of context constraints, Qall = {Q1, Q2, ..., Qn} such that ∀Qi ∈ Qall, Qi

is exactly the set of contexts constraints for Li.

Proof. It is necessary to first show that ∀Qi ∈ Qall, Qi is a set of context constraints

for Li, then we show that Qi is the exact set of context constraints as specified by <L.

ContextConstraints creates a new set of context constraints for every level in P (line 3)

and adds the set to Qall (line 7); thus, |Qall| = |P |, and this completes the first half of the

proof. For every Qi, ContextConstraints iterates over all elements in P and adds a set of

level constraints to Qi if and only if their corresponding level satisfies <L; thus, Qi is exactly

the set of context constraints for Li, and this completes the second half of the proof.
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SalienceValues

Context-dependent transformations hinge on the assumption that the context of the level

they are transforming will not be invalidated before the level has been transformed. This

assumption could not be guaranteed if the rules were executed arbitrarily, except in special

circumstances [55]. For instance, the method-level transformations for the EJB example

require that the target method is defined in a class implementing SessionBean. If the class-

level transformations are arbitrarily executed before the method-level transformations, the

interface will be removed and the method-level transformations will fail. To overcome this

limitation, our algorithm calculates an execution order for each level, called a salience value.

Rules with higher salience values will be executed prior to rules with lower salience values

(ties are broken arbitrarily). Figure 3.14 shows the SalienceV alues algorithm for calculating

salience values for a set of prior levels. The algorithm is analogous to a sorting algorithm

parameterized by the partial order on L.

3.4.3 Merging Algorithms

Once the necessary independent components have been inferred, two merging algorithms are

invoked. The first merging algorithm, LevelTransformations, combines the independent

components for a level into a set of transformations for that level. The second merging

algorithm, ProgramTransformations, combines the level transformations into a complete

set of program transformations.

LevelTransformations

The LevelTransformations algorithm takes the results of the algorithms described in the

previous section for a single level, and combines them into a set of generalized transformation
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rules. Figure 3.15 shows the LevelTransformations algorithm. Until now, we have focused

on structural inference at or above the level of method signatures. We have deliberately not

detailed how we infer annotation attribute values, which can be any valid Java expression

and as such require a deeper level of inference than that of method declarations. Thus, infer-

ence of attribute values is delayed until the LevelTransformations algorithm (lines 4-10),

when more complete program information is known. For every argument to the attribute,

LevelTransformations checks if a matching expression exists in the prior representative

example (Lines 6-7). If it does not, the algorithm generates a literal transformation which

adds the expression to the attribute (line 8). If the expression does exist, however, it gener-

ates a generalized transformation based on the context of the expression. In both cases, the

salience of attribute transformations must be slightly lower than that of the rest of the level

transformations, since the annotation itself must be added first before an attribute can be

added.

ProgramTransformations

The final algorithm, ProgramTransformations, takes two decomposed representative ex-

amples, P and P ′, as well as a set of expressions, X, in the prior representative example, and

returns the set Tall of inferred program transformations. First, ProgramTransformations

builds the sets of fundamental components, Sall, Rall, Qall, and Yall, for every level (lines

1-11). Then, it builds the set of context constraints (if any) for every expression (lines 14-

16). Finally, ProgramTransformations iterates over all levels and adds each set of level

transformations to Tall (lines 17-19). Figure 3.17 shows the rules output by the algorithm to

transform the EJB example used through this section.



53

3.5 Evaluation

We evaluated our approach on two criteria. First, we measured the accuracy of our inference

algorithm by applying it to seven different refactoring scenarios. Second, we demonstrated

the effectiveness of the automatically inferred refactorings by upgrading the testing por-

tion of four well-known, open-source projects. The results of our evaluation show that our

approach produces highly-accurate refactorings which, with few minor refinements, can be

automatically-applied to large-scale applications, effectively solving the Vendor and Version

Lock-in anti-patterns for applications that use annotation-based frameworks.

3.5.1 Inferred Refactorings

For our approach to be viable in a realistic setting, it has to infer refactorings with a high

degree of accuracy. To assess the accuracy of our inferencing algorithm, we manually evalu-

ated each inferred refactoring in four categories: constraints, restructurings, rule execution

order, and manual refinements required. The metrics used to evaluate each category are

defined below. To help explain the metrics, we give examples from the transformation rules

listed in Figure 3.5.

Constraint Metrics

For constraints, we measured the number of correct, excessive, erroneous, and missing con-

straints, defined as follows:

• Correct. A correct constraint accurately captures a single requirement of a transfor-

mation rule. For example, Name matches “test.*” correctly requires the name of any

test method to start with the test prefix.
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• Excessive. An excessive constraint unnecessarily limits the scope of a transformation

rule. For example, Visibility is protected limits the applicability of rules 2 and 3 to

only protected methods, even though public methods should be captured as well.

• Erroneous. An erroneous constraint captures requirements that are incorrect for a

specific transformation rule. For example, Has 1 parameter would be erroneous for

identifying a setUp method in rule 2.

• Missing. A missing constraint is a necessary requirement not present in a transforma-

tion rule. For example, if Return type is “void” were not present in rule 2, it would be

a missing constraint.

Restructuring Metrics

For restructurings, we measured the number of correct, erroneous, and missing restructurings

as follows:

• Correct. A correct restructuring performs a required atomic transformation in a trans-

formation rule. For example, Set access level of $method to public in rule 2 correctly

changes the visibility of a protected setUp method.

• Erroneous. An erroneous restructuring performs an atomic transformation that inval-

idates a transformation rule. For example, Set scope level of $method to static would

be erroneous for rule 2 because the method must maintain its member scope.

• Missing. A missing restructuring is an atomic transformation not present in a trans-

formation rule. For example, if Add annotation “Before” to $method were not present

in rule 2, the composite refactoring would be incomplete.
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Rule Order Metrics

For transformation rules, we measured the number of correct and erroneous rule execution

orders (i.e., salience values) as follows:

• Correct. A correctly ordered transformation rule does not invalidate other rules when

executed. For example, executing rule 2 before rule 1 will not preclude rule 1 from

executing.

• Erroneous. An erroneously ordered transformation rule invalidates another rule when

executed. For example, executing rule 1 before rule 2 would invalidate rule 2 by

prematurely removing the super class from the target test case.

Manual Refinement Metrics

To measure the manual effort required by a developer, we counted the number of minor and

major refinements needed for each refactoring as follows:

• Minor. A minor or small refinement is a required change to a single constraint, re-

structuring, or rule execution order. For example, changing Visibility is protected to

Visibility is at least protected in rule 2 is a minor refinement.

• Major. A major or large refinement is a required addition or removal of an entire

rule. For example, if rule 1 had not been inferred, a major refinement would have been

needed to add it by hand.

The above criteria were used to measure the accuracy of the inferred refactorings for seven

scenarios, shown in Table 3.2 with their corresponding upgrade patterns. The first two

refactoring scenarios focus on upgrading from JUnit 3 to JUnit 4, as has been discussed
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Scenario Upgrade Pattern
JUnit 3 test cases to JUnit 4 Bottom-Up
JUnit 3 test suites to JUnit 4 Top-Down
JUnit 3 test cases to TestNG Bottom-Up
JUnit 4 test cases to TestNG Identity
Serializable classes to JDO Bottom-Up
Serializable classes to JPA Bottom-Up
JDO classes to JPA Identity

Table 3.2: The seven different upgrading scenarios and their corresponding upgrade patterns.

throughout the chapter. The third and fourth scenarios focus on switching unit testing

framework vendors from JUnit to TestNG [10]. The TestNG framework was developed as

a next generation testing framework extending beyond unit testing to support regression,

integration, and functional testing. Recognizing that many existing applications have imple-

mented their testing functionality using JUnit, TestNG provides a hand-written automatic

upgrade utility in their Eclipse plug-in. However, as of the latest version of TestNG, this

upgrade utility has several software defects when upgrading JUnit 4 test cases, such as not

properly removing JUnit annotations, inserting deprecated TestNG annotations, and incor-

rectly matching test method names. For this scenario, we used a representative example of

a TestNG test case that was identical to the JUnit 4 test case example in Figure 3.1, but

with the corresponding TestNG annotations.

The remaining three scenarios focus on upgrading applications to use different enterprise

orthogonal persistence frameworks. In the first of these three scenarios, a Serializable

class must be upgraded to use Apache’s Java Data Objects (JDO) [82] annotations. In the

second scenario, the same Serializable class must be upgraded to use the standardized

J2EE Java Persistence API (JPA) [30] annotations. In the third scenario, a class marked

with JDO annotations must be transitioned to use JPA annotations.3

3For the three orthogonal persistence scenarios, we have selected the subset of functionality that we have
found useful in our own software development practices rather than the entire JDO and JPA specifications.
Detailed representative examples for the three persistence frameworks can be found in the technical report
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Scenario Constraints Restructurings
Target Upgrade C M X E C M E

Test Cases
JUnit 3 to 4 29 0 5 0 11 0 0

JUnit 3 to TestNG 28 0 5 0 10 0 0
JUnit 4 to TestNG 25 0 0 0 11 0 0

Test Suites JUnit 3 to 4 52 0 0 0 11 0 0

Persistence
Serializable to JDO 78 0 0 0 14 0 0
Serializable to JPA 78 0 0 0 14 0 0

JDO to JPA 67 0 0 0 24 0 0
Total 357 0 10 0 95 0 0

Table 3.3: The accuracy of the inferred rules for the seven different upgrading scenarios.
C=Correct; M=Missing; X=Excessive; E=Erroneous; S=Small(Minor); L=Large(Major).

Scenario Rules Refinements
Target Upgrade C E S L

Test Cases
JUnit 3 to 4 5 0 5 0

JUnit 3 to TestNG 5 0 5 0
JUnit 4 to TestNG 5 0 0 0

Test Suites JUnit 3 to 4 6 0 0 0

Persistence
Serializable to JDO 8 1 1 0
Serializable to JPA 8 1 1 0

JDO to JPA 8 1 1 0
Total 43 3 13 0

Table 3.4: The accuracy of the inferred rules for the seven different upgrading scenarios.
C=Correct; M=Missing; X=Excessive; E=Erroneous; S=Small(Minor); L=Large(Major).
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Tables 3.3 and 3.4 show the accuracy of the inferred refactorings. As proved in Lemmas 1-3,

our algorithm does not miss any required constraints or restructurings, nor does it infer any

erroneous ones. Similarly, no major refactoring refinements are required by the developer in

any of the seven scenarios.

The inference algorithm generated the same five excessive constraints in both of the JUnit

3 test case upgrading scenarios. Two of these excessive constraints unnecessarily limit the

applicability of the transformation rules for the setUp and tearDown methods to only pro-

tected visibility, even though such methods can be public. The remaining three excessive

constraints unnecessarily require the declaring class of setUp, tearDown, and test methods

to directly extend TestCase, even though an indirect extension is valid. These two situa-

tions arise due to the small sample size used by our approach (i.e., only two representative

examples). Thus, while the inferred JUnit 3 test case refactorings are correct for the given

examples in both scenarios, five minor refinements are necessary to make the refactorings

general enough to fully capture all valid test cases.

For the persistence scenarios, each generated refactoring requires one transformation rule

reordering. The inferred rules find a naming convention for both the primary database key

and persisted elements in a class, however the latter is a more general version of the former

(i.e., both conventions will match the primary database key). Thus, to ensure that the

primary database key is annotated before regularly persisted elements, it must be given a

slightly higher precedence in the execution order, resulting in one required minor refinement

for each of the persistence refactorings.

The accuracy metrics presented above show that the rules automatically inferred by our

algorithm have a high degree of accuracy. On average, 97% of the total constraints, restruc-

turings, and rule orderings require no refinement by the developer, with five out of seven

version of this chapter [94].
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Application Lines of Code Test Cases Tests setUp tearDown

JHotDraw 7.0.9 378 2 42 2 2
JBoss Drools 4.0.3 16,942 101 453 38 11
Apache Ant 1.7.0 21,969 251 1,714 187 99
JFreeChart 1.0.8 41,056 318 1,739 39 1
Total 80,345 672 3,948 266 113

Table 3.5: Upgrade statistics for four real-world case studies.

refactoring scenarios requiring at most one minor change. The accuracy of the inferred

refactorings has an important practical significance. Unlike the hand-written upgrade utility

provided by TestNG, the JUnit 4 to TestNG refactorings inferred by our approach accurately

upgrade all JUnit 4 test cases without requiring any manual refinement.

3.5.2 Case Studies

To demonstrate the effectiveness of a refined refactoring, we have upgraded the JUnit 3

test cases of four open-source, real-world applications to JUnit 4. Table 3.5 presents the

total number of lines of testing code, TestCase classes, test methods, setUp methods, and

tearDown methods upgraded in each application. Overall, we have successfully upgraded

more than 80K lines of Java source code, eliminating the need to perform this refactoring

by hand.

3.6 Future Work

Currently, our inferencing algorithm supports only Java 5 annotations. In the future, we plan

to extend this work to support the upcoming Java 7 annotations that enable annotating a

broader set of program elements. However, our structural differencing algorithm will need to

be extended to handle annotated local variables in method bodies, possibly requiring static
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analysis.

Many frameworks that used XML-based metadata rather than type and naming require-

ments in their previous versions have since transitioned to annotations. We plan to extend

our approach to automatically infer refactorings for legacy applications that use XML-based

metadata frameworks. Such an extension could potentially be enabled by extending the

notion of a prior representative example to include XML snippets, and subsequently incor-

porating XML analysis into our algorithm.

Finally, finding a more unified approach to inferring refactoring rules has great potential

benefits. This may be realized either by replacing the current pattern-based approach with

a more sophisticated analysis, introducing a step for inputting domain-specific knowledge, or

adding algorithmic support for multiple representative examples. These enhancements could

eliminate the need for a developer to decide on which upgrade pattern to use, flattening the

learning curve for using our system and increasing the possibility of widespread adoption.

3.7 Conclusions

This chapter presented Annotation Refactoring and Rosemari, an approach to solving the

Vendor and Version lock-in problems associated with annotation-based frameworks. Our

approach is based on the wide availability of upgrade guides containing examples of legacy

classes and their upgraded versions. Leveraging these examples, Rosemari enables framework

developers to generate refactoring utilities capable of automatically upgrading legacy appli-

cations. As demonstrated by our case studies, the inferred refactorings are highly accurate

and can effectively upgrade large-scale, real-world applications.
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rule "#1) Transform classes matching ATest"
  no-loop
  salience 10
    when
      $class : Application Class

- Visibility is public
- Superclass is "junit.framework.TestCase"

    then
Remove superclass from $class
Update $class

end

rule "#2) Transform all methods matching setUp"
  no-loop

salience 20
  when
    $class : Application Class

- Visibility is public
- Superclass is "junit.framework.TestCase"

    $method : Application Method
- Name matches "setUp"
- Declaring class is $class
- Not annotated with "Before"
- Visibility is protected
- Scope level is member
- Return type is "void"
- Has 0 parameters

  then
    Add annotation "Before" to $method
    Set access level of $method to public
    Update $class
    Update $method
end

rule "#3) Transform all methods matching tearDown"
  no-loop
  salience 20
  when
    $class : Application Class

- Visibility is public
- Superclass is "junit.framework.TestCase"

    $method : Application Method
- Name matches "tearDown"
- Declaring class is $class
- Not annotated with "After"
- Visibility is protected
- Scope level is member
- Return type is "void"
- Has 0 parameters

  then
    Add annotation "After" to $method
    Set access level of $method to public
    Update $class
    Update $method
end

rule "#4) Transform all methods matching test.*"
  no-loop

salience 20
  when
    $class : Application Class

- Visibility is public
- Superclass is "junit.framework.TestCase"

    $method : Application Method
- Name matches "test.*"
- Declaring class is $class
- Not annotated with "Test"
- Visibility is public
- Scope level is member
- Return type is "void"
- Has 0 parameters

  then
    Add annotation "Test" to $method
    Update $class
    Update $method
end

rule "#5) Manage imports"
  no-loop

salience 0
  when
    $file : Application File

- Does not import "org.junit.After"
- Does not import "org.junit.Before"
- Does not import "org.junit.Test"
- Does not import "org.junit.Assert.*"
- Does import "junit.framework.TestCase"

  then
    Add import "org.junit.After" to $file
    Add import "org.junit.Before" to $file
    Add import "org.junit.Test" to $file
    Add static import "org.junit.Assert.*" to $file
    Remove import "junit.framework.TestCase" from $file
    Update $file
end

Figure 3.5: The generated transformation rules to refactor a JUnit 3 test case class to use
JUnit 4.
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import junit.framework.*;

public class ATest extends TestCase
{

  //called before every test
  protected void setUp() {}

  //called after every test
  protected void tearDown() {}

  //tests Foo
  public void testFoo() {}

  //tests Bar
  public void testBar() {}
}

import org.junit.*;

public class Atest
{
  //called before every test
  @Before
  public void setUp() {}

  //called after every test
  @After
  public void tearDown() {}

  //tests Foo
  @Test
  public void testFoo() {}

  //tests Bar
  @Test
  public void testBar() {}
}

//gets a collection of two
//test cases to run
public class AllTests
{
public static Test suite() {

    TestSuite suite = 
      new TestSuite(ATest.class);
    suite.addTestSuite(BTest.class);
    return suite;
  }
}

@RunWith(Suite.class)
@SuiteClasses({ATest.class,

   BTest.class})
public class AllTests
{
  //no suite method required
}

JUnit 3 JUnit 4

JUnit 3 JUnit 4

public class HelloWorldBean 
implements SessionBean

{
  public void ejbActivate() {}

  public void ejbRemove() {}
}

@Stateful
public class HelloWorldBean
{

@PostActivate
  public void ejbActivate() {}

  @Remove
  public void ejbRemove() {}
}

EJB 2 EJB 3

Figure 3.6: A simple Enterprise Java Bean example in EJB 2 and 3.

LClass = {Annotations, V isibility, SuperClass, SuperInterfaces}
LIface = {Annotations, V isibility, SuperInterfaces}
LField = {Annotations, V isibility, Scope, Type}
LMeth = {Annotations, V isibility, Scope,

ReturnType, Parameters, Exceptions}
LCons = {Annotations, V isibility, Scope, Parameters, Exceptions}
LMethInvoke = {Name, Arguments}
LConsInvoke = {Type, Arguments}
LArg = {Expression}

Figure 3.7: The levels at which each representative example is examined.

Bottom-Up
LArg <L {LConsInvoke, LMethInvoke} <L {LCons, LMeth, LField} <L {LIface, LClass}

Top-Down
LArg <L {LConsInvoke, LMethInvoke} <L {LIface, LClass} <L {LCons, LMeth, LField}

Identity
{LIface, LClass, LCons, LMeth, LField, LConsInvoke, LMethInvoke, LArg}

Figure 3.8: Upgrade patterns as partial orders.
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EJB2HelloWorldBean = {V public, ISessionBean}
EJB3HelloWorldBean = {AStateful, V public}

EJB2ejbActivate = {V public, Smember, Rvoid}
EJB3ejbActivate = {APostActivate, V public, Smember, Rvoid}

EJB2ejbRemove = {V public, Smember, Rvoid}
EJB3ejbRemove = {ARemove, V public, Smember, Rvoid}

Figure 3.9: The level decomposition of the EJB example.

ALGORITHM: Level Restructurings
INPUT: Two levels L = {e1, e2, . . . , em}, L′ = {e′

1, e
′
2, . . . , e

′
n} where

L′ is the restructured version of L.
OUTPUT: A set R = {r1, r2, . . . , rp} of restructurings.

1. R← ∅

2. POSELS ← L′ − L

3. For i← 1 to |POSELS|

4. R← R
⋃

PositiveRestructuring(POSELS[i])

5. NEGELS ← L− L′

6. Prune(NEGELS) // remove unnecessary elements

7. For j ← 1 to |NEGELS|

8. R← R
⋃

NegativeRestructuring(NEGELS[j])

9. return R

Figure 3.10: The LevelRestructurings algorithm for calculating the required set of restruc-
turings to transform between two levels.
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ALGORITHM: Level Constraints
INPUT: Two sets L = {e1, e2, . . . , em}, L′ = {e′

1, e
′
2, . . . , e

′
n} of signature elements where

L′ is the restructured version of L.
OUTPUT: A set S = {s1, s2, . . . , sq} of context-free constraints.

1. S ← ∅

2. For i← 1 to |L|

3. S ← S
⋃

PositiveConstraint(L[i])

4. NEGELS ← L′ − L

5. For j ← 1 to |NEGELS|

6. S ← S
⋃

NegativeConstraint(NEGELS[j])

7. return S

Figure 3.11: The LevelConstraints algorithm for calculating the context-free set of con-
straints for a level.

ALGORITHM: Naming Convention
INPUT: A set N = {n1, n2, . . . , nm} of member names
OUTPUT: A regular expression naming convention

1. TOKENS ←Tokenize(n1)

2. For i← 2 to m

3. TOKENS ← TOKENS
⋂

Tokenize(ni)

4. If TOKENS = ∅

5. return LiteralRegex(N)

6. return GeneralizedRegex(TOKENS)

Figure 3.12: The NamingConvention algorithm for generalizing a set of names to a naming
convention.
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ALGORITHM: Context Constraints
INPUT: A set P = {L1, L2, . . . , Ln} of levels.
A set Sall = {S1, S2, . . . , Sn} of sets of constraints such that ∀Si ∈ Sall,∀Li ∈ P , Si is
the set of level constraints for Li.
A partial order <L on P .
OUTPUT: A set Qall = {Q1, Q2, . . . , Qn} of context constraints such that ∀Qi ∈ Qall, Qi

is the set of constraints defining the context of Li.

1. Qall ← ∅

2. For i← 1 to n

3. Qi ← ∅

4. For j ← 1 to n

5. If P [i] <L P [j]

6. Qi ← Qi
⋃

Sall[j]

7. Qall ← Qall

⋃
{Qi}

8. return Qall

Figure 3.13: The ContextConstraints algorithm for calculating the additional constraints
for every level.
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ALGORITHM: Salience Values
INPUT: A set P = {L1, L2, . . . , Ln} of levels
A partial order <L on L.
OUTPUT: A set Yall = {y1, y2, . . . , yn} of salience values, ∀ yi ∈ Yall, yi is the salience
of Li.

1. Yall ← ∅

2. For u← 1 to n

3. yu ← 0

4. For v ← 1 to n

5. If P [v] <L P [u]

6. yu ← yu + 10

7. Yall ← Yall

⋃
{yu}

8. return Yall

Figure 3.14: The SalienceV alues algorithm for calculating the order of execution for every
level.
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ALGORITHM: Level Transformations
INPUT: A set S = {s1, s2, . . . , sk} of context-free constraints.
A set Q = {q1, q2, . . . , qm} of context constraints.
A set R = {r1, r2, . . . , rn} of restructurings.
A set X = {x1, x2, . . . , xu} of expression nodes.
A set QX = {Q1, Q2, . . . , Qu} of sets of context constraints for the expression nodes.
A salience score Y for this level.
OUTPUT: A set Tlevel = {t1, t2, . . . , tp} of transformations for this level.

1. Tlevel ← ∅

2. For i← 1 to n

3. ri ← R[i]

4. If TypeOf(r1) = AttributeAddition and |ri.args| > 0

5. For j ← 1 to |ri.args|

6. Xa ← X
⋂

ri.args[j]

7. If Xa = ∅

8. Tlevel ← Tlevel

⋃
{LiteralTransformation(ri.args[j], Y − 1)}

9. Else

10. Tlevel ← Tlevel

⋃
{GeneralTransformation(ri.args[j], Qa, Y − 1)}

11. Tlevel ← Tlevel

⋃
{GeneralTransformation(ri, S

⋃
Q, Y )}

12. return Tlevel

Figure 3.15: The LevelTransformations algorithm for generating a set of transformation
rules for a level.
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ALGORITHM: Program Transformations
INPUT: A set P = {L1, L2, . . . , Ln} of prior levels.
A set P ′ = {L′

1, L
′
2, . . . , L

′
n}) of posterior levels.

A set X = {x1, x2, . . . , xm} of expression nodes in an AST.
A partial order <L on L.
OUTPUT: A set Tall = {T1, T2, . . . , Tq} of transformations for this program.

1. Sall ← ∅

2. Rall ← ∅

3. For i← 1 to n

4. L1 ← P [i]

5. L′
1 ← P ′[i]

6. Si ← LevelConstraints(Li, L
′
i)

7. Ri ← LevelRestructurings(Li, L
′
i)

8. Sall ← Sall

⋃
{Si}

9. Rall ← Rall

⋃
{Ri}

10. Qall ← ContextConstraints(Sall, <L)

11. Yall ← SalienceValues(P [0])

12. Tall ← ∅

13. QX ← ∅

14. For i← 1 to m

15. v ← V [i]

16. QX ← QX

⋃
{Qall.v}

17. For i← 1 to n

18. Ti ←
LevelTransformations(Sall[i], Qall[i], Rall[i], X,QX)

19. Tall ← Tall

⋃
Ti

20. return Tall

Figure 3.16: The ProgramTransformations algorithm for inferring a set of transformation
rules from two representative examples.
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rule "#1) Transform classes matching HelloWorldBean"
  no-loop
  salience 0
    when
      $class : Application Class

- Visibility is public
- Implements "javax.ejb.SessionBean"

    then
Remove interface from $class
Update $class

end
rule "#2) Transform all methods matching ejbActivate"
  no-loop
salience 10

  when
    $class : Application Class

- Visibility is public
- Implements "javax.ejb.SessionBean"

    $method : Application Method
- Name matches "ejbActivate"
- Declaring class is $class
- Not annotated with "javax.ejb.PostActivate"
- Visibility is public
- Scope level is member
- Return type is "void"
- Has 0 parameters

  then
    Add annotation "javax.ejb.PostActivate" to $method
    Update $class
    Update $method
end
rule "#3) Transform all methods matching ejbRemove"
  no-loop
salience 10

  when
    $class : Application Class

- Visibility is public
- Implements "javax.ejb.SessionBean"

    $method : Application Method
- Name matches "ejbRemove"
- Declaring class is $class
- Not annotated with "javax.ejb.Remove"
- Visibility is public
- Scope level is member
- Return type is "void"
- Has 0 parameters

  then
    Add annotation "javax.ejb.Remove" to $method
    Update $class
    Update $method
end

Figure 3.17: The rules learned to transform the EJB example from version 2 to version 3.



Chapter 4

Related Work

4.1 Introduction

This chapter is divided into the literature related to the two different approaches developed

for this thesis: MPI Serializer and Rosemari.

4.2 MPI Serializer

A wealth of existing research literature deals with some aspect of marshaling program state.

As described in section 2.2.2, existing approaches for automated marshaling C++ data

structures to MPI buffers do not meet all the ancillary objectives of the HPC domain. This

section examines indirectly related research on implementing and improving serialization in

Java, C, and C++.

Ultimately, automatic marshaling requires the ability for an external program entity to

traverse an object graph. The marshaling functionality has to be able to access all the fields

70
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of a C++ object irrespective of their access protection level, including private and protected

fields. Additionally, the marshaling functionality must be able to determine type and size

information about each marshaled field. In the case of pointers and dynamically allocated

structures, this information is not generally available at runtime.

The standard RunTime Type Information (RTTI) [56] of C++ is not sufficient to provide

support for automatic marshaling. However, efforts have been made to provide advanced

facilities for C++ that enable access to runtime type information. The most notable of which

is the Metaobject Protocol (MOP) for OpenC++ [21], which enhances the language with

reflective capabilities providing an effective approach to dealing with the challenges outlined

above. Nevertheless, standard C++ implementations do not posses reflective capabilities.

This approach would be inappropriate for our objectives, as it requires a non-standard ex-

tension of C++.

An example of a mainstream, commercial object oriented programming language with built-

in reflective capabilities is Java. Ever since the capability to “pickle” the state of a Java

object [79] was added to the language in the form of Java Object Serialization [88], numerous

approaches for optimizing this capability have been proposed. Java reflection[87] provides

capabilities for runtime inspection of Java object graphs and also for modifying object state.

Many of the proposed approaches of optimizing Java serialization had the aim of making

the language more amenable for HPC. The proposals for faster serialization eliminated the

overheads of reflection by providing custom code for individual objects [75], using native code

[64, 65], and finally using runtime code generation to specialize serialization functionality

[1]. Because C++ does not have built-in reflective capabilities, none of these approaches are

applicable to us. It is worth noting that the vision of Java as a language for HPC has not

taken hold in mainstream high performance computing.

Remote Procedure Call (RPC) systems such as Sun RPC [89] and DCE RPC [95] provide
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marshaling capability for C structures. The programmer provides an IDL specification for

a remote procedure call and its parameters, and a stub compiler automatically generates

marshaling and unmarshaling code. However, the marshaling/unmarshaling functionality of

RPC systems is not suitable for our approach. They are not viable solutions for our domain

since their target language is C rather than C++, the generated code does not use standard

MPI calls, and it is not easy to specify a subset of an object state to marshal. The Flick [37]

compiler simplifies several aspects of IDL specification, supports several source languages,

and also applies numerous optimizations that bear similarity to the techniques of generating

efficient marshaling code utilized by our approach. Despite the enhancements provided by

Flick, IDL-based approaches still do not support several important C++ language features

(e.g., STL containers, multiple inheritence, etc.).

CORBA [70] and DCOM [17] are object-oriented extensions of the RPC systems above.

While they do provide C++ language mappings, they do not cover all of the C++ language

features required by our domain. Specifically, CORBA marshaling facilities support only

single class inheritance and have no notion of protected-fields [69]. Furthermore, to satisfy

the programming conventions of CORBA, existing C++ code either has to be modified or

special factory classes must be written [70]. Neither CORBA or DCOM marshaling provide

special handling for STL container classes. DCOM is platform-dependent, being mainly

supported on the Windows platform. Lastly, CORBA and DCOM require runtime libraries,

which may complicate deployment.

Adaptive parameter passing [63] aims at optimizing RPC marshaling by sending a subset

of an object’s state graph. However, the approach does not adequately meet our design

objectives since it introduces a domain specific language and does not support MPI.
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4.3 Rosemari

Our approach relies on automated inference of program transformation and structural pro-

gram differences. While these are broad and extensive research areas, to the best of our

knowlege, none of the existing techniques in either of these areas are sufficient to automati-

cally upgrade applications that use annotation-based frameworks.

4.3.1 Technique Classification

In a comprehensive survey, Visser [103] presents a taxonomy of program transformation

systems. This taxonomy divides program transformations into two broad categories: trans-

lation and rephrasing. Translation involves transforming a program from one language to

another, whereas rephrasing is concerned with program-improving transformations within

the same language. Refactoring is a special subclass of rephrasing that improves the design

of a program while maintaining its functionality. Renovation brings a program up to date

with changed requirements, and migration ports a program from one language to another.

Our approach entails changing the application code to use a different framework. The

program’s semantics is preserved–the program does the same thing but using a different

framework, thus classifying our approach as a refactoring. However, traditional refactoring

techniques do not capture large scale changes such as the use of a different framework. Up-

grading an application that uses a framework based on subtyping and naming requirements

to an annotation-based framework can also be considered a renovation. Additionally, trans-

forming legacy applications written in a language without annotations to a language with

annotations is migration, as the different versions of a language (e.g., Java 1.4 vs. Java 1.5)

can be considered as two different languages. Since semantic equality is the main goal of our

transformations, we consider our approach a refactoring.
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4.3.2 Program Transformation Systems

Our technique relies on rule-based program transformations to implement the automatically-

inferred refactorings. Multiple program transformation systems have appeared in the re-

search literature. A representative of a state-of-the-art general program transformation sys-

tem is Stratego/XT [104], which enables a variety of transformations from both the transla-

tion and rephrasing categories. Another example of a multi-language transformation system

is DMS R© [7], which focuses on scalability and efficiency.

Several other transformation systems target a single language. JaTS [19] provides a Java-

like syntax for specifying program transformations in a manner similar to macros. Inject/J

[41] enables program transformations at a level higher than that of an abstract syntax tree

(AST) by providing a meta-model that can be manipulated via a domain-specific scripting

language. TXL [23] uses a first order functional programming model, allowing explicit pro-

grammer control over several phases of the parsing and rewriting process. iXJ [15] aims at

providing a visual language to enable interactive program transformations. The Smalltalk

Refactoring Browser [80], a key example of a successful application of program transforma-

tion in a commercial setting, uses an extended Smalltalk syntax to specify AST pattern

trees. The Arcum framework [84] uses declarative pattern matching and substitution to

specify crosscutting design idioms.

While these systems are extremely powerful tools for implementing program transformations,

they do not provide support for automatically inferring transformation rules, as required by

our approach. However, our algorithm is general enough that it could be used to infer

transformation rules in any of the above systems that support metadata transformations.
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4.3.3 Program Differencing

To infer the necessary set of transformations, our technique requires the ability to calculate

differences between two program versions. Program differencing is an active research area

and several differencing algorithms have been proposed recently.

Dmitriev describes a make utility for Java [34] that leverages program change history to

selectively recompile dependent source files. UMLDiff [106, 109] detects structural differences

between two successive version of a program and accurately models the design evolution of the

system. Kim et al. DSMDiff [62] identifies differences between domain-specific models. [54]

use a string similarity measure to infer structural changes at or above the level of a method

header, represented as first-order relational logic rules. Since none of these techniques extend

beyond the method header level, they cannot be leveraged to detect upgrade patterns at the

required level of granularity.

The Breakaway tool [26] helps determine the detailed correspondences between two classes

through the visualization of similarities between two ASTs. The Change Distilling algorithm

[38] uses an optimized version of a tree differencing algorithm for hierarchically structured

data [20] to extract fine-grained source code changes. The JDiff [2] algorithm uses an aug-

mented representation of a control-flow graph to identify changes in the behaviors between

two versions of an object-oriented program. Since none of these algorithms can generalize

the inferred differences, they cannot be leveraged to infer generalized refactoring rules.

4.3.4 API Evolution

Transitioning a legacy application from a convention-based to an annotation-based frame-

work is closely-tied to the problem of API evolution, which has been a highly-active area of

recent research. Explicit documentation (e.g., change annotations [22], refactoring tags [81],
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metapatterns [97], and deprecation inlining [74]) has been proposed as a means of facilitating

evolution of framework dependent applications.

More recent approaches aim at automating the inference and application of refactorings.

CatchUp! [45] records refactorings done by framework developers and provides facilities for

replaying them on the client to update application code. Extension rules [24, 25] enable

generalization transformations that add variability and flexibility into the class structure

of a framework, thereby enusuring consistency with client applications. RefactoringCrawler

[31] combines syntactic and semantic analyses to detect refactorings in evolving components.

RefacLib [91] follows a similar approach, but replaces semantic analysis with various analysis

heuristics. MolhadoRef [33] is a software configuration management system that reduces

merge conflicts and facilitates program evolution comprehension by tracking refactorings and

being aware of program entities. An approach that automatically creates an adaptation layer

to ensure binary compatability between different framework releases and client programs is

presented in [27]. Diff-CatchUp [108] leverages design differences inferred by the UMLDiff

algorithm described above to apply a set of heuristics to suggest API replacements in response

to compilation errors.

While these approaches have all been very effective for their target domains, they differ from

our approach. Specifically, they only support simple refactorings such as Change Signa-

ture, and they do not combine and generalize these refactorings, as required for upgrading

applications that use annotation-based frameworks.

4.4 Programming by Demonstration

Inferring a set of rules from a pair of examples bears similarity to programming by demon-

stration [60]. For a system to be classified as “programming by demonstration,” it must meet
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two criteria. First, the programmer must create the application via the same commands or

process that would be used to perform the task manually. Second, the programmer must

write the program by giving an example of the desired behavior. Since Rosemari enables

programmers to use the standard Eclipse interface to input representative examples, it could

be classified as a refactoring by demonstration system.



Chapter 5

Thesis Contributions and Conclusions

5.1 Thesis Contributions

This thesis has explored methodologies, techniques, and approaches for automating adap-

tive maintenance tasks. We have discussed the motivation and design of two approaches,

MPI Serializer and Rosemari, to automating such tasks. We next reiterate and expand the

descriptions of the main conceptual contributions of this thesis.

1. A common methodology for designing automated approaches to adaptive maintenance.

We have shown that despite the sharp contrast between the HPC community’s affin-

ity for efficiency before elegance, and the enterprise community’s inverse preference,

a common methodology can be followed to automate these tasks. This methodology

combines automated techniques, such as compiler tools; high-level specifications, such

as visual models and representative examples; and synthesis of low-level code, such

as object graph traversals and program transformation rules. The tools designed fol-

lowing the methodology have successfully automated tedious and error-prone adaptive

78
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maintenance tasks.

2. A novel approach to automating the generation of efficient marshaling logic for HPC

applications from a high-level visual model. Our approach, reified in the MPI Serializer

tool, enables the HPC developer to select the fields of a C++ class to be marshaled.

From this high-level model, efficient code is then generated to traverse the object graph

at run-time and pack it into a buffer using standard MPI calls.

3. A novel approach to automatically upgrading legacy enterprise applications to use annotation-

based frameworks. Our approach, reified in the Rosemari tool, enables a developer to

specify upgrade rules using a single example of a Java class before and after it is

upgraded to the latest annotation-based framework version or vendor. Based on this

example, our algorithm infers a set of general refactorings that parameterizes our trans-

formation engine which is then capable of automatically upgrading legacy applications.

5.2 Conclusions

This thesis has presented research that is concerned with automating adaptive maintenance.

The goal of this research was to demonstrate that it is possible to effectively automate

tedious and error-prone adaptive maintenance tasks in a diverse set of domains by exploiting

high-level specifications to synthesize specialized low-level code. We believe that the insights

and approaches produced by this research will be valuable in the design of future software

maintenance tools and systems.

Automated approaches to adaptive maintenance have the potential to alleviate a significant

burden placed on software developers. With the size and complexity of modern applications

growing every day, maintenance is imposing an escalating cost on software projects. Tight
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deadlines, fierce competition, and rapidly changing requirements often leave the developer

with little time to familiarize themselves with new technologies required for a particular

adaptive maintenance task. By helping to automating these tasks, developer efforts can be

focused more on objectives and less on implementation, reducing the need for fine-grained

knowledge of the new technologies and increasing productivity. This makes automated adap-

tive maintenance an area of vital importance both presently, and in the future. The research

presented by this thesis contributes to the ultimate aspiration of fully automated adaptive

maintenance.
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Appendix A

MPI Serializer Code Examples

This appendix contains the generated code for the Mass example used in the MPI Serializer

chapter. The generated code is mangled to prevent duplicate names from creating compile- or

run-time errors. Rather than directly using literal values for the non-public field accesses, the

generated code uses macro values; this decouples the isomorphic structure generator and field

offset generator from the marshaling logic generator. Since an unbounded object graph subset

is selected for the master to worker communication, custom traversal logic is generated.

However, since a bounded subset is selected for the worker to master communication, only

the logic needed to initialize an MPI Datatype is generated.

A.1 Master to Worker Communication

A.1.1 Header File

#ifndef MPI SERIALIZER H

#define MPI SERIALIZER H
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#include "MPI_Serializer_Defines.h"

#include "mpi.h"

#include <vector>

#include <map>

#include <set>

extern MPI Datatype masterToWorker Mass surrounding Mass item;

enum MPI Descriptor masterToWorker

{

masterToWorker

};

int MPI Pack(Mass∗ inbuf, int incount, MPI Descriptor masterToWorker datatype,

char ∗outbuf, int outcount, int ∗position , MPI Comm comm);

void init ();

void pack masterToWorker Mass surrounding(

std :: vector<Mass,std:: allocator <Mass> >∗ toPack,

char∗ buf, int size , int∗ position , MPI Comm comm);

void pack masterToWorker(Mass∗ toPack, char∗ buf, int size , int∗ position ,

MPI Comm comm);

void unpack masterToWorker Mass surrounding(

std :: vector<Mass,std:: allocator <Mass> >∗ toPack,

char∗ buf, int size , int∗ position , MPI Comm comm);

void unpack masterToWorker(Mass∗ toPack, char∗ buf, int size,

int∗ position , MPI Comm comm);
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#endif

A.1.2 CPP File

#include "MPI_Serializer.h"

using namespace std;

MPI Datatype masterToWorker Mass surrounding Mass item;

int MPI Pack(Mass∗ inbuf, int incount, MPI Descriptor masterToWorker datatype,

char ∗outbuf, int outcount, int ∗position , MPI Comm comm)

{

int success = MPI SUCCESS;

for( int i = 0; i < incount; i++)

{

pack masterToWorker(&inbuf[i], outbuf, outcount, position , comm);

}

return success ;

}

void init ()

{

unsigned char∗ base;

Mass Mass masterToWorker Mass surrounding Mass item;

base = (unsigned char∗)&Mass masterToWorker Mass surrounding Mass item;

unsigned char∗ Mass masterToWorker Mass surrounding Mass item Mass surrounding = base +

Mass Mass surrounding offset ;

unsigned char∗ Mass masterToWorker Mass surrounding Mass item Mass force x = base +

Mass Mass force x offset ;
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unsigned char∗ Mass masterToWorker Mass surrounding Mass item Mass force y = base +

Mass Mass force y offset ;

unsigned char∗ Mass masterToWorker Mass surrounding Mass item Mass mass = base +

Mass Mass mass offset;

unsigned char∗ Mass masterToWorker Mass surrounding Mass item Mass x = base +

Mass Mass x offset ;

unsigned char∗ Mass masterToWorker Mass surrounding Mass item Mass y = base +

Mass Mass y offset ;

MPI Datatype masterToWorker Mass surrounding Mass item types[3] =

{MPI FLOAT,MPI FLOAT,MPI FLOAT};

int masterToWorker Mass surrounding Mass item counts[3] = {1,1,1};

MPI Aint masterToWorker Mass surrounding Mass item disps[4];

MPI Address(

(std :: vector<Mass >∗)Mass masterToWorker Mass surrounding Mass item Mass surrounding,

&masterToWorker Mass surrounding Mass item disps[0]);

MPI Address(&Mass masterToWorker Mass surrounding Mass item.mass,

&masterToWorker Mass surrounding Mass item disps[1]);

MPI Address(&Mass masterToWorker Mass surrounding Mass item.x,

&masterToWorker Mass surrounding Mass item disps[2]);

MPI Address(&Mass masterToWorker Mass surrounding Mass item.y,

&masterToWorker Mass surrounding Mass item disps[3]);

for( int i = 3; i >= 0; −−i)

masterToWorker Mass surrounding Mass item disps[i] −=

masterToWorker Mass surrounding Mass item disps[0];

MPI Type struct(3,masterToWorker Mass surrounding Mass item counts,

&masterToWorker Mass surrounding Mass item disps[1],
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masterToWorker Mass surrounding Mass item types,

&masterToWorker Mass surrounding Mass item);

MPI Type commit(&masterToWorker Mass surrounding Mass item);

}

void pack masterToWorker Mass surrounding(

std :: vector<Mass,std:: allocator <Mass> >∗ toPack, char∗ buf, int size,

int∗ position , MPI Comm comm){

unsigned int toPack size = toPack−>size();

MPI Pack(&toPack size, 1, MPI UNSIGNED, buf, size, position, comm);

for(std :: vector<Mass,std:: allocator <Mass> >::iterator item = toPack−>begin();

item != toPack−>end(); item++)

{

MPI Pack((void∗)&((∗item)), 1, masterToWorker Mass surrounding Mass item, buf,

size , position , comm);

}

}

void pack masterToWorker(Mass∗ toPack, char∗ buf, int size , int∗ position ,

MPI Comm comm){

unsigned char∗ base = (unsigned char∗)toPack;

unsigned char∗ toPack Mass surrounding = base + Mass Mass surrounding offset;

unsigned char∗ toPack Mass force x = base + Mass Mass force x offset;

unsigned char∗ toPack Mass force y = base + Mass Mass force y offset;

unsigned char∗ toPack Mass mass = base + Mass Mass mass offset;
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unsigned char∗ toPack Mass x = base + Mass Mass x offset;

unsigned char∗ toPack Mass y = base + Mass Mass y offset;

pack masterToWorker Mass surrounding(((std::vector<Mass >∗)toPack Mass surrounding),

buf, size , position , comm);

MPI Pack( &((∗toPack).Mass::mass), 1, MPI FLOAT, buf, size, position , comm);

MPI Pack( &((∗toPack).Mass::x), 1, MPI FLOAT, buf, size, position , comm);

MPI Pack( &((∗toPack).Mass::y), 1, MPI FLOAT, buf, size, position , comm);

}

void unpack masterToWorker Mass surrounding(

std :: vector<Mass,std:: allocator <Mass> >∗ toPack, char∗ buf,

int size , int∗ position , MPI Comm comm){

toPack−>clear();

unsigned int toPack size ;

MPI Unpack( buf, size, position , &toPack size, 1, MPI UNSIGNED, comm );

for(unsigned int i = 0; i < toPack size; i++)

{

Mass item;

MPI Unpack( buf, size, position , &(item), 1,

masterToWorker Mass surrounding Mass item, comm);

toPack−>push back(item);

}

}
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void unpack masterToWorker(Mass∗ toPack, char∗ buf, int size,

int∗ position , MPI Comm comm){

unsigned char∗ base = (unsigned char∗)toPack;

unsigned char∗ toPack Mass surrounding = base + Mass Mass surrounding offset;

unsigned char∗ toPack Mass force x = base + Mass Mass force x offset;

unsigned char∗ toPack Mass force y = base + Mass Mass force y offset;

unsigned char∗ toPack Mass mass = base + Mass Mass mass offset;

unsigned char∗ toPack Mass x = base + Mass Mass x offset;

unsigned char∗ toPack Mass y = base + Mass Mass y offset;

unpack masterToWorker Mass surrounding(((std::vector<Mass >∗)toPack Mass surrounding),

buf, size , position , comm);

MPI Unpack( buf, size, position , &((∗toPack).Mass::mass), 1, MPI FLOAT, comm);

MPI Unpack( buf, size, position , &((∗toPack).Mass::x), 1, MPI FLOAT, comm);

MPI Unpack( buf, size, position , &((∗toPack).Mass::y), 1, MPI FLOAT, comm);

}

A.2 Worker to Master Communication

A.2.1 Header File

#ifndef MPI SERIALIZER H

#define MPI SERIALIZER H

#include "MPI_Serializer_Defines.h"

#include "mpi.h"
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#include <vector>

#include <map>

#include <set>

extern MPI Datatype masterToWorker;

void init ();

#endif

A.2.2 CPP File

#include "MPI_Serializer.h"

using namespace std;

MPI Datatype masterToWorker;

void init ()

{

unsigned char∗ base;

Mass Mass masterToWorker;

base = (unsigned char∗)&Mass masterToWorker;

unsigned char∗ Mass masterToWorker Mass surrounding =

base + Mass Mass surrounding offset;

unsigned char∗ Mass masterToWorker Mass force x =

base + Mass Mass force x offset ;

unsigned char∗ Mass masterToWorker Mass force y =

base + Mass Mass force y offset ;
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unsigned char∗ Mass masterToWorker Mass mass =

base + Mass Mass mass offset;

unsigned char∗ Mass masterToWorker Mass x =

base + Mass Mass x offset;

unsigned char∗ Mass masterToWorker Mass y =

base + Mass Mass y offset;

MPI Datatype masterToWorker types[2] =

{MPI FLOAT,MPI FLOAT};

int masterToWorker counts[2] = {1,1};

MPI Aint masterToWorker disps[3];

MPI Address((std:: vector<Mass >∗)Mass masterToWorker Mass surrounding,

&masterToWorker disps[0]);

MPI Address((float∗)Mass masterToWorker Mass force x,

&masterToWorker disps[1]);

MPI Address((float∗)Mass masterToWorker Mass force y,

&masterToWorker disps[2]);

for( int i = 2; i >= 0; −−i)

masterToWorker disps[i ] −= masterToWorker disps[0];

MPI Type struct(2,masterToWorker counts,&masterToWorker disps[1],

masterToWorker types, &masterToWorker);

MPI Type commit(&masterToWorker);

}


